]> git.ipfire.org Git - thirdparty/glibc.git/blob - math/test-tgmath.c
Make ldbl-128 getpayload, setpayload functions use _Float128.
[thirdparty/glibc.git] / math / test-tgmath.c
1 /* Test compilation of tgmath macros.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com> and
5 Ulrich Drepper <drepper@redhat.com>, 2001.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef HAVE_MAIN
22 #undef __NO_MATH_INLINES
23 #define __NO_MATH_INLINES 1
24 #include <math.h>
25 #include <stdio.h>
26 #include <tgmath.h>
27
28 //#define DEBUG
29
30 static void compile_test (void);
31 static void compile_testf (void);
32 #ifndef NO_LONG_DOUBLE
33 static void compile_testl (void);
34 #endif
35
36 float fx;
37 double dx;
38 long double lx;
39 const float fy = 1.25;
40 const double dy = 1.25;
41 const long double ly = 1.25;
42 complex float fz;
43 complex double dz;
44 complex long double lz;
45
46 int count_double;
47 int count_float;
48 int count_ldouble;
49 int count_cdouble;
50 int count_cfloat;
51 int count_cldouble;
52
53 #define NCALLS 125
54 #define NCALLS_INT 4
55 #define NCCALLS 47
56
57 static int
58 do_test (void)
59 {
60 int result = 0;
61
62 count_float = count_double = count_ldouble = 0;
63 count_cfloat = count_cdouble = count_cldouble = 0;
64 compile_test ();
65 if (count_float != 0 || count_cfloat != 0)
66 {
67 puts ("float function called for double test");
68 result = 1;
69 }
70 if (count_ldouble != 0 || count_cldouble != 0)
71 {
72 puts ("long double function called for double test");
73 result = 1;
74 }
75 if (count_double < NCALLS + NCALLS_INT)
76 {
77 printf ("double functions not called often enough (%d)\n",
78 count_double);
79 result = 1;
80 }
81 else if (count_double > NCALLS + NCALLS_INT)
82 {
83 printf ("double functions called too often (%d)\n",
84 count_double);
85 result = 1;
86 }
87 if (count_cdouble < NCCALLS)
88 {
89 printf ("double complex functions not called often enough (%d)\n",
90 count_cdouble);
91 result = 1;
92 }
93 else if (count_cdouble > NCCALLS)
94 {
95 printf ("double complex functions called too often (%d)\n",
96 count_cdouble);
97 result = 1;
98 }
99
100 count_float = count_double = count_ldouble = 0;
101 count_cfloat = count_cdouble = count_cldouble = 0;
102 compile_testf ();
103 if (count_double != 0 || count_cdouble != 0)
104 {
105 puts ("double function called for float test");
106 result = 1;
107 }
108 if (count_ldouble != 0 || count_cldouble != 0)
109 {
110 puts ("long double function called for float test");
111 result = 1;
112 }
113 if (count_float < NCALLS)
114 {
115 printf ("float functions not called often enough (%d)\n", count_float);
116 result = 1;
117 }
118 else if (count_float > NCALLS)
119 {
120 printf ("float functions called too often (%d)\n",
121 count_double);
122 result = 1;
123 }
124 if (count_cfloat < NCCALLS)
125 {
126 printf ("float complex functions not called often enough (%d)\n",
127 count_cfloat);
128 result = 1;
129 }
130 else if (count_cfloat > NCCALLS)
131 {
