]> git.ipfire.org Git - thirdparty/man-pages.git/blob - man8/ld.so.8
acdfcae4b2cc83f941f5e5f5f670256b0d34ed06
[thirdparty/man-pages.git] / man8 / ld.so.8
1 .\" %%%LICENSE_START(PUBLIC_DOMAIN)
2 .\" This is in the public domain
3 .\" %%%LICENSE_END
4 .\"
5 .TH LD.SO 8 2018-04-30 "GNU" "Linux Programmer's Manual"
6 .SH NAME
7 ld.so, ld\-linux.so \- dynamic linker/loader
8 .SH SYNOPSIS
9 The dynamic linker can be run either indirectly by running some
10 dynamically linked program or shared object
11 (in which case no command-line options
12 to the dynamic linker can be passed and, in the ELF case, the dynamic linker
13 which is stored in the
14 .B .interp
15 section of the program is executed) or directly by running:
16 .PP
17 .I /lib/ld\-linux.so.*
18 [OPTIONS] [PROGRAM [ARGUMENTS]]
19 .SH DESCRIPTION
20 The programs
21 .B ld.so
22 and
23 .B ld\-linux.so*
24 find and load the shared objects (shared libraries) needed by a program,
25 prepare the program to run, and then run it.
26 .PP
27 Linux binaries require dynamic linking (linking at run time)
28 unless the
29 .B \-static
30 option was given to
31 .BR ld (1)
32 during compilation.
33 .PP
34 The program
35 .B ld.so
36 handles a.out binaries, a format used long ago;
37 .B ld\-linux.so*
38 (\fI/lib/ld\-linux.so.1\fP for libc5, \fI/lib/ld\-linux.so.2\fP for glibc2)
39 handles ELF,
40 which everybody has been using for years now.
41 Otherwise, both have the same behavior, and use the same
42 support files and programs as
43 .BR ldd (1),
44 .BR ldconfig (8),
45 and
46 .IR /etc/ld.so.conf .
47 .PP
48 When resolving shared object dependencies,
49 the dynamic linker first inspects each dependency
50 string to see if it contains a slash (this can occur if
51 a shared object pathname containing slashes was specified at link time).
52 If a slash is found, then the dependency string is interpreted as
53 a (relative or absolute) pathname,
54 and the shared object is loaded using that pathname.
55 .PP
56 If a shared object dependency does not contain a slash,
57 then it is searched for in the following order:
58 .IP o 3
59 Using the directories specified in the
60 DT_RPATH dynamic section attribute
61 of the binary if present and DT_RUNPATH attribute does not exist.
62 Use of DT_RPATH is deprecated.
63 .IP o
64 Using the environment variable
65 .BR LD_LIBRARY_PATH ,
66 unless the executable is being run in secure-execution mode (see below),
67 in which case this variable is ignored.
68 .IP o
69 Using the directories specified in the
70 DT_RUNPATH dynamic section attribute
71 of the binary if present.
72 Such directories are searched only to
73 find those objects required by DT_NEEDED (direct dependencies) entries
74 and do not apply to those objects' children,
75 which must themselves have their own DT_RUNPATH entries.
76 This is unlike DT_RPATH, which is applied
77 to searches for all children in the dependency tree.
78 .IP o
79 From the cache file
80 .IR /etc/ld.so.cache ,
81 which contains a compiled list of candidate shared objects previously found
82 in the augmented library path.
83 If, however, the binary was linked with the
84 .B \-z nodeflib
85 linker option, shared objects in the default paths are skipped.
86 Shared objects installed in hardware capability directories (see below)
87 are preferred to other shared objects.
88 .IP o
89 In the default path
90 .IR /lib ,
91 and then
92 .IR /usr/lib .
93 (On some 64-bit architectures, the default paths for 64-bit shared objects are
94 .IR /lib64 ,
95 and then
96 .IR /usr/lib64 .)
97 If the binary was linked with the
98 .B \-z nodeflib
99 linker option, this step is skipped.
