]> git.ipfire.org Git - thirdparty/glibc.git/blob - manual/arith.texi
Define FE_SNANS_ALWAYS_SIGNAL.
[thirdparty/glibc.git] / manual / arith.texi
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
4
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
10
11 @menu
12 * Integers:: Basic integer types and concepts
13 * Integer Division:: Integer division with guaranteed rounding.
14 * Floating Point Numbers:: Basic concepts. IEEE 754.
15 * Floating Point Classes:: The five kinds of floating-point number.
16 * Floating Point Errors:: When something goes wrong in a calculation.
17 * Rounding:: Controlling how results are rounded.
18 * Control Functions:: Saving and restoring the FPU's state.
19 * Arithmetic Functions:: Fundamental operations provided by the library.
20 * Complex Numbers:: The types. Writing complex constants.
21 * Operations on Complex:: Projection, conjugation, decomposition.
22 * Parsing of Numbers:: Converting strings to numbers.
23 * Printing of Floats:: Converting floating-point numbers to strings.
24 * System V Number Conversion:: An archaic way to convert numbers to strings.
25 @end menu
26
27 @node Integers
28 @section Integers
29 @cindex integer
30
31 The C language defines several integer data types: integer, short integer,
32 long integer, and character, all in both signed and unsigned varieties.
33 The GNU C compiler extends the language to contain long long integers
34 as well.
35 @cindex signedness
36
37 The C integer types were intended to allow code to be portable among
38 machines with different inherent data sizes (word sizes), so each type
39 may have different ranges on different machines. The problem with
40 this is that a program often needs to be written for a particular range
41 of integers, and sometimes must be written for a particular size of
42 storage, regardless of what machine the program runs on.
43
44 To address this problem, @theglibc{} contains C type definitions
45 you can use to declare integers that meet your exact needs. Because the
46 @glibcadj{} header files are customized to a specific machine, your
47 program source code doesn't have to be.
48
49 These @code{typedef}s are in @file{stdint.h}.
50 @pindex stdint.h
51
52 If you require that an integer be represented in exactly N bits, use one
53 of the following types, with the obvious mapping to bit size and signedness:
54
55 @itemize @bullet
56 @item int8_t
57 @item int16_t
58 @item int32_t
59 @item int64_t
60 @item uint8_t
61 @item uint16_t
62 @item uint32_t
63 @item uint64_t
64 @end itemize
65
66 If your C compiler and target machine do not allow integers of a certain
67 size, the corresponding above type does not exist.
68
69 If you don't need a specific storage size, but want the smallest data
70 structure with @emph{at least} N bits, use one of these:
71
72 @itemize @bullet
73 @item int_least8_t
74 @item int_least16_t
75 @item int_least32_t
76 @item int_least64_t
77 @item uint_least8_t
78 @item uint_least16_t
79 @item uint_least32_t
80 @item uint_least64_t
81 @end itemize
82
83 If you don't need a specific storage size, but want the data structure
84 that allows the fastest access while having at least N bits (and
85 among data structures with the same access speed, the smallest one), use
86 one of these:
87
88 @itemize @bullet
89 @item int_fast8_t
90 @item int_fast16_t
91 @item int_fast32_t
92 @item int_fast64_t
93 @item uint_fast8_t
94 @item uint_fast16_t
95 @item uint_fast32_t
96 @item uint_fast64_t
97 @end itemize
98
99 If you want an integer with the widest range possible on the platform on
100 which it is being used, use one of the following. If you use these,
101 you should write code that takes into account the variable size and range
102 of the integer.
103
104 @itemize @bullet
105 @item intmax_t
106 @item uintmax_t
107 @end itemize
108
109 @Theglibc{} also provides macros that tell you the maximum and
110 minimum possible values for each integer data type. The macro names
111 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
112 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
113 @code{INTMAX_MAX}, @code{INTMAX_MIN}. Note that there are no macros for
114 unsigned integer minima. These are always zero. Similiarly, there
115 are macros such as @code{INTMAX_WIDTH} for the width of these types.
116 Those macros for integer type widths come from TS 18661-1:2014.
117 @cindex maximum possible integer
118 @cindex minimum possible integer
119
120 There are similar macros for use with C's built in integer types which
121 should come with your C compiler. These are described in @ref{Data Type
122 Measurements}.
123
124 Don't forget you can use the C @code{sizeof} function with any of these
125 data types to get the number of bytes of storage each uses.
126
127
128 @node Integer Division
129 @section Integer Division
130 @cindex integer division functions
131
132 This section describes functions for performing integer division. These
133 functions are redundant when GNU CC is used, because in GNU C the
134 @samp{/} operator always rounds towards zero. But in other C
135 implementations, @samp{/} may round differently with negative arguments.
136 @code{div} and @code{ldiv} are useful because they specify how to round
137 the quotient: towards zero. The remainder has the same sign as the
138 numerator.
139
140 These functions are specified to return a result @var{r} such that the value
141 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
142 @var{numerator}.
143
144 @pindex stdlib.h
145 To use these facilities, you should include the header file
146 @file{stdlib.h} in your program.
147
148 @comment stdlib.h
149 @comment ISO
150 @deftp {Data Type} div_t
151 This is a structure type used to hold the result returned by the @code{div}
152 function. It has the following members:
153
154 @table @code
155 @item int quot
156 The quotient from the division.
157
158 @item int rem
159 The remainder from the division.
160 @end table
161 @end deftp
162
163 @comment stdlib.h
164 @comment ISO
165 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
166 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
167 @c Functions in this section are pure, and thus safe.
168 The function @code{div} computes the quotient and remainder from
169 the division of @var{numerator} by @var{denominator}, returning the
170 result in a structure of type @code{div_t}.
171
172 If the result cannot be represented (as in a division by zero), the
173 behavior is undefined.
174
175 Here is an example, albeit not a very useful one.
176
177 @smallexample
178 div_t result;
179 result = div (20, -6);
180 @end smallexample
181
182 @noindent
183 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
184 @end deftypefun
185
186 @comment stdlib.h
187 @comment ISO
188 @deftp {Data Type} ldiv_t
189 This is a structure type used to hold the result returned by the @code{ldiv}
190 function. It has the following members:
191
192 @table @code
193 @item long int quot
194 The quotient from the division.
195
196 @item long int rem
197 The remainder from the division.
198 @end table
199
200 (This is identical to @code{div_t} except that the components are of
201 type @code{long int} rather than @code{int}.)
202 @end deftp
203
204 @comment stdlib.h
205 @comment ISO
206 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
207 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
208 The @code{ldiv} function is similar to @code{div}, except that the
209 arguments are of type @code{long int} and the result is returned as a
210 structure of type @code{ldiv_t}.
211 @end deftypefun
212
213 @comment stdlib.h
214 @comment ISO
215 @deftp {Data Type} lldiv_t
216 This is a structure type used to hold the result returned by the @code{lldiv}
217 function. It has the following members:
218
219 @table @code
220 @item long long int quot
221 The quotient from the division.
222
223 @item long long int rem
224 The remainder from the division.
225 @end table
226
227 (This is identical to @code{div_t} except that the components are of
228 type @code{long long int} rather than @code{int}.)
229 @end deftp
230
231 @comment stdlib.h
232 @comment ISO
233 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
234 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
235 The @code{lldiv} function is like the @code{div} function, but the
236 arguments are of type @code{long long int} and the result is returned as
237 a structure of type @code{lldiv_t}.
238
239 The @code{lldiv} function was added in @w{ISO C99}.
240 @end deftypefun
241
242 @comment inttypes.h
243 @comment ISO
244 @deftp {Data Type} imaxdiv_t
245 This is a structure type used to hold the result returned by the @code{imaxdiv}
246 function. It has the following members:
247
248 @table @code
249 @item intmax_t quot
250 The quotient from the division.
251
252 @item intmax_t rem
253 The remainder from the division.
254 @end table
255
256 (This is identical to @code{div_t} except that the components are of
257 type @code{intmax_t} rather than @code{int}.)
258
259 See @ref{Integers} for a description of the @code{intmax_t} type.
260
261 @end deftp
262
263 @comment inttypes.h
264 @comment ISO
265 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
266 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
267 The @code{imaxdiv} function is like the @code{div} function, but the
268 arguments are of type @code{intmax_t} and the result is returned as
269 a structure of type @code{imaxdiv_t}.
270
271 See @ref{Integers} for a description of the @code{intmax_t} type.
272
273 The @code{imaxdiv} function was added in @w{ISO C99}.
274 @end deftypefun
275
276
277 @node Floating Point Numbers
278 @section Floating Point Numbers
279 @cindex floating point
280 @cindex IEEE 754
281 @cindex IEEE floating point
282
283 Most computer hardware has support for two different kinds of numbers:
284 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
285 floating-point numbers. Floating-point numbers have three parts: the
286 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}. The real
287 number represented by a floating-point value is given by
288 @tex
289 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
290 @end tex
291 @ifnottex
292 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
293 @end ifnottex
294 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
295 the mantissa. @xref{Floating Point Concepts}, for details. (It is
296 possible to have a different @dfn{base} for the exponent, but all modern
297 hardware uses @math{2}.)
298
299 Floating-point numbers can represent a finite subset of the real
300 numbers. While this subset is large enough for most purposes, it is
301 important to remember that the only reals that can be represented
302 exactly are rational numbers that have a terminating binary expansion
303 shorter than the width of the mantissa. Even simple fractions such as
304 @math{1/5} can only be approximated by floating point.
305
306 Mathematical operations and functions frequently need to produce values
307 that are not representable. Often these values can be approximated
308 closely enough for practical purposes, but sometimes they can't.
309 Historically there was no way to tell when the results of a calculation
310 were inaccurate. Modern computers implement the @w{IEEE 754} standard
311 for numerical computations, which defines a framework for indicating to
312 the program when the results of calculation are not trustworthy. This
313 framework consists of a set of @dfn{exceptions} that indicate why a
314 result could not be represented, and the special values @dfn{infinity}
315 and @dfn{not a number} (NaN).
316
317 @node Floating Point Classes
318 @section Floating-Point Number Classification Functions
319 @cindex floating-point classes
320 @cindex classes, floating-point
321 @pindex math.h
322
323 @w{ISO C99} defines macros that let you determine what sort of
324 floating-point number a variable holds.
325
326 @comment math.h
327 @comment ISO
328 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
329 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
330 This is a generic macro which works on all floating-point types and
331 which returns a value of type @code{int}. The possible values are:
332
333 @vtable @code
334 @item FP_NAN
335 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
336 and NaN})
337 @item FP_INFINITE
338 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
339 and NaN})
340 @item FP_ZERO
341 The value of @var{x} is zero. In floating-point formats like @w{IEEE
342 754}, where zero can be signed, this value is also returned if
343 @var{x} is negative zero.
344 @item FP_SUBNORMAL
345 Numbers whose absolute value is too small to be represented in the
346 normal format are represented in an alternate, @dfn{denormalized} format
347 (@pxref{Floating Point Concepts}). This format is less precise but can
348 represent values closer to zero. @code{fpclassify} returns this value
349 for values of @var{x} in this alternate format.
350 @item FP_NORMAL
351 This value is returned for all other values of @var{x}. It indicates
352 that there is nothing special about the number.
353 @end vtable
354
355 @end deftypefn
356
357 @code{fpclassify} is most useful if more than one property of a number
358 must be tested. There are more specific macros which only test one
359 property at a time. Generally these macros execute faster than
360 @code{fpclassify}, since there is special hardware support for them.
361 You should therefore use the specific macros whenever possible.
362
363 @comment math.h
364 @comment ISO
365 @deftypefn {Macro} int iscanonical (@emph{float-type} @var{x})
366 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
367 In some floating-point formats, some values have canonical (preferred)
368 and noncanonical encodings (for IEEE interchange binary formats, all
369 encodings are canonical). This macro returns a nonzero value if
370 @var{x} has a canonical encoding. It is from TS 18661-1:2014.
371
372 Note that some formats have multiple encodings of a value which are
373 all equally canonical; @code{iscanonical} returns a nonzero value for
374 all such encodings. Also, formats may have encodings that do not
375 correspond to any valid value of the type. In ISO C terms these are
376 @dfn{trap representations}; in @theglibc{}, @code{iscanonical} returns
377 zero for such encodings.
378 @end deftypefn
379
380 @comment math.h
381 @comment ISO
382 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
383 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
384 This macro returns a nonzero value if @var{x} is finite: not plus or
385 minus infinity, and not NaN. It is equivalent to
386
387 @smallexample
388 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
389 @end smallexample
390
391 @code{isfinite} is implemented as a macro which accepts any
392 floating-point type.
393 @end deftypefn
394
395 @comment math.h
396 @comment ISO
397 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
398 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
399 This macro returns a nonzero value if @var{x} is finite and normalized.
400 It is equivalent to
401
402 @smallexample
403 (fpclassify (x) == FP_NORMAL)
404 @end smallexample
405 @end deftypefn
406
407 @comment math.h
408 @comment ISO
409 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
410 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
411 This macro returns a nonzero value if @var{x} is NaN. It is equivalent
412 to
413
414 @smallexample
415 (fpclassify (x) == FP_NAN)
416 @end smallexample
417 @end deftypefn
418
419 @comment math.h
420 @comment ISO
421 @deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
422 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
423 This macro returns a nonzero value if @var{x} is a signaling NaN
424 (sNaN). It is from TS 18661-1:2014.
425 @end deftypefn
426
427 @comment math.h
428 @comment ISO
429 @deftypefn {Macro} int issubnormal (@emph{float-type} @var{x})
430 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
431 This macro returns a nonzero value if @var{x} is subnormal. It is
432 from TS 18661-1:2014.
