]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/madvise.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 struct madvise_walk_private {
41 struct mmu_gather *tlb;
42 bool pageout;
43 };
44
45 /*
46 * Any behaviour which results in changes to the vma->vm_flags needs to
47 * take mmap_lock for writing. Others, which simply traverse vmas, need
48 * to only take it for reading.
49 */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 switch (behavior) {
53 case MADV_REMOVE:
54 case MADV_WILLNEED:
55 case MADV_DONTNEED:
56 case MADV_DONTNEED_LOCKED:
57 case MADV_COLD:
58 case MADV_PAGEOUT:
59 case MADV_FREE:
60 case MADV_POPULATE_READ:
61 case MADV_POPULATE_WRITE:
62 case MADV_COLLAPSE:
63 return 0;
64 default:
65 /* be safe, default to 1. list exceptions explicitly */
66 return 1;
67 }
68 }
69
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 struct anon_vma_name *anon_name;
74 size_t count;
75
76 /* Add 1 for NUL terminator at the end of the anon_name->name */
77 count = strlen(name) + 1;
78 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 if (anon_name) {
80 kref_init(&anon_name->kref);
81 memcpy(anon_name->name, name, count);
82 }
83
84 return anon_name;
85 }
86
87 void anon_vma_name_free(struct kref *kref)
88 {
89 struct anon_vma_name *anon_name =
90 container_of(kref, struct anon_vma_name, kref);
91 kfree(anon_name);
92 }
93
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 mmap_assert_locked(vma->vm_mm);
97
98 return vma->anon_name;
99 }
100
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 struct anon_vma_name *anon_name)
104 {
105 struct anon_vma_name *orig_name = anon_vma_name(vma);
106
107 if (!anon_name) {
108 vma->anon_name = NULL;
109 anon_vma_name_put(orig_name);
110 return 0;
111 }
112
113 if (anon_vma_name_eq(orig_name, anon_name))
114 return 0;
115
116 vma->anon_name = anon_vma_name_reuse(anon_name);
117 anon_vma_name_put(orig_name);
118
119 return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 struct anon_vma_name *anon_name)
124 {
125 if (anon_name)
126 return -EINVAL;
127
128 return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132 * Update the vm_flags on region of a vma, splitting it or merging it as
133 * necessary. Must be called with mmap_lock held for writing;
134 * Caller should ensure anon_name stability by raising its refcount even when
135 * anon_name belongs to a valid vma because this function might free that vma.
136 */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 struct vm_area_struct **prev, unsigned long start,
139 unsigned long end, unsigned long new_flags,
140 struct anon_vma_name *anon_name)
141 {
142 struct mm_struct *mm = vma->vm_mm;
143 int error;
144 pgoff_t pgoff;
145 VMA_ITERATOR(vmi, mm, start);
146
147 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
148 *prev = vma;
149 return 0;
150 }
151
152 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
153 *prev = vma_merge(&vmi, mm, *prev, start, end, new_flags,
154 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
155 vma->vm_userfaultfd_ctx, anon_name);
156 if (*prev) {
157 vma = *prev;
158 goto success;
159 }
160
161 *prev = vma;
162
163 if (start != vma->vm_start) {
164 error = split_vma(&vmi, vma, start, 1);
165 if (error)
166 return error;
167 }
168
169 if (end != vma->vm_end) {
170 error = split_vma(&vmi, vma, end, 0);
171 if (error)
172 return error;
173 }
174
175 success:
176 /* vm_flags is protected by the mmap_lock held in write mode. */
177 vma_start_write(vma);
178 vm_flags_reset(vma, new_flags);
179 if (!vma->vm_file || vma_is_anon_shmem(vma)) {
180 error = replace_anon_vma_name(vma, anon_name);
181 if (error)
182 return error;
183 }
184
185 return 0;
186 }
187
188 #ifdef CONFIG_SWAP
189 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
190 unsigned long end, struct mm_walk *walk)
191 {
192 struct vm_area_struct *vma = walk->private;
193 struct swap_iocb *splug = NULL;
194 pte_t *ptep = NULL;
195 spinlock_t *ptl;
196 unsigned long addr;
197
198 for (addr = start; addr < end; addr += PAGE_SIZE) {
199 pte_t pte;
200 swp_entry_t entry;
201 struct page *page;
202
203 if (!ptep++) {
204 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
205 if (!ptep)
206 break;
207 }
208
209 pte = ptep_get(ptep);
210 if (!is_swap_pte(pte))
211 continue;
212 entry = pte_to_swp_entry(pte);
213 if (unlikely(non_swap_entry(entry)))
214 continue;
215
216 pte_unmap_unlock(ptep, ptl);
217 ptep = NULL;
218
219 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
220 vma, addr, &splug);
221 if (page)
222 put_page(page);
223 }
224
225 if (ptep)
226 pte_unmap_unlock(ptep, ptl);
227 swap_read_unplug(splug);
228 cond_resched();
229
230 return 0;
231 }
232
233 static const struct mm_walk_ops swapin_walk_ops = {
234 .pmd_entry = swapin_walk_pmd_entry,
235 .walk_lock = PGWALK_RDLOCK,
236 };
237
238 static void shmem_swapin_range(struct vm_area_struct *vma,
239 unsigned long start, unsigned long end,
240 struct address_space *mapping)
241 {
242 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
243 pgoff_t end_index = linear_page_index(vma, end) - 1;
244 struct page *page;
245 struct swap_iocb *splug = NULL;
246
247 rcu_read_lock();
248 xas_for_each(&xas, page, end_index) {
249 unsigned long addr;
250 swp_entry_t entry;
251
252 if (!xa_is_value(page))
253 continue;
254 entry = radix_to_swp_entry(page);
255 /* There might be swapin error entries in shmem mapping. */
256 if (non_swap_entry(entry))
257 continue;
258
259 addr = vma->vm_start +
260 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
261 xas_pause(&xas);
262 rcu_read_unlock();
263
264 page = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
265 vma, addr, &splug);
266 if (page)
267 put_page(page);
268
269 rcu_read_lock();
270 }
271 rcu_read_unlock();
272 swap_read_unplug(splug);
273 }
274 #endif /* CONFIG_SWAP */
275
276 /*
277 * Schedule all required I/O operations. Do not wait for completion.
