]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc.c
xfs: don't rely on extent indices in xfs_bmap_collapse_extents
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_cksum.h"
35 #include "xfs_trans.h"
36 #include "xfs_trace.h"
37 #include "xfs_rmap.h"
38
39
40 /*
41 * Allocation group level functions.
42 */
43 int
44 xfs_ialloc_cluster_alignment(
45 struct xfs_mount *mp)
46 {
47 if (xfs_sb_version_hasalign(&mp->m_sb) &&
48 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
49 return mp->m_sb.sb_inoalignmt;
50 return 1;
51 }
52
53 /*
54 * Lookup a record by ino in the btree given by cur.
55 */
56 int /* error */
57 xfs_inobt_lookup(
58 struct xfs_btree_cur *cur, /* btree cursor */
59 xfs_agino_t ino, /* starting inode of chunk */
60 xfs_lookup_t dir, /* <=, >=, == */
61 int *stat) /* success/failure */
62 {
63 cur->bc_rec.i.ir_startino = ino;
64 cur->bc_rec.i.ir_holemask = 0;
65 cur->bc_rec.i.ir_count = 0;
66 cur->bc_rec.i.ir_freecount = 0;
67 cur->bc_rec.i.ir_free = 0;
68 return xfs_btree_lookup(cur, dir, stat);
69 }
70
71 /*
72 * Update the record referred to by cur to the value given.
73 * This either works (return 0) or gets an EFSCORRUPTED error.
74 */
75 STATIC int /* error */
76 xfs_inobt_update(
77 struct xfs_btree_cur *cur, /* btree cursor */
78 xfs_inobt_rec_incore_t *irec) /* btree record */
79 {
80 union xfs_btree_rec rec;
81
82 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
83 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
84 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
85 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
86 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
87 } else {
88 /* ir_holemask/ir_count not supported on-disk */
89 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
90 }
91 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
92 return xfs_btree_update(cur, &rec);
93 }
94
95 /* Convert on-disk btree record to incore inobt record. */
96 void
97 xfs_inobt_btrec_to_irec(
98 struct xfs_mount *mp,
99 union xfs_btree_rec *rec,
100 struct xfs_inobt_rec_incore *irec)
101 {
102 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
103 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
104 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
105 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
106 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
107 } else {
108 /*
109 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
110 * values for full inode chunks.
111 */
112 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
113 irec->ir_count = XFS_INODES_PER_CHUNK;
114 irec->ir_freecount =
115 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
116 }
117 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
118 }
119
120 /*
121 * Get the data from the pointed-to record.
122 */
123 int
124 xfs_inobt_get_rec(
125 struct xfs_btree_cur *cur,
126 struct xfs_inobt_rec_incore *irec,
127 int *stat)
128 {
129 union xfs_btree_rec *rec;
130 int error;
131
132 error = xfs_btree_get_rec(cur, &rec, stat);
133 if (error || *stat == 0)
134 return error;
135
136 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
137
138 return 0;
139 }
140
141 /*
142 * Insert a single inobt record. Cursor must already point to desired location.
143 */
144 STATIC int
145 xfs_inobt_insert_rec(
146 struct xfs_btree_cur *cur,
147 uint16_t holemask,
148 uint8_t count,
149 int32_t freecount,
150 xfs_inofree_t free,
151 int *stat)
152 {
153 cur->bc_rec.i.ir_holemask = holemask;
154 cur->bc_rec.i.ir_count = count;
155 cur->bc_rec.i.ir_freecount = freecount;
156 cur->bc_rec.i.ir_free = free;
157 return xfs_btree_insert(cur, stat);
158 }
159
160 /*
161 * Insert records describing a newly allocated inode chunk into the inobt.
162 */
163 STATIC int
164 xfs_inobt_insert(
165 struct xfs_mount *mp,
166 struct xfs_trans *tp,
167 struct xfs_buf *agbp,
168 xfs_agino_t newino,
169 xfs_agino_t newlen,
170 xfs_btnum_t btnum)
171 {
172 struct xfs_btree_cur *cur;
173 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
174 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
175 xfs_agino_t thisino;
176 int i;
177 int error;
178
179 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
180
181 for (thisino = newino;
182 thisino < newino + newlen;
183 thisino += XFS_INODES_PER_CHUNK) {
184 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
185 if (error) {
186 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
187 return error;
188 }
189 ASSERT(i == 0);
190
191 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
192 XFS_INODES_PER_CHUNK,
193 XFS_INODES_PER_CHUNK,
194 XFS_INOBT_ALL_FREE, &i);
195 if (error) {
196 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
197 return error;
198 }
199 ASSERT(i == 1);
200 }
201
202 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
203
204 return 0;
205 }
206
207 /*
208 * Verify that the number of free inodes in the AGI is correct.
209 */
210 #ifdef DEBUG
211 STATIC int
212 xfs_check_agi_freecount(
213 struct xfs_btree_cur *cur,
214 struct xfs_agi *agi)
215 {
216 if (cur->bc_nlevels == 1) {
217 xfs_inobt_rec_incore_t rec;
218 int freecount = 0;
219 int error;
220 int i;
221
222 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
223 if (error)
224 return error;
225
226 do {
227 error = xfs_inobt_get_rec(cur, &rec, &i);
228 if (error)
229 return error;
230
231 if (i) {
232 freecount += rec.ir_freecount;
233 error = xfs_btree_increment(cur, 0, &i);
234 if (error)
235 return error;
236 }
237 } while (i == 1);
238
239 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
240 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
241 }
242 return 0;
243 }
244 #else
245 #define xfs_check_agi_freecount(cur, agi) 0
246 #endif
247
248 /*
249 * Initialise a new set of inodes. When called without a transaction context
250 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
251 * than logging them (which in a transaction context puts them into the AIL
252 * for writeback rather than the xfsbufd queue).
253 */
254 int
255 xfs_ialloc_inode_init(
256 struct xfs_mount *mp,
257 struct xfs_trans *tp,
258 struct list_head *buffer_list,
259 int icount,
260 xfs_agnumber_t agno,
261 xfs_agblock_t agbno,
262 xfs_agblock_t length,
263 unsigned int gen)
264 {
265 struct xfs_buf *fbuf;
266 struct xfs_dinode *free;
267 int nbufs, blks_per_cluster, inodes_per_cluster;
268 int version;
269 int i, j;
270 xfs_daddr_t d;
271 xfs_ino_t ino = 0;
272
273 /*
274 * Loop over the new block(s), filling in the inodes. For small block
275 * sizes, manipulate the inodes in buffers which are multiples of the
276 * blocks size.
277 */
278 blks_per_cluster = xfs_icluster_size_fsb(mp);
279 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
280 nbufs = length / blks_per_cluster;
281
282 /*
283 * Figure out what version number to use in the inodes we create. If
284 * the superblock version has caught up to the one that supports the new
285 * inode format, then use the new inode version. Otherwise use the old
286 * version so that old kernels will continue to be able to use the file
287 * system.
288 *
289 * For v3 inodes, we also need to write the inode number into the inode,
290 * so calculate the first inode number of the chunk here as
291 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
292 * across multiple filesystem blocks (such as a cluster) and so cannot
293 * be used in the cluster buffer loop below.
294 *
295 * Further, because we are writing the inode directly into the buffer
296 * and calculating a CRC on the entire inode, we have ot log the entire
297 * inode so that the entire range the CRC covers is present in the log.
298 * That means for v3 inode we log the entire buffer rather than just the
299 * inode cores.
300 */
301 if (xfs_sb_version_hascrc(&mp->m_sb)) {
302 version = 3;
303 ino = XFS_AGINO_TO_INO(mp, agno,
304 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
305
306 /*
307 * log the initialisation that is about to take place as an
308 * logical operation. This means the transaction does not
309 * need to log the physical changes to the inode buffers as log
310 * recovery will know what initialisation is actually needed.
311 * Hence we only need to log the buffers as "ordered" buffers so
312 * they track in the AIL as if they were physically logged.
313 */
314 if (tp)
315 xfs_icreate_log(tp, agno, agbno, icount,
316 mp->m_sb.sb_inodesize, length, gen);
317 } else
318 version = 2;
319
320 for (j = 0; j < nbufs; j++) {
321 /*
322 * Get the block.
323 */
324 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
325 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
326 mp->m_bsize * blks_per_cluster,
327 XBF_UNMAPPED);
328 if (!fbuf)
329 return -ENOMEM;
330
331 /* Initialize the inode buffers and log them appropriately. */
332 fbuf->b_ops = &xfs_inode_buf_ops;
333 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
334 for (i = 0; i < inodes_per_cluster; i++) {
335 int ioffset = i << mp->m_sb.sb_inodelog;
336 uint isize = xfs_dinode_size(version);
337
338 free = xfs_make_iptr(mp, fbuf, i);
339 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
340 free->di_version = version;
341 free->di_gen = cpu_to_be32(gen);
342 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
343
344 if (version == 3) {
345 free->di_ino = cpu_to_be64(ino);
346 ino++;
347 uuid_copy(&free->di_uuid,
348 &mp->m_sb.sb_meta_uuid);
349 xfs_dinode_calc_crc(mp, free);
350 } else if (tp) {
351 /* just log the inode core */
352 xfs_trans_log_buf(tp, fbuf, ioffset,
353 ioffset + isize - 1);
354 }
355 }
356
357 if (tp) {
358 /*
359 * Mark the buffer as an inode allocation buffer so it
360 * sticks in AIL at the point of this allocation
361 * transaction. This ensures the they are on disk before
362 * the tail of the log can be moved past this
363 * transaction (i.e. by preventing relogging from moving
364 * it forward in the log).
365 */
366 xfs_trans_inode_alloc_buf(tp, fbuf);
367 if (version == 3) {
368 /*
369 * Mark the buffer as ordered so that they are
370 * not physically logged in the transaction but
371 * still tracked in the AIL as part of the
372 * transaction and pin the log appropriately.