433 @end deftypefn
434
435 @comment math.h
436 @comment ISO
437 @deftypefn {Macro} int iszero (@emph{float-type} @var{x})
438 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
439 This macro returns a nonzero value if @var{x} is zero. It is from TS
440 18661-1:2014.
441 @end deftypefn
442
443 Another set of floating-point classification functions was provided by
444 BSD. @Theglibc{} also supports these functions; however, we
445 recommend that you use the ISO C99 macros in new code. Those are standard
446 and will be available more widely. Also, since they are macros, you do
447 not have to worry about the type of their argument.
448
449 @comment math.h
450 @comment BSD
451 @deftypefun int isinf (double @var{x})
452 @comment math.h
453 @comment BSD
454 @deftypefunx int isinff (float @var{x})
455 @comment math.h
456 @comment BSD
457 @deftypefunx int isinfl (long double @var{x})
458 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
459 This function returns @code{-1} if @var{x} represents negative infinity,
460 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
461 @end deftypefun
462
463 @comment math.h
464 @comment BSD
465 @deftypefun int isnan (double @var{x})
466 @comment math.h
467 @comment BSD
468 @deftypefunx int isnanf (float @var{x})
469 @comment math.h
470 @comment BSD
471 @deftypefunx int isnanl (long double @var{x})
472 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
473 This function returns a nonzero value if @var{x} is a ``not a number''
474 value, and zero otherwise.
475
476 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
477 the BSD function. This is normally not a problem, because the two
478 routines behave identically. However, if you really need to get the BSD
479 function for some reason, you can write
480
481 @smallexample
482 (isnan) (x)
483 @end smallexample
484 @end deftypefun
485
486 @comment math.h
487 @comment BSD
488 @deftypefun int finite (double @var{x})
489 @comment math.h
490 @comment BSD
491 @deftypefunx int finitef (float @var{x})
492 @comment math.h
493 @comment BSD
494 @deftypefunx int finitel (long double @var{x})
495 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
496 This function returns a nonzero value if @var{x} is finite or a ``not a
497 number'' value, and zero otherwise.
498 @end deftypefun
499
500 @strong{Portability Note:} The functions listed in this section are BSD
501 extensions.
502
503
504 @node Floating Point Errors
505 @section Errors in Floating-Point Calculations
506
507 @menu
508 * FP Exceptions:: IEEE 754 math exceptions and how to detect them.
509 * Infinity and NaN:: Special values returned by calculations.
510 * Status bit operations:: Checking for exceptions after the fact.
511 * Math Error Reporting:: How the math functions report errors.
512 @end menu
513
514 @node FP Exceptions
515 @subsection FP Exceptions
516 @cindex exception
517 @cindex signal
518 @cindex zero divide
519 @cindex division by zero
520 @cindex inexact exception
521 @cindex invalid exception
522 @cindex overflow exception
523 @cindex underflow exception
524
525 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
526 during a calculation. Each corresponds to a particular sort of error,
527 such as overflow.
528
529 When exceptions occur (when exceptions are @dfn{raised}, in the language
530 of the standard), one of two things can happen. By default the
531 exception is simply noted in the floating-point @dfn{status word}, and
532 the program continues as if nothing had happened. The operation
533 produces a default value, which depends on the exception (see the table
534 below). Your program can check the status word to find out which
535 exceptions happened.
536
537 Alternatively, you can enable @dfn{traps} for exceptions. In that case,
538 when an exception is raised, your program will receive the @code{SIGFPE}
539 signal. The default action for this signal is to terminate the
540 program. @xref{Signal Handling}, for how you can change the effect of
541 the signal.
542
543 @findex matherr
544 In the System V math library, the user-defined function @code{matherr}
545 is called when certain exceptions occur inside math library functions.
546 However, the Unix98 standard deprecates this interface. We support it
547 for historical compatibility, but recommend that you do not use it in
548 new programs. When this interface is used, exceptions may not be
549 raised.
550
551 @noindent
552 The exceptions defined in @w{IEEE 754} are:
553
554 @table @samp
555 @item Invalid Operation
556 This exception is raised if the given operands are invalid for the
557 operation to be performed. Examples are
558 (see @w{IEEE 754}, @w{section 7}):
559 @enumerate
560 @item
561 Addition or subtraction: @math{@infinity{} - @infinity{}}. (But
562 @math{@infinity{} + @infinity{} = @infinity{}}).
563 @item
564 Multiplication: @math{0 @mul{} @infinity{}}.
565 @item
566 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
567 @item
568 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
569 infinite.
570 @item
571 Square root if the operand is less than zero. More generally, any
572 mathematical function evaluated outside its domain produces this
573 exception.
574 @item
575 Conversion of a floating-point number to an integer or decimal
576 string, when the number cannot be represented in the target format (due
577 to overflow, infinity, or NaN).
578 @item
579 Conversion of an unrecognizable input string.
580 @item
581 Comparison via predicates involving @math{<} or @math{>}, when one or
582 other of the operands is NaN. You can prevent this exception by using
583 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
584 @end enumerate
585
586 If the exception does not trap, the result of the operation is NaN.
587
588 @item Division by Zero
589 This exception is raised when a finite nonzero number is divided
590 by zero. If no trap occurs the result is either @math{+@infinity{}} or
591 @math{-@infinity{}}, depending on the signs of the operands.
592
593 @item Overflow
594 This exception is raised whenever the result cannot be represented
595 as a finite value in the precision format of the destination. If no trap
596 occurs the result depends on the sign of the intermediate result and the
597 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
598 @enumerate
599 @item
600 Round to nearest carries all overflows to @math{@infinity{}}
601 with the sign of the intermediate result.
602 @item
603 Round toward @math{0} carries all overflows to the largest representable
604 finite number with the sign of the intermediate result.
605 @item
606 Round toward @math{-@infinity{}} carries positive overflows to the
607 largest representable finite number and negative overflows to
608 @math{-@infinity{}}.
609
610 @item
611 Round toward @math{@infinity{}} carries negative overflows to the
612 most negative representable finite number and positive overflows
613 to @math{@infinity{}}.
614 @end enumerate
615
616 Whenever the overflow exception is raised, the inexact exception is also
617 raised.
618
619 @item Underflow
620 The underflow exception is raised when an intermediate result is too
621 small to be calculated accurately, or if the operation's result rounded
622 to the destination precision is too small to be normalized.
623
624 When no trap is installed for the underflow exception, underflow is
625 signaled (via the underflow flag) only when both tininess and loss of
626 accuracy have been detected. If no trap handler is installed the
627 operation continues with an imprecise small value, or zero if the
628 destination precision cannot hold the small exact result.
629
630 @item Inexact
631 This exception is signalled if a rounded result is not exact (such as
632 when calculating the square root of two) or a result overflows without
633 an overflow trap.
634 @end table
635
636 @node Infinity and NaN
637 @subsection Infinity and NaN
638 @cindex infinity
639 @cindex not a number
640 @cindex NaN
641
642 @w{IEEE 754} floating point numbers can represent positive or negative
643 infinity, and @dfn{NaN} (not a number). These three values arise from
644 calculations whose result is undefined or cannot be represented
645 accurately. You can also deliberately set a floating-point variable to
646 any of them, which is sometimes useful. Some examples of calculations
647 that produce infinity or NaN:
648
649 @ifnottex
650 @smallexample
651 @math{1/0 = @infinity{}}
652 @math{log (0) = -@infinity{}}
653 @math{sqrt (-1) = NaN}
654 @end smallexample
655 @end ifnottex
656 @tex
657 $${1\over0} = \infty$$
658 $$\log 0 = -\infty$$
659 $$\sqrt{-1} = \hbox{NaN}$$
660 @end tex
661
662 When a calculation produces any of these values, an exception also
663 occurs; see @ref{FP Exceptions}.
664
665 The basic operations and math functions all accept infinity and NaN and
666 produce sensible output. Infinities propagate through calculations as
667 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
668 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}. NaN, on
669 the other hand, infects any calculation that involves it. Unless the
670 calculation would produce the same result no matter what real value
671 replaced NaN, the result is NaN.
672
673 In comparison operations, positive infinity is larger than all values
674 except itself and NaN, and negative infinity is smaller than all values
675 except itself and NaN. NaN is @dfn{unordered}: it is not equal to,
676 greater than, or less than anything, @emph{including itself}. @code{x ==
677 x} is false if the value of @code{x} is NaN. You can use this to test
678 whether a value is NaN or not, but the recommended way to test for NaN
679 is with the @code{isnan} function (@pxref{Floating Point Classes}). In
680 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
681 exception when applied to NaNs.
682
683 @file{math.h} defines macros that allow you to explicitly set a variable
684 to infinity or NaN.
685
686 @comment math.h
687 @comment ISO
688 @deftypevr Macro float INFINITY
689 An expression representing positive infinity. It is equal to the value
690 produced by mathematical operations like @code{1.0 / 0.0}.
691 @code{-INFINITY} represents negative infinity.
692
693 You can test whether a floating-point value is infinite by comparing it
694 to this macro. However, this is not recommended; you should use the
695 @code{isfinite} macro instead. @xref{Floating Point Classes}.
696
697 This macro was introduced in the @w{ISO C99} standard.
698 @end deftypevr
699
700 @comment math.h
701 @comment GNU
702 @deftypevr Macro float NAN
703 An expression representing a value which is ``not a number''. This
704 macro is a GNU extension, available only on machines that support the
705 ``not a number'' value---that is to say, on all machines that support
706 IEEE floating point.
707
708 You can use @samp{#ifdef NAN} to test whether the machine supports
709 NaN. (Of course, you must arrange for GNU extensions to be visible,
710 such as by defining @code{_GNU_SOURCE}, and then you must include
711 @file{math.h}.)
712 @end deftypevr
713
714 @comment math.h
715 @comment ISO
716 @deftypevr Macro float SNANF
717 @deftypevrx Macro double SNAN
718 @deftypevrx Macro {long double} SNANL
719 These macros, defined by TS 18661-1:2014, are constant expressions for
720 signaling NaNs.
721 @end deftypevr
722
723 @comment fenv.h
724 @comment ISO
725 @deftypevr Macro int FE_SNANS_ALWAYS_SIGNAL
726 This macro, defined by TS 18661-1:2014, is defined to @code{1} in
727 @file{fenv.h} to indicate that functions and operations with signaling
728 NaN inputs and floating-point results always raise the invalid
729 exception and return a quiet NaN, even in cases (such as @code{fmax},
730 @code{hypot} and @code{pow}) where a quiet NaN input can produce a
731 non-NaN result. Because some compiler optimizations may not handle
732 signaling NaNs correctly, this macro is only defined if compiler
733 support for signaling NaNs is enabled. That support can be enabled
734 with the GCC option @option{-fsignaling-nans}.
735 @end deftypevr
736
737 @w{IEEE 754} also allows for another unusual value: negative zero. This
738 value is produced when you divide a positive number by negative
739 infinity, or when a negative result is smaller than the limits of
740 representation.
741
742 @node Status bit operations
743 @subsection Examining the FPU status word
744
745 @w{ISO C99} defines functions to query and manipulate the
746 floating-point status word. You can use these functions to check for
747 untrapped exceptions when it's convenient, rather than worrying about
748 them in the middle of a calculation.
749
750 These constants represent the various @w{IEEE 754} exceptions. Not all
751 FPUs report all the different exceptions. Each constant is defined if
752 and only if the FPU you are compiling for supports that exception, so
753 you can test for FPU support with @samp{#ifdef}. They are defined in
754 @file{fenv.h}.
755
756 @vtable @code
757 @comment fenv.h
758 @comment ISO
759 @item FE_INEXACT
760 The inexact exception.
761 @comment fenv.h
762 @comment ISO
763 @item FE_DIVBYZERO
764 The divide by zero exception.
765 @comment fenv.h
766 @comment ISO
767 @item FE_UNDERFLOW
768 The underflow exception.
769 @comment fenv.h
770 @comment ISO
771 @item FE_OVERFLOW
772 The overflow exception.
773 @comment fenv.h
774 @comment ISO
775 @item FE_INVALID
776 The invalid exception.
777 @end vtable
778
779 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
780 which are supported by the FP implementation.
781
782 These functions allow you to clear exception flags, test for exceptions,
783 and save and restore the set of exceptions flagged.
784
785 @comment fenv.h
786 @comment ISO
787 @deftypefun int feclearexcept (int @var{excepts})
788 @safety{@prelim{}@mtsafe{}@assafe{@assposix{}}@acsafe{@acsposix{}}}
789 @c The other functions in this section that modify FP status register
790 @c mostly do so with non-atomic load-modify-store sequences, but since
791 @c the register is thread-specific, this should be fine, and safe for
792 @c cancellation. As long as the FP environment is restored before the
793 @c signal handler returns control to the interrupted thread (like any
794 @c kernel should do), the functions are also safe for use in signal
795 @c handlers.
796 This function clears all of the supported exception flags indicated by
797 @var{excepts}.
798
799 The function returns zero in case the operation was successful, a
800 non-zero value otherwise.
801 @end deftypefun
802
803 @comment fenv.h
804 @comment ISO
805 @deftypefun int feraiseexcept (int @var{excepts})
806 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
807 This function raises the supported exceptions indicated by
808 @var{excepts}. If more than one exception bit in @var{excepts} is set
809 the order in which the exceptions are raised is undefined except that
810 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
811 raised before inexact (@code{FE_INEXACT}). Whether for overflow or
812 underflow the inexact exception is also raised is also implementation
813 dependent.