278 */
279 static long madvise_willneed(struct vm_area_struct *vma,
280 struct vm_area_struct **prev,
281 unsigned long start, unsigned long end)
282 {
283 struct mm_struct *mm = vma->vm_mm;
284 struct file *file = vma->vm_file;
285 loff_t offset;
286
287 *prev = vma;
288 #ifdef CONFIG_SWAP
289 if (!file) {
290 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
291 lru_add_drain(); /* Push any new pages onto the LRU now */
292 return 0;
293 }
294
295 if (shmem_mapping(file->f_mapping)) {
296 shmem_swapin_range(vma, start, end, file->f_mapping);
297 lru_add_drain(); /* Push any new pages onto the LRU now */
298 return 0;
299 }
300 #else
301 if (!file)
302 return -EBADF;
303 #endif
304
305 if (IS_DAX(file_inode(file))) {
306 /* no bad return value, but ignore advice */
307 return 0;
308 }
309
310 /*
311 * Filesystem's fadvise may need to take various locks. We need to
312 * explicitly grab a reference because the vma (and hence the
313 * vma's reference to the file) can go away as soon as we drop
314 * mmap_lock.
315 */
316 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
317 get_file(file);
318 offset = (loff_t)(start - vma->vm_start)
319 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
320 mmap_read_unlock(mm);
321 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
322 fput(file);
323 mmap_read_lock(mm);
324 return 0;
325 }
326
327 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
328 {
329 if (!vma->vm_file)
330 return false;
331 /*
332 * paging out pagecache only for non-anonymous mappings that correspond
333 * to the files the calling process could (if tried) open for writing;
334 * otherwise we'd be including shared non-exclusive mappings, which
335 * opens a side channel.
336 */
337 return inode_owner_or_capable(&nop_mnt_idmap,
338 file_inode(vma->vm_file)) ||
339 file_permission(vma->vm_file, MAY_WRITE) == 0;
340 }
341
342 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
343 unsigned long addr, unsigned long end,
344 struct mm_walk *walk)
345 {
346 struct madvise_walk_private *private = walk->private;
347 struct mmu_gather *tlb = private->tlb;
348 bool pageout = private->pageout;
349 struct mm_struct *mm = tlb->mm;
350 struct vm_area_struct *vma = walk->vma;
351 pte_t *start_pte, *pte, ptent;
352 spinlock_t *ptl;
353 struct folio *folio = NULL;
354 LIST_HEAD(folio_list);
355 bool pageout_anon_only_filter;
356
357 if (fatal_signal_pending(current))
358 return -EINTR;
359
360 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
361 !can_do_file_pageout(vma);
362
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 if (pmd_trans_huge(*pmd)) {
365 pmd_t orig_pmd;
366 unsigned long next = pmd_addr_end(addr, end);
367
368 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
369 ptl = pmd_trans_huge_lock(pmd, vma);
370 if (!ptl)
371 return 0;
372
373 orig_pmd = *pmd;
374 if (is_huge_zero_pmd(orig_pmd))
375 goto huge_unlock;
376
377 if (unlikely(!pmd_present(orig_pmd))) {
378 VM_BUG_ON(thp_migration_supported() &&
379 !is_pmd_migration_entry(orig_pmd));
380 goto huge_unlock;
381 }
382
383 folio = pfn_folio(pmd_pfn(orig_pmd));
384
385 /* Do not interfere with other mappings of this folio */
386 if (folio_estimated_sharers(folio) != 1)
387 goto huge_unlock;
388
389 if (pageout_anon_only_filter && !folio_test_anon(folio))
390 goto huge_unlock;
391
392 if (next - addr != HPAGE_PMD_SIZE) {
393 int err;
394
395 folio_get(folio);
396 spin_unlock(ptl);
397 folio_lock(folio);
398 err = split_folio(folio);
399 folio_unlock(folio);
400 folio_put(folio);
401 if (!err)
402 goto regular_folio;
403 return 0;
404 }
405
406 if (pmd_young(orig_pmd)) {
407 pmdp_invalidate(vma, addr, pmd);
408 orig_pmd = pmd_mkold(orig_pmd);
409
410 set_pmd_at(mm, addr, pmd, orig_pmd);
411 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
412 }
413
414 folio_clear_referenced(folio);
415 folio_test_clear_young(folio);
416 if (folio_test_active(folio))
417 folio_set_workingset(folio);
418 if (pageout) {
419 if (folio_isolate_lru(folio)) {
420 if (folio_test_unevictable(folio))
421 folio_putback_lru(folio);
422 else
423 list_add(&folio->lru, &folio_list);
424 }
425 } else
426 folio_deactivate(folio);
427 huge_unlock:
428 spin_unlock(ptl);
429 if (pageout)
430 reclaim_pages(&folio_list);
431 return 0;
432 }
433
434 regular_folio:
435 #endif
436 tlb_change_page_size(tlb, PAGE_SIZE);
437 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
438 if (!start_pte)
439 return 0;
440 flush_tlb_batched_pending(mm);
441 arch_enter_lazy_mmu_mode();
442 for (; addr < end; pte++, addr += PAGE_SIZE) {
443 ptent = ptep_get(pte);
444
445 if (pte_none(ptent))
446 continue;
447
448 if (!pte_present(ptent))
449 continue;
450
451 folio = vm_normal_folio(vma, addr, ptent);
452 if (!folio || folio_is_zone_device(folio))
453 continue;
454
455 /*
456 * Creating a THP page is expensive so split it only if we
457 * are sure it's worth. Split it if we are only owner.