132 printf ("float complex functions called too often (%d)\n",
133 count_cfloat);
134 result = 1;
135 }
136
137 #ifndef NO_LONG_DOUBLE
138 count_float = count_double = count_ldouble = 0;
139 count_cfloat = count_cdouble = count_cldouble = 0;
140 compile_testl ();
141 if (count_float != 0 || count_cfloat != 0)
142 {
143 puts ("float function called for long double test");
144 result = 1;
145 }
146 if (count_double != 0 || count_cdouble != 0)
147 {
148 puts ("double function called for long double test");
149 result = 1;
150 }
151 if (count_ldouble < NCALLS)
152 {
153 printf ("long double functions not called often enough (%d)\n",
154 count_ldouble);
155 result = 1;
156 }
157 else if (count_ldouble > NCALLS)
158 {
159 printf ("long double functions called too often (%d)\n",
160 count_double);
161 result = 1;
162 }
163 if (count_cldouble < NCCALLS)
164 {
165 printf ("long double complex functions not called often enough (%d)\n",
166 count_cldouble);
167 result = 1;
168 }
169 else if (count_cldouble > NCCALLS)
170 {
171 printf ("long double complex functions called too often (%d)\n",
172 count_cldouble);
173 result = 1;
174 }
175 #endif
176
177 return result;
178 }
179
180 /* Now generate the three functions. */
181 #define HAVE_MAIN
182
183 #define F(name) name
184 #define TYPE double
185 #define TEST_INT 1
186 #define x dx
187 #define y dy
188 #define z dz
189 #define count count_double
190 #define ccount count_cdouble
191 #include "test-tgmath.c"
192
193 #define F(name) name##f
194 #define TYPE float
195 #define x fx
196 #define y fy
197 #define z fz
198 #define count count_float
199 #define ccount count_cfloat
200 #include "test-tgmath.c"
201
202 #ifndef NO_LONG_DOUBLE
203 #define F(name) name##l
204 #define TYPE long double
205 #define x lx
206 #define y ly
207 #define z lz
208 #define count count_ldouble
209 #define ccount count_cldouble
210 #include "test-tgmath.c"
211 #endif
212
213 #define TEST_FUNCTION do_test ()
214 #include "../test-skeleton.c"
215
216 #else
217
218 #ifdef DEBUG
219 #define P() puts (__FUNCTION__)
220 #else
221 #define P()
222 #endif
223
224 static void
225 F(compile_test) (void)
226 {
227 TYPE a, b, c = 1.0;
228 complex TYPE d;
229 int i;
230 int saved_count;
231 long int j;
232 long long int k;
233
234 a = cos (cos (x));
235 b = acos (acos (a));
236 a = sin (sin (x));
237 b = asin (asin (a));
238 a = tan (tan (x));
239 b = atan (atan (a));
240 c = atan2 (atan2 (a, c), atan2 (b, x));
241 a = cosh (cosh (x));
242 b = acosh (acosh (a));
243 a = sinh (sinh (x));
244 b = asinh (asinh (a));
245 a = tanh (tanh (x));
246 b = atanh (atanh (a));
247 a = exp (exp (x));
248 b = log (log (a));
249 a = log10 (log10 (x));
250 b = ldexp (ldexp (a, 1), 5);
251 a = frexp (frexp (x, &i), &i);
252 b = expm1 (expm1 (a));
253 a = log1p (log1p (x));
254 b = logb (logb (a));
255 a = exp2 (exp2 (x));
256 b = log2 (log2 (a));
257 a = pow (pow (x, a), pow (c, b));
258 b = sqrt (sqrt (a));
259 a = hypot (hypot (x, b), hypot (c, a));
260 b = cbrt (cbrt (a));
261 a = ceil (ceil (x));