373 */
374 xfs_trans_ordered_buf(tp, fbuf);
375 }
376 } else {
377 fbuf->b_flags |= XBF_DONE;
378 xfs_buf_delwri_queue(fbuf, buffer_list);
379 xfs_buf_relse(fbuf);
380 }
381 }
382 return 0;
383 }
384
385 /*
386 * Align startino and allocmask for a recently allocated sparse chunk such that
387 * they are fit for insertion (or merge) into the on-disk inode btrees.
388 *
389 * Background:
390 *
391 * When enabled, sparse inode support increases the inode alignment from cluster
392 * size to inode chunk size. This means that the minimum range between two
393 * non-adjacent inode records in the inobt is large enough for a full inode
394 * record. This allows for cluster sized, cluster aligned block allocation
395 * without need to worry about whether the resulting inode record overlaps with
396 * another record in the tree. Without this basic rule, we would have to deal
397 * with the consequences of overlap by potentially undoing recent allocations in
398 * the inode allocation codepath.
399 *
400 * Because of this alignment rule (which is enforced on mount), there are two
401 * inobt possibilities for newly allocated sparse chunks. One is that the
402 * aligned inode record for the chunk covers a range of inodes not already
403 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
404 * other is that a record already exists at the aligned startino that considers
405 * the newly allocated range as sparse. In the latter case, record content is
406 * merged in hope that sparse inode chunks fill to full chunks over time.
407 */
408 STATIC void
409 xfs_align_sparse_ino(
410 struct xfs_mount *mp,
411 xfs_agino_t *startino,
412 uint16_t *allocmask)
413 {
414 xfs_agblock_t agbno;
415 xfs_agblock_t mod;
416 int offset;
417
418 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
419 mod = agbno % mp->m_sb.sb_inoalignmt;
420 if (!mod)
421 return;
422
423 /* calculate the inode offset and align startino */
424 offset = mod << mp->m_sb.sb_inopblog;
425 *startino -= offset;
426
427 /*
428 * Since startino has been aligned down, left shift allocmask such that
429 * it continues to represent the same physical inodes relative to the
430 * new startino.
431 */
432 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
433 }
434
435 /*
436 * Determine whether the source inode record can merge into the target. Both
437 * records must be sparse, the inode ranges must match and there must be no
438 * allocation overlap between the records.
439 */
440 STATIC bool
441 __xfs_inobt_can_merge(
442 struct xfs_inobt_rec_incore *trec, /* tgt record */
443 struct xfs_inobt_rec_incore *srec) /* src record */
444 {
445 uint64_t talloc;
446 uint64_t salloc;
447
448 /* records must cover the same inode range */
449 if (trec->ir_startino != srec->ir_startino)
450 return false;
451
452 /* both records must be sparse */
453 if (!xfs_inobt_issparse(trec->ir_holemask) ||
454 !xfs_inobt_issparse(srec->ir_holemask))
455 return false;
456
457 /* both records must track some inodes */
458 if (!trec->ir_count || !srec->ir_count)
459 return false;
460
461 /* can't exceed capacity of a full record */
462 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
463 return false;
464
465 /* verify there is no allocation overlap */
466 talloc = xfs_inobt_irec_to_allocmask(trec);
467 salloc = xfs_inobt_irec_to_allocmask(srec);
468 if (talloc & salloc)
469 return false;
470
471 return true;
472 }
473
474 /*
475 * Merge the source inode record into the target. The caller must call
476 * __xfs_inobt_can_merge() to ensure the merge is valid.
477 */
478 STATIC void
479 __xfs_inobt_rec_merge(
480 struct xfs_inobt_rec_incore *trec, /* target */
481 struct xfs_inobt_rec_incore *srec) /* src */
482 {
483 ASSERT(trec->ir_startino == srec->ir_startino);
484
485 /* combine the counts */
486 trec->ir_count += srec->ir_count;
487 trec->ir_freecount += srec->ir_freecount;
488
489 /*
490 * Merge the holemask and free mask. For both fields, 0 bits refer to
491 * allocated inodes. We combine the allocated ranges with bitwise AND.
492 */
493 trec->ir_holemask &= srec->ir_holemask;
494 trec->ir_free &= srec->ir_free;
495 }
496
497 /*
498 * Insert a new sparse inode chunk into the associated inode btree. The inode
499 * record for the sparse chunk is pre-aligned to a startino that should match
500 * any pre-existing sparse inode record in the tree. This allows sparse chunks
501 * to fill over time.
502 *
503 * This function supports two modes of handling preexisting records depending on
504 * the merge flag. If merge is true, the provided record is merged with the
505 * existing record and updated in place. The merged record is returned in nrec.
506 * If merge is false, an existing record is replaced with the provided record.
507 * If no preexisting record exists, the provided record is always inserted.
508 *
509 * It is considered corruption if a merge is requested and not possible. Given
510 * the sparse inode alignment constraints, this should never happen.
511 */
512 STATIC int
513 xfs_inobt_insert_sprec(
514 struct xfs_mount *mp,
515 struct xfs_trans *tp,
516 struct xfs_buf *agbp,
517 int btnum,
518 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
519 bool merge) /* merge or replace */
520 {
521 struct xfs_btree_cur *cur;
522 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
523 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
524 int error;
525 int i;
526 struct xfs_inobt_rec_incore rec;
527
528 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
529
530 /* the new record is pre-aligned so we know where to look */
531 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
532 if (error)
533 goto error;
534 /* if nothing there, insert a new record and return */
535 if (i == 0) {
536 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
537 nrec->ir_count, nrec->ir_freecount,
538 nrec->ir_free, &i);
539 if (error)
540 goto error;
541 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
542
543 goto out;
544 }
545
546 /*
547 * A record exists at this startino. Merge or replace the record
548 * depending on what we've been asked to do.
549 */
550 if (merge) {
551 error = xfs_inobt_get_rec(cur, &rec, &i);
552 if (error)
553 goto error;
554 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
555 XFS_WANT_CORRUPTED_GOTO(mp,
556 rec.ir_startino == nrec->ir_startino,
557 error);
558
559 /*
560 * This should never fail. If we have coexisting records that
561 * cannot merge, something is seriously wrong.
562 */
563 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
564 error);
565
566 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
567 rec.ir_holemask, nrec->ir_startino,
568 nrec->ir_holemask);
569
570 /* merge to nrec to output the updated record */
571 __xfs_inobt_rec_merge(nrec, &rec);
572
573 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
574 nrec->ir_holemask);
575
576 error = xfs_inobt_rec_check_count(mp, nrec);
577 if (error)
578 goto error;
579 }
580
581 error = xfs_inobt_update(cur, nrec);
582 if (error)
583 goto error;
584
585 out:
586 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
587 return 0;
588 error:
589 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
590 return error;
591 }
592
593 /*
594 * Allocate new inodes in the allocation group specified by agbp.
595 * Return 0 for success, else error code.
596 */
597 STATIC int /* error code or 0 */
598 xfs_ialloc_ag_alloc(
599 xfs_trans_t *tp, /* transaction pointer */
600 xfs_buf_t *agbp, /* alloc group buffer */
601 int *alloc)
602 {
603 xfs_agi_t *agi; /* allocation group header */
604 xfs_alloc_arg_t args; /* allocation argument structure */
605 xfs_agnumber_t agno;
606 int error;
607 xfs_agino_t newino; /* new first inode's number */
608 xfs_agino_t newlen; /* new number of inodes */
609 int isaligned = 0; /* inode allocation at stripe unit */
610 /* boundary */
611 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
612 struct xfs_inobt_rec_incore rec;
613 struct xfs_perag *pag;
614 int do_sparse = 0;
615
616 memset(&args, 0, sizeof(args));
617 args.tp = tp;
618 args.mp = tp->t_mountp;
619 args.fsbno = NULLFSBLOCK;
620 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
621
622 #ifdef DEBUG
623 /* randomly do sparse inode allocations */
624 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
625 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
626 do_sparse = prandom_u32() & 1;
627 #endif
628
629 /*
630 * Locking will ensure that we don't have two callers in here
631 * at one time.
632 */
633 newlen = args.mp->m_ialloc_inos;
634 if (args.mp->m_maxicount &&
635 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
636 args.mp->m_maxicount)
637 return -ENOSPC;
638 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
639 /*
640 * First try to allocate inodes contiguous with the last-allocated
641 * chunk of inodes. If the filesystem is striped, this will fill
642 * an entire stripe unit with inodes.
643 */
644 agi = XFS_BUF_TO_AGI(agbp);
645 newino = be32_to_cpu(agi->agi_newino);
646 agno = be32_to_cpu(agi->agi_seqno);
647 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
648 args.mp->m_ialloc_blks;
649 if (do_sparse)
650 goto sparse_alloc;
651 if (likely(newino != NULLAGINO &&
652 (args.agbno < be32_to_cpu(agi->agi_length)))) {
653 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
654 args.type = XFS_ALLOCTYPE_THIS_BNO;
655 args.prod = 1;
656
657 /*
658 * We need to take into account alignment here to ensure that
659 * we don't modify the free list if we fail to have an exact
660 * block. If we don't have an exact match, and every oher
661 * attempt allocation attempt fails, we'll end up cancelling
662 * a dirty transaction and shutting down.
663 *
664 * For an exact allocation, alignment must be 1,
665 * however we need to take cluster alignment into account when
666 * fixing up the freelist. Use the minalignslop field to
667 * indicate that extra blocks might be required for alignment,
668 * but not to use them in the actual exact allocation.
669 */
670 args.alignment = 1;
671 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
672
673 /* Allow space for the inode btree to split. */
674 args.minleft = args.mp->m_in_maxlevels - 1;
675 if ((error = xfs_alloc_vextent(&args)))
676 return error;
677
678 /*
679 * This request might have dirtied the transaction if the AG can
680 * satisfy the request, but the exact block was not available.
681 * If the allocation did fail, subsequent requests will relax
682 * the exact agbno requirement and increase the alignment
683 * instead. It is critical that the total size of the request
684 * (len + alignment + slop) does not increase from this point
685 * on, so reset minalignslop to ensure it is not included in
686 * subsequent requests.
