]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/damon/vaddr.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / damon / vaddr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DAMON Primitives for Virtual Address Spaces
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon-va: " fmt
9
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17
18 #include "ops-common.h"
19
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 /*
26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
28 */
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33
34 /*
35 * Get the mm_struct of the given target
36 *
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
38 *
39 * Returns the mm_struct of the target on success, NULL on failure
40 */
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 struct task_struct *task;
44 struct mm_struct *mm;
45
46 task = damon_get_task_struct(t);
47 if (!task)
48 return NULL;
49
50 mm = get_task_mm(task);
51 put_task_struct(task);
52 return mm;
53 }
54
55 /*
56 * Functions for the initial monitoring target regions construction
57 */
58
59 /*
60 * Size-evenly split a region into 'nr_pieces' small regions
61 *
62 * Returns 0 on success, or negative error code otherwise.
63 */
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
66 {
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
69 unsigned long start;
70
71 if (!r || !nr_pieces)
72 return -EINVAL;
73
74 orig_end = r->ar.end;
75 sz_orig = damon_sz_region(r);
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77
78 if (!sz_piece)
79 return -EINVAL;
80
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
84 start += sz_piece) {
85 n = damon_new_region(start, start + sz_piece);
86 if (!n)
87 return -ENOMEM;
88 damon_insert_region(n, r, next, t);
89 r = n;
90 }
91 /* complement last region for possible rounding error */
92 if (n)
93 n->ar.end = orig_end;
94
95 return 0;
96 }
97
98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 return r->end - r->start;
101 }
102
103 /*
104 * Find three regions separated by two biggest unmapped regions
105 *
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
108 *
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
112 * necessary.
113 *
114 * Returns 0 if success, or negative error code otherwise.
115 */
116 static int __damon_va_three_regions(struct mm_struct *mm,
117 struct damon_addr_range regions[3])
118 {
119 struct damon_addr_range first_gap = {0}, second_gap = {0};
120 VMA_ITERATOR(vmi, mm, 0);
121 struct vm_area_struct *vma, *prev = NULL;
122 unsigned long start;
123
124 /*
125 * Find the two biggest gaps so that first_gap > second_gap > others.
126 * If this is too slow, it can be optimised to examine the maple
127 * tree gaps.
128 */
129 for_each_vma(vmi, vma) {
130 unsigned long gap;
131
132 if (!prev) {
133 start = vma->vm_start;
134 goto next;
135 }
136 gap = vma->vm_start - prev->vm_end;
137
138 if (gap > sz_range(&first_gap)) {
139 second_gap = first_gap;
140 first_gap.start = prev->vm_end;
141 first_gap.end = vma->vm_start;
142 } else if (gap > sz_range(&second_gap)) {
143 second_gap.start = prev->vm_end;
144 second_gap.end = vma->vm_start;
145 }
146 next:
147 prev = vma;
148 }
149
150 if (!sz_range(&second_gap) || !sz_range(&first_gap))
151 return -EINVAL;
152
153 /* Sort the two biggest gaps by address */
154 if (first_gap.start > second_gap.start)
155 swap(first_gap, second_gap);
156
157 /* Store the result */
158 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164
165 return 0;
166 }
167
168 /*
169 * Get the three regions in the given target (task)
170 *
171 * Returns 0 on success, negative error code otherwise.
172 */
173 static int damon_va_three_regions(struct damon_target *t,
174 struct damon_addr_range regions[3])
175 {
176 struct mm_struct *mm;
177 int rc;
178
179 mm = damon_get_mm(t);
180 if (!mm)
181 return -EINVAL;
182
183 mmap_read_lock(mm);
184 rc = __damon_va_three_regions(mm, regions);
185 mmap_read_unlock(mm);
186
187 mmput(mm);
188 return rc;
189 }
190
191 /*
192 * Initialize the monitoring target regions for the given target (task)
193 *
194 * t the given target
195 *
196 * Because only a number of small portions of the entire address space
197 * is actually mapped to the memory and accessed, monitoring the unmapped
198 * regions is wasteful. That said, because we can deal with small noises,
199 * tracking every mapping is not strictly required but could even incur a high
200 * overhead if the mapping frequently changes or the number of mappings is
201 * high. The adaptive regions adjustment mechanism will further help to deal
202 * with the noise by simply identifying the unmapped areas as a region that
203 * has no access. Moreover, applying the real mappings that would have many
204 * unmapped areas inside will make the adaptive mechanism quite complex. That
205 * said, too huge unmapped areas inside the monitoring target should be removed
206 * to not take the time for the adaptive mechanism.