814
815 The function returns zero in case the operation was successful, a
816 non-zero value otherwise.
817 @end deftypefun
818
819 @comment fenv.h
820 @comment ISO
821 @deftypefun int fesetexcept (int @var{excepts})
822 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
823 This function sets the supported exception flags indicated by
824 @var{excepts}, like @code{feraiseexcept}, but without causing enabled
825 traps to be taken. @code{fesetexcept} is from TS 18661-1:2014.
826
827 The function returns zero in case the operation was successful, a
828 non-zero value otherwise.
829 @end deftypefun
830
831 @comment fenv.h
832 @comment ISO
833 @deftypefun int fetestexcept (int @var{excepts})
834 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
835 Test whether the exception flags indicated by the parameter @var{except}
836 are currently set. If any of them are, a nonzero value is returned
837 which specifies which exceptions are set. Otherwise the result is zero.
838 @end deftypefun
839
840 To understand these functions, imagine that the status word is an
841 integer variable named @var{status}. @code{feclearexcept} is then
842 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
843 equivalent to @samp{(status & excepts)}. The actual implementation may
844 be very different, of course.
845
846 Exception flags are only cleared when the program explicitly requests it,
847 by calling @code{feclearexcept}. If you want to check for exceptions
848 from a set of calculations, you should clear all the flags first. Here
849 is a simple example of the way to use @code{fetestexcept}:
850
851 @smallexample
852 @{
853 double f;
854 int raised;
855 feclearexcept (FE_ALL_EXCEPT);
856 f = compute ();
857 raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
858 if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
859 if (raised & FE_INVALID) @{ /* @dots{} */ @}
860 /* @dots{} */
861 @}
862 @end smallexample
863
864 You cannot explicitly set bits in the status word. You can, however,
865 save the entire status word and restore it later. This is done with the
866 following functions:
867
868 @comment fenv.h
869 @comment ISO
870 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
871 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
872 This function stores in the variable pointed to by @var{flagp} an
873 implementation-defined value representing the current setting of the
874 exception flags indicated by @var{excepts}.
875
876 The function returns zero in case the operation was successful, a
877 non-zero value otherwise.
878 @end deftypefun
879
880 @comment fenv.h
881 @comment ISO
882 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
883 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
884 This function restores the flags for the exceptions indicated by
885 @var{excepts} to the values stored in the variable pointed to by
886 @var{flagp}.
887
888 The function returns zero in case the operation was successful, a
889 non-zero value otherwise.
890 @end deftypefun
891
892 Note that the value stored in @code{fexcept_t} bears no resemblance to
893 the bit mask returned by @code{fetestexcept}. The type may not even be
894 an integer. Do not attempt to modify an @code{fexcept_t} variable.
895
896 @comment fenv.h
897 @comment ISO
898 @deftypefun int fetestexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
899 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
900 Test whether the exception flags indicated by the parameter
901 @var{excepts} are set in the variable pointed to by @var{flagp}. If
902 any of them are, a nonzero value is returned which specifies which
903 exceptions are set. Otherwise the result is zero.
904 @code{fetestexceptflag} is from TS 18661-1:2014.
905 @end deftypefun
906
907 @node Math Error Reporting
908 @subsection Error Reporting by Mathematical Functions
909 @cindex errors, mathematical
910 @cindex domain error
911 @cindex range error
912
913 Many of the math functions are defined only over a subset of the real or
914 complex numbers. Even if they are mathematically defined, their result
915 may be larger or smaller than the range representable by their return
916 type without loss of accuracy. These are known as @dfn{domain errors},
917 @dfn{overflows}, and
918 @dfn{underflows}, respectively. Math functions do several things when
919 one of these errors occurs. In this manual we will refer to the
920 complete response as @dfn{signalling} a domain error, overflow, or
921 underflow.
922
923 When a math function suffers a domain error, it raises the invalid
924 exception and returns NaN. It also sets @var{errno} to @code{EDOM};
925 this is for compatibility with old systems that do not support @w{IEEE
926 754} exception handling. Likewise, when overflow occurs, math
927 functions raise the overflow exception and, in the default rounding
928 mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
929 (in other rounding modes, the largest finite value of the appropriate
930 sign is returned when appropriate for that rounding mode). They also
931 set @var{errno} to @code{ERANGE} if returning @math{@infinity{}} or
932 @math{-@infinity{}}; @var{errno} may or may not be set to
933 @code{ERANGE} when a finite value is returned on overflow. When
934 underflow occurs, the underflow exception is raised, and zero
935 (appropriately signed) or a subnormal value, as appropriate for the
936 mathematical result of the function and the rounding mode, is
937 returned. @var{errno} may be set to @code{ERANGE}, but this is not
938 guaranteed; it is intended that @theglibc{} should set it when the
939 underflow is to an appropriately signed zero, but not necessarily for
940 other underflows.
941
942 Some of the math functions are defined mathematically to result in a
943 complex value over parts of their domains. The most familiar example of
944 this is taking the square root of a negative number. The complex math
945 functions, such as @code{csqrt}, will return the appropriate complex value
946 in this case. The real-valued functions, such as @code{sqrt}, will
947 signal a domain error.
948
949 Some older hardware does not support infinities. On that hardware,
950 overflows instead return a particular very large number (usually the
951 largest representable number). @file{math.h} defines macros you can use
952 to test for overflow on both old and new hardware.
953
954 @comment math.h
955 @comment ISO
956 @deftypevr Macro double HUGE_VAL
957 @comment math.h
958 @comment ISO
959 @deftypevrx Macro float HUGE_VALF
960 @comment math.h
961 @comment ISO
962 @deftypevrx Macro {long double} HUGE_VALL
963 An expression representing a particular very large number. On machines
964 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
965 On other machines, it's typically the largest positive number that can
966 be represented.
967
968 Mathematical functions return the appropriately typed version of
969 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
970 to be represented.
971 @end deftypevr
972
973 @node Rounding
974 @section Rounding Modes
975
976 Floating-point calculations are carried out internally with extra
977 precision, and then rounded to fit into the destination type. This
978 ensures that results are as precise as the input data. @w{IEEE 754}
979 defines four possible rounding modes:
980
981 @table @asis
982 @item Round to nearest.
983 This is the default mode. It should be used unless there is a specific
984 need for one of the others. In this mode results are rounded to the
985 nearest representable value. If the result is midway between two
986 representable values, the even representable is chosen. @dfn{Even} here
987 means the lowest-order bit is zero. This rounding mode prevents
988 statistical bias and guarantees numeric stability: round-off errors in a
989 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
990
991 @c @item Round toward @math{+@infinity{}}
992 @item Round toward plus Infinity.
993 All results are rounded to the smallest representable value
994 which is greater than the result.
995
996 @c @item Round toward @math{-@infinity{}}
997 @item Round toward minus Infinity.
998 All results are rounded to the largest representable value which is less
999 than the result.
1000
1001 @item Round toward zero.
1002 All results are rounded to the largest representable value whose
1003 magnitude is less than that of the result. In other words, if the
1004 result is negative it is rounded up; if it is positive, it is rounded
1005 down.
1006 @end table
1007
1008 @noindent
1009 @file{fenv.h} defines constants which you can use to refer to the
1010 various rounding modes. Each one will be defined if and only if the FPU
1011 supports the corresponding rounding mode.
1012
1013 @table @code
1014 @comment fenv.h
1015 @comment ISO
1016 @vindex FE_TONEAREST
1017 @item FE_TONEAREST
1018 Round to nearest.
1019
1020 @comment fenv.h
1021 @comment ISO
1022 @vindex FE_UPWARD
1023 @item FE_UPWARD
1024 Round toward @math{+@infinity{}}.
1025
1026 @comment fenv.h
1027 @comment ISO
1028 @vindex FE_DOWNWARD
1029 @item FE_DOWNWARD
1030 Round toward @math{-@infinity{}}.
1031
1032 @comment fenv.h
1033 @comment ISO
1034 @vindex FE_TOWARDZERO
1035 @item FE_TOWARDZERO
1036 Round toward zero.
1037 @end table
1038
1039 Underflow is an unusual case. Normally, @w{IEEE 754} floating point
1040 numbers are always normalized (@pxref{Floating Point Concepts}).
1041 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
1042 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
1043 normalized numbers. Rounding all such numbers to zero or @math{2^r}
1044 would cause some algorithms to fail at 0. Therefore, they are left in
1045 denormalized form. That produces loss of precision, since some bits of
1046 the mantissa are stolen to indicate the decimal point.
1047
1048 If a result is too small to be represented as a denormalized number, it
1049 is rounded to zero. However, the sign of the result is preserved; if
1050 the calculation was negative, the result is @dfn{negative zero}.
1051 Negative zero can also result from some operations on infinity, such as
1052 @math{4/-@infinity{}}.
1053
1054 At any time, one of the above four rounding modes is selected. You can
1055 find out which one with this function:
1056
1057 @comment fenv.h
1058 @comment ISO
1059 @deftypefun int fegetround (void)
1060 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1061 Returns the currently selected rounding mode, represented by one of the
1062 values of the defined rounding mode macros.
1063 @end deftypefun
1064
1065 @noindent
1066 To change the rounding mode, use this function:
1067
1068 @comment fenv.h
1069 @comment ISO
1070 @deftypefun int fesetround (int @var{round})
1071 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1072 Changes the currently selected rounding mode to @var{round}. If
1073 @var{round} does not correspond to one of the supported rounding modes
1074 nothing is changed. @code{fesetround} returns zero if it changed the
1075 rounding mode, or a nonzero value if the mode is not supported.
1076 @end deftypefun
1077
1078 You should avoid changing the rounding mode if possible. It can be an
1079 expensive operation; also, some hardware requires you to compile your
1080 program differently for it to work. The resulting code may run slower.
1081 See your compiler documentation for details.
1082 @c This section used to claim that functions existed to round one number
1083 @c in a specific fashion. I can't find any functions in the library
1084 @c that do that. -zw
1085
1086 @node Control Functions
1087 @section Floating-Point Control Functions
1088
1089 @w{IEEE 754} floating-point implementations allow the programmer to
1090 decide whether traps will occur for each of the exceptions, by setting
1091 bits in the @dfn{control word}. In C, traps result in the program
1092 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
1093
1094 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
1095 the exceptional situation, and can set the result value. C signals do
1096 not provide any mechanism to pass this information back and forth.
1097 Trapping exceptions in C is therefore not very useful.
1098
1099 It is sometimes necessary to save the state of the floating-point unit
1100 while you perform some calculation. The library provides functions
1101 which save and restore the exception flags, the set of exceptions that
1102 generate traps, and the rounding mode. This information is known as the
1103 @dfn{floating-point environment}.
1104
1105 The functions to save and restore the floating-point environment all use
1106 a variable of type @code{fenv_t} to store information. This type is
1107 defined in @file{fenv.h}. Its size and contents are
1108 implementation-defined. You should not attempt to manipulate a variable
1109 of this type directly.
1110
1111 To save the state of the FPU, use one of these functions:
1112
1113 @comment fenv.h
1114 @comment ISO
1115 @deftypefun int fegetenv (fenv_t *@var{envp})
1116 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1117 Store the floating-point environment in the variable pointed to by
1118 @var{envp}.
1119
1120 The function returns zero in case the operation was successful, a
1121 non-zero value otherwise.
1122 @end deftypefun
1123
1124 @comment fenv.h
1125 @comment ISO
1126 @deftypefun int feholdexcept (fenv_t *@var{envp})
1127 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1128 Store the current floating-point environment in the object pointed to by
1129 @var{envp}. Then clear all exception flags, and set the FPU to trap no
1130 exceptions. Not all FPUs support trapping no exceptions; if
1131 @code{feholdexcept} cannot set this mode, it returns nonzero value. If it
1132 succeeds, it returns zero.
1133 @end deftypefun
1134
1135 The functions which restore the floating-point environment can take these
1136 kinds of arguments:
1137
1138 @itemize @bullet
1139 @item
1140 Pointers to @code{fenv_t} objects, which were initialized previously by a
1141 call to @code{fegetenv} or @code{feholdexcept}.
1142 @item
1143 @vindex FE_DFL_ENV
1144 The special macro @code{FE_DFL_ENV} which represents the floating-point
1145 environment as it was available at program start.
1146 @item
1147 Implementation defined macros with names starting with @code{FE_} and
1148 having type @code{fenv_t *}.
1149
1150 @vindex FE_NOMASK_ENV
1151 If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1152 which represents an environment where every exception raised causes a
1153 trap to occur. You can test for this macro using @code{#ifdef}. It is
1154 only defined if @code{_GNU_SOURCE} is defined.
1155
1156 Some platforms might define other predefined environments.
1157 @end itemize
1158
1159 @noindent
1160 To set the floating-point environment, you can use either of these
1161 functions:
1162
1163 @comment fenv.h
1164 @comment ISO
1165 @deftypefun int fesetenv (const fenv_t *@var{envp})
1166 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1167 Set the floating-point environment to that described by @var{envp}.
1168
1169 The function returns zero in case the operation was successful, a
1170 non-zero value otherwise.
1171 @end deftypefun
1172
1173 @comment fenv.h
1174 @comment ISO
1175 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1176 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1177 Like @code{fesetenv}, this function sets the floating-point environment
1178 to that described by @var{envp}. However, if any exceptions were
1179 flagged in the status word before @code{feupdateenv} was called, they
1180 remain flagged after the call. In other words, after @code{feupdateenv}
1181 is called, the status word is the bitwise OR of the previous status word
1182 and the one saved in @var{envp}.
