]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc.c
xfs: rework xfs_bmap_free callers to use xfs_defer_ops
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_cksum.h"
35 #include "xfs_trans.h"
36 #include "xfs_trace.h"
37
38
39 /*
40 * Allocation group level functions.
41 */
42 static inline int
43 xfs_ialloc_cluster_alignment(
44 struct xfs_mount *mp)
45 {
46 if (xfs_sb_version_hasalign(&mp->m_sb) &&
47 mp->m_sb.sb_inoalignmt >=
48 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
49 return mp->m_sb.sb_inoalignmt;
50 return 1;
51 }
52
53 /*
54 * Lookup a record by ino in the btree given by cur.
55 */
56 int /* error */
57 xfs_inobt_lookup(
58 struct xfs_btree_cur *cur, /* btree cursor */
59 xfs_agino_t ino, /* starting inode of chunk */
60 xfs_lookup_t dir, /* <=, >=, == */
61 int *stat) /* success/failure */
62 {
63 cur->bc_rec.i.ir_startino = ino;
64 cur->bc_rec.i.ir_holemask = 0;
65 cur->bc_rec.i.ir_count = 0;
66 cur->bc_rec.i.ir_freecount = 0;
67 cur->bc_rec.i.ir_free = 0;
68 return xfs_btree_lookup(cur, dir, stat);
69 }
70
71 /*
72 * Update the record referred to by cur to the value given.
73 * This either works (return 0) or gets an EFSCORRUPTED error.
74 */
75 STATIC int /* error */
76 xfs_inobt_update(
77 struct xfs_btree_cur *cur, /* btree cursor */
78 xfs_inobt_rec_incore_t *irec) /* btree record */
79 {
80 union xfs_btree_rec rec;
81
82 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
83 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
84 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
85 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
86 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
87 } else {
88 /* ir_holemask/ir_count not supported on-disk */
89 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
90 }
91 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
92 return xfs_btree_update(cur, &rec);
93 }
94
95 /*
96 * Get the data from the pointed-to record.
97 */
98 int /* error */
99 xfs_inobt_get_rec(
100 struct xfs_btree_cur *cur, /* btree cursor */
101 xfs_inobt_rec_incore_t *irec, /* btree record */
102 int *stat) /* output: success/failure */
103 {
104 union xfs_btree_rec *rec;
105 int error;
106
107 error = xfs_btree_get_rec(cur, &rec, stat);
108 if (error || *stat == 0)
109 return error;
110
111 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
112 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
113 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
114 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
115 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
116 } else {
117 /*
118 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
119 * values for full inode chunks.
120 */
121 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
122 irec->ir_count = XFS_INODES_PER_CHUNK;
123 irec->ir_freecount =
124 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
125 }
126 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
127
128 return 0;
129 }
130
131 /*
132 * Insert a single inobt record. Cursor must already point to desired location.
133 */
134 STATIC int
135 xfs_inobt_insert_rec(
136 struct xfs_btree_cur *cur,
137 __uint16_t holemask,
138 __uint8_t count,
139 __int32_t freecount,
140 xfs_inofree_t free,
141 int *stat)
142 {
143 cur->bc_rec.i.ir_holemask = holemask;
144 cur->bc_rec.i.ir_count = count;
145 cur->bc_rec.i.ir_freecount = freecount;
146 cur->bc_rec.i.ir_free = free;
147 return xfs_btree_insert(cur, stat);
148 }
149
150 /*
151 * Insert records describing a newly allocated inode chunk into the inobt.
152 */
153 STATIC int
154 xfs_inobt_insert(
155 struct xfs_mount *mp,
156 struct xfs_trans *tp,
157 struct xfs_buf *agbp,
158 xfs_agino_t newino,
159 xfs_agino_t newlen,
160 xfs_btnum_t btnum)
161 {
162 struct xfs_btree_cur *cur;
163 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
164 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
165 xfs_agino_t thisino;
166 int i;
167 int error;
168
169 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
170
171 for (thisino = newino;
172 thisino < newino + newlen;
173 thisino += XFS_INODES_PER_CHUNK) {
174 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
175 if (error) {
176 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
177 return error;
178 }
179 ASSERT(i == 0);
180
181 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
182 XFS_INODES_PER_CHUNK,
183 XFS_INODES_PER_CHUNK,
184 XFS_INOBT_ALL_FREE, &i);
185 if (error) {
186 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
187 return error;
188 }
189 ASSERT(i == 1);
190 }
191
192 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
193
194 return 0;
195 }
196
197 /*
198 * Verify that the number of free inodes in the AGI is correct.
199 */
200 #ifdef DEBUG
201 STATIC int
202 xfs_check_agi_freecount(
203 struct xfs_btree_cur *cur,
204 struct xfs_agi *agi)
205 {
206 if (cur->bc_nlevels == 1) {
207 xfs_inobt_rec_incore_t rec;
208 int freecount = 0;
209 int error;
210 int i;
211
212 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
213 if (error)
214 return error;
215
216 do {
217 error = xfs_inobt_get_rec(cur, &rec, &i);
218 if (error)
219 return error;
220
221 if (i) {
222 freecount += rec.ir_freecount;
223 error = xfs_btree_increment(cur, 0, &i);
224 if (error)
225 return error;
226 }
227 } while (i == 1);
228
229 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
230 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
231 }
232 return 0;
233 }
234 #else
235 #define xfs_check_agi_freecount(cur, agi) 0
236 #endif
237
238 /*
239 * Initialise a new set of inodes. When called without a transaction context
240 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
241 * than logging them (which in a transaction context puts them into the AIL
242 * for writeback rather than the xfsbufd queue).
243 */
244 int
245 xfs_ialloc_inode_init(
246 struct xfs_mount *mp,
247 struct xfs_trans *tp,
248 struct list_head *buffer_list,
249 int icount,
250 xfs_agnumber_t agno,
251 xfs_agblock_t agbno,
252 xfs_agblock_t length,
253 unsigned int gen)
254 {
255 struct xfs_buf *fbuf;
256 struct xfs_dinode *free;
257 int nbufs, blks_per_cluster, inodes_per_cluster;
258 int version;
259 int i, j;
260 xfs_daddr_t d;
261 xfs_ino_t ino = 0;
262
263 /*
264 * Loop over the new block(s), filling in the inodes. For small block
265 * sizes, manipulate the inodes in buffers which are multiples of the
266 * blocks size.
267 */
268 blks_per_cluster = xfs_icluster_size_fsb(mp);
269 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
270 nbufs = length / blks_per_cluster;
271
272 /*
273 * Figure out what version number to use in the inodes we create. If
274 * the superblock version has caught up to the one that supports the new
275 * inode format, then use the new inode version. Otherwise use the old
276 * version so that old kernels will continue to be able to use the file
277 * system.
278 *
279 * For v3 inodes, we also need to write the inode number into the inode,
280 * so calculate the first inode number of the chunk here as
281 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
282 * across multiple filesystem blocks (such as a cluster) and so cannot
283 * be used in the cluster buffer loop below.
284 *
285 * Further, because we are writing the inode directly into the buffer
286 * and calculating a CRC on the entire inode, we have ot log the entire
287 * inode so that the entire range the CRC covers is present in the log.
288 * That means for v3 inode we log the entire buffer rather than just the
289 * inode cores.
290 */
291 if (xfs_sb_version_hascrc(&mp->m_sb)) {
292 version = 3;
293 ino = XFS_AGINO_TO_INO(mp, agno,
294 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
295
296 /*
297 * log the initialisation that is about to take place as an
298 * logical operation. This means the transaction does not
299 * need to log the physical changes to the inode buffers as log
300 * recovery will know what initialisation is actually needed.
301 * Hence we only need to log the buffers as "ordered" buffers so
302 * they track in the AIL as if they were physically logged.
303 */
304 if (tp)
305 xfs_icreate_log(tp, agno, agbno, icount,
306 mp->m_sb.sb_inodesize, length, gen);
307 } else
308 version = 2;
309
310 for (j = 0; j < nbufs; j++) {
311 /*
312 * Get the block.
313 */
314 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
315 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
316 mp->m_bsize * blks_per_cluster,
317 XBF_UNMAPPED);
318 if (!fbuf)
319 return -ENOMEM;
320
321 /* Initialize the inode buffers and log them appropriately. */
322 fbuf->b_ops = &xfs_inode_buf_ops;
323 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
324 for (i = 0; i < inodes_per_cluster; i++) {
325 int ioffset = i << mp->m_sb.sb_inodelog;
326 uint isize = xfs_dinode_size(version);
327
328 free = xfs_make_iptr(mp, fbuf, i);
329 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
330 free->di_version = version;
331 free->di_gen = cpu_to_be32(gen);
332 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
333
334 if (version == 3) {
335 free->di_ino = cpu_to_be64(ino);
336 ino++;
337 uuid_copy(&free->di_uuid,
338 &mp->m_sb.sb_meta_uuid);
339 xfs_dinode_calc_crc(mp, free);
340 } else if (tp) {
341 /* just log the inode core */
342 xfs_trans_log_buf(tp, fbuf, ioffset,
343 ioffset + isize - 1);
344 }
345 }
346
347 if (tp) {
348 /*
349 * Mark the buffer as an inode allocation buffer so it
350 * sticks in AIL at the point of this allocation
351 * transaction. This ensures the they are on disk before
352 * the tail of the log can be moved past this
353 * transaction (i.e. by preventing relogging from moving
354 * it forward in the log).
