]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_inode_buf.c
xfs: don't rely on extent indices in xfs_bmap_collapse_extents
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_inode_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_defer.h"
26 #include "xfs_inode.h"
27 #include "xfs_cksum.h"
28 #include "xfs_trans.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_dir2.h"
31
32 /*
33 * Check that none of the inode's in the buffer have a next
34 * unlinked field of 0.
35 */
36 #if defined(DEBUG)
37 void
38 xfs_inobp_check(
39 xfs_mount_t *mp,
40 xfs_buf_t *bp)
41 {
42 int i;
43 int j;
44 xfs_dinode_t *dip;
45
46 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
47
48 for (i = 0; i < j; i++) {
49 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
50 if (!dip->di_next_unlinked) {
51 xfs_alert(mp,
52 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
53 i, (long long)bp->b_bn);
54 }
55 }
56 }
57 #endif
58
59 bool
60 xfs_dinode_good_version(
61 struct xfs_mount *mp,
62 __u8 version)
63 {
64 if (xfs_sb_version_hascrc(&mp->m_sb))
65 return version == 3;
66
67 return version == 1 || version == 2;
68 }
69
70 /*
71 * If we are doing readahead on an inode buffer, we might be in log recovery
72 * reading an inode allocation buffer that hasn't yet been replayed, and hence
73 * has not had the inode cores stamped into it. Hence for readahead, the buffer
74 * may be potentially invalid.
75 *
76 * If the readahead buffer is invalid, we need to mark it with an error and
77 * clear the DONE status of the buffer so that a followup read will re-read it
78 * from disk. We don't report the error otherwise to avoid warnings during log
79 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
80 * because all we want to do is say readahead failed; there is no-one to report
81 * the error to, so this will distinguish it from a non-ra verifier failure.
82 * Changes to this readahead error behavour also need to be reflected in
83 * xfs_dquot_buf_readahead_verify().
84 */
85 static void
86 xfs_inode_buf_verify(
87 struct xfs_buf *bp,
88 bool readahead)
89 {
90 struct xfs_mount *mp = bp->b_target->bt_mount;
91 int i;
92 int ni;
93
94 /*
95 * Validate the magic number and version of every inode in the buffer
96 */
97 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
98 for (i = 0; i < ni; i++) {
99 int di_ok;
100 xfs_dinode_t *dip;
101
102 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
103 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
104 xfs_dinode_good_version(mp, dip->di_version);
105 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
106 XFS_ERRTAG_ITOBP_INOTOBP))) {
107 if (readahead) {
108 bp->b_flags &= ~XBF_DONE;
109 xfs_buf_ioerror(bp, -EIO);
110 return;
111 }
112
113 xfs_buf_ioerror(bp, -EFSCORRUPTED);
114 xfs_verifier_error(bp);
115 #ifdef DEBUG
116 xfs_alert(mp,
117 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
118 (unsigned long long)bp->b_bn, i,
119 be16_to_cpu(dip->di_magic));
120 #endif
121 }
122 }
123 xfs_inobp_check(mp, bp);
124 }
125
126
127 static void
128 xfs_inode_buf_read_verify(
129 struct xfs_buf *bp)
130 {
131 xfs_inode_buf_verify(bp, false);
132 }
133
134 static void
135 xfs_inode_buf_readahead_verify(
136 struct xfs_buf *bp)
137 {
138 xfs_inode_buf_verify(bp, true);
139 }
140
141 static void
142 xfs_inode_buf_write_verify(
143 struct xfs_buf *bp)
144 {
145 xfs_inode_buf_verify(bp, false);
146 }
147
148 const struct xfs_buf_ops xfs_inode_buf_ops = {
149 .name = "xfs_inode",
150 .verify_read = xfs_inode_buf_read_verify,
151 .verify_write = xfs_inode_buf_write_verify,
152 };
153
154 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
155 .name = "xxfs_inode_ra",
156 .verify_read = xfs_inode_buf_readahead_verify,
157 .verify_write = xfs_inode_buf_write_verify,
158 };
159
160
161 /*
162 * This routine is called to map an inode to the buffer containing the on-disk
163 * version of the inode. It returns a pointer to the buffer containing the
164 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
165 * pointer to the on-disk inode within that buffer.
166 *
167 * If a non-zero error is returned, then the contents of bpp and dipp are
168 * undefined.