262 b = fabs (fabs (a));
263 a = floor (floor (x));
264 b = fmod (fmod (a, b), fmod (c, x));
265 a = nearbyint (nearbyint (x));
266 b = round (round (a));
267 a = trunc (trunc (x));
268 b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
269 j = lrint (x) + lround (a);
270 k = llrint (b) + llround (c);
271 a = erf (erf (x));
272 b = erfc (erfc (a));
273 a = tgamma (tgamma (x));
274 b = lgamma (lgamma (a));
275 a = rint (rint (x));
276 b = nextafter (nextafter (a, b), nextafter (c, x));
277 a = nextdown (nextdown (a));
278 b = nexttoward (nexttoward (x, a), c);
279 a = nextup (nextup (a));
280 b = remainder (remainder (a, b), remainder (c, x));
281 a = scalb (scalb (x, a), (TYPE) (6));
282 k = scalbn (a, 7) + scalbln (c, 10l);
283 i = ilogb (x);
284 a = fdim (fdim (x, a), fdim (c, b));
285 b = fmax (fmax (a, x), fmax (c, b));
286 a = fmin (fmin (x, a), fmin (c, b));
287 b = fma (sin (a), sin (x), sin (c));
288 a = totalorder (totalorder (x, b), totalorder (c, x));
289 b = totalordermag (totalordermag (x, a), totalordermag (c, x));
290
291 #ifdef TEST_INT
292 a = atan2 (i, b);
293 b = remquo (i, a, &i);
294 c = fma (i, b, i);
295 a = pow (i, c);
296 #endif
297 x = a + b + c + i + j + k;
298
299 saved_count = count;
300 if (ccount != 0)
301 ccount = -10000;
302
303 d = cos (cos (z));
304 z = acos (acos (d));
305 d = sin (sin (z));
306 z = asin (asin (d));
307 d = tan (tan (z));
308 z = atan (atan (d));
309 d = cosh (cosh (z));
310 z = acosh (acosh (d));
311 d = sinh (sinh (z));
312 z = asinh (asinh (d));
313 d = tanh (tanh (z));
314 z = atanh (atanh (d));
315 d = exp (exp (z));
316 z = log (log (d));
317 d = sqrt (sqrt (z));
318 z = conj (conj (d));
319 d = fabs (conj (a));
320 z = pow (pow (a, d), pow (b, z));
321 d = cproj (cproj (z));
322 z += fabs (cproj (a));
323 a = carg (carg (z));
324 b = creal (creal (d));
325 c = cimag (cimag (z));
326 x += a + b + c + i + j + k;
327 z += d;
328
329 if (saved_count != count)
330 count = -10000;
331
332 if (0)
333 {
334 a = cos (y);
335 a = acos (y);
336 a = sin (y);
337 a = asin (y);
338 a = tan (y);
339 a = atan (y);
340 a = atan2 (y, y);
341 a = cosh (y);
342 a = acosh (y);
343 a = sinh (y);
344 a = asinh (y);
345 a = tanh (y);
346 a = atanh (y);
347 a = exp (y);
348 a = log (y);
349 a = log10 (y);
350 a = ldexp (y, 5);
351 a = frexp (y, &i);
352 a = expm1 (y);
353 a = log1p (y);
354 a = logb (y);
355 a = exp2 (y);
356 a = log2 (y);
357 a = pow (y, y);
358 a = sqrt (y);
359 a = hypot (y, y);
360 a = cbrt (y);
361 a = ceil (y);
362 a = fabs (y);
363 a = floor (y);
364 a = fmod (y, y);
365 a = nearbyint (y);
366 a = round (y);
367 a = trunc (y);
368 a = remquo (y, y, &i);
369 j = lrint (y) + lround (y);
370 k = llrint (y) + llround (y);
371 a = erf (y);
372 a = erfc (y);
373 a = tgamma (y);
374 a = lgamma (y);
375 a = rint (y);
376 a = nextafter (y, y);
377 a = nexttoward (y, y);
378 a = remainder (y, y);
379 a = scalb (y, (const TYPE) (6));
380 k = scalbn (y, 7) + scalbln (y, 10l);
381 i = ilogb (y);