1183
1184 The function returns zero in case the operation was successful, a
1185 non-zero value otherwise.
1186 @end deftypefun
1187
1188 @noindent
1189 TS 18661-1:2014 defines additional functions to save and restore
1190 floating-point control modes (such as the rounding mode and whether
1191 traps are enabled) while leaving other status (such as raised flags)
1192 unchanged.
1193
1194 @vindex FE_DFL_MODE
1195 The special macro @code{FE_DFL_MODE} may be passed to
1196 @code{fesetmode}. It represents the floating-point control modes at
1197 program start.
1198
1199 @comment fenv.h
1200 @comment ISO
1201 @deftypefun int fegetmode (femode_t *@var{modep})
1202 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1203 Store the floating-point control modes in the variable pointed to by
1204 @var{modep}.
1205
1206 The function returns zero in case the operation was successful, a
1207 non-zero value otherwise.
1208 @end deftypefun
1209
1210 @comment fenv.h
1211 @comment ISO
1212 @deftypefun int fesetmode (const femode_t *@var{modep})
1213 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1214 Set the floating-point control modes to those described by
1215 @var{modep}.
1216
1217 The function returns zero in case the operation was successful, a
1218 non-zero value otherwise.
1219 @end deftypefun
1220
1221 @noindent
1222 To control for individual exceptions if raising them causes a trap to
1223 occur, you can use the following two functions.
1224
1225 @strong{Portability Note:} These functions are all GNU extensions.
1226
1227 @comment fenv.h
1228 @comment GNU
1229 @deftypefun int feenableexcept (int @var{excepts})
1230 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1231 This function enables traps for each of the exceptions as indicated by
1232 the parameter @var{excepts}. The individual exceptions are described in
1233 @ref{Status bit operations}. Only the specified exceptions are
1234 enabled, the status of the other exceptions is not changed.
1235
1236 The function returns the previous enabled exceptions in case the
1237 operation was successful, @code{-1} otherwise.
1238 @end deftypefun
1239
1240 @comment fenv.h
1241 @comment GNU
1242 @deftypefun int fedisableexcept (int @var{excepts})
1243 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1244 This function disables traps for each of the exceptions as indicated by
1245 the parameter @var{excepts}. The individual exceptions are described in
1246 @ref{Status bit operations}. Only the specified exceptions are
1247 disabled, the status of the other exceptions is not changed.
1248
1249 The function returns the previous enabled exceptions in case the
1250 operation was successful, @code{-1} otherwise.
1251 @end deftypefun
1252
1253 @comment fenv.h
1254 @comment GNU
1255 @deftypefun int fegetexcept (void)
1256 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1257 The function returns a bitmask of all currently enabled exceptions. It
1258 returns @code{-1} in case of failure.
1259 @end deftypefun
1260
1261 @node Arithmetic Functions
1262 @section Arithmetic Functions
1263
1264 The C library provides functions to do basic operations on
1265 floating-point numbers. These include absolute value, maximum and minimum,
1266 normalization, bit twiddling, rounding, and a few others.
1267
1268 @menu
1269 * Absolute Value:: Absolute values of integers and floats.
1270 * Normalization Functions:: Extracting exponents and putting them back.
1271 * Rounding Functions:: Rounding floats to integers.
1272 * Remainder Functions:: Remainders on division, precisely defined.
1273 * FP Bit Twiddling:: Sign bit adjustment. Adding epsilon.
1274 * FP Comparison Functions:: Comparisons without risk of exceptions.
1275 * Misc FP Arithmetic:: Max, min, positive difference, multiply-add.
1276 @end menu
1277
1278 @node Absolute Value
1279 @subsection Absolute Value
1280 @cindex absolute value functions
1281
1282 These functions are provided for obtaining the @dfn{absolute value} (or
1283 @dfn{magnitude}) of a number. The absolute value of a real number
1284 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1285 negative. For a complex number @var{z}, whose real part is @var{x} and
1286 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1287 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1288
1289 @pindex math.h
1290 @pindex stdlib.h
1291 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1292 @code{imaxabs} is declared in @file{inttypes.h};
1293 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1294 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1295
1296 @comment stdlib.h
1297 @comment ISO
1298 @deftypefun int abs (int @var{number})
1299 @comment stdlib.h
1300 @comment ISO
1301 @deftypefunx {long int} labs (long int @var{number})
1302 @comment stdlib.h
1303 @comment ISO
1304 @deftypefunx {long long int} llabs (long long int @var{number})
1305 @comment inttypes.h
1306 @comment ISO
1307 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1308 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1309 These functions return the absolute value of @var{number}.
1310
1311 Most computers use a two's complement integer representation, in which
1312 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1313 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1314
1315 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1316
1317 See @ref{Integers} for a description of the @code{intmax_t} type.
1318
1319 @end deftypefun
1320
1321 @comment math.h
1322 @comment ISO
1323 @deftypefun double fabs (double @var{number})
1324 @comment math.h
1325 @comment ISO
1326 @deftypefunx float fabsf (float @var{number})
1327 @comment math.h
1328 @comment ISO
1329 @deftypefunx {long double} fabsl (long double @var{number})
1330 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1331 This function returns the absolute value of the floating-point number
1332 @var{number}.
1333 @end deftypefun
1334
1335 @comment complex.h
1336 @comment ISO
1337 @deftypefun double cabs (complex double @var{z})
1338 @comment complex.h
1339 @comment ISO
1340 @deftypefunx float cabsf (complex float @var{z})
1341 @comment complex.h
1342 @comment ISO
1343 @deftypefunx {long double} cabsl (complex long double @var{z})
1344 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1345 These functions return the absolute value of the complex number @var{z}
1346 (@pxref{Complex Numbers}). The absolute value of a complex number is:
1347
1348 @smallexample
1349 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1350 @end smallexample
1351
1352 This function should always be used instead of the direct formula
1353 because it takes special care to avoid losing precision. It may also
1354 take advantage of hardware support for this operation. See @code{hypot}
1355 in @ref{Exponents and Logarithms}.
1356 @end deftypefun
1357
1358 @node Normalization Functions
1359 @subsection Normalization Functions
1360 @cindex normalization functions (floating-point)
1361
1362 The functions described in this section are primarily provided as a way
1363 to efficiently perform certain low-level manipulations on floating point
1364 numbers that are represented internally using a binary radix;
1365 see @ref{Floating Point Concepts}. These functions are required to
1366 have equivalent behavior even if the representation does not use a radix
1367 of 2, but of course they are unlikely to be particularly efficient in
1368 those cases.
1369
1370 @pindex math.h
1371 All these functions are declared in @file{math.h}.
1372
1373 @comment math.h
1374 @comment ISO
1375 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1376 @comment math.h
1377 @comment ISO
1378 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1379 @comment math.h
1380 @comment ISO
1381 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1382 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1383 These functions are used to split the number @var{value}
1384 into a normalized fraction and an exponent.
1385
1386 If the argument @var{value} is not zero, the return value is @var{value}
1387 times a power of two, and its magnitude is always in the range 1/2
1388 (inclusive) to 1 (exclusive). The corresponding exponent is stored in
1389 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1390 exponent equals the original number @var{value}.
1391
1392 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1393 stores @code{4} in @code{exponent}.
1394
1395 If @var{value} is zero, then the return value is zero and
1396 zero is stored in @code{*@var{exponent}}.
1397 @end deftypefun
1398
1399 @comment math.h
1400 @comment ISO
1401 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1402 @comment math.h
1403 @comment ISO
1404 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1405 @comment math.h
1406 @comment ISO
1407 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1408 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1409 These functions return the result of multiplying the floating-point
1410 number @var{value} by 2 raised to the power @var{exponent}. (It can
1411 be used to reassemble floating-point numbers that were taken apart
1412 by @code{frexp}.)
1413
1414 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1415 @end deftypefun
1416
1417 The following functions, which come from BSD, provide facilities
1418 equivalent to those of @code{ldexp} and @code{frexp}. See also the
1419 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1420
1421 @comment math.h
1422 @comment BSD
1423 @deftypefun double scalb (double @var{value}, double @var{exponent})
1424 @comment math.h
1425 @comment BSD
1426 @deftypefunx float scalbf (float @var{value}, float @var{exponent})
1427 @comment math.h
1428 @comment BSD
1429 @deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
1430 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1431 The @code{scalb} function is the BSD name for @code{ldexp}.
1432 @end deftypefun
1433
1434 @comment math.h
1435 @comment BSD
1436 @deftypefun double scalbn (double @var{x}, int @var{n})
1437 @comment math.h
1438 @comment BSD
1439 @deftypefunx float scalbnf (float @var{x}, int @var{n})
1440 @comment math.h
1441 @comment BSD
1442 @deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
1443 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1444 @code{scalbn} is identical to @code{scalb}, except that the exponent
1445 @var{n} is an @code{int} instead of a floating-point number.
1446 @end deftypefun
1447
1448 @comment math.h
1449 @comment BSD
1450 @deftypefun double scalbln (double @var{x}, long int @var{n})
1451 @comment math.h
1452 @comment BSD
1453 @deftypefunx float scalblnf (float @var{x}, long int @var{n})
1454 @comment math.h
1455 @comment BSD
1456 @deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
1457 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1458 @code{scalbln} is identical to @code{scalb}, except that the exponent
1459 @var{n} is a @code{long int} instead of a floating-point number.
1460 @end deftypefun
1461
1462 @comment math.h
1463 @comment BSD
1464 @deftypefun double significand (double @var{x})
1465 @comment math.h
1466 @comment BSD
1467 @deftypefunx float significandf (float @var{x})
1468 @comment math.h
1469 @comment BSD
1470 @deftypefunx {long double} significandl (long double @var{x})
1471 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1472 @code{significand} returns the mantissa of @var{x} scaled to the range
1473 @math{[1, 2)}.
1474 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1475
1476 This function exists mainly for use in certain standardized tests
1477 of @w{IEEE 754} conformance.
1478 @end deftypefun
1479
1480 @node Rounding Functions
1481 @subsection Rounding Functions
1482 @cindex converting floats to integers
1483
1484 @pindex math.h
1485 The functions listed here perform operations such as rounding and
1486 truncation of floating-point values. Some of these functions convert
1487 floating point numbers to integer values. They are all declared in
1488 @file{math.h}.
1489
1490 You can also convert floating-point numbers to integers simply by
1491 casting them to @code{int}. This discards the fractional part,
1492 effectively rounding towards zero. However, this only works if the
1493 result can actually be represented as an @code{int}---for very large
1494 numbers, this is impossible. The functions listed here return the
1495 result as a @code{double} instead to get around this problem.
1496
1497 @comment math.h
1498 @comment ISO
1499 @deftypefun double ceil (double @var{x})
1500 @comment math.h
1501 @comment ISO
1502 @deftypefunx float ceilf (float @var{x})
1503 @comment math.h
1504 @comment ISO
1505 @deftypefunx {long double} ceill (long double @var{x})
1506 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1507 These functions round @var{x} upwards to the nearest integer,
1508 returning that value as a @code{double}. Thus, @code{ceil (1.5)}
1509 is @code{2.0}.
1510 @end deftypefun
1511
1512 @comment math.h
1513 @comment ISO
1514 @deftypefun double floor (double @var{x})
1515 @comment math.h
1516 @comment ISO
1517 @deftypefunx float floorf (float @var{x})
1518 @comment math.h
1519 @comment ISO
1520 @deftypefunx {long double} floorl (long double @var{x})
1521 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1522 These functions round @var{x} downwards to the nearest
1523 integer, returning that value as a @code{double}. Thus, @code{floor
1524 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1525 @end deftypefun
1526
1527 @comment math.h
1528 @comment ISO
1529 @deftypefun double trunc (double @var{x})
1530 @comment math.h
1531 @comment ISO
1532 @deftypefunx float truncf (float @var{x})
1533 @comment math.h
1534 @comment ISO
1535 @deftypefunx {long double} truncl (long double @var{x})
1536 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1537 The @code{trunc} functions round @var{x} towards zero to the nearest
1538 integer (returned in floating-point format). Thus, @code{trunc (1.5)}
1539 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1540 @end deftypefun
1541
1542 @comment math.h
1543 @comment ISO
1544 @deftypefun double rint (double @var{x})
1545 @comment math.h
1546 @comment ISO
1547 @deftypefunx float rintf (float @var{x})
1548 @comment math.h
1549 @comment ISO
1550 @deftypefunx {long double} rintl (long double @var{x})
1551 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1552 These functions round @var{x} to an integer value according to the
1553 current rounding mode. @xref{Floating Point Parameters}, for
1554 information about the various rounding modes. The default
1555 rounding mode is to round to the nearest integer; some machines
1556 support other modes, but round-to-nearest is always used unless
1557 you explicitly select another.
1558
1559 If @var{x} was not initially an integer, these functions raise the
1560 inexact exception.
1561 @end deftypefun
1562
1563 @comment math.h
1564 @comment ISO
1565 @deftypefun double nearbyint (double @var{x})
1566 @comment math.h
1567 @comment ISO
1568 @deftypefunx float nearbyintf (float @var{x})
1569 @comment math.h
1570 @comment ISO
1571 @deftypefunx {long double} nearbyintl (long double @var{x})
1572 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1573 These functions return the same value as the @code{rint} functions, but
1574 do not raise the inexact exception if @var{x} is not an integer.
1575 @end deftypefun
1576
1577 @comment math.h
1578 @comment ISO
1579 @deftypefun double round (double @var{x})
1580 @comment math.h
1581 @comment ISO
1582 @deftypefunx float roundf (float @var{x})
1583 @comment math.h
1584 @comment ISO
1585 @deftypefunx {long double} roundl (long double @var{x})
1586 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1587 These functions are similar to @code{rint}, but they round halfway
1588 cases away from zero instead of to the nearest integer (or other
1589 current rounding mode).
