]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_inode_buf.c
Merge branch 'libxfs-4.17-sync' into for-next
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_inode_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_defer.h"
26 #include "xfs_inode.h"
27 #include "xfs_errortag.h"
28 #include "xfs_cksum.h"
29 #include "xfs_trans.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_dir2.h"
32
33 /*
34 * Check that none of the inode's in the buffer have a next
35 * unlinked field of 0.
36 */
37 #if defined(DEBUG)
38 void
39 xfs_inobp_check(
40 xfs_mount_t *mp,
41 xfs_buf_t *bp)
42 {
43 int i;
44 int j;
45 xfs_dinode_t *dip;
46
47 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
48
49 for (i = 0; i < j; i++) {
50 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
51 if (!dip->di_next_unlinked) {
52 xfs_alert(mp,
53 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
54 i, (long long)bp->b_bn);
55 }
56 }
57 }
58 #endif
59
60 bool
61 xfs_dinode_good_version(
62 struct xfs_mount *mp,
63 __u8 version)
64 {
65 if (xfs_sb_version_hascrc(&mp->m_sb))
66 return version == 3;
67
68 return version == 1 || version == 2;
69 }
70
71 /*
72 * If we are doing readahead on an inode buffer, we might be in log recovery
73 * reading an inode allocation buffer that hasn't yet been replayed, and hence
74 * has not had the inode cores stamped into it. Hence for readahead, the buffer
75 * may be potentially invalid.
76 *
77 * If the readahead buffer is invalid, we need to mark it with an error and
78 * clear the DONE status of the buffer so that a followup read will re-read it
79 * from disk. We don't report the error otherwise to avoid warnings during log
80 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
81 * because all we want to do is say readahead failed; there is no-one to report
82 * the error to, so this will distinguish it from a non-ra verifier failure.
83 * Changes to this readahead error behavour also need to be reflected in
84 * xfs_dquot_buf_readahead_verify().
85 */
86 static void
87 xfs_inode_buf_verify(
88 struct xfs_buf *bp,
89 bool readahead)
90 {
91 struct xfs_mount *mp = bp->b_target->bt_mount;
92 xfs_agnumber_t agno;
93 int i;
94 int ni;
95
96 /*
97 * Validate the magic number and version of every inode in the buffer
98 */
99 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
100 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
101 for (i = 0; i < ni; i++) {
102 int di_ok;
103 xfs_dinode_t *dip;
104 xfs_agino_t unlinked_ino;
105
106 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
107 unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
108 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
109 xfs_dinode_good_version(mp, dip->di_version) &&
110 (unlinked_ino == NULLAGINO ||
111 xfs_verify_agino(mp, agno, unlinked_ino));
112 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
113 XFS_ERRTAG_ITOBP_INOTOBP))) {
114 if (readahead) {
115 bp->b_flags &= ~XBF_DONE;
116 xfs_buf_ioerror(bp, -EIO);
117 return;
118 }
119
120 #ifdef DEBUG
121 xfs_alert(mp,
122 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
123 (unsigned long long)bp->b_bn, i,
124 be16_to_cpu(dip->di_magic));
125 #endif
126 xfs_buf_verifier_error(bp, -EFSCORRUPTED,
127 __func__, dip, sizeof(*dip),
128 NULL);
129 return;
130 }
131 }
132 }
133
134
135 static void
136 xfs_inode_buf_read_verify(
137 struct xfs_buf *bp)
138 {
139 xfs_inode_buf_verify(bp, false);
140 }
141
142 static void
143 xfs_inode_buf_readahead_verify(
144 struct xfs_buf *bp)
145 {
146 xfs_inode_buf_verify(bp, true);
147 }
148
149 static void
150 xfs_inode_buf_write_verify(
151 struct xfs_buf *bp)
152 {
153 xfs_inode_buf_verify(bp, false);
154 }
155
156 const struct xfs_buf_ops xfs_inode_buf_ops = {
157 .name = "xfs_inode",
158 .verify_read = xfs_inode_buf_read_verify,
159 .verify_write = xfs_inode_buf_write_verify,
160 };
161
162 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
163 .name = "xxfs_inode_ra",
164 .verify_read = xfs_inode_buf_readahead_verify,
165 .verify_write = xfs_inode_buf_write_verify,
166 };
167
168
169 /*
170 * This routine is called to map an inode to the buffer containing the on-disk
171 * version of the inode. It returns a pointer to the buffer containing the
172 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
173 * pointer to the on-disk inode within that buffer.
