]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_da_btree.c
xfs: have buffer verifier functions report failing address
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_da_btree.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "libxfs_priv.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dir2_priv.h"
31 #include "xfs_inode.h"
32 #include "xfs_trans.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_attr_leaf.h"
36 #include "xfs_trace.h"
37 #include "xfs_cksum.h"
38
39 /*
40 * xfs_da_btree.c
41 *
42 * Routines to implement directories as Btrees of hashed names.
43 */
44
45 /*========================================================================
46 * Function prototypes for the kernel.
47 *========================================================================*/
48
49 /*
50 * Routines used for growing the Btree.
51 */
52 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
53 xfs_da_state_blk_t *existing_root,
54 xfs_da_state_blk_t *new_child);
55 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
56 xfs_da_state_blk_t *existing_blk,
57 xfs_da_state_blk_t *split_blk,
58 xfs_da_state_blk_t *blk_to_add,
59 int treelevel,
60 int *result);
61 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
62 xfs_da_state_blk_t *node_blk_1,
63 xfs_da_state_blk_t *node_blk_2);
64 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
65 xfs_da_state_blk_t *old_node_blk,
66 xfs_da_state_blk_t *new_node_blk);
67
68 /*
69 * Routines used for shrinking the Btree.
70 */
71 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
72 xfs_da_state_blk_t *root_blk);
73 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
74 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
75 xfs_da_state_blk_t *drop_blk);
76 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
77 xfs_da_state_blk_t *src_node_blk,
78 xfs_da_state_blk_t *dst_node_blk);
79
80 /*
81 * Utility routines.
82 */
83 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state,
84 xfs_da_state_blk_t *drop_blk,
85 xfs_da_state_blk_t *save_blk);
86
87
88 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */
89
90 /*
91 * Allocate a dir-state structure.
92 * We don't put them on the stack since they're large.
93 */
94 xfs_da_state_t *
95 xfs_da_state_alloc(void)
96 {
97 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
98 }
99
100 /*
101 * Kill the altpath contents of a da-state structure.
102 */
103 STATIC void
104 xfs_da_state_kill_altpath(xfs_da_state_t *state)
105 {
106 int i;
107
108 for (i = 0; i < state->altpath.active; i++)
109 state->altpath.blk[i].bp = NULL;
110 state->altpath.active = 0;
111 }
112
113 /*
114 * Free a da-state structure.
115 */
116 void
117 xfs_da_state_free(xfs_da_state_t *state)
118 {
119 xfs_da_state_kill_altpath(state);
120 #ifdef DEBUG
121 memset((char *)state, 0, sizeof(*state));
122 #endif /* DEBUG */
123 kmem_zone_free(xfs_da_state_zone, state);
124 }
125
126 static xfs_failaddr_t
127 xfs_da3_node_verify(
128 struct xfs_buf *bp)
129 {
130 struct xfs_mount *mp = bp->b_target->bt_mount;
131 struct xfs_da_intnode *hdr = bp->b_addr;
132 struct xfs_da3_icnode_hdr ichdr;
133 const struct xfs_dir_ops *ops;
134
135 ops = xfs_dir_get_ops(mp, NULL);
136
137 ops->node_hdr_from_disk(&ichdr, hdr);
138
139 if (xfs_sb_version_hascrc(&mp->m_sb)) {
140 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
141
142 if (ichdr.magic != XFS_DA3_NODE_MAGIC)
143 return __this_address;
144
145 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid))
146 return __this_address;
147 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
148 return __this_address;
149 if (!xfs_log_check_lsn(mp, be64_to_cpu(hdr3->info.lsn)))
150 return __this_address;
151 } else {
152 if (ichdr.magic != XFS_DA_NODE_MAGIC)
153 return __this_address;
154 }
155 if (ichdr.level == 0)
156 return __this_address;
157 if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
158 return __this_address;
159 if (ichdr.count == 0)
160 return __this_address;
161
162 /*
163 * we don't know if the node is for and attribute or directory tree,
164 * so only fail if the count is outside both bounds
165 */
166 if (ichdr.count > mp->m_dir_geo->node_ents &&
167 ichdr.count > mp->m_attr_geo->node_ents)
168 return __this_address;
169
170 /* XXX: hash order check? */
171
172 return NULL;
173 }
174
175 static void
176 xfs_da3_node_write_verify(
177 struct xfs_buf *bp)
178 {
179 struct xfs_mount *mp = bp->b_target->bt_mount;
180 struct xfs_buf_log_item *bip = bp->b_fspriv;
181 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
182
183 if (xfs_da3_node_verify(bp)) {
184 xfs_verifier_error(bp, -EFSCORRUPTED);
185 return;
186 }
187
188 if (!xfs_sb_version_hascrc(&mp->m_sb))
189 return;
190
191 if (bip)
192 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
193
194 xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF);
195 }
196
197 /*
198 * leaf/node format detection on trees is sketchy, so a node read can be done on
199 * leaf level blocks when detection identifies the tree as a node format tree
200 * incorrectly. In this case, we need to swap the verifier to match the correct
201 * format of the block being read.
202 */
203 static void
204 xfs_da3_node_read_verify(
205 struct xfs_buf *bp)
206 {
207 struct xfs_da_blkinfo *info = bp->b_addr;
208
209 switch (be16_to_cpu(info->magic)) {
210 case XFS_DA3_NODE_MAGIC:
211 if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) {
212 xfs_verifier_error(bp, -EFSBADCRC);
213 break;
214 }
215 /* fall through */
216 case XFS_DA_NODE_MAGIC:
217 if (xfs_da3_node_verify(bp))
218 xfs_verifier_error(bp, -EFSCORRUPTED);
219 return;
220 case XFS_ATTR_LEAF_MAGIC:
221 case XFS_ATTR3_LEAF_MAGIC:
222 bp->b_ops = &xfs_attr3_leaf_buf_ops;
223 bp->b_ops->verify_read(bp);
224 return;
225 case XFS_DIR2_LEAFN_MAGIC:
226 case XFS_DIR3_LEAFN_MAGIC:
227 bp->b_ops = &xfs_dir3_leafn_buf_ops;
228 bp->b_ops->verify_read(bp);
229 return;
230 default:
231 xfs_verifier_error(bp, -EFSCORRUPTED);
232 break;
233 }
234 }
235
236 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
237 .name = "xfs_da3_node",
238 .verify_read = xfs_da3_node_read_verify,
239 .verify_write = xfs_da3_node_write_verify,
240 };
241
242 int
243 xfs_da3_node_read(
244 struct xfs_trans *tp,
245 struct xfs_inode *dp,
246 xfs_dablk_t bno,
247 xfs_daddr_t mappedbno,
248 struct xfs_buf **bpp,
249 int which_fork)
250 {
251 int err;
252
253 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
254 which_fork, &xfs_da3_node_buf_ops);
255 if (!err && tp && *bpp) {
256 struct xfs_da_blkinfo *info = (*bpp)->b_addr;
257 int type;
258
259 switch (be16_to_cpu(info->magic)) {
260 case XFS_DA_NODE_MAGIC:
261 case XFS_DA3_NODE_MAGIC:
262 type = XFS_BLFT_DA_NODE_BUF;
263 break;
264 case XFS_ATTR_LEAF_MAGIC:
265 case XFS_ATTR3_LEAF_MAGIC:
266 type = XFS_BLFT_ATTR_LEAF_BUF;
267 break;
268 case XFS_DIR2_LEAFN_MAGIC:
269 case XFS_DIR3_LEAFN_MAGIC:
270 type = XFS_BLFT_DIR_LEAFN_BUF;
271 break;
272 default:
273 type = 0;
274 ASSERT(0);
275 break;
276 }
277 xfs_trans_buf_set_type(tp, *bpp, type);
278 }
279 return err;
280 }
281
282 /*========================================================================
283 * Routines used for growing the Btree.
284 *========================================================================*/
285
286 /*
287 * Create the initial contents of an intermediate node.
288 */
289 int
290 xfs_da3_node_create(
291 struct xfs_da_args *args,
292 xfs_dablk_t blkno,
293 int level,
294 struct xfs_buf **bpp,
295 int whichfork)
296 {
297 struct xfs_da_intnode *node;
298 struct xfs_trans *tp = args->trans;
299 struct xfs_mount *mp = tp->t_mountp;
300 struct xfs_da3_icnode_hdr ichdr = {0};
301 struct xfs_buf *bp;
302 int error;
303 struct xfs_inode *dp = args->dp;
304
305 trace_xfs_da_node_create(args);
306 ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
307
308 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork);
309 if (error)
310 return error;
311 bp->b_ops = &xfs_da3_node_buf_ops;
312 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
313 node = bp->b_addr;
314
315 if (xfs_sb_version_hascrc(&mp->m_sb)) {
316 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
317
318 memset(hdr3, 0, sizeof(struct xfs_da3_node_hdr));
319 ichdr.magic = XFS_DA3_NODE_MAGIC;
320 hdr3->info.blkno = cpu_to_be64(bp->b_bn);
321 hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
322 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_meta_uuid);
323 } else {
324 ichdr.magic = XFS_DA_NODE_MAGIC;
325 }
326 ichdr.level = level;
327
328 dp->d_ops->node_hdr_to_disk(node, &ichdr);
329 xfs_trans_log_buf(tp, bp,
330 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
331
332 *bpp = bp;
333 return 0;
334 }
335
336 /*
337 * Split a leaf node, rebalance, then possibly split
338 * intermediate nodes, rebalance, etc.
339 */
340 int /* error */
341 xfs_da3_split(
342 struct xfs_da_state *state)
343 {
344 struct xfs_da_state_blk *oldblk;
345 struct xfs_da_state_blk *newblk;
346 struct xfs_da_state_blk *addblk;
347 struct xfs_da_intnode *node;
348 int max;
349 int action = 0;
350 int error;
351 int i;
352
353 trace_xfs_da_split(state->args);
354
355 /*
356 * Walk back up the tree splitting/inserting/adjusting as necessary.
357 * If we need to insert and there isn't room, split the node, then
358 * decide which fragment to insert the new block from below into.
359 * Note that we may split the root this way, but we need more fixup.
360 */
361 max = state->path.active - 1;
362 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
363 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
364 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
365
366 addblk = &state->path.blk[max]; /* initial dummy value */
367 for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
368 oldblk = &state->path.blk[i];
369 newblk = &state->altpath.blk[i];
370
371 /*
372 * If a leaf node then
373 * Allocate a new leaf node, then rebalance across them.
374 * else if an intermediate node then
375 * We split on the last layer, must we split the node?
