]> git.ipfire.org Git - thirdparty/glibc.git/blob - math/s_csqrt.c
Fix csqrt overflow/underflow (bug 13841).
[thirdparty/glibc.git] / math / s_csqrt.c
1 /* Complex square root of double value.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
20
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <float.h>
25
26 __complex__ double
27 __csqrt (__complex__ double x)
28 {
29 __complex__ double res;
30 int rcls = fpclassify (__real__ x);
31 int icls = fpclassify (__imag__ x);
32
33 if (__builtin_expect (rcls <= FP_INFINITE || icls <= FP_INFINITE, 0))
34 {
35 if (icls == FP_INFINITE)
36 {
37 __real__ res = HUGE_VAL;
38 __imag__ res = __imag__ x;
39 }
40 else if (rcls == FP_INFINITE)
41 {
42 if (__real__ x < 0.0)
43 {
44 __real__ res = icls == FP_NAN ? __nan ("") : 0;
45 __imag__ res = __copysign (HUGE_VAL, __imag__ x);
46 }
47 else
48 {
49 __real__ res = __real__ x;
50 __imag__ res = (icls == FP_NAN
51 ? __nan ("") : __copysign (0.0, __imag__ x));
52 }
53 }
54 else
55 {
56 __real__ res = __nan ("");
57 __imag__ res = __nan ("");
58 }
59 }
60 else
61 {
62 if (__builtin_expect (icls == FP_ZERO, 0))
63 {
64 if (__real__ x < 0.0)
65 {
66 __real__ res = 0.0;
67 __imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
68 __imag__ x);
69 }
70 else
71 {
72 __real__ res = fabs (__ieee754_sqrt (__real__ x));
73 __imag__ res = __copysign (0.0, __imag__ x);
74 }
75 }
76 else if (__builtin_expect (rcls == FP_ZERO, 0))
77 {
78 double r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
79
80 __real__ res = r;
81 __imag__ res = __copysign (r, __imag__ x);
82 }
83 else
84 {
85 double d, r, s;
86 int scale = 0;
87
88 if (fabs (__real__ x) > DBL_MAX / 2.0
89 || fabs (__imag__ x) > DBL_MAX / 2.0)
90 {
91 scale = 1;
92 __real__ x = __scalbn (__real__ x, -2 * scale);
93 __imag__ x = __scalbn (__imag__ x, -2 * scale);
94 }
95 else if (fabs (__real__ x) < DBL_MIN
96 && fabs (__imag__ x) < DBL_MIN)
97 {
98 scale = -(DBL_MANT_DIG / 2);
99 __real__ x = __scalbn (__real__ x, -2 * scale);
100 __imag__ x = __scalbn (__imag__ x, -2 * scale);
101 }
102
103 d = __ieee754_hypot (__real__ x, __imag__ x);
104 /* Use the identity 2 Re res Im res = Im x
105 to avoid cancellation error in d +/- Re x. */
106 if (__real__ x > 0)
107 {
108 r = __ieee754_sqrt (0.5 * d + 0.5 * __real__ x);
109 s = (0.5 * __imag__ x) / r;
110 }
111 else
112 {
113 s = __ieee754_sqrt (0.5 * d - 0.5 * __real__ x);
114 r = fabs ((0.5 * __imag__ x) / s);
115 }
116
117 if (scale)
118 {
119 r = __scalbn (r, scale);
120 s = __scalbn (s, scale);
121 }
122
123 __real__ res = r;
124 __imag__ res = __copysign (s, __imag__ x);
125 }
126 }
127
128 return res;
129 }
130 weak_alias (__csqrt, csqrt)
131 #ifdef NO_LONG_DOUBLE
132 strong_alias (__csqrt, __csqrtl)
133 weak_alias (__csqrt, csqrtl)
134 #endif