207 *
208 * For the reason, we convert the complex mappings to three distinct regions
209 * that cover every mapped area of the address space. Also the two gaps
210 * between the three regions are the two biggest unmapped areas in the given
211 * address space. In detail, this function first identifies the start and the
212 * end of the mappings and the two biggest unmapped areas of the address space.
213 * Then, it constructs the three regions as below:
214 *
215 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 *
219 * As usual memory map of processes is as below, the gap between the heap and
220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221 * region and the stack will be two biggest unmapped regions. Because these
222 * gaps are exceptionally huge areas in usual address space, excluding these
223 * two biggest unmapped regions will be sufficient to make a trade-off.
224 *
225 * <heap>
226 * <BIG UNMAPPED REGION 1>
227 * <uppermost mmap()-ed region>
228 * (other mmap()-ed regions and small unmapped regions)
229 * <lowermost mmap()-ed region>
230 * <BIG UNMAPPED REGION 2>
231 * <stack>
232 */
233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 struct damon_target *t)
235 {
236 struct damon_target *ti;
237 struct damon_region *r;
238 struct damon_addr_range regions[3];
239 unsigned long sz = 0, nr_pieces;
240 int i, tidx = 0;
241
242 if (damon_va_three_regions(t, regions)) {
243 damon_for_each_target(ti, ctx) {
244 if (ti == t)
245 break;
246 tidx++;
247 }
248 pr_debug("Failed to get three regions of %dth target\n", tidx);
249 return;
250 }
251
252 for (i = 0; i < 3; i++)
253 sz += regions[i].end - regions[i].start;
254 if (ctx->attrs.min_nr_regions)
255 sz /= ctx->attrs.min_nr_regions;
256 if (sz < DAMON_MIN_REGION)
257 sz = DAMON_MIN_REGION;
258
259 /* Set the initial three regions of the target */
260 for (i = 0; i < 3; i++) {
261 r = damon_new_region(regions[i].start, regions[i].end);
262 if (!r) {
263 pr_err("%d'th init region creation failed\n", i);
264 return;
265 }
266 damon_add_region(r, t);
267
268 nr_pieces = (regions[i].end - regions[i].start) / sz;
269 damon_va_evenly_split_region(t, r, nr_pieces);
270 }
271 }
272
273 /* Initialize '->regions_list' of every target (task) */
274 static void damon_va_init(struct damon_ctx *ctx)
275 {
276 struct damon_target *t;
277
278 damon_for_each_target(t, ctx) {
279 /* the user may set the target regions as they want */
280 if (!damon_nr_regions(t))
281 __damon_va_init_regions(ctx, t);
282 }
283 }
284
285 /*
286 * Update regions for current memory mappings
287 */
288 static void damon_va_update(struct damon_ctx *ctx)
289 {
290 struct damon_addr_range three_regions[3];
291 struct damon_target *t;
292
293 damon_for_each_target(t, ctx) {
294 if (damon_va_three_regions(t, three_regions))
295 continue;
296 damon_set_regions(t, three_regions, 3);
297 }
298 }
299
300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 unsigned long next, struct mm_walk *walk)
302 {
303 pte_t *pte;
304 pmd_t pmde;
305 spinlock_t *ptl;
306
307 if (pmd_trans_huge(pmdp_get(pmd))) {
308 ptl = pmd_lock(walk->mm, pmd);
309 pmde = pmdp_get(pmd);
310
311 if (!pmd_present(pmde)) {
312 spin_unlock(ptl);
313 return 0;
314 }
315
316 if (pmd_trans_huge(pmde)) {
317 damon_pmdp_mkold(pmd, walk->vma, addr);
318 spin_unlock(ptl);
319 return 0;
320 }