376 */
377 switch (oldblk->magic) {
378 case XFS_ATTR_LEAF_MAGIC:
379 error = xfs_attr3_leaf_split(state, oldblk, newblk);
380 if ((error != 0) && (error != -ENOSPC)) {
381 return error; /* GROT: attr is inconsistent */
382 }
383 if (!error) {
384 addblk = newblk;
385 break;
386 }
387 /*
388 * Entry wouldn't fit, split the leaf again. The new
389 * extrablk will be consumed by xfs_da3_node_split if
390 * the node is split.
391 */
392 state->extravalid = 1;
393 if (state->inleaf) {
394 state->extraafter = 0; /* before newblk */
395 trace_xfs_attr_leaf_split_before(state->args);
396 error = xfs_attr3_leaf_split(state, oldblk,
397 &state->extrablk);
398 } else {
399 state->extraafter = 1; /* after newblk */
400 trace_xfs_attr_leaf_split_after(state->args);
401 error = xfs_attr3_leaf_split(state, newblk,
402 &state->extrablk);
403 }
404 if (error)
405 return error; /* GROT: attr inconsistent */
406 addblk = newblk;
407 break;
408 case XFS_DIR2_LEAFN_MAGIC:
409 error = xfs_dir2_leafn_split(state, oldblk, newblk);
410 if (error)
411 return error;
412 addblk = newblk;
413 break;
414 case XFS_DA_NODE_MAGIC:
415 error = xfs_da3_node_split(state, oldblk, newblk, addblk,
416 max - i, &action);
417 addblk->bp = NULL;
418 if (error)
419 return error; /* GROT: dir is inconsistent */
420 /*
421 * Record the newly split block for the next time thru?
422 */
423 if (action)
424 addblk = newblk;
425 else
426 addblk = NULL;
427 break;
428 }
429
430 /*
431 * Update the btree to show the new hashval for this child.
432 */
433 xfs_da3_fixhashpath(state, &state->path);
434 }
435 if (!addblk)
436 return 0;
437
438 /*
439 * xfs_da3_node_split() should have consumed any extra blocks we added
440 * during a double leaf split in the attr fork. This is guaranteed as
441 * we can't be here if the attr fork only has a single leaf block.
442 */
443 ASSERT(state->extravalid == 0 ||
444 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
445
446 /*
447 * Split the root node.
448 */
449 ASSERT(state->path.active == 0);
450 oldblk = &state->path.blk[0];
451 error = xfs_da3_root_split(state, oldblk, addblk);
452 if (error) {
453 addblk->bp = NULL;
454 return error; /* GROT: dir is inconsistent */
455 }
456
457 /*
458 * Update pointers to the node which used to be block 0 and just got
459 * bumped because of the addition of a new root node. Note that the
460 * original block 0 could be at any position in the list of blocks in
461 * the tree.
462 *
463 * Note: the magic numbers and sibling pointers are in the same physical
464 * place for both v2 and v3 headers (by design). Hence it doesn't matter
465 * which version of the xfs_da_intnode structure we use here as the
466 * result will be the same using either structure.
467 */
468 node = oldblk->bp->b_addr;
469 if (node->hdr.info.forw) {
470 ASSERT(be32_to_cpu(node->hdr.info.forw) == addblk->blkno);
471 node = addblk->bp->b_addr;
472 node->hdr.info.back = cpu_to_be32(oldblk->blkno);
473 xfs_trans_log_buf(state->args->trans, addblk->bp,
474 XFS_DA_LOGRANGE(node, &node->hdr.info,
475 sizeof(node->hdr.info)));
476 }
477 node = oldblk->bp->b_addr;
478 if (node->hdr.info.back) {
479 ASSERT(be32_to_cpu(node->hdr.info.back) == addblk->blkno);
480 node = addblk->bp->b_addr;
481 node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
482 xfs_trans_log_buf(state->args->trans, addblk->bp,
483 XFS_DA_LOGRANGE(node, &node->hdr.info,
484 sizeof(node->hdr.info)));
485 }
486 addblk->bp = NULL;
487 return 0;
488 }
489
490 /*
491 * Split the root. We have to create a new root and point to the two
492 * parts (the split old root) that we just created. Copy block zero to
493 * the EOF, extending the inode in process.
494 */
495 STATIC int /* error */
496 xfs_da3_root_split(
497 struct xfs_da_state *state,
498 struct xfs_da_state_blk *blk1,
499 struct xfs_da_state_blk *blk2)
500 {
501 struct xfs_da_intnode *node;
502 struct xfs_da_intnode *oldroot;
503 struct xfs_da_node_entry *btree;
504 struct xfs_da3_icnode_hdr nodehdr;
505 struct xfs_da_args *args;
506 struct xfs_buf *bp;
507 struct xfs_inode *dp;
508 struct xfs_trans *tp;
509 struct xfs_dir2_leaf *leaf;
510 xfs_dablk_t blkno;
511 int level;
512 int error;
513 int size;
514
515 trace_xfs_da_root_split(state->args);
516
517 /*
518 * Copy the existing (incorrect) block from the root node position
519 * to a free space somewhere.
520 */
521 args = state->args;
522 error = xfs_da_grow_inode(args, &blkno);
523 if (error)
524 return error;
525
526 dp = args->dp;
527 tp = args->trans;
528 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
529 if (error)
530 return error;
531 node = bp->b_addr;
532 oldroot = blk1->bp->b_addr;
533 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
534 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
535 struct xfs_da3_icnode_hdr icnodehdr;
536
537 dp->d_ops->node_hdr_from_disk(&icnodehdr, oldroot);
538 btree = dp->d_ops->node_tree_p(oldroot);
539 size = (int)((char *)&btree[icnodehdr.count] - (char *)oldroot);
540 level = icnodehdr.level;
541
542 /*
543 * we are about to copy oldroot to bp, so set up the type
544 * of bp while we know exactly what it will be.
545 */
546 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
547 } else {
548 struct xfs_dir3_icleaf_hdr leafhdr;
549 struct xfs_dir2_leaf_entry *ents;
550
551 leaf = (xfs_dir2_leaf_t *)oldroot;
552 dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf);
553 ents = dp->d_ops->leaf_ents_p(leaf);
554
555 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
556 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
557 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
558 level = 0;
559
560 /*
561 * we are about to copy oldroot to bp, so set up the type
562 * of bp while we know exactly what it will be.
563 */
564 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
565 }
566
567 /*
568 * we can copy most of the information in the node from one block to
569 * another, but for CRC enabled headers we have to make sure that the
570 * block specific identifiers are kept intact. We update the buffer
571 * directly for this.
572 */
573 memcpy(node, oldroot, size);
574 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
575 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
576 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
577
578 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
579 }
580 xfs_trans_log_buf(tp, bp, 0, size - 1);
581
582 bp->b_ops = blk1->bp->b_ops;
583 xfs_trans_buf_copy_type(bp, blk1->bp);
584 blk1->bp = bp;
585 blk1->blkno = blkno;
586
587 /*
588 * Set up the new root node.
589 */
590 error = xfs_da3_node_create(args,
591 (args->whichfork == XFS_DATA_FORK) ? args->geo->leafblk : 0,
592 level + 1, &bp, args->whichfork);
593 if (error)
594 return error;
595
596 node = bp->b_addr;
597 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
598 btree = dp->d_ops->node_tree_p(node);
599 btree[0].hashval = cpu_to_be32(blk1->hashval);
600 btree[0].before = cpu_to_be32(blk1->blkno);
601 btree[1].hashval = cpu_to_be32(blk2->hashval);
602 btree[1].before = cpu_to_be32(blk2->blkno);
603 nodehdr.count = 2;
604 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
605
606 #ifdef DEBUG
607 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
608 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
609 ASSERT(blk1->blkno >= args->geo->leafblk &&
610 blk1->blkno < args->geo->freeblk);
611 ASSERT(blk2->blkno >= args->geo->leafblk &&
612 blk2->blkno < args->geo->freeblk);
613 }
614 #endif
615
616 /* Header is already logged by xfs_da_node_create */
617 xfs_trans_log_buf(tp, bp,
618 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
619
620 return 0;
621 }
622
623 /*
624 * Split the node, rebalance, then add the new entry.
625 */
626 STATIC int /* error */
627 xfs_da3_node_split(
628 struct xfs_da_state *state,
629 struct xfs_da_state_blk *oldblk,
630 struct xfs_da_state_blk *newblk,
631 struct xfs_da_state_blk *addblk,
632 int treelevel,
633 int *result)
634 {
635 struct xfs_da_intnode *node;
636 struct xfs_da3_icnode_hdr nodehdr;
637 xfs_dablk_t blkno;
638 int newcount;
639 int error;
640 int useextra;
641 struct xfs_inode *dp = state->args->dp;
642
643 trace_xfs_da_node_split(state->args);
644
645 node = oldblk->bp->b_addr;
646 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
647
648 /*
649 * With V2 dirs the extra block is data or freespace.
650 */
651 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
652 newcount = 1 + useextra;
653 /*
654 * Do we have to split the node?
655 */
656 if (nodehdr.count + newcount > state->args->geo->node_ents) {
657 /*
658 * Allocate a new node, add to the doubly linked chain of
659 * nodes, then move some of our excess entries into it.
660 */
661 error = xfs_da_grow_inode(state->args, &blkno);
662 if (error)
663 return error; /* GROT: dir is inconsistent */
664
665 error = xfs_da3_node_create(state->args, blkno, treelevel,
666 &newblk->bp, state->args->whichfork);
667 if (error)
668 return error; /* GROT: dir is inconsistent */
669 newblk->blkno = blkno;
670 newblk->magic = XFS_DA_NODE_MAGIC;
671 xfs_da3_node_rebalance(state, oldblk, newblk);
672 error = xfs_da3_blk_link(state, oldblk, newblk);
673 if (error)
674 return error;
675 *result = 1;
676 } else {
677 *result = 0;
678 }
679
680 /*
681 * Insert the new entry(s) into the correct block
682 * (updating last hashval in the process).
683 *
684 * xfs_da3_node_add() inserts BEFORE the given index,
685 * and as a result of using node_lookup_int() we always
686 * point to a valid entry (not after one), but a split
687 * operation always results in a new block whose hashvals
688 * FOLLOW the current block.
689 *
690 * If we had double-split op below us, then add the extra block too.