100 .SS Rpath token expansion
101 .PP
102 The dynamic linker
103 understands certain token strings in an rpath specification
104 (DT_RPATH or DT_RUNPATH).
105 Those strings are substituted as follows:
106 .TP
107 .IR $ORIGIN " (or equivalently " ${ORIGIN} )
108 This expands to
109 the directory containing the program or shared object.
110 Thus, an application located in
111 .I somedir/app
112 could be compiled with
113 .IP
114 gcc \-Wl,\-rpath,\(aq$ORIGIN/../lib\(aq
115 .IP
116 so that it finds an associated shared object in
117 .I somedir/lib
118 no matter where
119 .I somedir
120 is located in the directory hierarchy.
121 This facilitates the creation of "turn-key" applications that
122 do not need to be installed into special directories,
123 but can instead be unpacked into any directory
124 and still find their own shared objects.
125 .TP
126 .IR $LIB " (or equivalently " ${LIB} )
127 This expands to
128 .I lib
129 or
130 .I lib64
131 depending on the architecture
132 (e.g., on x86-64, it expands to
133 .IR lib64
134 and
135 on x86-32, it expands to
136 .IR lib ).
137 .TP
138 .IR $PLATFORM " (or equivalently " ${PLATFORM} )
139 This expands to a string corresponding to the processor type
140 of the host system (e.g., "x86_64").
141 On some architectures, the Linux kernel doesn't provide a platform
142 string to the dynamic linker.
143 The value of this string is taken from the
144 .BR AT_PLATFORM
145 value in the auxiliary vector (see
146 .BR getauxval (3)).
147 .\" To get an idea of the places that $PLATFORM would match,
148 .\" look at the output of the following:
149 .\"
150 .\" mkdir /tmp/d
151 .\" LD_LIBRARY_PATH=/tmp/d strace -e open /bin/date 2>&1 | grep /tmp/d
152 .\"
153 .\" ld.so lets names be abbreviated, so $O will work for $ORIGIN;
154 .\" Don't do this!!
155 .SH OPTIONS
156 .TP
157 .B \-\-list
158 List all dependencies and how they are resolved.
159 .TP
160 .B \-\-verify
161 Verify that program is dynamically linked and this dynamic linker can handle
162 it.
163 .TP
164 .B \-\-inhibit\-cache
165 Do not use
166 .IR /etc/ld.so.cache .
167 .TP
168 .BI \-\-library\-path " path"
169 Use
170 .I path
171 instead of
172 .B LD_LIBRARY_PATH
173 environment variable setting (see below).
174 The names
175 .IR ORIGIN ,
176 .IR LIB ,
177 and
178 .IR PLATFORM
179 are interpreted as for the
180 .BR LD_LIBRARY_PATH
181 environment variable.
182 .TP
183 .BI \-\-inhibit\-rpath " list"
184 Ignore RPATH and RUNPATH information in object names in
185 .IR list .
186 This option is ignored when running in secure-execution mode (see below).
187 The objects in
188 .I list
189 are delimited by colons or spaces.
190 .TP
191 .BI \-\-audit " list"
192 Use objects named in
193 .I list
194 as auditors.
195 The objects in
196 .I list
197 are delimited by colons.
198 .SH ENVIRONMENT
199 Various environment variables influence the operation of the dynamic linker.
200 .\"
201 .SS Secure-execution mode
202 For security reasons,
203 the effects of some environment variables are voided or modified if
204 the dynamic linker determines that the binary should be
205 run in secure-execution mode.
206 (For details, see the discussion of individual environment variables below.)
207 A binary is executed in secure-execution mode if the
208 .B AT_SECURE
209 entry in the auxiliary vector (see
210 .BR getauxval (3))
211 has a nonzero value.
212 This entry may have a nonzero value for various reasons, including:
213 .IP * 3
214 The process's real and effective user IDs differ,
215 or the real and effective group IDs differ.
216 This typically occurs as a result of executing
217 a set-user-ID or set-group-ID program.