321 spin_unlock(ptl);
322 }
323
324 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
325 if (!pte) {
326 walk->action = ACTION_AGAIN;
327 return 0;
328 }
329 if (!pte_present(ptep_get(pte)))
330 goto out;
331 damon_ptep_mkold(pte, walk->vma, addr);
332 out:
333 pte_unmap_unlock(pte, ptl);
334 return 0;
335 }
336
337 #ifdef CONFIG_HUGETLB_PAGE
338 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
339 struct vm_area_struct *vma, unsigned long addr)
340 {
341 bool referenced = false;
342 pte_t entry = huge_ptep_get(pte);
343 struct folio *folio = pfn_folio(pte_pfn(entry));
344
345 folio_get(folio);
346
347 if (pte_young(entry)) {
348 referenced = true;
349 entry = pte_mkold(entry);
350 set_huge_pte_at(mm, addr, pte, entry);
351 }
352
353 #ifdef CONFIG_MMU_NOTIFIER
354 if (mmu_notifier_clear_young(mm, addr,
355 addr + huge_page_size(hstate_vma(vma))))
356 referenced = true;
357 #endif /* CONFIG_MMU_NOTIFIER */
358
359 if (referenced)
360 folio_set_young(folio);
361
362 folio_set_idle(folio);
363 folio_put(folio);
364 }
365
366 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
367 unsigned long addr, unsigned long end,
368 struct mm_walk *walk)
369 {
370 struct hstate *h = hstate_vma(walk->vma);
371 spinlock_t *ptl;
372 pte_t entry;
373
374 ptl = huge_pte_lock(h, walk->mm, pte);
375 entry = huge_ptep_get(pte);
376 if (!pte_present(entry))
377 goto out;
378
379 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
380
381 out:
382 spin_unlock(ptl);
383 return 0;
384 }
385 #else
386 #define damon_mkold_hugetlb_entry NULL
387 #endif /* CONFIG_HUGETLB_PAGE */
388
389 static const struct mm_walk_ops damon_mkold_ops = {
390 .pmd_entry = damon_mkold_pmd_entry,
391 .hugetlb_entry = damon_mkold_hugetlb_entry,
392 .walk_lock = PGWALK_RDLOCK,
393 };
394
395 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
396 {
397 mmap_read_lock(mm);
398 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
399 mmap_read_unlock(mm);
400 }
401
402 /*
403 * Functions for the access checking of the regions
404 */
405
406 static void __damon_va_prepare_access_check(struct mm_struct *mm,
407 struct damon_region *r)
408 {
409 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
410
411 damon_va_mkold(mm, r->sampling_addr);
412 }
413
414 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
415 {
416 struct damon_target *t;
417 struct mm_struct *mm;
418 struct damon_region *r;
419
420 damon_for_each_target(t, ctx) {
421 mm = damon_get_mm(t);
422 if (!mm)
423 continue;
424 damon_for_each_region(r, t)
425 __damon_va_prepare_access_check(mm, r);
426 mmput(mm);
427 }
428 }
429
430 struct damon_young_walk_private {
431 /* size of the folio for the access checked virtual memory address */
432 unsigned long *folio_sz;
433 bool young;
434 };
435
436 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
437 unsigned long next, struct mm_walk *walk)
438 {
439 pte_t *pte;
440 pte_t ptent;
441 spinlock_t *ptl;
442 struct folio *folio;
443 struct damon_young_walk_private *priv = walk->private;
444
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 if (pmd_trans_huge(pmdp_get(pmd))) {
447 pmd_t pmde;
448
449 ptl = pmd_lock(walk->mm, pmd);
450 pmde = pmdp_get(pmd);
451
452 if (!pmd_present(pmde)) {
453 spin_unlock(ptl);
454 return 0;
455 }
456
457 if (!pmd_trans_huge(pmde)) {
458 spin_unlock(ptl);
459 goto regular_page;
