]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc_btree.c
libxfs: refactor short btree block verification
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc_btree.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_btree.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_ialloc_btree.h"
30 #include "xfs_alloc.h"
31 #include "xfs_trace.h"
32 #include "xfs_cksum.h"
33 #include "xfs_trans.h"
34
35
36 STATIC int
37 xfs_inobt_get_minrecs(
38 struct xfs_btree_cur *cur,
39 int level)
40 {
41 return cur->bc_mp->m_inobt_mnr[level != 0];
42 }
43
44 STATIC struct xfs_btree_cur *
45 xfs_inobt_dup_cursor(
46 struct xfs_btree_cur *cur)
47 {
48 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
49 cur->bc_private.a.agbp, cur->bc_private.a.agno,
50 cur->bc_btnum);
51 }
52
53 STATIC void
54 xfs_inobt_set_root(
55 struct xfs_btree_cur *cur,
56 union xfs_btree_ptr *nptr,
57 int inc) /* level change */
58 {
59 struct xfs_buf *agbp = cur->bc_private.a.agbp;
60 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
61
62 agi->agi_root = nptr->s;
63 be32_add_cpu(&agi->agi_level, inc);
64 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
65 }
66
67 STATIC void
68 xfs_finobt_set_root(
69 struct xfs_btree_cur *cur,
70 union xfs_btree_ptr *nptr,
71 int inc) /* level change */
72 {
73 struct xfs_buf *agbp = cur->bc_private.a.agbp;
74 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
75
76 agi->agi_free_root = nptr->s;
77 be32_add_cpu(&agi->agi_free_level, inc);
78 xfs_ialloc_log_agi(cur->bc_tp, agbp,
79 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
80 }
81
82 STATIC int
83 xfs_inobt_alloc_block(
84 struct xfs_btree_cur *cur,
85 union xfs_btree_ptr *start,
86 union xfs_btree_ptr *new,
87 int *stat)
88 {
89 xfs_alloc_arg_t args; /* block allocation args */
90 int error; /* error return value */
91 xfs_agblock_t sbno = be32_to_cpu(start->s);
92
93 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
94
95 memset(&args, 0, sizeof(args));
96 args.tp = cur->bc_tp;
97 args.mp = cur->bc_mp;
98 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
99 args.minlen = 1;
100 args.maxlen = 1;
101 args.prod = 1;
102 args.type = XFS_ALLOCTYPE_NEAR_BNO;
103
104 error = xfs_alloc_vextent(&args);
105 if (error) {
106 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
107 return error;
108 }
109 if (args.fsbno == NULLFSBLOCK) {
110 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
111 *stat = 0;
112 return 0;
113 }
114 ASSERT(args.len == 1);
115 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
116
117 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
118 *stat = 1;
119 return 0;
120 }
121
122 STATIC int
123 xfs_inobt_free_block(
124 struct xfs_btree_cur *cur,
125 struct xfs_buf *bp)
126 {
127 xfs_fsblock_t fsbno;
128 int error;
129
130 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp));
131 error = xfs_free_extent(cur->bc_tp, fsbno, 1);
132 if (error)
133 return error;
134
135 xfs_trans_binval(cur->bc_tp, bp);
136 return error;
137 }
138
139 STATIC int
140 xfs_inobt_get_maxrecs(
141 struct xfs_btree_cur *cur,
142 int level)
143 {
144 return cur->bc_mp->m_inobt_mxr[level != 0];
145 }
146
147 STATIC void
148 xfs_inobt_init_key_from_rec(
149 union xfs_btree_key *key,
150 union xfs_btree_rec *rec)
151 {
152 key->inobt.ir_startino = rec->inobt.ir_startino;
153 }
154
155 STATIC void
156 xfs_inobt_init_rec_from_key(
157 union xfs_btree_key *key,
158 union xfs_btree_rec *rec)
159 {
160 rec->inobt.ir_startino = key->inobt.ir_startino;
161 }
162
163 STATIC void
164 xfs_inobt_init_rec_from_cur(
165 struct xfs_btree_cur *cur,
166 union xfs_btree_rec *rec)
167 {
168 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
169 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
170 rec->inobt.ir_u.sp.ir_holemask =
171 cpu_to_be16(cur->bc_rec.i.ir_holemask);
172 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
173 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
174 } else {
175 /* ir_holemask/ir_count not supported on-disk */
176 rec->inobt.ir_u.f.ir_freecount =
177 cpu_to_be32(cur->bc_rec.i.ir_freecount);
178 }
179 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
180 }
181
182 /*
183 * initial value of ptr for lookup
184 */
185 STATIC void
186 xfs_inobt_init_ptr_from_cur(
187 struct xfs_btree_cur *cur,
188 union xfs_btree_ptr *ptr)
189 {
190 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
191
192 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
193
194 ptr->s = agi->agi_root;
195 }
196
197 STATIC void
198 xfs_finobt_init_ptr_from_cur(
199 struct xfs_btree_cur *cur,
200 union xfs_btree_ptr *ptr)
201 {
202 struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
203
204 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
205 ptr->s = agi->agi_free_root;
206 }
207
208 STATIC __int64_t
209 xfs_inobt_key_diff(
210 struct xfs_btree_cur *cur,
211 union xfs_btree_key *key)
212 {
213 return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
214 cur->bc_rec.i.ir_startino;
215 }
216
217 static int
218 xfs_inobt_verify(
219 struct xfs_buf *bp)
220 {
221 struct xfs_mount *mp = bp->b_target->bt_mount;
222 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
223 unsigned int level;
224
225 /*
226 * During growfs operations, we can't verify the exact owner as the
227 * perag is not fully initialised and hence not attached to the buffer.