218 .IP *
219 A process with a non-root user ID executed a binary that
220 conferred capabilities to the process.
221 .IP *
222 A nonzero value may have been set by a Linux Security Module.
223 .\"
224 .SS Environment variables
225 Among the more important environment variables are the following:
226 .TP
227 .BR LD_ASSUME_KERNEL " (since glibc 2.2.3)"
228 Each shared object can inform the dynamic linker of the minimum kernel ABI
229 version that it requires.
230 (This requirement is encoded in an ELF note section that is viewable via
231 .IR "readelf\ \-n"
232 as a section labeled
233 .BR NT_GNU_ABI_TAG .)
234 At run time,
235 the dynamic linker determines the ABI version of the running kernel and
236 will reject loading shared objects that specify minimum ABI versions
237 that exceed that ABI version.
238 .IP
239 .BR LD_ASSUME_KERNEL
240 can be used to
241 cause the dynamic linker to assume that it is running on a system with
242 a different kernel ABI version.
243 For example, the following command line causes the
244 dynamic linker to assume it is running on Linux 2.2.5 when loading
245 the shared objects required by
246 .IR myprog :
247 .IP
248 .in +4n
249 .EX
250 $ \fBLD_ASSUME_KERNEL=2.2.5 ./myprog\fP
251 .EE
252 .in
253 .IP
254 On systems that provide multiple versions of a shared object
255 (in different directories in the search path) that have
256 different minimum kernel ABI version requirements,
257 .BR LD_ASSUME_KERNEL
258 can be used to select the version of the object that is used
259 (dependent on the directory search order).
260 .IP
261 Historically, the most common use of the
262 .BR LD_ASSUME_KERNEL
263 feature was to manually select the older
264 LinuxThreads POSIX threads implementation on systems that provided both
265 LinuxThreads and NPTL
266 (which latter was typically the default on such systems);
267 see
268 .BR pthreads (7).
269 .TP
270 .BR LD_BIND_NOW " (since glibc 2.1.1)"
271 If set to a nonempty string,
272 causes the dynamic linker to resolve all symbols
273 at program startup instead of deferring function call resolution to the point
274 when they are first referenced.
275 This is useful when using a debugger.
276 .TP
277 .B LD_LIBRARY_PATH
278 A list of directories in which to search for
279 ELF libraries at execution time.
280 The items in the list are separated by either colons or semicolons,
281 and there is no support for escaping either separator.
282 .IP
283 This variable is ignored in secure-execution mode.
284 .IP
285 Within the pathnames specified in
286 .BR LD_LIBRARY_PATH ,
287 the dynamic linker expands the tokens
288 .IR $ORIGIN ,
289 .IR $LIB ,
290 and
291 .IR $PLATFORM
292 (or the versions using curly braces around the names)
293 as described above in
294 .IR "Rpath token expansion" .
295 Thus, for example,
296 the following would cause a library to be searched for in either the
297 .I lib
298 or
299 .I lib64
300 subdirectory below the directory containing the program to be executed:
301 .IP
302 .in +4n
303 .EX
304 $ \fBLD_LIBRARY_PATH='$ORIGIN/$LIB' prog\fP
305 .EE
306 .in
307 .IP
308 (Note the use of single quotes, which prevent expansion of
309 .I $ORIGIN
310 and
311 .I $LIB
312 as shell variables!)
313 .TP
314 .B LD_PRELOAD
315 A list of additional, user-specified, ELF shared
316 objects to be loaded before all others.
317 This feature can be used to selectively override functions
318 in other shared objects.
319 .IP
320 The items of the list can be separated by spaces or colons,
321 and there is no support for escaping either separator.
322 The objects are searched for using the rules given under DESCRIPTION.
323 Objects are searched for and added to the link map in the left-to-right
324 order specified in the list.
325 .IP
326 In secure-execution mode,
327 preload pathnames containing slashes are ignored.
328 Furthermore, shared objects are preloaded only
329 from the standard search directories and only
330 if they have set-user-ID mode bit enabled (which is not typical).