460 }
461 folio = damon_get_folio(pmd_pfn(pmde));
462 if (!folio)
463 goto huge_out;
464 if (pmd_young(pmde) || !folio_test_idle(folio) ||
465 mmu_notifier_test_young(walk->mm,
466 addr))
467 priv->young = true;
468 *priv->folio_sz = HPAGE_PMD_SIZE;
469 folio_put(folio);
470 huge_out:
471 spin_unlock(ptl);
472 return 0;
473 }
474
475 regular_page:
476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
477
478 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
479 if (!pte) {
480 walk->action = ACTION_AGAIN;
481 return 0;
482 }
483 ptent = ptep_get(pte);
484 if (!pte_present(ptent))
485 goto out;
486 folio = damon_get_folio(pte_pfn(ptent));
487 if (!folio)
488 goto out;
489 if (pte_young(ptent) || !folio_test_idle(folio) ||
490 mmu_notifier_test_young(walk->mm, addr))
491 priv->young = true;
492 *priv->folio_sz = folio_size(folio);
493 folio_put(folio);
494 out:
495 pte_unmap_unlock(pte, ptl);
496 return 0;
497 }
498
499 #ifdef CONFIG_HUGETLB_PAGE
500 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
501 unsigned long addr, unsigned long end,
502 struct mm_walk *walk)
503 {
504 struct damon_young_walk_private *priv = walk->private;
505 struct hstate *h = hstate_vma(walk->vma);
506 struct folio *folio;
507 spinlock_t *ptl;
508 pte_t entry;
509
510 ptl = huge_pte_lock(h, walk->mm, pte);
511 entry = huge_ptep_get(pte);
512 if (!pte_present(entry))
513 goto out;
514
515 folio = pfn_folio(pte_pfn(entry));
516 folio_get(folio);
517
518 if (pte_young(entry) || !folio_test_idle(folio) ||
519 mmu_notifier_test_young(walk->mm, addr))
520 priv->young = true;
521 *priv->folio_sz = huge_page_size(h);
522
523 folio_put(folio);
524
525 out:
526 spin_unlock(ptl);
527 return 0;
528 }
529 #else
530 #define damon_young_hugetlb_entry NULL
531 #endif /* CONFIG_HUGETLB_PAGE */
532
533 static const struct mm_walk_ops damon_young_ops = {
534 .pmd_entry = damon_young_pmd_entry,
535 .hugetlb_entry = damon_young_hugetlb_entry,
536 .walk_lock = PGWALK_RDLOCK,
537 };
538
539 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
540 unsigned long *folio_sz)
541 {
542 struct damon_young_walk_private arg = {
543 .folio_sz = folio_sz,
544 .young = false,
545 };
546
547 mmap_read_lock(mm);
548 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
549 mmap_read_unlock(mm);
550 return arg.young;
551 }
552
553 /*
554 * Check whether the region was accessed after the last preparation
555 *
556 * mm 'mm_struct' for the given virtual address space
557 * r the region to be checked
558 */
559 static void __damon_va_check_access(struct mm_struct *mm,
560 struct damon_region *r, bool same_target)
561 {
562 static unsigned long last_addr;
563 static unsigned long last_folio_sz = PAGE_SIZE;
564 static bool last_accessed;
565
566 /* If the region is in the last checked page, reuse the result */
567 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
568 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
569 if (last_accessed)
570 r->nr_accesses++;
571 return;
572 }
573
574 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
575 if (last_accessed)
576 r->nr_accesses++;
577
578 last_addr = r->sampling_addr;
579 }
580
581 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
582 {
583 struct damon_target *t;
584 struct mm_struct *mm;
585 struct damon_region *r;
586 unsigned int max_nr_accesses = 0;
587 bool same_target;