228 *
229 * Similarly, during log recovery we will have a perag structure
230 * attached, but the agi information will not yet have been initialised
231 * from the on disk AGI. We don't currently use any of this information,
232 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
233 * ever do.
234 */
235 switch (block->bb_magic) {
236 case cpu_to_be32(XFS_IBT_CRC_MAGIC):
237 case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
238 if (!xfs_sb_version_hascrc(&mp->m_sb))
239 return false;
240 if (!xfs_btree_sblock_v5hdr_verify(bp))
241 return false;
242 /* fall through */
243 case cpu_to_be32(XFS_IBT_MAGIC):
244 case cpu_to_be32(XFS_FIBT_MAGIC):
245 break;
246 default:
247 return 0;
248 }
249
250 /* level verification */
251 level = be16_to_cpu(block->bb_level);
252 if (level >= mp->m_in_maxlevels)
253 return false;
254
255 return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
256 }
257
258 static void
259 xfs_inobt_read_verify(
260 struct xfs_buf *bp)
261 {
262 if (!xfs_btree_sblock_verify_crc(bp))
263 xfs_buf_ioerror(bp, -EFSBADCRC);
264 else if (!xfs_inobt_verify(bp))
265 xfs_buf_ioerror(bp, -EFSCORRUPTED);
266
267 if (bp->b_error) {
268 trace_xfs_btree_corrupt(bp, _RET_IP_);
269 xfs_verifier_error(bp);
270 }
271 }
272
273 static void
274 xfs_inobt_write_verify(
275 struct xfs_buf *bp)
276 {
277 if (!xfs_inobt_verify(bp)) {
278 trace_xfs_btree_corrupt(bp, _RET_IP_);
279 xfs_buf_ioerror(bp, -EFSCORRUPTED);
280 xfs_verifier_error(bp);
281 return;
282 }
283 xfs_btree_sblock_calc_crc(bp);
284
285 }
286
287 const struct xfs_buf_ops xfs_inobt_buf_ops = {
288 .name = "xfs_inobt",
289 .verify_read = xfs_inobt_read_verify,
290 .verify_write = xfs_inobt_write_verify,
291 };
292
293 #if defined(DEBUG) || defined(XFS_WARN)
294 STATIC int
295 xfs_inobt_keys_inorder(
296 struct xfs_btree_cur *cur,
297 union xfs_btree_key *k1,
298 union xfs_btree_key *k2)
299 {
300 return be32_to_cpu(k1->inobt.ir_startino) <
301 be32_to_cpu(k2->inobt.ir_startino);
302 }
303
304 STATIC int
305 xfs_inobt_recs_inorder(
306 struct xfs_btree_cur *cur,
307 union xfs_btree_rec *r1,
308 union xfs_btree_rec *r2)
309 {
310 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
311 be32_to_cpu(r2->inobt.ir_startino);
312 }
313 #endif /* DEBUG */
314
315 static const struct xfs_btree_ops xfs_inobt_ops = {
316 .rec_len = sizeof(xfs_inobt_rec_t),
317 .key_len = sizeof(xfs_inobt_key_t),
318
319 .dup_cursor = xfs_inobt_dup_cursor,
320 .set_root = xfs_inobt_set_root,
321 .alloc_block = xfs_inobt_alloc_block,
322 .free_block = xfs_inobt_free_block,
323 .get_minrecs = xfs_inobt_get_minrecs,
324 .get_maxrecs = xfs_inobt_get_maxrecs,
325 .init_key_from_rec = xfs_inobt_init_key_from_rec,
326 .init_rec_from_key = xfs_inobt_init_rec_from_key,
327 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
328 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
329 .key_diff = xfs_inobt_key_diff,
330 .buf_ops = &xfs_inobt_buf_ops,
331 #if defined(DEBUG) || defined(XFS_WARN)
332 .keys_inorder = xfs_inobt_keys_inorder,
333 .recs_inorder = xfs_inobt_recs_inorder,
334 #endif
335 };
336
337 static const struct xfs_btree_ops xfs_finobt_ops = {
338 .rec_len = sizeof(xfs_inobt_rec_t),
339 .key_len = sizeof(xfs_inobt_key_t),
340
341 .dup_cursor = xfs_inobt_dup_cursor,
342 .set_root = xfs_finobt_set_root,
343 .alloc_block = xfs_inobt_alloc_block,
344 .free_block = xfs_inobt_free_block,
345 .get_minrecs = xfs_inobt_get_minrecs,
346 .get_maxrecs = xfs_inobt_get_maxrecs,
347 .init_key_from_rec = xfs_inobt_init_key_from_rec,
348 .init_rec_from_key = xfs_inobt_init_rec_from_key,
349 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
350 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
351 .key_diff = xfs_inobt_key_diff,
352 .buf_ops = &xfs_inobt_buf_ops,
353 #if defined(DEBUG) || defined(XFS_WARN)
354 .keys_inorder = xfs_inobt_keys_inorder,
355 .recs_inorder = xfs_inobt_recs_inorder,
356 #endif
357 };
358
359 /*
360 * Allocate a new inode btree cursor.