174 *
175 * If a non-zero error is returned, then the contents of bpp and dipp are
176 * undefined.
177 */
178 int
179 xfs_imap_to_bp(
180 struct xfs_mount *mp,
181 struct xfs_trans *tp,
182 struct xfs_imap *imap,
183 struct xfs_dinode **dipp,
184 struct xfs_buf **bpp,
185 uint buf_flags,
186 uint iget_flags)
187 {
188 struct xfs_buf *bp;
189 int error;
190
191 buf_flags |= XBF_UNMAPPED;
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
193 (int)imap->im_len, buf_flags, &bp,
194 &xfs_inode_buf_ops);
195 if (error) {
196 if (error == -EAGAIN) {
197 ASSERT(buf_flags & XBF_TRYLOCK);
198 return error;
199 }
200
201 if (error == -EFSCORRUPTED &&
202 (iget_flags & XFS_IGET_UNTRUSTED))
203 return -EINVAL;
204
205 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
206 __func__, error);
207 return error;
208 }
209
210 *bpp = bp;
211 *dipp = xfs_buf_offset(bp, imap->im_boffset);
212 return 0;
213 }
214
215 void
216 xfs_inode_from_disk(
217 struct xfs_inode *ip,
218 struct xfs_dinode *from)
219 {
220 struct xfs_icdinode *to = &ip->i_d;
221 struct inode *inode = VFS_I(ip);
222
223
224 /*
225 * Convert v1 inodes immediately to v2 inode format as this is the
226 * minimum inode version format we support in the rest of the code.
227 */
228 to->di_version = from->di_version;
229 if (to->di_version == 1) {
230 set_nlink(inode, be16_to_cpu(from->di_onlink));
231 to->di_projid_lo = 0;
232 to->di_projid_hi = 0;
233 to->di_version = 2;
234 } else {
235 set_nlink(inode, be32_to_cpu(from->di_nlink));
236 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
237 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
238 }
239
240 to->di_format = from->di_format;
241 to->di_uid = be32_to_cpu(from->di_uid);
242 to->di_gid = be32_to_cpu(from->di_gid);
243 to->di_flushiter = be16_to_cpu(from->di_flushiter);
244
245 /*
246 * Time is signed, so need to convert to signed 32 bit before
247 * storing in inode timestamp which may be 64 bit. Otherwise
248 * a time before epoch is converted to a time long after epoch
249 * on 64 bit systems.