691 */
692 node = oldblk->bp->b_addr;
693 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
694 if (oldblk->index <= nodehdr.count) {
695 oldblk->index++;
696 xfs_da3_node_add(state, oldblk, addblk);
697 if (useextra) {
698 if (state->extraafter)
699 oldblk->index++;
700 xfs_da3_node_add(state, oldblk, &state->extrablk);
701 state->extravalid = 0;
702 }
703 } else {
704 newblk->index++;
705 xfs_da3_node_add(state, newblk, addblk);
706 if (useextra) {
707 if (state->extraafter)
708 newblk->index++;
709 xfs_da3_node_add(state, newblk, &state->extrablk);
710 state->extravalid = 0;
711 }
712 }
713
714 return 0;
715 }
716
717 /*
718 * Balance the btree elements between two intermediate nodes,
719 * usually one full and one empty.
720 *
721 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
722 */
723 STATIC void
724 xfs_da3_node_rebalance(
725 struct xfs_da_state *state,
726 struct xfs_da_state_blk *blk1,
727 struct xfs_da_state_blk *blk2)
728 {
729 struct xfs_da_intnode *node1;
730 struct xfs_da_intnode *node2;
731 struct xfs_da_intnode *tmpnode;
732 struct xfs_da_node_entry *btree1;
733 struct xfs_da_node_entry *btree2;
734 struct xfs_da_node_entry *btree_s;
735 struct xfs_da_node_entry *btree_d;
736 struct xfs_da3_icnode_hdr nodehdr1;
737 struct xfs_da3_icnode_hdr nodehdr2;
738 struct xfs_trans *tp;
739 int count;
740 int tmp;
741 int swap = 0;
742 struct xfs_inode *dp = state->args->dp;
743
744 trace_xfs_da_node_rebalance(state->args);
745
746 node1 = blk1->bp->b_addr;
747 node2 = blk2->bp->b_addr;
748 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
749 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
750 btree1 = dp->d_ops->node_tree_p(node1);
751 btree2 = dp->d_ops->node_tree_p(node2);
752
753 /*
754 * Figure out how many entries need to move, and in which direction.
755 * Swap the nodes around if that makes it simpler.
756 */
757 if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
758 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
759 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
760 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
761 tmpnode = node1;
762 node1 = node2;
763 node2 = tmpnode;
764 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
765 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
766 btree1 = dp->d_ops->node_tree_p(node1);
767 btree2 = dp->d_ops->node_tree_p(node2);
768 swap = 1;
769 }
770
771 count = (nodehdr1.count - nodehdr2.count) / 2;
772 if (count == 0)
773 return;
774 tp = state->args->trans;
775 /*
776 * Two cases: high-to-low and low-to-high.
777 */
778 if (count > 0) {
779 /*
780 * Move elements in node2 up to make a hole.
781 */
782 tmp = nodehdr2.count;
783 if (tmp > 0) {
784 tmp *= (uint)sizeof(xfs_da_node_entry_t);
785 btree_s = &btree2[0];
786 btree_d = &btree2[count];
787 memmove(btree_d, btree_s, tmp);
788 }
789
790 /*
791 * Move the req'd B-tree elements from high in node1 to
792 * low in node2.
793 */
794 nodehdr2.count += count;
795 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
796 btree_s = &btree1[nodehdr1.count - count];
797 btree_d = &btree2[0];
798 memcpy(btree_d, btree_s, tmp);
799 nodehdr1.count -= count;
800 } else {
801 /*
802 * Move the req'd B-tree elements from low in node2 to
803 * high in node1.
804 */
805 count = -count;
806 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
807 btree_s = &btree2[0];
808 btree_d = &btree1[nodehdr1.count];
809 memcpy(btree_d, btree_s, tmp);
810 nodehdr1.count += count;
811
812 xfs_trans_log_buf(tp, blk1->bp,
813 XFS_DA_LOGRANGE(node1, btree_d, tmp));
814
815 /*
816 * Move elements in node2 down to fill the hole.
817 */
818 tmp = nodehdr2.count - count;
819 tmp *= (uint)sizeof(xfs_da_node_entry_t);
820 btree_s = &btree2[count];
821 btree_d = &btree2[0];
822 memmove(btree_d, btree_s, tmp);
823 nodehdr2.count -= count;
824 }
825
826 /*
827 * Log header of node 1 and all current bits of node 2.
828 */
829 dp->d_ops->node_hdr_to_disk(node1, &nodehdr1);
830 xfs_trans_log_buf(tp, blk1->bp,
831 XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size));
832
833 dp->d_ops->node_hdr_to_disk(node2, &nodehdr2);
834 xfs_trans_log_buf(tp, blk2->bp,
835 XFS_DA_LOGRANGE(node2, &node2->hdr,
836 dp->d_ops->node_hdr_size +
837 (sizeof(btree2[0]) * nodehdr2.count)));
838
839 /*
840 * Record the last hashval from each block for upward propagation.
841 * (note: don't use the swapped node pointers)
842 */
843 if (swap) {
844 node1 = blk1->bp->b_addr;
845 node2 = blk2->bp->b_addr;
846 dp->d_ops->node_hdr_from_disk(&nodehdr1, node1);
847 dp->d_ops->node_hdr_from_disk(&nodehdr2, node2);
848 btree1 = dp->d_ops->node_tree_p(node1);
849 btree2 = dp->d_ops->node_tree_p(node2);
850 }
851 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
852 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
853
854 /*
855 * Adjust the expected index for insertion.
856 */
857 if (blk1->index >= nodehdr1.count) {
858 blk2->index = blk1->index - nodehdr1.count;
859 blk1->index = nodehdr1.count + 1; /* make it invalid */
860 }
861 }
862
863 /*
864 * Add a new entry to an intermediate node.
865 */
866 STATIC void
867 xfs_da3_node_add(
868 struct xfs_da_state *state,
869 struct xfs_da_state_blk *oldblk,
870 struct xfs_da_state_blk *newblk)
871 {
872 struct xfs_da_intnode *node;
873 struct xfs_da3_icnode_hdr nodehdr;
874 struct xfs_da_node_entry *btree;
875 int tmp;
876 struct xfs_inode *dp = state->args->dp;
877
878 trace_xfs_da_node_add(state->args);
879
880 node = oldblk->bp->b_addr;
881 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
882 btree = dp->d_ops->node_tree_p(node);
883
884 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
885 ASSERT(newblk->blkno != 0);
886 if (state->args->whichfork == XFS_DATA_FORK)
887 ASSERT(newblk->blkno >= state->args->geo->leafblk &&
888 newblk->blkno < state->args->geo->freeblk);
889
890 /*
891 * We may need to make some room before we insert the new node.
892 */
893 tmp = 0;
894 if (oldblk->index < nodehdr.count) {
895 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
896 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
897 }
898 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
899 btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
900 xfs_trans_log_buf(state->args->trans, oldblk->bp,
901 XFS_DA_LOGRANGE(node, &btree[oldblk->index],
902 tmp + sizeof(*btree)));
903
904 nodehdr.count += 1;
905 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
906 xfs_trans_log_buf(state->args->trans, oldblk->bp,
907 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
908
909 /*
910 * Copy the last hash value from the oldblk to propagate upwards.
911 */
912 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
913 }
914
915 /*========================================================================
916 * Routines used for shrinking the Btree.
917 *========================================================================*/
918
919 /*
920 * Deallocate an empty leaf node, remove it from its parent,
921 * possibly deallocating that block, etc...
922 */
923 int
924 xfs_da3_join(
925 struct xfs_da_state *state)
926 {
927 struct xfs_da_state_blk *drop_blk;
928 struct xfs_da_state_blk *save_blk;
929 int action = 0;
930 int error;
931
932 trace_xfs_da_join(state->args);
933
934 drop_blk = &state->path.blk[ state->path.active-1 ];
935 save_blk = &state->altpath.blk[ state->path.active-1 ];
936 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
937 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
938 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
939
940 /*
941 * Walk back up the tree joining/deallocating as necessary.
942 * When we stop dropping blocks, break out.
943 */
944 for ( ; state->path.active >= 2; drop_blk--, save_blk--,
945 state->path.active--) {
946 /*
947 * See if we can combine the block with a neighbor.
948 * (action == 0) => no options, just leave
949 * (action == 1) => coalesce, then unlink
950 * (action == 2) => block empty, unlink it
951 */
952 switch (drop_blk->magic) {
953 case XFS_ATTR_LEAF_MAGIC:
954 error = xfs_attr3_leaf_toosmall(state, &action);
955 if (error)
956 return error;
957 if (action == 0)
958 return 0;
959 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
960 break;
961 case XFS_DIR2_LEAFN_MAGIC:
962 error = xfs_dir2_leafn_toosmall(state, &action);
963 if (error)
964 return error;
965 if (action == 0)
966 return 0;
967 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
968 break;
969 case XFS_DA_NODE_MAGIC:
970 /*
971 * Remove the offending node, fixup hashvals,
972 * check for a toosmall neighbor.
973 */
974 xfs_da3_node_remove(state, drop_blk);
975 xfs_da3_fixhashpath(state, &state->path);
976 error = xfs_da3_node_toosmall(state, &action);
977 if (error)
978 return error;
979 if (action == 0)
980 return 0;
981 xfs_da3_node_unbalance(state, drop_blk, save_blk);
982 break;
983 }
984 xfs_da3_fixhashpath(state, &state->altpath);
985 error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
986 xfs_da_state_kill_altpath(state);
987 if (error)
988 return error;
989 error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
990 drop_blk->bp);
991 drop_blk->bp = NULL;
992 if (error)
993 return error;
994 }
995 /*
996 * We joined all the way to the top. If it turns out that
997 * we only have one entry in the root, make the child block
998 * the new root.
999 */
1000 xfs_da3_node_remove(state, drop_blk);
1001 xfs_da3_fixhashpath(state, &state->path);
1002 error = xfs_da3_root_join(state, &state->path.blk[0]);
1003 return error;
1004 }
1005
1006 #ifdef DEBUG
1007 static void
1008 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1009 {
1010 __be16 magic = blkinfo->magic;
1011
1012 if (level == 1) {
1013 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1014 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1015 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1016 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1017 } else {
1018 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1019 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1020 }
1021 ASSERT(!blkinfo->forw);
1022 ASSERT(!blkinfo->back);
1023 }
1024 #else /* !DEBUG */
1025 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1026 #endif /* !DEBUG */
1027
1028 /*
1029 * We have only one entry in the root. Copy the only remaining child of
1030 * the old root to block 0 as the new root node.