1590 @end deftypefun
1591
1592 @comment math.h
1593 @comment ISO
1594 @deftypefun {long int} lrint (double @var{x})
1595 @comment math.h
1596 @comment ISO
1597 @deftypefunx {long int} lrintf (float @var{x})
1598 @comment math.h
1599 @comment ISO
1600 @deftypefunx {long int} lrintl (long double @var{x})
1601 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1602 These functions are just like @code{rint}, but they return a
1603 @code{long int} instead of a floating-point number.
1604 @end deftypefun
1605
1606 @comment math.h
1607 @comment ISO
1608 @deftypefun {long long int} llrint (double @var{x})
1609 @comment math.h
1610 @comment ISO
1611 @deftypefunx {long long int} llrintf (float @var{x})
1612 @comment math.h
1613 @comment ISO
1614 @deftypefunx {long long int} llrintl (long double @var{x})
1615 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1616 These functions are just like @code{rint}, but they return a
1617 @code{long long int} instead of a floating-point number.
1618 @end deftypefun
1619
1620 @comment math.h
1621 @comment ISO
1622 @deftypefun {long int} lround (double @var{x})
1623 @comment math.h
1624 @comment ISO
1625 @deftypefunx {long int} lroundf (float @var{x})
1626 @comment math.h
1627 @comment ISO
1628 @deftypefunx {long int} lroundl (long double @var{x})
1629 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1630 These functions are just like @code{round}, but they return a
1631 @code{long int} instead of a floating-point number.
1632 @end deftypefun
1633
1634 @comment math.h
1635 @comment ISO
1636 @deftypefun {long long int} llround (double @var{x})
1637 @comment math.h
1638 @comment ISO
1639 @deftypefunx {long long int} llroundf (float @var{x})
1640 @comment math.h
1641 @comment ISO
1642 @deftypefunx {long long int} llroundl (long double @var{x})
1643 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1644 These functions are just like @code{round}, but they return a
1645 @code{long long int} instead of a floating-point number.
1646 @end deftypefun
1647
1648
1649 @comment math.h
1650 @comment ISO
1651 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1652 @comment math.h
1653 @comment ISO
1654 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1655 @comment math.h
1656 @comment ISO
1657 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1658 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1659 These functions break the argument @var{value} into an integer part and a
1660 fractional part (between @code{-1} and @code{1}, exclusive). Their sum
1661 equals @var{value}. Each of the parts has the same sign as @var{value},
1662 and the integer part is always rounded toward zero.
1663
1664 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1665 returns the fractional part. For example, @code{modf (2.5, &intpart)}
1666 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1667 @end deftypefun
1668
1669 @node Remainder Functions
1670 @subsection Remainder Functions
1671
1672 The functions in this section compute the remainder on division of two
1673 floating-point numbers. Each is a little different; pick the one that
1674 suits your problem.
1675
1676 @comment math.h
1677 @comment ISO
1678 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1679 @comment math.h
1680 @comment ISO
1681 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1682 @comment math.h
1683 @comment ISO
1684 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1685 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1686 These functions compute the remainder from the division of
1687 @var{numerator} by @var{denominator}. Specifically, the return value is
1688 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1689 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1690 towards zero to an integer. Thus, @w{@code{fmod (6.5, 2.3)}} returns
1691 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1692
1693 The result has the same sign as the @var{numerator} and has magnitude
1694 less than the magnitude of the @var{denominator}.
1695
1696 If @var{denominator} is zero, @code{fmod} signals a domain error.
1697 @end deftypefun
1698
1699 @comment math.h
1700 @comment BSD
1701 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1702 @comment math.h
1703 @comment BSD
1704 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1705 @comment math.h
1706 @comment BSD
1707 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1708 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1709 These functions are like @code{fmod} except that they round the
1710 internal quotient @var{n} to the nearest integer instead of towards zero
1711 to an integer. For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1712 which is @code{6.5} minus @code{6.9}.
1713
1714 The absolute value of the result is less than or equal to half the
1715 absolute value of the @var{denominator}. The difference between
1716 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1717 (@var{numerator}, @var{denominator})} is always either
1718 @var{denominator}, minus @var{denominator}, or zero.
1719
1720 If @var{denominator} is zero, @code{drem} signals a domain error.
1721 @end deftypefun
1722
1723 @comment math.h
1724 @comment BSD
1725 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1726 @comment math.h
1727 @comment BSD
1728 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1729 @comment math.h
1730 @comment BSD
1731 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1732 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1733 This function is another name for @code{drem}.
1734 @end deftypefun
1735
1736 @node FP Bit Twiddling
1737 @subsection Setting and modifying single bits of FP values
1738 @cindex FP arithmetic
1739
1740 There are some operations that are too complicated or expensive to
1741 perform by hand on floating-point numbers. @w{ISO C99} defines
1742 functions to do these operations, which mostly involve changing single
1743 bits.
1744
1745 @comment math.h
1746 @comment ISO
1747 @deftypefun double copysign (double @var{x}, double @var{y})
1748 @comment math.h
1749 @comment ISO
1750 @deftypefunx float copysignf (float @var{x}, float @var{y})
1751 @comment math.h
1752 @comment ISO
1753 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1754 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1755 These functions return @var{x} but with the sign of @var{y}. They work
1756 even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
1757 sign (although not all implementations support it) and this is one of
1758 the few operations that can tell the difference.
1759
1760 @code{copysign} never raises an exception.
1761 @c except signalling NaNs
1762
1763 This function is defined in @w{IEC 559} (and the appendix with
1764 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1765 @end deftypefun
1766
1767 @comment math.h
1768 @comment ISO
1769 @deftypefun int signbit (@emph{float-type} @var{x})
1770 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1771 @code{signbit} is a generic macro which can work on all floating-point
1772 types. It returns a nonzero value if the value of @var{x} has its sign
1773 bit set.
1774
1775 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1776 point allows zero to be signed. The comparison @code{-0.0 < 0.0} is
1777 false, but @code{signbit (-0.0)} will return a nonzero value.
1778 @end deftypefun
1779
1780 @comment math.h
1781 @comment ISO
1782 @deftypefun double nextafter (double @var{x}, double @var{y})
1783 @comment math.h
1784 @comment ISO
1785 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1786 @comment math.h
1787 @comment ISO
1788 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1789 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1790 The @code{nextafter} function returns the next representable neighbor of
1791 @var{x} in the direction towards @var{y}. The size of the step between
1792 @var{x} and the result depends on the type of the result. If
1793 @math{@var{x} = @var{y}} the function simply returns @var{y}. If either
1794 value is @code{NaN}, @code{NaN} is returned. Otherwise
1795 a value corresponding to the value of the least significant bit in the
1796 mantissa is added or subtracted, depending on the direction.
1797 @code{nextafter} will signal overflow or underflow if the result goes
1798 outside of the range of normalized numbers.
1799
1800 This function is defined in @w{IEC 559} (and the appendix with
1801 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1802 @end deftypefun
1803
1804 @comment math.h
1805 @comment ISO
1806 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1807 @comment math.h
1808 @comment ISO
1809 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1810 @comment math.h
1811 @comment ISO
1812 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1813 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1814 These functions are identical to the corresponding versions of
1815 @code{nextafter} except that their second argument is a @code{long
1816 double}.
1817 @end deftypefun
1818
1819 @comment math.h
1820 @comment ISO
1821 @deftypefun double nextup (double @var{x})
1822 @comment math.h
1823 @comment ISO
1824 @deftypefunx float nextupf (float @var{x})
1825 @comment math.h
1826 @comment ISO
1827 @deftypefunx {long double} nextupl (long double @var{x})
1828 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1829 The @code{nextup} function returns the next representable neighbor of @var{x}
1830 in the direction of positive infinity. If @var{x} is the smallest negative
1831 subnormal number in the type of @var{x} the function returns @code{-0}. If
1832 @math{@var{x} = @code{0}} the function returns the smallest positive subnormal
1833 number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1834 If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
1835 @code{nextup} is from TS 18661-1:2014.
1836 @code{nextup} never raises an exception except for signaling NaNs.
1837 @end deftypefun
1838
1839 @comment math.h
1840 @comment ISO
1841 @deftypefun double nextdown (double @var{x})
1842 @comment math.h
1843 @comment ISO
1844 @deftypefunx float nextdownf (float @var{x})
1845 @comment math.h
1846 @comment ISO
1847 @deftypefunx {long double} nextdownl (long double @var{x})
1848 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1849 The @code{nextdown} function returns the next representable neighbor of @var{x}
1850 in the direction of negative infinity. If @var{x} is the smallest positive
1851 subnormal number in the type of @var{x} the function returns @code{+0}. If
1852 @math{@var{x} = @code{0}} the function returns the smallest negative subnormal
1853 number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
1854 If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
1855 @code{nextdown} is from TS 18661-1:2014.
1856 @code{nextdown} never raises an exception except for signaling NaNs.
1857 @end deftypefun
1858
1859 @cindex NaN
1860 @comment math.h
1861 @comment ISO
1862 @deftypefun double nan (const char *@var{tagp})
1863 @comment math.h
1864 @comment ISO
1865 @deftypefunx float nanf (const char *@var{tagp})
1866 @comment math.h
1867 @comment ISO
1868 @deftypefunx {long double} nanl (const char *@var{tagp})
1869 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1870 @c The unsafe-but-ruled-safe locale use comes from strtod.
1871 The @code{nan} function returns a representation of NaN, provided that
1872 NaN is supported by the target platform.
1873 @code{nan ("@var{n-char-sequence}")} is equivalent to
1874 @code{strtod ("NAN(@var{n-char-sequence})")}.
1875
1876 The argument @var{tagp} is used in an unspecified manner. On @w{IEEE
1877 754} systems, there are many representations of NaN, and @var{tagp}
1878 selects one. On other systems it may do nothing.
1879 @end deftypefun
1880
1881 @comment math.h
1882 @comment ISO
1883 @deftypefun int canonicalize (double *@var{cx}, const double *@var{x})
1884 @comment math.h
1885 @comment ISO
1886 @deftypefunx int canonicalizef (float *@var{cx}, const float *@var{x})
1887 @comment math.h
1888 @comment ISO
1889 @deftypefunx int canonicalizel (long double *@var{cx}, const long double *@var{x})
1890 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1891 In some floating-point formats, some values have canonical (preferred)
1892 and noncanonical encodings (for IEEE interchange binary formats, all
1893 encodings are canonical). These functions, defined by TS
1894 18661-1:2014, attempt to produce a canonical version of the
1895 floating-point value pointed to by @var{x}; if that value is a
1896 signaling NaN, they raise the invalid exception and produce a quiet
1897 NaN. If a canonical value is produced, it is stored in the object
1898 pointed to by @var{cx}, and these functions return zero. Otherwise
1899 (if a canonical value could not be produced because the object pointed
1900 to by @var{x} is not a valid representation of any floating-point
1901 value), the object pointed to by @var{cx} is unchanged and a nonzero
1902 value is returned.
1903
1904 Note that some formats have multiple encodings of a value which are
1905 all equally canonical; when such an encoding is used as an input to
1906 this function, any such encoding of the same value (or of the
1907 corresponding quiet NaN, if that value is a signaling NaN) may be
1908 produced as output.
1909 @end deftypefun
1910
1911 @comment math.h
1912 @comment ISO
1913 @deftypefun double getpayload (const double *@var{x})
1914 @comment math.h
1915 @comment ISO
1916 @deftypefunx float getpayloadf (const float *@var{x})
1917 @comment math.h
1918 @comment ISO
1919 @deftypefunx {long double} getpayloadl (const long double *@var{x})
1920 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1921 IEEE 754 defines the @dfn{payload} of a NaN to be an integer value
1922 encoded in the representation of the NaN. Payloads are typically
1923 propagated from NaN inputs to the result of a floating-point
1924 operation. These functions, defined by TS 18661-1:2014, return the
1925 payload of the NaN pointed to by @var{x} (returned as a positive
1926 integer, or positive zero, represented as a floating-point number); if
1927 @var{x} is not a NaN, they return an unspecified value. They raise no
1928 floating-point exceptions even for signaling NaNs.
1929 @end deftypefun
1930
1931 @comment math.h
1932 @comment ISO
1933 @deftypefun int setpayload (double *@var{x}, double @var{payload})
1934 @comment math.h
1935 @comment ISO
1936 @deftypefunx int setpayloadf (float *@var{x}, float @var{payload})
1937 @comment math.h
1938 @comment ISO
1939 @deftypefunx int setpayloadl (long double *@var{x}, long double @var{payload})
1940 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1941 These functions, defined by TS 18661-1:2014, set the object pointed to
1942 by @var{x} to a quiet NaN with payload @var{payload} and a zero sign
1943 bit and return zero. If @var{payload} is not a positive-signed
1944 integer that is a valid payload for a quiet NaN of the given type, the
1945 object pointed to by @var{x} is set to positive zero and a nonzero
1946 value is returned. They raise no floating-point exceptions.