169 */
170 int
171 xfs_imap_to_bp(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_imap *imap,
175 struct xfs_dinode **dipp,
176 struct xfs_buf **bpp,
177 uint buf_flags,
178 uint iget_flags)
179 {
180 struct xfs_buf *bp;
181 int error;
182
183 buf_flags |= XBF_UNMAPPED;
184 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
185 (int)imap->im_len, buf_flags, &bp,
186 &xfs_inode_buf_ops);
187 if (error) {
188 if (error == -EAGAIN) {
189 ASSERT(buf_flags & XBF_TRYLOCK);
190 return error;
191 }
192
193 if (error == -EFSCORRUPTED &&
194 (iget_flags & XFS_IGET_UNTRUSTED))
195 return -EINVAL;
196
197 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
198 __func__, error);
199 return error;
200 }
201
202 *bpp = bp;
203 *dipp = xfs_buf_offset(bp, imap->im_boffset);
204 return 0;
205 }
206
207 void
208 xfs_inode_from_disk(
209 struct xfs_inode *ip,
210 struct xfs_dinode *from)
211 {
212 struct xfs_icdinode *to = &ip->i_d;
213 struct inode *inode = VFS_I(ip);
214
215
216 /*
217 * Convert v1 inodes immediately to v2 inode format as this is the
218 * minimum inode version format we support in the rest of the code.
219 */
220 to->di_version = from->di_version;
221 if (to->di_version == 1) {
222 set_nlink(inode, be16_to_cpu(from->di_onlink));
223 to->di_projid_lo = 0;
224 to->di_projid_hi = 0;
225 to->di_version = 2;
226 } else {
227 set_nlink(inode, be32_to_cpu(from->di_nlink));
228 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
229 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
230 }
231
232 to->di_format = from->di_format;
233 to->di_uid = be32_to_cpu(from->di_uid);
234 to->di_gid = be32_to_cpu(from->di_gid);
235 to->di_flushiter = be16_to_cpu(from->di_flushiter);
236
237 /*
238 * Time is signed, so need to convert to signed 32 bit before
239 * storing in inode timestamp which may be 64 bit. Otherwise
240 * a time before epoch is converted to a time long after epoch
241 * on 64 bit systems.
242 */
243 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
244 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
245 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
246 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
247 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
248 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
249 inode->i_generation = be32_to_cpu(from->di_gen);
250 inode->i_mode = be16_to_cpu(from->di_mode);
251
252 to->di_size = be64_to_cpu(from->di_size);
253 to->di_nblocks = be64_to_cpu(from->di_nblocks);
254 to->di_extsize = be32_to_cpu(from->di_extsize);
255 to->di_nextents = be32_to_cpu(from->di_nextents);
256 to->di_anextents = be16_to_cpu(from->di_anextents);
257 to->di_forkoff = from->di_forkoff;
258 to->di_aformat = from->di_aformat;
259 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
260 to->di_dmstate = be16_to_cpu(from->di_dmstate);
261 to->di_flags = be16_to_cpu(from->di_flags);
262
263 if (to->di_version == 3) {
264 inode->i_version = be64_to_cpu(from->di_changecount);
265 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
266 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
267 to->di_flags2 = be64_to_cpu(from->di_flags2);
268 to->di_cowextsize = be32_to_cpu(from->di_cowextsize);
269 }
270 }
271
272 void
273 xfs_inode_to_disk(
274 struct xfs_inode *ip,
275 struct xfs_dinode *to,
276 xfs_lsn_t lsn)
277 {
278 struct xfs_icdinode *from = &ip->i_d;
279 struct inode *inode = VFS_I(ip);
280
281 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
282 to->di_onlink = 0;
283
284 to->di_version = from->di_version;
285 to->di_format = from->di_format;
286 to->di_uid = cpu_to_be32(from->di_uid);
287 to->di_gid = cpu_to_be32(from->di_gid);
288 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
289 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
290
291 memset(to->di_pad, 0, sizeof(to->di_pad));
292 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
293 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
294 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
295 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
296 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
297 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
298 to->di_nlink = cpu_to_be32(inode->i_nlink);
299 to->di_gen = cpu_to_be32(inode->i_generation);
300 to->di_mode = cpu_to_be16(inode->i_mode);
301
302 to->di_size = cpu_to_be64(from->di_size);
303 to->di_nblocks = cpu_to_be64(from->di_nblocks);
304 to->di_extsize = cpu_to_be32(from->di_extsize);
305 to->di_nextents = cpu_to_be32(from->di_nextents);
306 to->di_anextents = cpu_to_be16(from->di_anextents);
307 to->di_forkoff = from->di_forkoff;
308 to->di_aformat = from->di_aformat;
309 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
310 to->di_dmstate = cpu_to_be16(from->di_dmstate);
