]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/mmap.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
94
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 }
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105 * Requires inode->i_mapping->i_mmap_rwsem
106 */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
109 {
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
112
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
121 */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 struct file *file = vma->vm_file;
125
126 if (file) {
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
131 }
132 }
133
134 /*
135 * Close a vm structure and free it.
136 */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 might_sleep();
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
142 if (vma->vm_file)
143 fput(vma->vm_file);
144 mpol_put(vma_policy(vma));
145 if (unreachable)
146 __vm_area_free(vma);
147 else
148 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 unsigned long min)
153 {
154 return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158 * check_brk_limits() - Use platform specific check of range & verify mlock
159 * limits.
160 * @addr: The address to check
161 * @len: The size of increase.
162 *
163 * Return: 0 on success.
164 */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 unsigned long mapped_addr;
168
169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 if (IS_ERR_VALUE(mapped_addr))
171 return mapped_addr;
172
173 return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 unsigned long newbrk, oldbrk, origbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *brkvma, *next = NULL;
183 unsigned long min_brk;
184 bool populate = false;
185 LIST_HEAD(uf);
186 struct vma_iterator vmi;
187
188 if (mmap_write_lock_killable(mm))
189 return -EINTR;
190
191 origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203 #else
204 min_brk = mm->start_brk;
205 #endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk) {
222 mm->brk = brk;
223 goto success;
224 }
225
226 /* Always allow shrinking brk. */
227 if (brk <= mm->brk) {
228 /* Search one past newbrk */
229 vma_iter_init(&vmi, mm, newbrk);
230 brkvma = vma_find(&vmi, oldbrk);
231 if (!brkvma || brkvma->vm_start >= oldbrk)
232 goto out; /* mapping intersects with an existing non-brk vma. */
233 /*
234 * mm->brk must be protected by write mmap_lock.
235 * do_vma_munmap() will drop the lock on success, so update it
236 * before calling do_vma_munmap().
237 */
238 mm->brk = brk;
239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 goto out;
241
242 goto success_unlocked;
243 }
244
245 if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 goto out;
247
248 /*
249 * Only check if the next VMA is within the stack_guard_gap of the
250 * expansion area
251 */
252 vma_iter_init(&vmi, mm, oldbrk);
253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 goto out;
256
257 brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 /* Ok, looks good - let it rip. */
259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 goto out;
261
262 mm->brk = brk;
263 if (mm->def_flags & VM_LOCKED)
264 populate = true;
265
266 success:
267 mmap_write_unlock(mm);
268 success_unlocked:
269 userfaultfd_unmap_complete(mm, &uf);
270 if (populate)
271 mm_populate(oldbrk, newbrk - oldbrk);
272 return brk;
273
274 out:
275 mm->brk = origbrk;
276 mmap_write_unlock(mm);
277 return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283 int bug = 0;
284 int i = 0;
285 struct vm_area_struct *vma;
286 VMA_ITERATOR(vmi, mm, 0);
287
288 mt_validate(&mm->mm_mt);
289 for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 struct anon_vma *anon_vma = vma->anon_vma;
292 struct anon_vma_chain *avc;
293 #endif
294 unsigned long vmi_start, vmi_end;
295 bool warn = 0;
296
297 vmi_start = vma_iter_addr(&vmi);
298 vmi_end = vma_iter_end(&vmi);
299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 warn = 1;
301
302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 warn = 1;
304
305 if (warn) {
306 pr_emerg("issue in %s\n", current->comm);
307 dump_stack();
308 dump_vma(vma);
309 pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 vmi_start, vmi_end - 1);
311 vma_iter_dump_tree(&vmi);
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 if (anon_vma) {
316 anon_vma_lock_read(anon_vma);
317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 anon_vma_interval_tree_verify(avc);
319 anon_vma_unlock_read(anon_vma);
320 }
321 #endif
322 i++;
323 }
324 if (i != mm->map_count) {
325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 bug = 1;
327 }
328 VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336 * vma has some anon_vma assigned, and is already inserted on that
337 * anon_vma's interval trees.
338 *
339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340 * vma must be removed from the anon_vma's interval trees using
341 * anon_vma_interval_tree_pre_update_vma().
342 *
343 * After the update, the vma will be reinserted using
344 * anon_vma_interval_tree_post_update_vma().
345 *
346 * The entire update must be protected by exclusive mmap_lock and by
347 * the root anon_vma's mutex.