1947 @end deftypefun
1948
1949 @comment math.h
1950 @comment ISO
1951 @deftypefun int setpayloadsig (double *@var{x}, double @var{payload})
1952 @comment math.h
1953 @comment ISO
1954 @deftypefunx int setpayloadsigf (float *@var{x}, float @var{payload})
1955 @comment math.h
1956 @comment ISO
1957 @deftypefunx int setpayloadsigl (long double *@var{x}, long double @var{payload})
1958 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1959 These functions, defined by TS 18661-1:2014, set the object pointed to
1960 by @var{x} to a signaling NaN with payload @var{payload} and a zero
1961 sign bit and return zero. If @var{payload} is not a positive-signed
1962 integer that is a valid payload for a signaling NaN of the given type,
1963 the object pointed to by @var{x} is set to positive zero and a nonzero
1964 value is returned. They raise no floating-point exceptions.
1965 @end deftypefun
1966
1967 @node FP Comparison Functions
1968 @subsection Floating-Point Comparison Functions
1969 @cindex unordered comparison
1970
1971 The standard C comparison operators provoke exceptions when one or other
1972 of the operands is NaN. For example,
1973
1974 @smallexample
1975 int v = a < 1.0;
1976 @end smallexample
1977
1978 @noindent
1979 will raise an exception if @var{a} is NaN. (This does @emph{not}
1980 happen with @code{==} and @code{!=}; those merely return false and true,
1981 respectively, when NaN is examined.) Frequently this exception is
1982 undesirable. @w{ISO C99} therefore defines comparison functions that
1983 do not raise exceptions when NaN is examined. All of the functions are
1984 implemented as macros which allow their arguments to be of any
1985 floating-point type. The macros are guaranteed to evaluate their
1986 arguments only once. TS 18661-1:2014 adds such a macro for an
1987 equality comparison that @emph{does} raise an exception for a NaN
1988 argument; it also adds functions that provide a total ordering on all
1989 floating-point values, including NaNs, without raising any exceptions
1990 even for signaling NaNs.
1991
1992 @comment math.h
1993 @comment ISO
1994 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1995 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1996 This macro determines whether the argument @var{x} is greater than
1997 @var{y}. It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1998 exception is raised if @var{x} or @var{y} are NaN.
1999 @end deftypefn
2000
2001 @comment math.h
2002 @comment ISO
2003 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2004 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2005 This macro determines whether the argument @var{x} is greater than or
2006 equal to @var{y}. It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
2007 exception is raised if @var{x} or @var{y} are NaN.
2008 @end deftypefn
2009
2010 @comment math.h
2011 @comment ISO
2012 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2013 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2014 This macro determines whether the argument @var{x} is less than @var{y}.
2015 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
2016 raised if @var{x} or @var{y} are NaN.
2017 @end deftypefn
2018
2019 @comment math.h
2020 @comment ISO
2021 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2022 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2023 This macro determines whether the argument @var{x} is less than or equal
2024 to @var{y}. It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
2025 exception is raised if @var{x} or @var{y} are NaN.
2026 @end deftypefn
2027
2028 @comment math.h
2029 @comment ISO
2030 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2031 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2032 This macro determines whether the argument @var{x} is less or greater
2033 than @var{y}. It is equivalent to @code{(@var{x}) < (@var{y}) ||
2034 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
2035 once), but no exception is raised if @var{x} or @var{y} are NaN.
2036
2037 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
2038 expression is true if @var{x} or @var{y} are NaN.
2039 @end deftypefn
2040
2041 @comment math.h
2042 @comment ISO
2043 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2044 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2045 This macro determines whether its arguments are unordered. In other
2046 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
2047 @end deftypefn
2048
2049 @comment math.h
2050 @comment ISO
2051 @deftypefn Macro int iseqsig (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2052 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2053 This macro determines whether its arguments are equal. It is
2054 equivalent to @code{(@var{x}) == (@var{y})}, but it raises the invalid
2055 exception and sets @code{errno} to @code{EDOM} is either argument is a
2056 NaN.
2057 @end deftypefn
2058
2059 @comment math.h
2060 @comment ISO
2061 @deftypefun int totalorder (double @var{x}, double @var{y})
2062 @comment ISO
2063 @deftypefunx int totalorderf (float @var{x}, float @var{y})
2064 @comment ISO
2065 @deftypefunx int totalorderl (long double @var{x}, long double @var{y})
2066 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2067 These functions determine whether the total order relationship,
2068 defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning
2069 nonzero if it is true and zero if it is false. No exceptions are
2070 raised even for signaling NaNs. The relationship is true if they are
2071 the same floating-point value (including sign for zero and NaNs, and
2072 payload for NaNs), or if @var{x} comes before @var{y} in the following
2073 order: negative quiet NaNs, in order of decreasing payload; negative
2074 signaling NaNs, in order of decreasing payload; negative infinity;
2075 finite numbers, in ascending order, with negative zero before positive
2076 zero; positive infinity; positive signaling NaNs, in order of
2077 increasing payload; positive quiet NaNs, in order of increasing
2078 payload.
2079 @end deftypefun
2080
2081 @comment math.h
2082 @comment ISO
2083 @deftypefun int totalordermag (double @var{x}, double @var{y})
2084 @comment ISO
2085 @deftypefunx int totalordermagf (float @var{x}, float @var{y})
2086 @comment ISO
2087 @deftypefunx int totalordermagl (long double @var{x}, long double @var{y})
2088 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2089 These functions determine whether the total order relationship,
2090 defined in IEEE 754-2008, is true for the absolute values of @var{x}
2091 and @var{y}, returning nonzero if it is true and zero if it is false.
2092 No exceptions are raised even for signaling NaNs.
2093 @end deftypefun
2094
2095 Not all machines provide hardware support for these operations. On
2096 machines that don't, the macros can be very slow. Therefore, you should
2097 not use these functions when NaN is not a concern.
2098
2099 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
2100 They are unnecessary, because the @code{==} and @code{!=} operators do
2101 @emph{not} throw an exception if one or both of the operands are NaN.
2102
2103 @node Misc FP Arithmetic
2104 @subsection Miscellaneous FP arithmetic functions
2105 @cindex minimum
2106 @cindex maximum
2107 @cindex positive difference
2108 @cindex multiply-add
2109
2110 The functions in this section perform miscellaneous but common
2111 operations that are awkward to express with C operators. On some
2112 processors these functions can use special machine instructions to
2113 perform these operations faster than the equivalent C code.
2114
2115 @comment math.h
2116 @comment ISO
2117 @deftypefun double fmin (double @var{x}, double @var{y})
2118 @comment math.h
2119 @comment ISO
2120 @deftypefunx float fminf (float @var{x}, float @var{y})
2121 @comment math.h
2122 @comment ISO
2123 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
2124 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2125 The @code{fmin} function returns the lesser of the two values @var{x}
2126 and @var{y}. It is similar to the expression
2127 @smallexample
2128 ((x) < (y) ? (x) : (y))
2129 @end smallexample
2130 except that @var{x} and @var{y} are only evaluated once.
2131
2132 If an argument is NaN, the other argument is returned. If both arguments
2133 are NaN, NaN is returned.
2134 @end deftypefun
2135
2136 @comment math.h
2137 @comment ISO
2138 @deftypefun double fmax (double @var{x}, double @var{y})
2139 @comment math.h
2140 @comment ISO
2141 @deftypefunx float fmaxf (float @var{x}, float @var{y})
2142 @comment math.h
2143 @comment ISO
2144 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
2145 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2146 The @code{fmax} function returns the greater of the two values @var{x}
2147 and @var{y}.
2148
2149 If an argument is NaN, the other argument is returned. If both arguments
2150 are NaN, NaN is returned.
2151 @end deftypefun
2152
2153 @comment math.h
2154 @comment ISO
2155 @deftypefun double fdim (double @var{x}, double @var{y})
2156 @comment math.h
2157 @comment ISO
2158 @deftypefunx float fdimf (float @var{x}, float @var{y})
2159 @comment math.h
2160 @comment ISO
2161 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
2162 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2163 The @code{fdim} function returns the positive difference between
2164 @var{x} and @var{y}. The positive difference is @math{@var{x} -
2165 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
2166
2167 If @var{x}, @var{y}, or both are NaN, NaN is returned.
2168 @end deftypefun
2169
2170 @comment math.h
2171 @comment ISO
2172 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
2173 @comment math.h
2174 @comment ISO
2175 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
2176 @comment math.h
2177 @comment ISO
2178 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
2179 @cindex butterfly
2180 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2181 The @code{fma} function performs floating-point multiply-add. This is
2182 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
2183 intermediate result is not rounded to the destination type. This can
2184 sometimes improve the precision of a calculation.
2185
2186 This function was introduced because some processors have a special
2187 instruction to perform multiply-add. The C compiler cannot use it
2188 directly, because the expression @samp{x*y + z} is defined to round the
2189 intermediate result. @code{fma} lets you choose when you want to round
2190 only once.
2191
2192 @vindex FP_FAST_FMA
2193 On processors which do not implement multiply-add in hardware,
2194 @code{fma} can be very slow since it must avoid intermediate rounding.
2195 @file{math.h} defines the symbols @code{FP_FAST_FMA},
2196 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
2197 version of @code{fma} is no slower than the expression @samp{x*y + z}.
2198 In @theglibc{}, this always means the operation is implemented in
2199 hardware.
2200 @end deftypefun
2201
2202 @node Complex Numbers
2203 @section Complex Numbers
2204 @pindex complex.h
2205 @cindex complex numbers
2206
2207 @w{ISO C99} introduces support for complex numbers in C. This is done
2208 with a new type qualifier, @code{complex}. It is a keyword if and only
2209 if @file{complex.h} has been included. There are three complex types,
2210 corresponding to the three real types: @code{float complex},
2211 @code{double complex}, and @code{long double complex}.
2212
2213 To construct complex numbers you need a way to indicate the imaginary
2214 part of a number. There is no standard notation for an imaginary
2215 floating point constant. Instead, @file{complex.h} defines two macros
2216 that can be used to create complex numbers.
2217
2218 @deftypevr Macro {const float complex} _Complex_I
2219 This macro is a representation of the complex number ``@math{0+1i}''.
2220 Multiplying a real floating-point value by @code{_Complex_I} gives a
2221 complex number whose value is purely imaginary. You can use this to
2222 construct complex constants:
2223
2224 @smallexample
2225 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
2226 @end smallexample
2227
2228 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
2229 the type of that value is @code{complex}.
2230 @end deftypevr
2231
2232 @c Put this back in when gcc supports _Imaginary_I. It's too confusing.
2233 @ignore
2234 @noindent
2235 Without an optimizing compiler this is more expensive than the use of
2236 @code{_Imaginary_I} but with is better than nothing. You can avoid all
2237 the hassles if you use the @code{I} macro below if the name is not
2238 problem.
2239
2240 @deftypevr Macro {const float imaginary} _Imaginary_I
2241 This macro is a representation of the value ``@math{1i}''. I.e., it is
2242 the value for which
2243
2244 @smallexample
2245 _Imaginary_I * _Imaginary_I = -1
2246 @end smallexample
2247
2248 @noindent
2249 The result is not of type @code{float imaginary} but instead @code{float}.
2250 One can use it to easily construct complex number like in
2251
2252 @smallexample
2253 3.0 - _Imaginary_I * 4.0
2254 @end smallexample
2255
2256 @noindent
2257 which results in the complex number with a real part of 3.0 and a
2258 imaginary part -4.0.
2259 @end deftypevr
2260 @end ignore
2261
2262 @noindent
2263 @code{_Complex_I} is a bit of a mouthful. @file{complex.h} also defines
2264 a shorter name for the same constant.
2265
2266 @deftypevr Macro {const float complex} I
2267 This macro has exactly the same value as @code{_Complex_I}. Most of the
2268 time it is preferable. However, it causes problems if you want to use
2269 the identifier @code{I} for something else. You can safely write
2270
2271 @smallexample
2272 #include <complex.h>
2273 #undef I
2274 @end smallexample
2275
2276 @noindent
2277 if you need @code{I} for your own purposes. (In that case we recommend
2278 you also define some other short name for @code{_Complex_I}, such as
2279 @code{J}.)
2280
2281 @ignore
2282 If the implementation does not support the @code{imaginary} types
2283 @code{I} is defined as @code{_Complex_I} which is the second best
2284 solution. It still can be used in the same way but requires a most
2285 clever compiler to get the same results.
2286 @end ignore
2287 @end deftypevr
2288
2289 @node Operations on Complex
2290 @section Projections, Conjugates, and Decomposing of Complex Numbers
2291 @cindex project complex numbers
2292 @cindex conjugate complex numbers
2293 @cindex decompose complex numbers
2294 @pindex complex.h
2295
2296 @w{ISO C99} also defines functions that perform basic operations on
2297 complex numbers, such as decomposition and conjugation. The prototypes
2298 for all these functions are in @file{complex.h}. All functions are
2299 available in three variants, one for each of the three complex types.
2300
2301 @comment complex.h
2302 @comment ISO
2303 @deftypefun double creal (complex double @var{z})
2304 @comment complex.h
2305 @comment ISO
2306 @deftypefunx float crealf (complex float @var{z})
2307 @comment complex.h
2308 @comment ISO
2309 @deftypefunx {long double} creall (complex long double @var{z})
2310 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2311 These functions return the real part of the complex number @var{z}.
2312 @end deftypefun
2313
2314 @comment complex.h
2315 @comment ISO
2316 @deftypefun double cimag (complex double @var{z})
2317 @comment complex.h
2318 @comment ISO
2319 @deftypefunx float cimagf (complex float @var{z})
2320 @comment complex.h
2321 @comment ISO
2322 @deftypefunx {long double} cimagl (complex long double @var{z})
2323 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2324 These functions return the imaginary part of the complex number @var{z}.