311 to->di_flags = cpu_to_be16(from->di_flags);
312
313 if (from->di_version == 3) {
314 to->di_changecount = cpu_to_be64(inode->i_version);
315 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
316 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
317 to->di_flags2 = cpu_to_be64(from->di_flags2);
318 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
319 to->di_ino = cpu_to_be64(ip->i_ino);
320 to->di_lsn = cpu_to_be64(lsn);
321 memset(to->di_pad2, 0, sizeof(to->di_pad2));
322 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
323 to->di_flushiter = 0;
324 } else {
325 to->di_flushiter = cpu_to_be16(from->di_flushiter);
326 }
327 }
328
329 void
330 xfs_log_dinode_to_disk(
331 struct xfs_log_dinode *from,
332 struct xfs_dinode *to)
333 {
334 to->di_magic = cpu_to_be16(from->di_magic);
335 to->di_mode = cpu_to_be16(from->di_mode);
336 to->di_version = from->di_version;
337 to->di_format = from->di_format;
338 to->di_onlink = 0;
339 to->di_uid = cpu_to_be32(from->di_uid);
340 to->di_gid = cpu_to_be32(from->di_gid);
341 to->di_nlink = cpu_to_be32(from->di_nlink);
342 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
343 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
344 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
345
346 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
347 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
348 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
349 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
350 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
351 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
352
353 to->di_size = cpu_to_be64(from->di_size);
354 to->di_nblocks = cpu_to_be64(from->di_nblocks);
355 to->di_extsize = cpu_to_be32(from->di_extsize);
356 to->di_nextents = cpu_to_be32(from->di_nextents);
357 to->di_anextents = cpu_to_be16(from->di_anextents);
358 to->di_forkoff = from->di_forkoff;
359 to->di_aformat = from->di_aformat;
360 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
361 to->di_dmstate = cpu_to_be16(from->di_dmstate);
362 to->di_flags = cpu_to_be16(from->di_flags);
363 to->di_gen = cpu_to_be32(from->di_gen);
364
365 if (from->di_version == 3) {
366 to->di_changecount = cpu_to_be64(from->di_changecount);
367 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
368 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
369 to->di_flags2 = cpu_to_be64(from->di_flags2);
370 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
371 to->di_ino = cpu_to_be64(from->di_ino);
372 to->di_lsn = cpu_to_be64(from->di_lsn);
373 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
374 uuid_copy(&to->di_uuid, &from->di_uuid);
375 to->di_flushiter = 0;
376 } else {
377 to->di_flushiter = cpu_to_be16(from->di_flushiter);
378 }
379 }
380
381 bool
382 xfs_dinode_verify(
383 struct xfs_mount *mp,
384 xfs_ino_t ino,
385 struct xfs_dinode *dip)
386 {
387 uint16_t mode;
388 uint16_t flags;
389 uint64_t flags2;
390
391 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
392 return false;
393
394 /* don't allow invalid i_size */
395 if (be64_to_cpu(dip->di_size) & (1ULL << 63))
396 return false;
397
398 mode = be16_to_cpu(dip->di_mode);
399 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
400 return false;
401
402 /* No zero-length symlinks/dirs. */
403 if ((S_ISLNK(mode) || S_ISDIR(mode)) && dip->di_size == 0)
404 return false;
405
406 /* only version 3 or greater inodes are extensively verified here */
407 if (dip->di_version < 3)
408 return true;
409
410 if (!xfs_sb_version_hascrc(&mp->m_sb))
411 return false;
412 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
413 XFS_DINODE_CRC_OFF))
414 return false;
415 if (be64_to_cpu(dip->di_ino) != ino)
416 return false;
417 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
418 return false;
419
420 flags = be16_to_cpu(dip->di_flags);
421 flags2 = be64_to_cpu(dip->di_flags2);
422
423 /* don't allow reflink/cowextsize if we don't have reflink */
424 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
425 !xfs_sb_version_hasreflink(&mp->m_sb))
426 return false;
427
428 /* don't let reflink and realtime mix */
429 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
430 return false;
431
432 /* don't let reflink and dax mix */
433 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX))
434 return false;
435
436 return true;
437 }
438
439 void
440 xfs_dinode_calc_crc(
441 struct xfs_mount *mp,
442 struct xfs_dinode *dip)
443 {
444 uint32_t crc;
445
446 if (dip->di_version < 3)
447 return;
448
449 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
450 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
451 XFS_DINODE_CRC_OFF);
452 dip->di_crc = xfs_end_cksum(crc);
453 }
454
455 /*
456 * Read the disk inode attributes into the in-core inode structure.