348 */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 struct anon_vma_chain *avc;
353
354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 struct anon_vma_chain *avc;
362
363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 unsigned long addr, unsigned long end)
369 {
370 VMA_ITERATOR(vmi, mm, addr);
371 struct vm_area_struct *vma;
372 unsigned long nr_pages = 0;
373
374 for_each_vma_range(vmi, vma, end) {
375 unsigned long vm_start = max(addr, vma->vm_start);
376 unsigned long vm_end = min(end, vma->vm_end);
377
378 nr_pages += PHYS_PFN(vm_end - vm_start);
379 }
380
381 return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385 struct address_space *mapping)
386 {
387 if (vma->vm_flags & VM_SHARED)
388 mapping_allow_writable(mapping);
389
390 flush_dcache_mmap_lock(mapping);
391 vma_interval_tree_insert(vma, &mapping->i_mmap);
392 flush_dcache_mmap_unlock(mapping);
393 }
394
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 VMA_ITERATOR(vmi, mm, 0);
398 struct address_space *mapping = NULL;
399
400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 if (vma_iter_prealloc(&vmi, vma))
402 return -ENOMEM;
403
404 vma_start_write(vma);
405
406 vma_iter_store(&vmi, vma);
407
408 if (vma->vm_file) {
409 mapping = vma->vm_file->f_mapping;
410 i_mmap_lock_write(mapping);
411 __vma_link_file(vma, mapping);
412 i_mmap_unlock_write(mapping);
413 }
414
415 mm->map_count++;
416 validate_mm(mm);
417 return 0;
418 }
419
420 /*
421 * init_multi_vma_prep() - Initializer for struct vma_prepare
422 * @vp: The vma_prepare struct
423 * @vma: The vma that will be altered once locked
424 * @next: The next vma if it is to be adjusted
425 * @remove: The first vma to be removed
426 * @remove2: The second vma to be removed
427 */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 struct vm_area_struct *vma, struct vm_area_struct *next,
430 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 memset(vp, 0, sizeof(struct vma_prepare));
433 vp->vma = vma;
434 vp->anon_vma = vma->anon_vma;
435 vp->remove = remove;
436 vp->remove2 = remove2;
437 vp->adj_next = next;
438 if (!vp->anon_vma && next)
439 vp->anon_vma = next->anon_vma;
440
441 vp->file = vma->vm_file;
442 if (vp->file)
443 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448 * init_vma_prep() - Initializer wrapper for vma_prepare struct
449 * @vp: The vma_prepare struct
450 * @vma: The vma that will be altered once locked
451 */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453 struct vm_area_struct *vma)
454 {
455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460 * vma_prepare() - Helper function for handling locking VMAs prior to altering
461 * @vp: The initialized vma_prepare struct
462 */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 if (vp->file) {
466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468 if (vp->adj_next)
469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 vp->adj_next->vm_end);
471
472 i_mmap_lock_write(vp->mapping);
473 if (vp->insert && vp->insert->vm_file) {
474 /*
475 * Put into interval tree now, so instantiated pages
476 * are visible to arm/parisc __flush_dcache_page
477 * throughout; but we cannot insert into address
478 * space until vma start or end is updated.
479 */
480 __vma_link_file(vp->insert,
481 vp->insert->vm_file->f_mapping);
482 }
483 }
484
485 if (vp->anon_vma) {
486 anon_vma_lock_write(vp->anon_vma);
487 anon_vma_interval_tree_pre_update_vma(vp->vma);
488 if (vp->adj_next)
489 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 }
491
492 if (vp->file) {
493 flush_dcache_mmap_lock(vp->mapping);
494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 if (vp->adj_next)
496 vma_interval_tree_remove(vp->adj_next,
497 &vp->mapping->i_mmap);
498 }
499
500 }
501
502 /*
503 * vma_complete- Helper function for handling the unlocking after altering VMAs,
504 * or for inserting a VMA.
505 *
506 * @vp: The vma_prepare struct
507 * @vmi: The vma iterator
508 * @mm: The mm_struct
509 */
510 static inline void vma_complete(struct vma_prepare *vp,
511 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 if (vp->file) {
514 if (vp->adj_next)
515 vma_interval_tree_insert(vp->adj_next,
516 &vp->mapping->i_mmap);
517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 flush_dcache_mmap_unlock(vp->mapping);
519 }
520
521 if (vp->remove && vp->file) {
522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 if (vp->remove2)
524 __remove_shared_vm_struct(vp->remove2, vp->file,
525 vp->mapping);
526 } else if (vp->insert) {
527 /*
528 * split_vma has split insert from vma, and needs
529 * us to insert it before dropping the locks
530 * (it may either follow vma or precede it).
531 */
532 vma_iter_store(vmi, vp->insert);
533 mm->map_count++;
534 }
535
536 if (vp->anon_vma) {
537 anon_vma_interval_tree_post_update_vma(vp->vma);
538 if (vp->adj_next)
539 anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 anon_vma_unlock_write(vp->anon_vma);
541 }
542
543 if (vp->file) {
544 i_mmap_unlock_write(vp->mapping);
545 uprobe_mmap(vp->vma);
546
547 if (vp->adj_next)
548 uprobe_mmap(vp->adj_next);
549 }
550
551 if (vp->remove) {
552 again:
553 vma_mark_detached(vp->remove, true);
554 if (vp->file) {
555 uprobe_munmap(vp->remove, vp->remove->vm_start,
556 vp->remove->vm_end);
557 fput(vp->file);
558 }
559 if (vp->remove->anon_vma)
560 anon_vma_merge(vp->vma, vp->remove);
561 mm->map_count--;
562 mpol_put(vma_policy(vp->remove));
563 if (!vp->remove2)
564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 vm_area_free(vp->remove);
566
567 /*
568 * In mprotect's case 6 (see comments on vma_merge),
569 * we are removing both mid and next vmas
570 */
571 if (vp->remove2) {
572 vp->remove = vp->remove2;
573 vp->remove2 = NULL;
574 goto again;
575 }
576 }
577 if (vp->insert && vp->file)
578 uprobe_mmap(vp->insert);
579 validate_mm(mm);
580 }
581
582 /*
583 * dup_anon_vma() - Helper function to duplicate anon_vma
584 * @dst: The destination VMA
585 * @src: The source VMA
586 *
587 * Returns: 0 on success.