2325 @end deftypefun
2326
2327 @comment complex.h
2328 @comment ISO
2329 @deftypefun {complex double} conj (complex double @var{z})
2330 @comment complex.h
2331 @comment ISO
2332 @deftypefunx {complex float} conjf (complex float @var{z})
2333 @comment complex.h
2334 @comment ISO
2335 @deftypefunx {complex long double} conjl (complex long double @var{z})
2336 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2337 These functions return the conjugate value of the complex number
2338 @var{z}. The conjugate of a complex number has the same real part and a
2339 negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
2340 @end deftypefun
2341
2342 @comment complex.h
2343 @comment ISO
2344 @deftypefun double carg (complex double @var{z})
2345 @comment complex.h
2346 @comment ISO
2347 @deftypefunx float cargf (complex float @var{z})
2348 @comment complex.h
2349 @comment ISO
2350 @deftypefunx {long double} cargl (complex long double @var{z})
2351 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2352 These functions return the argument of the complex number @var{z}.
2353 The argument of a complex number is the angle in the complex plane
2354 between the positive real axis and a line passing through zero and the
2355 number. This angle is measured in the usual fashion and ranges from
2356 @math{-@pi{}} to @math{@pi{}}.
2357
2358 @code{carg} has a branch cut along the negative real axis.
2359 @end deftypefun
2360
2361 @comment complex.h
2362 @comment ISO
2363 @deftypefun {complex double} cproj (complex double @var{z})
2364 @comment complex.h
2365 @comment ISO
2366 @deftypefunx {complex float} cprojf (complex float @var{z})
2367 @comment complex.h
2368 @comment ISO
2369 @deftypefunx {complex long double} cprojl (complex long double @var{z})
2370 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2371 These functions return the projection of the complex value @var{z} onto
2372 the Riemann sphere. Values with an infinite imaginary part are projected
2373 to positive infinity on the real axis, even if the real part is NaN. If
2374 the real part is infinite, the result is equivalent to
2375
2376 @smallexample
2377 INFINITY + I * copysign (0.0, cimag (z))
2378 @end smallexample
2379 @end deftypefun
2380
2381 @node Parsing of Numbers
2382 @section Parsing of Numbers
2383 @cindex parsing numbers (in formatted input)
2384 @cindex converting strings to numbers
2385 @cindex number syntax, parsing
2386 @cindex syntax, for reading numbers
2387
2388 This section describes functions for ``reading'' integer and
2389 floating-point numbers from a string. It may be more convenient in some
2390 cases to use @code{sscanf} or one of the related functions; see
2391 @ref{Formatted Input}. But often you can make a program more robust by
2392 finding the tokens in the string by hand, then converting the numbers
2393 one by one.
2394
2395 @menu
2396 * Parsing of Integers:: Functions for conversion of integer values.
2397 * Parsing of Floats:: Functions for conversion of floating-point
2398 values.
2399 @end menu
2400
2401 @node Parsing of Integers
2402 @subsection Parsing of Integers
2403
2404 @pindex stdlib.h
2405 @pindex wchar.h
2406 The @samp{str} functions are declared in @file{stdlib.h} and those
2407 beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2408 wonder about the use of @code{restrict} in the prototypes of the
2409 functions in this section. It is seemingly useless but the @w{ISO C}
2410 standard uses it (for the functions defined there) so we have to do it
2411 as well.
2412
2413 @comment stdlib.h
2414 @comment ISO
2415 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2416 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2417 @c strtol uses the thread-local pointer to the locale in effect, and
2418 @c strtol_l loads the LC_NUMERIC locale data from it early on and once,
2419 @c but if the locale is the global locale, and another thread calls
2420 @c setlocale in a way that modifies the pointer to the LC_CTYPE locale
2421 @c category, the behavior of e.g. IS*, TOUPPER will vary throughout the
2422 @c execution of the function, because they re-read the locale data from
2423 @c the given locale pointer. We solved this by documenting setlocale as
2424 @c MT-Unsafe.
2425 The @code{strtol} (``string-to-long'') function converts the initial
2426 part of @var{string} to a signed integer, which is returned as a value
2427 of type @code{long int}.
2428
2429 This function attempts to decompose @var{string} as follows:
2430
2431 @itemize @bullet
2432 @item
2433 A (possibly empty) sequence of whitespace characters. Which characters
2434 are whitespace is determined by the @code{isspace} function
2435 (@pxref{Classification of Characters}). These are discarded.
2436
2437 @item
2438 An optional plus or minus sign (@samp{+} or @samp{-}).
2439
2440 @item
2441 A nonempty sequence of digits in the radix specified by @var{base}.
2442
2443 If @var{base} is zero, decimal radix is assumed unless the series of
2444 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2445 @samp{0X} (specifying hexadecimal radix); in other words, the same
2446 syntax used for integer constants in C.
2447
2448 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2449 If @var{base} is @code{16}, the digits may optionally be preceded by
2450 @samp{0x} or @samp{0X}. If base has no legal value the value returned
2451 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2452
2453 @item
2454 Any remaining characters in the string. If @var{tailptr} is not a null
2455 pointer, @code{strtol} stores a pointer to this tail in
2456 @code{*@var{tailptr}}.
2457 @end itemize
2458
2459 If the string is empty, contains only whitespace, or does not contain an
2460 initial substring that has the expected syntax for an integer in the
2461 specified @var{base}, no conversion is performed. In this case,
2462 @code{strtol} returns a value of zero and the value stored in
2463 @code{*@var{tailptr}} is the value of @var{string}.
2464
2465 In a locale other than the standard @code{"C"} locale, this function
2466 may recognize additional implementation-dependent syntax.
2467
2468 If the string has valid syntax for an integer but the value is not
2469 representable because of overflow, @code{strtol} returns either
2470 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2471 appropriate for the sign of the value. It also sets @code{errno}
2472 to @code{ERANGE} to indicate there was overflow.
2473
2474 You should not check for errors by examining the return value of
2475 @code{strtol}, because the string might be a valid representation of
2476 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}. Instead, check whether
2477 @var{tailptr} points to what you expect after the number
2478 (e.g. @code{'\0'} if the string should end after the number). You also
2479 need to clear @var{errno} before the call and check it afterward, in
2480 case there was overflow.
2481
2482 There is an example at the end of this section.
2483 @end deftypefun
2484
2485 @comment wchar.h
2486 @comment ISO
2487 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2488 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2489 The @code{wcstol} function is equivalent to the @code{strtol} function
2490 in nearly all aspects but handles wide character strings.
2491
2492 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2493 @end deftypefun
2494
2495 @comment stdlib.h
2496 @comment ISO
2497 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2498 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2499 The @code{strtoul} (``string-to-unsigned-long'') function is like
2500 @code{strtol} except it converts to an @code{unsigned long int} value.
2501 The syntax is the same as described above for @code{strtol}. The value
2502 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2503
2504 If @var{string} depicts a negative number, @code{strtoul} acts the same
2505 as @var{strtol} but casts the result to an unsigned integer. That means
2506 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2507 and an input more negative than @code{LONG_MIN} returns
2508 (@code{ULONG_MAX} + 1) / 2.
2509
2510 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2511 range, or @code{ERANGE} on overflow.
2512 @end deftypefun
2513
2514 @comment wchar.h
2515 @comment ISO
2516 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2517 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2518 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2519 in nearly all aspects but handles wide character strings.
2520
2521 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2522 @end deftypefun
2523
2524 @comment stdlib.h
2525 @comment ISO
2526 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2527 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2528 The @code{strtoll} function is like @code{strtol} except that it returns
2529 a @code{long long int} value, and accepts numbers with a correspondingly
2530 larger range.
2531
2532 If the string has valid syntax for an integer but the value is not
2533 representable because of overflow, @code{strtoll} returns either
2534 @code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2535 appropriate for the sign of the value. It also sets @code{errno} to
2536 @code{ERANGE} to indicate there was overflow.
2537
2538 The @code{strtoll} function was introduced in @w{ISO C99}.
2539 @end deftypefun
2540
2541 @comment wchar.h
2542 @comment ISO
2543 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2544 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2545 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2546 in nearly all aspects but handles wide character strings.
2547
2548 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2549 @end deftypefun
2550
2551 @comment stdlib.h
2552 @comment BSD
2553 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2554 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2555 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2556 @end deftypefun
2557
2558 @comment wchar.h
2559 @comment GNU
2560 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2561 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2562 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2563 in nearly all aspects but handles wide character strings.
2564
2565 The @code{wcstoq} function is a GNU extension.
2566 @end deftypefun
2567
2568 @comment stdlib.h
2569 @comment ISO
2570 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2571 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2572 The @code{strtoull} function is related to @code{strtoll} the same way
2573 @code{strtoul} is related to @code{strtol}.
2574
2575 The @code{strtoull} function was introduced in @w{ISO C99}.
2576 @end deftypefun
2577
2578 @comment wchar.h
2579 @comment ISO
2580 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2581 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2582 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2583 in nearly all aspects but handles wide character strings.
2584
2585 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2586 @end deftypefun
2587
2588 @comment stdlib.h
2589 @comment BSD
2590 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2591 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2592 @code{strtouq} is the BSD name for @code{strtoull}.
2593 @end deftypefun
2594
2595 @comment wchar.h
2596 @comment GNU
2597 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2598 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2599 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2600 in nearly all aspects but handles wide character strings.
2601
2602 The @code{wcstouq} function is a GNU extension.
2603 @end deftypefun
2604
2605 @comment inttypes.h
2606 @comment ISO
2607 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2608 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2609 The @code{strtoimax} function is like @code{strtol} except that it returns
2610 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2611
2612 If the string has valid syntax for an integer but the value is not
2613 representable because of overflow, @code{strtoimax} returns either
2614 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2615 appropriate for the sign of the value. It also sets @code{errno} to
2616 @code{ERANGE} to indicate there was overflow.
2617
2618 See @ref{Integers} for a description of the @code{intmax_t} type. The
2619 @code{strtoimax} function was introduced in @w{ISO C99}.
2620 @end deftypefun
2621
2622 @comment wchar.h
2623 @comment ISO
2624 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2625 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2626 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2627 in nearly all aspects but handles wide character strings.
2628
2629 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2630 @end deftypefun
2631
2632 @comment inttypes.h
2633 @comment ISO
2634 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2635 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2636 The @code{strtoumax} function is related to @code{strtoimax}
2637 the same way that @code{strtoul} is related to @code{strtol}.
2638
2639 See @ref{Integers} for a description of the @code{intmax_t} type. The
2640 @code{strtoumax} function was introduced in @w{ISO C99}.
2641 @end deftypefun
2642
2643 @comment wchar.h
2644 @comment ISO
2645 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2646 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2647 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2648 in nearly all aspects but handles wide character strings.
2649
2650 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2651 @end deftypefun
2652
2653 @comment stdlib.h
2654 @comment ISO
2655 @deftypefun {long int} atol (const char *@var{string})
2656 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2657 This function is similar to the @code{strtol} function with a @var{base}
2658 argument of @code{10}, except that it need not detect overflow errors.
2659 The @code{atol} function is provided mostly for compatibility with
2660 existing code; using @code{strtol} is more robust.
2661 @end deftypefun
2662
2663 @comment stdlib.h
2664 @comment ISO
2665 @deftypefun int atoi (const char *@var{string})
2666 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2667 This function is like @code{atol}, except that it returns an @code{int}.
2668 The @code{atoi} function is also considered obsolete; use @code{strtol}
2669 instead.
2670 @end deftypefun
2671
2672 @comment stdlib.h
2673 @comment ISO
2674 @deftypefun {long long int} atoll (const char *@var{string})
2675 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2676 This function is similar to @code{atol}, except it returns a @code{long
2677 long int}.
2678
2679 The @code{atoll} function was introduced in @w{ISO C99}. It too is
2680 obsolete (despite having just been added); use @code{strtoll} instead.
2681 @end deftypefun
2682
2683 All the functions mentioned in this section so far do not handle
2684 alternative representations of characters as described in the locale
2685 data. Some locales specify thousands separator and the way they have to
2686 be used which can help to make large numbers more readable. To read
2687 such numbers one has to use the @code{scanf} functions with the @samp{'}
2688 flag.
2689
2690 Here is a function which parses a string as a sequence of integers and
2691 returns the sum of them:
2692
2693 @smallexample
2694 int
2695 sum_ints_from_string (char *string)
2696 @{
2697 int sum = 0;
2698
2699 while (1) @{
2700 char *tail;
2701 int next;
2702
2703 /* @r{Skip whitespace by hand, to detect the end.} */
2704 while (isspace (*string)) string++;
2705 if (*string == 0)
2706 break;
2707
2708 /* @r{There is more nonwhitespace,} */
2709 /* @r{so it ought to be another number.} */
2710 errno = 0;
2711 /* @r{Parse it.} */
2712 next = strtol (string, &tail, 0);
2713 /* @r{Add it in, if not overflow.} */
2714 if (errno)
2715 printf ("Overflow\n");
2716 else
2717 sum += next;
2718 /* @r{Advance past it.} */
2719 string = tail;
2720 @}
2721
2722 return sum;
2723 @}
2724 @end smallexample
2725
2726 @node Parsing of Floats
2727 @subsection Parsing of Floats
2728
2729 @pindex stdlib.h
2730 The @samp{str} functions are declared in @file{stdlib.h} and those
2731 beginning with @samp{wcs} are declared in @file{wchar.h}. One might
2732 wonder about the use of @code{restrict} in the prototypes of the
2733 functions in this section. It is seemingly useless but the @w{ISO C}
2734 standard uses it (for the functions defined there) so we have to do it
2735 as well.
