]> git.ipfire.org Git - thirdparty/glibc.git/blob - math/tgmath.h
Update.
[thirdparty/glibc.git] / math / tgmath.h
1 /* Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Library General Public License as
6 published by the Free Software Foundation; either version 2 of the
7 License, or (at your option) any later version.
8
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Library General Public License for more details.
13
14 You should have received a copy of the GNU Library General Public
15 License along with the GNU C Library; see the file COPYING.LIB. If not,
16 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 Boston, MA 02111-1307, USA. */
18
19 /*
20 * ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
21 */
22
23 #ifndef _TGMATH_H
24 #define _TGMATH_H 1
25
26 /* Include the needed headers. */
27 #include <math.h>
28 #include <complex.h>
29
30
31 /* Since `complex' is currently not really implemented in most C compilers
32 and if it is implemented, the implementations differ. This makes it
33 quite difficult to write a generic implementation of this header. We
34 do not try this for now and instead concentrate only on GNU CC. Once
35 we have more information support for other compilers might follow. */
36
37 #if __GNUC_PREREQ (2, 7)
38
39 /* This is ugly but unless gcc gets appropriate builtins we have to do
40 something like this. Don't ask how it works. */
41
42 /* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
43 Allows for _Bool. Expands to an integer constant expression. */
44 #define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
45
46 /* The tgmath real type for T, where E is 0 if T is an integer type and
47 1 for a floating type. */
48 #define __tgmath_real_type_sub(T, E) \
49 __typeof__(*(0 ? (__typeof__(0 ? (double *)0 : (void *)(E)))0 \
50 : (__typeof__(0 ? (T *)0 : (void *)(!(E))))0))
51
52 /* The tgmath real type of EXPR. */
53 #define __tgmath_real_type(expr) \
54 __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
55
56
57 /* We have two kinds of generic macros: to support functions which are
58 only defined on real valued parameters and those which are defined
59 for complex functions as well. */
60 # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
61 (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
62 if (sizeof (Val) == sizeof (double) \
63 || __builtin_classify_type (Val) != 8) \
64 __tgmres = Fct (Val); \
65 else if (sizeof (Val) == sizeof (float)) \
66 __tgmres = Fct##f (Val); \
67 else \
68 __tgmres = Fct##l (Val); \
69 __tgmres; }))
70
71 # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
72 (__extension__ ({ __tgmath_real_type (Val1) __tgmres; \
73 if (sizeof (Val1) == sizeof (double) \
74 || __builtin_classify_type (Val1) != 8) \
75 __tgmres = Fct (Val1, Val2); \
76 else if (sizeof (Val1) == sizeof (float)) \
77 __tgmres = Fct##f (Val1, Val2); \
78 else \
79 __tgmres = Fct##l (Val1, Val2); \
80 __tgmres; }))
81
82 # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
83 (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
84 if ((sizeof (Val1) > sizeof (double) \
85 || sizeof (Val2) > sizeof (double)) \
86 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
87 __tgmres = Fct##l (Val1, Val2); \
88 else if (sizeof (Val1) == sizeof (double) \
89 || sizeof (Val2) == sizeof (double) \
90 || __builtin_classify_type ((Val1) \
91 + (Val2)) != 8) \
92 __tgmres = Fct (Val1, Val2); \
93 else \
94 __tgmres = Fct##f (Val1, Val2); \
95 __tgmres; }))
96
97 # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
98 (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
99 if ((sizeof (Val1) > sizeof (double) \
100 || sizeof (Val2) > sizeof (double)) \
101 && __builtin_classify_type ((Val1) + (Val2)) == 8) \
102 __tgmres = Fct##l (Val1, Val2, Val3); \
103 else if (sizeof (Val1) == sizeof (double) \
104 || sizeof (Val2) == sizeof (double) \
105 || __builtin_classify_type ((Val1) \
106 + (Val2)) != 8) \
107 __tgmres = Fct (Val1, Val2, Val3); \
108 else \
109 __tgmres = Fct##f (Val1, Val2, Val3); \
110 __tgmres; }))
111
112 # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
113 (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
114 if ((sizeof (Val1) > sizeof (double) \
115 || sizeof (Val2) > sizeof (double) \
116 || sizeof (Val3) > sizeof (double)) \
117 && __builtin_classify_type ((Val1) + (Val2) \
118 + (Val3)) == 8) \
119 __tgmres = Fct##l (Val1, Val2, Val3); \
120 else if (sizeof (Val1) == sizeof (double) \
121 || sizeof (Val2) == sizeof (double) \
122 || sizeof (Val3) == sizeof (double) \
123 || __builtin_classify_type ((Val1) + (Val2) \
124 + (Val3)) != 8) \
125 __tgmres = Fct (Val1, Val2, Val3); \
126 else \
127 __tgmres = Fct##f (Val1, Val2, Val3); \
128 __tgmres; }))
129
130 /* XXX This definition has to be changed as soon as the compiler understands
131 the imaginary keyword. */
132 # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
133 (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
