]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_rmap_btree.c
xfs: create a new buf_ops pointer to verify structure metadata
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_rmap_btree.c
1 /*
2 * Copyright (c) 2014 Red Hat, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_trans.h"
30 #include "xfs_alloc.h"
31 #include "xfs_btree.h"
32 #include "xfs_rmap.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_trace.h"
35 #include "xfs_cksum.h"
36 #include "xfs_ag_resv.h"
37
38 /*
39 * Reverse map btree.
40 *
41 * This is a per-ag tree used to track the owner(s) of a given extent. With
42 * reflink it is possible for there to be multiple owners, which is a departure
43 * from classic XFS. Owner records for data extents are inserted when the
44 * extent is mapped and removed when an extent is unmapped. Owner records for
45 * all other block types (i.e. metadata) are inserted when an extent is
46 * allocated and removed when an extent is freed. There can only be one owner
47 * of a metadata extent, usually an inode or some other metadata structure like
48 * an AG btree.
49 *
50 * The rmap btree is part of the free space management, so blocks for the tree
51 * are sourced from the agfl. Hence we need transaction reservation support for
52 * this tree so that the freelist is always large enough. This also impacts on
53 * the minimum space we need to leave free in the AG.
54 *
55 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
56 * but it is the only way to enforce unique keys when a block can be owned by
57 * multiple files at any offset. There's no need to order/search by extent
58 * size for online updating/management of the tree. It is intended that most
59 * reverse lookups will be to find the owner(s) of a particular block, or to
60 * try to recover tree and file data from corrupt primary metadata.
61 */
62
63 static struct xfs_btree_cur *
64 xfs_rmapbt_dup_cursor(
65 struct xfs_btree_cur *cur)
66 {
67 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
68 cur->bc_private.a.agbp, cur->bc_private.a.agno);
69 }
70
71 STATIC void
72 xfs_rmapbt_set_root(
73 struct xfs_btree_cur *cur,
74 union xfs_btree_ptr *ptr,
75 int inc)
76 {
77 struct xfs_buf *agbp = cur->bc_private.a.agbp;
78 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
79 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
80 int btnum = cur->bc_btnum;
81 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
82
83 ASSERT(ptr->s != 0);
84
85 agf->agf_roots[btnum] = ptr->s;
86 be32_add_cpu(&agf->agf_levels[btnum], inc);
87 pag->pagf_levels[btnum] += inc;
88 xfs_perag_put(pag);
89
90 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
91 }
92
93 STATIC int
94 xfs_rmapbt_alloc_block(
95 struct xfs_btree_cur *cur,
96 union xfs_btree_ptr *start,
97 union xfs_btree_ptr *new,
98 int *stat)
99 {
100 struct xfs_buf *agbp = cur->bc_private.a.agbp;
101 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
102 int error;
103 xfs_agblock_t bno;
104
105 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
106
107 /* Allocate the new block from the freelist. If we can't, give up. */
108 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
109 &bno, 1);
110 if (error) {
111 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
112 return error;
113 }
114
115 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
116 bno, 1);
117 if (bno == NULLAGBLOCK) {
118 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
119 *stat = 0;
120 return 0;
121 }
122
123 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
124 false);
125
126 xfs_trans_agbtree_delta(cur->bc_tp, 1);
127 new->s = cpu_to_be32(bno);
128 be32_add_cpu(&agf->agf_rmap_blocks, 1);
129 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
130
131 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
132 *stat = 1;
133 return 0;
134 }
135
136 STATIC int
137 xfs_rmapbt_free_block(
138 struct xfs_btree_cur *cur,
139 struct xfs_buf *bp)
140 {
141 struct xfs_buf *agbp = cur->bc_private.a.agbp;
142 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
143 xfs_agblock_t bno;
144 int error;
145
146 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
147 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
148 bno, 1);
149 be32_add_cpu(&agf->agf_rmap_blocks, -1);
150 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
151 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
152 if (error)
153 return error;
154
155 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
156 XFS_EXTENT_BUSY_SKIP_DISCARD);
157 xfs_trans_agbtree_delta(cur->bc_tp, -1);
158
159 return 0;
160 }
161
162 STATIC int
163 xfs_rmapbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166 {
167 return cur->bc_mp->m_rmap_mnr[level != 0];
168 }
169
170 STATIC int
171 xfs_rmapbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174 {
175 return cur->bc_mp->m_rmap_mxr[level != 0];
176 }
177
178 STATIC void
179 xfs_rmapbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182 {
183 key->rmap.rm_startblock = rec->rmap.rm_startblock;
184 key->rmap.rm_owner = rec->rmap.rm_owner;
185 key->rmap.rm_offset = rec->rmap.rm_offset;
186 }
187
188 /*
189 * The high key for a reverse mapping record can be computed by shifting
190 * the startblock and offset to the highest value that would still map
191 * to that record. In practice this means that we add blockcount-1 to
192 * the startblock for all records, and if the record is for a data/attr
193 * fork mapping, we add blockcount-1 to the offset too.