588 */
589 static inline int dup_anon_vma(struct vm_area_struct *dst,
590 struct vm_area_struct *src)
591 {
592 /*
593 * Easily overlooked: when mprotect shifts the boundary, make sure the
594 * expanding vma has anon_vma set if the shrinking vma had, to cover any
595 * anon pages imported.
596 */
597 if (src->anon_vma && !dst->anon_vma) {
598 vma_assert_write_locked(dst);
599 dst->anon_vma = src->anon_vma;
600 return anon_vma_clone(dst, src);
601 }
602
603 return 0;
604 }
605
606 /*
607 * vma_expand - Expand an existing VMA
608 *
609 * @vmi: The vma iterator
610 * @vma: The vma to expand
611 * @start: The start of the vma
612 * @end: The exclusive end of the vma
613 * @pgoff: The page offset of vma
614 * @next: The current of next vma.
615 *
616 * Expand @vma to @start and @end. Can expand off the start and end. Will
617 * expand over @next if it's different from @vma and @end == @next->vm_end.
618 * Checking if the @vma can expand and merge with @next needs to be handled by
619 * the caller.
620 *
621 * Returns: 0 on success
622 */
623 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
624 unsigned long start, unsigned long end, pgoff_t pgoff,
625 struct vm_area_struct *next)
626 {
627 bool remove_next = false;
628 struct vma_prepare vp;
629
630 vma_start_write(vma);
631 if (next && (vma != next) && (end == next->vm_end)) {
632 int ret;
633
634 remove_next = true;
635 vma_start_write(next);
636 ret = dup_anon_vma(vma, next);
637 if (ret)
638 return ret;
639 }
640
641 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
642 /* Not merging but overwriting any part of next is not handled. */
643 VM_WARN_ON(next && !vp.remove &&
644 next != vma && end > next->vm_start);
645 /* Only handles expanding */
646 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
647
648 /* Note: vma iterator must be pointing to 'start' */
649 vma_iter_config(vmi, start, end);
650 if (vma_iter_prealloc(vmi, vma))
651 goto nomem;
652
653 vma_prepare(&vp);
654 vma_adjust_trans_huge(vma, start, end, 0);
655 vma->vm_start = start;
656 vma->vm_end = end;
657 vma->vm_pgoff = pgoff;
658 vma_iter_store(vmi, vma);
659
660 vma_complete(&vp, vmi, vma->vm_mm);
661 return 0;
662
663 nomem:
664 return -ENOMEM;
665 }
666
667 /*
668 * vma_shrink() - Reduce an existing VMAs memory area
669 * @vmi: The vma iterator
670 * @vma: The VMA to modify
671 * @start: The new start
672 * @end: The new end
673 *
674 * Returns: 0 on success, -ENOMEM otherwise
675 */
676 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
677 unsigned long start, unsigned long end, pgoff_t pgoff)
678 {
679 struct vma_prepare vp;
680
681 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
682
683 if (vma->vm_start < start)
684 vma_iter_config(vmi, vma->vm_start, start);
685 else
686 vma_iter_config(vmi, end, vma->vm_end);
687
688 if (vma_iter_prealloc(vmi, NULL))
689 return -ENOMEM;
690
691 vma_start_write(vma);
692
693 init_vma_prep(&vp, vma);
694 vma_prepare(&vp);
695 vma_adjust_trans_huge(vma, start, end, 0);
696
697 vma_iter_clear(vmi);
698 vma->vm_start = start;
699 vma->vm_end = end;
700 vma->vm_pgoff = pgoff;
701 vma_complete(&vp, vmi, vma->vm_mm);
702 return 0;
703 }
704
705 /*
706 * If the vma has a ->close operation then the driver probably needs to release
707 * per-vma resources, so we don't attempt to merge those if the caller indicates
708 * the current vma may be removed as part of the merge.
709 */
710 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
711 struct file *file, unsigned long vm_flags,
712 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
713 struct anon_vma_name *anon_name, bool may_remove_vma)
714 {
715 /*
716 * VM_SOFTDIRTY should not prevent from VMA merging, if we
717 * match the flags but dirty bit -- the caller should mark
718 * merged VMA as dirty. If dirty bit won't be excluded from
719 * comparison, we increase pressure on the memory system forcing
720 * the kernel to generate new VMAs when old one could be
721 * extended instead.
722 */
723 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
724 return false;
725 if (vma->vm_file != file)
726 return false;
727 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
728 return false;
729 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
730 return false;
731 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
732 return false;
733 return true;
734 }
735
736 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
737 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
738 {
739 /*
740 * The list_is_singular() test is to avoid merging VMA cloned from
741 * parents. This can improve scalability caused by anon_vma lock.