687 */
688 args.minalignslop = 0;
689 }
690
691 if (unlikely(args.fsbno == NULLFSBLOCK)) {
692 /*
693 * Set the alignment for the allocation.
694 * If stripe alignment is turned on then align at stripe unit
695 * boundary.
696 * If the cluster size is smaller than a filesystem block
697 * then we're doing I/O for inodes in filesystem block size
698 * pieces, so don't need alignment anyway.
699 */
700 isaligned = 0;
701 if (args.mp->m_sinoalign) {
702 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
703 args.alignment = args.mp->m_dalign;
704 isaligned = 1;
705 } else
706 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
707 /*
708 * Need to figure out where to allocate the inode blocks.
709 * Ideally they should be spaced out through the a.g.
710 * For now, just allocate blocks up front.
711 */
712 args.agbno = be32_to_cpu(agi->agi_root);
713 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
714 /*
715 * Allocate a fixed-size extent of inodes.
716 */
717 args.type = XFS_ALLOCTYPE_NEAR_BNO;
718 args.prod = 1;
719 /*
720 * Allow space for the inode btree to split.
721 */
722 args.minleft = args.mp->m_in_maxlevels - 1;
723 if ((error = xfs_alloc_vextent(&args)))
724 return error;
725 }
726
727 /*
728 * If stripe alignment is turned on, then try again with cluster
729 * alignment.
730 */
731 if (isaligned && args.fsbno == NULLFSBLOCK) {
732 args.type = XFS_ALLOCTYPE_NEAR_BNO;
733 args.agbno = be32_to_cpu(agi->agi_root);
734 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
735 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
736 if ((error = xfs_alloc_vextent(&args)))
737 return error;
738 }
739
740 /*
741 * Finally, try a sparse allocation if the filesystem supports it and
742 * the sparse allocation length is smaller than a full chunk.
743 */
744 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
745 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
746 args.fsbno == NULLFSBLOCK) {
747 sparse_alloc:
748 args.type = XFS_ALLOCTYPE_NEAR_BNO;
749 args.agbno = be32_to_cpu(agi->agi_root);
750 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
751 args.alignment = args.mp->m_sb.sb_spino_align;
752 args.prod = 1;
753
754 args.minlen = args.mp->m_ialloc_min_blks;
755 args.maxlen = args.minlen;
756
757 /*
758 * The inode record will be aligned to full chunk size. We must
759 * prevent sparse allocation from AG boundaries that result in
760 * invalid inode records, such as records that start at agbno 0
761 * or extend beyond the AG.
762 *
763 * Set min agbno to the first aligned, non-zero agbno and max to
764 * the last aligned agbno that is at least one full chunk from
765 * the end of the AG.
766 */
767 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
768 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
769 args.mp->m_sb.sb_inoalignmt) -
770 args.mp->m_ialloc_blks;
771
772 error = xfs_alloc_vextent(&args);
773 if (error)
774 return error;
775
776 newlen = args.len << args.mp->m_sb.sb_inopblog;
777 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
778 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
779 }
780
781 if (args.fsbno == NULLFSBLOCK) {
782 *alloc = 0;
783 return 0;
784 }
785 ASSERT(args.len == args.minlen);
786
787 /*
788 * Stamp and write the inode buffers.
789 *
790 * Seed the new inode cluster with a random generation number. This
791 * prevents short-term reuse of generation numbers if a chunk is
792 * freed and then immediately reallocated. We use random numbers
793 * rather than a linear progression to prevent the next generation
794 * number from being easily guessable.
795 */
796 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
797 args.agbno, args.len, prandom_u32());
798
799 if (error)
800 return error;
801 /*
802 * Convert the results.
803 */
804 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
805
806 if (xfs_inobt_issparse(~allocmask)) {
807 /*
808 * We've allocated a sparse chunk. Align the startino and mask.
809 */
810 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
811
812 rec.ir_startino = newino;
813 rec.ir_holemask = ~allocmask;
814 rec.ir_count = newlen;
815 rec.ir_freecount = newlen;
816 rec.ir_free = XFS_INOBT_ALL_FREE;
817
818 /*
819 * Insert the sparse record into the inobt and allow for a merge
820 * if necessary. If a merge does occur, rec is updated to the
821 * merged record.
822 */
823 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
824 &rec, true);
825 if (error == -EFSCORRUPTED) {
826 xfs_alert(args.mp,
827 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
828 XFS_AGINO_TO_INO(args.mp, agno,
829 rec.ir_startino),
830 rec.ir_holemask, rec.ir_count);
831 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
832 }
833 if (error)
834 return error;
835
836 /*
837 * We can't merge the part we've just allocated as for the inobt
838 * due to finobt semantics. The original record may or may not
839 * exist independent of whether physical inodes exist in this
840 * sparse chunk.
841 *
842 * We must update the finobt record based on the inobt record.
843 * rec contains the fully merged and up to date inobt record
844 * from the previous call. Set merge false to replace any
845 * existing record with this one.
846 */
847 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
848 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
849 XFS_BTNUM_FINO, &rec,
850 false);
851 if (error)
852 return error;
853 }
854 } else {
855 /* full chunk - insert new records to both btrees */
856 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
857 XFS_BTNUM_INO);
858 if (error)
859 return error;
860
861 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
862 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
863 newlen, XFS_BTNUM_FINO);
864 if (error)
865 return error;
866 }
867 }
868
869 /*
870 * Update AGI counts and newino.
871 */
872 be32_add_cpu(&agi->agi_count, newlen);
873 be32_add_cpu(&agi->agi_freecount, newlen);
874 pag = xfs_perag_get(args.mp, agno);
875 pag->pagi_freecount += newlen;
876 xfs_perag_put(pag);
877 agi->agi_newino = cpu_to_be32(newino);
878
879 /*
880 * Log allocation group header fields
881 */
882 xfs_ialloc_log_agi(tp, agbp,
883 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
884 /*
885 * Modify/log superblock values for inode count and inode free count.
886 */
887 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
888 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
889 *alloc = 1;
890 return 0;
891 }
892
893 STATIC xfs_agnumber_t
894 xfs_ialloc_next_ag(
895 xfs_mount_t *mp)
896 {
897 xfs_agnumber_t agno;
898
899 spin_lock(&mp->m_agirotor_lock);
900 agno = mp->m_agirotor;
901 if (++mp->m_agirotor >= mp->m_maxagi)
902 mp->m_agirotor = 0;
903 spin_unlock(&mp->m_agirotor_lock);
904
905 return agno;
906 }
907
908 /*
909 * Select an allocation group to look for a free inode in, based on the parent
910 * inode and the mode. Return the allocation group buffer.
911 */
912 STATIC xfs_agnumber_t
913 xfs_ialloc_ag_select(
914 xfs_trans_t *tp, /* transaction pointer */
915 xfs_ino_t parent, /* parent directory inode number */
916 umode_t mode, /* bits set to indicate file type */
917 int okalloc) /* ok to allocate more space */
918 {
919 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
920 xfs_agnumber_t agno; /* current ag number */
921 int flags; /* alloc buffer locking flags */
922 xfs_extlen_t ineed; /* blocks needed for inode allocation */
923 xfs_extlen_t longest = 0; /* longest extent available */
924 xfs_mount_t *mp; /* mount point structure */
925 int needspace; /* file mode implies space allocated */
926 xfs_perag_t *pag; /* per allocation group data */
927 xfs_agnumber_t pagno; /* parent (starting) ag number */
928 int error;
929
930 /*
931 * Files of these types need at least one block if length > 0
932 * (and they won't fit in the inode, but that's hard to figure out).
933 */
934 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
935 mp = tp->t_mountp;
936 agcount = mp->m_maxagi;
937 if (S_ISDIR(mode))
938 pagno = xfs_ialloc_next_ag(mp);
939 else {
940 pagno = XFS_INO_TO_AGNO(mp, parent);
941 if (pagno >= agcount)
942 pagno = 0;
943 }
944
945 ASSERT(pagno < agcount);
946
947 /*
948 * Loop through allocation groups, looking for one with a little
949 * free space in it. Note we don't look for free inodes, exactly.
950 * Instead, we include whether there is a need to allocate inodes
951 * to mean that blocks must be allocated for them,
952 * if none are currently free.
953 */
954 agno = pagno;
955 flags = XFS_ALLOC_FLAG_TRYLOCK;
956 for (;;) {
957 pag = xfs_perag_get(mp, agno);
958 if (!pag->pagi_inodeok) {
959 xfs_ialloc_next_ag(mp);
960 goto nextag;
961 }
962
963 if (!pag->pagi_init) {
964 error = xfs_ialloc_pagi_init(mp, tp, agno);
965 if (error)
966 goto nextag;
967 }
968
969 if (pag->pagi_freecount) {
970 xfs_perag_put(pag);
971 return agno;
972 }
973
974 if (!okalloc)
975 goto nextag;
976
977 if (!pag->pagf_init) {
978 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
979 if (error)
980 goto nextag;
981 }
982
983 /*
984 * Check that there is enough free space for the file plus a
985 * chunk of inodes if we need to allocate some. If this is the
986 * first pass across the AGs, take into account the potential
987 * space needed for alignment of inode chunks when checking the
988 * longest contiguous free space in the AG - this prevents us
989 * from getting ENOSPC because we have free space larger than
990 * m_ialloc_blks but alignment constraints prevent us from using
991 * it.
992 *
993 * If we can't find an AG with space for full alignment slack to
994 * be taken into account, we must be near ENOSPC in all AGs.
995 * Hence we don't include alignment for the second pass and so
996 * if we fail allocation due to alignment issues then it is most
997 * likely a real ENOSPC condition.