250 */
251 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
252 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
253 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
254 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
255 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
256 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
257 inode->i_generation = be32_to_cpu(from->di_gen);
258 inode->i_mode = be16_to_cpu(from->di_mode);
259
260 to->di_size = be64_to_cpu(from->di_size);
261 to->di_nblocks = be64_to_cpu(from->di_nblocks);
262 to->di_extsize = be32_to_cpu(from->di_extsize);
263 to->di_nextents = be32_to_cpu(from->di_nextents);
264 to->di_anextents = be16_to_cpu(from->di_anextents);
265 to->di_forkoff = from->di_forkoff;
266 to->di_aformat = from->di_aformat;
267 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
268 to->di_dmstate = be16_to_cpu(from->di_dmstate);
269 to->di_flags = be16_to_cpu(from->di_flags);
270
271 if (to->di_version == 3) {
272 inode_set_iversion_queried(inode,
273 be64_to_cpu(from->di_changecount));
274 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
275 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
276 to->di_flags2 = be64_to_cpu(from->di_flags2);
277 to->di_cowextsize = be32_to_cpu(from->di_cowextsize);
278 }
279 }
280
281 void
282 xfs_inode_to_disk(
283 struct xfs_inode *ip,
284 struct xfs_dinode *to,
285 xfs_lsn_t lsn)
286 {
287 struct xfs_icdinode *from = &ip->i_d;
288 struct inode *inode = VFS_I(ip);
289
290 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
291 to->di_onlink = 0;
292
293 to->di_version = from->di_version;
294 to->di_format = from->di_format;
295 to->di_uid = cpu_to_be32(from->di_uid);
296 to->di_gid = cpu_to_be32(from->di_gid);
297 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
298 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
299
300 memset(to->di_pad, 0, sizeof(to->di_pad));
301 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
302 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
303 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
304 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
305 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
306 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
307 to->di_nlink = cpu_to_be32(inode->i_nlink);
308 to->di_gen = cpu_to_be32(inode->i_generation);
309 to->di_mode = cpu_to_be16(inode->i_mode);
310
311 to->di_size = cpu_to_be64(from->di_size);
312 to->di_nblocks = cpu_to_be64(from->di_nblocks);
313 to->di_extsize = cpu_to_be32(from->di_extsize);
314 to->di_nextents = cpu_to_be32(from->di_nextents);
315 to->di_anextents = cpu_to_be16(from->di_anextents);
316 to->di_forkoff = from->di_forkoff;
317 to->di_aformat = from->di_aformat;
318 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
319 to->di_dmstate = cpu_to_be16(from->di_dmstate);
320 to->di_flags = cpu_to_be16(from->di_flags);
321
322 if (from->di_version == 3) {
323 to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
324 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
325 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
326 to->di_flags2 = cpu_to_be64(from->di_flags2);
327 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
328 to->di_ino = cpu_to_be64(ip->i_ino);
329 to->di_lsn = cpu_to_be64(lsn);
330 memset(to->di_pad2, 0, sizeof(to->di_pad2));
331 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
332 to->di_flushiter = 0;
333 } else {
334 to->di_flushiter = cpu_to_be16(from->di_flushiter);
335 }
336 }
337
338 void
339 xfs_log_dinode_to_disk(
340 struct xfs_log_dinode *from,
341 struct xfs_dinode *to)
342 {
343 to->di_magic = cpu_to_be16(from->di_magic);
344 to->di_mode = cpu_to_be16(from->di_mode);
345 to->di_version = from->di_version;
346 to->di_format = from->di_format;
347 to->di_onlink = 0;
348 to->di_uid = cpu_to_be32(from->di_uid);
349 to->di_gid = cpu_to_be32(from->di_gid);
350 to->di_nlink = cpu_to_be32(from->di_nlink);
351 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
352 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
353 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
354
355 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
356 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
357 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