742 */
743 if ((!anon_vma1 || !anon_vma2) && (!vma ||
744 list_is_singular(&vma->anon_vma_chain)))
745 return true;
746 return anon_vma1 == anon_vma2;
747 }
748
749 /*
750 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
751 * in front of (at a lower virtual address and file offset than) the vma.
752 *
753 * We cannot merge two vmas if they have differently assigned (non-NULL)
754 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
755 *
756 * We don't check here for the merged mmap wrapping around the end of pagecache
757 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
758 * wrap, nor mmaps which cover the final page at index -1UL.
759 *
760 * We assume the vma may be removed as part of the merge.
761 */
762 static bool
763 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
764 struct anon_vma *anon_vma, struct file *file,
765 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
766 struct anon_vma_name *anon_name)
767 {
768 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
769 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
770 if (vma->vm_pgoff == vm_pgoff)
771 return true;
772 }
773 return false;
774 }
775
776 /*
777 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
778 * beyond (at a higher virtual address and file offset than) the vma.
779 *
780 * We cannot merge two vmas if they have differently assigned (non-NULL)
781 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
782 *
783 * We assume that vma is not removed as part of the merge.
784 */
785 static bool
786 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
787 struct anon_vma *anon_vma, struct file *file,
788 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
789 struct anon_vma_name *anon_name)
790 {
791 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
792 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
793 pgoff_t vm_pglen;
794 vm_pglen = vma_pages(vma);
795 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
796 return true;
797 }
798 return false;
799 }
800
801 /*
802 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
803 * figure out whether that can be merged with its predecessor or its
804 * successor. Or both (it neatly fills a hole).
805 *
806 * In most cases - when called for mmap, brk or mremap - [addr,end) is
807 * certain not to be mapped by the time vma_merge is called; but when
808 * called for mprotect, it is certain to be already mapped (either at
809 * an offset within prev, or at the start of next), and the flags of
810 * this area are about to be changed to vm_flags - and the no-change
811 * case has already been eliminated.
812 *
813 * The following mprotect cases have to be considered, where **** is
814 * the area passed down from mprotect_fixup, never extending beyond one
815 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
816 * at the same address as **** and is of the same or larger span, and
817 * NNNN the next vma after ****:
818 *
819 * **** **** ****
820 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
821 * cannot merge might become might become
822 * PPNNNNNNNNNN PPPPPPPPPPCC
823 * mmap, brk or case 4 below case 5 below
824 * mremap move:
825 * **** ****
826 * PPPP NNNN PPPPCCCCNNNN
827 * might become might become
828 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
829 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
830 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
831 *
832 * It is important for case 8 that the vma CCCC overlapping the
833 * region **** is never going to extended over NNNN. Instead NNNN must
834 * be extended in region **** and CCCC must be removed. This way in
835 * all cases where vma_merge succeeds, the moment vma_merge drops the
836 * rmap_locks, the properties of the merged vma will be already
837 * correct for the whole merged range. Some of those properties like
838 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
839 * be correct for the whole merged range immediately after the
840 * rmap_locks are released. Otherwise if NNNN would be removed and
841 * CCCC would be extended over the NNNN range, remove_migration_ptes
842 * or other rmap walkers (if working on addresses beyond the "end"
843 * parameter) may establish ptes with the wrong permissions of CCCC
844 * instead of the right permissions of NNNN.
845 *
846 * In the code below:
847 * PPPP is represented by *prev
848 * CCCC is represented by *curr or not represented at all (NULL)
849 * NNNN is represented by *next or not represented at all (NULL)
850 * **** is not represented - it will be merged and the vma containing the
851 * area is returned, or the function will return NULL
852 */
853 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
854 struct vm_area_struct *prev, unsigned long addr,
855 unsigned long end, unsigned long vm_flags,
856 struct anon_vma *anon_vma, struct file *file,
857 pgoff_t pgoff, struct mempolicy *policy,
858 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
859 struct anon_vma_name *anon_name)
860 {
861 struct vm_area_struct *curr, *next, *res;
862 struct vm_area_struct *vma, *adjust, *remove, *remove2;
863 struct vma_prepare vp;
864 pgoff_t vma_pgoff;
865 int err = 0;
866 bool merge_prev = false;
867 bool merge_next = false;
868 bool vma_expanded = false;
869 unsigned long vma_start = addr;
870 unsigned long vma_end = end;
871 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
872 long adj_start = 0;
873
874 /*
875 * We later require that vma->vm_flags == vm_flags,
876 * so this tests vma->vm_flags & VM_SPECIAL, too.