134 if (sizeof (__real__ (Val)) > sizeof (double) \
135 && __builtin_classify_type (__real__ (Val)) == 8) \
136 { \
137 if (sizeof (__real__ (Val)) == sizeof (Val)) \
138 __tgmres = Fct##l (Val); \
139 else \
140 __tgmres = Cfct##l (Val); \
141 } \
142 else if (sizeof (__real__ (Val)) == sizeof (double) \
143 || __builtin_classify_type (__real__ (Val)) \
144 != 8) \
145 { \
146 if (sizeof (__real__ (Val)) == sizeof (Val)) \
147 __tgmres = Fct (Val); \
148 else \
149 __tgmres = Cfct (Val); \
150 } \
151 else \
152 { \
153 if (sizeof (__real__ (Val)) == sizeof (Val)) \
154 __tgmres = Fct##f (Val); \
155 else \
156 __tgmres = Cfct##f (Val); \
157 } \
158 __tgmres; }))
159
160 /* XXX This definition has to be changed as soon as the compiler understands
161 the imaginary keyword. */
162 # define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
163 (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
164 if (sizeof (Val) == sizeof (__complex__ double) \
165 || __builtin_classify_type (__real__ (Val)) != 8) \
166 __tgmres = Fct (Val); \
167 else if (sizeof (Val) == sizeof (__complex__ float)) \
168 __tgmres = Fct##f (Val); \
169 else \
170 __tgmres = Fct##l (Val); \
171 __tgmres; }))
172
173 /* XXX This definition has to be changed as soon as the compiler understands
174 the imaginary keyword. */
175 # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
176 (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
177 if ((sizeof (__real__ (Val1)) > sizeof (double) \
178 || sizeof (__real__ (Val2)) > sizeof (double)) \
179 && __builtin_classify_type (__real__ (Val1) \
180 + __real__ (Val2)) \
181 == 8) \
182 { \
183 if (sizeof (__real__ (Val1)) == sizeof (Val1) \
184 && sizeof (__real__ (Val2)) == sizeof (Val2)) \
185 __tgmres = Fct##l (Val1, Val2); \
186 else \
187 __tgmres = Cfct##l (Val1, Val2); \
188 } \
189 else if (sizeof (__real__ (Val1)) == sizeof (double) \
190 || sizeof (__real__ (Val2)) == sizeof(double) \
191 || __builtin_classify_type (__real__ (Val1) \
192 + __real__ (Val2))\
193 != 8) \
194 { \
195 if (sizeof (__real__ (Val1)) == sizeof (Val1) \
196 && sizeof (__real__ (Val2)) == sizeof (Val2)) \
197 __tgmres = Fct (Val1, Val2); \
198 else \
199 __tgmres = Cfct (Val1, Val2); \
200 } \
201 else \
202 { \
203 if (sizeof (__real__ (Val1)) == sizeof (Val1) \
204 && sizeof (__real__ (Val2)) == sizeof (Val2)) \
205 __tgmres = Fct##f (Val1, Val2); \
206 else \
207 __tgmres = Cfct##f (Val1, Val2); \
208 } \
209 __tgmres; }))
210 #else
211 # error "Unsupported compiler; you cannot use <tgmath.h>"
212 #endif
213
214
215 /* Unary functions defined for real and complex values. */
216
217
218 /* Trigonometric functions. */
219
220 /* Arc cosine of X. */
221 #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
222 /* Arc sine of X. */
223 #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
224 /* Arc tangent of X. */
225 #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
226 /* Arc tangent of Y/X. */
227 #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
228
229 /* Cosine of X. */
230 #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
231 /* Sine of X. */
232 #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
233 /* Tangent of X. */
234 #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
235
236
237 /* Hyperbolic functions. */
238
239 /* Hyperbolic arc cosine of X. */
240 #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
241 /* Hyperbolic arc sine of X. */
242 #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
243 /* Hyperbolic arc tangent of X. */
244 #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
245
246 /* Hyperbolic cosine of X. */
247 #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
248 /* Hyperbolic sine of X. */
249 #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
250 /* Hyperbolic tangent of X. */
251 #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
252
253
254 /* Exponential and logarithmic functions. */
255
256 /* Exponential function of X. */
257 #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
258
259 /* Break VALUE into a normalized fraction and an integral power of 2. */
260 #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
261
262 /* X times (two to the EXP power). */
263 #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
264
265 /* Natural logarithm of X. */
266 #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
267
268 /* Base-ten logarithm of X. */
269 #ifdef __USE_GNU
270 # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
271 #else
272 # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
273 #endif
274
275 /* Return exp(X) - 1. */
276 #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
277
278 /* Return log(1 + X). */
279 #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
280
281 /* Return the base 2 signed integral exponent of X. */
282 #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
283
284 /* Compute base-2 exponential of X. */
285 #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