1031 */
1032 STATIC int
1033 xfs_da3_root_join(
1034 struct xfs_da_state *state,
1035 struct xfs_da_state_blk *root_blk)
1036 {
1037 struct xfs_da_intnode *oldroot;
1038 struct xfs_da_args *args;
1039 xfs_dablk_t child;
1040 struct xfs_buf *bp;
1041 struct xfs_da3_icnode_hdr oldroothdr;
1042 struct xfs_da_node_entry *btree;
1043 int error;
1044 struct xfs_inode *dp = state->args->dp;
1045
1046 trace_xfs_da_root_join(state->args);
1047
1048 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1049
1050 args = state->args;
1051 oldroot = root_blk->bp->b_addr;
1052 dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot);
1053 ASSERT(oldroothdr.forw == 0);
1054 ASSERT(oldroothdr.back == 0);
1055
1056 /*
1057 * If the root has more than one child, then don't do anything.
1058 */
1059 if (oldroothdr.count > 1)
1060 return 0;
1061
1062 /*
1063 * Read in the (only) child block, then copy those bytes into
1064 * the root block's buffer and free the original child block.
1065 */
1066 btree = dp->d_ops->node_tree_p(oldroot);
1067 child = be32_to_cpu(btree[0].before);
1068 ASSERT(child != 0);
1069 error = xfs_da3_node_read(args->trans, dp, child, -1, &bp,
1070 args->whichfork);
1071 if (error)
1072 return error;
1073 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1074
1075 /*
1076 * This could be copying a leaf back into the root block in the case of
1077 * there only being a single leaf block left in the tree. Hence we have
1078 * to update the b_ops pointer as well to match the buffer type change
1079 * that could occur. For dir3 blocks we also need to update the block
1080 * number in the buffer header.
1081 */
1082 memcpy(root_blk->bp->b_addr, bp->b_addr, args->geo->blksize);
1083 root_blk->bp->b_ops = bp->b_ops;
1084 xfs_trans_buf_copy_type(root_blk->bp, bp);
1085 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1086 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1087 da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1088 }
1089 xfs_trans_log_buf(args->trans, root_blk->bp, 0,
1090 args->geo->blksize - 1);
1091 error = xfs_da_shrink_inode(args, child, bp);
1092 return error;
1093 }
1094
1095 /*
1096 * Check a node block and its neighbors to see if the block should be
1097 * collapsed into one or the other neighbor. Always keep the block
1098 * with the smaller block number.
1099 * If the current block is over 50% full, don't try to join it, return 0.
1100 * If the block is empty, fill in the state structure and return 2.
1101 * If it can be collapsed, fill in the state structure and return 1.
1102 * If nothing can be done, return 0.
1103 */
1104 STATIC int
1105 xfs_da3_node_toosmall(
1106 struct xfs_da_state *state,
1107 int *action)
1108 {
1109 struct xfs_da_intnode *node;
1110 struct xfs_da_state_blk *blk;
1111 struct xfs_da_blkinfo *info;
1112 xfs_dablk_t blkno;
1113 struct xfs_buf *bp;
1114 struct xfs_da3_icnode_hdr nodehdr;
1115 int count;
1116 int forward;
1117 int error;
1118 int retval;
1119 int i;
1120 struct xfs_inode *dp = state->args->dp;
1121
1122 trace_xfs_da_node_toosmall(state->args);
1123
1124 /*
1125 * Check for the degenerate case of the block being over 50% full.
1126 * If so, it's not worth even looking to see if we might be able
1127 * to coalesce with a sibling.
1128 */
1129 blk = &state->path.blk[ state->path.active-1 ];
1130 info = blk->bp->b_addr;
1131 node = (xfs_da_intnode_t *)info;
1132 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1133 if (nodehdr.count > (state->args->geo->node_ents >> 1)) {
1134 *action = 0; /* blk over 50%, don't try to join */
1135 return 0; /* blk over 50%, don't try to join */
1136 }
1137
1138 /*
1139 * Check for the degenerate case of the block being empty.
1140 * If the block is empty, we'll simply delete it, no need to
1141 * coalesce it with a sibling block. We choose (arbitrarily)
1142 * to merge with the forward block unless it is NULL.
1143 */
1144 if (nodehdr.count == 0) {
1145 /*
1146 * Make altpath point to the block we want to keep and
1147 * path point to the block we want to drop (this one).
1148 */
1149 forward = (info->forw != 0);
1150 memcpy(&state->altpath, &state->path, sizeof(state->path));
1151 error = xfs_da3_path_shift(state, &state->altpath, forward,
1152 0, &retval);
1153 if (error)
1154 return error;
1155 if (retval) {
1156 *action = 0;
1157 } else {
1158 *action = 2;
1159 }
1160 return 0;
1161 }
1162
1163 /*
1164 * Examine each sibling block to see if we can coalesce with
1165 * at least 25% free space to spare. We need to figure out
1166 * whether to merge with the forward or the backward block.
1167 * We prefer coalescing with the lower numbered sibling so as
1168 * to shrink a directory over time.
1169 */
1170 count = state->args->geo->node_ents;
1171 count -= state->args->geo->node_ents >> 2;
1172 count -= nodehdr.count;
1173
1174 /* start with smaller blk num */
1175 forward = nodehdr.forw < nodehdr.back;
1176 for (i = 0; i < 2; forward = !forward, i++) {
1177 struct xfs_da3_icnode_hdr thdr;
1178 if (forward)
1179 blkno = nodehdr.forw;
1180 else
1181 blkno = nodehdr.back;
1182 if (blkno == 0)
1183 continue;
1184 error = xfs_da3_node_read(state->args->trans, dp,
1185 blkno, -1, &bp, state->args->whichfork);
1186 if (error)
1187 return error;
1188
1189 node = bp->b_addr;
1190 dp->d_ops->node_hdr_from_disk(&thdr, node);
1191 xfs_trans_brelse(state->args->trans, bp);
1192
1193 if (count - thdr.count >= 0)
1194 break; /* fits with at least 25% to spare */
1195 }
1196 if (i >= 2) {
1197 *action = 0;
1198 return 0;
1199 }
1200
1201 /*
1202 * Make altpath point to the block we want to keep (the lower
1203 * numbered block) and path point to the block we want to drop.
1204 */
1205 memcpy(&state->altpath, &state->path, sizeof(state->path));
1206 if (blkno < blk->blkno) {
1207 error = xfs_da3_path_shift(state, &state->altpath, forward,
1208 0, &retval);
1209 } else {
1210 error = xfs_da3_path_shift(state, &state->path, forward,
1211 0, &retval);
1212 }
1213 if (error)
1214 return error;
1215 if (retval) {
1216 *action = 0;
1217 return 0;
1218 }
1219 *action = 1;
1220 return 0;
1221 }
1222
1223 /*
1224 * Pick up the last hashvalue from an intermediate node.
1225 */
1226 STATIC uint
1227 xfs_da3_node_lasthash(
1228 struct xfs_inode *dp,
1229 struct xfs_buf *bp,
1230 int *count)
1231 {
1232 struct xfs_da_intnode *node;
1233 struct xfs_da_node_entry *btree;
1234 struct xfs_da3_icnode_hdr nodehdr;
1235
1236 node = bp->b_addr;
1237 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1238 if (count)
1239 *count = nodehdr.count;
1240 if (!nodehdr.count)
1241 return 0;
1242 btree = dp->d_ops->node_tree_p(node);
1243 return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1244 }
1245
1246 /*
1247 * Walk back up the tree adjusting hash values as necessary,
1248 * when we stop making changes, return.
1249 */
1250 void
1251 xfs_da3_fixhashpath(
1252 struct xfs_da_state *state,
1253 struct xfs_da_state_path *path)
1254 {
1255 struct xfs_da_state_blk *blk;
1256 struct xfs_da_intnode *node;
1257 struct xfs_da_node_entry *btree;
1258 xfs_dahash_t lasthash=0;
1259 int level;
1260 int count;
1261 struct xfs_inode *dp = state->args->dp;
1262
1263 trace_xfs_da_fixhashpath(state->args);
1264
1265 level = path->active-1;
1266 blk = &path->blk[ level ];
1267 switch (blk->magic) {
1268 case XFS_ATTR_LEAF_MAGIC:
1269 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1270 if (count == 0)
1271 return;
1272 break;
1273 case XFS_DIR2_LEAFN_MAGIC:
1274 lasthash = xfs_dir2_leaf_lasthash(dp, blk->bp, &count);
1275 if (count == 0)
1276 return;
1277 break;
1278 case XFS_DA_NODE_MAGIC:
1279 lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count);
1280 if (count == 0)
1281 return;
1282 break;
1283 }
1284 for (blk--, level--; level >= 0; blk--, level--) {
1285 struct xfs_da3_icnode_hdr nodehdr;
1286
1287 node = blk->bp->b_addr;
1288 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1289 btree = dp->d_ops->node_tree_p(node);
1290 if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
1291 break;
1292 blk->hashval = lasthash;
1293 btree[blk->index].hashval = cpu_to_be32(lasthash);
1294 xfs_trans_log_buf(state->args->trans, blk->bp,
1295 XFS_DA_LOGRANGE(node, &btree[blk->index],
1296 sizeof(*btree)));
1297
1298 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1299 }
1300 }
1301
1302 /*
1303 * Remove an entry from an intermediate node.
1304 */
1305 STATIC void
1306 xfs_da3_node_remove(
1307 struct xfs_da_state *state,
1308 struct xfs_da_state_blk *drop_blk)
1309 {
1310 struct xfs_da_intnode *node;
1311 struct xfs_da3_icnode_hdr nodehdr;
1312 struct xfs_da_node_entry *btree;
1313 int index;
1314 int tmp;
1315 struct xfs_inode *dp = state->args->dp;
1316
1317 trace_xfs_da_node_remove(state->args);
1318
1319 node = drop_blk->bp->b_addr;
1320 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1321 ASSERT(drop_blk->index < nodehdr.count);
1322 ASSERT(drop_blk->index >= 0);
1323
1324 /*
1325 * Copy over the offending entry, or just zero it out.
1326 */
1327 index = drop_blk->index;
1328 btree = dp->d_ops->node_tree_p(node);
1329 if (index < nodehdr.count - 1) {
1330 tmp = nodehdr.count - index - 1;
1331 tmp *= (uint)sizeof(xfs_da_node_entry_t);
1332 memmove(&btree[index], &btree[index + 1], tmp);
1333 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1334 XFS_DA_LOGRANGE(node, &btree[index], tmp));
1335 index = nodehdr.count - 1;
1336 }
1337 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1338 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1339 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1340 nodehdr.count -= 1;
1341 dp->d_ops->node_hdr_to_disk(node, &nodehdr);
1342 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1343 XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size));
1344
1345 /*
1346 * Copy the last hash value from the block to propagate upwards.
1347 */
1348 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1349 }
1350
1351 /*
1352 * Unbalance the elements between two intermediate nodes,
1353 * move all Btree elements from one node into another.