998 */
999 ineed = mp->m_ialloc_min_blks;
1000 if (flags && ineed > 1)
1001 ineed += xfs_ialloc_cluster_alignment(mp);
1002 longest = pag->pagf_longest;
1003 if (!longest)
1004 longest = pag->pagf_flcount > 0;
1005
1006 if (pag->pagf_freeblks >= needspace + ineed &&
1007 longest >= ineed) {
1008 xfs_perag_put(pag);
1009 return agno;
1010 }
1011 nextag:
1012 xfs_perag_put(pag);
1013 /*
1014 * No point in iterating over the rest, if we're shutting
1015 * down.
1016 */
1017 if (XFS_FORCED_SHUTDOWN(mp))
1018 return NULLAGNUMBER;
1019 agno++;
1020 if (agno >= agcount)
1021 agno = 0;
1022 if (agno == pagno) {
1023 if (flags == 0)
1024 return NULLAGNUMBER;
1025 flags = 0;
1026 }
1027 }
1028 }
1029
1030 /*
1031 * Try to retrieve the next record to the left/right from the current one.
1032 */
1033 STATIC int
1034 xfs_ialloc_next_rec(
1035 struct xfs_btree_cur *cur,
1036 xfs_inobt_rec_incore_t *rec,
1037 int *done,
1038 int left)
1039 {
1040 int error;
1041 int i;
1042
1043 if (left)
1044 error = xfs_btree_decrement(cur, 0, &i);
1045 else
1046 error = xfs_btree_increment(cur, 0, &i);
1047
1048 if (error)
1049 return error;
1050 *done = !i;
1051 if (i) {
1052 error = xfs_inobt_get_rec(cur, rec, &i);
1053 if (error)
1054 return error;
1055 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1056 }
1057
1058 return 0;
1059 }
1060
1061 STATIC int
1062 xfs_ialloc_get_rec(
1063 struct xfs_btree_cur *cur,
1064 xfs_agino_t agino,
1065 xfs_inobt_rec_incore_t *rec,
1066 int *done)
1067 {
1068 int error;
1069 int i;
1070
1071 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1072 if (error)
1073 return error;
1074 *done = !i;
1075 if (i) {
1076 error = xfs_inobt_get_rec(cur, rec, &i);
1077 if (error)
1078 return error;
1079 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1080 }
1081
1082 return 0;
1083 }
1084
1085 /*
1086 * Return the offset of the first free inode in the record. If the inode chunk
1087 * is sparsely allocated, we convert the record holemask to inode granularity
1088 * and mask off the unallocated regions from the inode free mask.
1089 */
1090 STATIC int
1091 xfs_inobt_first_free_inode(
1092 struct xfs_inobt_rec_incore *rec)
1093 {
1094 xfs_inofree_t realfree;
1095
1096 /* if there are no holes, return the first available offset */
1097 if (!xfs_inobt_issparse(rec->ir_holemask))
1098 return xfs_lowbit64(rec->ir_free);
1099
1100 realfree = xfs_inobt_irec_to_allocmask(rec);
1101 realfree &= rec->ir_free;
1102
1103 return xfs_lowbit64(realfree);
1104 }
1105
1106 /*
1107 * Allocate an inode using the inobt-only algorithm.
1108 */
1109 STATIC int
1110 xfs_dialloc_ag_inobt(
1111 struct xfs_trans *tp,
1112 struct xfs_buf *agbp,
1113 xfs_ino_t parent,
1114 xfs_ino_t *inop)
1115 {
1116 struct xfs_mount *mp = tp->t_mountp;
1117 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1118 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1119 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1120 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1121 struct xfs_perag *pag;
1122 struct xfs_btree_cur *cur, *tcur;
1123 struct xfs_inobt_rec_incore rec, trec;
1124 xfs_ino_t ino;
1125 int error;
1126 int offset;
1127 int i, j;
1128 int searchdistance = 10;
1129
1130 pag = xfs_perag_get(mp, agno);
1131
1132 ASSERT(pag->pagi_init);
1133 ASSERT(pag->pagi_inodeok);
1134 ASSERT(pag->pagi_freecount > 0);
1135
1136 restart_pagno:
1137 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1138 /*
1139 * If pagino is 0 (this is the root inode allocation) use newino.
1140 * This must work because we've just allocated some.
1141 */
1142 if (!pagino)
1143 pagino = be32_to_cpu(agi->agi_newino);
1144
1145 error = xfs_check_agi_freecount(cur, agi);
1146 if (error)
1147 goto error0;
1148
1149 /*
1150 * If in the same AG as the parent, try to get near the parent.
1151 */
1152 if (pagno == agno) {
1153 int doneleft; /* done, to the left */
1154 int doneright; /* done, to the right */
1155
1156 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1157 if (error)
1158 goto error0;
1159 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1160
1161 error = xfs_inobt_get_rec(cur, &rec, &j);
1162 if (error)
1163 goto error0;
1164 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1165
1166 if (rec.ir_freecount > 0) {
1167 /*
1168 * Found a free inode in the same chunk
1169 * as the parent, done.
1170 */
1171 goto alloc_inode;
1172 }
1173
1174
1175 /*
1176 * In the same AG as parent, but parent's chunk is full.
1177 */
1178
1179 /* duplicate the cursor, search left & right simultaneously */
1180 error = xfs_btree_dup_cursor(cur, &tcur);
1181 if (error)
1182 goto error0;
1183
1184 /*
1185 * Skip to last blocks looked up if same parent inode.
1186 */
1187 if (pagino != NULLAGINO &&
1188 pag->pagl_pagino == pagino &&
1189 pag->pagl_leftrec != NULLAGINO &&
1190 pag->pagl_rightrec != NULLAGINO) {
1191 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1192 &trec, &doneleft);
1193 if (error)
1194 goto error1;
1195
1196 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1197 &rec, &doneright);
1198 if (error)
1199 goto error1;
1200 } else {
1201 /* search left with tcur, back up 1 record */
1202 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1203 if (error)
1204 goto error1;
1205
1206 /* search right with cur, go forward 1 record. */
1207 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1208 if (error)
1209 goto error1;
1210 }
1211
1212 /*
1213 * Loop until we find an inode chunk with a free inode.
1214 */
1215 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1216 int useleft; /* using left inode chunk this time */
1217
1218 /* figure out the closer block if both are valid. */
1219 if (!doneleft && !doneright) {
1220 useleft = pagino -
1221 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1222 rec.ir_startino - pagino;
1223 } else {
1224 useleft = !doneleft;
1225 }
1226
1227 /* free inodes to the left? */
1228 if (useleft && trec.ir_freecount) {
1229 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1230 cur = tcur;
1231
1232 pag->pagl_leftrec = trec.ir_startino;
1233 pag->pagl_rightrec = rec.ir_startino;
1234 pag->pagl_pagino = pagino;
1235 rec = trec;
1236 goto alloc_inode;
1237 }
1238
1239 /* free inodes to the right? */
1240 if (!useleft && rec.ir_freecount) {
1241 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242
1243 pag->pagl_leftrec = trec.ir_startino;
1244 pag->pagl_rightrec = rec.ir_startino;
1245 pag->pagl_pagino = pagino;
1246 goto alloc_inode;
1247 }
1248
1249 /* get next record to check */
1250 if (useleft) {
1251 error = xfs_ialloc_next_rec(tcur, &trec,
1252 &doneleft, 1);
1253 } else {
1254 error = xfs_ialloc_next_rec(cur, &rec,
1255 &doneright, 0);
1256 }
1257 if (error)
1258 goto error1;
1259 }
1260
1261 if (searchdistance <= 0) {
1262 /*
1263 * Not in range - save last search
1264 * location and allocate a new inode
1265 */
1266 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1267 pag->pagl_leftrec = trec.ir_startino;
1268 pag->pagl_rightrec = rec.ir_startino;
1269 pag->pagl_pagino = pagino;
1270
1271 } else {
1272 /*
1273 * We've reached the end of the btree. because
1274 * we are only searching a small chunk of the
1275 * btree each search, there is obviously free
1276 * inodes closer to the parent inode than we
1277 * are now. restart the search again.
1278 */
1279 pag->pagl_pagino = NULLAGINO;
1280 pag->pagl_leftrec = NULLAGINO;
1281 pag->pagl_rightrec = NULLAGINO;
1282 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1283 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1284 goto restart_pagno;
1285 }
1286 }
1287
1288 /*
1289 * In a different AG from the parent.
1290 * See if the most recently allocated block has any free.
1291 */
1292 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1293 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1294 XFS_LOOKUP_EQ, &i);
1295 if (error)
1296 goto error0;
1297
1298 if (i == 1) {
1299 error = xfs_inobt_get_rec(cur, &rec, &j);
1300 if (error)
1301 goto error0;
1302
1303 if (j == 1 && rec.ir_freecount > 0) {
1304 /*
1305 * The last chunk allocated in the group
1306 * still has a free inode.
1307 */
1308 goto alloc_inode;
1309 }
1310 }
1311 }
1312
1313 /*
1314 * None left in the last group, search the whole AG
1315 */
1316 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1317 if (error)
1318 goto error0;
1319 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1320
1321 for (;;) {
1322 error = xfs_inobt_get_rec(cur, &rec, &i);
1323 if (error)
1324 goto error0;
1325 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1326 if (rec.ir_freecount > 0)
1327 break;
1328 error = xfs_btree_increment(cur, 0, &i);
1329 if (error)
1330 goto error0;
1331 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1332 }
1333
1334 alloc_inode:
1335 offset = xfs_inobt_first_free_inode(&rec);
1336 ASSERT(offset >= 0);
1337 ASSERT(offset < XFS_INODES_PER_CHUNK);
1338 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1339 XFS_INODES_PER_CHUNK) == 0);
1340 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1341 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1342 rec.ir_freecount--;
1343 error = xfs_inobt_update(cur, &rec);
1344 if (error)
1345 goto error0;
1346 be32_add_cpu(&agi->agi_freecount, -1);
1347 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1348 pag->pagi_freecount--;
1349
1350 error = xfs_check_agi_freecount(cur, agi);
1351 if (error)
1352 goto error0;
1353
1354 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1355 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1356 xfs_perag_put(pag);
1357 *inop = ino;
1358 return 0;
1359 error1:
1360 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1361 error0:
1362 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1363 xfs_perag_put(pag);
1364 return error;
1365 }
1366
1367 /*
1368 * Use the free inode btree to allocate an inode based on distance from the
1369 * parent. Note that the provided cursor may be deleted and replaced.