458 */
459 if (folio_test_large(folio)) {
460 int err;
461
462 if (folio_estimated_sharers(folio) != 1)
463 break;
464 if (pageout_anon_only_filter && !folio_test_anon(folio))
465 break;
466 if (!folio_trylock(folio))
467 break;
468 folio_get(folio);
469 arch_leave_lazy_mmu_mode();
470 pte_unmap_unlock(start_pte, ptl);
471 start_pte = NULL;
472 err = split_folio(folio);
473 folio_unlock(folio);
474 folio_put(folio);
475 if (err)
476 break;
477 start_pte = pte =
478 pte_offset_map_lock(mm, pmd, addr, &ptl);
479 if (!start_pte)
480 break;
481 arch_enter_lazy_mmu_mode();
482 pte--;
483 addr -= PAGE_SIZE;
484 continue;
485 }
486
487 /*
488 * Do not interfere with other mappings of this folio and
489 * non-LRU folio.
490 */
491 if (!folio_test_lru(folio) || folio_mapcount(folio) != 1)
492 continue;
493
494 if (pageout_anon_only_filter && !folio_test_anon(folio))
495 continue;
496
497 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
498
499 if (pte_young(ptent)) {
500 ptent = ptep_get_and_clear_full(mm, addr, pte,
501 tlb->fullmm);
502 ptent = pte_mkold(ptent);
503 set_pte_at(mm, addr, pte, ptent);
504 tlb_remove_tlb_entry(tlb, pte, addr);
505 }
506
507 /*
508 * We are deactivating a folio for accelerating reclaiming.
509 * VM couldn't reclaim the folio unless we clear PG_young.
510 * As a side effect, it makes confuse idle-page tracking
511 * because they will miss recent referenced history.
512 */
513 folio_clear_referenced(folio);
514 folio_test_clear_young(folio);
515 if (folio_test_active(folio))
516 folio_set_workingset(folio);
517 if (pageout) {
518 if (folio_isolate_lru(folio)) {
519 if (folio_test_unevictable(folio))
520 folio_putback_lru(folio);
521 else
522 list_add(&folio->lru, &folio_list);
523 }
524 } else
525 folio_deactivate(folio);
526 }
527
528 if (start_pte) {
529 arch_leave_lazy_mmu_mode();
530 pte_unmap_unlock(start_pte, ptl);
531 }
532 if (pageout)
533 reclaim_pages(&folio_list);
534 cond_resched();
535
536 return 0;
537 }
538
539 static const struct mm_walk_ops cold_walk_ops = {
540 .pmd_entry = madvise_cold_or_pageout_pte_range,
541 .walk_lock = PGWALK_RDLOCK,
542 };
543
544 static void madvise_cold_page_range(struct mmu_gather *tlb,
545 struct vm_area_struct *vma,
546 unsigned long addr, unsigned long end)
547 {
548 struct madvise_walk_private walk_private = {
549 .pageout = false,
550 .tlb = tlb,
551 };
552
553 tlb_start_vma(tlb, vma);
554 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
555 tlb_end_vma(tlb, vma);
556 }
557
558 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
559 {
560 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
561 }
562
563 static long madvise_cold(struct vm_area_struct *vma,
564 struct vm_area_struct **prev,
565 unsigned long start_addr, unsigned long end_addr)
566 {
567 struct mm_struct *mm = vma->vm_mm;
568 struct mmu_gather tlb;
569
570 *prev = vma;
571 if (!can_madv_lru_vma(vma))
572 return -EINVAL;
573
574 lru_add_drain();
575 tlb_gather_mmu(&tlb, mm);
576 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
577 tlb_finish_mmu(&tlb);
578
579 return 0;
580 }
581
582 static void madvise_pageout_page_range(struct mmu_gather *tlb,
583 struct vm_area_struct *vma,
584 unsigned long addr, unsigned long end)
585 {
586 struct madvise_walk_private walk_private = {
587 .pageout = true,
588 .tlb = tlb,
589 };
590
591 tlb_start_vma(tlb, vma);
592 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
593 tlb_end_vma(tlb, vma);
594 }
595
596 static long madvise_pageout(struct vm_area_struct *vma,
597 struct vm_area_struct **prev,
598 unsigned long start_addr, unsigned long end_addr)
599 {
600 struct mm_struct *mm = vma->vm_mm;
601 struct mmu_gather tlb;
602
603 *prev = vma;
604 if (!can_madv_lru_vma(vma))
605 return -EINVAL;
606
607 /*
608 * If the VMA belongs to a private file mapping, there can be private
609 * dirty pages which can be paged out if even this process is neither
610 * owner nor write capable of the file. We allow private file mappings
611 * further to pageout dirty anon pages.
