]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_rmap_btree.c
xfs: remove double-underscore integer types
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_rmap_btree.c
1 /*
2 * Copyright (c) 2014 Red Hat, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
32 #include "xfs_rmap.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_ag_resv.h"
37
38 /*
39 * Reverse map btree.
40 *
41 * This is a per-ag tree used to track the owner(s) of a given extent. With
42 * reflink it is possible for there to be multiple owners, which is a departure
43 * from classic XFS. Owner records for data extents are inserted when the
44 * extent is mapped and removed when an extent is unmapped. Owner records for
45 * all other block types (i.e. metadata) are inserted when an extent is
46 * allocated and removed when an extent is freed. There can only be one owner
47 * of a metadata extent, usually an inode or some other metadata structure like
48 * an AG btree.
49 *
50 * The rmap btree is part of the free space management, so blocks for the tree
51 * are sourced from the agfl. Hence we need transaction reservation support for
52 * this tree so that the freelist is always large enough. This also impacts on
53 * the minimum space we need to leave free in the AG.
54 *
55 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
56 * but it is the only way to enforce unique keys when a block can be owned by
57 * multiple files at any offset. There's no need to order/search by extent
58 * size for online updating/management of the tree. It is intended that most
59 * reverse lookups will be to find the owner(s) of a particular block, or to
60 * try to recover tree and file data from corrupt primary metadata.
61 */
62
63 static struct xfs_btree_cur *
64 xfs_rmapbt_dup_cursor(
65 struct xfs_btree_cur *cur)
66 {
67 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
68 cur->bc_private.a.agbp, cur->bc_private.a.agno);
69 }
70
71 STATIC void
72 xfs_rmapbt_set_root(
73 struct xfs_btree_cur *cur,
74 union xfs_btree_ptr *ptr,
75 int inc)
76 {
77 struct xfs_buf *agbp = cur->bc_private.a.agbp;
78 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
79 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
80 int btnum = cur->bc_btnum;
81 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
82
83 ASSERT(ptr->s != 0);
84
85 agf->agf_roots[btnum] = ptr->s;
86 be32_add_cpu(&agf->agf_levels[btnum], inc);
87 pag->pagf_levels[btnum] += inc;
88 xfs_perag_put(pag);
89
90 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
91 }
92
93 STATIC int
94 xfs_rmapbt_alloc_block(
95 struct xfs_btree_cur *cur,
96 union xfs_btree_ptr *start,
97 union xfs_btree_ptr *new,
98 int *stat)
99 {
100 struct xfs_buf *agbp = cur->bc_private.a.agbp;
101 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
102 int error;
103 xfs_agblock_t bno;
104
105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
106
107 /* Allocate the new block from the freelist. If we can't, give up. */
108 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
109 &bno, 1);
110 if (error) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
112 return error;
113 }
114
115 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
116 bno, 1);
117 if (bno == NULLAGBLOCK) {
118 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
119 *stat = 0;
120 return 0;
121 }
122
123 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
124 false);
125
126 xfs_trans_agbtree_delta(cur->bc_tp, 1);
127 new->s = cpu_to_be32(bno);
128 be32_add_cpu(&agf->agf_rmap_blocks, 1);
129 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
130
131 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
132 *stat = 1;
133 return 0;
134 }
135
136 STATIC int
137 xfs_rmapbt_free_block(
138 struct xfs_btree_cur *cur,
139 struct xfs_buf *bp)
140 {
141 struct xfs_buf *agbp = cur->bc_private.a.agbp;
142 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
143 xfs_agblock_t bno;
144 int error;
145
146 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
147 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
148 bno, 1);
149 be32_add_cpu(&agf->agf_rmap_blocks, -1);
150 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
151 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
152 if (error)
153 return error;
154
155 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
156 XFS_EXTENT_BUSY_SKIP_DISCARD);
157 xfs_trans_agbtree_delta(cur->bc_tp, -1);
158
159 return 0;
160 }
161
162 STATIC int
163 xfs_rmapbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166 {
167 return cur->bc_mp->m_rmap_mnr[level != 0];
168 }
169
170 STATIC int
171 xfs_rmapbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174 {
175 return cur->bc_mp->m_rmap_mxr[level != 0];
176 }
177
178 STATIC void
179 xfs_rmapbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182 {
183 key->rmap.rm_startblock = rec->rmap.rm_startblock;
184 key->rmap.rm_owner = rec->rmap.rm_owner;
185 key->rmap.rm_offset = rec->rmap.rm_offset;
186 }
187
188 /*
189 * The high key for a reverse mapping record can be computed by shifting
190 * the startblock and offset to the highest value that would still map
191 * to that record. In practice this means that we add blockcount-1 to
192 * the startblock for all records, and if the record is for a data/attr
193 * fork mapping, we add blockcount-1 to the offset too.