2736
2737 @comment stdlib.h
2738 @comment ISO
2739 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2740 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2741 @c Besides the unsafe-but-ruled-safe locale uses, this uses a lot of
2742 @c mpn, but it's all safe.
2743 @c
2744 @c round_and_return
2745 @c get_rounding_mode ok
2746 @c mpn_add_1 ok
2747 @c mpn_rshift ok
2748 @c MPN_ZERO ok
2749 @c MPN2FLOAT -> mpn_construct_(float|double|long_double) ok
2750 @c str_to_mpn
2751 @c mpn_mul_1 -> umul_ppmm ok
2752 @c mpn_add_1 ok
2753 @c mpn_lshift_1 -> mpn_lshift ok
2754 @c STRTOF_INTERNAL
2755 @c MPN_VAR ok
2756 @c SET_MANTISSA ok
2757 @c STRNCASECMP ok, wide and narrow
2758 @c round_and_return ok
2759 @c mpn_mul ok
2760 @c mpn_addmul_1 ok
2761 @c ... mpn_sub
2762 @c mpn_lshift ok
2763 @c udiv_qrnnd ok
2764 @c count_leading_zeros ok
2765 @c add_ssaaaa ok
2766 @c sub_ddmmss ok
2767 @c umul_ppmm ok
2768 @c mpn_submul_1 ok
2769 The @code{strtod} (``string-to-double'') function converts the initial
2770 part of @var{string} to a floating-point number, which is returned as a
2771 value of type @code{double}.
2772
2773 This function attempts to decompose @var{string} as follows:
2774
2775 @itemize @bullet
2776 @item
2777 A (possibly empty) sequence of whitespace characters. Which characters
2778 are whitespace is determined by the @code{isspace} function
2779 (@pxref{Classification of Characters}). These are discarded.
2780
2781 @item
2782 An optional plus or minus sign (@samp{+} or @samp{-}).
2783
2784 @item A floating point number in decimal or hexadecimal format. The
2785 decimal format is:
2786 @itemize @minus
2787
2788 @item
2789 A nonempty sequence of digits optionally containing a decimal-point
2790 character---normally @samp{.}, but it depends on the locale
2791 (@pxref{General Numeric}).
2792
2793 @item
2794 An optional exponent part, consisting of a character @samp{e} or
2795 @samp{E}, an optional sign, and a sequence of digits.
2796
2797 @end itemize
2798
2799 The hexadecimal format is as follows:
2800 @itemize @minus
2801
2802 @item
2803 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2804 optionally containing a decimal-point character---normally @samp{.}, but
2805 it depends on the locale (@pxref{General Numeric}).
2806
2807 @item
2808 An optional binary-exponent part, consisting of a character @samp{p} or
2809 @samp{P}, an optional sign, and a sequence of digits.
2810
2811 @end itemize
2812
2813 @item
2814 Any remaining characters in the string. If @var{tailptr} is not a null
2815 pointer, a pointer to this tail of the string is stored in
2816 @code{*@var{tailptr}}.
2817 @end itemize
2818
2819 If the string is empty, contains only whitespace, or does not contain an
2820 initial substring that has the expected syntax for a floating-point
2821 number, no conversion is performed. In this case, @code{strtod} returns
2822 a value of zero and the value returned in @code{*@var{tailptr}} is the
2823 value of @var{string}.
2824
2825 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2826 this function may recognize additional locale-dependent syntax.
2827
2828 If the string has valid syntax for a floating-point number but the value
2829 is outside the range of a @code{double}, @code{strtod} will signal
2830 overflow or underflow as described in @ref{Math Error Reporting}.
2831
2832 @code{strtod} recognizes four special input strings. The strings
2833 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2834 or to the largest representable value if the floating-point format
2835 doesn't support infinities. You can prepend a @code{"+"} or @code{"-"}
2836 to specify the sign. Case is ignored when scanning these strings.
2837
2838 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2839 to NaN. Again, case is ignored. If @var{chars@dots{}} are provided, they
2840 are used in some unspecified fashion to select a particular
2841 representation of NaN (there can be several).
2842
2843 Since zero is a valid result as well as the value returned on error, you
2844 should check for errors in the same way as for @code{strtol}, by
2845 examining @var{errno} and @var{tailptr}.
2846 @end deftypefun
2847
2848 @comment stdlib.h
2849 @comment ISO
2850 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2851 @comment stdlib.h
2852 @comment ISO
2853 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2854 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2855 These functions are analogous to @code{strtod}, but return @code{float}
2856 and @code{long double} values respectively. They report errors in the
2857 same way as @code{strtod}. @code{strtof} can be substantially faster
2858 than @code{strtod}, but has less precision; conversely, @code{strtold}
2859 can be much slower but has more precision (on systems where @code{long
2860 double} is a separate type).
2861
2862 These functions have been GNU extensions and are new to @w{ISO C99}.
2863 @end deftypefun
2864
2865 @comment wchar.h
2866 @comment ISO
2867 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2868 @comment stdlib.h
2869 @comment ISO
2870 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2871 @comment stdlib.h
2872 @comment ISO
2873 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2874 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2875 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2876 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2877 @code{strtold} functions but it handles wide character string.
2878
2879 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2880 C90}. The @code{wcstof} and @code{wcstold} functions were introduced in
2881 @w{ISO C99}.
2882 @end deftypefun
2883
2884 @comment stdlib.h
2885 @comment ISO
2886 @deftypefun double atof (const char *@var{string})
2887 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2888 This function is similar to the @code{strtod} function, except that it
2889 need not detect overflow and underflow errors. The @code{atof} function
2890 is provided mostly for compatibility with existing code; using
2891 @code{strtod} is more robust.
2892 @end deftypefun
2893
2894 @Theglibc{} also provides @samp{_l} versions of these functions,
2895 which take an additional argument, the locale to use in conversion.
2896
2897 See also @ref{Parsing of Integers}.
2898
2899 @node Printing of Floats
2900 @section Printing of Floats
2901
2902 @pindex stdlib.h
2903 The @samp{strfrom} functions are declared in @file{stdlib.h}.
2904
2905 @comment stdlib.h
2906 @comment ISO/IEC TS 18661-1
2907 @deftypefun int strfromd (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, double @var{value})
2908 @deftypefunx int strfromf (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, float @var{value})
2909 @deftypefunx int strfroml (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, long double @var{value})
2910 @safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2911 @comment these functions depend on __printf_fp and __printf_fphex, which are
2912 @comment AS-unsafe (ascuheap) and AC-unsafe (acsmem).
2913 The functions @code{strfromd} (``string-from-double''), @code{strfromf}
2914 (``string-from-float''), and @code{strfroml} (``string-from-long-double'')
2915 convert the floating-point number @var{value} to a string of characters and
2916 stores them into the area pointed to by @var{string}. The conversion
2917 writes at most @var{size} characters and respects the format specified by
2918 @var{format}.
2919
2920 The format string must start with the character @samp{%}. An optional
2921 precision follows, which starts with a period, @samp{.}, and may be
2922 followed by a decimal integer, representing the precision. If a decimal
2923 integer is not specified after the period, the precision is taken to be
2924 zero. The character @samp{*} is not allowed. Finally, the format string
2925 ends with one of the following conversion specifiers: @samp{a}, @samp{A},
2926 @samp{e}, @samp{E}, @samp{f}, @samp{F}, @samp{g} or @samp{G} (@pxref{Table
2927 of Output Conversions}). Invalid format strings result in undefined
2928 behavior.
2929
2930 These functions return the number of characters that would have been
2931 written to @var{string} had @var{size} been sufficiently large, not
2932 counting the terminating null character. Thus, the null-terminated output
2933 has been completely written if and only if the returned value is less than
2934 @var{size}.
2935
2936 These functions were introduced by ISO/IEC TS 18661-1.
2937 @end deftypefun
2938
2939 @node System V Number Conversion
2940 @section Old-fashioned System V number-to-string functions
2941
2942 The old @w{System V} C library provided three functions to convert
2943 numbers to strings, with unusual and hard-to-use semantics. @Theglibc{}
2944 also provides these functions and some natural extensions.
2945
2946 These functions are only available in @theglibc{} and on systems descended
2947 from AT&T Unix. Therefore, unless these functions do precisely what you
2948 need, it is better to use @code{sprintf}, which is standard.
2949
2950 All these functions are defined in @file{stdlib.h}.
2951
2952 @comment stdlib.h
2953 @comment SVID, Unix98
2954 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2955 @safety{@prelim{}@mtunsafe{@mtasurace{:ecvt}}@asunsafe{}@acsafe{}}
2956 The function @code{ecvt} converts the floating-point number @var{value}
2957 to a string with at most @var{ndigit} decimal digits. The
2958 returned string contains no decimal point or sign. The first digit of
2959 the string is non-zero (unless @var{value} is actually zero) and the
2960 last digit is rounded to nearest. @code{*@var{decpt}} is set to the
2961 index in the string of the first digit after the decimal point.
2962 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2963 zero otherwise.
2964
2965 If @var{ndigit} decimal digits would exceed the precision of a
2966 @code{double} it is reduced to a system-specific value.
2967
2968 The returned string is statically allocated and overwritten by each call
2969 to @code{ecvt}.
2970
2971 If @var{value} is zero, it is implementation defined whether
2972 @code{*@var{decpt}} is @code{0} or @code{1}.
2973
2974 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2975 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2976 @end deftypefun
2977
2978 @comment stdlib.h
2979 @comment SVID, Unix98
2980 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2981 @safety{@prelim{}@mtunsafe{@mtasurace{:fcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2982 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2983 the number of digits after the decimal point. If @var{ndigit} is less
2984 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2985 left of the decimal point. For example, if @var{ndigit} is @code{-1},
2986 @var{value} will be rounded to the nearest 10. If @var{ndigit} is
2987 negative and larger than the number of digits to the left of the decimal
2988 point in @var{value}, @var{value} will be rounded to one significant digit.
2989
2990 If @var{ndigit} decimal digits would exceed the precision of a
2991 @code{double} it is reduced to a system-specific value.
2992
2993 The returned string is statically allocated and overwritten by each call
2994 to @code{fcvt}.
2995 @end deftypefun
2996
2997 @comment stdlib.h
2998 @comment SVID, Unix98
2999 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
3000 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3001 @c gcvt calls sprintf, that ultimately calls vfprintf, which malloc()s
3002 @c args_value if it's too large, but gcvt never exercises this path.
3003 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
3004 ndigit, value}. It is provided only for compatibility's sake. It
3005 returns @var{buf}.
3006
3007 If @var{ndigit} decimal digits would exceed the precision of a
3008 @code{double} it is reduced to a system-specific value.
3009 @end deftypefun
3010
3011 As extensions, @theglibc{} provides versions of these three
3012 functions that take @code{long double} arguments.
3013
3014 @comment stdlib.h
3015 @comment GNU
3016 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3017 @safety{@prelim{}@mtunsafe{@mtasurace{:qecvt}}@asunsafe{}@acsafe{}}
3018 This function is equivalent to @code{ecvt} except that it takes a
3019 @code{long double} for the first parameter and that @var{ndigit} is
3020 restricted by the precision of a @code{long double}.
3021 @end deftypefun
3022
3023 @comment stdlib.h
3024 @comment GNU
3025 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3026 @safety{@prelim{}@mtunsafe{@mtasurace{:qfcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3027 This function is equivalent to @code{fcvt} except that it
3028 takes a @code{long double} for the first parameter and that @var{ndigit} is
3029 restricted by the precision of a @code{long double}.
3030 @end deftypefun
3031
3032 @comment stdlib.h
3033 @comment GNU
3034 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
3035 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3036 This function is equivalent to @code{gcvt} except that it takes a
3037 @code{long double} for the first parameter and that @var{ndigit} is
3038 restricted by the precision of a @code{long double}.
3039 @end deftypefun
3040
3041
3042 @cindex gcvt_r
3043 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
3044 equivalents, all return a string located in a static buffer which is
3045 overwritten by the next call to the function. @Theglibc{}
3046 provides another set of extended functions which write the converted
3047 string into a user-supplied buffer. These have the conventional
3048 @code{_r} suffix.
3049
3050 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
3051 user-supplied buffer.
3052
3053 @comment stdlib.h
3054 @comment GNU
3055 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3056 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3057 The @code{ecvt_r} function is the same as @code{ecvt}, except
3058 that it places its result into the user-specified buffer pointed to by
3059 @var{buf}, with length @var{len}. The return value is @code{-1} in
3060 case of an error and zero otherwise.
3061
3062 This function is a GNU extension.
3063 @end deftypefun
3064
3065 @comment stdlib.h
3066 @comment SVID, Unix98
3067 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3068 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3069 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
3070 places its result into the user-specified buffer pointed to by
3071 @var{buf}, with length @var{len}. The return value is @code{-1} in
3072 case of an error and zero otherwise.
3073
3074 This function is a GNU extension.
3075 @end deftypefun
3076
3077 @comment stdlib.h
3078 @comment GNU
3079 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3080 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3081 The @code{qecvt_r} function is the same as @code{qecvt}, except
3082 that it places its result into the user-specified buffer pointed to by
3083 @var{buf}, with length @var{len}. The return value is @code{-1} in
3084 case of an error and zero otherwise.
3085
3086 This function is a GNU extension.
3087 @end deftypefun
3088
3089 @comment stdlib.h
3090 @comment GNU
3091 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3092 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3093 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
3094 that it places its result into the user-specified buffer pointed to by
3095 @var{buf}, with length @var{len}. The return value is @code{-1} in
3096 case of an error and zero otherwise.
3097
3098 This function is a GNU extension.
3099 @end deftypefun