358 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
359 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
360 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
361
362 to->di_size = cpu_to_be64(from->di_size);
363 to->di_nblocks = cpu_to_be64(from->di_nblocks);
364 to->di_extsize = cpu_to_be32(from->di_extsize);
365 to->di_nextents = cpu_to_be32(from->di_nextents);
366 to->di_anextents = cpu_to_be16(from->di_anextents);
367 to->di_forkoff = from->di_forkoff;
368 to->di_aformat = from->di_aformat;
369 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
370 to->di_dmstate = cpu_to_be16(from->di_dmstate);
371 to->di_flags = cpu_to_be16(from->di_flags);
372 to->di_gen = cpu_to_be32(from->di_gen);
373
374 if (from->di_version == 3) {
375 to->di_changecount = cpu_to_be64(from->di_changecount);
376 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
377 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
378 to->di_flags2 = cpu_to_be64(from->di_flags2);
379 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
380 to->di_ino = cpu_to_be64(from->di_ino);
381 to->di_lsn = cpu_to_be64(from->di_lsn);
382 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
383 uuid_copy(&to->di_uuid, &from->di_uuid);
384 to->di_flushiter = 0;
385 } else {
386 to->di_flushiter = cpu_to_be16(from->di_flushiter);
387 }
388 }
389
390 xfs_failaddr_t
391 xfs_dinode_verify(
392 struct xfs_mount *mp,
393 xfs_ino_t ino,
394 struct xfs_dinode *dip)
395 {
396 uint16_t mode;
397 uint16_t flags;
398 uint64_t flags2;
399 uint64_t di_size;
400
401 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
402 return __this_address;
403
404 /* Verify v3 integrity information first */
405 if (dip->di_version >= 3) {
406 if (!xfs_sb_version_hascrc(&mp->m_sb))
407 return __this_address;
408 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
409 XFS_DINODE_CRC_OFF))
410 return __this_address;
411 if (be64_to_cpu(dip->di_ino) != ino)
412 return __this_address;
413 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
414 return __this_address;
415 }
416
417 /* don't allow invalid i_size */
418 di_size = be64_to_cpu(dip->di_size);
419 if (di_size & (1ULL << 63))
420 return __this_address;
421
422 mode = be16_to_cpu(dip->di_mode);
423 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
424 return __this_address;
425
426 /* No zero-length symlinks/dirs. */
427 if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0)
428 return __this_address;
429
430 /* Fork checks carried over from xfs_iformat_fork */
431 if (mode &&
432 be32_to_cpu(dip->di_nextents) + be16_to_cpu(dip->di_anextents) >
433 be64_to_cpu(dip->di_nblocks))
434 return __this_address;
435
436 if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
437 return __this_address;
438
439 flags = be16_to_cpu(dip->di_flags);
440
441 if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
442 return __this_address;
443
444 /* Do we have appropriate data fork formats for the mode? */
445 switch (mode & S_IFMT) {
446 case S_IFIFO:
447 case S_IFCHR:
448 case S_IFBLK:
449 case S_IFSOCK:
450 if (dip->di_format != XFS_DINODE_FMT_DEV)
451 return __this_address;
452 break;
453 case S_IFREG:
454 case S_IFLNK:
455 case S_IFDIR:
456 switch (dip->di_format) {
457 case XFS_DINODE_FMT_LOCAL:
458 /*
459 * no local regular files yet
460 */
461 if (S_ISREG(mode))
462 return __this_address;
463 if (di_size > XFS_DFORK_DSIZE(dip, mp))
464 return __this_address;
465 if (dip->di_nextents)
466 return __this_address;
467 /* fall through */
468 case XFS_DINODE_FMT_EXTENTS:
469 case XFS_DINODE_FMT_BTREE:
470 break;
471 default:
472 return __this_address;
473 }
474 break;
475 case 0:
476 /* Uninitialized inode ok. */
477 break;
478 default:
479 return __this_address;
480 }
481
482 if (XFS_DFORK_Q(dip)) {
483 switch (dip->di_aformat) {
484 case XFS_DINODE_FMT_LOCAL:
485 if (dip->di_anextents)
486 return __this_address;
487 /* fall through */
488 case XFS_DINODE_FMT_EXTENTS:
489 case XFS_DINODE_FMT_BTREE:
490 break;
491 default:
492 return __this_address;
493 }
494 } else {
495 /*
496 * If there is no fork offset, this may be a freshly-made inode
497 * in a new disk cluster, in which case di_aformat is zeroed.
498 * Otherwise, such an inode must be in EXTENTS format; this goes
499 * for freed inodes as well.
