]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc.c
xfs: remove double-underscore integer types
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_cksum.h"
35 #include "xfs_trans.h"
36 #include "xfs_trace.h"
37 #include "xfs_rmap.h"
38
39
40 /*
41 * Allocation group level functions.
42 */
43 static inline int
44 xfs_ialloc_cluster_alignment(
45 struct xfs_mount *mp)
46 {
47 if (xfs_sb_version_hasalign(&mp->m_sb) &&
48 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
49 return mp->m_sb.sb_inoalignmt;
50 return 1;
51 }
52
53 /*
54 * Lookup a record by ino in the btree given by cur.
55 */
56 int /* error */
57 xfs_inobt_lookup(
58 struct xfs_btree_cur *cur, /* btree cursor */
59 xfs_agino_t ino, /* starting inode of chunk */
60 xfs_lookup_t dir, /* <=, >=, == */
61 int *stat) /* success/failure */
62 {
63 cur->bc_rec.i.ir_startino = ino;
64 cur->bc_rec.i.ir_holemask = 0;
65 cur->bc_rec.i.ir_count = 0;
66 cur->bc_rec.i.ir_freecount = 0;
67 cur->bc_rec.i.ir_free = 0;
68 return xfs_btree_lookup(cur, dir, stat);
69 }
70
71 /*
72 * Update the record referred to by cur to the value given.
73 * This either works (return 0) or gets an EFSCORRUPTED error.
74 */
75 STATIC int /* error */
76 xfs_inobt_update(
77 struct xfs_btree_cur *cur, /* btree cursor */
78 xfs_inobt_rec_incore_t *irec) /* btree record */
79 {
80 union xfs_btree_rec rec;
81
82 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
83 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
84 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
85 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
86 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
87 } else {
88 /* ir_holemask/ir_count not supported on-disk */
89 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
90 }
91 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
92 return xfs_btree_update(cur, &rec);
93 }
94
95 /*
96 * Get the data from the pointed-to record.
97 */
98 int /* error */
99 xfs_inobt_get_rec(
100 struct xfs_btree_cur *cur, /* btree cursor */
101 xfs_inobt_rec_incore_t *irec, /* btree record */
102 int *stat) /* output: success/failure */
103 {
104 union xfs_btree_rec *rec;
105 int error;
106
107 error = xfs_btree_get_rec(cur, &rec, stat);
108 if (error || *stat == 0)
109 return error;
110
111 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
112 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
113 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
114 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
115 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
116 } else {
117 /*
118 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
119 * values for full inode chunks.
120 */
121 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
122 irec->ir_count = XFS_INODES_PER_CHUNK;
123 irec->ir_freecount =
124 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
125 }
126 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
127
128 return 0;
129 }
130
131 /*
132 * Insert a single inobt record. Cursor must already point to desired location.
133 */
134 STATIC int
135 xfs_inobt_insert_rec(
136 struct xfs_btree_cur *cur,
137 uint16_t holemask,
138 uint8_t count,
139 int32_t freecount,
140 xfs_inofree_t free,
141 int *stat)
142 {
143 cur->bc_rec.i.ir_holemask = holemask;
144 cur->bc_rec.i.ir_count = count;
145 cur->bc_rec.i.ir_freecount = freecount;
146 cur->bc_rec.i.ir_free = free;
147 return xfs_btree_insert(cur, stat);
148 }
149
150 /*
151 * Insert records describing a newly allocated inode chunk into the inobt.
152 */
153 STATIC int
154 xfs_inobt_insert(
155 struct xfs_mount *mp,
156 struct xfs_trans *tp,
157 struct xfs_buf *agbp,
158 xfs_agino_t newino,
159 xfs_agino_t newlen,
160 xfs_btnum_t btnum)
161 {
162 struct xfs_btree_cur *cur;
163 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
164 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
165 xfs_agino_t thisino;
166 int i;
167 int error;
168
169 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
170
171 for (thisino = newino;
172 thisino < newino + newlen;
173 thisino += XFS_INODES_PER_CHUNK) {
174 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
175 if (error) {
176 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
177 return error;
178 }
179 ASSERT(i == 0);
180
181 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
182 XFS_INODES_PER_CHUNK,
183 XFS_INODES_PER_CHUNK,
184 XFS_INOBT_ALL_FREE, &i);
185 if (error) {
186 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
187 return error;
188 }
189 ASSERT(i == 1);
190 }
191
192 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
193
194 return 0;
195 }
196
197 /*
198 * Verify that the number of free inodes in the AGI is correct.
199 */
200 #ifdef DEBUG
201 STATIC int
202 xfs_check_agi_freecount(
203 struct xfs_btree_cur *cur,
204 struct xfs_agi *agi)
205 {
206 if (cur->bc_nlevels == 1) {
207 xfs_inobt_rec_incore_t rec;
208 int freecount = 0;
209 int error;
210 int i;
211
212 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
213 if (error)
214 return error;
215
216 do {
217 error = xfs_inobt_get_rec(cur, &rec, &i);
218 if (error)
219 return error;
220
221 if (i) {
222 freecount += rec.ir_freecount;
223 error = xfs_btree_increment(cur, 0, &i);
224 if (error)
225 return error;
226 }
227 } while (i == 1);
228
229 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
230 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
231 }
232 return 0;
233 }
234 #else
235 #define xfs_check_agi_freecount(cur, agi) 0
236 #endif
237
238 /*
239 * Initialise a new set of inodes. When called without a transaction context
240 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
241 * than logging them (which in a transaction context puts them into the AIL
242 * for writeback rather than the xfsbufd queue).
243 */
244 int
245 xfs_ialloc_inode_init(
246 struct xfs_mount *mp,
247 struct xfs_trans *tp,
248 struct list_head *buffer_list,
249 int icount,
250 xfs_agnumber_t agno,
251 xfs_agblock_t agbno,
252 xfs_agblock_t length,
253 unsigned int gen)
254 {
255 struct xfs_buf *fbuf;
256 struct xfs_dinode *free;
257 int nbufs, blks_per_cluster, inodes_per_cluster;
258 int version;
259 int i, j;
260 xfs_daddr_t d;
261 xfs_ino_t ino = 0;
262
263 /*
264 * Loop over the new block(s), filling in the inodes. For small block
265 * sizes, manipulate the inodes in buffers which are multiples of the
266 * blocks size.
267 */
268 blks_per_cluster = xfs_icluster_size_fsb(mp);
269 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
270 nbufs = length / blks_per_cluster;
271
272 /*
273 * Figure out what version number to use in the inodes we create. If
274 * the superblock version has caught up to the one that supports the new
275 * inode format, then use the new inode version. Otherwise use the old
276 * version so that old kernels will continue to be able to use the file
277 * system.
278 *
279 * For v3 inodes, we also need to write the inode number into the inode,
280 * so calculate the first inode number of the chunk here as
281 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
282 * across multiple filesystem blocks (such as a cluster) and so cannot
283 * be used in the cluster buffer loop below.
284 *
285 * Further, because we are writing the inode directly into the buffer
286 * and calculating a CRC on the entire inode, we have ot log the entire
287 * inode so that the entire range the CRC covers is present in the log.
288 * That means for v3 inode we log the entire buffer rather than just the
289 * inode cores.
290 */
291 if (xfs_sb_version_hascrc(&mp->m_sb)) {
292 version = 3;
293 ino = XFS_AGINO_TO_INO(mp, agno,
294 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
295
296 /*
297 * log the initialisation that is about to take place as an
298 * logical operation. This means the transaction does not
299 * need to log the physical changes to the inode buffers as log
300 * recovery will know what initialisation is actually needed.
301 * Hence we only need to log the buffers as "ordered" buffers so
302 * they track in the AIL as if they were physically logged.
303 */
304 if (tp)
305 xfs_icreate_log(tp, agno, agbno, icount,
306 mp->m_sb.sb_inodesize, length, gen);
307 } else
308 version = 2;
309
310 for (j = 0; j < nbufs; j++) {
311 /*
312 * Get the block.
313 */
314 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
315 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
316 mp->m_bsize * blks_per_cluster,
317 XBF_UNMAPPED);
318 if (!fbuf)
319 return -ENOMEM;
320
321 /* Initialize the inode buffers and log them appropriately. */
322 fbuf->b_ops = &xfs_inode_buf_ops;
323 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
324 for (i = 0; i < inodes_per_cluster; i++) {
325 int ioffset = i << mp->m_sb.sb_inodelog;
326 uint isize = xfs_dinode_size(version);
327
328 free = xfs_make_iptr(mp, fbuf, i);
329 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
330 free->di_version = version;
331 free->di_gen = cpu_to_be32(gen);
332 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
333
334 if (version == 3) {
335 free->di_ino = cpu_to_be64(ino);
336 ino++;
337 uuid_copy(&free->di_uuid,
338 &mp->m_sb.sb_meta_uuid);
339 xfs_dinode_calc_crc(mp, free);
340 } else if (tp) {
341 /* just log the inode core */
342 xfs_trans_log_buf(tp, fbuf, ioffset,
343 ioffset + isize - 1);
344 }
345 }
346
347 if (tp) {
348 /*
349 * Mark the buffer as an inode allocation buffer so it
350 * sticks in AIL at the point of this allocation
351 * transaction. This ensures the they are on disk before
352 * the tail of the log can be moved past this
353 * transaction (i.e. by preventing relogging from moving
354 * it forward in the log).
355 */
356 xfs_trans_inode_alloc_buf(tp, fbuf);
357 if (version == 3) {
358 /*
359 * Mark the buffer as ordered so that they are
360 * not physically logged in the transaction but
361 * still tracked in the AIL as part of the
362 * transaction and pin the log appropriately.