331 .IP
332 Within the names specified in the
333 .BR LD_PRELOAD
334 list, the dynamic linker understands the tokens
335 .IR $ORIGIN ,
336 .IR $LIB ,
337 and
338 .IR $PLATFORM
339 (or the versions using curly braces around the names)
340 as described above in
341 .IR "Rpath token expansion" .
342 (See also the discussion of quoting under the description of
343 .BR LD_LIBRARY_PATH .)
344 .\" Tested with the following:
345 .\"
346 .\" LD_PRELOAD='$LIB/libmod.so' LD_LIBRARY_PATH=. ./prog
347 .\"
348 .\" which will preload the libmod.so in 'lib' or 'lib64', using it
349 .\" in preference to the version in '.'.
350 .TP
351 .BR LD_TRACE_LOADED_OBJECTS
352 If set (to any value), causes the program to list its dynamic
353 dependencies, as if run by
354 .BR ldd (1),
355 instead of running normally.
356 .PP
357 Then there are lots of more or less obscure variables,
358 many obsolete or only for internal use.
359 .TP
360 .BR LD_AUDIT " (since glibc 2.4)"
361 A colon-separated list of user-specified, ELF shared objects
362 to be loaded before all others in a separate linker namespace
363 (i.e., one that does not intrude upon the normal symbol bindings that
364 would occur in the process)
365 and there is no support for escaping the separator.
366 These objects can be used to audit the operation of the dynamic linker.
367 .IP
368 .B LD_AUDIT
369 is ignored in secure-execution mode.
370 .IP
371 The dynamic linker will notify the audit
372 shared objects at so-called auditing checkpoints\(emfor example,
373 loading a new shared object, resolving a symbol,
374 or calling a symbol from another shared object\(emby
375 calling an appropriate function within the audit shared object.
376 For details, see
377 .BR rtld-audit (7).
378 The auditing interface is largely compatible with that provided on Solaris,
379 as described in its
380 .IR "Linker and Libraries Guide" ,
381 in the chapter
382 .IR "Runtime Linker Auditing Interface" .
383 .IP
384 Within the names specified in the
385 .BR LD_AUDIT
386 list, the dynamic linker understands the tokens
387 .IR $ORIGIN ,
388 .IR $LIB ,
389 and
390 .IR $PLATFORM
391 (or the versions using curly braces around the names)
392 as described above in
393 .IR "Rpath token expansion" .
394 (See also the discussion of quoting under the description of
395 .BR LD_LIBRARY_PATH .)
396 .IP
397 Since glibc 2.13,
398 .\" commit 8e9f92e9d5d7737afdacf79b76d98c4c42980508
399 in secure-execution mode,
400 names in the audit list that contain slashes are ignored,
401 and only shared objects in the standard search directories that
402 have the set-user-ID mode bit enabled are loaded.
403 .TP
404 .BR LD_BIND_NOT " (since glibc 2.1.95)"
405 If this environment variable is set to a nonempty string,
406 do not update the GOT (global offset table) and PLT (procedure linkage table)
407 after resolving a function symbol.
408 By combining the use of this variable with
409 .BR LD_DEBUG
410 (with the categories
411 .IR bindings
412 and
413 .IR symbols ),
414 one can observe all run-time function bindings.
415 .TP
416 .BR LD_DEBUG " (since glibc 2.1)"
417 Output verbose debugging information about operation of the dynamic linker.
418 The content of this variable is one of more of the following categories,
419 separated by colons, commas, or (if the value is quoted) spaces:
420 .RS
421 .TP 12
422 .I help
423 Specifying
424 .IR help
425 in the value of this variable does not run the specified program,
426 and displays a help message about which categories can be specified in this
427 environment variable.
428 .TP
429 .I all
430 Print all debugging information (except
431 .IR statistics
432 and
433 .IR unused ;
434 see below).