355 */
356 xfs_trans_inode_alloc_buf(tp, fbuf);
357 if (version == 3) {
358 /*
359 * Mark the buffer as ordered so that they are
360 * not physically logged in the transaction but
361 * still tracked in the AIL as part of the
362 * transaction and pin the log appropriately.
363 */
364 xfs_trans_ordered_buf(tp, fbuf);
365 xfs_trans_log_buf(tp, fbuf, 0,
366 BBTOB(fbuf->b_length) - 1);
367 }
368 } else {
369 fbuf->b_flags |= XBF_DONE;
370 xfs_buf_delwri_queue(fbuf, buffer_list);
371 xfs_buf_relse(fbuf);
372 }
373 }
374 return 0;
375 }
376
377 /*
378 * Align startino and allocmask for a recently allocated sparse chunk such that
379 * they are fit for insertion (or merge) into the on-disk inode btrees.
380 *
381 * Background:
382 *
383 * When enabled, sparse inode support increases the inode alignment from cluster
384 * size to inode chunk size. This means that the minimum range between two
385 * non-adjacent inode records in the inobt is large enough for a full inode
386 * record. This allows for cluster sized, cluster aligned block allocation
387 * without need to worry about whether the resulting inode record overlaps with
388 * another record in the tree. Without this basic rule, we would have to deal
389 * with the consequences of overlap by potentially undoing recent allocations in
390 * the inode allocation codepath.
391 *
392 * Because of this alignment rule (which is enforced on mount), there are two
393 * inobt possibilities for newly allocated sparse chunks. One is that the
394 * aligned inode record for the chunk covers a range of inodes not already
395 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
396 * other is that a record already exists at the aligned startino that considers
397 * the newly allocated range as sparse. In the latter case, record content is
398 * merged in hope that sparse inode chunks fill to full chunks over time.
399 */
400 STATIC void
401 xfs_align_sparse_ino(
402 struct xfs_mount *mp,
403 xfs_agino_t *startino,
404 uint16_t *allocmask)
405 {
406 xfs_agblock_t agbno;
407 xfs_agblock_t mod;
408 int offset;
409
410 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
411 mod = agbno % mp->m_sb.sb_inoalignmt;
412 if (!mod)
413 return;
414
415 /* calculate the inode offset and align startino */
416 offset = mod << mp->m_sb.sb_inopblog;
417 *startino -= offset;
418
419 /*
420 * Since startino has been aligned down, left shift allocmask such that
421 * it continues to represent the same physical inodes relative to the
422 * new startino.
423 */
424 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
425 }
426
427 /*
428 * Determine whether the source inode record can merge into the target. Both
429 * records must be sparse, the inode ranges must match and there must be no
430 * allocation overlap between the records.
431 */
432 STATIC bool
433 __xfs_inobt_can_merge(
434 struct xfs_inobt_rec_incore *trec, /* tgt record */
435 struct xfs_inobt_rec_incore *srec) /* src record */
436 {
437 uint64_t talloc;
438 uint64_t salloc;
439
440 /* records must cover the same inode range */
441 if (trec->ir_startino != srec->ir_startino)
442 return false;
443
444 /* both records must be sparse */
445 if (!xfs_inobt_issparse(trec->ir_holemask) ||
446 !xfs_inobt_issparse(srec->ir_holemask))
447 return false;
448
449 /* both records must track some inodes */
450 if (!trec->ir_count || !srec->ir_count)
451 return false;
452
453 /* can't exceed capacity of a full record */
454 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
455 return false;
456
457 /* verify there is no allocation overlap */
458 talloc = xfs_inobt_irec_to_allocmask(trec);
459 salloc = xfs_inobt_irec_to_allocmask(srec);
460 if (talloc & salloc)
461 return false;
462
463 return true;
464 }
465
466 /*
467 * Merge the source inode record into the target. The caller must call
468 * __xfs_inobt_can_merge() to ensure the merge is valid.
469 */
470 STATIC void
471 __xfs_inobt_rec_merge(
472 struct xfs_inobt_rec_incore *trec, /* target */
473 struct xfs_inobt_rec_incore *srec) /* src */
474 {
475 ASSERT(trec->ir_startino == srec->ir_startino);
476
477 /* combine the counts */
478 trec->ir_count += srec->ir_count;
479 trec->ir_freecount += srec->ir_freecount;
480
481 /*
482 * Merge the holemask and free mask. For both fields, 0 bits refer to
483 * allocated inodes. We combine the allocated ranges with bitwise AND.
484 */
485 trec->ir_holemask &= srec->ir_holemask;
486 trec->ir_free &= srec->ir_free;
487 }
488
489 /*
490 * Insert a new sparse inode chunk into the associated inode btree. The inode
491 * record for the sparse chunk is pre-aligned to a startino that should match
492 * any pre-existing sparse inode record in the tree. This allows sparse chunks
493 * to fill over time.
494 *
495 * This function supports two modes of handling preexisting records depending on
496 * the merge flag. If merge is true, the provided record is merged with the
497 * existing record and updated in place. The merged record is returned in nrec.
498 * If merge is false, an existing record is replaced with the provided record.
499 * If no preexisting record exists, the provided record is always inserted.
500 *
501 * It is considered corruption if a merge is requested and not possible. Given
502 * the sparse inode alignment constraints, this should never happen.
503 */
504 STATIC int
505 xfs_inobt_insert_sprec(
506 struct xfs_mount *mp,
507 struct xfs_trans *tp,
508 struct xfs_buf *agbp,
509 int btnum,
510 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
511 bool merge) /* merge or replace */
512 {
513 struct xfs_btree_cur *cur;
514 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
515 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
516 int error;
517 int i;
518 struct xfs_inobt_rec_incore rec;
519
520 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
521
522 /* the new record is pre-aligned so we know where to look */
523 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
524 if (error)
525 goto error;
526 /* if nothing there, insert a new record and return */
527 if (i == 0) {
528 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
529 nrec->ir_count, nrec->ir_freecount,
530 nrec->ir_free, &i);
531 if (error)
532 goto error;
533 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
534
535 goto out;
536 }
537
538 /*
539 * A record exists at this startino. Merge or replace the record
540 * depending on what we've been asked to do.
541 */
542 if (merge) {
543 error = xfs_inobt_get_rec(cur, &rec, &i);
544 if (error)
545 goto error;
546 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
547 XFS_WANT_CORRUPTED_GOTO(mp,
548 rec.ir_startino == nrec->ir_startino,
549 error);
550
551 /*
552 * This should never fail. If we have coexisting records that
553 * cannot merge, something is seriously wrong.
554 */
555 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
556 error);
557
558 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
559 rec.ir_holemask, nrec->ir_startino,
560 nrec->ir_holemask);
561
562 /* merge to nrec to output the updated record */
563 __xfs_inobt_rec_merge(nrec, &rec);
564
565 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
566 nrec->ir_holemask);
567
568 error = xfs_inobt_rec_check_count(mp, nrec);
569 if (error)
570 goto error;
571 }
572
573 error = xfs_inobt_update(cur, nrec);
574 if (error)
575 goto error;
576
577 out:
578 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
579 return 0;
580 error:
581 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
582 return error;
583 }
584
585 /*
586 * Allocate new inodes in the allocation group specified by agbp.
587 * Return 0 for success, else error code.
588 */
589 STATIC int /* error code or 0 */
590 xfs_ialloc_ag_alloc(
591 xfs_trans_t *tp, /* transaction pointer */
592 xfs_buf_t *agbp, /* alloc group buffer */
593 int *alloc)
594 {
595 xfs_agi_t *agi; /* allocation group header */
596 xfs_alloc_arg_t args; /* allocation argument structure */
597 xfs_agnumber_t agno;
598 int error;
599 xfs_agino_t newino; /* new first inode's number */
600 xfs_agino_t newlen; /* new number of inodes */
601 int isaligned = 0; /* inode allocation at stripe unit */
602 /* boundary */
603 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
604 struct xfs_inobt_rec_incore rec;
605 struct xfs_perag *pag;
606 int do_sparse = 0;
607
608 memset(&args, 0, sizeof(args));
609 args.tp = tp;
610 args.mp = tp->t_mountp;
611 args.fsbno = NULLFSBLOCK;
612
613 #ifdef DEBUG
614 /* randomly do sparse inode allocations */
615 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
616 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
617 do_sparse = prandom_u32() & 1;
618 #endif
619
620 /*
621 * Locking will ensure that we don't have two callers in here
622 * at one time.
623 */
624 newlen = args.mp->m_ialloc_inos;
625 if (args.mp->m_maxicount &&
626 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
627 args.mp->m_maxicount)
628 return -ENOSPC;
629 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
630 /*
631 * First try to allocate inodes contiguous with the last-allocated
632 * chunk of inodes. If the filesystem is striped, this will fill
633 * an entire stripe unit with inodes.
634 */
635 agi = XFS_BUF_TO_AGI(agbp);
636 newino = be32_to_cpu(agi->agi_newino);
637 agno = be32_to_cpu(agi->agi_seqno);
638 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
639 args.mp->m_ialloc_blks;
640 if (do_sparse)
641 goto sparse_alloc;
642 if (likely(newino != NULLAGINO &&
643 (args.agbno < be32_to_cpu(agi->agi_length)))) {
644 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
645 args.type = XFS_ALLOCTYPE_THIS_BNO;
646 args.prod = 1;
647
648 /*
649 * We need to take into account alignment here to ensure that
650 * we don't modify the free list if we fail to have an exact
651 * block. If we don't have an exact match, and every oher
652 * attempt allocation attempt fails, we'll end up cancelling
653 * a dirty transaction and shutting down.