363 */
364 xfs_trans_ordered_buf(tp, fbuf);
365 xfs_trans_log_buf(tp, fbuf, 0,
366 BBTOB(fbuf->b_length) - 1);
367 }
368 } else {
369 fbuf->b_flags |= XBF_DONE;
370 xfs_buf_delwri_queue(fbuf, buffer_list);
371 xfs_buf_relse(fbuf);
372 }
373 }
374 return 0;
375 }
376
377 /*
378 * Align startino and allocmask for a recently allocated sparse chunk such that
379 * they are fit for insertion (or merge) into the on-disk inode btrees.
380 *
381 * Background:
382 *
383 * When enabled, sparse inode support increases the inode alignment from cluster
384 * size to inode chunk size. This means that the minimum range between two
385 * non-adjacent inode records in the inobt is large enough for a full inode
386 * record. This allows for cluster sized, cluster aligned block allocation
387 * without need to worry about whether the resulting inode record overlaps with
388 * another record in the tree. Without this basic rule, we would have to deal
389 * with the consequences of overlap by potentially undoing recent allocations in
390 * the inode allocation codepath.
391 *
392 * Because of this alignment rule (which is enforced on mount), there are two
393 * inobt possibilities for newly allocated sparse chunks. One is that the
394 * aligned inode record for the chunk covers a range of inodes not already
395 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
396 * other is that a record already exists at the aligned startino that considers
397 * the newly allocated range as sparse. In the latter case, record content is
398 * merged in hope that sparse inode chunks fill to full chunks over time.
399 */
400 STATIC void
401 xfs_align_sparse_ino(
402 struct xfs_mount *mp,
403 xfs_agino_t *startino,
404 uint16_t *allocmask)
405 {
406 xfs_agblock_t agbno;
407 xfs_agblock_t mod;
408 int offset;
409
410 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
411 mod = agbno % mp->m_sb.sb_inoalignmt;
412 if (!mod)
413 return;
414
415 /* calculate the inode offset and align startino */
416 offset = mod << mp->m_sb.sb_inopblog;
417 *startino -= offset;
418
419 /*
420 * Since startino has been aligned down, left shift allocmask such that
421 * it continues to represent the same physical inodes relative to the
422 * new startino.
423 */
424 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
425 }
426
427 /*
428 * Determine whether the source inode record can merge into the target. Both
429 * records must be sparse, the inode ranges must match and there must be no
430 * allocation overlap between the records.
431 */
432 STATIC bool
433 __xfs_inobt_can_merge(
434 struct xfs_inobt_rec_incore *trec, /* tgt record */
435 struct xfs_inobt_rec_incore *srec) /* src record */
436 {
437 uint64_t talloc;
438 uint64_t salloc;
439
440 /* records must cover the same inode range */
441 if (trec->ir_startino != srec->ir_startino)
442 return false;
443
444 /* both records must be sparse */
445 if (!xfs_inobt_issparse(trec->ir_holemask) ||
446 !xfs_inobt_issparse(srec->ir_holemask))
447 return false;
448
449 /* both records must track some inodes */
450 if (!trec->ir_count || !srec->ir_count)
451 return false;
452
453 /* can't exceed capacity of a full record */
454 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
455 return false;
456
457 /* verify there is no allocation overlap */
458 talloc = xfs_inobt_irec_to_allocmask(trec);
459 salloc = xfs_inobt_irec_to_allocmask(srec);
460 if (talloc & salloc)
461 return false;
462
463 return true;
464 }
465
466 /*
467 * Merge the source inode record into the target. The caller must call
468 * __xfs_inobt_can_merge() to ensure the merge is valid.
469 */
470 STATIC void
471 __xfs_inobt_rec_merge(
472 struct xfs_inobt_rec_incore *trec, /* target */
473 struct xfs_inobt_rec_incore *srec) /* src */
474 {
475 ASSERT(trec->ir_startino == srec->ir_startino);
476
477 /* combine the counts */
478 trec->ir_count += srec->ir_count;
479 trec->ir_freecount += srec->ir_freecount;
480
481 /*
482 * Merge the holemask and free mask. For both fields, 0 bits refer to
483 * allocated inodes. We combine the allocated ranges with bitwise AND.
484 */
485 trec->ir_holemask &= srec->ir_holemask;
486 trec->ir_free &= srec->ir_free;
487 }
488
489 /*
490 * Insert a new sparse inode chunk into the associated inode btree. The inode
491 * record for the sparse chunk is pre-aligned to a startino that should match
492 * any pre-existing sparse inode record in the tree. This allows sparse chunks
493 * to fill over time.
494 *
495 * This function supports two modes of handling preexisting records depending on
496 * the merge flag. If merge is true, the provided record is merged with the
497 * existing record and updated in place. The merged record is returned in nrec.
498 * If merge is false, an existing record is replaced with the provided record.
499 * If no preexisting record exists, the provided record is always inserted.
500 *
501 * It is considered corruption if a merge is requested and not possible. Given
502 * the sparse inode alignment constraints, this should never happen.
503 */
504 STATIC int
505 xfs_inobt_insert_sprec(
506 struct xfs_mount *mp,
507 struct xfs_trans *tp,
508 struct xfs_buf *agbp,
509 int btnum,
510 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
511 bool merge) /* merge or replace */
512 {
513 struct xfs_btree_cur *cur;
514 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
515 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
516 int error;
517 int i;
518 struct xfs_inobt_rec_incore rec;
519
520 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
521
522 /* the new record is pre-aligned so we know where to look */
523 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
524 if (error)
525 goto error;
526 /* if nothing there, insert a new record and return */
527 if (i == 0) {
528 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
529 nrec->ir_count, nrec->ir_freecount,
530 nrec->ir_free, &i);
531 if (error)
532 goto error;
533 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
534
535 goto out;
536 }
537
538 /*
539 * A record exists at this startino. Merge or replace the record
540 * depending on what we've been asked to do.
541 */
542 if (merge) {
543 error = xfs_inobt_get_rec(cur, &rec, &i);
544 if (error)
545 goto error;
546 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
547 XFS_WANT_CORRUPTED_GOTO(mp,
548 rec.ir_startino == nrec->ir_startino,
549 error);
550
551 /*
552 * This should never fail. If we have coexisting records that
553 * cannot merge, something is seriously wrong.
554 */
555 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
556 error);
557
558 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
559 rec.ir_holemask, nrec->ir_startino,
560 nrec->ir_holemask);
561
562 /* merge to nrec to output the updated record */
563 __xfs_inobt_rec_merge(nrec, &rec);
564
565 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
566 nrec->ir_holemask);
567
568 error = xfs_inobt_rec_check_count(mp, nrec);
569 if (error)
570 goto error;
571 }
572
573 error = xfs_inobt_update(cur, nrec);
574 if (error)
575 goto error;
576
577 out:
578 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
579 return 0;
580 error:
581 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
582 return error;
583 }
584
585 /*
586 * Allocate new inodes in the allocation group specified by agbp.
587 * Return 0 for success, else error code.
588 */
589 STATIC int /* error code or 0 */
590 xfs_ialloc_ag_alloc(
591 xfs_trans_t *tp, /* transaction pointer */
592 xfs_buf_t *agbp, /* alloc group buffer */
593 int *alloc)
594 {
595 xfs_agi_t *agi; /* allocation group header */
596 xfs_alloc_arg_t args; /* allocation argument structure */
597 xfs_agnumber_t agno;
598 int error;
599 xfs_agino_t newino; /* new first inode's number */
600 xfs_agino_t newlen; /* new number of inodes */
601 int isaligned = 0; /* inode allocation at stripe unit */
602 /* boundary */
603 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
604 struct xfs_inobt_rec_incore rec;
605 struct xfs_perag *pag;
606 int do_sparse = 0;
607
608 memset(&args, 0, sizeof(args));
609 args.tp = tp;
610 args.mp = tp->t_mountp;
611 args.fsbno = NULLFSBLOCK;
612 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
613
614 #ifdef DEBUG
615 /* randomly do sparse inode allocations */
616 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
617 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
618 do_sparse = prandom_u32() & 1;
619 #endif
620
621 /*
622 * Locking will ensure that we don't have two callers in here
623 * at one time.
624 */
625 newlen = args.mp->m_ialloc_inos;
626 if (args.mp->m_maxicount &&
627 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
628 args.mp->m_maxicount)
629 return -ENOSPC;
630 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
631 /*
632 * First try to allocate inodes contiguous with the last-allocated
633 * chunk of inodes. If the filesystem is striped, this will fill
634 * an entire stripe unit with inodes.
635 */
636 agi = XFS_BUF_TO_AGI(agbp);
637 newino = be32_to_cpu(agi->agi_newino);
638 agno = be32_to_cpu(agi->agi_seqno);
639 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
640 args.mp->m_ialloc_blks;
641 if (do_sparse)
642 goto sparse_alloc;
643 if (likely(newino != NULLAGINO &&
644 (args.agbno < be32_to_cpu(agi->agi_length)))) {
645 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
646 args.type = XFS_ALLOCTYPE_THIS_BNO;
647 args.prod = 1;
648
649 /*
650 * We need to take into account alignment here to ensure that
651 * we don't modify the free list if we fail to have an exact
652 * block. If we don't have an exact match, and every oher
653 * attempt allocation attempt fails, we'll end up cancelling
654 * a dirty transaction and shutting down.
655 *
656 * For an exact allocation, alignment must be 1,
657 * however we need to take cluster alignment into account when
658 * fixing up the freelist. Use the minalignslop field to
659 * indicate that extra blocks might be required for alignment,
660 * but not to use them in the actual exact allocation.