877 */
878 if (vm_flags & VM_SPECIAL)
879 return NULL;
880
881 /* Does the input range span an existing VMA? (cases 5 - 8) */
882 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
883
884 if (!curr || /* cases 1 - 4 */
885 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
886 next = vma_lookup(mm, end);
887 else
888 next = NULL; /* case 5 */
889
890 if (prev) {
891 vma_start = prev->vm_start;
892 vma_pgoff = prev->vm_pgoff;
893
894 /* Can we merge the predecessor? */
895 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
896 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
897 pgoff, vm_userfaultfd_ctx, anon_name)) {
898 merge_prev = true;
899 vma_prev(vmi);
900 }
901 }
902
903 /* Can we merge the successor? */
904 if (next && mpol_equal(policy, vma_policy(next)) &&
905 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
906 vm_userfaultfd_ctx, anon_name)) {
907 merge_next = true;
908 }
909
910 /* Verify some invariant that must be enforced by the caller. */
911 VM_WARN_ON(prev && addr <= prev->vm_start);
912 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
913 VM_WARN_ON(addr >= end);
914
915 if (!merge_prev && !merge_next)
916 return NULL; /* Not mergeable. */
917
918 if (merge_prev)
919 vma_start_write(prev);
920
921 res = vma = prev;
922 remove = remove2 = adjust = NULL;
923
924 /* Can we merge both the predecessor and the successor? */
925 if (merge_prev && merge_next &&
926 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
927 vma_start_write(next);
928 remove = next; /* case 1 */
929 vma_end = next->vm_end;
930 err = dup_anon_vma(prev, next);
931 if (curr) { /* case 6 */
932 vma_start_write(curr);
933 remove = curr;
934 remove2 = next;
935 if (!next->anon_vma)
936 err = dup_anon_vma(prev, curr);
937 }
938 } else if (merge_prev) { /* case 2 */
939 if (curr) {
940 vma_start_write(curr);
941 err = dup_anon_vma(prev, curr);
942 if (end == curr->vm_end) { /* case 7 */
943 remove = curr;
944 } else { /* case 5 */
945 adjust = curr;
946 adj_start = (end - curr->vm_start);
947 }
948 }
949 } else { /* merge_next */
950 vma_start_write(next);
951 res = next;
952 if (prev && addr < prev->vm_end) { /* case 4 */
953 vma_start_write(prev);
954 vma_end = addr;
955 adjust = next;
956 adj_start = -(prev->vm_end - addr);
957 err = dup_anon_vma(next, prev);
958 } else {
959 /*
960 * Note that cases 3 and 8 are the ONLY ones where prev
961 * is permitted to be (but is not necessarily) NULL.
962 */
963 vma = next; /* case 3 */
964 vma_start = addr;
965 vma_end = next->vm_end;
966 vma_pgoff = next->vm_pgoff - pglen;
967 if (curr) { /* case 8 */
968 vma_pgoff = curr->vm_pgoff;
969 vma_start_write(curr);
970 remove = curr;
971 err = dup_anon_vma(next, curr);
972 }
973 }
974 }
975
976 /* Error in anon_vma clone. */
977 if (err)
978 return NULL;
979
980 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
981 vma_expanded = true;
982
983 if (vma_expanded) {
984 vma_iter_config(vmi, vma_start, vma_end);
985 } else {
986 vma_iter_config(vmi, adjust->vm_start + adj_start,
987 adjust->vm_end);
988 }
989
990 if (vma_iter_prealloc(vmi, vma))
991 return NULL;
992
993 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
994 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
995 vp.anon_vma != adjust->anon_vma);
996
997 vma_prepare(&vp);
998 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
999
1000 vma->vm_start = vma_start;
1001 vma->vm_end = vma_end;
1002 vma->vm_pgoff = vma_pgoff;
1003
1004 if (vma_expanded)
1005 vma_iter_store(vmi, vma);
1006
1007 if (adj_start) {
1008 adjust->vm_start += adj_start;
1009 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1010 if (adj_start < 0) {
1011 WARN_ON(vma_expanded);
1012 vma_iter_store(vmi, next);
1013 }
1014 }
1015
1016 vma_complete(&vp, vmi, mm);
1017 khugepaged_enter_vma(res, vm_flags);
1018 return res;
1019 }
1020
1021 /*
1022 * Rough compatibility check to quickly see if it's even worth looking
1023 * at sharing an anon_vma.
1024 *
1025 * They need to have the same vm_file, and the flags can only differ
1026 * in things that mprotect may change.
1027 *
1028 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1029 * we can merge the two vma's. For example, we refuse to merge a vma if
1030 * there is a vm_ops->close() function, because that indicates that the
1031 * driver is doing some kind of reference counting. But that doesn't
1032 * really matter for the anon_vma sharing case.
1033 */
1034 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1035 {
1036 return a->vm_end == b->vm_start &&
1037 mpol_equal(vma_policy(a), vma_policy(b)) &&
1038 a->vm_file == b->vm_file &&
1039 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1040 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1041 }
1042
1043 /*
1044 * Do some basic sanity checking to see if we can re-use the anon_vma
1045 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1046 * the same as 'old', the other will be the new one that is trying
1047 * to share the anon_vma.
1048 *
1049 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1050 * the anon_vma of 'old' is concurrently in the process of being set up
1051 * by another page fault trying to merge _that_. But that's ok: if it
1052 * is being set up, that automatically means that it will be a singleton
1053 * acceptable for merging, so we can do all of this optimistically. But
1054 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1055 *
1056 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1057 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1058 * is to return an anon_vma that is "complex" due to having gone through
1059 * a fork).
1060 *
1061 * We also make sure that the two vma's are compatible (adjacent,
1062 * and with the same memory policies). That's all stable, even with just
1063 * a read lock on the mmap_lock.