612 */
613 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
614 (vma->vm_flags & VM_MAYSHARE)))
615 return 0;
616
617 lru_add_drain();
618 tlb_gather_mmu(&tlb, mm);
619 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
620 tlb_finish_mmu(&tlb);
621
622 return 0;
623 }
624
625 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
626 unsigned long end, struct mm_walk *walk)
627
628 {
629 struct mmu_gather *tlb = walk->private;
630 struct mm_struct *mm = tlb->mm;
631 struct vm_area_struct *vma = walk->vma;
632 spinlock_t *ptl;
633 pte_t *start_pte, *pte, ptent;
634 struct folio *folio;
635 int nr_swap = 0;
636 unsigned long next;
637
638 next = pmd_addr_end(addr, end);
639 if (pmd_trans_huge(*pmd))
640 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
641 return 0;
642
643 tlb_change_page_size(tlb, PAGE_SIZE);
644 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
645 if (!start_pte)
646 return 0;
647 flush_tlb_batched_pending(mm);
648 arch_enter_lazy_mmu_mode();
649 for (; addr != end; pte++, addr += PAGE_SIZE) {
650 ptent = ptep_get(pte);
651
652 if (pte_none(ptent))
653 continue;
654 /*
655 * If the pte has swp_entry, just clear page table to
656 * prevent swap-in which is more expensive rather than
657 * (page allocation + zeroing).
658 */
659 if (!pte_present(ptent)) {
660 swp_entry_t entry;
661
662 entry = pte_to_swp_entry(ptent);
663 if (!non_swap_entry(entry)) {
664 nr_swap--;
665 free_swap_and_cache(entry);
666 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
667 } else if (is_hwpoison_entry(entry) ||
668 is_poisoned_swp_entry(entry)) {
669 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
670 }
671 continue;
672 }
673
674 folio = vm_normal_folio(vma, addr, ptent);
675 if (!folio || folio_is_zone_device(folio))
676 continue;
677
678 /*
679 * If pmd isn't transhuge but the folio is large and
680 * is owned by only this process, split it and
681 * deactivate all pages.
682 */
683 if (folio_test_large(folio)) {
684 int err;
685
686 if (folio_estimated_sharers(folio) != 1)
687 break;
688 if (!folio_trylock(folio))
689 break;
690 folio_get(folio);
691 arch_leave_lazy_mmu_mode();
692 pte_unmap_unlock(start_pte, ptl);
693 start_pte = NULL;
694 err = split_folio(folio);
695 folio_unlock(folio);
696 folio_put(folio);
697 if (err)
698 break;
699 start_pte = pte =
700 pte_offset_map_lock(mm, pmd, addr, &ptl);
701 if (!start_pte)
702 break;
703 arch_enter_lazy_mmu_mode();
704 pte--;
705 addr -= PAGE_SIZE;
706 continue;
707 }
708
709 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
710 if (!folio_trylock(folio))
711 continue;
712 /*
713 * If folio is shared with others, we mustn't clear
714 * the folio's dirty flag.
715 */
716 if (folio_mapcount(folio) != 1) {
717 folio_unlock(folio);
718 continue;
719 }
720
721 if (folio_test_swapcache(folio) &&
722 !folio_free_swap(folio)) {
723 folio_unlock(folio);
724 continue;
725 }
726
727 folio_clear_dirty(folio);
728 folio_unlock(folio);
729 }
730
731 if (pte_young(ptent) || pte_dirty(ptent)) {
732 /*
733 * Some of architecture(ex, PPC) don't update TLB
734 * with set_pte_at and tlb_remove_tlb_entry so for
735 * the portability, remap the pte with old|clean
736 * after pte clearing.
737 */
738 ptent = ptep_get_and_clear_full(mm, addr, pte,
739 tlb->fullmm);
740
741 ptent = pte_mkold(ptent);
742 ptent = pte_mkclean(ptent);
743 set_pte_at(mm, addr, pte, ptent);
744 tlb_remove_tlb_entry(tlb, pte, addr);
745 }
746 folio_mark_lazyfree(folio);
747 }
748
749 if (nr_swap) {
750 if (current->mm == mm)
751 sync_mm_rss(mm);
752 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
753 }
754 if (start_pte) {
755 arch_leave_lazy_mmu_mode();
756 pte_unmap_unlock(start_pte, ptl);
757 }
758 cond_resched();
759
760 return 0;
761 }
762
763 static const struct mm_walk_ops madvise_free_walk_ops = {
764 .pmd_entry = madvise_free_pte_range,
765 .walk_lock = PGWALK_RDLOCK,
766 };
767
768 static int madvise_free_single_vma(struct vm_area_struct *vma,
769 unsigned long start_addr, unsigned long end_addr)
770 {
771 struct mm_struct *mm = vma->vm_mm;
772 struct mmu_notifier_range range;
773 struct mmu_gather tlb;
774
775 /* MADV_FREE works for only anon vma at the moment */
776 if (!vma_is_anonymous(vma))
777 return -EINVAL;
778
779 range.start = max(vma->vm_start, start_addr);
780 if (range.start >= vma->vm_end)
781 return -EINVAL;
782 range.end = min(vma->vm_end, end_addr);
783 if (range.end <= vma->vm_start)
784 return -EINVAL;
785 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
786 range.start, range.end);
787
788 lru_add_drain();
789 tlb_gather_mmu(&tlb, mm);
790 update_hiwater_rss(mm);
791
792 mmu_notifier_invalidate_range_start(&range);
793 tlb_start_vma(&tlb, vma);
794 walk_page_range(vma->vm_mm, range.start, range.end,
795 &madvise_free_walk_ops, &tlb);
796 tlb_end_vma(&tlb, vma);
797 mmu_notifier_invalidate_range_end(&range);
798 tlb_finish_mmu(&tlb);
799
800 return 0;
801 }
802
803 /*
804 * Application no longer needs these pages. If the pages are dirty,
805 * it's OK to just throw them away. The app will be more careful about
806 * data it wants to keep. Be sure to free swap resources too. The
807 * zap_page_range_single call sets things up for shrink_active_list to actually
808 * free these pages later if no one else has touched them in the meantime,
809 * although we could add these pages to a global reuse list for
810 * shrink_active_list to pick up before reclaiming other pages.