1370 */
1371 STATIC int
1372 xfs_dialloc_ag_finobt_near(
1373 xfs_agino_t pagino,
1374 struct xfs_btree_cur **ocur,
1375 struct xfs_inobt_rec_incore *rec)
1376 {
1377 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1378 struct xfs_btree_cur *rcur; /* right search cursor */
1379 struct xfs_inobt_rec_incore rrec;
1380 int error;
1381 int i, j;
1382
1383 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1384 if (error)
1385 return error;
1386
1387 if (i == 1) {
1388 error = xfs_inobt_get_rec(lcur, rec, &i);
1389 if (error)
1390 return error;
1391 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1392
1393 /*
1394 * See if we've landed in the parent inode record. The finobt
1395 * only tracks chunks with at least one free inode, so record
1396 * existence is enough.
1397 */
1398 if (pagino >= rec->ir_startino &&
1399 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1400 return 0;
1401 }
1402
1403 error = xfs_btree_dup_cursor(lcur, &rcur);
1404 if (error)
1405 return error;
1406
1407 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1408 if (error)
1409 goto error_rcur;
1410 if (j == 1) {
1411 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1412 if (error)
1413 goto error_rcur;
1414 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1415 }
1416
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1418 if (i == 1 && j == 1) {
1419 /*
1420 * Both the left and right records are valid. Choose the closer
1421 * inode chunk to the target.
1422 */
1423 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1424 (rrec.ir_startino - pagino)) {
1425 *rec = rrec;
1426 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1427 *ocur = rcur;
1428 } else {
1429 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1430 }
1431 } else if (j == 1) {
1432 /* only the right record is valid */
1433 *rec = rrec;
1434 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1435 *ocur = rcur;
1436 } else if (i == 1) {
1437 /* only the left record is valid */
1438 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1439 }
1440
1441 return 0;
1442
1443 error_rcur:
1444 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1445 return error;
1446 }
1447
1448 /*
1449 * Use the free inode btree to find a free inode based on a newino hint. If
1450 * the hint is NULL, find the first free inode in the AG.
1451 */
1452 STATIC int
1453 xfs_dialloc_ag_finobt_newino(
1454 struct xfs_agi *agi,
1455 struct xfs_btree_cur *cur,
1456 struct xfs_inobt_rec_incore *rec)
1457 {
1458 int error;
1459 int i;
1460
1461 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1462 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1463 XFS_LOOKUP_EQ, &i);
1464 if (error)
1465 return error;
1466 if (i == 1) {
1467 error = xfs_inobt_get_rec(cur, rec, &i);
1468 if (error)
1469 return error;
1470 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1471 return 0;
1472 }
1473 }
1474
1475 /*
1476 * Find the first inode available in the AG.
1477 */
1478 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1479 if (error)
1480 return error;
1481 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1482
1483 error = xfs_inobt_get_rec(cur, rec, &i);
1484 if (error)
1485 return error;
1486 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * Update the inobt based on a modification made to the finobt. Also ensure that
1493 * the records from both trees are equivalent post-modification.
1494 */
1495 STATIC int
1496 xfs_dialloc_ag_update_inobt(
1497 struct xfs_btree_cur *cur, /* inobt cursor */
1498 struct xfs_inobt_rec_incore *frec, /* finobt record */
1499 int offset) /* inode offset */
1500 {
1501 struct xfs_inobt_rec_incore rec;
1502 int error;
1503 int i;
1504
1505 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1506 if (error)
1507 return error;
1508 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1509
1510 error = xfs_inobt_get_rec(cur, &rec, &i);
1511 if (error)
1512 return error;
1513 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1514 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1515 XFS_INODES_PER_CHUNK) == 0);
1516
1517 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1518 rec.ir_freecount--;
1519
1520 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1521 (rec.ir_freecount == frec->ir_freecount));
1522
1523 return xfs_inobt_update(cur, &rec);
1524 }
1525
1526 /*
1527 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1528 * back to the inobt search algorithm.
1529 *
1530 * The caller selected an AG for us, and made sure that free inodes are
1531 * available.
1532 */
1533 STATIC int
1534 xfs_dialloc_ag(
1535 struct xfs_trans *tp,
1536 struct xfs_buf *agbp,
1537 xfs_ino_t parent,
1538 xfs_ino_t *inop)
1539 {
1540 struct xfs_mount *mp = tp->t_mountp;
1541 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1542 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1543 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1544 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1545 struct xfs_perag *pag;
1546 struct xfs_btree_cur *cur; /* finobt cursor */
1547 struct xfs_btree_cur *icur; /* inobt cursor */
1548 struct xfs_inobt_rec_incore rec;
1549 xfs_ino_t ino;
1550 int error;
1551 int offset;
1552 int i;
1553
1554 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1555 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1556
1557 pag = xfs_perag_get(mp, agno);
1558
1559 /*
1560 * If pagino is 0 (this is the root inode allocation) use newino.
1561 * This must work because we've just allocated some.
1562 */
1563 if (!pagino)
1564 pagino = be32_to_cpu(agi->agi_newino);
1565
1566 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1567
1568 error = xfs_check_agi_freecount(cur, agi);
1569 if (error)
1570 goto error_cur;
1571
1572 /*
1573 * The search algorithm depends on whether we're in the same AG as the
1574 * parent. If so, find the closest available inode to the parent. If
1575 * not, consider the agi hint or find the first free inode in the AG.
1576 */
1577 if (agno == pagno)
1578 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1579 else
1580 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1581 if (error)
1582 goto error_cur;
1583
1584 offset = xfs_inobt_first_free_inode(&rec);
1585 ASSERT(offset >= 0);
1586 ASSERT(offset < XFS_INODES_PER_CHUNK);
1587 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1588 XFS_INODES_PER_CHUNK) == 0);
1589 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1590
1591 /*
1592 * Modify or remove the finobt record.
1593 */
1594 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1595 rec.ir_freecount--;
1596 if (rec.ir_freecount)
1597 error = xfs_inobt_update(cur, &rec);
1598 else
1599 error = xfs_btree_delete(cur, &i);
1600 if (error)
1601 goto error_cur;
1602
1603 /*
1604 * The finobt has now been updated appropriately. We haven't updated the
1605 * agi and superblock yet, so we can create an inobt cursor and validate
1606 * the original freecount. If all is well, make the equivalent update to
1607 * the inobt using the finobt record and offset information.
1608 */
1609 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1610
1611 error = xfs_check_agi_freecount(icur, agi);
1612 if (error)
1613 goto error_icur;
1614
1615 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1616 if (error)
1617 goto error_icur;
1618
1619 /*
1620 * Both trees have now been updated. We must update the perag and
1621 * superblock before we can check the freecount for each btree.
1622 */
1623 be32_add_cpu(&agi->agi_freecount, -1);
1624 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1625 pag->pagi_freecount--;
1626
1627 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1628
1629 error = xfs_check_agi_freecount(icur, agi);
1630 if (error)
1631 goto error_icur;
1632 error = xfs_check_agi_freecount(cur, agi);
1633 if (error)
1634 goto error_icur;
1635
1636 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1637 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1638 xfs_perag_put(pag);
1639 *inop = ino;
1640 return 0;
1641
1642 error_icur:
1643 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1644 error_cur:
1645 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1646 xfs_perag_put(pag);
1647 return error;
1648 }
1649
1650 /*
1651 * Allocate an inode on disk.
1652 *
1653 * Mode is used to tell whether the new inode will need space, and whether it
1654 * is a directory.
1655 *
1656 * This function is designed to be called twice if it has to do an allocation
1657 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1658 * If an inode is available without having to performn an allocation, an inode
1659 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1660 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1661 * The caller should then commit the current transaction, allocate a
1662 * new transaction, and call xfs_dialloc() again, passing in the previous value
1663 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1664 * buffer is locked across the two calls, the second call is guaranteed to have
1665 * a free inode available.
1666 *
1667 * Once we successfully pick an inode its number is returned and the on-disk
1668 * data structures are updated. The inode itself is not read in, since doing so
1669 * would break ordering constraints with xfs_reclaim.
1670 */
1671 int
1672 xfs_dialloc(
1673 struct xfs_trans *tp,
1674 xfs_ino_t parent,
1675 umode_t mode,
1676 int okalloc,
1677 struct xfs_buf **IO_agbp,
1678 xfs_ino_t *inop)
1679 {
1680 struct xfs_mount *mp = tp->t_mountp;
1681 struct xfs_buf *agbp;
1682 xfs_agnumber_t agno;
1683 int error;
1684 int ialloced;
1685 int noroom = 0;
1686 xfs_agnumber_t start_agno;
1687 struct xfs_perag *pag;
1688
1689 if (*IO_agbp) {
1690 /*
1691 * If the caller passes in a pointer to the AGI buffer,
1692 * continue where we left off before. In this case, we
1693 * know that the allocation group has free inodes.
1694 */
1695 agbp = *IO_agbp;
1696 goto out_alloc;
1697 }
1698
1699 /*
1700 * We do not have an agbp, so select an initial allocation
1701 * group for inode allocation.
1702 */
1703 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1704 if (start_agno == NULLAGNUMBER) {
1705 *inop = NULLFSINO;
1706 return 0;
1707 }
1708
1709 /*
1710 * If we have already hit the ceiling of inode blocks then clear
1711 * okalloc so we scan all available agi structures for a free
1712 * inode.
1713 *
1714 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1715 * which will sacrifice the preciseness but improve the performance.