1064 */
1065 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067 if (anon_vma_compatible(a, b)) {
1068 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1069
1070 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1071 return anon_vma;
1072 }
1073 return NULL;
1074 }
1075
1076 /*
1077 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1078 * neighbouring vmas for a suitable anon_vma, before it goes off
1079 * to allocate a new anon_vma. It checks because a repetitive
1080 * sequence of mprotects and faults may otherwise lead to distinct
1081 * anon_vmas being allocated, preventing vma merge in subsequent
1082 * mprotect.
1083 */
1084 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1085 {
1086 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1087 struct anon_vma *anon_vma = NULL;
1088 struct vm_area_struct *prev, *next;
1089
1090 /* Try next first. */
1091 next = mas_walk(&mas);
1092 if (next) {
1093 anon_vma = reusable_anon_vma(next, vma, next);
1094 if (anon_vma)
1095 return anon_vma;
1096 }
1097
1098 prev = mas_prev(&mas, 0);
1099 VM_BUG_ON_VMA(prev != vma, vma);
1100 prev = mas_prev(&mas, 0);
1101 /* Try prev next. */
1102 if (prev)
1103 anon_vma = reusable_anon_vma(prev, prev, vma);
1104
1105 /*
1106 * We might reach here with anon_vma == NULL if we can't find
1107 * any reusable anon_vma.
1108 * There's no absolute need to look only at touching neighbours:
1109 * we could search further afield for "compatible" anon_vmas.
1110 * But it would probably just be a waste of time searching,
1111 * or lead to too many vmas hanging off the same anon_vma.
1112 * We're trying to allow mprotect remerging later on,
1113 * not trying to minimize memory used for anon_vmas.
1114 */
1115 return anon_vma;
1116 }
1117
1118 /*
1119 * If a hint addr is less than mmap_min_addr change hint to be as
1120 * low as possible but still greater than mmap_min_addr
1121 */
1122 static inline unsigned long round_hint_to_min(unsigned long hint)
1123 {
1124 hint &= PAGE_MASK;
1125 if (((void *)hint != NULL) &&
1126 (hint < mmap_min_addr))
1127 return PAGE_ALIGN(mmap_min_addr);
1128 return hint;
1129 }
1130
1131 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1132 unsigned long bytes)
1133 {
1134 unsigned long locked_pages, limit_pages;
1135
1136 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1137 return true;
1138
1139 locked_pages = bytes >> PAGE_SHIFT;
1140 locked_pages += mm->locked_vm;
1141
1142 limit_pages = rlimit(RLIMIT_MEMLOCK);
1143 limit_pages >>= PAGE_SHIFT;
1144
1145 return locked_pages <= limit_pages;
1146 }
1147
1148 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1149 {
1150 if (S_ISREG(inode->i_mode))
1151 return MAX_LFS_FILESIZE;
1152
1153 if (S_ISBLK(inode->i_mode))
1154 return MAX_LFS_FILESIZE;
1155
1156 if (S_ISSOCK(inode->i_mode))
1157 return MAX_LFS_FILESIZE;
1158
1159 /* Special "we do even unsigned file positions" case */
1160 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1161 return 0;
1162
1163 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1164 return ULONG_MAX;
1165 }
1166
1167 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1168 unsigned long pgoff, unsigned long len)
1169 {
1170 u64 maxsize = file_mmap_size_max(file, inode);
1171
1172 if (maxsize && len > maxsize)
1173 return false;
1174 maxsize -= len;
1175 if (pgoff > maxsize >> PAGE_SHIFT)
1176 return false;
1177 return true;
1178 }
1179
1180 /*
1181 * The caller must write-lock current->mm->mmap_lock.
1182 */
1183 unsigned long do_mmap(struct file *file, unsigned long addr,
1184 unsigned long len, unsigned long prot,
1185 unsigned long flags, vm_flags_t vm_flags,
1186 unsigned long pgoff, unsigned long *populate,
1187 struct list_head *uf)
1188 {
1189 struct mm_struct *mm = current->mm;
1190 int pkey = 0;
1191
1192 *populate = 0;
1193
1194 if (!len)
1195 return -EINVAL;
1196
1197 /*
1198 * Does the application expect PROT_READ to imply PROT_EXEC?
1199 *
1200 * (the exception is when the underlying filesystem is noexec
1201 * mounted, in which case we dont add PROT_EXEC.)
1202 */
1203 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1204 if (!(file && path_noexec(&file->f_path)))
1205 prot |= PROT_EXEC;
1206
1207 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1208 if (flags & MAP_FIXED_NOREPLACE)
1209 flags |= MAP_FIXED;
1210
1211 if (!(flags & MAP_FIXED))
1212 addr = round_hint_to_min(addr);
1213
1214 /* Careful about overflows.. */
1215 len = PAGE_ALIGN(len);
1216 if (!len)
1217 return -ENOMEM;
1218
1219 /* offset overflow? */
1220 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1221 return -EOVERFLOW;
1222
1223 /* Too many mappings? */
1224 if (mm->map_count > sysctl_max_map_count)
1225 return -ENOMEM;
1226
1227 /* Obtain the address to map to. we verify (or select) it and ensure
1228 * that it represents a valid section of the address space.