811 *
812 * NB: This interface discards data rather than pushes it out to swap,
813 * as some implementations do. This has performance implications for
814 * applications like large transactional databases which want to discard
815 * pages in anonymous maps after committing to backing store the data
816 * that was kept in them. There is no reason to write this data out to
817 * the swap area if the application is discarding it.
818 *
819 * An interface that causes the system to free clean pages and flush
820 * dirty pages is already available as msync(MS_INVALIDATE).
821 */
822 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
823 unsigned long start, unsigned long end)
824 {
825 zap_page_range_single(vma, start, end - start, NULL);
826 return 0;
827 }
828
829 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
830 unsigned long start,
831 unsigned long *end,
832 int behavior)
833 {
834 if (!is_vm_hugetlb_page(vma)) {
835 unsigned int forbidden = VM_PFNMAP;
836
837 if (behavior != MADV_DONTNEED_LOCKED)
838 forbidden |= VM_LOCKED;
839
840 return !(vma->vm_flags & forbidden);
841 }
842
843 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
844 return false;
845 if (start & ~huge_page_mask(hstate_vma(vma)))
846 return false;
847
848 /*
849 * Madvise callers expect the length to be rounded up to PAGE_SIZE
850 * boundaries, and may be unaware that this VMA uses huge pages.
851 * Avoid unexpected data loss by rounding down the number of
852 * huge pages freed.
853 */
854 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
855
856 return true;
857 }
858
859 static long madvise_dontneed_free(struct vm_area_struct *vma,
860 struct vm_area_struct **prev,
861 unsigned long start, unsigned long end,
862 int behavior)
863 {
864 struct mm_struct *mm = vma->vm_mm;
865
866 *prev = vma;
867 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
868 return -EINVAL;
869
870 if (start == end)
871 return 0;
872
873 if (!userfaultfd_remove(vma, start, end)) {
874 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
875
876 mmap_read_lock(mm);
877 vma = vma_lookup(mm, start);
878 if (!vma)
879 return -ENOMEM;
880 /*
881 * Potential end adjustment for hugetlb vma is OK as
882 * the check below keeps end within vma.
883 */
884 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
885 behavior))
886 return -EINVAL;
887 if (end > vma->vm_end) {
888 /*
889 * Don't fail if end > vma->vm_end. If the old
890 * vma was split while the mmap_lock was
891 * released the effect of the concurrent
892 * operation may not cause madvise() to
893 * have an undefined result. There may be an
894 * adjacent next vma that we'll walk
895 * next. userfaultfd_remove() will generate an
896 * UFFD_EVENT_REMOVE repetition on the
897 * end-vma->vm_end range, but the manager can
898 * handle a repetition fine.
899 */
900 end = vma->vm_end;
901 }
902 VM_WARN_ON(start >= end);
903 }
904
905 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
906 return madvise_dontneed_single_vma(vma, start, end);
907 else if (behavior == MADV_FREE)
908 return madvise_free_single_vma(vma, start, end);
909 else
910 return -EINVAL;
911 }
912
913 static long madvise_populate(struct vm_area_struct *vma,
914 struct vm_area_struct **prev,
915 unsigned long start, unsigned long end,
916 int behavior)
917 {
918 const bool write = behavior == MADV_POPULATE_WRITE;
919 struct mm_struct *mm = vma->vm_mm;
920 unsigned long tmp_end;
921 int locked = 1;
922 long pages;
923
924 *prev = vma;
925
926 while (start < end) {
927 /*
928 * We might have temporarily dropped the lock. For example,
929 * our VMA might have been split.
930 */
931 if (!vma || start >= vma->vm_end) {
932 vma = vma_lookup(mm, start);
933 if (!vma)
934 return -ENOMEM;
935 }
936
937 tmp_end = min_t(unsigned long, end, vma->vm_end);
938 /* Populate (prefault) page tables readable/writable. */
939 pages = faultin_vma_page_range(vma, start, tmp_end, write,
940 &locked);
941 if (!locked) {
942 mmap_read_lock(mm);
943 locked = 1;
944 *prev = NULL;
945 vma = NULL;
946 }
947 if (pages < 0) {
948 switch (pages) {
949 case -EINTR:
950 return -EINTR;
951 case -EINVAL: /* Incompatible mappings / permissions. */
952 return -EINVAL;
953 case -EHWPOISON:
954 return -EHWPOISON;
955 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
956 return -EFAULT;
957 default:
958 pr_warn_once("%s: unhandled return value: %ld\n",
959 __func__, pages);
960 fallthrough;
961 case -ENOMEM:
962 return -ENOMEM;
963 }
964 }
965 start += pages * PAGE_SIZE;
966 }
967 return 0;
968 }
969
970 /*
971 * Application wants to free up the pages and associated backing store.
972 * This is effectively punching a hole into the middle of a file.
973 */
974 static long madvise_remove(struct vm_area_struct *vma,
975 struct vm_area_struct **prev,
976 unsigned long start, unsigned long end)
977 {
978 loff_t offset;
979 int error;
980 struct file *f;
981 struct mm_struct *mm = vma->vm_mm;
982
983 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
984
985 if (vma->vm_flags & VM_LOCKED)
986 return -EINVAL;
987
988 f = vma->vm_file;
989
990 if (!f || !f->f_mapping || !f->f_mapping->host) {
991 return -EINVAL;
992 }
993
994 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
995 return -EACCES;
996
997 offset = (loff_t)(start - vma->vm_start)
998 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
999
1000 /*
1001 * Filesystem's fallocate may need to take i_rwsem. We need to
1002 * explicitly grab a reference because the vma (and hence the
1003 * vma's reference to the file) can go away as soon as we drop
1004 * mmap_lock.