435 .TP
436 .I bindings
437 Display information about which definition each symbol is bound to.
438 .TP
439 .I files
440 Display progress for input file.
441 .TP
442 .I libs
443 Display library search paths.
444 .TP
445 .I reloc
446 Display relocation processing.
447 .TP
448 .I scopes
449 Display scope information.
450 .TP
451 .I statistics
452 Display relocation statistics.
453 .TP
454 .I symbols
455 Display search paths for each symbol look-up.
456 .TP
457 .I unused
458 Determine unused DSOs.
459 .TP
460 .I versions
461 Display version dependencies.
462 .RE
463 .IP
464 Since glibc 2.3.4,
465 .B LD_DEBUG
466 is ignored in secure-execution mode, unless the file
467 .IR /etc/suid\-debug
468 exists (the content of the file is irrelevant).
469 .TP
470 .BR LD_DEBUG_OUTPUT " (since glibc 2.1)"
471 By default,
472 .B LD_DEBUG
473 output is written to standard error.
474 If
475 .B LD_DEBUG_OUTPUT
476 is defined, then output is written to the pathname specified by its value,
477 with the suffix "." (dot) followed by the process ID appended to the pathname.
478 .IP
479 .B LD_DEBUG_OUTPUT
480 is ignored in secure-execution mode.
481 .TP
482 .BR LD_DYNAMIC_WEAK " (since glibc 2.1.91)"
483 By default, when searching shared libraries to resolve a symbol reference,
484 the dynamic linker will resolve to the first definition it finds.
485 .IP
486 Old glibc versions (before 2.2), provided a different behavior:
487 if the linker found a symbol that was weak,
488 it would remember that symbol and
489 keep searching in the remaining shared libraries.
490 If it subsequently found a strong definition of the same symbol,
491 then it would instead use that definition.
492 (If no further symbol was found,
493 then the dynamic linker would use the weak symbol that it initially found.)
494 .IP
495 The old glibc behavior was nonstandard.
496 (Standard practice is that the distinction between
497 weak and strong symbols should have effect only at static link time.)
498 In glibc 2.2,
499 .\" More precisely 2.1.92
500 .\" See weak handling
501 .\" https://www.sourceware.org/ml/libc-hacker/2000-06/msg00029.html
502 .\" To: GNU libc hacker <libc-hacker at sourceware dot cygnus dot com>
503 .\" Subject: weak handling
504 .\" From: Ulrich Drepper <drepper at redhat dot com>
505 .\" Date: 07 Jun 2000 20:08:12 -0700
506 .\" Reply-To: drepper at cygnus dot com (Ulrich Drepper)
507 the dynamic linker was modified to provide the current behavior
508 (which was the behavior that was provided by most other implementations
509 at that time).
510 .IP
511 Defining the
512 .B LD_DYNAMIC_WEAK
513 environment variable (with any value) provides
514 the old (nonstandard) glibc behavior,
515 whereby a weak symbol in one shared library may be overridden by
516 a strong symbol subsequently discovered in another shared library.
517 (Note that even when this variable is set,
518 a strong symbol in a shared library will not override
519 a weak definition of the same symbol in the main program.)
520 .IP
521 Since glibc 2.3.4,
522 .B LD_DYNAMIC_WEAK
523 is ignored in secure-execution mode.
524 .TP
525 .BR LD_HWCAP_MASK " (since glibc 2.1)"
526 Mask for hardware capabilities.
527 .TP
528 .BR LD_ORIGIN_PATH " (since glibc 2.1)"
529 Path where the binary is found.
530 .\" Used only if $ORIGIN can't be determined by normal means
531 .\" (from the origin path saved at load time, or from /proc/self/exe)?
532 .IP
533 Since glibc 2.4,
534 .B LD_ORIGIN_PATH
535 is ignored in secure-execution mode.
536 .TP
537 .BR LD_POINTER_GUARD " (glibc from 2.4 to 2.22)"
538 Set to 0 to disable pointer guarding.
539 Any other value enables pointer guarding, which is also the default.
540 Pointer guarding is a security mechanism whereby some pointers to code
541 stored in writable program memory (return addresses saved by
542 .BR setjmp (3)
543 or function pointers used by various glibc internals) are mangled
544 semi-randomly to make it more difficult for an attacker to hijack
545 the pointers for use in the event of a buffer overrun or
546 stack-smashing attack.