194 */
195 STATIC void
196 xfs_rmapbt_init_high_key_from_rec(
197 union xfs_btree_key *key,
198 union xfs_btree_rec *rec)
199 {
200 uint64_t off;
201 int adj;
202
203 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
204
205 key->rmap.rm_startblock = rec->rmap.rm_startblock;
206 be32_add_cpu(&key->rmap.rm_startblock, adj);
207 key->rmap.rm_owner = rec->rmap.rm_owner;
208 key->rmap.rm_offset = rec->rmap.rm_offset;
209 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
210 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
211 return;
212 off = be64_to_cpu(key->rmap.rm_offset);
213 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
214 key->rmap.rm_offset = cpu_to_be64(off);
215 }
216
217 STATIC void
218 xfs_rmapbt_init_rec_from_cur(
219 struct xfs_btree_cur *cur,
220 union xfs_btree_rec *rec)
221 {
222 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
223 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
224 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
225 rec->rmap.rm_offset = cpu_to_be64(
226 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
227 }
228
229 STATIC void
230 xfs_rmapbt_init_ptr_from_cur(
231 struct xfs_btree_cur *cur,
232 union xfs_btree_ptr *ptr)
233 {
234 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
235
236 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
237 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
238
239 ptr->s = agf->agf_roots[cur->bc_btnum];
240 }
241
242 STATIC int64_t
243 xfs_rmapbt_key_diff(
244 struct xfs_btree_cur *cur,
245 union xfs_btree_key *key)
246 {
247 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
248 struct xfs_rmap_key *kp = &key->rmap;
249 __u64 x, y;
250 int64_t d;
251
252 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
253 if (d)
254 return d;
255
256 x = be64_to_cpu(kp->rm_owner);
257 y = rec->rm_owner;
258 if (x > y)
259 return 1;
260 else if (y > x)
261 return -1;
262
263 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
264 y = rec->rm_offset;
265 if (x > y)
266 return 1;
267 else if (y > x)
268 return -1;
269 return 0;
270 }
271
272 STATIC int64_t
273 xfs_rmapbt_diff_two_keys(
274 struct xfs_btree_cur *cur,
275 union xfs_btree_key *k1,
276 union xfs_btree_key *k2)
277 {
278 struct xfs_rmap_key *kp1 = &k1->rmap;
279 struct xfs_rmap_key *kp2 = &k2->rmap;
280 int64_t d;
281 __u64 x, y;
282
283 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
284 be32_to_cpu(kp2->rm_startblock);
285 if (d)
286 return d;
287
288 x = be64_to_cpu(kp1->rm_owner);
289 y = be64_to_cpu(kp2->rm_owner);
290 if (x > y)
291 return 1;
292 else if (y > x)
293 return -1;
294
295 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
296 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
297 if (x > y)
298 return 1;
299 else if (y > x)
300 return -1;
301 return 0;
302 }
303
304 static xfs_failaddr_t
305 xfs_rmapbt_verify(
306 struct xfs_buf *bp)
307 {
308 struct xfs_mount *mp = bp->b_target->bt_mount;
309 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
310 struct xfs_perag *pag = bp->b_pag;
311 xfs_failaddr_t fa;
312 unsigned int level;
313
314 /*
315 * magic number and level verification
316 *
317 * During growfs operations, we can't verify the exact level or owner as
318 * the perag is not fully initialised and hence not attached to the
319 * buffer. In this case, check against the maximum tree depth.