1354 */
1355 STATIC void
1356 xfs_da3_node_unbalance(
1357 struct xfs_da_state *state,
1358 struct xfs_da_state_blk *drop_blk,
1359 struct xfs_da_state_blk *save_blk)
1360 {
1361 struct xfs_da_intnode *drop_node;
1362 struct xfs_da_intnode *save_node;
1363 struct xfs_da_node_entry *drop_btree;
1364 struct xfs_da_node_entry *save_btree;
1365 struct xfs_da3_icnode_hdr drop_hdr;
1366 struct xfs_da3_icnode_hdr save_hdr;
1367 struct xfs_trans *tp;
1368 int sindex;
1369 int tmp;
1370 struct xfs_inode *dp = state->args->dp;
1371
1372 trace_xfs_da_node_unbalance(state->args);
1373
1374 drop_node = drop_blk->bp->b_addr;
1375 save_node = save_blk->bp->b_addr;
1376 dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node);
1377 dp->d_ops->node_hdr_from_disk(&save_hdr, save_node);
1378 drop_btree = dp->d_ops->node_tree_p(drop_node);
1379 save_btree = dp->d_ops->node_tree_p(save_node);
1380 tp = state->args->trans;
1381
1382 /*
1383 * If the dying block has lower hashvals, then move all the
1384 * elements in the remaining block up to make a hole.
1385 */
1386 if ((be32_to_cpu(drop_btree[0].hashval) <
1387 be32_to_cpu(save_btree[0].hashval)) ||
1388 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1389 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1390 /* XXX: check this - is memmove dst correct? */
1391 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1392 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1393
1394 sindex = 0;
1395 xfs_trans_log_buf(tp, save_blk->bp,
1396 XFS_DA_LOGRANGE(save_node, &save_btree[0],
1397 (save_hdr.count + drop_hdr.count) *
1398 sizeof(xfs_da_node_entry_t)));
1399 } else {
1400 sindex = save_hdr.count;
1401 xfs_trans_log_buf(tp, save_blk->bp,
1402 XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1403 drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1404 }
1405
1406 /*
1407 * Move all the B-tree elements from drop_blk to save_blk.
1408 */
1409 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1410 memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1411 save_hdr.count += drop_hdr.count;
1412
1413 dp->d_ops->node_hdr_to_disk(save_node, &save_hdr);
1414 xfs_trans_log_buf(tp, save_blk->bp,
1415 XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1416 dp->d_ops->node_hdr_size));
1417
1418 /*
1419 * Save the last hashval in the remaining block for upward propagation.
1420 */
1421 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1422 }
1423
1424 /*========================================================================
1425 * Routines used for finding things in the Btree.
1426 *========================================================================*/
1427
1428 /*
1429 * Walk down the Btree looking for a particular filename, filling
1430 * in the state structure as we go.
1431 *
1432 * We will set the state structure to point to each of the elements
1433 * in each of the nodes where either the hashval is or should be.
1434 *
1435 * We support duplicate hashval's so for each entry in the current
1436 * node that could contain the desired hashval, descend. This is a
1437 * pruned depth-first tree search.
1438 */
1439 int /* error */
1440 xfs_da3_node_lookup_int(
1441 struct xfs_da_state *state,
1442 int *result)
1443 {
1444 struct xfs_da_state_blk *blk;
1445 struct xfs_da_blkinfo *curr;
1446 struct xfs_da_intnode *node;
1447 struct xfs_da_node_entry *btree;
1448 struct xfs_da3_icnode_hdr nodehdr;
1449 struct xfs_da_args *args;
1450 xfs_dablk_t blkno;
1451 xfs_dahash_t hashval;
1452 xfs_dahash_t btreehashval;
1453 int probe;
1454 int span;
1455 int max;
1456 int error;
1457 int retval;
1458 unsigned int expected_level = 0;
1459 struct xfs_inode *dp = state->args->dp;
1460
1461 args = state->args;
1462
1463 /*
1464 * Descend thru the B-tree searching each level for the right
1465 * node to use, until the right hashval is found.
1466 */
1467 blkno = args->geo->leafblk;
1468 for (blk = &state->path.blk[0], state->path.active = 1;
1469 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1470 blk++, state->path.active++) {
1471 /*
1472 * Read the next node down in the tree.
1473 */
1474 blk->blkno = blkno;
1475 error = xfs_da3_node_read(args->trans, args->dp, blkno,
1476 -1, &blk->bp, args->whichfork);
1477 if (error) {
1478 blk->blkno = 0;
1479 state->path.active--;
1480 return error;
1481 }
1482 curr = blk->bp->b_addr;
1483 blk->magic = be16_to_cpu(curr->magic);
1484
1485 if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1486 blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1487 blk->magic = XFS_ATTR_LEAF_MAGIC;
1488 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1489 break;
1490 }
1491
1492 if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1493 blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1494 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1495 blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
1496 blk->bp, NULL);
1497 break;
1498 }
1499
1500 blk->magic = XFS_DA_NODE_MAGIC;
1501
1502
1503 /*
1504 * Search an intermediate node for a match.
1505 */
1506 node = blk->bp->b_addr;
1507 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1508 btree = dp->d_ops->node_tree_p(node);
1509
1510 /* Tree taller than we can handle; bail out! */
1511 if (nodehdr.level >= XFS_DA_NODE_MAXDEPTH)
1512 return -EFSCORRUPTED;
1513
1514 /* Check the level from the root. */
1515 if (blkno == args->geo->leafblk)
1516 expected_level = nodehdr.level - 1;
1517 else if (expected_level != nodehdr.level)
1518 return -EFSCORRUPTED;
1519 else
1520 expected_level--;
1521
1522 max = nodehdr.count;
1523 blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1524
1525 /*
1526 * Binary search. (note: small blocks will skip loop)
1527 */
1528 probe = span = max / 2;
1529 hashval = args->hashval;
1530 while (span > 4) {
1531 span /= 2;
1532 btreehashval = be32_to_cpu(btree[probe].hashval);
1533 if (btreehashval < hashval)
1534 probe += span;
1535 else if (btreehashval > hashval)
1536 probe -= span;
1537 else
1538 break;
1539 }
1540 ASSERT((probe >= 0) && (probe < max));
1541 ASSERT((span <= 4) ||
1542 (be32_to_cpu(btree[probe].hashval) == hashval));
1543
1544 /*
1545 * Since we may have duplicate hashval's, find the first
1546 * matching hashval in the node.
1547 */
1548 while (probe > 0 &&
1549 be32_to_cpu(btree[probe].hashval) >= hashval) {
1550 probe--;
1551 }
1552 while (probe < max &&
1553 be32_to_cpu(btree[probe].hashval) < hashval) {
1554 probe++;
1555 }
1556
1557 /*
1558 * Pick the right block to descend on.
1559 */
1560 if (probe == max) {
1561 blk->index = max - 1;
1562 blkno = be32_to_cpu(btree[max - 1].before);
1563 } else {
1564 blk->index = probe;
1565 blkno = be32_to_cpu(btree[probe].before);
1566 }
1567
1568 /* We can't point back to the root. */
1569 if (blkno == args->geo->leafblk)
1570 return -EFSCORRUPTED;
1571 }
1572
1573 if (expected_level != 0)
1574 return -EFSCORRUPTED;
1575
1576 /*
1577 * A leaf block that ends in the hashval that we are interested in
1578 * (final hashval == search hashval) means that the next block may
1579 * contain more entries with the same hashval, shift upward to the
1580 * next leaf and keep searching.
1581 */
1582 for (;;) {
1583 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1584 retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1585 &blk->index, state);
1586 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1587 retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1588 blk->index = args->index;
1589 args->blkno = blk->blkno;
1590 } else {
1591 ASSERT(0);
1592 return -EFSCORRUPTED;
1593 }
1594 if (((retval == -ENOENT) || (retval == -ENOATTR)) &&
1595 (blk->hashval == args->hashval)) {
1596 error = xfs_da3_path_shift(state, &state->path, 1, 1,
1597 &retval);
1598 if (error)
1599 return error;
1600 if (retval == 0) {
1601 continue;
1602 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1603 /* path_shift() gives ENOENT */
1604 retval = -ENOATTR;
1605 }
1606 }
1607 break;
1608 }
1609 *result = retval;
1610 return 0;
1611 }
1612
1613 /*========================================================================
1614 * Utility routines.
1615 *========================================================================*/
1616
1617 /*
1618 * Compare two intermediate nodes for "order".
1619 */
1620 STATIC int
1621 xfs_da3_node_order(
1622 struct xfs_inode *dp,
1623 struct xfs_buf *node1_bp,
1624 struct xfs_buf *node2_bp)
1625 {
1626 struct xfs_da_intnode *node1;
1627 struct xfs_da_intnode *node2;
1628 struct xfs_da_node_entry *btree1;
1629 struct xfs_da_node_entry *btree2;
1630 struct xfs_da3_icnode_hdr node1hdr;
1631 struct xfs_da3_icnode_hdr node2hdr;
1632
1633 node1 = node1_bp->b_addr;
1634 node2 = node2_bp->b_addr;
1635 dp->d_ops->node_hdr_from_disk(&node1hdr, node1);
1636 dp->d_ops->node_hdr_from_disk(&node2hdr, node2);
1637 btree1 = dp->d_ops->node_tree_p(node1);
1638 btree2 = dp->d_ops->node_tree_p(node2);
1639
1640 if (node1hdr.count > 0 && node2hdr.count > 0 &&
1641 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1642 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1643 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1644 return 1;
1645 }
1646 return 0;
1647 }
1648
1649 /*
1650 * Link a new block into a doubly linked list of blocks (of whatever type).
1651 */
1652 int /* error */
1653 xfs_da3_blk_link(
1654 struct xfs_da_state *state,
1655 struct xfs_da_state_blk *old_blk,
1656 struct xfs_da_state_blk *new_blk)
1657 {
1658 struct xfs_da_blkinfo *old_info;
1659 struct xfs_da_blkinfo *new_info;
1660 struct xfs_da_blkinfo *tmp_info;
1661 struct xfs_da_args *args;
1662 struct xfs_buf *bp;
1663 int before = 0;
1664 int error;
1665 struct xfs_inode *dp = state->args->dp;
1666
1667 /*
1668 * Set up environment.
1669 */
1670 args = state->args;
1671 ASSERT(args != NULL);
1672 old_info = old_blk->bp->b_addr;
1673 new_info = new_blk->bp->b_addr;
1674 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1675 old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1676 old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1677
1678 switch (old_blk->magic) {
1679 case XFS_ATTR_LEAF_MAGIC:
1680 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1681 break;
1682 case XFS_DIR2_LEAFN_MAGIC:
1683 before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp);
1684 break;
1685 case XFS_DA_NODE_MAGIC:
1686 before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp);
1687 break;
1688 }
1689
1690 /*
1691 * Link blocks in appropriate order.