654 *
655 * For an exact allocation, alignment must be 1,
656 * however we need to take cluster alignment into account when
657 * fixing up the freelist. Use the minalignslop field to
658 * indicate that extra blocks might be required for alignment,
659 * but not to use them in the actual exact allocation.
660 */
661 args.alignment = 1;
662 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
663
664 /* Allow space for the inode btree to split. */
665 args.minleft = args.mp->m_in_maxlevels - 1;
666 if ((error = xfs_alloc_vextent(&args)))
667 return error;
668
669 /*
670 * This request might have dirtied the transaction if the AG can
671 * satisfy the request, but the exact block was not available.
672 * If the allocation did fail, subsequent requests will relax
673 * the exact agbno requirement and increase the alignment
674 * instead. It is critical that the total size of the request
675 * (len + alignment + slop) does not increase from this point
676 * on, so reset minalignslop to ensure it is not included in
677 * subsequent requests.
678 */
679 args.minalignslop = 0;
680 }
681
682 if (unlikely(args.fsbno == NULLFSBLOCK)) {
683 /*
684 * Set the alignment for the allocation.
685 * If stripe alignment is turned on then align at stripe unit
686 * boundary.
687 * If the cluster size is smaller than a filesystem block
688 * then we're doing I/O for inodes in filesystem block size
689 * pieces, so don't need alignment anyway.
690 */
691 isaligned = 0;
692 if (args.mp->m_sinoalign) {
693 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
694 args.alignment = args.mp->m_dalign;
695 isaligned = 1;
696 } else
697 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
698 /*
699 * Need to figure out where to allocate the inode blocks.
700 * Ideally they should be spaced out through the a.g.
701 * For now, just allocate blocks up front.
702 */
703 args.agbno = be32_to_cpu(agi->agi_root);
704 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
705 /*
706 * Allocate a fixed-size extent of inodes.
707 */
708 args.type = XFS_ALLOCTYPE_NEAR_BNO;
709 args.prod = 1;
710 /*
711 * Allow space for the inode btree to split.
712 */
713 args.minleft = args.mp->m_in_maxlevels - 1;
714 if ((error = xfs_alloc_vextent(&args)))
715 return error;
716 }
717
718 /*
719 * If stripe alignment is turned on, then try again with cluster
720 * alignment.
721 */
722 if (isaligned && args.fsbno == NULLFSBLOCK) {
723 args.type = XFS_ALLOCTYPE_NEAR_BNO;
724 args.agbno = be32_to_cpu(agi->agi_root);
725 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
726 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
727 if ((error = xfs_alloc_vextent(&args)))
728 return error;
729 }
730
731 /*
732 * Finally, try a sparse allocation if the filesystem supports it and
733 * the sparse allocation length is smaller than a full chunk.
734 */
735 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
736 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
737 args.fsbno == NULLFSBLOCK) {
738 sparse_alloc:
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = args.mp->m_sb.sb_spino_align;
743 args.prod = 1;
744
745 args.minlen = args.mp->m_ialloc_min_blks;
746 args.maxlen = args.minlen;
747
748 /*
749 * The inode record will be aligned to full chunk size. We must
750 * prevent sparse allocation from AG boundaries that result in
751 * invalid inode records, such as records that start at agbno 0
752 * or extend beyond the AG.
753 *
754 * Set min agbno to the first aligned, non-zero agbno and max to
755 * the last aligned agbno that is at least one full chunk from
756 * the end of the AG.
757 */
758 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
759 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
760 args.mp->m_sb.sb_inoalignmt) -
761 args.mp->m_ialloc_blks;
762
763 error = xfs_alloc_vextent(&args);
764 if (error)
765 return error;
766
767 newlen = args.len << args.mp->m_sb.sb_inopblog;
768 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
769 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
770 }
771
772 if (args.fsbno == NULLFSBLOCK) {
773 *alloc = 0;
774 return 0;
775 }
776 ASSERT(args.len == args.minlen);
777
778 /*
779 * Stamp and write the inode buffers.
780 *
781 * Seed the new inode cluster with a random generation number. This
782 * prevents short-term reuse of generation numbers if a chunk is
783 * freed and then immediately reallocated. We use random numbers
784 * rather than a linear progression to prevent the next generation
785 * number from being easily guessable.
786 */
787 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
788 args.agbno, args.len, prandom_u32());
789
790 if (error)
791 return error;
792 /*
793 * Convert the results.
794 */
795 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
796
797 if (xfs_inobt_issparse(~allocmask)) {
798 /*
799 * We've allocated a sparse chunk. Align the startino and mask.
800 */
801 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
802
803 rec.ir_startino = newino;
804 rec.ir_holemask = ~allocmask;
805 rec.ir_count = newlen;
806 rec.ir_freecount = newlen;
807 rec.ir_free = XFS_INOBT_ALL_FREE;
808
809 /*
810 * Insert the sparse record into the inobt and allow for a merge
811 * if necessary. If a merge does occur, rec is updated to the
812 * merged record.
813 */
814 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
815 &rec, true);
816 if (error == -EFSCORRUPTED) {
817 xfs_alert(args.mp,
818 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
819 XFS_AGINO_TO_INO(args.mp, agno,
820 rec.ir_startino),
821 rec.ir_holemask, rec.ir_count);
822 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
823 }
824 if (error)
825 return error;
826
827 /*
828 * We can't merge the part we've just allocated as for the inobt
829 * due to finobt semantics. The original record may or may not
830 * exist independent of whether physical inodes exist in this
831 * sparse chunk.
832 *
833 * We must update the finobt record based on the inobt record.
834 * rec contains the fully merged and up to date inobt record
835 * from the previous call. Set merge false to replace any
836 * existing record with this one.
837 */
838 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
839 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
840 XFS_BTNUM_FINO, &rec,
841 false);
842 if (error)
843 return error;
844 }
845 } else {
846 /* full chunk - insert new records to both btrees */
847 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
848 XFS_BTNUM_INO);
849 if (error)
850 return error;
851
852 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
853 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
854 newlen, XFS_BTNUM_FINO);
855 if (error)
856 return error;
857 }
858 }
859
860 /*
861 * Update AGI counts and newino.
862 */
863 be32_add_cpu(&agi->agi_count, newlen);
864 be32_add_cpu(&agi->agi_freecount, newlen);
865 pag = xfs_perag_get(args.mp, agno);
866 pag->pagi_freecount += newlen;
867 xfs_perag_put(pag);
868 agi->agi_newino = cpu_to_be32(newino);
869
870 /*
871 * Log allocation group header fields
872 */
873 xfs_ialloc_log_agi(tp, agbp,
874 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
875 /*
876 * Modify/log superblock values for inode count and inode free count.
877 */
878 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
879 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
880 *alloc = 1;
881 return 0;
882 }
883
884 STATIC xfs_agnumber_t
885 xfs_ialloc_next_ag(
886 xfs_mount_t *mp)
887 {
888 xfs_agnumber_t agno;
889
890 spin_lock(&mp->m_agirotor_lock);
891 agno = mp->m_agirotor;
892 if (++mp->m_agirotor >= mp->m_maxagi)
893 mp->m_agirotor = 0;
894 spin_unlock(&mp->m_agirotor_lock);
895
896 return agno;
897 }
898
899 /*
900 * Select an allocation group to look for a free inode in, based on the parent
901 * inode and the mode. Return the allocation group buffer.
902 */
903 STATIC xfs_agnumber_t
904 xfs_ialloc_ag_select(
905 xfs_trans_t *tp, /* transaction pointer */
906 xfs_ino_t parent, /* parent directory inode number */
907 umode_t mode, /* bits set to indicate file type */
908 int okalloc) /* ok to allocate more space */
909 {
910 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
911 xfs_agnumber_t agno; /* current ag number */
912 int flags; /* alloc buffer locking flags */
913 xfs_extlen_t ineed; /* blocks needed for inode allocation */
914 xfs_extlen_t longest = 0; /* longest extent available */
915 xfs_mount_t *mp; /* mount point structure */
916 int needspace; /* file mode implies space allocated */
917 xfs_perag_t *pag; /* per allocation group data */
918 xfs_agnumber_t pagno; /* parent (starting) ag number */
919 int error;
920
921 /*
922 * Files of these types need at least one block if length > 0
923 * (and they won't fit in the inode, but that's hard to figure out).
924 */
925 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
926 mp = tp->t_mountp;
927 agcount = mp->m_maxagi;
928 if (S_ISDIR(mode))
929 pagno = xfs_ialloc_next_ag(mp);
930 else {
931 pagno = XFS_INO_TO_AGNO(mp, parent);
932 if (pagno >= agcount)
933 pagno = 0;
934 }
935
936 ASSERT(pagno < agcount);
937
938 /*
939 * Loop through allocation groups, looking for one with a little
940 * free space in it. Note we don't look for free inodes, exactly.
941 * Instead, we include whether there is a need to allocate inodes
942 * to mean that blocks must be allocated for them,
943 * if none are currently free.