320 *
321 * Similarly, during log recovery we will have a perag structure
322 * attached, but the agf information will not yet have been initialised
323 * from the on disk AGF. Again, we can only check against maximum limits
324 * in this case.
325 */
326 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
327 return __this_address;
328
329 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
330 return __this_address;
331 fa = xfs_btree_sblock_v5hdr_verify(bp);
332 if (fa)
333 return fa;
334
335 level = be16_to_cpu(block->bb_level);
336 if (pag && pag->pagf_init) {
337 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
338 return __this_address;
339 } else if (level >= mp->m_rmap_maxlevels)
340 return __this_address;
341
342 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
343 }
344
345 static void
346 xfs_rmapbt_read_verify(
347 struct xfs_buf *bp)
348 {
349 xfs_failaddr_t fa;
350
351 if (!xfs_btree_sblock_verify_crc(bp))
352 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
353 else {
354 fa = xfs_rmapbt_verify(bp);
355 if (fa)
356 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
357 }
358
359 if (bp->b_error)
360 trace_xfs_btree_corrupt(bp, _RET_IP_);
361 }
362
363 static void
364 xfs_rmapbt_write_verify(
365 struct xfs_buf *bp)
366 {
367 xfs_failaddr_t fa;
368
369 fa = xfs_rmapbt_verify(bp);
370 if (fa) {
371 trace_xfs_btree_corrupt(bp, _RET_IP_);
372 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
373 return;
374 }
375 xfs_btree_sblock_calc_crc(bp);
376
377 }
378
379 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
380 .name = "xfs_rmapbt",
381 .verify_read = xfs_rmapbt_read_verify,
382 .verify_write = xfs_rmapbt_write_verify,
383 .verify_struct = xfs_rmapbt_verify,
384 };
385
386 STATIC int
387 xfs_rmapbt_keys_inorder(
388 struct xfs_btree_cur *cur,
389 union xfs_btree_key *k1,
390 union xfs_btree_key *k2)
391 {
392 uint32_t x;
393 uint32_t y;
394 uint64_t a;
395 uint64_t b;
396
397 x = be32_to_cpu(k1->rmap.rm_startblock);
398 y = be32_to_cpu(k2->rmap.rm_startblock);
399 if (x < y)
400 return 1;
401 else if (x > y)
402 return 0;
403 a = be64_to_cpu(k1->rmap.rm_owner);
404 b = be64_to_cpu(k2->rmap.rm_owner);
405 if (a < b)
406 return 1;
407 else if (a > b)
408 return 0;
409 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
410 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
411 if (a <= b)
412 return 1;
413 return 0;
414 }
415
416 STATIC int
417 xfs_rmapbt_recs_inorder(
418 struct xfs_btree_cur *cur,
419 union xfs_btree_rec *r1,
420 union xfs_btree_rec *r2)
421 {
422 uint32_t x;
423 uint32_t y;
424 uint64_t a;
425 uint64_t b;
426
427 x = be32_to_cpu(r1->rmap.rm_startblock);
428 y = be32_to_cpu(r2->rmap.rm_startblock);
429 if (x < y)
430 return 1;
431 else if (x > y)
432 return 0;
433 a = be64_to_cpu(r1->rmap.rm_owner);
434 b = be64_to_cpu(r2->rmap.rm_owner);
435 if (a < b)
436 return 1;
437 else if (a > b)
438 return 0;
439 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
440 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
441 if (a <= b)
442 return 1;
443 return 0;
444 }
445
446 static const struct xfs_btree_ops xfs_rmapbt_ops = {
447 .rec_len = sizeof(struct xfs_rmap_rec),
448 .key_len = 2 * sizeof(struct xfs_rmap_key),
449
450 .dup_cursor = xfs_rmapbt_dup_cursor,
451 .set_root = xfs_rmapbt_set_root,
452 .alloc_block = xfs_rmapbt_alloc_block,
453 .free_block = xfs_rmapbt_free_block,
454 .get_minrecs = xfs_rmapbt_get_minrecs,
455 .get_maxrecs = xfs_rmapbt_get_maxrecs,
456 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
457 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
458 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
459 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
460 .key_diff = xfs_rmapbt_key_diff,
461 .buf_ops = &xfs_rmapbt_buf_ops,
462 .diff_two_keys = xfs_rmapbt_diff_two_keys,
463 .keys_inorder = xfs_rmapbt_keys_inorder,
464 .recs_inorder = xfs_rmapbt_recs_inorder,
465 };
466
467 /*
468 * Allocate a new allocation btree cursor.