500 */
501 switch (dip->di_aformat) {
502 case 0:
503 case XFS_DINODE_FMT_EXTENTS:
504 break;
505 default:
506 return __this_address;
507 }
508 if (dip->di_anextents)
509 return __this_address;
510 }
511
512 /* only version 3 or greater inodes are extensively verified here */
513 if (dip->di_version < 3)
514 return NULL;
515
516 flags2 = be64_to_cpu(dip->di_flags2);
517
518 /* don't allow reflink/cowextsize if we don't have reflink */
519 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
520 !xfs_sb_version_hasreflink(&mp->m_sb))
521 return __this_address;
522
523 /* only regular files get reflink */
524 if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
525 return __this_address;
526
527 /* don't let reflink and realtime mix */
528 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
529 return __this_address;
530
531 /* don't let reflink and dax mix */
532 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX))
533 return __this_address;
534
535 return NULL;
536 }
537
538 void
539 xfs_dinode_calc_crc(
540 struct xfs_mount *mp,
541 struct xfs_dinode *dip)
542 {
543 uint32_t crc;
544
545 if (dip->di_version < 3)
546 return;
547
548 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
549 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
550 XFS_DINODE_CRC_OFF);
551 dip->di_crc = xfs_end_cksum(crc);
552 }
553
554 /*
555 * Read the disk inode attributes into the in-core inode structure.
556 *
557 * For version 5 superblocks, if we are initialising a new inode and we are not
558 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
559 * inode core with a random generation number. If we are keeping inodes around,
560 * we need to read the inode cluster to get the existing generation number off
561 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
562 * format) then log recovery is dependent on the di_flushiter field being
563 * initialised from the current on-disk value and hence we must also read the
564 * inode off disk.
565 */
566 int
567 xfs_iread(
568 xfs_mount_t *mp,
569 xfs_trans_t *tp,
570 xfs_inode_t *ip,
571 uint iget_flags)
572 {
573 xfs_buf_t *bp;
574 xfs_dinode_t *dip;
575 xfs_failaddr_t fa;
576 int error;
577
578 /*
579 * Fill in the location information in the in-core inode.
580 */
581 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
582 if (error)
583 return error;
584
585 /* shortcut IO on inode allocation if possible */
586 if ((iget_flags & XFS_IGET_CREATE) &&
587 xfs_sb_version_hascrc(&mp->m_sb) &&
588 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
589 /* initialise the on-disk inode core */
590 memset(&ip->i_d, 0, sizeof(ip->i_d));
591 VFS_I(ip)->i_generation = prandom_u32();
592 ip->i_d.di_version = 3;
593 return 0;
594 }
595
596 /*
597 * Get pointers to the on-disk inode and the buffer containing it.
598 */
599 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
600 if (error)
601 return error;
602
603 /* even unallocated inodes are verified */
604 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
605 if (fa) {
606 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", dip,
607 sizeof(*dip), fa);
608 error = -EFSCORRUPTED;
609 goto out_brelse;
610 }
611
612 /*
613 * If the on-disk inode is already linked to a directory
614 * entry, copy all of the inode into the in-core inode.
615 * xfs_iformat_fork() handles copying in the inode format
616 * specific information.
617 * Otherwise, just get the truly permanent information.
618 */
619 if (dip->di_mode) {
620 xfs_inode_from_disk(ip, dip);
621 error = xfs_iformat_fork(ip, dip);
622 if (error) {
623 #ifdef DEBUG
624 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
625 __func__, error);
626 #endif /* DEBUG */
627 goto out_brelse;
628 }
629 } else {
630 /*
631 * Partial initialisation of the in-core inode. Just the bits
632 * that xfs_ialloc won't overwrite or relies on being correct.
633 */
634 ip->i_d.di_version = dip->di_version;
635 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
636 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
637
638 /*
639 * Make sure to pull in the mode here as well in
640 * case the inode is released without being used.
641 * This ensures that xfs_inactive() will see that
642 * the inode is already free and not try to mess
643 * with the uninitialized part of it.
644 */
645 VFS_I(ip)->i_mode = 0;
646 }
647
648 ASSERT(ip->i_d.di_version >= 2);
649 ip->i_delayed_blks = 0;
650
651 /*
652 * Mark the buffer containing the inode as something to keep
653 * around for a while. This helps to keep recently accessed
654 * meta-data in-core longer.