944 */
945 agno = pagno;
946 flags = XFS_ALLOC_FLAG_TRYLOCK;
947 for (;;) {
948 pag = xfs_perag_get(mp, agno);
949 if (!pag->pagi_inodeok) {
950 xfs_ialloc_next_ag(mp);
951 goto nextag;
952 }
953
954 if (!pag->pagi_init) {
955 error = xfs_ialloc_pagi_init(mp, tp, agno);
956 if (error)
957 goto nextag;
958 }
959
960 if (pag->pagi_freecount) {
961 xfs_perag_put(pag);
962 return agno;
963 }
964
965 if (!okalloc)
966 goto nextag;
967
968 if (!pag->pagf_init) {
969 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
970 if (error)
971 goto nextag;
972 }
973
974 /*
975 * Check that there is enough free space for the file plus a
976 * chunk of inodes if we need to allocate some. If this is the
977 * first pass across the AGs, take into account the potential
978 * space needed for alignment of inode chunks when checking the
979 * longest contiguous free space in the AG - this prevents us
980 * from getting ENOSPC because we have free space larger than
981 * m_ialloc_blks but alignment constraints prevent us from using
982 * it.
983 *
984 * If we can't find an AG with space for full alignment slack to
985 * be taken into account, we must be near ENOSPC in all AGs.
986 * Hence we don't include alignment for the second pass and so
987 * if we fail allocation due to alignment issues then it is most
988 * likely a real ENOSPC condition.
989 */
990 ineed = mp->m_ialloc_min_blks;
991 if (flags && ineed > 1)
992 ineed += xfs_ialloc_cluster_alignment(mp);
993 longest = pag->pagf_longest;
994 if (!longest)
995 longest = pag->pagf_flcount > 0;
996
997 if (pag->pagf_freeblks >= needspace + ineed &&
998 longest >= ineed) {
999 xfs_perag_put(pag);
1000 return agno;
1001 }
1002 nextag:
1003 xfs_perag_put(pag);
1004 /*
1005 * No point in iterating over the rest, if we're shutting
1006 * down.
1007 */
1008 if (XFS_FORCED_SHUTDOWN(mp))
1009 return NULLAGNUMBER;
1010 agno++;
1011 if (agno >= agcount)
1012 agno = 0;
1013 if (agno == pagno) {
1014 if (flags == 0)
1015 return NULLAGNUMBER;
1016 flags = 0;
1017 }
1018 }
1019 }
1020
1021 /*
1022 * Try to retrieve the next record to the left/right from the current one.
1023 */
1024 STATIC int
1025 xfs_ialloc_next_rec(
1026 struct xfs_btree_cur *cur,
1027 xfs_inobt_rec_incore_t *rec,
1028 int *done,
1029 int left)
1030 {
1031 int error;
1032 int i;
1033
1034 if (left)
1035 error = xfs_btree_decrement(cur, 0, &i);
1036 else
1037 error = xfs_btree_increment(cur, 0, &i);
1038
1039 if (error)
1040 return error;
1041 *done = !i;
1042 if (i) {
1043 error = xfs_inobt_get_rec(cur, rec, &i);
1044 if (error)
1045 return error;
1046 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1047 }
1048
1049 return 0;
1050 }
1051
1052 STATIC int
1053 xfs_ialloc_get_rec(
1054 struct xfs_btree_cur *cur,
1055 xfs_agino_t agino,
1056 xfs_inobt_rec_incore_t *rec,
1057 int *done)
1058 {
1059 int error;
1060 int i;
1061
1062 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1063 if (error)
1064 return error;
1065 *done = !i;
1066 if (i) {
1067 error = xfs_inobt_get_rec(cur, rec, &i);
1068 if (error)
1069 return error;
1070 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1071 }
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * Return the offset of the first free inode in the record. If the inode chunk
1078 * is sparsely allocated, we convert the record holemask to inode granularity
1079 * and mask off the unallocated regions from the inode free mask.
1080 */
1081 STATIC int
1082 xfs_inobt_first_free_inode(
1083 struct xfs_inobt_rec_incore *rec)
1084 {
1085 xfs_inofree_t realfree;
1086
1087 /* if there are no holes, return the first available offset */
1088 if (!xfs_inobt_issparse(rec->ir_holemask))
1089 return xfs_lowbit64(rec->ir_free);
1090
1091 realfree = xfs_inobt_irec_to_allocmask(rec);
1092 realfree &= rec->ir_free;
1093
1094 return xfs_lowbit64(realfree);
1095 }
1096
1097 /*
1098 * Allocate an inode using the inobt-only algorithm.
1099 */
1100 STATIC int
1101 xfs_dialloc_ag_inobt(
1102 struct xfs_trans *tp,
1103 struct xfs_buf *agbp,
1104 xfs_ino_t parent,
1105 xfs_ino_t *inop)
1106 {
1107 struct xfs_mount *mp = tp->t_mountp;
1108 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1109 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1110 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1111 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1112 struct xfs_perag *pag;
1113 struct xfs_btree_cur *cur, *tcur;
1114 struct xfs_inobt_rec_incore rec, trec;
1115 xfs_ino_t ino;
1116 int error;
1117 int offset;
1118 int i, j;
1119
1120 pag = xfs_perag_get(mp, agno);
1121
1122 ASSERT(pag->pagi_init);
1123 ASSERT(pag->pagi_inodeok);
1124 ASSERT(pag->pagi_freecount > 0);
1125
1126 restart_pagno:
1127 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1128 /*
1129 * If pagino is 0 (this is the root inode allocation) use newino.
1130 * This must work because we've just allocated some.
1131 */
1132 if (!pagino)
1133 pagino = be32_to_cpu(agi->agi_newino);
1134
1135 error = xfs_check_agi_freecount(cur, agi);
1136 if (error)
1137 goto error0;
1138
1139 /*
1140 * If in the same AG as the parent, try to get near the parent.
1141 */
1142 if (pagno == agno) {
1143 int doneleft; /* done, to the left */
1144 int doneright; /* done, to the right */
1145 int searchdistance = 10;
1146
1147 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1148 if (error)
1149 goto error0;
1150 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1151
1152 error = xfs_inobt_get_rec(cur, &rec, &j);
1153 if (error)
1154 goto error0;
1155 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1156
1157 if (rec.ir_freecount > 0) {
1158 /*
1159 * Found a free inode in the same chunk
1160 * as the parent, done.
1161 */
1162 goto alloc_inode;
1163 }
1164
1165
1166 /*
1167 * In the same AG as parent, but parent's chunk is full.
1168 */
1169
1170 /* duplicate the cursor, search left & right simultaneously */
1171 error = xfs_btree_dup_cursor(cur, &tcur);
1172 if (error)
1173 goto error0;
1174
1175 /*
1176 * Skip to last blocks looked up if same parent inode.
1177 */
1178 if (pagino != NULLAGINO &&
1179 pag->pagl_pagino == pagino &&
1180 pag->pagl_leftrec != NULLAGINO &&
1181 pag->pagl_rightrec != NULLAGINO) {
1182 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1183 &trec, &doneleft);
1184 if (error)
1185 goto error1;
1186
1187 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1188 &rec, &doneright);
1189 if (error)
1190 goto error1;
1191 } else {
1192 /* search left with tcur, back up 1 record */
1193 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1194 if (error)
1195 goto error1;
1196
1197 /* search right with cur, go forward 1 record. */
1198 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1199 if (error)
1200 goto error1;
1201 }
1202
1203 /*
1204 * Loop until we find an inode chunk with a free inode.
1205 */
1206 while (!doneleft || !doneright) {
1207 int useleft; /* using left inode chunk this time */
1208
1209 if (!--searchdistance) {
1210 /*
1211 * Not in range - save last search
1212 * location and allocate a new inode
1213 */
1214 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1215 pag->pagl_leftrec = trec.ir_startino;
1216 pag->pagl_rightrec = rec.ir_startino;
1217 pag->pagl_pagino = pagino;
1218 goto newino;
1219 }
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 rec = trec;
1233 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1234 cur = tcur;
1235
1236 pag->pagl_leftrec = trec.ir_startino;
1237 pag->pagl_rightrec = rec.ir_startino;
1238 pag->pagl_pagino = pagino;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 /*
1265 * We've reached the end of the btree. because
1266 * we are only searching a small chunk of the
1267 * btree each search, there is obviously free
1268 * inodes closer to the parent inode than we
1269 * are now. restart the search again.
1270 */
1271 pag->pagl_pagino = NULLAGINO;
1272 pag->pagl_leftrec = NULLAGINO;
1273 pag->pagl_rightrec = NULLAGINO;
1274 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1275 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1276 goto restart_pagno;
1277 }
1278
1279 /*
1280 * In a different AG from the parent.
1281 * See if the most recently allocated block has any free.
1282 */
1283 newino:
1284 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1285 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1286 XFS_LOOKUP_EQ, &i);
1287 if (error)
1288 goto error0;
1289
1290 if (i == 1) {
1291 error = xfs_inobt_get_rec(cur, &rec, &j);
1292 if (error)
1293 goto error0;
1294
1295 if (j == 1 && rec.ir_freecount > 0) {
1296 /*
1297 * The last chunk allocated in the group
1298 * still has a free inode.