661 */
662 args.alignment = 1;
663 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
664
665 /* Allow space for the inode btree to split. */
666 args.minleft = args.mp->m_in_maxlevels - 1;
667 if ((error = xfs_alloc_vextent(&args)))
668 return error;
669
670 /*
671 * This request might have dirtied the transaction if the AG can
672 * satisfy the request, but the exact block was not available.
673 * If the allocation did fail, subsequent requests will relax
674 * the exact agbno requirement and increase the alignment
675 * instead. It is critical that the total size of the request
676 * (len + alignment + slop) does not increase from this point
677 * on, so reset minalignslop to ensure it is not included in
678 * subsequent requests.
679 */
680 args.minalignslop = 0;
681 }
682
683 if (unlikely(args.fsbno == NULLFSBLOCK)) {
684 /*
685 * Set the alignment for the allocation.
686 * If stripe alignment is turned on then align at stripe unit
687 * boundary.
688 * If the cluster size is smaller than a filesystem block
689 * then we're doing I/O for inodes in filesystem block size
690 * pieces, so don't need alignment anyway.
691 */
692 isaligned = 0;
693 if (args.mp->m_sinoalign) {
694 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
695 args.alignment = args.mp->m_dalign;
696 isaligned = 1;
697 } else
698 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
699 /*
700 * Need to figure out where to allocate the inode blocks.
701 * Ideally they should be spaced out through the a.g.
702 * For now, just allocate blocks up front.
703 */
704 args.agbno = be32_to_cpu(agi->agi_root);
705 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
706 /*
707 * Allocate a fixed-size extent of inodes.
708 */
709 args.type = XFS_ALLOCTYPE_NEAR_BNO;
710 args.prod = 1;
711 /*
712 * Allow space for the inode btree to split.
713 */
714 args.minleft = args.mp->m_in_maxlevels - 1;
715 if ((error = xfs_alloc_vextent(&args)))
716 return error;
717 }
718
719 /*
720 * If stripe alignment is turned on, then try again with cluster
721 * alignment.
722 */
723 if (isaligned && args.fsbno == NULLFSBLOCK) {
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.agbno = be32_to_cpu(agi->agi_root);
726 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
727 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
728 if ((error = xfs_alloc_vextent(&args)))
729 return error;
730 }
731
732 /*
733 * Finally, try a sparse allocation if the filesystem supports it and
734 * the sparse allocation length is smaller than a full chunk.
735 */
736 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
737 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
738 args.fsbno == NULLFSBLOCK) {
739 sparse_alloc:
740 args.type = XFS_ALLOCTYPE_NEAR_BNO;
741 args.agbno = be32_to_cpu(agi->agi_root);
742 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
743 args.alignment = args.mp->m_sb.sb_spino_align;
744 args.prod = 1;
745
746 args.minlen = args.mp->m_ialloc_min_blks;
747 args.maxlen = args.minlen;
748
749 /*
750 * The inode record will be aligned to full chunk size. We must
751 * prevent sparse allocation from AG boundaries that result in
752 * invalid inode records, such as records that start at agbno 0
753 * or extend beyond the AG.
754 *
755 * Set min agbno to the first aligned, non-zero agbno and max to
756 * the last aligned agbno that is at least one full chunk from
757 * the end of the AG.
758 */
759 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
760 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
761 args.mp->m_sb.sb_inoalignmt) -
762 args.mp->m_ialloc_blks;
763
764 error = xfs_alloc_vextent(&args);
765 if (error)
766 return error;
767
768 newlen = args.len << args.mp->m_sb.sb_inopblog;
769 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
770 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
771 }
772
773 if (args.fsbno == NULLFSBLOCK) {
774 *alloc = 0;
775 return 0;
776 }
777 ASSERT(args.len == args.minlen);
778
779 /*
780 * Stamp and write the inode buffers.
781 *
782 * Seed the new inode cluster with a random generation number. This
783 * prevents short-term reuse of generation numbers if a chunk is
784 * freed and then immediately reallocated. We use random numbers
785 * rather than a linear progression to prevent the next generation
786 * number from being easily guessable.
787 */
788 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
789 args.agbno, args.len, prandom_u32());
790
791 if (error)
792 return error;
793 /*
794 * Convert the results.
795 */
796 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
797
798 if (xfs_inobt_issparse(~allocmask)) {
799 /*
800 * We've allocated a sparse chunk. Align the startino and mask.
801 */
802 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
803
804 rec.ir_startino = newino;
805 rec.ir_holemask = ~allocmask;
806 rec.ir_count = newlen;
807 rec.ir_freecount = newlen;
808 rec.ir_free = XFS_INOBT_ALL_FREE;
809
810 /*
811 * Insert the sparse record into the inobt and allow for a merge
812 * if necessary. If a merge does occur, rec is updated to the
813 * merged record.
814 */
815 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
816 &rec, true);
817 if (error == -EFSCORRUPTED) {
818 xfs_alert(args.mp,
819 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
820 XFS_AGINO_TO_INO(args.mp, agno,
821 rec.ir_startino),
822 rec.ir_holemask, rec.ir_count);
823 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
824 }
825 if (error)
826 return error;
827
828 /*
829 * We can't merge the part we've just allocated as for the inobt
830 * due to finobt semantics. The original record may or may not
831 * exist independent of whether physical inodes exist in this
832 * sparse chunk.
833 *
834 * We must update the finobt record based on the inobt record.
835 * rec contains the fully merged and up to date inobt record
836 * from the previous call. Set merge false to replace any
837 * existing record with this one.
838 */
839 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
840 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
841 XFS_BTNUM_FINO, &rec,
842 false);
843 if (error)
844 return error;
845 }
846 } else {
847 /* full chunk - insert new records to both btrees */
848 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
849 XFS_BTNUM_INO);
850 if (error)
851 return error;
852
853 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
854 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
855 newlen, XFS_BTNUM_FINO);
856 if (error)
857 return error;
858 }
859 }
860
861 /*
862 * Update AGI counts and newino.
863 */
864 be32_add_cpu(&agi->agi_count, newlen);
865 be32_add_cpu(&agi->agi_freecount, newlen);
866 pag = xfs_perag_get(args.mp, agno);
867 pag->pagi_freecount += newlen;
868 xfs_perag_put(pag);
869 agi->agi_newino = cpu_to_be32(newino);
870
871 /*
872 * Log allocation group header fields
873 */
874 xfs_ialloc_log_agi(tp, agbp,
875 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
876 /*
877 * Modify/log superblock values for inode count and inode free count.
878 */
879 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
880 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
881 *alloc = 1;
882 return 0;
883 }
884
885 STATIC xfs_agnumber_t
886 xfs_ialloc_next_ag(
887 xfs_mount_t *mp)
888 {
889 xfs_agnumber_t agno;
890
891 spin_lock(&mp->m_agirotor_lock);
892 agno = mp->m_agirotor;
893 if (++mp->m_agirotor >= mp->m_maxagi)
894 mp->m_agirotor = 0;
895 spin_unlock(&mp->m_agirotor_lock);
896
897 return agno;
898 }
899
900 /*
901 * Select an allocation group to look for a free inode in, based on the parent
902 * inode and the mode. Return the allocation group buffer.
903 */
904 STATIC xfs_agnumber_t
905 xfs_ialloc_ag_select(
906 xfs_trans_t *tp, /* transaction pointer */
907 xfs_ino_t parent, /* parent directory inode number */
908 umode_t mode, /* bits set to indicate file type */
909 int okalloc) /* ok to allocate more space */
910 {
911 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
912 xfs_agnumber_t agno; /* current ag number */
913 int flags; /* alloc buffer locking flags */
914 xfs_extlen_t ineed; /* blocks needed for inode allocation */
915 xfs_extlen_t longest = 0; /* longest extent available */
916 xfs_mount_t *mp; /* mount point structure */
917 int needspace; /* file mode implies space allocated */
918 xfs_perag_t *pag; /* per allocation group data */
919 xfs_agnumber_t pagno; /* parent (starting) ag number */
920 int error;
921
922 /*
923 * Files of these types need at least one block if length > 0
924 * (and they won't fit in the inode, but that's hard to figure out).
925 */
926 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
927 mp = tp->t_mountp;
928 agcount = mp->m_maxagi;
929 if (S_ISDIR(mode))
930 pagno = xfs_ialloc_next_ag(mp);
931 else {
932 pagno = XFS_INO_TO_AGNO(mp, parent);
933 if (pagno >= agcount)
934 pagno = 0;
935 }
936
937 ASSERT(pagno < agcount);
938
939 /*
940 * Loop through allocation groups, looking for one with a little
941 * free space in it. Note we don't look for free inodes, exactly.
942 * Instead, we include whether there is a need to allocate inodes
943 * to mean that blocks must be allocated for them,
944 * if none are currently free.
945 */
946 agno = pagno;
947 flags = XFS_ALLOC_FLAG_TRYLOCK;
948 for (;;) {
949 pag = xfs_perag_get(mp, agno);
950 if (!pag->pagi_inodeok) {
951 xfs_ialloc_next_ag(mp);
952 goto nextag;
953 }
954
955 if (!pag->pagi_init) {
956 error = xfs_ialloc_pagi_init(mp, tp, agno);
957 if (error)
958 goto nextag;
959 }
960
961 if (pag->pagi_freecount) {
962 xfs_perag_put(pag);
963 return agno;
964 }
965
966 if (!okalloc)
967 goto nextag;
968
969 if (!pag->pagf_init) {
970 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
971 if (error)
972 goto nextag;
973 }
974
975 /*
976 * Check that there is enough free space for the file plus a
977 * chunk of inodes if we need to allocate some. If this is the
978 * first pass across the AGs, take into account the potential
979 * space needed for alignment of inode chunks when checking the
980 * longest contiguous free space in the AG - this prevents us
981 * from getting ENOSPC because we have free space larger than
982 * m_ialloc_blks but alignment constraints prevent us from using
983 * it.