1005 */
1006 get_file(f);
1007 if (userfaultfd_remove(vma, start, end)) {
1008 /* mmap_lock was not released by userfaultfd_remove() */
1009 mmap_read_unlock(mm);
1010 }
1011 error = vfs_fallocate(f,
1012 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1013 offset, end - start);
1014 fput(f);
1015 mmap_read_lock(mm);
1016 return error;
1017 }
1018
1019 /*
1020 * Apply an madvise behavior to a region of a vma. madvise_update_vma
1021 * will handle splitting a vm area into separate areas, each area with its own
1022 * behavior.
1023 */
1024 static int madvise_vma_behavior(struct vm_area_struct *vma,
1025 struct vm_area_struct **prev,
1026 unsigned long start, unsigned long end,
1027 unsigned long behavior)
1028 {
1029 int error;
1030 struct anon_vma_name *anon_name;
1031 unsigned long new_flags = vma->vm_flags;
1032
1033 switch (behavior) {
1034 case MADV_REMOVE:
1035 return madvise_remove(vma, prev, start, end);
1036 case MADV_WILLNEED:
1037 return madvise_willneed(vma, prev, start, end);
1038 case MADV_COLD:
1039 return madvise_cold(vma, prev, start, end);
1040 case MADV_PAGEOUT:
1041 return madvise_pageout(vma, prev, start, end);
1042 case MADV_FREE:
1043 case MADV_DONTNEED:
1044 case MADV_DONTNEED_LOCKED:
1045 return madvise_dontneed_free(vma, prev, start, end, behavior);
1046 case MADV_POPULATE_READ:
1047 case MADV_POPULATE_WRITE:
1048 return madvise_populate(vma, prev, start, end, behavior);
1049 case MADV_NORMAL:
1050 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1051 break;
1052 case MADV_SEQUENTIAL:
1053 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1054 break;
1055 case MADV_RANDOM:
1056 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1057 break;
1058 case MADV_DONTFORK:
1059 new_flags |= VM_DONTCOPY;
1060 break;
1061 case MADV_DOFORK:
1062 if (vma->vm_flags & VM_IO)
1063 return -EINVAL;
1064 new_flags &= ~VM_DONTCOPY;
1065 break;
1066 case MADV_WIPEONFORK:
1067 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1068 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1069 return -EINVAL;
1070 new_flags |= VM_WIPEONFORK;
1071 break;
1072 case MADV_KEEPONFORK:
1073 new_flags &= ~VM_WIPEONFORK;
1074 break;
1075 case MADV_DONTDUMP:
1076 new_flags |= VM_DONTDUMP;
1077 break;
1078 case MADV_DODUMP:
1079 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1080 return -EINVAL;
1081 new_flags &= ~VM_DONTDUMP;
1082 break;
1083 case MADV_MERGEABLE:
1084 case MADV_UNMERGEABLE:
1085 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1086 if (error)
1087 goto out;
1088 break;
1089 case MADV_HUGEPAGE:
1090 case MADV_NOHUGEPAGE:
1091 error = hugepage_madvise(vma, &new_flags, behavior);
1092 if (error)
1093 goto out;
1094 break;
1095 case MADV_COLLAPSE:
1096 return madvise_collapse(vma, prev, start, end);
1097 }
1098
1099 anon_name = anon_vma_name(vma);
1100 anon_vma_name_get(anon_name);
1101 error = madvise_update_vma(vma, prev, start, end, new_flags,
1102 anon_name);
1103 anon_vma_name_put(anon_name);
1104
1105 out:
1106 /*
1107 * madvise() returns EAGAIN if kernel resources, such as
1108 * slab, are temporarily unavailable.
1109 */
1110 if (error == -ENOMEM)
1111 error = -EAGAIN;
1112 return error;
1113 }
1114
1115 #ifdef CONFIG_MEMORY_FAILURE
1116 /*
1117 * Error injection support for memory error handling.
1118 */
1119 static int madvise_inject_error(int behavior,
1120 unsigned long start, unsigned long end)
1121 {
1122 unsigned long size;
1123
1124 if (!capable(CAP_SYS_ADMIN))
1125 return -EPERM;
1126
1127
1128 for (; start < end; start += size) {
1129 unsigned long pfn;
1130 struct page *page;
1131 int ret;
1132
1133 ret = get_user_pages_fast(start, 1, 0, &page);
1134 if (ret != 1)
1135 return ret;
1136 pfn = page_to_pfn(page);
1137
1138 /*
1139 * When soft offlining hugepages, after migrating the page
1140 * we dissolve it, therefore in the second loop "page" will
1141 * no longer be a compound page.