1692 */
1693 if (before) {
1694 /*
1695 * Link new block in before existing block.
1696 */
1697 trace_xfs_da_link_before(args);
1698 new_info->forw = cpu_to_be32(old_blk->blkno);
1699 new_info->back = old_info->back;
1700 if (old_info->back) {
1701 error = xfs_da3_node_read(args->trans, dp,
1702 be32_to_cpu(old_info->back),
1703 -1, &bp, args->whichfork);
1704 if (error)
1705 return error;
1706 ASSERT(bp != NULL);
1707 tmp_info = bp->b_addr;
1708 ASSERT(tmp_info->magic == old_info->magic);
1709 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1710 tmp_info->forw = cpu_to_be32(new_blk->blkno);
1711 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1712 }
1713 old_info->back = cpu_to_be32(new_blk->blkno);
1714 } else {
1715 /*
1716 * Link new block in after existing block.
1717 */
1718 trace_xfs_da_link_after(args);
1719 new_info->forw = old_info->forw;
1720 new_info->back = cpu_to_be32(old_blk->blkno);
1721 if (old_info->forw) {
1722 error = xfs_da3_node_read(args->trans, dp,
1723 be32_to_cpu(old_info->forw),
1724 -1, &bp, args->whichfork);
1725 if (error)
1726 return error;
1727 ASSERT(bp != NULL);
1728 tmp_info = bp->b_addr;
1729 ASSERT(tmp_info->magic == old_info->magic);
1730 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1731 tmp_info->back = cpu_to_be32(new_blk->blkno);
1732 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1733 }
1734 old_info->forw = cpu_to_be32(new_blk->blkno);
1735 }
1736
1737 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1738 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1739 return 0;
1740 }
1741
1742 /*
1743 * Unlink a block from a doubly linked list of blocks.
1744 */
1745 STATIC int /* error */
1746 xfs_da3_blk_unlink(
1747 struct xfs_da_state *state,
1748 struct xfs_da_state_blk *drop_blk,
1749 struct xfs_da_state_blk *save_blk)
1750 {
1751 struct xfs_da_blkinfo *drop_info;
1752 struct xfs_da_blkinfo *save_info;
1753 struct xfs_da_blkinfo *tmp_info;
1754 struct xfs_da_args *args;
1755 struct xfs_buf *bp;
1756 int error;
1757
1758 /*
1759 * Set up environment.
1760 */
1761 args = state->args;
1762 ASSERT(args != NULL);
1763 save_info = save_blk->bp->b_addr;
1764 drop_info = drop_blk->bp->b_addr;
1765 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1766 save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1767 save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1768 ASSERT(save_blk->magic == drop_blk->magic);
1769 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1770 (be32_to_cpu(save_info->back) == drop_blk->blkno));
1771 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1772 (be32_to_cpu(drop_info->back) == save_blk->blkno));
1773
1774 /*
1775 * Unlink the leaf block from the doubly linked chain of leaves.
1776 */
1777 if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1778 trace_xfs_da_unlink_back(args);
1779 save_info->back = drop_info->back;
1780 if (drop_info->back) {
1781 error = xfs_da3_node_read(args->trans, args->dp,
1782 be32_to_cpu(drop_info->back),
1783 -1, &bp, args->whichfork);
1784 if (error)
1785 return error;
1786 ASSERT(bp != NULL);
1787 tmp_info = bp->b_addr;
1788 ASSERT(tmp_info->magic == save_info->magic);
1789 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1790 tmp_info->forw = cpu_to_be32(save_blk->blkno);
1791 xfs_trans_log_buf(args->trans, bp, 0,
1792 sizeof(*tmp_info) - 1);
1793 }
1794 } else {
1795 trace_xfs_da_unlink_forward(args);
1796 save_info->forw = drop_info->forw;
1797 if (drop_info->forw) {
1798 error = xfs_da3_node_read(args->trans, args->dp,
1799 be32_to_cpu(drop_info->forw),
1800 -1, &bp, args->whichfork);
1801 if (error)
1802 return error;
1803 ASSERT(bp != NULL);
1804 tmp_info = bp->b_addr;
1805 ASSERT(tmp_info->magic == save_info->magic);
1806 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1807 tmp_info->back = cpu_to_be32(save_blk->blkno);
1808 xfs_trans_log_buf(args->trans, bp, 0,
1809 sizeof(*tmp_info) - 1);
1810 }
1811 }
1812
1813 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1814 return 0;
1815 }
1816
1817 /*
1818 * Move a path "forward" or "!forward" one block at the current level.
1819 *
1820 * This routine will adjust a "path" to point to the next block
1821 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1822 * Btree, including updating pointers to the intermediate nodes between
1823 * the new bottom and the root.
1824 */
1825 int /* error */
1826 xfs_da3_path_shift(
1827 struct xfs_da_state *state,
1828 struct xfs_da_state_path *path,
1829 int forward,
1830 int release,
1831 int *result)
1832 {
1833 struct xfs_da_state_blk *blk;
1834 struct xfs_da_blkinfo *info;
1835 struct xfs_da_intnode *node;
1836 struct xfs_da_args *args;
1837 struct xfs_da_node_entry *btree;
1838 struct xfs_da3_icnode_hdr nodehdr;
1839 struct xfs_buf *bp;
1840 xfs_dablk_t blkno = 0;
1841 int level;
1842 int error;
1843 struct xfs_inode *dp = state->args->dp;
1844
1845 trace_xfs_da_path_shift(state->args);
1846
1847 /*
1848 * Roll up the Btree looking for the first block where our
1849 * current index is not at the edge of the block. Note that
1850 * we skip the bottom layer because we want the sibling block.
1851 */
1852 args = state->args;
1853 ASSERT(args != NULL);
1854 ASSERT(path != NULL);
1855 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1856 level = (path->active-1) - 1; /* skip bottom layer in path */
1857 for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1858 node = blk->bp->b_addr;
1859 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1860 btree = dp->d_ops->node_tree_p(node);
1861
1862 if (forward && (blk->index < nodehdr.count - 1)) {
1863 blk->index++;
1864 blkno = be32_to_cpu(btree[blk->index].before);
1865 break;
1866 } else if (!forward && (blk->index > 0)) {
1867 blk->index--;
1868 blkno = be32_to_cpu(btree[blk->index].before);
1869 break;
1870 }
1871 }
1872 if (level < 0) {
1873 *result = -ENOENT; /* we're out of our tree */
1874 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1875 return 0;
1876 }
1877
1878 /*
1879 * Roll down the edge of the subtree until we reach the
1880 * same depth we were at originally.
1881 */
1882 for (blk++, level++; level < path->active; blk++, level++) {
1883 /*
1884 * Read the next child block into a local buffer.
1885 */
1886 error = xfs_da3_node_read(args->trans, dp, blkno, -1, &bp,
1887 args->whichfork);
1888 if (error)
1889 return error;
1890
1891 /*
1892 * Release the old block (if it's dirty, the trans doesn't
1893 * actually let go) and swap the local buffer into the path
1894 * structure. This ensures failure of the above read doesn't set
1895 * a NULL buffer in an active slot in the path.
1896 */
1897 if (release)
1898 xfs_trans_brelse(args->trans, blk->bp);
1899 blk->blkno = blkno;
1900 blk->bp = bp;
1901
1902 info = blk->bp->b_addr;
1903 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1904 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1905 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1906 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1907 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1908 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1909
1910
1911 /*
1912 * Note: we flatten the magic number to a single type so we
1913 * don't have to compare against crc/non-crc types elsewhere.
1914 */
1915 switch (be16_to_cpu(info->magic)) {
1916 case XFS_DA_NODE_MAGIC:
1917 case XFS_DA3_NODE_MAGIC:
1918 blk->magic = XFS_DA_NODE_MAGIC;
1919 node = (xfs_da_intnode_t *)info;
1920 dp->d_ops->node_hdr_from_disk(&nodehdr, node);
1921 btree = dp->d_ops->node_tree_p(node);
1922 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1923 if (forward)
1924 blk->index = 0;
1925 else
1926 blk->index = nodehdr.count - 1;
1927 blkno = be32_to_cpu(btree[blk->index].before);
1928 break;
1929 case XFS_ATTR_LEAF_MAGIC:
1930 case XFS_ATTR3_LEAF_MAGIC:
1931 blk->magic = XFS_ATTR_LEAF_MAGIC;
1932 ASSERT(level == path->active-1);
1933 blk->index = 0;
1934 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1935 break;
1936 case XFS_DIR2_LEAFN_MAGIC:
1937 case XFS_DIR3_LEAFN_MAGIC:
1938 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1939 ASSERT(level == path->active-1);
1940 blk->index = 0;
1941 blk->hashval = xfs_dir2_leaf_lasthash(args->dp,
1942 blk->bp, NULL);
1943 break;
1944 default:
1945 ASSERT(0);
1946 break;
1947 }
1948 }
1949 *result = 0;
1950 return 0;
1951 }
1952
1953
1954 /*========================================================================
1955 * Utility routines.
1956 *========================================================================*/
1957
1958 /*
1959 * Implement a simple hash on a character string.
1960 * Rotate the hash value by 7 bits, then XOR each character in.
1961 * This is implemented with some source-level loop unrolling.
1962 */
1963 xfs_dahash_t
1964 xfs_da_hashname(const uint8_t *name, int namelen)
1965 {
1966 xfs_dahash_t hash;
1967
1968 /*
1969 * Do four characters at a time as long as we can.
1970 */
1971 for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1972 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1973 (name[3] << 0) ^ rol32(hash, 7 * 4);
1974
1975 /*
1976 * Now do the rest of the characters.
1977 */
1978 switch (namelen) {
1979 case 3:
1980 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1981 rol32(hash, 7 * 3);
1982 case 2:
1983 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
1984 case 1:
1985 return (name[0] << 0) ^ rol32(hash, 7 * 1);
1986 default: /* case 0: */
1987 return hash;
1988 }
1989 }
1990
1991 enum xfs_dacmp
1992 xfs_da_compname(
1993 struct xfs_da_args *args,
1994 const unsigned char *name,
1995 int len)
1996 {
1997 return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
1998 XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
1999 }
2000
2001 static xfs_dahash_t
2002 xfs_default_hashname(
2003 struct xfs_name *name)
2004 {
2005 return xfs_da_hashname(name->name, name->len);
2006 }
2007
2008 const struct xfs_nameops xfs_default_nameops = {
2009 .hashname = xfs_default_hashname,
2010 .compname = xfs_da_compname
2011 };
2012
2013 int
2014 xfs_da_grow_inode_int(
2015 struct xfs_da_args *args,
2016 xfs_fileoff_t *bno,
2017 int count)
2018 {
2019 struct xfs_trans *tp = args->trans;
2020 struct xfs_inode *dp = args->dp;
2021 int w = args->whichfork;
2022 xfs_rfsblock_t nblks = dp->i_d.di_nblocks;
2023 struct xfs_bmbt_irec map, *mapp;
2024 int nmap, error, got, i, mapi;
2025
2026 /*
2027 * Find a spot in the file space to put the new block.