1299 */
1300 goto alloc_inode;
1301 }
1302 }
1303 }
1304
1305 /*
1306 * None left in the last group, search the whole AG
1307 */
1308 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1309 if (error)
1310 goto error0;
1311 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1312
1313 for (;;) {
1314 error = xfs_inobt_get_rec(cur, &rec, &i);
1315 if (error)
1316 goto error0;
1317 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1318 if (rec.ir_freecount > 0)
1319 break;
1320 error = xfs_btree_increment(cur, 0, &i);
1321 if (error)
1322 goto error0;
1323 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1324 }
1325
1326 alloc_inode:
1327 offset = xfs_inobt_first_free_inode(&rec);
1328 ASSERT(offset >= 0);
1329 ASSERT(offset < XFS_INODES_PER_CHUNK);
1330 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1331 XFS_INODES_PER_CHUNK) == 0);
1332 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1333 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1334 rec.ir_freecount--;
1335 error = xfs_inobt_update(cur, &rec);
1336 if (error)
1337 goto error0;
1338 be32_add_cpu(&agi->agi_freecount, -1);
1339 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1340 pag->pagi_freecount--;
1341
1342 error = xfs_check_agi_freecount(cur, agi);
1343 if (error)
1344 goto error0;
1345
1346 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1347 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1348 xfs_perag_put(pag);
1349 *inop = ino;
1350 return 0;
1351 error1:
1352 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1353 error0:
1354 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1355 xfs_perag_put(pag);
1356 return error;
1357 }
1358
1359 /*
1360 * Use the free inode btree to allocate an inode based on distance from the
1361 * parent. Note that the provided cursor may be deleted and replaced.
1362 */
1363 STATIC int
1364 xfs_dialloc_ag_finobt_near(
1365 xfs_agino_t pagino,
1366 struct xfs_btree_cur **ocur,
1367 struct xfs_inobt_rec_incore *rec)
1368 {
1369 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1370 struct xfs_btree_cur *rcur; /* right search cursor */
1371 struct xfs_inobt_rec_incore rrec;
1372 int error;
1373 int i, j;
1374
1375 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1376 if (error)
1377 return error;
1378
1379 if (i == 1) {
1380 error = xfs_inobt_get_rec(lcur, rec, &i);
1381 if (error)
1382 return error;
1383 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1384
1385 /*
1386 * See if we've landed in the parent inode record. The finobt
1387 * only tracks chunks with at least one free inode, so record
1388 * existence is enough.
1389 */
1390 if (pagino >= rec->ir_startino &&
1391 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1392 return 0;
1393 }
1394
1395 error = xfs_btree_dup_cursor(lcur, &rcur);
1396 if (error)
1397 return error;
1398
1399 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1400 if (error)
1401 goto error_rcur;
1402 if (j == 1) {
1403 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1404 if (error)
1405 goto error_rcur;
1406 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1407 }
1408
1409 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1410 if (i == 1 && j == 1) {
1411 /*
1412 * Both the left and right records are valid. Choose the closer
1413 * inode chunk to the target.
1414 */
1415 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1416 (rrec.ir_startino - pagino)) {
1417 *rec = rrec;
1418 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1419 *ocur = rcur;
1420 } else {
1421 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1422 }
1423 } else if (j == 1) {
1424 /* only the right record is valid */
1425 *rec = rrec;
1426 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1427 *ocur = rcur;
1428 } else if (i == 1) {
1429 /* only the left record is valid */
1430 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1431 }
1432
1433 return 0;
1434
1435 error_rcur:
1436 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1437 return error;
1438 }
1439
1440 /*
1441 * Use the free inode btree to find a free inode based on a newino hint. If
1442 * the hint is NULL, find the first free inode in the AG.
1443 */
1444 STATIC int
1445 xfs_dialloc_ag_finobt_newino(
1446 struct xfs_agi *agi,
1447 struct xfs_btree_cur *cur,
1448 struct xfs_inobt_rec_incore *rec)
1449 {
1450 int error;
1451 int i;
1452
1453 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1454 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1455 XFS_LOOKUP_EQ, &i);
1456 if (error)
1457 return error;
1458 if (i == 1) {
1459 error = xfs_inobt_get_rec(cur, rec, &i);
1460 if (error)
1461 return error;
1462 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1463 return 0;
1464 }
1465 }
1466
1467 /*
1468 * Find the first inode available in the AG.
1469 */
1470 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474
1475 error = xfs_inobt_get_rec(cur, rec, &i);
1476 if (error)
1477 return error;
1478 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Update the inobt based on a modification made to the finobt. Also ensure that
1485 * the records from both trees are equivalent post-modification.
1486 */
1487 STATIC int
1488 xfs_dialloc_ag_update_inobt(
1489 struct xfs_btree_cur *cur, /* inobt cursor */
1490 struct xfs_inobt_rec_incore *frec, /* finobt record */
1491 int offset) /* inode offset */
1492 {
1493 struct xfs_inobt_rec_incore rec;
1494 int error;
1495 int i;
1496
1497 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1498 if (error)
1499 return error;
1500 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1501
1502 error = xfs_inobt_get_rec(cur, &rec, &i);
1503 if (error)
1504 return error;
1505 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1507 XFS_INODES_PER_CHUNK) == 0);
1508
1509 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510 rec.ir_freecount--;
1511
1512 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1513 (rec.ir_freecount == frec->ir_freecount));
1514
1515 return xfs_inobt_update(cur, &rec);
1516 }
1517
1518 /*
1519 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1520 * back to the inobt search algorithm.
1521 *
1522 * The caller selected an AG for us, and made sure that free inodes are
1523 * available.
1524 */
1525 STATIC int
1526 xfs_dialloc_ag(
1527 struct xfs_trans *tp,
1528 struct xfs_buf *agbp,
1529 xfs_ino_t parent,
1530 xfs_ino_t *inop)
1531 {
1532 struct xfs_mount *mp = tp->t_mountp;
1533 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1534 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1535 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1536 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1537 struct xfs_perag *pag;
1538 struct xfs_btree_cur *cur; /* finobt cursor */
1539 struct xfs_btree_cur *icur; /* inobt cursor */
1540 struct xfs_inobt_rec_incore rec;
1541 xfs_ino_t ino;
1542 int error;
1543 int offset;
1544 int i;
1545
1546 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1547 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1548
1549 pag = xfs_perag_get(mp, agno);
1550
1551 /*
1552 * If pagino is 0 (this is the root inode allocation) use newino.
1553 * This must work because we've just allocated some.
1554 */
1555 if (!pagino)
1556 pagino = be32_to_cpu(agi->agi_newino);
1557
1558 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1559
1560 error = xfs_check_agi_freecount(cur, agi);
1561 if (error)
1562 goto error_cur;
1563
1564 /*
1565 * The search algorithm depends on whether we're in the same AG as the
1566 * parent. If so, find the closest available inode to the parent. If
1567 * not, consider the agi hint or find the first free inode in the AG.
1568 */
1569 if (agno == pagno)
1570 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1571 else
1572 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1573 if (error)
1574 goto error_cur;
1575
1576 offset = xfs_inobt_first_free_inode(&rec);
1577 ASSERT(offset >= 0);
1578 ASSERT(offset < XFS_INODES_PER_CHUNK);
1579 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1580 XFS_INODES_PER_CHUNK) == 0);
1581 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1582
1583 /*
1584 * Modify or remove the finobt record.
1585 */
1586 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1587 rec.ir_freecount--;
1588 if (rec.ir_freecount)
1589 error = xfs_inobt_update(cur, &rec);
1590 else
1591 error = xfs_btree_delete(cur, &i);
1592 if (error)
1593 goto error_cur;
1594
1595 /*
1596 * The finobt has now been updated appropriately. We haven't updated the
1597 * agi and superblock yet, so we can create an inobt cursor and validate
1598 * the original freecount. If all is well, make the equivalent update to
1599 * the inobt using the finobt record and offset information.
1600 */
1601 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1602
1603 error = xfs_check_agi_freecount(icur, agi);
1604 if (error)
1605 goto error_icur;
1606
1607 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1608 if (error)
1609 goto error_icur;
1610
1611 /*
1612 * Both trees have now been updated. We must update the perag and
1613 * superblock before we can check the freecount for each btree.
1614 */
1615 be32_add_cpu(&agi->agi_freecount, -1);
1616 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1617 pag->pagi_freecount--;
1618
1619 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1620
1621 error = xfs_check_agi_freecount(icur, agi);
1622 if (error)
1623 goto error_icur;
1624 error = xfs_check_agi_freecount(cur, agi);
1625 if (error)
1626 goto error_icur;
1627
1628 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1629 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1630 xfs_perag_put(pag);
1631 *inop = ino;
1632 return 0;
1633
1634 error_icur:
1635 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1636 error_cur:
1637 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1638 xfs_perag_put(pag);
1639 return error;
1640 }
1641
1642 /*
1643 * Allocate an inode on disk.
1644 *
1645 * Mode is used to tell whether the new inode will need space, and whether it
1646 * is a directory.
1647 *
1648 * This function is designed to be called twice if it has to do an allocation
1649 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1650 * If an inode is available without having to performn an allocation, an inode
1651 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1652 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1653 * The caller should then commit the current transaction, allocate a
1654 * new transaction, and call xfs_dialloc() again, passing in the previous value
1655 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1656 * buffer is locked across the two calls, the second call is guaranteed to have
1657 * a free inode available.
1658 *
1659 * Once we successfully pick an inode its number is returned and the on-disk
1660 * data structures are updated. The inode itself is not read in, since doing so
1661 * would break ordering constraints with xfs_reclaim.
1662 */
1663 int
1664 xfs_dialloc(
1665 struct xfs_trans *tp,
1666 xfs_ino_t parent,
1667 umode_t mode,
1668 int okalloc,
1669 struct xfs_buf **IO_agbp,
1670 xfs_ino_t *inop)
1671 {
1672 struct xfs_mount *mp = tp->t_mountp;
1673 struct xfs_buf *agbp;
1674 xfs_agnumber_t agno;
1675 int error;
1676 int ialloced;
1677 int noroom = 0;
1678 xfs_agnumber_t start_agno;
1679 struct xfs_perag *pag;
1680
1681 if (*IO_agbp) {
1682 /*
1683 * If the caller passes in a pointer to the AGI buffer,
1684 * continue where we left off before. In this case, we
1685 * know that the allocation group has free inodes.