194 */
195 STATIC void
196 xfs_rmapbt_init_high_key_from_rec(
197 union xfs_btree_key *key,
198 union xfs_btree_rec *rec)
199 {
200 uint64_t off;
201 int adj;
202
203 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
204
205 key->rmap.rm_startblock = rec->rmap.rm_startblock;
206 be32_add_cpu(&key->rmap.rm_startblock, adj);
207 key->rmap.rm_owner = rec->rmap.rm_owner;
208 key->rmap.rm_offset = rec->rmap.rm_offset;
209 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
210 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
211 return;
212 off = be64_to_cpu(key->rmap.rm_offset);
213 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
214 key->rmap.rm_offset = cpu_to_be64(off);
215 }
216
217 STATIC void
218 xfs_rmapbt_init_rec_from_cur(
219 struct xfs_btree_cur *cur,
220 union xfs_btree_rec *rec)
221 {
222 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
223 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
224 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
225 rec->rmap.rm_offset = cpu_to_be64(
226 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
227 }
228
229 STATIC void
230 xfs_rmapbt_init_ptr_from_cur(
231 struct xfs_btree_cur *cur,
232 union xfs_btree_ptr *ptr)
233 {
234 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
235
236 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
237 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
238
239 ptr->s = agf->agf_roots[cur->bc_btnum];
240 }
241
242 STATIC int64_t
243 xfs_rmapbt_key_diff(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_key *key)
246 {
247 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
248 struct xfs_rmap_key *kp = &key->rmap;
249 __u64 x, y;
250 int64_t d;
251
252 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
253 if (d)
254 return d;
255
256 x = be64_to_cpu(kp->rm_owner);
257 y = rec->rm_owner;
258 if (x > y)
259 return 1;
260 else if (y > x)
261 return -1;
262
263 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
264 y = rec->rm_offset;
265 if (x > y)
266 return 1;
267 else if (y > x)
268 return -1;
269 return 0;
270 }
271
272 STATIC int64_t
273 xfs_rmapbt_diff_two_keys(
274 struct xfs_btree_cur *cur,
275 union xfs_btree_key *k1,
276 union xfs_btree_key *k2)
277 {
278 struct xfs_rmap_key *kp1 = &k1->rmap;
279 struct xfs_rmap_key *kp2 = &k2->rmap;
280 int64_t d;
281 __u64 x, y;
282
283 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
284 be32_to_cpu(kp2->rm_startblock);
285 if (d)
286 return d;
287
288 x = be64_to_cpu(kp1->rm_owner);
289 y = be64_to_cpu(kp2->rm_owner);
290 if (x > y)
291 return 1;
292 else if (y > x)
293 return -1;
294
295 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
296 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
297 if (x > y)
298 return 1;
299 else if (y > x)
300 return -1;
301 return 0;
302 }
303
304 static bool
305 xfs_rmapbt_verify(
306 struct xfs_buf *bp)
307 {
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 unsigned int level;
312
313 /*
314 * magic number and level verification
315 *
316 * During growfs operations, we can't verify the exact level or owner as
317 * the perag is not fully initialised and hence not attached to the
318 * buffer. In this case, check against the maximum tree depth.
319 *
320 * Similarly, during log recovery we will have a perag structure
321 * attached, but the agf information will not yet have been initialised
322 * from the on disk AGF. Again, we can only check against maximum limits
323 * in this case.