2028 */
2029 error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2030 if (error)
2031 return error;
2032
2033 /*
2034 * Try mapping it in one filesystem block.
2035 */
2036 nmap = 1;
2037 ASSERT(args->firstblock != NULL);
2038 error = xfs_bmapi_write(tp, dp, *bno, count,
2039 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2040 args->firstblock, args->total, &map, &nmap,
2041 args->dfops);
2042 if (error)
2043 return error;
2044
2045 ASSERT(nmap <= 1);
2046 if (nmap == 1) {
2047 mapp = &map;
2048 mapi = 1;
2049 } else if (nmap == 0 && count > 1) {
2050 xfs_fileoff_t b;
2051 int c;
2052
2053 /*
2054 * If we didn't get it and the block might work if fragmented,
2055 * try without the CONTIG flag. Loop until we get it all.
2056 */
2057 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2058 for (b = *bno, mapi = 0; b < *bno + count; ) {
2059 nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2060 c = (int)(*bno + count - b);
2061 error = xfs_bmapi_write(tp, dp, b, c,
2062 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2063 args->firstblock, args->total,
2064 &mapp[mapi], &nmap, args->dfops);
2065 if (error)
2066 goto out_free_map;
2067 if (nmap < 1)
2068 break;
2069 mapi += nmap;
2070 b = mapp[mapi - 1].br_startoff +
2071 mapp[mapi - 1].br_blockcount;
2072 }
2073 } else {
2074 mapi = 0;
2075 mapp = NULL;
2076 }
2077
2078 /*
2079 * Count the blocks we got, make sure it matches the total.
2080 */
2081 for (i = 0, got = 0; i < mapi; i++)
2082 got += mapp[i].br_blockcount;
2083 if (got != count || mapp[0].br_startoff != *bno ||
2084 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2085 *bno + count) {
2086 error = -ENOSPC;
2087 goto out_free_map;
2088 }
2089
2090 /* account for newly allocated blocks in reserved blocks total */
2091 args->total -= dp->i_d.di_nblocks - nblks;
2092
2093 out_free_map:
2094 if (mapp != &map)
2095 kmem_free(mapp);
2096 return error;
2097 }
2098
2099 /*
2100 * Add a block to the btree ahead of the file.
2101 * Return the new block number to the caller.
2102 */
2103 int
2104 xfs_da_grow_inode(
2105 struct xfs_da_args *args,
2106 xfs_dablk_t *new_blkno)
2107 {
2108 xfs_fileoff_t bno;
2109 int error;
2110
2111 trace_xfs_da_grow_inode(args);
2112
2113 bno = args->geo->leafblk;
2114 error = xfs_da_grow_inode_int(args, &bno, args->geo->fsbcount);
2115 if (!error)
2116 *new_blkno = (xfs_dablk_t)bno;
2117 return error;
2118 }
2119
2120 /*
2121 * Ick. We need to always be able to remove a btree block, even
2122 * if there's no space reservation because the filesystem is full.
2123 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2124 * It swaps the target block with the last block in the file. The
2125 * last block in the file can always be removed since it can't cause
2126 * a bmap btree split to do that.
2127 */
2128 STATIC int
2129 xfs_da3_swap_lastblock(
2130 struct xfs_da_args *args,
2131 xfs_dablk_t *dead_blknop,
2132 struct xfs_buf **dead_bufp)
2133 {
2134 struct xfs_da_blkinfo *dead_info;
2135 struct xfs_da_blkinfo *sib_info;
2136 struct xfs_da_intnode *par_node;
2137 struct xfs_da_intnode *dead_node;
2138 struct xfs_dir2_leaf *dead_leaf2;
2139 struct xfs_da_node_entry *btree;
2140 struct xfs_da3_icnode_hdr par_hdr;
2141 struct xfs_inode *dp;
2142 struct xfs_trans *tp;
2143 struct xfs_mount *mp;
2144 struct xfs_buf *dead_buf;
2145 struct xfs_buf *last_buf;
2146 struct xfs_buf *sib_buf;
2147 struct xfs_buf *par_buf;
2148 xfs_dahash_t dead_hash;
2149 xfs_fileoff_t lastoff;
2150 xfs_dablk_t dead_blkno;
2151 xfs_dablk_t last_blkno;
2152 xfs_dablk_t sib_blkno;
2153 xfs_dablk_t par_blkno;
2154 int error;
2155 int w;
2156 int entno;
2157 int level;
2158 int dead_level;
2159
2160 trace_xfs_da_swap_lastblock(args);
2161
2162 dead_buf = *dead_bufp;
2163 dead_blkno = *dead_blknop;
2164 tp = args->trans;
2165 dp = args->dp;
2166 w = args->whichfork;
2167 ASSERT(w == XFS_DATA_FORK);
2168 mp = dp->i_mount;
2169 lastoff = args->geo->freeblk;
2170 error = xfs_bmap_last_before(tp, dp, &lastoff, w);
2171 if (error)
2172 return error;
2173 if (unlikely(lastoff == 0)) {
2174 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2175 mp);
2176 return -EFSCORRUPTED;
2177 }
2178 /*
2179 * Read the last block in the btree space.
2180 */
2181 last_blkno = (xfs_dablk_t)lastoff - args->geo->fsbcount;
2182 error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w);
2183 if (error)
2184 return error;
2185 /*
2186 * Copy the last block into the dead buffer and log it.
2187 */
2188 memcpy(dead_buf->b_addr, last_buf->b_addr, args->geo->blksize);
2189 xfs_trans_log_buf(tp, dead_buf, 0, args->geo->blksize - 1);
2190 dead_info = dead_buf->b_addr;
2191 /*
2192 * Get values from the moved block.
2193 */
2194 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2195 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2196 struct xfs_dir3_icleaf_hdr leafhdr;
2197 struct xfs_dir2_leaf_entry *ents;
2198
2199 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2200 dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2201 ents = dp->d_ops->leaf_ents_p(dead_leaf2);
2202 dead_level = 0;
2203 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2204 } else {
2205 struct xfs_da3_icnode_hdr deadhdr;
2206
2207 dead_node = (xfs_da_intnode_t *)dead_info;
2208 dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node);
2209 btree = dp->d_ops->node_tree_p(dead_node);
2210 dead_level = deadhdr.level;
2211 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2212 }
2213 sib_buf = par_buf = NULL;
2214 /*
2215 * If the moved block has a left sibling, fix up the pointers.
2216 */
2217 if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2218 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2219 if (error)
2220 goto done;
2221 sib_info = sib_buf->b_addr;
2222 if (unlikely(
2223 be32_to_cpu(sib_info->forw) != last_blkno ||
2224 sib_info->magic != dead_info->magic)) {
2225 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2226 XFS_ERRLEVEL_LOW, mp);
2227 error = -EFSCORRUPTED;
2228 goto done;
2229 }
2230 sib_info->forw = cpu_to_be32(dead_blkno);
2231 xfs_trans_log_buf(tp, sib_buf,
2232 XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2233 sizeof(sib_info->forw)));
2234 sib_buf = NULL;
2235 }
2236 /*
2237 * If the moved block has a right sibling, fix up the pointers.
2238 */
2239 if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2240 error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w);
2241 if (error)
2242 goto done;
2243 sib_info = sib_buf->b_addr;
2244 if (unlikely(
2245 be32_to_cpu(sib_info->back) != last_blkno ||
2246 sib_info->magic != dead_info->magic)) {
2247 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2248 XFS_ERRLEVEL_LOW, mp);
2249 error = -EFSCORRUPTED;
2250 goto done;
2251 }
2252 sib_info->back = cpu_to_be32(dead_blkno);
2253 xfs_trans_log_buf(tp, sib_buf,
2254 XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2255 sizeof(sib_info->back)));
2256 sib_buf = NULL;
2257 }
2258 par_blkno = args->geo->leafblk;
2259 level = -1;
2260 /*
2261 * Walk down the tree looking for the parent of the moved block.
2262 */
2263 for (;;) {
2264 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2265 if (error)
2266 goto done;
2267 par_node = par_buf->b_addr;
2268 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2269 if (level >= 0 && level != par_hdr.level + 1) {
2270 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2271 XFS_ERRLEVEL_LOW, mp);
2272 error = -EFSCORRUPTED;
2273 goto done;
2274 }
2275 level = par_hdr.level;
2276 btree = dp->d_ops->node_tree_p(par_node);
2277 for (entno = 0;
2278 entno < par_hdr.count &&
2279 be32_to_cpu(btree[entno].hashval) < dead_hash;
2280 entno++)
2281 continue;
2282 if (entno == par_hdr.count) {
2283 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2284 XFS_ERRLEVEL_LOW, mp);
2285 error = -EFSCORRUPTED;
2286 goto done;
2287 }
2288 par_blkno = be32_to_cpu(btree[entno].before);
2289 if (level == dead_level + 1)
2290 break;
2291 xfs_trans_brelse(tp, par_buf);
2292 par_buf = NULL;
2293 }
2294 /*
2295 * We're in the right parent block.
2296 * Look for the right entry.
2297 */
2298 for (;;) {
2299 for (;
2300 entno < par_hdr.count &&
2301 be32_to_cpu(btree[entno].before) != last_blkno;
2302 entno++)
2303 continue;
2304 if (entno < par_hdr.count)
2305 break;
2306 par_blkno = par_hdr.forw;
2307 xfs_trans_brelse(tp, par_buf);
2308 par_buf = NULL;
2309 if (unlikely(par_blkno == 0)) {
2310 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2311 XFS_ERRLEVEL_LOW, mp);
2312 error = -EFSCORRUPTED;
2313 goto done;
2314 }
2315 error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w);
2316 if (error)
2317 goto done;
2318 par_node = par_buf->b_addr;
2319 dp->d_ops->node_hdr_from_disk(&par_hdr, par_node);
2320 if (par_hdr.level != level) {
2321 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2322 XFS_ERRLEVEL_LOW, mp);
2323 error = -EFSCORRUPTED;
2324 goto done;
2325 }
2326 btree = dp->d_ops->node_tree_p(par_node);
2327 entno = 0;
2328 }
2329 /*
2330 * Update the parent entry pointing to the moved block.