547 Since glibc 2.23,
548 .\" commit a014cecd82b71b70a6a843e250e06b541ad524f7
549 .B LD_POINTER_GUARD
550 can no longer be used to disable pointer guarding,
551 which is now always enabled.
552 .TP
553 .BR LD_PROFILE " (since glibc 2.1)"
554 The name of a (single) shared object to be profiled,
555 specified either as a pathname or a soname.
556 Profiling output is appended to the file whose name is:
557 "\fI$LD_PROFILE_OUTPUT\fP/\fI$LD_PROFILE\fP.profile".
558 .IP
559 Since glibc 2.2.5,
560 .BR LD_PROFILE
561 is ignored in secure-execution mode.
562 .TP
563 .BR LD_PROFILE_OUTPUT " (since glibc 2.1)"
564 Directory where
565 .B LD_PROFILE
566 output should be written.
567 If this variable is not defined, or is defined as an empty string,
568 then the default is
569 .IR /var/tmp .
570 .IP
571 .B LD_PROFILE_OUTPUT
572 is ignored in secure-execution mode; instead
573 .IR /var/profile
574 is always used.
575 (This detail is relevant only before glibc 2.2.5,
576 since in later glibc versions,
577 .B LD_PROFILE
578 is also ignored in secure-execution mode.)
579 .TP
580 .BR LD_SHOW_AUXV " (since glibc 2.1)"
581 If this environment variable is defined (with any value),
582 show the auxiliary array passed up from the kernel (see also
583 .BR getauxval (3)).
584 .IP
585 Since glibc 2.3.4,
586 .B LD_SHOW_AUXV
587 is ignored in secure-execution mode.
588 .TP
589 .BR LD_TRACE_PRELINKING " (since glibc 2.4)"
590 If this environment variable is defined,
591 trace prelinking of the object whose name is assigned to
592 this environment variable.
593 (Use
594 .BR ldd (1)
595 to get a list of the objects that might be traced.)
596 If the object name is not recognized,
597 .\" (This is what seems to happen, from experimenting)
598 then all prelinking activity is traced.
599 .TP
600 .BR LD_USE_LOAD_BIAS " (since glibc 2.3.3)"
601 .\" http://sources.redhat.com/ml/libc-hacker/2003-11/msg00127.html
602 .\" Subject: [PATCH] Support LD_USE_LOAD_BIAS
603 .\" Jakub Jelinek
604 By default (i.e., if this variable is not defined),
605 executables and prelinked
606 shared objects will honor base addresses of their dependent shared objects
607 and (nonprelinked) position-independent executables (PIEs)
608 and other shared objects will not honor them.
609 If
610 .B LD_USE_LOAD_BIAS
611 is defined with the value 1, both executables and PIEs
612 will honor the base addresses.
613 If
614 .B LD_USE_LOAD_BIAS
615 is defined with the value 0,
616 neither executables nor PIEs will honor the base addresses.
617 .IP
618 Since glibc 2.3.3, this variable is ignored in secure-execution mode.
619 .TP
620 .BR LD_VERBOSE " (since glibc 2.1)"
621 If set to a nonempty string,
622 output symbol versioning information about the
623 program if the
624 .B LD_TRACE_LOADED_OBJECTS
625 environment variable has been set.
626 .TP
627 .BR LD_WARN " (since glibc 2.1.3)
628 If set to a nonempty string, warn about unresolved symbols.
629 .TP
630 .BR LD_PREFER_MAP_32BIT_EXEC " (x86-64 only; since glibc 2.23)"
631 According to the Intel Silvermont software optimization guide, for 64-bit
632 applications, branch prediction performance can be negatively impacted
633 when the target of a branch is more than 4\ GB away from the branch.