588
589 damon_for_each_target(t, ctx) {
590 mm = damon_get_mm(t);
591 if (!mm)
592 continue;
593 same_target = false;
594 damon_for_each_region(r, t) {
595 __damon_va_check_access(mm, r, same_target);
596 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
597 same_target = true;
598 }
599 mmput(mm);
600 }
601
602 return max_nr_accesses;
603 }
604
605 /*
606 * Functions for the target validity check and cleanup
607 */
608
609 static bool damon_va_target_valid(struct damon_target *t)
610 {
611 struct task_struct *task;
612
613 task = damon_get_task_struct(t);
614 if (task) {
615 put_task_struct(task);
616 return true;
617 }
618
619 return false;
620 }
621
622 #ifndef CONFIG_ADVISE_SYSCALLS
623 static unsigned long damos_madvise(struct damon_target *target,
624 struct damon_region *r, int behavior)
625 {
626 return 0;
627 }
628 #else
629 static unsigned long damos_madvise(struct damon_target *target,
630 struct damon_region *r, int behavior)
631 {
632 struct mm_struct *mm;
633 unsigned long start = PAGE_ALIGN(r->ar.start);
634 unsigned long len = PAGE_ALIGN(damon_sz_region(r));
635 unsigned long applied;
636
637 mm = damon_get_mm(target);
638 if (!mm)
639 return 0;
640
641 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
642 mmput(mm);
643
644 return applied;
645 }
646 #endif /* CONFIG_ADVISE_SYSCALLS */
647
648 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
649 struct damon_target *t, struct damon_region *r,
650 struct damos *scheme)
651 {
652 int madv_action;
653
654 switch (scheme->action) {
655 case DAMOS_WILLNEED:
656 madv_action = MADV_WILLNEED;
657 break;
658 case DAMOS_COLD:
659 madv_action = MADV_COLD;
660 break;
661 case DAMOS_PAGEOUT:
662 madv_action = MADV_PAGEOUT;
663 break;
664 case DAMOS_HUGEPAGE:
665 madv_action = MADV_HUGEPAGE;
666 break;
667 case DAMOS_NOHUGEPAGE:
668 madv_action = MADV_NOHUGEPAGE;
669 break;
670 case DAMOS_STAT:
671 return 0;
672 default:
673 /*
674 * DAMOS actions that are not yet supported by 'vaddr'.
675 */
676 return 0;
677 }
678
679 return damos_madvise(t, r, madv_action);
680 }
681
682 static int damon_va_scheme_score(struct damon_ctx *context,
683 struct damon_target *t, struct damon_region *r,
684 struct damos *scheme)
685 {
686
687 switch (scheme->action) {
688 case DAMOS_PAGEOUT:
689 return damon_cold_score(context, r, scheme);
690 default:
691 break;
692 }
693
694 return DAMOS_MAX_SCORE;
695 }
696
697 static int __init damon_va_initcall(void)
698 {
699 struct damon_operations ops = {
700 .id = DAMON_OPS_VADDR,
701 .init = damon_va_init,
702 .update = damon_va_update,
703 .prepare_access_checks = damon_va_prepare_access_checks,
704 .check_accesses = damon_va_check_accesses,
705 .reset_aggregated = NULL,
706 .target_valid = damon_va_target_valid,
707 .cleanup = NULL,
708 .apply_scheme = damon_va_apply_scheme,
709 .get_scheme_score = damon_va_scheme_score,
710 };
711 /* ops for fixed virtual address ranges */
712 struct damon_operations ops_fvaddr = ops;
713 int err;
714
715 /* Don't set the monitoring target regions for the entire mapping */
716 ops_fvaddr.id = DAMON_OPS_FVADDR;
717 ops_fvaddr.init = NULL;
718 ops_fvaddr.update = NULL;
719
720 err = damon_register_ops(&ops);
721 if (err)
722 return err;
723 return damon_register_ops(&ops_fvaddr);
724 };
725
726 subsys_initcall(damon_va_initcall);
727
728 #include "vaddr-test.h"