1686 */
1687 agbp = *IO_agbp;
1688 goto out_alloc;
1689 }
1690
1691 /*
1692 * We do not have an agbp, so select an initial allocation
1693 * group for inode allocation.
1694 */
1695 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1696 if (start_agno == NULLAGNUMBER) {
1697 *inop = NULLFSINO;
1698 return 0;
1699 }
1700
1701 /*
1702 * If we have already hit the ceiling of inode blocks then clear
1703 * okalloc so we scan all available agi structures for a free
1704 * inode.
1705 *
1706 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1707 * which will sacrifice the preciseness but improve the performance.
1708 */
1709 if (mp->m_maxicount &&
1710 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1711 > mp->m_maxicount) {
1712 noroom = 1;
1713 okalloc = 0;
1714 }
1715
1716 /*
1717 * Loop until we find an allocation group that either has free inodes
1718 * or in which we can allocate some inodes. Iterate through the
1719 * allocation groups upward, wrapping at the end.
1720 */
1721 agno = start_agno;
1722 for (;;) {
1723 pag = xfs_perag_get(mp, agno);
1724 if (!pag->pagi_inodeok) {
1725 xfs_ialloc_next_ag(mp);
1726 goto nextag;
1727 }
1728
1729 if (!pag->pagi_init) {
1730 error = xfs_ialloc_pagi_init(mp, tp, agno);
1731 if (error)
1732 goto out_error;
1733 }
1734
1735 /*
1736 * Do a first racy fast path check if this AG is usable.
1737 */
1738 if (!pag->pagi_freecount && !okalloc)
1739 goto nextag;
1740
1741 /*
1742 * Then read in the AGI buffer and recheck with the AGI buffer
1743 * lock held.
1744 */
1745 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1746 if (error)
1747 goto out_error;
1748
1749 if (pag->pagi_freecount) {
1750 xfs_perag_put(pag);
1751 goto out_alloc;
1752 }
1753
1754 if (!okalloc)
1755 goto nextag_relse_buffer;
1756
1757
1758 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1759 if (error) {
1760 xfs_trans_brelse(tp, agbp);
1761
1762 if (error != -ENOSPC)
1763 goto out_error;
1764
1765 xfs_perag_put(pag);
1766 *inop = NULLFSINO;
1767 return 0;
1768 }
1769
1770 if (ialloced) {
1771 /*
1772 * We successfully allocated some inodes, return
1773 * the current context to the caller so that it
1774 * can commit the current transaction and call
1775 * us again where we left off.
1776 */
1777 ASSERT(pag->pagi_freecount > 0);
1778 xfs_perag_put(pag);
1779
1780 *IO_agbp = agbp;
1781 *inop = NULLFSINO;
1782 return 0;
1783 }
1784
1785 nextag_relse_buffer:
1786 xfs_trans_brelse(tp, agbp);
1787 nextag:
1788 xfs_perag_put(pag);
1789 if (++agno == mp->m_sb.sb_agcount)
1790 agno = 0;
1791 if (agno == start_agno) {
1792 *inop = NULLFSINO;
1793 return noroom ? -ENOSPC : 0;
1794 }
1795 }
1796
1797 out_alloc:
1798 *IO_agbp = NULL;
1799 return xfs_dialloc_ag(tp, agbp, parent, inop);
1800 out_error:
1801 xfs_perag_put(pag);
1802 return error;
1803 }
1804
1805 /*
1806 * Free the blocks of an inode chunk. We must consider that the inode chunk
1807 * might be sparse and only free the regions that are allocated as part of the
1808 * chunk.
1809 */
1810 STATIC void
1811 xfs_difree_inode_chunk(
1812 struct xfs_mount *mp,
1813 xfs_agnumber_t agno,
1814 struct xfs_inobt_rec_incore *rec,
1815 struct xfs_bmap_free *flist)
1816 {
1817 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1818 int startidx, endidx;
1819 int nextbit;
1820 xfs_agblock_t agbno;
1821 int contigblk;
1822 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1823
1824 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1825 /* not sparse, calculate extent info directly */
1826 xfs_bmap_add_free(mp, flist, XFS_AGB_TO_FSB(mp, agno,
1827 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1828 mp->m_ialloc_blks);
1829 return;
1830 }
1831
1832 /* holemask is only 16-bits (fits in an unsigned long) */
1833 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1834 holemask[0] = rec->ir_holemask;
1835
1836 /*
1837 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1838 * holemask and convert the start/end index of each range to an extent.
1839 * We start with the start and end index both pointing at the first 0 in
1840 * the mask.
1841 */
1842 startidx = endidx = find_first_zero_bit(holemask,
1843 XFS_INOBT_HOLEMASK_BITS);
1844 nextbit = startidx + 1;
1845 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1846 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1847 nextbit);
1848 /*
1849 * If the next zero bit is contiguous, update the end index of
1850 * the current range and continue.
1851 */
1852 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1853 nextbit == endidx + 1) {
1854 endidx = nextbit;
1855 goto next;
1856 }
1857
1858 /*
1859 * nextbit is not contiguous with the current end index. Convert
1860 * the current start/end to an extent and add it to the free
1861 * list.
1862 */
1863 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1864 mp->m_sb.sb_inopblock;
1865 contigblk = ((endidx - startidx + 1) *
1866 XFS_INODES_PER_HOLEMASK_BIT) /
1867 mp->m_sb.sb_inopblock;
1868
1869 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1870 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1871 xfs_bmap_add_free(mp, flist, XFS_AGB_TO_FSB(mp, agno, agbno),
1872 contigblk);
1873
1874 /* reset range to current bit and carry on... */
1875 startidx = endidx = nextbit;
1876
1877 next:
1878 nextbit++;
1879 }
1880 }
1881
1882 STATIC int
1883 xfs_difree_inobt(
1884 struct xfs_mount *mp,
1885 struct xfs_trans *tp,
1886 struct xfs_buf *agbp,
1887 xfs_agino_t agino,
1888 struct xfs_bmap_free *flist,
1889 struct xfs_icluster *xic,
1890 struct xfs_inobt_rec_incore *orec)
1891 {
1892 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1893 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1894 struct xfs_perag *pag;
1895 struct xfs_btree_cur *cur;
1896 struct xfs_inobt_rec_incore rec;
1897 int ilen;
1898 int error;
1899 int i;
1900 int off;
1901
1902 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1903 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1904
1905 /*
1906 * Initialize the cursor.
1907 */
1908 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1909
1910 error = xfs_check_agi_freecount(cur, agi);
1911 if (error)
1912 goto error0;
1913
1914 /*
1915 * Look for the entry describing this inode.
1916 */
1917 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1918 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1919 __func__, error);
1920 goto error0;
1921 }
1922 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1923 error = xfs_inobt_get_rec(cur, &rec, &i);
1924 if (error) {
1925 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1926 __func__, error);
1927 goto error0;
1928 }
1929 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1930 /*
1931 * Get the offset in the inode chunk.
1932 */
1933 off = agino - rec.ir_startino;
1934 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1935 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1936 /*
1937 * Mark the inode free & increment the count.
1938 */
1939 rec.ir_free |= XFS_INOBT_MASK(off);
1940 rec.ir_freecount++;
1941
1942 /*
1943 * When an inode chunk is free, it becomes eligible for removal. Don't
1944 * remove the chunk if the block size is large enough for multiple inode
1945 * chunks (that might not be free).
1946 */
1947 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1948 rec.ir_free == XFS_INOBT_ALL_FREE &&
1949 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1950 xic->deleted = 1;
1951 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1952 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1953
1954 /*
1955 * Remove the inode cluster from the AGI B+Tree, adjust the
1956 * AGI and Superblock inode counts, and mark the disk space
1957 * to be freed when the transaction is committed.
1958 */
1959 ilen = rec.ir_freecount;
1960 be32_add_cpu(&agi->agi_count, -ilen);
1961 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1962 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1963 pag = xfs_perag_get(mp, agno);
1964 pag->pagi_freecount -= ilen - 1;
1965 xfs_perag_put(pag);
1966 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1967 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1968
1969 if ((error = xfs_btree_delete(cur, &i))) {
1970 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1971 __func__, error);
1972 goto error0;
1973 }
1974
1975 xfs_difree_inode_chunk(mp, agno, &rec, flist);
1976 } else {
1977 xic->deleted = 0;
1978
1979 error = xfs_inobt_update(cur, &rec);
1980 if (error) {
1981 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1982 __func__, error);
1983 goto error0;
1984 }
1985
1986 /*
1987 * Change the inode free counts and log the ag/sb changes.
1988 */
1989 be32_add_cpu(&agi->agi_freecount, 1);
1990 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1991 pag = xfs_perag_get(mp, agno);
1992 pag->pagi_freecount++;
1993 xfs_perag_put(pag);
1994 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1995 }
1996
1997 error = xfs_check_agi_freecount(cur, agi);
1998 if (error)
1999 goto error0;
2000
2001 *orec = rec;
2002 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2003 return 0;
2004
2005 error0:
2006 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2007 return error;
2008 }
2009
2010 /*
2011 * Free an inode in the free inode btree.