469 */
470 struct xfs_btree_cur *
471 xfs_rmapbt_init_cursor(
472 struct xfs_mount *mp,
473 struct xfs_trans *tp,
474 struct xfs_buf *agbp,
475 xfs_agnumber_t agno)
476 {
477 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
478 struct xfs_btree_cur *cur;
479
480 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
481 cur->bc_tp = tp;
482 cur->bc_mp = mp;
483 /* Overlapping btree; 2 keys per pointer. */
484 cur->bc_btnum = XFS_BTNUM_RMAP;
485 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
486 cur->bc_blocklog = mp->m_sb.sb_blocklog;
487 cur->bc_ops = &xfs_rmapbt_ops;
488 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
489 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
490
491 cur->bc_private.a.agbp = agbp;
492 cur->bc_private.a.agno = agno;
493
494 return cur;
495 }
496
497 /*
498 * Calculate number of records in an rmap btree block.
499 */
500 int
501 xfs_rmapbt_maxrecs(
502 struct xfs_mount *mp,
503 int blocklen,
504 int leaf)
505 {
506 blocklen -= XFS_RMAP_BLOCK_LEN;
507
508 if (leaf)
509 return blocklen / sizeof(struct xfs_rmap_rec);
510 return blocklen /
511 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
512 }
513
514 /* Compute the maximum height of an rmap btree. */
515 void
516 xfs_rmapbt_compute_maxlevels(
517 struct xfs_mount *mp)
518 {
519 /*
520 * On a non-reflink filesystem, the maximum number of rmap
521 * records is the number of blocks in the AG, hence the max
522 * rmapbt height is log_$maxrecs($agblocks). However, with
523 * reflink each AG block can have up to 2^32 (per the refcount
524 * record format) owners, which means that theoretically we
525 * could face up to 2^64 rmap records.
526 *
527 * That effectively means that the max rmapbt height must be
528 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
529 * blocks to feed the rmapbt long before the rmapbt reaches
530 * maximum height. The reflink code uses ag_resv_critical to
531 * disallow reflinking when less than 10% of the per-AG metadata
532 * block reservation since the fallback is a regular file copy.
533 */
534 if (xfs_sb_version_hasreflink(&mp->m_sb))
535 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
536 else
537 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(mp,
538 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
539 }
540
541 /* Calculate the refcount btree size for some records. */
542 xfs_extlen_t
543 xfs_rmapbt_calc_size(
544 struct xfs_mount *mp,
545 unsigned long long len)
546 {
547 return xfs_btree_calc_size(mp, mp->m_rmap_mnr, len);
548 }
549
550 /*
551 * Calculate the maximum refcount btree size.
552 */
553 xfs_extlen_t
554 xfs_rmapbt_max_size(
555 struct xfs_mount *mp,
556 xfs_agblock_t agblocks)
557 {
558 /* Bail out if we're uninitialized, which can happen in mkfs. */
559 if (mp->m_rmap_mxr[0] == 0)
560 return 0;
561
562 return xfs_rmapbt_calc_size(mp, agblocks);
563 }
564
565 /*
566 * Figure out how many blocks to reserve and how many are used by this btree.
567 */
568 int
569 xfs_rmapbt_calc_reserves(
570 struct xfs_mount *mp,
571 xfs_agnumber_t agno,
572 xfs_extlen_t *ask,
573 xfs_extlen_t *used)
574 {
575 struct xfs_buf *agbp;
576 struct xfs_agf *agf;
577 xfs_agblock_t agblocks;
578 xfs_extlen_t tree_len;
579 int error;
580
581 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
582 return 0;
583
584 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
585 if (error)
586 return error;
587
588 agf = XFS_BUF_TO_AGF(agbp);
589 agblocks = be32_to_cpu(agf->agf_length);
590 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
591 xfs_buf_relse(agbp);
592
593 /* Reserve 1% of the AG or enough for 1 block per record. */
594 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
595 *used += tree_len;
596
597 return error;
598 }