1716 */
1717 if (mp->m_maxicount &&
1718 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1719 > mp->m_maxicount) {
1720 noroom = 1;
1721 okalloc = 0;
1722 }
1723
1724 /*
1725 * Loop until we find an allocation group that either has free inodes
1726 * or in which we can allocate some inodes. Iterate through the
1727 * allocation groups upward, wrapping at the end.
1728 */
1729 agno = start_agno;
1730 for (;;) {
1731 pag = xfs_perag_get(mp, agno);
1732 if (!pag->pagi_inodeok) {
1733 xfs_ialloc_next_ag(mp);
1734 goto nextag;
1735 }
1736
1737 if (!pag->pagi_init) {
1738 error = xfs_ialloc_pagi_init(mp, tp, agno);
1739 if (error)
1740 goto out_error;
1741 }
1742
1743 /*
1744 * Do a first racy fast path check if this AG is usable.
1745 */
1746 if (!pag->pagi_freecount && !okalloc)
1747 goto nextag;
1748
1749 /*
1750 * Then read in the AGI buffer and recheck with the AGI buffer
1751 * lock held.
1752 */
1753 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1754 if (error)
1755 goto out_error;
1756
1757 if (pag->pagi_freecount) {
1758 xfs_perag_put(pag);
1759 goto out_alloc;
1760 }
1761
1762 if (!okalloc)
1763 goto nextag_relse_buffer;
1764
1765
1766 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1767 if (error) {
1768 xfs_trans_brelse(tp, agbp);
1769
1770 if (error != -ENOSPC)
1771 goto out_error;
1772
1773 xfs_perag_put(pag);
1774 *inop = NULLFSINO;
1775 return 0;
1776 }
1777
1778 if (ialloced) {
1779 /*
1780 * We successfully allocated some inodes, return
1781 * the current context to the caller so that it
1782 * can commit the current transaction and call
1783 * us again where we left off.
1784 */
1785 ASSERT(pag->pagi_freecount > 0);
1786 xfs_perag_put(pag);
1787
1788 *IO_agbp = agbp;
1789 *inop = NULLFSINO;
1790 return 0;
1791 }
1792
1793 nextag_relse_buffer:
1794 xfs_trans_brelse(tp, agbp);
1795 nextag:
1796 xfs_perag_put(pag);
1797 if (++agno == mp->m_sb.sb_agcount)
1798 agno = 0;
1799 if (agno == start_agno) {
1800 *inop = NULLFSINO;
1801 return noroom ? -ENOSPC : 0;
1802 }
1803 }
1804
1805 out_alloc:
1806 *IO_agbp = NULL;
1807 return xfs_dialloc_ag(tp, agbp, parent, inop);
1808 out_error:
1809 xfs_perag_put(pag);
1810 return error;
1811 }
1812
1813 /*
1814 * Free the blocks of an inode chunk. We must consider that the inode chunk
1815 * might be sparse and only free the regions that are allocated as part of the
1816 * chunk.
1817 */
1818 STATIC void
1819 xfs_difree_inode_chunk(
1820 struct xfs_mount *mp,
1821 xfs_agnumber_t agno,
1822 struct xfs_inobt_rec_incore *rec,
1823 struct xfs_defer_ops *dfops)
1824 {
1825 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1826 int startidx, endidx;
1827 int nextbit;
1828 xfs_agblock_t agbno;
1829 int contigblk;
1830 struct xfs_owner_info oinfo;
1831 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1832 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1833
1834 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1835 /* not sparse, calculate extent info directly */
1836 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1837 mp->m_ialloc_blks, &oinfo);
1838 return;
1839 }
1840
1841 /* holemask is only 16-bits (fits in an unsigned long) */
1842 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1843 holemask[0] = rec->ir_holemask;
1844
1845 /*
1846 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1847 * holemask and convert the start/end index of each range to an extent.
1848 * We start with the start and end index both pointing at the first 0 in
1849 * the mask.
1850 */
1851 startidx = endidx = find_first_zero_bit(holemask,
1852 XFS_INOBT_HOLEMASK_BITS);
1853 nextbit = startidx + 1;
1854 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1855 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1856 nextbit);
1857 /*
1858 * If the next zero bit is contiguous, update the end index of
1859 * the current range and continue.
1860 */
1861 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1862 nextbit == endidx + 1) {
1863 endidx = nextbit;
1864 goto next;
1865 }
1866
1867 /*
1868 * nextbit is not contiguous with the current end index. Convert
1869 * the current start/end to an extent and add it to the free
1870 * list.
1871 */
1872 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1873 mp->m_sb.sb_inopblock;
1874 contigblk = ((endidx - startidx + 1) *
1875 XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877
1878 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1879 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1880 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1881 contigblk, &oinfo);
1882
1883 /* reset range to current bit and carry on... */
1884 startidx = endidx = nextbit;
1885
1886 next:
1887 nextbit++;
1888 }
1889 }
1890
1891 STATIC int
1892 xfs_difree_inobt(
1893 struct xfs_mount *mp,
1894 struct xfs_trans *tp,
1895 struct xfs_buf *agbp,
1896 xfs_agino_t agino,
1897 struct xfs_defer_ops *dfops,
1898 struct xfs_icluster *xic,
1899 struct xfs_inobt_rec_incore *orec)
1900 {
1901 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1902 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1903 struct xfs_perag *pag;
1904 struct xfs_btree_cur *cur;
1905 struct xfs_inobt_rec_incore rec;
1906 int ilen;
1907 int error;
1908 int i;
1909 int off;
1910
1911 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1912 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1913
1914 /*
1915 * Initialize the cursor.
1916 */
1917 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1918
1919 error = xfs_check_agi_freecount(cur, agi);
1920 if (error)
1921 goto error0;
1922
1923 /*
1924 * Look for the entry describing this inode.
1925 */
1926 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1927 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1928 __func__, error);
1929 goto error0;
1930 }
1931 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1932 error = xfs_inobt_get_rec(cur, &rec, &i);
1933 if (error) {
1934 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1935 __func__, error);
1936 goto error0;
1937 }
1938 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1939 /*
1940 * Get the offset in the inode chunk.
1941 */
1942 off = agino - rec.ir_startino;
1943 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1944 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1945 /*
1946 * Mark the inode free & increment the count.
1947 */
1948 rec.ir_free |= XFS_INOBT_MASK(off);
1949 rec.ir_freecount++;
1950
1951 /*
1952 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 * remove the chunk if the block size is large enough for multiple inode
1954 * chunks (that might not be free).
1955 */
1956 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1957 rec.ir_free == XFS_INOBT_ALL_FREE &&
1958 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1959 xic->deleted = true;
1960 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1961 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1962
1963 /*
1964 * Remove the inode cluster from the AGI B+Tree, adjust the
1965 * AGI and Superblock inode counts, and mark the disk space
1966 * to be freed when the transaction is committed.
1967 */
1968 ilen = rec.ir_freecount;
1969 be32_add_cpu(&agi->agi_count, -ilen);
1970 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1971 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1972 pag = xfs_perag_get(mp, agno);
1973 pag->pagi_freecount -= ilen - 1;
1974 xfs_perag_put(pag);
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977
1978 if ((error = xfs_btree_delete(cur, &i))) {
1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980 __func__, error);
1981 goto error0;
1982 }
1983
1984 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1985 } else {
1986 xic->deleted = false;
1987
1988 error = xfs_inobt_update(cur, &rec);
1989 if (error) {
1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991 __func__, error);
1992 goto error0;
1993 }
1994
1995 /*
1996 * Change the inode free counts and log the ag/sb changes.
1997 */
1998 be32_add_cpu(&agi->agi_freecount, 1);
1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000 pag = xfs_perag_get(mp, agno);
2001 pag->pagi_freecount++;
2002 xfs_perag_put(pag);
2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 }
2005
2006 error = xfs_check_agi_freecount(cur, agi);
2007 if (error)
2008 goto error0;
2009
2010 *orec = rec;
2011 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2012 return 0;
2013
2014 error0:
2015 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2016 return error;
2017 }
2018
2019 /*
2020 * Free an inode in the free inode btree.
2021 */
2022 STATIC int
2023 xfs_difree_finobt(
2024 struct xfs_mount *mp,
2025 struct xfs_trans *tp,
2026 struct xfs_buf *agbp,
2027 xfs_agino_t agino,
2028 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2029 {
2030 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2031 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2032 struct xfs_btree_cur *cur;
2033 struct xfs_inobt_rec_incore rec;
2034 int offset = agino - ibtrec->ir_startino;
2035 int error;
2036 int i;
2037
2038 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2039
2040 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2041 if (error)
2042 goto error;
2043 if (i == 0) {
2044 /*
2045 * If the record does not exist in the finobt, we must have just
2046 * freed an inode in a previously fully allocated chunk. If not,
2047 * something is out of sync.
2048 */
2049 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2050
2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052 ibtrec->ir_count,
2053 ibtrec->ir_freecount,
2054 ibtrec->ir_free, &i);
2055 if (error)
2056 goto error;
2057 ASSERT(i == 1);
2058
2059 goto out;
2060 }
2061
2062 /*
2063 * Read and update the existing record. We could just copy the ibtrec
2064 * across here, but that would defeat the purpose of having redundant
2065 * metadata. By making the modifications independently, we can catch
2066 * corruptions that we wouldn't see if we just copied from one record
2067 * to another.
2068 */
2069 error = xfs_inobt_get_rec(cur, &rec, &i);
2070 if (error)
2071 goto error;
2072 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2073
2074 rec.ir_free |= XFS_INOBT_MASK(offset);
2075 rec.ir_freecount++;
2076
2077 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2078 (rec.ir_freecount == ibtrec->ir_freecount),
2079 error);
2080
2081 /*
2082 * The content of inobt records should always match between the inobt
2083 * and finobt. The lifecycle of records in the finobt is different from
2084 * the inobt in that the finobt only tracks records with at least one
2085 * free inode. Hence, if all of the inodes are free and we aren't
2086 * keeping inode chunks permanently on disk, remove the record.
2087 * Otherwise, update the record with the new information.