361 */
362 struct xfs_btree_cur * /* new inode btree cursor */
363 xfs_inobt_init_cursor(
364 struct xfs_mount *mp, /* file system mount point */
365 struct xfs_trans *tp, /* transaction pointer */
366 struct xfs_buf *agbp, /* buffer for agi structure */
367 xfs_agnumber_t agno, /* allocation group number */
368 xfs_btnum_t btnum) /* ialloc or free ino btree */
369 {
370 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
371 struct xfs_btree_cur *cur;
372
373 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
374
375 cur->bc_tp = tp;
376 cur->bc_mp = mp;
377 cur->bc_btnum = btnum;
378 if (btnum == XFS_BTNUM_INO) {
379 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
380 cur->bc_ops = &xfs_inobt_ops;
381 } else {
382 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
383 cur->bc_ops = &xfs_finobt_ops;
384 }
385
386 cur->bc_blocklog = mp->m_sb.sb_blocklog;
387
388 if (xfs_sb_version_hascrc(&mp->m_sb))
389 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
390
391 cur->bc_private.a.agbp = agbp;
392 cur->bc_private.a.agno = agno;
393
394 return cur;
395 }
396
397 /*
398 * Calculate number of records in an inobt btree block.
399 */
400 int
401 xfs_inobt_maxrecs(
402 struct xfs_mount *mp,
403 int blocklen,
404 int leaf)
405 {
406 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
407
408 if (leaf)
409 return blocklen / sizeof(xfs_inobt_rec_t);
410 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
411 }
412
413 /*
414 * Convert the inode record holemask to an inode allocation bitmap. The inode
415 * allocation bitmap is inode granularity and specifies whether an inode is
416 * physically allocated on disk (not whether the inode is considered allocated
417 * or free by the fs).
418 *
419 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
420 */
421 uint64_t
422 xfs_inobt_irec_to_allocmask(
423 struct xfs_inobt_rec_incore *rec)
424 {
425 uint64_t bitmap = 0;
426 uint64_t inodespbit;
427 int nextbit;
428 uint allocbitmap;
429
430 /*
431 * The holemask has 16-bits for a 64 inode record. Therefore each
432 * holemask bit represents multiple inodes. Create a mask of bits to set
433 * in the allocmask for each holemask bit.
434 */
435 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
436
437 /*
438 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
439 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
440 * anything beyond the 16 holemask bits since this casts to a larger
441 * type.
442 */
443 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
444
445 /*
446 * allocbitmap is the inverted holemask so every set bit represents
447 * allocated inodes. To expand from 16-bit holemask granularity to
448 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
449 * bitmap for every holemask bit.
450 */
451 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
452 while (nextbit != -1) {
453 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
454
455 bitmap |= (inodespbit <<
456 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
457
458 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
459 }
460
461 return bitmap;
462 }
463
464 #if defined(DEBUG) || defined(XFS_WARN)
465 /*
466 * Verify that an in-core inode record has a valid inode count.
467 */
468 int
469 xfs_inobt_rec_check_count(
470 struct xfs_mount *mp,
471 struct xfs_inobt_rec_incore *rec)
472 {
473 int inocount = 0;
474 int nextbit = 0;
475 uint64_t allocbmap;
476 int wordsz;
477
478 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
479 allocbmap = xfs_inobt_irec_to_allocmask(rec);
480
481 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
482 while (nextbit != -1) {
483 inocount++;
484 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
485 nextbit + 1);
486 }
487
488 if (inocount != rec->ir_count)
489 return -EFSCORRUPTED;
490
491 return 0;
492 }
493 #endif /* DEBUG */