457 *
458 * For version 5 superblocks, if we are initialising a new inode and we are not
459 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
460 * inode core with a random generation number. If we are keeping inodes around,
461 * we need to read the inode cluster to get the existing generation number off
462 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
463 * format) then log recovery is dependent on the di_flushiter field being
464 * initialised from the current on-disk value and hence we must also read the
465 * inode off disk.
466 */
467 int
468 xfs_iread(
469 xfs_mount_t *mp,
470 xfs_trans_t *tp,
471 xfs_inode_t *ip,
472 uint iget_flags)
473 {
474 xfs_buf_t *bp;
475 xfs_dinode_t *dip;
476 int error;
477
478 /*
479 * Fill in the location information in the in-core inode.
480 */
481 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
482 if (error)
483 return error;
484
485 /* shortcut IO on inode allocation if possible */
486 if ((iget_flags & XFS_IGET_CREATE) &&
487 xfs_sb_version_hascrc(&mp->m_sb) &&
488 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
489 /* initialise the on-disk inode core */
490 memset(&ip->i_d, 0, sizeof(ip->i_d));
491 VFS_I(ip)->i_generation = prandom_u32();
492 if (xfs_sb_version_hascrc(&mp->m_sb))
493 ip->i_d.di_version = 3;
494 else
495 ip->i_d.di_version = 2;
496 return 0;
497 }
498
499 /*
500 * Get pointers to the on-disk inode and the buffer containing it.
501 */
502 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
503 if (error)
504 return error;
505
506 /* even unallocated inodes are verified */
507 if (!xfs_dinode_verify(mp, ip->i_ino, dip)) {
508 xfs_alert(mp, "%s: validation failed for inode %lld",
509 __func__, ip->i_ino);
510
511 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
512 error = -EFSCORRUPTED;
513 goto out_brelse;
514 }
515
516 /*
517 * If the on-disk inode is already linked to a directory
518 * entry, copy all of the inode into the in-core inode.
519 * xfs_iformat_fork() handles copying in the inode format
520 * specific information.
521 * Otherwise, just get the truly permanent information.
522 */
523 if (dip->di_mode) {
524 xfs_inode_from_disk(ip, dip);
525 error = xfs_iformat_fork(ip, dip);
526 if (error) {
527 #ifdef DEBUG
528 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
529 __func__, error);
530 #endif /* DEBUG */
531 goto out_brelse;
532 }
533 } else {
534 /*
535 * Partial initialisation of the in-core inode. Just the bits
536 * that xfs_ialloc won't overwrite or relies on being correct.
537 */
538 ip->i_d.di_version = dip->di_version;
539 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
540 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
541
542 /*
543 * Make sure to pull in the mode here as well in
544 * case the inode is released without being used.
545 * This ensures that xfs_inactive() will see that
546 * the inode is already free and not try to mess
547 * with the uninitialized part of it.
548 */
549 VFS_I(ip)->i_mode = 0;
550 }
551
552 ASSERT(ip->i_d.di_version >= 2);
553 ip->i_delayed_blks = 0;
554
555 /*
556 * Mark the buffer containing the inode as something to keep
557 * around for a while. This helps to keep recently accessed
558 * meta-data in-core longer.
559 */
560 xfs_buf_set_ref(bp, XFS_INO_REF);
561
562 /*
563 * Use xfs_trans_brelse() to release the buffer containing the on-disk
564 * inode, because it was acquired with xfs_trans_read_buf() in
565 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
566 * brelse(). If we're within a transaction, then xfs_trans_brelse()
567 * will only release the buffer if it is not dirty within the
568 * transaction. It will be OK to release the buffer in this case,
569 * because inodes on disk are never destroyed and we will be locking the
570 * new in-core inode before putting it in the cache where other
571 * processes can find it. Thus we don't have to worry about the inode
572 * being changed just because we released the buffer.
573 */
574 out_brelse:
575 xfs_trans_brelse(tp, bp);
576 return error;
577 }