382 a = fdim (y, y);
383 a = fmax (y, y);
384 a = fmin (y, y);
385 a = fma (y, y, y);
386 a = totalorder (y, y);
387 a = totalordermag (y, y);
388
389 #ifdef TEST_INT
390 a = atan2 (i, y);
391 a = remquo (i, y, &i);
392 a = fma (i, y, i);
393 a = pow (i, y);
394 #endif
395
396 d = cos ((const complex TYPE) z);
397 d = acos ((const complex TYPE) z);
398 d = sin ((const complex TYPE) z);
399 d = asin ((const complex TYPE) z);
400 d = tan ((const complex TYPE) z);
401 d = atan ((const complex TYPE) z);
402 d = cosh ((const complex TYPE) z);
403 d = acosh ((const complex TYPE) z);
404 d = sinh ((const complex TYPE) z);
405 d = asinh ((const complex TYPE) z);
406 d = tanh ((const complex TYPE) z);
407 d = atanh ((const complex TYPE) z);
408 d = exp ((const complex TYPE) z);
409 d = log ((const complex TYPE) z);
410 d = sqrt ((const complex TYPE) z);
411 d = pow ((const complex TYPE) z, (const complex TYPE) z);
412 d = fabs ((const complex TYPE) z);
413 d = carg ((const complex TYPE) z);
414 d = creal ((const complex TYPE) z);
415 d = cimag ((const complex TYPE) z);
416 d = conj ((const complex TYPE) z);
417 d = cproj ((const complex TYPE) z);
418 }
419 }
420 #undef x
421 #undef y
422 #undef z
423
424
425 TYPE
426 (F(cos)) (TYPE x)
427 {
428 ++count;
429 P ();
430 return x;
431 }
432
433 TYPE
434 (F(acos)) (TYPE x)
435 {
436 ++count;
437 P ();
438 return x;
439 }
440
441 TYPE
442 (F(sin)) (TYPE x)
443 {
444 ++count;
445 P ();
446 return x;
447 }
448
449 TYPE
450 (F(asin)) (TYPE x)
451 {
452 ++count;
453 P ();
454 return x;
455 }
456
457 TYPE
458 (F(tan)) (TYPE x)
459 {
460 ++count;
461 P ();
462 return x;
463 }
464
465 TYPE
466 (F(atan)) (TYPE x)
467 {
468 ++count;
469 P ();
470 return x;
471 }
472
473 TYPE
474 (F(atan2)) (TYPE x, TYPE y)
475 {
476 ++count;
477 P ();
478 return x + y;
479 }
480
481 TYPE
482 (F(cosh)) (TYPE x)
483 {
484 ++count;
485 P ();
486 return x;
487 }
488
489 TYPE
490 (F(acosh)) (TYPE x)
491 {
492 ++count;
493 P ();
494 return x;
495 }
496
497 TYPE
498 (F(sinh)) (TYPE x)
499 {
500 ++count;
501 P ();
502 return x;
503 }
504
505 TYPE
506 (F(asinh)) (TYPE x)
507 {
508 ++count;
509 P ();
510 return x;
511 }
512
513 TYPE
514 (F(tanh)) (TYPE x)
515 {
516 ++count;
517 P ();
518 return x;
519 }
520
521 TYPE
522 (F(atanh)) (TYPE x)
523 {
524 ++count;
525 P ();
526 return x;
527 }
528
529 TYPE
530 (F(exp)) (TYPE x)
531 {
532 ++count;
533 P ();
534 return x;
535 }
536
537 TYPE
538 (F(log)) (TYPE x)
539 {
540 ++count;
541 P ();
542 return x;
543 }
544
545 TYPE
546 (F(log10)) (TYPE x)
547 {
548 ++count;
549 P ();
550 return x;
551 }
552
553 TYPE
554 (F(ldexp)) (TYPE x, int y)
555 {
556 ++count;
557 P ();
558 return x + y;
559 }
560
561 TYPE
562 (F(frexp)) (TYPE x, int *y)
563 {
564 ++count;
565 P ();
566 return x + *y;
567 }
568
569 TYPE
570 (F(expm1)) (TYPE x)
571 {
572 ++count;
573 P ();
574 return x;
575 }
576
577 TYPE
578 (F(log1p)) (TYPE x)
579 {
580 ++count;
581 P ();
582 return x;
583 }
584
585 TYPE
586 (F(logb)) (TYPE x)
587 {
588 ++count;