984 *
985 * If we can't find an AG with space for full alignment slack to
986 * be taken into account, we must be near ENOSPC in all AGs.
987 * Hence we don't include alignment for the second pass and so
988 * if we fail allocation due to alignment issues then it is most
989 * likely a real ENOSPC condition.
990 */
991 ineed = mp->m_ialloc_min_blks;
992 if (flags && ineed > 1)
993 ineed += xfs_ialloc_cluster_alignment(mp);
994 longest = pag->pagf_longest;
995 if (!longest)
996 longest = pag->pagf_flcount > 0;
997
998 if (pag->pagf_freeblks >= needspace + ineed &&
999 longest >= ineed) {
1000 xfs_perag_put(pag);
1001 return agno;
1002 }
1003 nextag:
1004 xfs_perag_put(pag);
1005 /*
1006 * No point in iterating over the rest, if we're shutting
1007 * down.
1008 */
1009 if (XFS_FORCED_SHUTDOWN(mp))
1010 return NULLAGNUMBER;
1011 agno++;
1012 if (agno >= agcount)
1013 agno = 0;
1014 if (agno == pagno) {
1015 if (flags == 0)
1016 return NULLAGNUMBER;
1017 flags = 0;
1018 }
1019 }
1020 }
1021
1022 /*
1023 * Try to retrieve the next record to the left/right from the current one.
1024 */
1025 STATIC int
1026 xfs_ialloc_next_rec(
1027 struct xfs_btree_cur *cur,
1028 xfs_inobt_rec_incore_t *rec,
1029 int *done,
1030 int left)
1031 {
1032 int error;
1033 int i;
1034
1035 if (left)
1036 error = xfs_btree_decrement(cur, 0, &i);
1037 else
1038 error = xfs_btree_increment(cur, 0, &i);
1039
1040 if (error)
1041 return error;
1042 *done = !i;
1043 if (i) {
1044 error = xfs_inobt_get_rec(cur, rec, &i);
1045 if (error)
1046 return error;
1047 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1048 }
1049
1050 return 0;
1051 }
1052
1053 STATIC int
1054 xfs_ialloc_get_rec(
1055 struct xfs_btree_cur *cur,
1056 xfs_agino_t agino,
1057 xfs_inobt_rec_incore_t *rec,
1058 int *done)
1059 {
1060 int error;
1061 int i;
1062
1063 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1064 if (error)
1065 return error;
1066 *done = !i;
1067 if (i) {
1068 error = xfs_inobt_get_rec(cur, rec, &i);
1069 if (error)
1070 return error;
1071 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1072 }
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * Return the offset of the first free inode in the record. If the inode chunk
1079 * is sparsely allocated, we convert the record holemask to inode granularity
1080 * and mask off the unallocated regions from the inode free mask.
1081 */
1082 STATIC int
1083 xfs_inobt_first_free_inode(
1084 struct xfs_inobt_rec_incore *rec)
1085 {
1086 xfs_inofree_t realfree;
1087
1088 /* if there are no holes, return the first available offset */
1089 if (!xfs_inobt_issparse(rec->ir_holemask))
1090 return xfs_lowbit64(rec->ir_free);
1091
1092 realfree = xfs_inobt_irec_to_allocmask(rec);
1093 realfree &= rec->ir_free;
1094
1095 return xfs_lowbit64(realfree);
1096 }
1097
1098 /*
1099 * Allocate an inode using the inobt-only algorithm.
1100 */
1101 STATIC int
1102 xfs_dialloc_ag_inobt(
1103 struct xfs_trans *tp,
1104 struct xfs_buf *agbp,
1105 xfs_ino_t parent,
1106 xfs_ino_t *inop)
1107 {
1108 struct xfs_mount *mp = tp->t_mountp;
1109 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1110 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1111 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1112 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1113 struct xfs_perag *pag;
1114 struct xfs_btree_cur *cur, *tcur;
1115 struct xfs_inobt_rec_incore rec, trec;
1116 xfs_ino_t ino;
1117 int error;
1118 int offset;
1119 int i, j;
1120
1121 pag = xfs_perag_get(mp, agno);
1122
1123 ASSERT(pag->pagi_init);
1124 ASSERT(pag->pagi_inodeok);
1125 ASSERT(pag->pagi_freecount > 0);
1126
1127 restart_pagno:
1128 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1129 /*
1130 * If pagino is 0 (this is the root inode allocation) use newino.
1131 * This must work because we've just allocated some.
1132 */
1133 if (!pagino)
1134 pagino = be32_to_cpu(agi->agi_newino);
1135
1136 error = xfs_check_agi_freecount(cur, agi);
1137 if (error)
1138 goto error0;
1139
1140 /*
1141 * If in the same AG as the parent, try to get near the parent.
1142 */
1143 if (pagno == agno) {
1144 int doneleft; /* done, to the left */
1145 int doneright; /* done, to the right */
1146 int searchdistance = 10;
1147
1148 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1149 if (error)
1150 goto error0;
1151 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1152
1153 error = xfs_inobt_get_rec(cur, &rec, &j);
1154 if (error)
1155 goto error0;
1156 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1157
1158 if (rec.ir_freecount > 0) {
1159 /*
1160 * Found a free inode in the same chunk
1161 * as the parent, done.
1162 */
1163 goto alloc_inode;
1164 }
1165
1166
1167 /*
1168 * In the same AG as parent, but parent's chunk is full.
1169 */
1170
1171 /* duplicate the cursor, search left & right simultaneously */
1172 error = xfs_btree_dup_cursor(cur, &tcur);
1173 if (error)
1174 goto error0;
1175
1176 /*
1177 * Skip to last blocks looked up if same parent inode.
1178 */
1179 if (pagino != NULLAGINO &&
1180 pag->pagl_pagino == pagino &&
1181 pag->pagl_leftrec != NULLAGINO &&
1182 pag->pagl_rightrec != NULLAGINO) {
1183 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1184 &trec, &doneleft);
1185 if (error)
1186 goto error1;
1187
1188 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1189 &rec, &doneright);
1190 if (error)
1191 goto error1;
1192 } else {
1193 /* search left with tcur, back up 1 record */
1194 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1195 if (error)
1196 goto error1;
1197
1198 /* search right with cur, go forward 1 record. */
1199 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1200 if (error)
1201 goto error1;
1202 }
1203
1204 /*
1205 * Loop until we find an inode chunk with a free inode.
1206 */
1207 while (!doneleft || !doneright) {
1208 int useleft; /* using left inode chunk this time */
1209
1210 if (!--searchdistance) {
1211 /*
1212 * Not in range - save last search
1213 * location and allocate a new inode
1214 */
1215 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1216 pag->pagl_leftrec = trec.ir_startino;
1217 pag->pagl_rightrec = rec.ir_startino;
1218 pag->pagl_pagino = pagino;
1219 goto newino;
1220 }
1221
1222 /* figure out the closer block if both are valid. */
1223 if (!doneleft && !doneright) {
1224 useleft = pagino -
1225 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1226 rec.ir_startino - pagino;
1227 } else {
1228 useleft = !doneleft;
1229 }
1230
1231 /* free inodes to the left? */
1232 if (useleft && trec.ir_freecount) {
1233 rec = trec;
1234 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1235 cur = tcur;
1236
1237 pag->pagl_leftrec = trec.ir_startino;
1238 pag->pagl_rightrec = rec.ir_startino;
1239 pag->pagl_pagino = pagino;
1240 goto alloc_inode;
1241 }
1242
1243 /* free inodes to the right? */
1244 if (!useleft && rec.ir_freecount) {
1245 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1246
1247 pag->pagl_leftrec = trec.ir_startino;
1248 pag->pagl_rightrec = rec.ir_startino;
1249 pag->pagl_pagino = pagino;
1250 goto alloc_inode;
1251 }
1252
1253 /* get next record to check */
1254 if (useleft) {
1255 error = xfs_ialloc_next_rec(tcur, &trec,
1256 &doneleft, 1);
1257 } else {
1258 error = xfs_ialloc_next_rec(cur, &rec,
1259 &doneright, 0);
1260 }
1261 if (error)
1262 goto error1;
1263 }
1264
1265 /*
1266 * We've reached the end of the btree. because
1267 * we are only searching a small chunk of the
1268 * btree each search, there is obviously free
1269 * inodes closer to the parent inode than we
1270 * are now. restart the search again.
1271 */
1272 pag->pagl_pagino = NULLAGINO;
1273 pag->pagl_leftrec = NULLAGINO;
1274 pag->pagl_rightrec = NULLAGINO;
1275 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1276 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1277 goto restart_pagno;
1278 }
1279
1280 /*
1281 * In a different AG from the parent.
1282 * See if the most recently allocated block has any free.
1283 */
1284 newino:
1285 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1286 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1287 XFS_LOOKUP_EQ, &i);
1288 if (error)
1289 goto error0;
1290
1291 if (i == 1) {
1292 error = xfs_inobt_get_rec(cur, &rec, &j);
1293 if (error)
1294 goto error0;
1295
1296 if (j == 1 && rec.ir_freecount > 0) {
1297 /*
1298 * The last chunk allocated in the group
1299 * still has a free inode.