324 */
325 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
326 return false;
327
328 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
329 return false;
330 if (!xfs_btree_sblock_v5hdr_verify(bp))
331 return false;
332
333 level = be16_to_cpu(block->bb_level);
334 if (pag && pag->pagf_init) {
335 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
336 return false;
337 } else if (level >= mp->m_rmap_maxlevels)
338 return false;
339
340 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
341 }
342
343 static void
344 xfs_rmapbt_read_verify(
345 struct xfs_buf *bp)
346 {
347 if (!xfs_btree_sblock_verify_crc(bp))
348 xfs_buf_ioerror(bp, -EFSBADCRC);
349 else if (!xfs_rmapbt_verify(bp))
350 xfs_buf_ioerror(bp, -EFSCORRUPTED);
351
352 if (bp->b_error) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp);
355 }
356 }
357
358 static void
359 xfs_rmapbt_write_verify(
360 struct xfs_buf *bp)
361 {
362 if (!xfs_rmapbt_verify(bp)) {
363 trace_xfs_btree_corrupt(bp, _RET_IP_);
364 xfs_buf_ioerror(bp, -EFSCORRUPTED);
365 xfs_verifier_error(bp);
366 return;
367 }
368 xfs_btree_sblock_calc_crc(bp);
369
370 }
371
372 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
373 .name = "xfs_rmapbt",
374 .verify_read = xfs_rmapbt_read_verify,
375 .verify_write = xfs_rmapbt_write_verify,
376 };
377
378 #if defined(DEBUG) || defined(XFS_WARN)
379 STATIC int
380 xfs_rmapbt_keys_inorder(
381 struct xfs_btree_cur *cur,
382 union xfs_btree_key *k1,
383 union xfs_btree_key *k2)
384 {
385 uint32_t x;
386 uint32_t y;
387 uint64_t a;
388 uint64_t b;
389
390 x = be32_to_cpu(k1->rmap.rm_startblock);
391 y = be32_to_cpu(k2->rmap.rm_startblock);
392 if (x < y)
393 return 1;
394 else if (x > y)
395 return 0;
396 a = be64_to_cpu(k1->rmap.rm_owner);
397 b = be64_to_cpu(k2->rmap.rm_owner);
398 if (a < b)
399 return 1;
400 else if (a > b)
401 return 0;
402 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
403 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
404 if (a <= b)
405 return 1;
406 return 0;
407 }
408
409 STATIC int
410 xfs_rmapbt_recs_inorder(
411 struct xfs_btree_cur *cur,
412 union xfs_btree_rec *r1,
413 union xfs_btree_rec *r2)
414 {
415 uint32_t x;
416 uint32_t y;
417 uint64_t a;
418 uint64_t b;
419
420 x = be32_to_cpu(r1->rmap.rm_startblock);
421 y = be32_to_cpu(r2->rmap.rm_startblock);
422 if (x < y)
423 return 1;
424 else if (x > y)
425 return 0;
426 a = be64_to_cpu(r1->rmap.rm_owner);
427 b = be64_to_cpu(r2->rmap.rm_owner);
428 if (a < b)
429 return 1;
430 else if (a > b)
431 return 0;
432 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
433 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
434 if (a <= b)
435 return 1;
436 return 0;
437 }
438 #endif /* DEBUG */
439
440 static const struct xfs_btree_ops xfs_rmapbt_ops = {
441 .rec_len = sizeof(struct xfs_rmap_rec),
442 .key_len = 2 * sizeof(struct xfs_rmap_key),
443
444 .dup_cursor = xfs_rmapbt_dup_cursor,
445 .set_root = xfs_rmapbt_set_root,
446 .alloc_block = xfs_rmapbt_alloc_block,
447 .free_block = xfs_rmapbt_free_block,
448 .get_minrecs = xfs_rmapbt_get_minrecs,
449 .get_maxrecs = xfs_rmapbt_get_maxrecs,
450 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
451 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
452 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
453 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
454 .key_diff = xfs_rmapbt_key_diff,
455 .buf_ops = &xfs_rmapbt_buf_ops,
456 .diff_two_keys = xfs_rmapbt_diff_two_keys,
457 #if defined(DEBUG) || defined(XFS_WARN)
458 .keys_inorder = xfs_rmapbt_keys_inorder,
459 .recs_inorder = xfs_rmapbt_recs_inorder,
460 #endif
461 };
462
463 /*
464 * Allocate a new allocation btree cursor.