2331 */
2332 btree[entno].before = cpu_to_be32(dead_blkno);
2333 xfs_trans_log_buf(tp, par_buf,
2334 XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2335 sizeof(btree[entno].before)));
2336 *dead_blknop = last_blkno;
2337 *dead_bufp = last_buf;
2338 return 0;
2339 done:
2340 if (par_buf)
2341 xfs_trans_brelse(tp, par_buf);
2342 if (sib_buf)
2343 xfs_trans_brelse(tp, sib_buf);
2344 xfs_trans_brelse(tp, last_buf);
2345 return error;
2346 }
2347
2348 /*
2349 * Remove a btree block from a directory or attribute.
2350 */
2351 int
2352 xfs_da_shrink_inode(
2353 xfs_da_args_t *args,
2354 xfs_dablk_t dead_blkno,
2355 struct xfs_buf *dead_buf)
2356 {
2357 xfs_inode_t *dp;
2358 int done, error, w, count;
2359 xfs_trans_t *tp;
2360
2361 trace_xfs_da_shrink_inode(args);
2362
2363 dp = args->dp;
2364 w = args->whichfork;
2365 tp = args->trans;
2366 count = args->geo->fsbcount;
2367 for (;;) {
2368 /*
2369 * Remove extents. If we get ENOSPC for a dir we have to move
2370 * the last block to the place we want to kill.
2371 */
2372 error = xfs_bunmapi(tp, dp, dead_blkno, count,
2373 xfs_bmapi_aflag(w), 0, args->firstblock,
2374 args->dfops, &done);
2375 if (error == -ENOSPC) {
2376 if (w != XFS_DATA_FORK)
2377 break;
2378 error = xfs_da3_swap_lastblock(args, &dead_blkno,
2379 &dead_buf);
2380 if (error)
2381 break;
2382 } else {
2383 break;
2384 }
2385 }
2386 xfs_trans_binval(tp, dead_buf);
2387 return error;
2388 }
2389
2390 /*
2391 * See if the mapping(s) for this btree block are valid, i.e.
2392 * don't contain holes, are logically contiguous, and cover the whole range.
2393 */
2394 STATIC int
2395 xfs_da_map_covers_blocks(
2396 int nmap,
2397 xfs_bmbt_irec_t *mapp,
2398 xfs_dablk_t bno,
2399 int count)
2400 {
2401 int i;
2402 xfs_fileoff_t off;
2403
2404 for (i = 0, off = bno; i < nmap; i++) {
2405 if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2406 mapp[i].br_startblock == DELAYSTARTBLOCK) {
2407 return 0;
2408 }
2409 if (off != mapp[i].br_startoff) {
2410 return 0;
2411 }
2412 off += mapp[i].br_blockcount;
2413 }
2414 return off == bno + count;
2415 }
2416
2417 /*
2418 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2419 *
2420 * For the single map case, it is assumed that the caller has provided a pointer
2421 * to a valid xfs_buf_map. For the multiple map case, this function will
2422 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2423 * map pointer with the allocated map.
2424 */
2425 static int
2426 xfs_buf_map_from_irec(
2427 struct xfs_mount *mp,
2428 struct xfs_buf_map **mapp,
2429 int *nmaps,
2430 struct xfs_bmbt_irec *irecs,
2431 int nirecs)
2432 {
2433 struct xfs_buf_map *map;
2434 int i;
2435
2436 ASSERT(*nmaps == 1);
2437 ASSERT(nirecs >= 1);
2438
2439 if (nirecs > 1) {
2440 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2441 KM_SLEEP | KM_NOFS);
2442 if (!map)
2443 return -ENOMEM;
2444 *mapp = map;
2445 }
2446
2447 *nmaps = nirecs;
2448 map = *mapp;
2449 for (i = 0; i < *nmaps; i++) {
2450 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2451 irecs[i].br_startblock != HOLESTARTBLOCK);
2452 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2453 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2454 }
2455 return 0;
2456 }
2457
2458 /*
2459 * Map the block we are given ready for reading. There are three possible return
2460 * values:
2461 * -1 - will be returned if we land in a hole and mappedbno == -2 so the
2462 * caller knows not to execute a subsequent read.
2463 * 0 - if we mapped the block successfully
2464 * >0 - positive error number if there was an error.
2465 */
2466 static int
2467 xfs_dabuf_map(
2468 struct xfs_inode *dp,
2469 xfs_dablk_t bno,
2470 xfs_daddr_t mappedbno,
2471 int whichfork,
2472 struct xfs_buf_map **map,
2473 int *nmaps)
2474 {
2475 struct xfs_mount *mp = dp->i_mount;
2476 int nfsb;
2477 int error = 0;
2478 struct xfs_bmbt_irec irec;
2479 struct xfs_bmbt_irec *irecs = &irec;
2480 int nirecs;
2481
2482 ASSERT(map && *map);
2483 ASSERT(*nmaps == 1);
2484
2485 if (whichfork == XFS_DATA_FORK)
2486 nfsb = mp->m_dir_geo->fsbcount;
2487 else
2488 nfsb = mp->m_attr_geo->fsbcount;
2489
2490 /*
2491 * Caller doesn't have a mapping. -2 means don't complain
2492 * if we land in a hole.
2493 */
2494 if (mappedbno == -1 || mappedbno == -2) {
2495 /*
2496 * Optimize the one-block case.
2497 */
2498 if (nfsb != 1)
2499 irecs = kmem_zalloc(sizeof(irec) * nfsb,
2500 KM_SLEEP | KM_NOFS);
2501
2502 nirecs = nfsb;
2503 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2504 &nirecs, xfs_bmapi_aflag(whichfork));
2505 if (error)
2506 goto out;
2507 } else {
2508 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2509 irecs->br_startoff = (xfs_fileoff_t)bno;
2510 irecs->br_blockcount = nfsb;
2511 irecs->br_state = 0;
2512 nirecs = 1;
2513 }
2514
2515 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2516 error = mappedbno == -2 ? -1 : -EFSCORRUPTED;
2517 if (unlikely(error == -EFSCORRUPTED)) {
2518 if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2519 int i;
2520 xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2521 __func__, (long long)bno,
2522 (long long)dp->i_ino);
2523 for (i = 0; i < *nmaps; i++) {
2524 xfs_alert(mp,
2525 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2526 i,
2527 (long long)irecs[i].br_startoff,
2528 (long long)irecs[i].br_startblock,
2529 (long long)irecs[i].br_blockcount,
2530 irecs[i].br_state);
2531 }
2532 }
2533 XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2534 XFS_ERRLEVEL_LOW, mp);
2535 }
2536 goto out;
2537 }
2538 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2539 out:
2540 if (irecs != &irec)
2541 kmem_free(irecs);
2542 return error;
2543 }
2544
2545 /*
2546 * Get a buffer for the dir/attr block.
2547 */
2548 int
2549 xfs_da_get_buf(
2550 struct xfs_trans *trans,
2551 struct xfs_inode *dp,
2552 xfs_dablk_t bno,
2553 xfs_daddr_t mappedbno,
2554 struct xfs_buf **bpp,
2555 int whichfork)
2556 {
2557 struct xfs_buf *bp;
2558 struct xfs_buf_map map;
2559 struct xfs_buf_map *mapp;
2560 int nmap;
2561 int error;
2562
2563 *bpp = NULL;
2564 mapp = &map;
2565 nmap = 1;
2566 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2567 &mapp, &nmap);
2568 if (error) {
2569 /* mapping a hole is not an error, but we don't continue */
2570 if (error == -1)
2571 error = 0;
2572 goto out_free;
2573 }
2574
2575 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2576 mapp, nmap, 0);
2577 error = bp ? bp->b_error : -EIO;
2578 if (error) {
2579 if (bp)
2580 xfs_trans_brelse(trans, bp);
2581 goto out_free;
2582 }
2583
2584 *bpp = bp;
2585
2586 out_free:
2587 if (mapp != &map)
2588 kmem_free(mapp);
2589
2590 return error;
2591 }
2592
2593 /*
2594 * Get a buffer for the dir/attr block, fill in the contents.
2595 */
2596 int
2597 xfs_da_read_buf(
2598 struct xfs_trans *trans,
2599 struct xfs_inode *dp,
2600 xfs_dablk_t bno,
2601 xfs_daddr_t mappedbno,
2602 struct xfs_buf **bpp,
2603 int whichfork,
2604 const struct xfs_buf_ops *ops)
2605 {
2606 struct xfs_buf *bp;
2607 struct xfs_buf_map map;
2608 struct xfs_buf_map *mapp;
2609 int nmap;
2610 int error;
2611
2612 *bpp = NULL;
2613 mapp = &map;
2614 nmap = 1;
2615 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2616 &mapp, &nmap);
2617 if (error) {
2618 /* mapping a hole is not an error, but we don't continue */
2619 if (error == -1)
2620 error = 0;
2621 goto out_free;
2622 }
2623
2624 error = xfs_trans_read_buf_map(dp->i_mount, trans,
2625 dp->i_mount->m_ddev_targp,
2626 mapp, nmap, 0, &bp, ops);
2627 if (error)
2628 goto out_free;
2629
2630 if (whichfork == XFS_ATTR_FORK)
2631 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2632 else
2633 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2634 *bpp = bp;
2635 out_free:
2636 if (mapp != &map)
2637 kmem_free(mapp);
2638
2639 return error;
2640 }
2641
2642 /*
2643 * Readahead the dir/attr block.
2644 */
2645 int
2646 xfs_da_reada_buf(
2647 struct xfs_inode *dp,
2648 xfs_dablk_t bno,
2649 xfs_daddr_t mappedbno,
2650 int whichfork,
2651 const struct xfs_buf_ops *ops)
2652 {
2653 struct xfs_buf_map map;
2654 struct xfs_buf_map *mapp;
2655 int nmap;
2656 int error;
2657
2658 mapp = &map;
2659 nmap = 1;
2660 error = xfs_dabuf_map(dp, bno, mappedbno, whichfork,
2661 &mapp, &nmap);
2662 if (error) {
2663 /* mapping a hole is not an error, but we don't continue */
2664 if (error == -1)
2665 error = 0;
2666 goto out_free;
2667 }
2668
2669 mappedbno = mapp[0].bm_bn;
2670 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2671
2672 out_free:
2673 if (mapp != &map)
2674 kmem_free(mapp);
2675
2676 return error;
2677 }