1300 */
1301 goto alloc_inode;
1302 }
1303 }
1304 }
1305
1306 /*
1307 * None left in the last group, search the whole AG
1308 */
1309 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1310 if (error)
1311 goto error0;
1312 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1313
1314 for (;;) {
1315 error = xfs_inobt_get_rec(cur, &rec, &i);
1316 if (error)
1317 goto error0;
1318 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1319 if (rec.ir_freecount > 0)
1320 break;
1321 error = xfs_btree_increment(cur, 0, &i);
1322 if (error)
1323 goto error0;
1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325 }
1326
1327 alloc_inode:
1328 offset = xfs_inobt_first_free_inode(&rec);
1329 ASSERT(offset >= 0);
1330 ASSERT(offset < XFS_INODES_PER_CHUNK);
1331 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1332 XFS_INODES_PER_CHUNK) == 0);
1333 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1334 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1335 rec.ir_freecount--;
1336 error = xfs_inobt_update(cur, &rec);
1337 if (error)
1338 goto error0;
1339 be32_add_cpu(&agi->agi_freecount, -1);
1340 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1341 pag->pagi_freecount--;
1342
1343 error = xfs_check_agi_freecount(cur, agi);
1344 if (error)
1345 goto error0;
1346
1347 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1348 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1349 xfs_perag_put(pag);
1350 *inop = ino;
1351 return 0;
1352 error1:
1353 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1354 error0:
1355 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1356 xfs_perag_put(pag);
1357 return error;
1358 }
1359
1360 /*
1361 * Use the free inode btree to allocate an inode based on distance from the
1362 * parent. Note that the provided cursor may be deleted and replaced.
1363 */
1364 STATIC int
1365 xfs_dialloc_ag_finobt_near(
1366 xfs_agino_t pagino,
1367 struct xfs_btree_cur **ocur,
1368 struct xfs_inobt_rec_incore *rec)
1369 {
1370 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1371 struct xfs_btree_cur *rcur; /* right search cursor */
1372 struct xfs_inobt_rec_incore rrec;
1373 int error;
1374 int i, j;
1375
1376 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1377 if (error)
1378 return error;
1379
1380 if (i == 1) {
1381 error = xfs_inobt_get_rec(lcur, rec, &i);
1382 if (error)
1383 return error;
1384 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1385
1386 /*
1387 * See if we've landed in the parent inode record. The finobt
1388 * only tracks chunks with at least one free inode, so record
1389 * existence is enough.
1390 */
1391 if (pagino >= rec->ir_startino &&
1392 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1393 return 0;
1394 }
1395
1396 error = xfs_btree_dup_cursor(lcur, &rcur);
1397 if (error)
1398 return error;
1399
1400 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1401 if (error)
1402 goto error_rcur;
1403 if (j == 1) {
1404 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1405 if (error)
1406 goto error_rcur;
1407 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1408 }
1409
1410 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1411 if (i == 1 && j == 1) {
1412 /*
1413 * Both the left and right records are valid. Choose the closer
1414 * inode chunk to the target.
1415 */
1416 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1417 (rrec.ir_startino - pagino)) {
1418 *rec = rrec;
1419 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1420 *ocur = rcur;
1421 } else {
1422 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1423 }
1424 } else if (j == 1) {
1425 /* only the right record is valid */
1426 *rec = rrec;
1427 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1428 *ocur = rcur;
1429 } else if (i == 1) {
1430 /* only the left record is valid */
1431 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1432 }
1433
1434 return 0;
1435
1436 error_rcur:
1437 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1438 return error;
1439 }
1440
1441 /*
1442 * Use the free inode btree to find a free inode based on a newino hint. If
1443 * the hint is NULL, find the first free inode in the AG.
1444 */
1445 STATIC int
1446 xfs_dialloc_ag_finobt_newino(
1447 struct xfs_agi *agi,
1448 struct xfs_btree_cur *cur,
1449 struct xfs_inobt_rec_incore *rec)
1450 {
1451 int error;
1452 int i;
1453
1454 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1455 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1456 XFS_LOOKUP_EQ, &i);
1457 if (error)
1458 return error;
1459 if (i == 1) {
1460 error = xfs_inobt_get_rec(cur, rec, &i);
1461 if (error)
1462 return error;
1463 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1464 return 0;
1465 }
1466 }
1467
1468 /*
1469 * Find the first inode available in the AG.
1470 */
1471 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1472 if (error)
1473 return error;
1474 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1475
1476 error = xfs_inobt_get_rec(cur, rec, &i);
1477 if (error)
1478 return error;
1479 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1480
1481 return 0;
1482 }
1483
1484 /*
1485 * Update the inobt based on a modification made to the finobt. Also ensure that
1486 * the records from both trees are equivalent post-modification.
1487 */
1488 STATIC int
1489 xfs_dialloc_ag_update_inobt(
1490 struct xfs_btree_cur *cur, /* inobt cursor */
1491 struct xfs_inobt_rec_incore *frec, /* finobt record */
1492 int offset) /* inode offset */
1493 {
1494 struct xfs_inobt_rec_incore rec;
1495 int error;
1496 int i;
1497
1498 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1499 if (error)
1500 return error;
1501 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1502
1503 error = xfs_inobt_get_rec(cur, &rec, &i);
1504 if (error)
1505 return error;
1506 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1507 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1508 XFS_INODES_PER_CHUNK) == 0);
1509
1510 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1511 rec.ir_freecount--;
1512
1513 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1514 (rec.ir_freecount == frec->ir_freecount));
1515
1516 return xfs_inobt_update(cur, &rec);
1517 }
1518
1519 /*
1520 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1521 * back to the inobt search algorithm.
1522 *
1523 * The caller selected an AG for us, and made sure that free inodes are
1524 * available.
1525 */
1526 STATIC int
1527 xfs_dialloc_ag(
1528 struct xfs_trans *tp,
1529 struct xfs_buf *agbp,
1530 xfs_ino_t parent,
1531 xfs_ino_t *inop)
1532 {
1533 struct xfs_mount *mp = tp->t_mountp;
1534 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1535 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1536 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1537 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1538 struct xfs_perag *pag;
1539 struct xfs_btree_cur *cur; /* finobt cursor */
1540 struct xfs_btree_cur *icur; /* inobt cursor */
1541 struct xfs_inobt_rec_incore rec;
1542 xfs_ino_t ino;
1543 int error;
1544 int offset;
1545 int i;
1546
1547 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1548 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1549
1550 pag = xfs_perag_get(mp, agno);
1551
1552 /*
1553 * If pagino is 0 (this is the root inode allocation) use newino.
1554 * This must work because we've just allocated some.
1555 */
1556 if (!pagino)
1557 pagino = be32_to_cpu(agi->agi_newino);
1558
1559 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1560
1561 error = xfs_check_agi_freecount(cur, agi);
1562 if (error)
1563 goto error_cur;
1564
1565 /*
1566 * The search algorithm depends on whether we're in the same AG as the
1567 * parent. If so, find the closest available inode to the parent. If
1568 * not, consider the agi hint or find the first free inode in the AG.
1569 */
1570 if (agno == pagno)
1571 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1572 else
1573 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1574 if (error)
1575 goto error_cur;
1576
1577 offset = xfs_inobt_first_free_inode(&rec);
1578 ASSERT(offset >= 0);
1579 ASSERT(offset < XFS_INODES_PER_CHUNK);
1580 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1581 XFS_INODES_PER_CHUNK) == 0);
1582 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1583
1584 /*
1585 * Modify or remove the finobt record.
1586 */
1587 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1588 rec.ir_freecount--;
1589 if (rec.ir_freecount)
1590 error = xfs_inobt_update(cur, &rec);
1591 else
1592 error = xfs_btree_delete(cur, &i);
1593 if (error)
1594 goto error_cur;
1595
1596 /*
1597 * The finobt has now been updated appropriately. We haven't updated the
1598 * agi and superblock yet, so we can create an inobt cursor and validate
1599 * the original freecount. If all is well, make the equivalent update to
1600 * the inobt using the finobt record and offset information.
1601 */
1602 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1603
1604 error = xfs_check_agi_freecount(icur, agi);
1605 if (error)
1606 goto error_icur;
1607
1608 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1609 if (error)
1610 goto error_icur;
1611
1612 /*
1613 * Both trees have now been updated. We must update the perag and
1614 * superblock before we can check the freecount for each btree.
1615 */
1616 be32_add_cpu(&agi->agi_freecount, -1);
1617 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1618 pag->pagi_freecount--;
1619
1620 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1621
1622 error = xfs_check_agi_freecount(icur, agi);
1623 if (error)
1624 goto error_icur;
1625 error = xfs_check_agi_freecount(cur, agi);
1626 if (error)
1627 goto error_icur;
1628
1629 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1630 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1631 xfs_perag_put(pag);
1632 *inop = ino;
1633 return 0;
1634
1635 error_icur:
1636 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1637 error_cur:
1638 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1639 xfs_perag_put(pag);
1640 return error;
1641 }
1642
1643 /*
1644 * Allocate an inode on disk.
1645 *
1646 * Mode is used to tell whether the new inode will need space, and whether it
1647 * is a directory.
1648 *
1649 * This function is designed to be called twice if it has to do an allocation
1650 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1651 * If an inode is available without having to performn an allocation, an inode
1652 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1653 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1654 * The caller should then commit the current transaction, allocate a
1655 * new transaction, and call xfs_dialloc() again, passing in the previous value
1656 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1657 * buffer is locked across the two calls, the second call is guaranteed to have
1658 * a free inode available.
1659 *
1660 * Once we successfully pick an inode its number is returned and the on-disk
1661 * data structures are updated. The inode itself is not read in, since doing so
1662 * would break ordering constraints with xfs_reclaim.