1229 */
1230 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1231 if (IS_ERR_VALUE(addr))
1232 return addr;
1233
1234 if (flags & MAP_FIXED_NOREPLACE) {
1235 if (find_vma_intersection(mm, addr, addr + len))
1236 return -EEXIST;
1237 }
1238
1239 if (prot == PROT_EXEC) {
1240 pkey = execute_only_pkey(mm);
1241 if (pkey < 0)
1242 pkey = 0;
1243 }
1244
1245 /* Do simple checking here so the lower-level routines won't have
1246 * to. we assume access permissions have been handled by the open
1247 * of the memory object, so we don't do any here.
1248 */
1249 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1250 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252 if (flags & MAP_LOCKED)
1253 if (!can_do_mlock())
1254 return -EPERM;
1255
1256 if (!mlock_future_ok(mm, vm_flags, len))
1257 return -EAGAIN;
1258
1259 if (file) {
1260 struct inode *inode = file_inode(file);
1261 unsigned long flags_mask;
1262
1263 if (!file_mmap_ok(file, inode, pgoff, len))
1264 return -EOVERFLOW;
1265
1266 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1267
1268 switch (flags & MAP_TYPE) {
1269 case MAP_SHARED:
1270 /*
1271 * Force use of MAP_SHARED_VALIDATE with non-legacy
1272 * flags. E.g. MAP_SYNC is dangerous to use with
1273 * MAP_SHARED as you don't know which consistency model
1274 * you will get. We silently ignore unsupported flags
1275 * with MAP_SHARED to preserve backward compatibility.
1276 */
1277 flags &= LEGACY_MAP_MASK;
1278 fallthrough;
1279 case MAP_SHARED_VALIDATE:
1280 if (flags & ~flags_mask)
1281 return -EOPNOTSUPP;
1282 if (prot & PROT_WRITE) {
1283 if (!(file->f_mode & FMODE_WRITE))
1284 return -EACCES;
1285 if (IS_SWAPFILE(file->f_mapping->host))
1286 return -ETXTBSY;
1287 }
1288
1289 /*
1290 * Make sure we don't allow writing to an append-only
1291 * file..
1292 */
1293 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1294 return -EACCES;
1295
1296 vm_flags |= VM_SHARED | VM_MAYSHARE;
1297 if (!(file->f_mode & FMODE_WRITE))
1298 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1299 fallthrough;
1300 case MAP_PRIVATE:
1301 if (!(file->f_mode & FMODE_READ))
1302 return -EACCES;
1303 if (path_noexec(&file->f_path)) {
1304 if (vm_flags & VM_EXEC)
1305 return -EPERM;
1306 vm_flags &= ~VM_MAYEXEC;
1307 }
1308
1309 if (!file->f_op->mmap)
1310 return -ENODEV;
1311 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1312 return -EINVAL;
1313 break;
1314
1315 default:
1316 return -EINVAL;
1317 }
1318 } else {
1319 switch (flags & MAP_TYPE) {
1320 case MAP_SHARED:
1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 return -EINVAL;
1323 /*
1324 * Ignore pgoff.
1325 */
1326 pgoff = 0;
1327 vm_flags |= VM_SHARED | VM_MAYSHARE;
1328 break;
1329 case MAP_PRIVATE:
1330 /*
1331 * Set pgoff according to addr for anon_vma.
1332 */
1333 pgoff = addr >> PAGE_SHIFT;
1334 break;
1335 default:
1336 return -EINVAL;
1337 }
1338 }
1339
1340 /*
1341 * Set 'VM_NORESERVE' if we should not account for the
1342 * memory use of this mapping.
1343 */
1344 if (flags & MAP_NORESERVE) {
1345 /* We honor MAP_NORESERVE if allowed to overcommit */
1346 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1347 vm_flags |= VM_NORESERVE;
1348
1349 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1350 if (file && is_file_hugepages(file))
1351 vm_flags |= VM_NORESERVE;
1352 }
1353
1354 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1355 if (!IS_ERR_VALUE(addr) &&
1356 ((vm_flags & VM_LOCKED) ||
1357 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1358 *populate = len;
1359 return addr;
1360 }
1361
1362 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1363 unsigned long prot, unsigned long flags,
1364 unsigned long fd, unsigned long pgoff)
1365 {
1366 struct file *file = NULL;
1367 unsigned long retval;
1368
1369 if (!(flags & MAP_ANONYMOUS)) {
1370 audit_mmap_fd(fd, flags);
1371 file = fget(fd);
1372 if (!file)
1373 return -EBADF;
1374 if (is_file_hugepages(file)) {
1375 len = ALIGN(len, huge_page_size(hstate_file(file)));
1376 } else if (unlikely(flags & MAP_HUGETLB)) {
1377 retval = -EINVAL;
1378 goto out_fput;
1379 }
1380 } else if (flags & MAP_HUGETLB) {
1381 struct hstate *hs;
1382
1383 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1384 if (!hs)
1385 return -EINVAL;
1386
1387 len = ALIGN(len, huge_page_size(hs));
1388 /*
1389 * VM_NORESERVE is used because the reservations will be
1390 * taken when vm_ops->mmap() is called
1391 */
1392 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1393 VM_NORESERVE,
1394 HUGETLB_ANONHUGE_INODE,
1395 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1396 if (IS_ERR(file))
1397 return PTR_ERR(file);
1398 }
1399
1400 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1401 out_fput:
1402 if (file)
1403 fput(file);
1404 return retval;
1405 }
1406
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408 unsigned long, prot, unsigned long, flags,
1409 unsigned long, fd, unsigned long, pgoff)
1410 {
1411 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1412 }
1413
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1416 unsigned long addr;
1417 unsigned long len;
1418 unsigned long prot;
1419 unsigned long flags;
1420 unsigned long fd;
1421 unsigned long offset;
1422 };
1423
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1425 {
1426 struct mmap_arg_struct a;
1427
1428 if (copy_from_user(&a, arg, sizeof(a)))
1429 return -EFAULT;
1430 if (offset_in_page(a.offset))
1431 return -EINVAL;
1432
1433 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434 a.offset >> PAGE_SHIFT);
1435 }
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1437
1438 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1439 {
1440 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1441 }
1442
1443 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1444 {
1445 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1446 (VM_WRITE | VM_SHARED);
1447 }
1448
1449 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1450 {
1451 /* No managed pages to writeback. */
1452 if (vma->vm_flags & VM_PFNMAP)
1453 return false;
1454
1455 return vma->vm_file && vma->vm_file->f_mapping &&
1456 mapping_can_writeback(vma->vm_file->f_mapping);
1457 }
1458
1459 /*
1460 * Does this VMA require the underlying folios to have their dirty state
1461 * tracked?