465 */
466 struct xfs_btree_cur *
467 xfs_rmapbt_init_cursor(
468 struct xfs_mount *mp,
469 struct xfs_trans *tp,
470 struct xfs_buf *agbp,
471 xfs_agnumber_t agno)
472 {
473 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
474 struct xfs_btree_cur *cur;
475
476 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
477 cur->bc_tp = tp;
478 cur->bc_mp = mp;
479 /* Overlapping btree; 2 keys per pointer. */
480 cur->bc_btnum = XFS_BTNUM_RMAP;
481 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
482 cur->bc_blocklog = mp->m_sb.sb_blocklog;
483 cur->bc_ops = &xfs_rmapbt_ops;
484 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
485 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
486
487 cur->bc_private.a.agbp = agbp;
488 cur->bc_private.a.agno = agno;
489
490 return cur;
491 }
492
493 /*
494 * Calculate number of records in an rmap btree block.
495 */
496 int
497 xfs_rmapbt_maxrecs(
498 struct xfs_mount *mp,
499 int blocklen,
500 int leaf)
501 {
502 blocklen -= XFS_RMAP_BLOCK_LEN;
503
504 if (leaf)
505 return blocklen / sizeof(struct xfs_rmap_rec);
506 return blocklen /
507 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
508 }
509
510 /* Compute the maximum height of an rmap btree. */
511 void
512 xfs_rmapbt_compute_maxlevels(
513 struct xfs_mount *mp)
514 {
515 /*
516 * On a non-reflink filesystem, the maximum number of rmap
517 * records is the number of blocks in the AG, hence the max
518 * rmapbt height is log_$maxrecs($agblocks). However, with
519 * reflink each AG block can have up to 2^32 (per the refcount
520 * record format) owners, which means that theoretically we
521 * could face up to 2^64 rmap records.
522 *
523 * That effectively means that the max rmapbt height must be
524 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
525 * blocks to feed the rmapbt long before the rmapbt reaches
526 * maximum height. The reflink code uses ag_resv_critical to
527 * disallow reflinking when less than 10% of the per-AG metadata
528 * block reservation since the fallback is a regular file copy.
529 */
530 if (xfs_sb_version_hasreflink(&mp->m_sb))
531 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
532 else
533 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
534 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
535 }
536
537 /* Calculate the refcount btree size for some records. */
538 xfs_extlen_t
539 xfs_rmapbt_calc_size(
540 struct xfs_mount *mp,
541 unsigned long long len)
542 {
543 return xfs_btree_calc_size(mp, mp->m_rmap_mnr, len);
544 }
545
546 /*
547 * Calculate the maximum refcount btree size.
548 */
549 xfs_extlen_t
550 xfs_rmapbt_max_size(
551 struct xfs_mount *mp,
552 xfs_agblock_t agblocks)
553 {
554 /* Bail out if we're uninitialized, which can happen in mkfs. */
555 if (mp->m_rmap_mxr[0] == 0)
556 return 0;
557
558 return xfs_rmapbt_calc_size(mp, agblocks);
559 }
560
561 /*
562 * Figure out how many blocks to reserve and how many are used by this btree.
563 */
564 int
565 xfs_rmapbt_calc_reserves(
566 struct xfs_mount *mp,
567 xfs_agnumber_t agno,
568 xfs_extlen_t *ask,
569 xfs_extlen_t *used)
570 {
571 struct xfs_buf *agbp;
572 struct xfs_agf *agf;
573 xfs_agblock_t agblocks;
574 xfs_extlen_t tree_len;
575 int error;
576
577 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
578 return 0;
579
580 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
581 if (error)
582 return error;
583
584 agf = XFS_BUF_TO_AGF(agbp);
585 agblocks = be32_to_cpu(agf->agf_length);
586 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
587 xfs_buf_relse(agbp);
588
589 /* Reserve 1% of the AG or enough for 1 block per record. */
590 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
591 *used += tree_len;
592
593 return error;
594 }