1663 */
1664 int
1665 xfs_dialloc(
1666 struct xfs_trans *tp,
1667 xfs_ino_t parent,
1668 umode_t mode,
1669 int okalloc,
1670 struct xfs_buf **IO_agbp,
1671 xfs_ino_t *inop)
1672 {
1673 struct xfs_mount *mp = tp->t_mountp;
1674 struct xfs_buf *agbp;
1675 xfs_agnumber_t agno;
1676 int error;
1677 int ialloced;
1678 int noroom = 0;
1679 xfs_agnumber_t start_agno;
1680 struct xfs_perag *pag;
1681
1682 if (*IO_agbp) {
1683 /*
1684 * If the caller passes in a pointer to the AGI buffer,
1685 * continue where we left off before. In this case, we
1686 * know that the allocation group has free inodes.
1687 */
1688 agbp = *IO_agbp;
1689 goto out_alloc;
1690 }
1691
1692 /*
1693 * We do not have an agbp, so select an initial allocation
1694 * group for inode allocation.
1695 */
1696 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1697 if (start_agno == NULLAGNUMBER) {
1698 *inop = NULLFSINO;
1699 return 0;
1700 }
1701
1702 /*
1703 * If we have already hit the ceiling of inode blocks then clear
1704 * okalloc so we scan all available agi structures for a free
1705 * inode.
1706 *
1707 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1708 * which will sacrifice the preciseness but improve the performance.
1709 */
1710 if (mp->m_maxicount &&
1711 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1712 > mp->m_maxicount) {
1713 noroom = 1;
1714 okalloc = 0;
1715 }
1716
1717 /*
1718 * Loop until we find an allocation group that either has free inodes
1719 * or in which we can allocate some inodes. Iterate through the
1720 * allocation groups upward, wrapping at the end.
1721 */
1722 agno = start_agno;
1723 for (;;) {
1724 pag = xfs_perag_get(mp, agno);
1725 if (!pag->pagi_inodeok) {
1726 xfs_ialloc_next_ag(mp);
1727 goto nextag;
1728 }
1729
1730 if (!pag->pagi_init) {
1731 error = xfs_ialloc_pagi_init(mp, tp, agno);
1732 if (error)
1733 goto out_error;
1734 }
1735
1736 /*
1737 * Do a first racy fast path check if this AG is usable.
1738 */
1739 if (!pag->pagi_freecount && !okalloc)
1740 goto nextag;
1741
1742 /*
1743 * Then read in the AGI buffer and recheck with the AGI buffer
1744 * lock held.
1745 */
1746 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1747 if (error)
1748 goto out_error;
1749
1750 if (pag->pagi_freecount) {
1751 xfs_perag_put(pag);
1752 goto out_alloc;
1753 }
1754
1755 if (!okalloc)
1756 goto nextag_relse_buffer;
1757
1758
1759 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1760 if (error) {
1761 xfs_trans_brelse(tp, agbp);
1762
1763 if (error != -ENOSPC)
1764 goto out_error;
1765
1766 xfs_perag_put(pag);
1767 *inop = NULLFSINO;
1768 return 0;
1769 }
1770
1771 if (ialloced) {
1772 /*
1773 * We successfully allocated some inodes, return
1774 * the current context to the caller so that it
1775 * can commit the current transaction and call
1776 * us again where we left off.
1777 */
1778 ASSERT(pag->pagi_freecount > 0);
1779 xfs_perag_put(pag);
1780
1781 *IO_agbp = agbp;
1782 *inop = NULLFSINO;
1783 return 0;
1784 }
1785
1786 nextag_relse_buffer:
1787 xfs_trans_brelse(tp, agbp);
1788 nextag:
1789 xfs_perag_put(pag);
1790 if (++agno == mp->m_sb.sb_agcount)
1791 agno = 0;
1792 if (agno == start_agno) {
1793 *inop = NULLFSINO;
1794 return noroom ? -ENOSPC : 0;
1795 }
1796 }
1797
1798 out_alloc:
1799 *IO_agbp = NULL;
1800 return xfs_dialloc_ag(tp, agbp, parent, inop);
1801 out_error:
1802 xfs_perag_put(pag);
1803 return error;
1804 }
1805
1806 /*
1807 * Free the blocks of an inode chunk. We must consider that the inode chunk
1808 * might be sparse and only free the regions that are allocated as part of the
1809 * chunk.
1810 */
1811 STATIC void
1812 xfs_difree_inode_chunk(
1813 struct xfs_mount *mp,
1814 xfs_agnumber_t agno,
1815 struct xfs_inobt_rec_incore *rec,
1816 struct xfs_defer_ops *dfops)
1817 {
1818 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1819 int startidx, endidx;
1820 int nextbit;
1821 xfs_agblock_t agbno;
1822 int contigblk;
1823 struct xfs_owner_info oinfo;
1824 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1825 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1826
1827 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1828 /* not sparse, calculate extent info directly */
1829 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1830 mp->m_ialloc_blks, &oinfo);
1831 return;
1832 }
1833
1834 /* holemask is only 16-bits (fits in an unsigned long) */
1835 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1836 holemask[0] = rec->ir_holemask;
1837
1838 /*
1839 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1840 * holemask and convert the start/end index of each range to an extent.
1841 * We start with the start and end index both pointing at the first 0 in
1842 * the mask.
1843 */
1844 startidx = endidx = find_first_zero_bit(holemask,
1845 XFS_INOBT_HOLEMASK_BITS);
1846 nextbit = startidx + 1;
1847 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1848 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1849 nextbit);
1850 /*
1851 * If the next zero bit is contiguous, update the end index of
1852 * the current range and continue.
1853 */
1854 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1855 nextbit == endidx + 1) {
1856 endidx = nextbit;
1857 goto next;
1858 }
1859
1860 /*
1861 * nextbit is not contiguous with the current end index. Convert
1862 * the current start/end to an extent and add it to the free
1863 * list.
1864 */
1865 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1866 mp->m_sb.sb_inopblock;
1867 contigblk = ((endidx - startidx + 1) *
1868 XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870
1871 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1872 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1873 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1874 contigblk, &oinfo);
1875
1876 /* reset range to current bit and carry on... */
1877 startidx = endidx = nextbit;
1878
1879 next:
1880 nextbit++;
1881 }
1882 }
1883
1884 STATIC int
1885 xfs_difree_inobt(
1886 struct xfs_mount *mp,
1887 struct xfs_trans *tp,
1888 struct xfs_buf *agbp,
1889 xfs_agino_t agino,
1890 struct xfs_defer_ops *dfops,
1891 struct xfs_icluster *xic,
1892 struct xfs_inobt_rec_incore *orec)
1893 {
1894 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1895 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1896 struct xfs_perag *pag;
1897 struct xfs_btree_cur *cur;
1898 struct xfs_inobt_rec_incore rec;
1899 int ilen;
1900 int error;
1901 int i;
1902 int off;
1903
1904 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1906
1907 /*
1908 * Initialize the cursor.
1909 */
1910 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1911
1912 error = xfs_check_agi_freecount(cur, agi);
1913 if (error)
1914 goto error0;
1915
1916 /*
1917 * Look for the entry describing this inode.
1918 */
1919 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1921 __func__, error);
1922 goto error0;
1923 }
1924 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1925 error = xfs_inobt_get_rec(cur, &rec, &i);
1926 if (error) {
1927 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1928 __func__, error);
1929 goto error0;
1930 }
1931 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1932 /*
1933 * Get the offset in the inode chunk.
1934 */
1935 off = agino - rec.ir_startino;
1936 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1937 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1938 /*
1939 * Mark the inode free & increment the count.
1940 */
1941 rec.ir_free |= XFS_INOBT_MASK(off);
1942 rec.ir_freecount++;
1943
1944 /*
1945 * When an inode chunk is free, it becomes eligible for removal. Don't
1946 * remove the chunk if the block size is large enough for multiple inode
1947 * chunks (that might not be free).
1948 */
1949 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1950 rec.ir_free == XFS_INOBT_ALL_FREE &&
1951 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1952 xic->deleted = 1;
1953 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1954 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1955
1956 /*
1957 * Remove the inode cluster from the AGI B+Tree, adjust the
1958 * AGI and Superblock inode counts, and mark the disk space
1959 * to be freed when the transaction is committed.
1960 */
1961 ilen = rec.ir_freecount;
1962 be32_add_cpu(&agi->agi_count, -ilen);
1963 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1964 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1965 pag = xfs_perag_get(mp, agno);
1966 pag->pagi_freecount -= ilen - 1;
1967 xfs_perag_put(pag);
1968 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1969 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1970
1971 if ((error = xfs_btree_delete(cur, &i))) {
1972 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1973 __func__, error);
1974 goto error0;
1975 }
1976
1977 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1978 } else {
1979 xic->deleted = 0;
1980
1981 error = xfs_inobt_update(cur, &rec);
1982 if (error) {
1983 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1984 __func__, error);
1985 goto error0;
1986 }
1987
1988 /*
1989 * Change the inode free counts and log the ag/sb changes.
1990 */
1991 be32_add_cpu(&agi->agi_freecount, 1);
1992 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1993 pag = xfs_perag_get(mp, agno);
1994 pag->pagi_freecount++;
1995 xfs_perag_put(pag);
1996 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1997 }
1998
1999 error = xfs_check_agi_freecount(cur, agi);
2000 if (error)
2001 goto error0;
2002
2003 *orec = rec;
2004 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2005 return 0;
2006
2007 error0:
2008 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2009 return error;
2010 }
2011
2012 /*
2013 * Free an inode in the free inode btree.