2012 */
2013 STATIC int
2014 xfs_difree_finobt(
2015 struct xfs_mount *mp,
2016 struct xfs_trans *tp,
2017 struct xfs_buf *agbp,
2018 xfs_agino_t agino,
2019 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2020 {
2021 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2022 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2023 struct xfs_btree_cur *cur;
2024 struct xfs_inobt_rec_incore rec;
2025 int offset = agino - ibtrec->ir_startino;
2026 int error;
2027 int i;
2028
2029 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2030
2031 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2032 if (error)
2033 goto error;
2034 if (i == 0) {
2035 /*
2036 * If the record does not exist in the finobt, we must have just
2037 * freed an inode in a previously fully allocated chunk. If not,
2038 * something is out of sync.
2039 */
2040 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2041
2042 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2043 ibtrec->ir_count,
2044 ibtrec->ir_freecount,
2045 ibtrec->ir_free, &i);
2046 if (error)
2047 goto error;
2048 ASSERT(i == 1);
2049
2050 goto out;
2051 }
2052
2053 /*
2054 * Read and update the existing record. We could just copy the ibtrec
2055 * across here, but that would defeat the purpose of having redundant
2056 * metadata. By making the modifications independently, we can catch
2057 * corruptions that we wouldn't see if we just copied from one record
2058 * to another.
2059 */
2060 error = xfs_inobt_get_rec(cur, &rec, &i);
2061 if (error)
2062 goto error;
2063 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2064
2065 rec.ir_free |= XFS_INOBT_MASK(offset);
2066 rec.ir_freecount++;
2067
2068 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2069 (rec.ir_freecount == ibtrec->ir_freecount),
2070 error);
2071
2072 /*
2073 * The content of inobt records should always match between the inobt
2074 * and finobt. The lifecycle of records in the finobt is different from
2075 * the inobt in that the finobt only tracks records with at least one
2076 * free inode. Hence, if all of the inodes are free and we aren't
2077 * keeping inode chunks permanently on disk, remove the record.
2078 * Otherwise, update the record with the new information.
2079 *
2080 * Note that we currently can't free chunks when the block size is large
2081 * enough for multiple chunks. Leave the finobt record to remain in sync
2082 * with the inobt.
2083 */
2084 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2085 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2086 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2087 error = xfs_btree_delete(cur, &i);
2088 if (error)
2089 goto error;
2090 ASSERT(i == 1);
2091 } else {
2092 error = xfs_inobt_update(cur, &rec);
2093 if (error)
2094 goto error;
2095 }
2096
2097 out:
2098 error = xfs_check_agi_freecount(cur, agi);
2099 if (error)
2100 goto error;
2101
2102 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2103 return 0;
2104
2105 error:
2106 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2107 return error;
2108 }
2109
2110 /*
2111 * Free disk inode. Carefully avoids touching the incore inode, all
2112 * manipulations incore are the caller's responsibility.
2113 * The on-disk inode is not changed by this operation, only the
2114 * btree (free inode mask) is changed.
2115 */
2116 int
2117 xfs_difree(
2118 struct xfs_trans *tp, /* transaction pointer */
2119 xfs_ino_t inode, /* inode to be freed */
2120 struct xfs_bmap_free *flist, /* extents to free */
2121 struct xfs_icluster *xic) /* cluster info if deleted */
2122 {
2123 /* REFERENCED */
2124 xfs_agblock_t agbno; /* block number containing inode */
2125 struct xfs_buf *agbp; /* buffer for allocation group header */
2126 xfs_agino_t agino; /* allocation group inode number */
2127 xfs_agnumber_t agno; /* allocation group number */
2128 int error; /* error return value */
2129 struct xfs_mount *mp; /* mount structure for filesystem */
2130 struct xfs_inobt_rec_incore rec;/* btree record */
2131
2132 mp = tp->t_mountp;
2133
2134 /*
2135 * Break up inode number into its components.
2136 */
2137 agno = XFS_INO_TO_AGNO(mp, inode);
2138 if (agno >= mp->m_sb.sb_agcount) {
2139 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2140 __func__, agno, mp->m_sb.sb_agcount);
2141 ASSERT(0);
2142 return -EINVAL;
2143 }
2144 agino = XFS_INO_TO_AGINO(mp, inode);
2145 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2146 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2147 __func__, (unsigned long long)inode,
2148 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2149 ASSERT(0);
2150 return -EINVAL;
2151 }
2152 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2153 if (agbno >= mp->m_sb.sb_agblocks) {
2154 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2155 __func__, agbno, mp->m_sb.sb_agblocks);
2156 ASSERT(0);
2157 return -EINVAL;
2158 }
2159 /*
2160 * Get the allocation group header.
2161 */
2162 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2163 if (error) {
2164 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2165 __func__, error);
2166 return error;
2167 }
2168
2169 /*
2170 * Fix up the inode allocation btree.
2171 */
2172 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2173 if (error)
2174 goto error0;
2175
2176 /*
2177 * Fix up the free inode btree.
2178 */
2179 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2180 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2181 if (error)
2182 goto error0;
2183 }
2184
2185 return 0;
2186
2187 error0:
2188 return error;
2189 }
2190
2191 STATIC int
2192 xfs_imap_lookup(
2193 struct xfs_mount *mp,
2194 struct xfs_trans *tp,
2195 xfs_agnumber_t agno,
2196 xfs_agino_t agino,
2197 xfs_agblock_t agbno,
2198 xfs_agblock_t *chunk_agbno,
2199 xfs_agblock_t *offset_agbno,
2200 int flags)
2201 {
2202 struct xfs_inobt_rec_incore rec;
2203 struct xfs_btree_cur *cur;
2204 struct xfs_buf *agbp;
2205 int error;
2206 int i;
2207
2208 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2209 if (error) {
2210 xfs_alert(mp,
2211 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2212 __func__, error, agno);
2213 return error;
2214 }
2215
2216 /*
2217 * Lookup the inode record for the given agino. If the record cannot be
2218 * found, then it's an invalid inode number and we should abort. Once
2219 * we have a record, we need to ensure it contains the inode number
2220 * we are looking up.
2221 */
2222 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2223 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2224 if (!error) {
2225 if (i)
2226 error = xfs_inobt_get_rec(cur, &rec, &i);
2227 if (!error && i == 0)
2228 error = -EINVAL;
2229 }
2230
2231 xfs_trans_brelse(tp, agbp);
2232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2233 if (error)
2234 return error;
2235
2236 /* check that the returned record contains the required inode */
2237 if (rec.ir_startino > agino ||
2238 rec.ir_startino + mp->m_ialloc_inos <= agino)
2239 return -EINVAL;
2240
2241 /* for untrusted inodes check it is allocated first */
2242 if ((flags & XFS_IGET_UNTRUSTED) &&
2243 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2244 return -EINVAL;
2245
2246 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2247 *offset_agbno = agbno - *chunk_agbno;
2248 return 0;
2249 }
2250
2251 /*
2252 * Return the location of the inode in imap, for mapping it into a buffer.
2253 */
2254 int
2255 xfs_imap(
2256 xfs_mount_t *mp, /* file system mount structure */
2257 xfs_trans_t *tp, /* transaction pointer */
2258 xfs_ino_t ino, /* inode to locate */
2259 struct xfs_imap *imap, /* location map structure */
2260 uint flags) /* flags for inode btree lookup */
2261 {
2262 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2263 xfs_agino_t agino; /* inode number within alloc group */
2264 xfs_agnumber_t agno; /* allocation group number */
2265 int blks_per_cluster; /* num blocks per inode cluster */
2266 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2267 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2268 int error; /* error code */
2269 int offset; /* index of inode in its buffer */
2270 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2271
2272 ASSERT(ino != NULLFSINO);
2273
2274 /*
2275 * Split up the inode number into its parts.
2276 */
2277 agno = XFS_INO_TO_AGNO(mp, ino);
2278 agino = XFS_INO_TO_AGINO(mp, ino);
2279 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2281 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2282 #ifdef DEBUG
2283 /*
2284 * Don't output diagnostic information for untrusted inodes
2285 * as they can be invalid without implying corruption.
2286 */
2287 if (flags & XFS_IGET_UNTRUSTED)
2288 return -EINVAL;
2289 if (agno >= mp->m_sb.sb_agcount) {
2290 xfs_alert(mp,
2291 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2292 __func__, agno, mp->m_sb.sb_agcount);
2293 }
2294 if (agbno >= mp->m_sb.sb_agblocks) {
2295 xfs_alert(mp,
2296 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2297 __func__, (unsigned long long)agbno,
2298 (unsigned long)mp->m_sb.sb_agblocks);
2299 }
2300 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2301 xfs_alert(mp,
2302 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2303 __func__, ino,
2304 XFS_AGINO_TO_INO(mp, agno, agino));
2305 }
2306 xfs_stack_trace();
2307 #endif /* DEBUG */
2308 return -EINVAL;
2309 }
2310
2311 blks_per_cluster = xfs_icluster_size_fsb(mp);
2312
2313 /*
2314 * For bulkstat and handle lookups, we have an untrusted inode number
2315 * that we have to verify is valid. We cannot do this just by reading
2316 * the inode buffer as it may have been unlinked and removed leaving
2317 * inodes in stale state on disk. Hence we have to do a btree lookup
2318 * in all cases where an untrusted inode number is passed.
2319 */
2320 if (flags & XFS_IGET_UNTRUSTED) {
2321 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2322 &chunk_agbno, &offset_agbno, flags);
2323 if (error)
2324 return error;
2325 goto out_map;
2326 }
2327
2328 /*
2329 * If the inode cluster size is the same as the blocksize or
2330 * smaller we get to the buffer by simple arithmetics.