286
287 /* Compute base-2 logarithm of X. */
288 #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
289
290
291 /* Power functions. */
292
293 /* Return X to the Y power. */
294 #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
295
296 /* Return the square root of X. */
297 #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
298
299 /* Return `sqrt(X*X + Y*Y)'. */
300 #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
301
302 /* Return the cube root of X. */
303 #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
304
305
306 /* Nearest integer, absolute value, and remainder functions. */
307
308 /* Smallest integral value not less than X. */
309 #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
310
311 /* Absolute value of X. */
312 #define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
313
314 /* Largest integer not greater than X. */
315 #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
316
317 /* Floating-point modulo remainder of X/Y. */
318 #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
319
320 /* Round X to integral valuein floating-point format using current
321 rounding direction, but do not raise inexact exception. */
322 #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
323
324 /* Round X to nearest integral value, rounding halfway cases away from
325 zero. */
326 #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
327
328 /* Round X to the integral value in floating-point format nearest but
329 not larger in magnitude. */
330 #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
331
332 /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
333 and magnitude congruent `mod 2^n' to the magnitude of the integral
334 quotient x/y, with n >= 3. */
335 #define remquo(Val1, Val2, Val3) \
336 __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
337
338 /* Round X to nearest integral value according to current rounding
339 direction. */
340 #define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
341 #define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
342
343 /* Round X to nearest integral value, rounding halfway cases away from
344 zero. */
345 #define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
346 #define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
347
348
349 /* Return X with its signed changed to Y's. */
350 #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
351
352 /* Error and gamma functions. */
353 #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
354 #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
355 #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
356 #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
357
358
359 /* Return the integer nearest X in the direction of the
360 prevailing rounding mode. */
361 #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
362
363 /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
364 #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
365 #define nexttoward(Val1, Val2) \
366 __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
367
368 /* Return the remainder of integer divison X / Y with infinite precision. */
369 #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
370
371 /* Return X times (2 to the Nth power). */
372 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
373 # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
374 #endif
375
376 /* Return X times (2 to the Nth power). */
377 #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
378
379 /* Return X times (2 to the Nth power). */
380 #define scalbln(Val1, Val2) \
381 __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
382
383 /* Return the binary exponent of X, which must be nonzero. */
384 #define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
385
386
387 /* Return positive difference between X and Y. */
388 #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
389
390 /* Return maximum numeric value from X and Y. */
391 #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
392
393 /* Return minimum numeric value from X and Y. */
394 #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
395
396
397 /* Multiply-add function computed as a ternary operation. */
398 #define fma(Val1, Val2, Val3) \
399 __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
400
401
402 /* Absolute value, conjugates, and projection. */
403
404 /* Argument value of Z. */
405 #define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
406
407 /* Complex conjugate of Z. */
408 #define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
409
410 /* Projection of Z onto the Riemann sphere. */
411 #define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
412
413
414 /* Decomposing complex values. */
415
416 /* Imaginary part of Z. */
417 #define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
418
419 /* Real part of Z. */
420 #define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
421
422 #endif /* tgmath.h */