589 P ();
590 return x;
591 }
592
593 TYPE
594 (F(exp2)) (TYPE x)
595 {
596 ++count;
597 P ();
598 return x;
599 }
600
601 TYPE
602 (F(log2)) (TYPE x)
603 {
604 ++count;
605 P ();
606 return x;
607 }
608
609 TYPE
610 (F(pow)) (TYPE x, TYPE y)
611 {
612 ++count;
613 P ();
614 return x + y;
615 }
616
617 TYPE
618 (F(sqrt)) (TYPE x)
619 {
620 ++count;
621 P ();
622 return x;
623 }
624
625 TYPE
626 (F(hypot)) (TYPE x, TYPE y)
627 {
628 ++count;
629 P ();
630 return x + y;
631 }
632
633 TYPE
634 (F(cbrt)) (TYPE x)
635 {
636 ++count;
637 P ();
638 return x;
639 }
640
641 TYPE
642 (F(ceil)) (TYPE x)
643 {
644 ++count;
645 P ();
646 return x;
647 }
648
649 TYPE
650 (F(fabs)) (TYPE x)
651 {
652 ++count;
653 P ();
654 return x;
655 }
656
657 TYPE
658 (F(floor)) (TYPE x)
659 {
660 ++count;
661 P ();
662 return x;
663 }
664
665 TYPE
666 (F(fmod)) (TYPE x, TYPE y)
667 {
668 ++count;
669 P ();
670 return x + y;
671 }
672
673 TYPE
674 (F(nearbyint)) (TYPE x)
675 {
676 ++count;
677 P ();
678 return x;
679 }
680
681 TYPE
682 (F(round)) (TYPE x)
683 {
684 ++count;
685 P ();
686 return x;
687 }
688
689 TYPE
690 (F(trunc)) (TYPE x)
691 {
692 ++count;
693 P ();
694 return x;
695 }
696
697 TYPE
698 (F(remquo)) (TYPE x, TYPE y, int *i)
699 {
700 ++count;
701 P ();
702 return x + y + *i;
703 }
704
705 long int
706 (F(lrint)) (TYPE x)
707 {
708 ++count;
709 P ();
710 return x;
711 }
712
713 long int
714 (F(lround)) (TYPE x)
715 {
716 ++count;
717 P ();
718 return x;
719 }
720
721 long long int
722 (F(llrint)) (TYPE x)
723 {
724 ++count;
725 P ();
726 return x;
727 }
728
729 long long int
730 (F(llround)) (TYPE x)
731 {
732 ++count;
733 P ();
734 return x;
735 }
736
737 TYPE
738 (F(erf)) (TYPE x)
739 {
740 ++count;
741 P ();
742 return x;
743 }
744
745 TYPE
746 (F(erfc)) (TYPE x)
747 {
748 ++count;
749 P ();
750 return x;
751 }
752
753 TYPE
754 (F(tgamma)) (TYPE x)
755 {
756 ++count;
757 P ();
758 return x;
759 }
760
761 TYPE
762 (F(lgamma)) (TYPE x)
763 {
764 ++count;
765 P ();
766 return x;
767 }
768
769 TYPE
770 (F(rint)) (TYPE x)
771 {
772 ++count;
773 P ();
774 return x;
775 }
776
777 TYPE
778 (F(nextafter)) (TYPE x, TYPE y)
779 {
780 ++count;
781 P ();
782 return x + y;
783 }
784
785 TYPE
786 (F(nextdown)) (TYPE x)
787 {
788 ++count;
789 P ();
790 return x;
791 }
792
793 TYPE
794 (F(nexttoward)) (TYPE x, long double y)
795 {
796 ++count;
797 P ();
798 return x + y;
799 }
800
801 TYPE
802 (F(nextup)) (TYPE x)
803 {
804 ++count;
805 P ();
806 return x;
807 }
808
809 TYPE
810 (F(remainder)) (TYPE x, TYPE y)
811 {
812 ++count;
813 P ();
814 return x + y;
815 }
816
817 TYPE
818 (F(scalb)) (TYPE x, TYPE y)
819 {
820 ++count;
821 P ();
822 return x + y;
823 }
824
825 TYPE
826 (F(scalbn)) (TYPE x, int y)
827 {
828 ++count;
829 P ();
830 return x + y;
831 }
832
833 TYPE
834 (F(scalbln)) (TYPE x, long int y)
835 {
836 ++count;
837 P ();
838 return x + y;
839 }
840
841 int
842 (F(ilogb)) (TYPE x)
843 {
844 ++count;
845 P ();
846 return x;
847 }
848
849 TYPE
850 (F(fdim)) (TYPE x, TYPE y)