655 */
656 xfs_buf_set_ref(bp, XFS_INO_REF);
657
658 /*
659 * Use xfs_trans_brelse() to release the buffer containing the on-disk
660 * inode, because it was acquired with xfs_trans_read_buf() in
661 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
662 * brelse(). If we're within a transaction, then xfs_trans_brelse()
663 * will only release the buffer if it is not dirty within the
664 * transaction. It will be OK to release the buffer in this case,
665 * because inodes on disk are never destroyed and we will be locking the
666 * new in-core inode before putting it in the cache where other
667 * processes can find it. Thus we don't have to worry about the inode
668 * being changed just because we released the buffer.
669 */
670 out_brelse:
671 xfs_trans_brelse(tp, bp);
672 return error;
673 }
674
675 /*
676 * Validate di_extsize hint.
677 *
678 * The rules are documented at xfs_ioctl_setattr_check_extsize().
679 * These functions must be kept in sync with each other.
680 */
681 xfs_failaddr_t
682 xfs_inode_validate_extsize(
683 struct xfs_mount *mp,
684 uint32_t extsize,
685 uint16_t mode,
686 uint16_t flags)
687 {
688 bool rt_flag;
689 bool hint_flag;
690 bool inherit_flag;
691 uint32_t extsize_bytes;
692 uint32_t blocksize_bytes;
693
694 rt_flag = (flags & XFS_DIFLAG_REALTIME);
695 hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
696 inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
697 extsize_bytes = XFS_FSB_TO_B(mp, extsize);
698
699 if (rt_flag)
700 blocksize_bytes = mp->m_sb.sb_rextsize << mp->m_sb.sb_blocklog;
701 else
702 blocksize_bytes = mp->m_sb.sb_blocksize;
703
704 if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
705 return __this_address;
706
707 if (hint_flag && !S_ISREG(mode))
708 return __this_address;
709
710 if (inherit_flag && !S_ISDIR(mode))
711 return __this_address;
712
713 if ((hint_flag || inherit_flag) && extsize == 0)
714 return __this_address;
715
716 if (!(hint_flag || inherit_flag) && extsize != 0)
717 return __this_address;
718
719 if (extsize_bytes % blocksize_bytes)
720 return __this_address;
721
722 if (extsize > MAXEXTLEN)
723 return __this_address;
724
725 if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
726 return __this_address;
727
728 return NULL;
729 }
730
731 /*
732 * Validate di_cowextsize hint.
733 *
734 * The rules are documented at xfs_ioctl_setattr_check_cowextsize().
735 * These functions must be kept in sync with each other.
736 */
737 xfs_failaddr_t
738 xfs_inode_validate_cowextsize(
739 struct xfs_mount *mp,
740 uint32_t cowextsize,
741 uint16_t mode,
742 uint16_t flags,
743 uint64_t flags2)
744 {
745 bool rt_flag;
746 bool hint_flag;
747 uint32_t cowextsize_bytes;
748
749 rt_flag = (flags & XFS_DIFLAG_REALTIME);
750 hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
751 cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
752
753 if (hint_flag && !xfs_sb_version_hasreflink(&mp->m_sb))
754 return __this_address;
755
756 if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
757 return __this_address;
758
759 if (hint_flag && cowextsize == 0)
760 return __this_address;
761
762 if (!hint_flag && cowextsize != 0)
763 return __this_address;
764
765 if (hint_flag && rt_flag)
766 return __this_address;
767
768 if (cowextsize_bytes % mp->m_sb.sb_blocksize)
769 return __this_address;
770
771 if (cowextsize > MAXEXTLEN)
772 return __this_address;
773
774 if (cowextsize > mp->m_sb.sb_agblocks / 2)
775 return __this_address;
776
777 return NULL;
778 }