2331 */
2332 if (blks_per_cluster == 1) {
2333 offset = XFS_INO_TO_OFFSET(mp, ino);
2334 ASSERT(offset < mp->m_sb.sb_inopblock);
2335
2336 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2337 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2338 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2339 return 0;
2340 }
2341
2342 /*
2343 * If the inode chunks are aligned then use simple maths to
2344 * find the location. Otherwise we have to do a btree
2345 * lookup to find the location.
2346 */
2347 if (mp->m_inoalign_mask) {
2348 offset_agbno = agbno & mp->m_inoalign_mask;
2349 chunk_agbno = agbno - offset_agbno;
2350 } else {
2351 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2352 &chunk_agbno, &offset_agbno, flags);
2353 if (error)
2354 return error;
2355 }
2356
2357 out_map:
2358 ASSERT(agbno >= chunk_agbno);
2359 cluster_agbno = chunk_agbno +
2360 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2361 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2362 XFS_INO_TO_OFFSET(mp, ino);
2363
2364 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2365 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2366 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2367
2368 /*
2369 * If the inode number maps to a block outside the bounds
2370 * of the file system then return NULL rather than calling
2371 * read_buf and panicing when we get an error from the
2372 * driver.
2373 */
2374 if ((imap->im_blkno + imap->im_len) >
2375 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2376 xfs_alert(mp,
2377 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2378 __func__, (unsigned long long) imap->im_blkno,
2379 (unsigned long long) imap->im_len,
2380 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2381 return -EINVAL;
2382 }
2383 return 0;
2384 }
2385
2386 /*
2387 * Compute and fill in value of m_in_maxlevels.
2388 */
2389 void
2390 xfs_ialloc_compute_maxlevels(
2391 xfs_mount_t *mp) /* file system mount structure */
2392 {
2393 uint inodes;
2394
2395 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2396 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2397 inodes);
2398 }
2399
2400 /*
2401 * Log specified fields for the ag hdr (inode section). The growth of the agi
2402 * structure over time requires that we interpret the buffer as two logical
2403 * regions delineated by the end of the unlinked list. This is due to the size
2404 * of the hash table and its location in the middle of the agi.
2405 *
2406 * For example, a request to log a field before agi_unlinked and a field after
2407 * agi_unlinked could cause us to log the entire hash table and use an excessive
2408 * amount of log space. To avoid this behavior, log the region up through
2409 * agi_unlinked in one call and the region after agi_unlinked through the end of
2410 * the structure in another.
2411 */
2412 void
2413 xfs_ialloc_log_agi(
2414 xfs_trans_t *tp, /* transaction pointer */
2415 xfs_buf_t *bp, /* allocation group header buffer */
2416 int fields) /* bitmask of fields to log */
2417 {
2418 int first; /* first byte number */
2419 int last; /* last byte number */
2420 static const short offsets[] = { /* field starting offsets */
2421 /* keep in sync with bit definitions */
2422 offsetof(xfs_agi_t, agi_magicnum),
2423 offsetof(xfs_agi_t, agi_versionnum),
2424 offsetof(xfs_agi_t, agi_seqno),
2425 offsetof(xfs_agi_t, agi_length),
2426 offsetof(xfs_agi_t, agi_count),
2427 offsetof(xfs_agi_t, agi_root),
2428 offsetof(xfs_agi_t, agi_level),
2429 offsetof(xfs_agi_t, agi_freecount),
2430 offsetof(xfs_agi_t, agi_newino),
2431 offsetof(xfs_agi_t, agi_dirino),
2432 offsetof(xfs_agi_t, agi_unlinked),
2433 offsetof(xfs_agi_t, agi_free_root),
2434 offsetof(xfs_agi_t, agi_free_level),
2435 sizeof(xfs_agi_t)
2436 };
2437 #ifdef DEBUG
2438 xfs_agi_t *agi; /* allocation group header */
2439
2440 agi = XFS_BUF_TO_AGI(bp);
2441 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2442 #endif
2443
2444 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2445
2446 /*
2447 * Compute byte offsets for the first and last fields in the first
2448 * region and log the agi buffer. This only logs up through
2449 * agi_unlinked.
2450 */
2451 if (fields & XFS_AGI_ALL_BITS_R1) {
2452 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2453 &first, &last);
2454 xfs_trans_log_buf(tp, bp, first, last);
2455 }
2456
2457 /*
2458 * Mask off the bits in the first region and calculate the first and
2459 * last field offsets for any bits in the second region.
2460 */
2461 fields &= ~XFS_AGI_ALL_BITS_R1;
2462 if (fields) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467 }
2468
2469 #ifdef DEBUG
2470 STATIC void
2471 xfs_check_agi_unlinked(
2472 struct xfs_agi *agi)
2473 {
2474 int i;
2475
2476 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2477 ASSERT(agi->agi_unlinked[i]);
2478 }
2479 #else
2480 #define xfs_check_agi_unlinked(agi)
2481 #endif
2482
2483 static bool
2484 xfs_agi_verify(
2485 struct xfs_buf *bp)
2486 {
2487 struct xfs_mount *mp = bp->b_target->bt_mount;
2488 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2489
2490 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2491 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2492 return false;
2493 if (!xfs_log_check_lsn(mp,
2494 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2495 return false;
2496 }
2497
2498 /*
2499 * Validate the magic number of the agi block.
2500 */
2501 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2502 return false;
2503 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2504 return false;
2505
2506 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2507 return false;
2508 /*
2509 * during growfs operations, the perag is not fully initialised,
2510 * so we can't use it for any useful checking. growfs ensures we can't
2511 * use it by using uncached buffers that don't have the perag attached
2512 * so we can detect and avoid this problem.
2513 */
2514 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2515 return false;
2516
2517 xfs_check_agi_unlinked(agi);
2518 return true;
2519 }
2520
2521 static void
2522 xfs_agi_read_verify(
2523 struct xfs_buf *bp)
2524 {
2525 struct xfs_mount *mp = bp->b_target->bt_mount;
2526
2527 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2528 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2529 xfs_buf_ioerror(bp, -EFSBADCRC);
2530 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2531 XFS_ERRTAG_IALLOC_READ_AGI,
2532 XFS_RANDOM_IALLOC_READ_AGI))
2533 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2534
2535 if (bp->b_error)
2536 xfs_verifier_error(bp);
2537 }
2538
2539 static void
2540 xfs_agi_write_verify(
2541 struct xfs_buf *bp)
2542 {
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 struct xfs_buf_log_item *bip = bp->b_fspriv;
2545
2546 if (!xfs_agi_verify(bp)) {
2547 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548 xfs_verifier_error(bp);
2549 return;
2550 }
2551
2552 if (!xfs_sb_version_hascrc(&mp->m_sb))
2553 return;
2554
2555 if (bip)
2556 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2557 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2558 }
2559
2560 const struct xfs_buf_ops xfs_agi_buf_ops = {
2561 .name = "xfs_agi",
2562 .verify_read = xfs_agi_read_verify,
2563 .verify_write = xfs_agi_write_verify,
2564 };
2565
2566 /*
2567 * Read in the allocation group header (inode allocation section)
2568 */
2569 int
2570 xfs_read_agi(
2571 struct xfs_mount *mp, /* file system mount structure */
2572 struct xfs_trans *tp, /* transaction pointer */
2573 xfs_agnumber_t agno, /* allocation group number */
2574 struct xfs_buf **bpp) /* allocation group hdr buf */
2575 {
2576 int error;
2577
2578 trace_xfs_read_agi(mp, agno);
2579
2580 ASSERT(agno != NULLAGNUMBER);
2581 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2582 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2583 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2584 if (error)
2585 return error;
2586
2587 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2588 return 0;
2589 }
2590
2591 int
2592 xfs_ialloc_read_agi(
2593 struct xfs_mount *mp, /* file system mount structure */
2594 struct xfs_trans *tp, /* transaction pointer */
2595 xfs_agnumber_t agno, /* allocation group number */
2596 struct xfs_buf **bpp) /* allocation group hdr buf */
2597 {
2598 struct xfs_agi *agi; /* allocation group header */
2599 struct xfs_perag *pag; /* per allocation group data */
2600 int error;
2601
2602 trace_xfs_ialloc_read_agi(mp, agno);
2603
2604 error = xfs_read_agi(mp, tp, agno, bpp);
2605 if (error)
2606 return error;
2607
2608 agi = XFS_BUF_TO_AGI(*bpp);
2609 pag = xfs_perag_get(mp, agno);
2610 if (!pag->pagi_init) {
2611 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2612 pag->pagi_count = be32_to_cpu(agi->agi_count);
2613 pag->pagi_init = 1;
2614 }
2615
2616 /*
2617 * It's possible for these to be out of sync if
2618 * we are in the middle of a forced shutdown.
2619 */
2620 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2621 XFS_FORCED_SHUTDOWN(mp));
2622 xfs_perag_put(pag);
2623 return 0;
2624 }
2625
2626 /*
2627 * Read in the agi to initialise the per-ag data in the mount structure
2628 */
2629 int
2630 xfs_ialloc_pagi_init(
2631 xfs_mount_t *mp, /* file system mount structure */
2632 xfs_trans_t *tp, /* transaction pointer */
2633 xfs_agnumber_t agno) /* allocation group number */
2634 {
2635 xfs_buf_t *bp = NULL;
2636 int error;
2637
2638 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2639 if (error)
2640 return error;
2641 if (bp)
2642 xfs_trans_brelse(tp, bp);
2643 return 0;
2644 }