1142 */
1143 size = page_size(compound_head(page));
1144
1145 if (behavior == MADV_SOFT_OFFLINE) {
1146 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1147 pfn, start);
1148 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1149 } else {
1150 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1151 pfn, start);
1152 ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1153 if (ret == -EOPNOTSUPP)
1154 ret = 0;
1155 }
1156
1157 if (ret)
1158 return ret;
1159 }
1160
1161 return 0;
1162 }
1163 #endif
1164
1165 static bool
1166 madvise_behavior_valid(int behavior)
1167 {
1168 switch (behavior) {
1169 case MADV_DOFORK:
1170 case MADV_DONTFORK:
1171 case MADV_NORMAL:
1172 case MADV_SEQUENTIAL:
1173 case MADV_RANDOM:
1174 case MADV_REMOVE:
1175 case MADV_WILLNEED:
1176 case MADV_DONTNEED:
1177 case MADV_DONTNEED_LOCKED:
1178 case MADV_FREE:
1179 case MADV_COLD:
1180 case MADV_PAGEOUT:
1181 case MADV_POPULATE_READ:
1182 case MADV_POPULATE_WRITE:
1183 #ifdef CONFIG_KSM
1184 case MADV_MERGEABLE:
1185 case MADV_UNMERGEABLE:
1186 #endif
1187 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1188 case MADV_HUGEPAGE:
1189 case MADV_NOHUGEPAGE:
1190 case MADV_COLLAPSE:
1191 #endif
1192 case MADV_DONTDUMP:
1193 case MADV_DODUMP:
1194 case MADV_WIPEONFORK:
1195 case MADV_KEEPONFORK:
1196 #ifdef CONFIG_MEMORY_FAILURE
1197 case MADV_SOFT_OFFLINE:
1198 case MADV_HWPOISON:
1199 #endif
1200 return true;
1201
1202 default:
1203 return false;
1204 }
1205 }
1206
1207 static bool process_madvise_behavior_valid(int behavior)
1208 {
1209 switch (behavior) {
1210 case MADV_COLD:
1211 case MADV_PAGEOUT:
1212 case MADV_WILLNEED:
1213 case MADV_COLLAPSE:
1214 return true;
1215 default:
1216 return false;
1217 }
1218 }
1219
1220 /*
1221 * Walk the vmas in range [start,end), and call the visit function on each one.
1222 * The visit function will get start and end parameters that cover the overlap
1223 * between the current vma and the original range. Any unmapped regions in the
1224 * original range will result in this function returning -ENOMEM while still
1225 * calling the visit function on all of the existing vmas in the range.
1226 * Must be called with the mmap_lock held for reading or writing.
1227 */
1228 static
1229 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1230 unsigned long end, unsigned long arg,
1231 int (*visit)(struct vm_area_struct *vma,
1232 struct vm_area_struct **prev, unsigned long start,
1233 unsigned long end, unsigned long arg))
1234 {
1235 struct vm_area_struct *vma;
1236 struct vm_area_struct *prev;
1237 unsigned long tmp;
1238 int unmapped_error = 0;
1239
1240 /*
1241 * If the interval [start,end) covers some unmapped address
1242 * ranges, just ignore them, but return -ENOMEM at the end.
1243 * - different from the way of handling in mlock etc.
1244 */
1245 vma = find_vma_prev(mm, start, &prev);
1246 if (vma && start > vma->vm_start)
1247 prev = vma;
1248
1249 for (;;) {
1250 int error;
1251
1252 /* Still start < end. */
1253 if (!vma)
1254 return -ENOMEM;
1255
1256 /* Here start < (end|vma->vm_end). */
1257 if (start < vma->vm_start) {
1258 unmapped_error = -ENOMEM;
1259 start = vma->vm_start;
1260 if (start >= end)
1261 break;
1262 }
1263
1264 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1265 tmp = vma->vm_end;
1266 if (end < tmp)
1267 tmp = end;
1268
1269 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1270 error = visit(vma, &prev, start, tmp, arg);
1271 if (error)
1272 return error;
1273 start = tmp;
1274 if (prev && start < prev->vm_end)
1275 start = prev->vm_end;
1276 if (start >= end)
1277 break;
1278 if (prev)
1279 vma = find_vma(mm, prev->vm_end);
1280 else /* madvise_remove dropped mmap_lock */
1281 vma = find_vma(mm, start);
1282 }
1283
1284 return unmapped_error;
1285 }
1286
1287 #ifdef CONFIG_ANON_VMA_NAME
1288 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1289 struct vm_area_struct **prev,
1290 unsigned long start, unsigned long end,
1291 unsigned long anon_name)
1292 {
1293 int error;
1294
1295 /* Only anonymous mappings can be named */
1296 if (vma->vm_file && !vma_is_anon_shmem(vma))
1297 return -EBADF;
1298
1299 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1300 (struct anon_vma_name *)anon_name);
1301
1302 /*
1303 * madvise() returns EAGAIN if kernel resources, such as
1304 * slab, are temporarily unavailable.
1305 */
1306 if (error == -ENOMEM)
1307 error = -EAGAIN;
1308 return error;
1309 }
1310
1311 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1312 unsigned long len_in, struct anon_vma_name *anon_name)
1313 {
1314 unsigned long end;
1315 unsigned long len;
1316
1317 if (start & ~PAGE_MASK)
1318 return -EINVAL;
1319 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1320
1321 /* Check to see whether len was rounded up from small -ve to zero */
1322 if (len_in && !len)
1323 return -EINVAL;
1324
1325 end = start + len;
1326 if (end < start)
1327 return -EINVAL;
1328
1329 if (end == start)
1330 return 0;
1331
1332 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1333 madvise_vma_anon_name);
1334 }
1335 #endif /* CONFIG_ANON_VMA_NAME */
1336 /*
1337 * The madvise(2) system call.
1338 *
1339 * Applications can use madvise() to advise the kernel how it should
1340 * handle paging I/O in this VM area. The idea is to help the kernel
1341 * use appropriate read-ahead and caching techniques. The information
1342 * provided is advisory only, and can be safely disregarded by the
1343 * kernel without affecting the correct operation of the application.
1344 *
1345 * behavior values:
1346 * MADV_NORMAL - the default behavior is to read clusters. This
1347 * results in some read-ahead and read-behind.
1348 * MADV_RANDOM - the system should read the minimum amount of data
1349 * on any access, since it is unlikely that the appli-
1350 * cation will need more than what it asks for.
1351 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1352 * once, so they can be aggressively read ahead, and
1353 * can be freed soon after they are accessed.