634 If this environment variable is set (to any value),
635 the dynamic linker
636 will first try to map executable pages using the
637 .BR mmap (2)
638 .BR MAP_32BIT
639 flag, and fall back to mapping without that flag if that attempt fails.
640 NB: MAP_32BIT will map to the low 2\ GB (not 4\ GB) of the address space.
641 .IP
642 Because
643 .B MAP_32BIT
644 reduces the address range available for address space layout
645 randomization (ASLR),
646 .B LD_PREFER_MAP_32BIT_EXEC
647 is always disabled in secure-execution mode.
648 .SH FILES
649 .PD 0
650 .TP
651 .I /lib/ld.so
652 a.out dynamic linker/loader
653 .TP
654 .IR /lib/ld\-linux.so. { 1 , 2 }
655 ELF dynamic linker/loader
656 .TP
657 .I /etc/ld.so.cache
658 File containing a compiled list of directories in which to search for
659 shared objects and an ordered list of candidate shared objects.
660 See
661 .BR ldconfig (8).
662 .TP
663 .I /etc/ld.so.preload
664 File containing a whitespace-separated list of ELF shared objects to
665 be loaded before the program.
666 See the discussion of
667 .BR LD_PRELOAD
668 above.
669 If both
670 .BR LD_PRELOAD
671 and
672 .I /etc/ld.so.preload
673 are employed, the libraries specified by
674 .BR LD_PRELOAD
675 are preloaded first.
676 .I /etc/ld.so.preload
677 has a system-wide effect,
678 causing the specified libraries to be preloaded for
679 all programs that are executed on the system.
680 (This is usually undesirable,
681 and is typically employed only as an emergency remedy, for example,
682 as a temporary workaround to a library misconfiguration issue.)
683 .TP
684 .I lib*.so*
685 shared objects
686 .PD
687 .SH NOTES
688 .SS Hardware capabilities
689 Some shared objects are compiled using hardware-specific instructions which do
690 not exist on every CPU.
691 Such objects should be installed in directories whose names define the
692 required hardware capabilities, such as
693 .IR /usr/lib/sse2/ .
694 The dynamic linker checks these directories against the hardware of the
695 machine and selects the most suitable version of a given shared object.
696 Hardware capability directories can be cascaded to combine CPU features.
697 The list of supported hardware capability names depends on the CPU.
698 The following names are currently recognized:
699 .TP
700 .B Alpha
701 ev4, ev5, ev56, ev6, ev67
702 .TP
703 .B MIPS
704 loongson2e, loongson2f, octeon, octeon2
705 .TP
706 .B PowerPC
707 4xxmac, altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efpdouble, efpsingle,
708 fpu, ic_snoop, mmu, notb, pa6t, power4, power5, power5+, power6x, ppc32, ppc601,
709 ppc64, smt, spe, ucache, vsx
710 .TP
711 .B SPARC
712 flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2
713 .TP
714 .B s390
715 dfp, eimm, esan3, etf3enh, g5, highgprs, hpage, ldisp, msa, stfle,
716 z900, z990, z9-109, z10, zarch
717 .TP
718 .B x86 (32-bit only)
719 acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586, i686, mca, mmx,
720 mtrr, pat, pbe, pge, pn, pse36, sep, ss, sse, sse2, tm
721 .SH SEE ALSO
722 .BR ld (1),
723 .BR ldd (1),
724 .BR pldd (1),
725 .BR sprof (1),
726 .BR dlopen (3),
727 .BR getauxval (3),
728 .BR elf (5),
729 .BR capabilities (7),
730 .BR rtld-audit (7),
731 .BR ldconfig (8),
732 .BR sln (8)
733 .\" .SH AUTHORS
734 .\" ld.so: David Engel, Eric Youngdale, Peter MacDonald, Hongjiu Lu, Linus
735 .\" Torvalds, Lars Wirzenius and Mitch D'Souza
736 .\" ld\-linux.so: Roland McGrath, Ulrich Drepper and others.
737 .\"
738 .\" In the above, (libc5) stands for David Engel's ld.so/ld\-linux.so.