851 {
852 ++count;
853 P ();
854 return x + y;
855 }
856
857 TYPE
858 (F(fmin)) (TYPE x, TYPE y)
859 {
860 ++count;
861 P ();
862 return x + y;
863 }
864
865 TYPE
866 (F(fmax)) (TYPE x, TYPE y)
867 {
868 ++count;
869 P ();
870 return x + y;
871 }
872
873 TYPE
874 (F(fma)) (TYPE x, TYPE y, TYPE z)
875 {
876 ++count;
877 P ();
878 return x + y + z;
879 }
880
881 int
882 (F(totalorder)) (TYPE x, TYPE y)
883 {
884 ++count;
885 P ();
886 return x + y;
887 }
888
889 int
890 (F(totalordermag)) (TYPE x, TYPE y)
891 {
892 ++count;
893 P ();
894 return x + y;
895 }
896
897 complex TYPE
898 (F(cacos)) (complex TYPE x)
899 {
900 ++ccount;
901 P ();
902 return x;
903 }
904
905 complex TYPE
906 (F(casin)) (complex TYPE x)
907 {
908 ++ccount;
909 P ();
910 return x;
911 }
912
913 complex TYPE
914 (F(catan)) (complex TYPE x)
915 {
916 ++ccount;
917 P ();
918 return x;
919 }
920
921 complex TYPE
922 (F(ccos)) (complex TYPE x)
923 {
924 ++ccount;
925 P ();
926 return x;
927 }
928
929 complex TYPE
930 (F(csin)) (complex TYPE x)
931 {
932 ++ccount;
933 P ();
934 return x;
935 }
936
937 complex TYPE
938 (F(ctan)) (complex TYPE x)
939 {
940 ++ccount;
941 P ();
942 return x;
943 }
944
945 complex TYPE
946 (F(cacosh)) (complex TYPE x)
947 {
948 ++ccount;
949 P ();
950 return x;
951 }
952
953 complex TYPE
954 (F(casinh)) (complex TYPE x)
955 {
956 ++ccount;
957 P ();
958 return x;
959 }
960
961 complex TYPE
962 (F(catanh)) (complex TYPE x)
963 {
964 ++ccount;
965 P ();
966 return x;
967 }
968
969 complex TYPE
970 (F(ccosh)) (complex TYPE x)
971 {
972 ++ccount;
973 P ();
974 return x;
975 }
976
977 complex TYPE
978 (F(csinh)) (complex TYPE x)
979 {
980 ++ccount;
981 P ();
982 return x;
983 }
984
985 complex TYPE
986 (F(ctanh)) (complex TYPE x)
987 {
988 ++ccount;
989 P ();
990 return x;
991 }
992
993 complex TYPE
994 (F(cexp)) (complex TYPE x)
995 {
996 ++ccount;
997 P ();
998 return x;
999 }
1000
1001 complex TYPE
1002 (F(clog)) (complex TYPE x)
1003 {
1004 ++ccount;
1005 P ();
1006 return x;
1007 }
1008
1009 complex TYPE
1010 (F(csqrt)) (complex TYPE x)
1011 {
1012 ++ccount;
1013 P ();
1014 return x;
1015 }
1016
1017 complex TYPE
1018 (F(cpow)) (complex TYPE x, complex TYPE y)
1019 {
1020 ++ccount;
1021 P ();
1022 return x + y;
1023 }
1024
1025 TYPE
1026 (F(cabs)) (complex TYPE x)
1027 {
1028 ++ccount;
1029 P ();
1030 return x;
1031 }
1032
1033 TYPE
1034 (F(carg)) (complex TYPE x)
1035 {
1036 ++ccount;
1037 P ();
1038 return x;
1039 }
1040
1041 TYPE
1042 (F(creal)) (complex TYPE x)
1043 {
1044 ++ccount;
1045 P ();
1046 return __real__ x;
1047 }
1048
1049 TYPE
1050 (F(cimag)) (complex TYPE x)
1051 {
1052 ++ccount;
1053 P ();
1054 return __imag__ x;
1055 }
1056
1057 complex TYPE
1058 (F(conj)) (complex TYPE x)
1059 {
1060 ++ccount;
1061 P ();
1062 return x;
1063 }
1064
1065 complex TYPE
1066 (F(cproj)) (complex TYPE x)
1067 {
1068 ++ccount;
1069 P ();
1070 return x;
1071 }
1072
1073 #undef F
1074 #undef TYPE
1075 #undef count
1076 #undef ccount
1077 #undef TEST_INT
1078 #endif