2014 */
2015 STATIC int
2016 xfs_difree_finobt(
2017 struct xfs_mount *mp,
2018 struct xfs_trans *tp,
2019 struct xfs_buf *agbp,
2020 xfs_agino_t agino,
2021 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2022 {
2023 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2024 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2025 struct xfs_btree_cur *cur;
2026 struct xfs_inobt_rec_incore rec;
2027 int offset = agino - ibtrec->ir_startino;
2028 int error;
2029 int i;
2030
2031 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2032
2033 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2034 if (error)
2035 goto error;
2036 if (i == 0) {
2037 /*
2038 * If the record does not exist in the finobt, we must have just
2039 * freed an inode in a previously fully allocated chunk. If not,
2040 * something is out of sync.
2041 */
2042 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2043
2044 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2045 ibtrec->ir_count,
2046 ibtrec->ir_freecount,
2047 ibtrec->ir_free, &i);
2048 if (error)
2049 goto error;
2050 ASSERT(i == 1);
2051
2052 goto out;
2053 }
2054
2055 /*
2056 * Read and update the existing record. We could just copy the ibtrec
2057 * across here, but that would defeat the purpose of having redundant
2058 * metadata. By making the modifications independently, we can catch
2059 * corruptions that we wouldn't see if we just copied from one record
2060 * to another.
2061 */
2062 error = xfs_inobt_get_rec(cur, &rec, &i);
2063 if (error)
2064 goto error;
2065 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2066
2067 rec.ir_free |= XFS_INOBT_MASK(offset);
2068 rec.ir_freecount++;
2069
2070 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2071 (rec.ir_freecount == ibtrec->ir_freecount),
2072 error);
2073
2074 /*
2075 * The content of inobt records should always match between the inobt
2076 * and finobt. The lifecycle of records in the finobt is different from
2077 * the inobt in that the finobt only tracks records with at least one
2078 * free inode. Hence, if all of the inodes are free and we aren't
2079 * keeping inode chunks permanently on disk, remove the record.
2080 * Otherwise, update the record with the new information.
2081 *
2082 * Note that we currently can't free chunks when the block size is large
2083 * enough for multiple chunks. Leave the finobt record to remain in sync
2084 * with the inobt.
2085 */
2086 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2087 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2088 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2089 error = xfs_btree_delete(cur, &i);
2090 if (error)
2091 goto error;
2092 ASSERT(i == 1);
2093 } else {
2094 error = xfs_inobt_update(cur, &rec);
2095 if (error)
2096 goto error;
2097 }
2098
2099 out:
2100 error = xfs_check_agi_freecount(cur, agi);
2101 if (error)
2102 goto error;
2103
2104 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2105 return 0;
2106
2107 error:
2108 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2109 return error;
2110 }
2111
2112 /*
2113 * Free disk inode. Carefully avoids touching the incore inode, all
2114 * manipulations incore are the caller's responsibility.
2115 * The on-disk inode is not changed by this operation, only the
2116 * btree (free inode mask) is changed.
2117 */
2118 int
2119 xfs_difree(
2120 struct xfs_trans *tp, /* transaction pointer */
2121 xfs_ino_t inode, /* inode to be freed */
2122 struct xfs_defer_ops *dfops, /* extents to free */
2123 struct xfs_icluster *xic) /* cluster info if deleted */
2124 {
2125 /* REFERENCED */
2126 xfs_agblock_t agbno; /* block number containing inode */
2127 struct xfs_buf *agbp; /* buffer for allocation group header */
2128 xfs_agino_t agino; /* allocation group inode number */
2129 xfs_agnumber_t agno; /* allocation group number */
2130 int error; /* error return value */
2131 struct xfs_mount *mp; /* mount structure for filesystem */
2132 struct xfs_inobt_rec_incore rec;/* btree record */
2133
2134 mp = tp->t_mountp;
2135
2136 /*
2137 * Break up inode number into its components.
2138 */
2139 agno = XFS_INO_TO_AGNO(mp, inode);
2140 if (agno >= mp->m_sb.sb_agcount) {
2141 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2142 __func__, agno, mp->m_sb.sb_agcount);
2143 ASSERT(0);
2144 return -EINVAL;
2145 }
2146 agino = XFS_INO_TO_AGINO(mp, inode);
2147 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2148 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2149 __func__, (unsigned long long)inode,
2150 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2151 ASSERT(0);
2152 return -EINVAL;
2153 }
2154 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2155 if (agbno >= mp->m_sb.sb_agblocks) {
2156 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2157 __func__, agbno, mp->m_sb.sb_agblocks);
2158 ASSERT(0);
2159 return -EINVAL;
2160 }
2161 /*
2162 * Get the allocation group header.
2163 */
2164 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2165 if (error) {
2166 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2167 __func__, error);
2168 return error;
2169 }
2170
2171 /*
2172 * Fix up the inode allocation btree.
2173 */
2174 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2175 if (error)
2176 goto error0;
2177
2178 /*
2179 * Fix up the free inode btree.
2180 */
2181 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2182 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2183 if (error)
2184 goto error0;
2185 }
2186
2187 return 0;
2188
2189 error0:
2190 return error;
2191 }
2192
2193 STATIC int
2194 xfs_imap_lookup(
2195 struct xfs_mount *mp,
2196 struct xfs_trans *tp,
2197 xfs_agnumber_t agno,
2198 xfs_agino_t agino,
2199 xfs_agblock_t agbno,
2200 xfs_agblock_t *chunk_agbno,
2201 xfs_agblock_t *offset_agbno,
2202 int flags)
2203 {
2204 struct xfs_inobt_rec_incore rec;
2205 struct xfs_btree_cur *cur;
2206 struct xfs_buf *agbp;
2207 int error;
2208 int i;
2209
2210 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2211 if (error) {
2212 xfs_alert(mp,
2213 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2214 __func__, error, agno);
2215 return error;
2216 }
2217
2218 /*
2219 * Lookup the inode record for the given agino. If the record cannot be
2220 * found, then it's an invalid inode number and we should abort. Once
2221 * we have a record, we need to ensure it contains the inode number
2222 * we are looking up.
2223 */
2224 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2225 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2226 if (!error) {
2227 if (i)
2228 error = xfs_inobt_get_rec(cur, &rec, &i);
2229 if (!error && i == 0)
2230 error = -EINVAL;
2231 }
2232
2233 xfs_trans_brelse(tp, agbp);
2234 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2235 if (error)
2236 return error;
2237
2238 /* check that the returned record contains the required inode */
2239 if (rec.ir_startino > agino ||
2240 rec.ir_startino + mp->m_ialloc_inos <= agino)
2241 return -EINVAL;
2242
2243 /* for untrusted inodes check it is allocated first */
2244 if ((flags & XFS_IGET_UNTRUSTED) &&
2245 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2246 return -EINVAL;
2247
2248 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2249 *offset_agbno = agbno - *chunk_agbno;
2250 return 0;
2251 }
2252
2253 /*
2254 * Return the location of the inode in imap, for mapping it into a buffer.
2255 */
2256 int
2257 xfs_imap(
2258 xfs_mount_t *mp, /* file system mount structure */
2259 xfs_trans_t *tp, /* transaction pointer */
2260 xfs_ino_t ino, /* inode to locate */
2261 struct xfs_imap *imap, /* location map structure */
2262 uint flags) /* flags for inode btree lookup */
2263 {
2264 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2265 xfs_agino_t agino; /* inode number within alloc group */
2266 xfs_agnumber_t agno; /* allocation group number */
2267 int blks_per_cluster; /* num blocks per inode cluster */
2268 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2269 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2270 int error; /* error code */
2271 int offset; /* index of inode in its buffer */
2272 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2273
2274 ASSERT(ino != NULLFSINO);
2275
2276 /*
2277 * Split up the inode number into its parts.
2278 */
2279 agno = XFS_INO_TO_AGNO(mp, ino);
2280 agino = XFS_INO_TO_AGINO(mp, ino);
2281 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2282 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2283 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2284 #ifdef DEBUG
2285 /*
2286 * Don't output diagnostic information for untrusted inodes
2287 * as they can be invalid without implying corruption.
2288 */
2289 if (flags & XFS_IGET_UNTRUSTED)
2290 return -EINVAL;
2291 if (agno >= mp->m_sb.sb_agcount) {
2292 xfs_alert(mp,
2293 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2294 __func__, agno, mp->m_sb.sb_agcount);
2295 }
2296 if (agbno >= mp->m_sb.sb_agblocks) {
2297 xfs_alert(mp,
2298 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2299 __func__, (unsigned long long)agbno,
2300 (unsigned long)mp->m_sb.sb_agblocks);
2301 }
2302 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2303 xfs_alert(mp,
2304 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2305 __func__, ino,
2306 XFS_AGINO_TO_INO(mp, agno, agino));
2307 }
2308 xfs_stack_trace();
2309 #endif /* DEBUG */
2310 return -EINVAL;
2311 }
2312
2313 blks_per_cluster = xfs_icluster_size_fsb(mp);
2314
2315 /*
2316 * For bulkstat and handle lookups, we have an untrusted inode number
2317 * that we have to verify is valid. We cannot do this just by reading
2318 * the inode buffer as it may have been unlinked and removed leaving
2319 * inodes in stale state on disk. Hence we have to do a btree lookup
2320 * in all cases where an untrusted inode number is passed.
2321 */
2322 if (flags & XFS_IGET_UNTRUSTED) {
2323 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2324 &chunk_agbno, &offset_agbno, flags);
2325 if (error)
2326 return error;
2327 goto out_map;
2328 }
2329
2330 /*
2331 * If the inode cluster size is the same as the blocksize or
2332 * smaller we get to the buffer by simple arithmetics.