2088 *
2089 * Note that we currently can't free chunks when the block size is large
2090 * enough for multiple chunks. Leave the finobt record to remain in sync
2091 * with the inobt.
2092 */
2093 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2094 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2095 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2096 error = xfs_btree_delete(cur, &i);
2097 if (error)
2098 goto error;
2099 ASSERT(i == 1);
2100 } else {
2101 error = xfs_inobt_update(cur, &rec);
2102 if (error)
2103 goto error;
2104 }
2105
2106 out:
2107 error = xfs_check_agi_freecount(cur, agi);
2108 if (error)
2109 goto error;
2110
2111 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2112 return 0;
2113
2114 error:
2115 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2116 return error;
2117 }
2118
2119 /*
2120 * Free disk inode. Carefully avoids touching the incore inode, all
2121 * manipulations incore are the caller's responsibility.
2122 * The on-disk inode is not changed by this operation, only the
2123 * btree (free inode mask) is changed.
2124 */
2125 int
2126 xfs_difree(
2127 struct xfs_trans *tp, /* transaction pointer */
2128 xfs_ino_t inode, /* inode to be freed */
2129 struct xfs_defer_ops *dfops, /* extents to free */
2130 struct xfs_icluster *xic) /* cluster info if deleted */
2131 {
2132 /* REFERENCED */
2133 xfs_agblock_t agbno; /* block number containing inode */
2134 struct xfs_buf *agbp; /* buffer for allocation group header */
2135 xfs_agino_t agino; /* allocation group inode number */
2136 xfs_agnumber_t agno; /* allocation group number */
2137 int error; /* error return value */
2138 struct xfs_mount *mp; /* mount structure for filesystem */
2139 struct xfs_inobt_rec_incore rec;/* btree record */
2140
2141 mp = tp->t_mountp;
2142
2143 /*
2144 * Break up inode number into its components.
2145 */
2146 agno = XFS_INO_TO_AGNO(mp, inode);
2147 if (agno >= mp->m_sb.sb_agcount) {
2148 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2149 __func__, agno, mp->m_sb.sb_agcount);
2150 ASSERT(0);
2151 return -EINVAL;
2152 }
2153 agino = XFS_INO_TO_AGINO(mp, inode);
2154 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2155 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2156 __func__, (unsigned long long)inode,
2157 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2158 ASSERT(0);
2159 return -EINVAL;
2160 }
2161 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2162 if (agbno >= mp->m_sb.sb_agblocks) {
2163 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2164 __func__, agbno, mp->m_sb.sb_agblocks);
2165 ASSERT(0);
2166 return -EINVAL;
2167 }
2168 /*
2169 * Get the allocation group header.
2170 */
2171 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2172 if (error) {
2173 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2174 __func__, error);
2175 return error;
2176 }
2177
2178 /*
2179 * Fix up the inode allocation btree.
2180 */
2181 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2182 if (error)
2183 goto error0;
2184
2185 /*
2186 * Fix up the free inode btree.
2187 */
2188 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2189 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2190 if (error)
2191 goto error0;
2192 }
2193
2194 return 0;
2195
2196 error0:
2197 return error;
2198 }
2199
2200 STATIC int
2201 xfs_imap_lookup(
2202 struct xfs_mount *mp,
2203 struct xfs_trans *tp,
2204 xfs_agnumber_t agno,
2205 xfs_agino_t agino,
2206 xfs_agblock_t agbno,
2207 xfs_agblock_t *chunk_agbno,
2208 xfs_agblock_t *offset_agbno,
2209 int flags)
2210 {
2211 struct xfs_inobt_rec_incore rec;
2212 struct xfs_btree_cur *cur;
2213 struct xfs_buf *agbp;
2214 int error;
2215 int i;
2216
2217 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2218 if (error) {
2219 xfs_alert(mp,
2220 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2221 __func__, error, agno);
2222 return error;
2223 }
2224
2225 /*
2226 * Lookup the inode record for the given agino. If the record cannot be
2227 * found, then it's an invalid inode number and we should abort. Once
2228 * we have a record, we need to ensure it contains the inode number
2229 * we are looking up.
2230 */
2231 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2232 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2233 if (!error) {
2234 if (i)
2235 error = xfs_inobt_get_rec(cur, &rec, &i);
2236 if (!error && i == 0)
2237 error = -EINVAL;
2238 }
2239
2240 xfs_trans_brelse(tp, agbp);
2241 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2242 if (error)
2243 return error;
2244
2245 /* check that the returned record contains the required inode */
2246 if (rec.ir_startino > agino ||
2247 rec.ir_startino + mp->m_ialloc_inos <= agino)
2248 return -EINVAL;
2249
2250 /* for untrusted inodes check it is allocated first */
2251 if ((flags & XFS_IGET_UNTRUSTED) &&
2252 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2253 return -EINVAL;
2254
2255 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2256 *offset_agbno = agbno - *chunk_agbno;
2257 return 0;
2258 }
2259
2260 /*
2261 * Return the location of the inode in imap, for mapping it into a buffer.
2262 */
2263 int
2264 xfs_imap(
2265 xfs_mount_t *mp, /* file system mount structure */
2266 xfs_trans_t *tp, /* transaction pointer */
2267 xfs_ino_t ino, /* inode to locate */
2268 struct xfs_imap *imap, /* location map structure */
2269 uint flags) /* flags for inode btree lookup */
2270 {
2271 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2272 xfs_agino_t agino; /* inode number within alloc group */
2273 xfs_agnumber_t agno; /* allocation group number */
2274 int blks_per_cluster; /* num blocks per inode cluster */
2275 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2276 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2277 int error; /* error code */
2278 int offset; /* index of inode in its buffer */
2279 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2280
2281 ASSERT(ino != NULLFSINO);
2282
2283 /*
2284 * Split up the inode number into its parts.
2285 */
2286 agno = XFS_INO_TO_AGNO(mp, ino);
2287 agino = XFS_INO_TO_AGINO(mp, ino);
2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2290 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2291 #ifdef DEBUG
2292 /*
2293 * Don't output diagnostic information for untrusted inodes
2294 * as they can be invalid without implying corruption.
2295 */
2296 if (flags & XFS_IGET_UNTRUSTED)
2297 return -EINVAL;
2298 if (agno >= mp->m_sb.sb_agcount) {
2299 xfs_alert(mp,
2300 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2301 __func__, agno, mp->m_sb.sb_agcount);
2302 }
2303 if (agbno >= mp->m_sb.sb_agblocks) {
2304 xfs_alert(mp,
2305 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2306 __func__, (unsigned long long)agbno,
2307 (unsigned long)mp->m_sb.sb_agblocks);
2308 }
2309 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2310 xfs_alert(mp,
2311 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2312 __func__, ino,
2313 XFS_AGINO_TO_INO(mp, agno, agino));
2314 }
2315 xfs_stack_trace();
2316 #endif /* DEBUG */
2317 return -EINVAL;
2318 }
2319
2320 blks_per_cluster = xfs_icluster_size_fsb(mp);
2321
2322 /*
2323 * For bulkstat and handle lookups, we have an untrusted inode number
2324 * that we have to verify is valid. We cannot do this just by reading
2325 * the inode buffer as it may have been unlinked and removed leaving
2326 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 * in all cases where an untrusted inode number is passed.
2328 */
2329 if (flags & XFS_IGET_UNTRUSTED) {
2330 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2331 &chunk_agbno, &offset_agbno, flags);
2332 if (error)
2333 return error;
2334 goto out_map;
2335 }
2336
2337 /*
2338 * If the inode cluster size is the same as the blocksize or
2339 * smaller we get to the buffer by simple arithmetics.
2340 */
2341 if (blks_per_cluster == 1) {
2342 offset = XFS_INO_TO_OFFSET(mp, ino);
2343 ASSERT(offset < mp->m_sb.sb_inopblock);
2344
2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2346 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347 imap->im_boffset = (unsigned short)(offset <<
2348 mp->m_sb.sb_inodelog);
2349 return 0;
2350 }
2351
2352 /*
2353 * If the inode chunks are aligned then use simple maths to
2354 * find the location. Otherwise we have to do a btree
2355 * lookup to find the location.
2356 */
2357 if (mp->m_inoalign_mask) {
2358 offset_agbno = agbno & mp->m_inoalign_mask;
2359 chunk_agbno = agbno - offset_agbno;
2360 } else {
2361 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2362 &chunk_agbno, &offset_agbno, flags);
2363 if (error)
2364 return error;
2365 }
2366
2367 out_map:
2368 ASSERT(agbno >= chunk_agbno);
2369 cluster_agbno = chunk_agbno +
2370 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2371 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2372 XFS_INO_TO_OFFSET(mp, ino);
2373
2374 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2375 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2376 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2377
2378 /*
2379 * If the inode number maps to a block outside the bounds
2380 * of the file system then return NULL rather than calling
2381 * read_buf and panicing when we get an error from the
2382 * driver.
2383 */
2384 if ((imap->im_blkno + imap->im_len) >
2385 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2386 xfs_alert(mp,
2387 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2388 __func__, (unsigned long long) imap->im_blkno,
2389 (unsigned long long) imap->im_len,
2390 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2391 return -EINVAL;
2392 }
2393 return 0;
2394 }
2395
2396 /*
2397 * Compute and fill in value of m_in_maxlevels.
2398 */
2399 void
2400 xfs_ialloc_compute_maxlevels(
2401 xfs_mount_t *mp) /* file system mount structure */
2402 {
2403 uint inodes;
2404
2405 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2406 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2407 inodes);
2408 }
2409
2410 /*
2411 * Log specified fields for the ag hdr (inode section). The growth of the agi
2412 * structure over time requires that we interpret the buffer as two logical
2413 * regions delineated by the end of the unlinked list. This is due to the size
2414 * of the hash table and its location in the middle of the agi.
2415 *
2416 * For example, a request to log a field before agi_unlinked and a field after
2417 * agi_unlinked could cause us to log the entire hash table and use an excessive
2418 * amount of log space. To avoid this behavior, log the region up through
2419 * agi_unlinked in one call and the region after agi_unlinked through the end of
2420 * the structure in another.