1354 * MADV_WILLNEED - the application is notifying the system to read
1355 * some pages ahead.
1356 * MADV_DONTNEED - the application is finished with the given range,
1357 * so the kernel can free resources associated with it.
1358 * MADV_FREE - the application marks pages in the given range as lazy free,
1359 * where actual purges are postponed until memory pressure happens.
1360 * MADV_REMOVE - the application wants to free up the given range of
1361 * pages and associated backing store.
1362 * MADV_DONTFORK - omit this area from child's address space when forking:
1363 * typically, to avoid COWing pages pinned by get_user_pages().
1364 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1365 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1366 * range after a fork.
1367 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1368 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1369 * were corrupted by unrecoverable hardware memory failure.
1370 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1371 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1372 * this area with pages of identical content from other such areas.
1373 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1374 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1375 * huge pages in the future. Existing pages might be coalesced and
1376 * new pages might be allocated as THP.
1377 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1378 * transparent huge pages so the existing pages will not be
1379 * coalesced into THP and new pages will not be allocated as THP.
1380 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1381 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1382 * from being included in its core dump.
1383 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1384 * MADV_COLD - the application is not expected to use this memory soon,
1385 * deactivate pages in this range so that they can be reclaimed
1386 * easily if memory pressure happens.
1387 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1388 * page out the pages in this range immediately.
1389 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1390 * triggering read faults if required
1391 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1392 * triggering write faults if required
1393 *
1394 * return values:
1395 * zero - success
1396 * -EINVAL - start + len < 0, start is not page-aligned,
1397 * "behavior" is not a valid value, or application
1398 * is attempting to release locked or shared pages,
1399 * or the specified address range includes file, Huge TLB,
1400 * MAP_SHARED or VMPFNMAP range.
1401 * -ENOMEM - addresses in the specified range are not currently
1402 * mapped, or are outside the AS of the process.
1403 * -EIO - an I/O error occurred while paging in data.
1404 * -EBADF - map exists, but area maps something that isn't a file.
1405 * -EAGAIN - a kernel resource was temporarily unavailable.
1406 */
1407 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1408 {
1409 unsigned long end;
1410 int error;
1411 int write;
1412 size_t len;
1413 struct blk_plug plug;
1414
1415 if (!madvise_behavior_valid(behavior))
1416 return -EINVAL;
1417
1418 if (!PAGE_ALIGNED(start))
1419 return -EINVAL;
1420 len = PAGE_ALIGN(len_in);
1421
1422 /* Check to see whether len was rounded up from small -ve to zero */
1423 if (len_in && !len)
1424 return -EINVAL;
1425
1426 end = start + len;
1427 if (end < start)
1428 return -EINVAL;
1429
1430 if (end == start)
1431 return 0;
1432
1433 #ifdef CONFIG_MEMORY_FAILURE
1434 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1435 return madvise_inject_error(behavior, start, start + len_in);
1436 #endif
1437
1438 write = madvise_need_mmap_write(behavior);
1439 if (write) {
1440 if (mmap_write_lock_killable(mm))
1441 return -EINTR;
1442 } else {
1443 mmap_read_lock(mm);
1444 }
1445
1446 start = untagged_addr_remote(mm, start);
1447 end = start + len;
1448
1449 blk_start_plug(&plug);
1450 error = madvise_walk_vmas(mm, start, end, behavior,
1451 madvise_vma_behavior);
1452 blk_finish_plug(&plug);
1453 if (write)
1454 mmap_write_unlock(mm);
1455 else
1456 mmap_read_unlock(mm);
1457
1458 return error;
1459 }
1460
1461 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1462 {
1463 return do_madvise(current->mm, start, len_in, behavior);
1464 }
1465
1466 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1467 size_t, vlen, int, behavior, unsigned int, flags)
1468 {
1469 ssize_t ret;
1470 struct iovec iovstack[UIO_FASTIOV];
1471 struct iovec *iov = iovstack;
1472 struct iov_iter iter;
1473 struct task_struct *task;
1474 struct mm_struct *mm;
1475 size_t total_len;
1476 unsigned int f_flags;
1477
1478 if (flags != 0) {
1479 ret = -EINVAL;
1480 goto out;
1481 }
1482
1483 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1484 if (ret < 0)
1485 goto out;
1486
1487 task = pidfd_get_task(pidfd, &f_flags);
1488 if (IS_ERR(task)) {
1489 ret = PTR_ERR(task);
1490 goto free_iov;
1491 }
1492
1493 if (!process_madvise_behavior_valid(behavior)) {
1494 ret = -EINVAL;
1495 goto release_task;
1496 }
1497
1498 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1499 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1500 if (IS_ERR_OR_NULL(mm)) {
1501 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1502 goto release_task;
1503 }
1504
1505 /*
1506 * Require CAP_SYS_NICE for influencing process performance. Note that
1507 * only non-destructive hints are currently supported.
1508 */
1509 if (!capable(CAP_SYS_NICE)) {
1510 ret = -EPERM;
1511 goto release_mm;
1512 }
1513
1514 total_len = iov_iter_count(&iter);
1515
1516 while (iov_iter_count(&iter)) {
1517 ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1518 iter_iov_len(&iter), behavior);
1519 if (ret < 0)
1520 break;
1521 iov_iter_advance(&iter, iter_iov_len(&iter));
1522 }
1523
1524 ret = (total_len - iov_iter_count(&iter)) ? : ret;
1525
1526 release_mm:
1527 mmput(mm);
1528 release_task:
1529 put_task_struct(task);
1530 free_iov:
1531 kfree(iov);
1532 out:
1533 return ret;
1534 }