2333 */
2334 if (blks_per_cluster == 1) {
2335 offset = XFS_INO_TO_OFFSET(mp, ino);
2336 ASSERT(offset < mp->m_sb.sb_inopblock);
2337
2338 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2339 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2340 imap->im_boffset = (unsigned short)(offset <<
2341 mp->m_sb.sb_inodelog);
2342 return 0;
2343 }
2344
2345 /*
2346 * If the inode chunks are aligned then use simple maths to
2347 * find the location. Otherwise we have to do a btree
2348 * lookup to find the location.
2349 */
2350 if (mp->m_inoalign_mask) {
2351 offset_agbno = agbno & mp->m_inoalign_mask;
2352 chunk_agbno = agbno - offset_agbno;
2353 } else {
2354 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2355 &chunk_agbno, &offset_agbno, flags);
2356 if (error)
2357 return error;
2358 }
2359
2360 out_map:
2361 ASSERT(agbno >= chunk_agbno);
2362 cluster_agbno = chunk_agbno +
2363 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2364 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2365 XFS_INO_TO_OFFSET(mp, ino);
2366
2367 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2368 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2369 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2370
2371 /*
2372 * If the inode number maps to a block outside the bounds
2373 * of the file system then return NULL rather than calling
2374 * read_buf and panicing when we get an error from the
2375 * driver.
2376 */
2377 if ((imap->im_blkno + imap->im_len) >
2378 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2379 xfs_alert(mp,
2380 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2381 __func__, (unsigned long long) imap->im_blkno,
2382 (unsigned long long) imap->im_len,
2383 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2384 return -EINVAL;
2385 }
2386 return 0;
2387 }
2388
2389 /*
2390 * Compute and fill in value of m_in_maxlevels.
2391 */
2392 void
2393 xfs_ialloc_compute_maxlevels(
2394 xfs_mount_t *mp) /* file system mount structure */
2395 {
2396 uint inodes;
2397
2398 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2399 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2400 inodes);
2401 }
2402
2403 /*
2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
2405 * structure over time requires that we interpret the buffer as two logical
2406 * regions delineated by the end of the unlinked list. This is due to the size
2407 * of the hash table and its location in the middle of the agi.
2408 *
2409 * For example, a request to log a field before agi_unlinked and a field after
2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
2411 * amount of log space. To avoid this behavior, log the region up through
2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
2413 * the structure in another.
2414 */
2415 void
2416 xfs_ialloc_log_agi(
2417 xfs_trans_t *tp, /* transaction pointer */
2418 xfs_buf_t *bp, /* allocation group header buffer */
2419 int fields) /* bitmask of fields to log */
2420 {
2421 int first; /* first byte number */
2422 int last; /* last byte number */
2423 static const short offsets[] = { /* field starting offsets */
2424 /* keep in sync with bit definitions */
2425 offsetof(xfs_agi_t, agi_magicnum),
2426 offsetof(xfs_agi_t, agi_versionnum),
2427 offsetof(xfs_agi_t, agi_seqno),
2428 offsetof(xfs_agi_t, agi_length),
2429 offsetof(xfs_agi_t, agi_count),
2430 offsetof(xfs_agi_t, agi_root),
2431 offsetof(xfs_agi_t, agi_level),
2432 offsetof(xfs_agi_t, agi_freecount),
2433 offsetof(xfs_agi_t, agi_newino),
2434 offsetof(xfs_agi_t, agi_dirino),
2435 offsetof(xfs_agi_t, agi_unlinked),
2436 offsetof(xfs_agi_t, agi_free_root),
2437 offsetof(xfs_agi_t, agi_free_level),
2438 sizeof(xfs_agi_t)
2439 };
2440 #ifdef DEBUG
2441 xfs_agi_t *agi; /* allocation group header */
2442
2443 agi = XFS_BUF_TO_AGI(bp);
2444 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2445 #endif
2446
2447 /*
2448 * Compute byte offsets for the first and last fields in the first
2449 * region and log the agi buffer. This only logs up through
2450 * agi_unlinked.
2451 */
2452 if (fields & XFS_AGI_ALL_BITS_R1) {
2453 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2454 &first, &last);
2455 xfs_trans_log_buf(tp, bp, first, last);
2456 }
2457
2458 /*
2459 * Mask off the bits in the first region and calculate the first and
2460 * last field offsets for any bits in the second region.
2461 */
2462 fields &= ~XFS_AGI_ALL_BITS_R1;
2463 if (fields) {
2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2465 &first, &last);
2466 xfs_trans_log_buf(tp, bp, first, last);
2467 }
2468 }
2469
2470 #ifdef DEBUG
2471 STATIC void
2472 xfs_check_agi_unlinked(
2473 struct xfs_agi *agi)
2474 {
2475 int i;
2476
2477 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2478 ASSERT(agi->agi_unlinked[i]);
2479 }
2480 #else
2481 #define xfs_check_agi_unlinked(agi)
2482 #endif
2483
2484 static bool
2485 xfs_agi_verify(
2486 struct xfs_buf *bp)
2487 {
2488 struct xfs_mount *mp = bp->b_target->bt_mount;
2489 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2490
2491 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2492 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2493 return false;
2494 if (!xfs_log_check_lsn(mp,
2495 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2496 return false;
2497 }
2498
2499 /*
2500 * Validate the magic number of the agi block.
2501 */
2502 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2503 return false;
2504 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2505 return false;
2506
2507 if (be32_to_cpu(agi->agi_level) < 1 ||
2508 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2509 return false;
2510
2511 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2512 (be32_to_cpu(agi->agi_free_level) < 1 ||
2513 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2514 return false;
2515
2516 /*
2517 * during growfs operations, the perag is not fully initialised,
2518 * so we can't use it for any useful checking. growfs ensures we can't
2519 * use it by using uncached buffers that don't have the perag attached
2520 * so we can detect and avoid this problem.
2521 */
2522 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2523 return false;
2524
2525 xfs_check_agi_unlinked(agi);
2526 return true;
2527 }
2528
2529 static void
2530 xfs_agi_read_verify(
2531 struct xfs_buf *bp)
2532 {
2533 struct xfs_mount *mp = bp->b_target->bt_mount;
2534
2535 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2536 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2537 xfs_buf_ioerror(bp, -EFSBADCRC);
2538 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2539 XFS_ERRTAG_IALLOC_READ_AGI,
2540 XFS_RANDOM_IALLOC_READ_AGI))
2541 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2542
2543 if (bp->b_error)
2544 xfs_verifier_error(bp);
2545 }
2546
2547 static void
2548 xfs_agi_write_verify(
2549 struct xfs_buf *bp)
2550 {
2551 struct xfs_mount *mp = bp->b_target->bt_mount;
2552 struct xfs_buf_log_item *bip = bp->b_fspriv;
2553
2554 if (!xfs_agi_verify(bp)) {
2555 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2556 xfs_verifier_error(bp);
2557 return;
2558 }
2559
2560 if (!xfs_sb_version_hascrc(&mp->m_sb))
2561 return;
2562
2563 if (bip)
2564 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2565 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2566 }
2567
2568 const struct xfs_buf_ops xfs_agi_buf_ops = {
2569 .name = "xfs_agi",
2570 .verify_read = xfs_agi_read_verify,
2571 .verify_write = xfs_agi_write_verify,
2572 };
2573
2574 /*
2575 * Read in the allocation group header (inode allocation section)
2576 */
2577 int
2578 xfs_read_agi(
2579 struct xfs_mount *mp, /* file system mount structure */
2580 struct xfs_trans *tp, /* transaction pointer */
2581 xfs_agnumber_t agno, /* allocation group number */
2582 struct xfs_buf **bpp) /* allocation group hdr buf */
2583 {
2584 int error;
2585
2586 trace_xfs_read_agi(mp, agno);
2587
2588 ASSERT(agno != NULLAGNUMBER);
2589 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2590 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2591 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2592 if (error)
2593 return error;
2594 if (tp)
2595 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2596
2597 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2598 return 0;
2599 }
2600
2601 int
2602 xfs_ialloc_read_agi(
2603 struct xfs_mount *mp, /* file system mount structure */
2604 struct xfs_trans *tp, /* transaction pointer */
2605 xfs_agnumber_t agno, /* allocation group number */
2606 struct xfs_buf **bpp) /* allocation group hdr buf */
2607 {
2608 struct xfs_agi *agi; /* allocation group header */
2609 struct xfs_perag *pag; /* per allocation group data */
2610 int error;
2611
2612 trace_xfs_ialloc_read_agi(mp, agno);
2613
2614 error = xfs_read_agi(mp, tp, agno, bpp);
2615 if (error)
2616 return error;
2617
2618 agi = XFS_BUF_TO_AGI(*bpp);
2619 pag = xfs_perag_get(mp, agno);
2620 if (!pag->pagi_init) {
2621 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2622 pag->pagi_count = be32_to_cpu(agi->agi_count);
2623 pag->pagi_init = 1;
2624 }
2625
2626 /*
2627 * It's possible for these to be out of sync if
2628 * we are in the middle of a forced shutdown.
2629 */
2630 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2631 XFS_FORCED_SHUTDOWN(mp));
2632 xfs_perag_put(pag);
2633 return 0;
2634 }
2635
2636 /*
2637 * Read in the agi to initialise the per-ag data in the mount structure
2638 */
2639 int
2640 xfs_ialloc_pagi_init(
2641 xfs_mount_t *mp, /* file system mount structure */
2642 xfs_trans_t *tp, /* transaction pointer */
2643 xfs_agnumber_t agno) /* allocation group number */
2644 {
2645 xfs_buf_t *bp = NULL;
2646 int error;
2647
2648 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2649 if (error)
2650 return error;
2651 if (bp)
2652 xfs_trans_brelse(tp, bp);
2653 return 0;
2654 }