2421 */
2422 void
2423 xfs_ialloc_log_agi(
2424 xfs_trans_t *tp, /* transaction pointer */
2425 xfs_buf_t *bp, /* allocation group header buffer */
2426 int fields) /* bitmask of fields to log */
2427 {
2428 int first; /* first byte number */
2429 int last; /* last byte number */
2430 static const short offsets[] = { /* field starting offsets */
2431 /* keep in sync with bit definitions */
2432 offsetof(xfs_agi_t, agi_magicnum),
2433 offsetof(xfs_agi_t, agi_versionnum),
2434 offsetof(xfs_agi_t, agi_seqno),
2435 offsetof(xfs_agi_t, agi_length),
2436 offsetof(xfs_agi_t, agi_count),
2437 offsetof(xfs_agi_t, agi_root),
2438 offsetof(xfs_agi_t, agi_level),
2439 offsetof(xfs_agi_t, agi_freecount),
2440 offsetof(xfs_agi_t, agi_newino),
2441 offsetof(xfs_agi_t, agi_dirino),
2442 offsetof(xfs_agi_t, agi_unlinked),
2443 offsetof(xfs_agi_t, agi_free_root),
2444 offsetof(xfs_agi_t, agi_free_level),
2445 sizeof(xfs_agi_t)
2446 };
2447 #ifdef DEBUG
2448 xfs_agi_t *agi; /* allocation group header */
2449
2450 agi = XFS_BUF_TO_AGI(bp);
2451 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2452 #endif
2453
2454 /*
2455 * Compute byte offsets for the first and last fields in the first
2456 * region and log the agi buffer. This only logs up through
2457 * agi_unlinked.
2458 */
2459 if (fields & XFS_AGI_ALL_BITS_R1) {
2460 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2461 &first, &last);
2462 xfs_trans_log_buf(tp, bp, first, last);
2463 }
2464
2465 /*
2466 * Mask off the bits in the first region and calculate the first and
2467 * last field offsets for any bits in the second region.
2468 */
2469 fields &= ~XFS_AGI_ALL_BITS_R1;
2470 if (fields) {
2471 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2472 &first, &last);
2473 xfs_trans_log_buf(tp, bp, first, last);
2474 }
2475 }
2476
2477 #ifdef DEBUG
2478 STATIC void
2479 xfs_check_agi_unlinked(
2480 struct xfs_agi *agi)
2481 {
2482 int i;
2483
2484 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2485 ASSERT(agi->agi_unlinked[i]);
2486 }
2487 #else
2488 #define xfs_check_agi_unlinked(agi)
2489 #endif
2490
2491 static bool
2492 xfs_agi_verify(
2493 struct xfs_buf *bp)
2494 {
2495 struct xfs_mount *mp = bp->b_target->bt_mount;
2496 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2497
2498 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2499 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2500 return false;
2501 if (!xfs_log_check_lsn(mp,
2502 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2503 return false;
2504 }
2505
2506 /*
2507 * Validate the magic number of the agi block.
2508 */
2509 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2510 return false;
2511 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2512 return false;
2513
2514 if (be32_to_cpu(agi->agi_level) < 1 ||
2515 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2516 return false;
2517
2518 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2519 (be32_to_cpu(agi->agi_free_level) < 1 ||
2520 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2521 return false;
2522
2523 /*
2524 * during growfs operations, the perag is not fully initialised,
2525 * so we can't use it for any useful checking. growfs ensures we can't
2526 * use it by using uncached buffers that don't have the perag attached
2527 * so we can detect and avoid this problem.
2528 */
2529 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2530 return false;
2531
2532 xfs_check_agi_unlinked(agi);
2533 return true;
2534 }
2535
2536 static void
2537 xfs_agi_read_verify(
2538 struct xfs_buf *bp)
2539 {
2540 struct xfs_mount *mp = bp->b_target->bt_mount;
2541
2542 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2543 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2544 xfs_buf_ioerror(bp, -EFSBADCRC);
2545 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2546 XFS_ERRTAG_IALLOC_READ_AGI))
2547 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548
2549 if (bp->b_error)
2550 xfs_verifier_error(bp);
2551 }
2552
2553 static void
2554 xfs_agi_write_verify(
2555 struct xfs_buf *bp)
2556 {
2557 struct xfs_mount *mp = bp->b_target->bt_mount;
2558 struct xfs_buf_log_item *bip = bp->b_fspriv;
2559
2560 if (!xfs_agi_verify(bp)) {
2561 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 xfs_verifier_error(bp);
2563 return;
2564 }
2565
2566 if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 return;
2568
2569 if (bip)
2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572 }
2573
2574 const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 .name = "xfs_agi",
2576 .verify_read = xfs_agi_read_verify,
2577 .verify_write = xfs_agi_write_verify,
2578 };
2579
2580 /*
2581 * Read in the allocation group header (inode allocation section)
2582 */
2583 int
2584 xfs_read_agi(
2585 struct xfs_mount *mp, /* file system mount structure */
2586 struct xfs_trans *tp, /* transaction pointer */
2587 xfs_agnumber_t agno, /* allocation group number */
2588 struct xfs_buf **bpp) /* allocation group hdr buf */
2589 {
2590 int error;
2591
2592 trace_xfs_read_agi(mp, agno);
2593
2594 ASSERT(agno != NULLAGNUMBER);
2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598 if (error)
2599 return error;
2600 if (tp)
2601 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2602
2603 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2604 return 0;
2605 }
2606
2607 int
2608 xfs_ialloc_read_agi(
2609 struct xfs_mount *mp, /* file system mount structure */
2610 struct xfs_trans *tp, /* transaction pointer */
2611 xfs_agnumber_t agno, /* allocation group number */
2612 struct xfs_buf **bpp) /* allocation group hdr buf */
2613 {
2614 struct xfs_agi *agi; /* allocation group header */
2615 struct xfs_perag *pag; /* per allocation group data */
2616 int error;
2617
2618 trace_xfs_ialloc_read_agi(mp, agno);
2619
2620 error = xfs_read_agi(mp, tp, agno, bpp);
2621 if (error)
2622 return error;
2623
2624 agi = XFS_BUF_TO_AGI(*bpp);
2625 pag = xfs_perag_get(mp, agno);
2626 if (!pag->pagi_init) {
2627 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2628 pag->pagi_count = be32_to_cpu(agi->agi_count);
2629 pag->pagi_init = 1;
2630 }
2631
2632 /*
2633 * It's possible for these to be out of sync if
2634 * we are in the middle of a forced shutdown.
2635 */
2636 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2637 XFS_FORCED_SHUTDOWN(mp));
2638 xfs_perag_put(pag);
2639 return 0;
2640 }
2641
2642 /*
2643 * Read in the agi to initialise the per-ag data in the mount structure
2644 */
2645 int
2646 xfs_ialloc_pagi_init(
2647 xfs_mount_t *mp, /* file system mount structure */
2648 xfs_trans_t *tp, /* transaction pointer */
2649 xfs_agnumber_t agno) /* allocation group number */
2650 {
2651 xfs_buf_t *bp = NULL;
2652 int error;
2653
2654 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2655 if (error)
2656 return error;
2657 if (bp)
2658 xfs_trans_brelse(tp, bp);
2659 return 0;
2660 }
2661
2662 /* Calculate the first and last possible inode number in an AG. */
2663 void
2664 xfs_ialloc_agino_range(
2665 struct xfs_mount *mp,
2666 xfs_agnumber_t agno,
2667 xfs_agino_t *first,
2668 xfs_agino_t *last)
2669 {
2670 xfs_agblock_t bno;
2671 xfs_agblock_t eoag;
2672
2673 eoag = xfs_ag_block_count(mp, agno);
2674
2675 /*
2676 * Calculate the first inode, which will be in the first
2677 * cluster-aligned block after the AGFL.
2678 */
2679 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2680 xfs_ialloc_cluster_alignment(mp));
2681 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2682
2683 /*
2684 * Calculate the last inode, which will be at the end of the
2685 * last (aligned) cluster that can be allocated in the AG.
2686 */
2687 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2688 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2689 }
2690
2691 /*
2692 * Verify that an AG inode number pointer neither points outside the AG
2693 * nor points at static metadata.
2694 */
2695 bool
2696 xfs_verify_agino(
2697 struct xfs_mount *mp,
2698 xfs_agnumber_t agno,
2699 xfs_agino_t agino)
2700 {
2701 xfs_agino_t first;
2702 xfs_agino_t last;
2703
2704 xfs_ialloc_agino_range(mp, agno, &first, &last);
2705 return agino >= first && agino <= last;
2706 }
2707
2708 /*
2709 * Verify that an FS inode number pointer neither points outside the
2710 * filesystem nor points at static AG metadata.
2711 */
2712 bool
2713 xfs_verify_ino(
2714 struct xfs_mount *mp,
2715 xfs_ino_t ino)
2716 {
2717 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2718 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2719
2720 if (agno >= mp->m_sb.sb_agcount)
2721 return false;
2722 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2723 return false;
2724 return xfs_verify_agino(mp, agno, agino);
2725 }
2726
2727 /* Is this an internal inode number? */
2728 bool
2729 xfs_internal_inum(
2730 struct xfs_mount *mp,
2731 xfs_ino_t ino)
2732 {
2733 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2734 (xfs_sb_version_hasquota(&mp->m_sb) &&
2735 xfs_is_quota_inode(&mp->m_sb, ino));
2736 }
2737
2738 /*
2739 * Verify that a directory entry's inode number doesn't point at an internal
2740 * inode, empty space, or static AG metadata.
2741 */
2742 bool
2743 xfs_verify_dir_ino(
2744 struct xfs_mount *mp,
2745 xfs_ino_t ino)
2746 {
2747 if (xfs_internal_inum(mp, ino))
2748 return false;
2749 return xfs_verify_ino(mp, ino);
2750 }