1462 */
1463 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1464 {
1465 /* Only shared, writable VMAs require dirty tracking. */
1466 if (!vma_is_shared_writable(vma))
1467 return false;
1468
1469 /* Does the filesystem need to be notified? */
1470 if (vm_ops_needs_writenotify(vma->vm_ops))
1471 return true;
1472
1473 /*
1474 * Even if the filesystem doesn't indicate a need for writenotify, if it
1475 * can writeback, dirty tracking is still required.
1476 */
1477 return vma_fs_can_writeback(vma);
1478 }
1479
1480 /*
1481 * Some shared mappings will want the pages marked read-only
1482 * to track write events. If so, we'll downgrade vm_page_prot
1483 * to the private version (using protection_map[] without the
1484 * VM_SHARED bit).
1485 */
1486 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1487 {
1488 /* If it was private or non-writable, the write bit is already clear */
1489 if (!vma_is_shared_writable(vma))
1490 return 0;
1491
1492 /* The backer wishes to know when pages are first written to? */
1493 if (vm_ops_needs_writenotify(vma->vm_ops))
1494 return 1;
1495
1496 /* The open routine did something to the protections that pgprot_modify
1497 * won't preserve? */
1498 if (pgprot_val(vm_page_prot) !=
1499 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1500 return 0;
1501
1502 /*
1503 * Do we need to track softdirty? hugetlb does not support softdirty
1504 * tracking yet.
1505 */
1506 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1507 return 1;
1508
1509 /* Do we need write faults for uffd-wp tracking? */
1510 if (userfaultfd_wp(vma))
1511 return 1;
1512
1513 /* Can the mapping track the dirty pages? */
1514 return vma_fs_can_writeback(vma);
1515 }
1516
1517 /*
1518 * We account for memory if it's a private writeable mapping,
1519 * not hugepages and VM_NORESERVE wasn't set.
1520 */
1521 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1522 {
1523 /*
1524 * hugetlb has its own accounting separate from the core VM
1525 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1526 */
1527 if (file && is_file_hugepages(file))
1528 return 0;
1529
1530 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1531 }
1532
1533 /**
1534 * unmapped_area() - Find an area between the low_limit and the high_limit with
1535 * the correct alignment and offset, all from @info. Note: current->mm is used
1536 * for the search.
1537 *
1538 * @info: The unmapped area information including the range [low_limit -
1539 * high_limit), the alignment offset and mask.
1540 *
1541 * Return: A memory address or -ENOMEM.
1542 */
1543 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1544 {
1545 unsigned long length, gap;
1546 unsigned long low_limit, high_limit;
1547 struct vm_area_struct *tmp;
1548
1549 MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1550
1551 /* Adjust search length to account for worst case alignment overhead */
1552 length = info->length + info->align_mask;
1553 if (length < info->length)
1554 return -ENOMEM;
1555
1556 low_limit = info->low_limit;
1557 if (low_limit < mmap_min_addr)
1558 low_limit = mmap_min_addr;
1559 high_limit = info->high_limit;
1560 retry:
1561 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1562 return -ENOMEM;
1563
1564 gap = mas.index;
1565 gap += (info->align_offset - gap) & info->align_mask;
1566 tmp = mas_next(&mas, ULONG_MAX);
1567 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1568 if (vm_start_gap(tmp) < gap + length - 1) {
1569 low_limit = tmp->vm_end;
1570 mas_reset(&mas);
1571 goto retry;
1572 }
1573 } else {
1574 tmp = mas_prev(&mas, 0);
1575 if (tmp && vm_end_gap(tmp) > gap) {
1576 low_limit = vm_end_gap(tmp);
1577 mas_reset(&mas);
1578 goto retry;
1579 }
1580 }
1581
1582 return gap;
1583 }
1584
1585 /**
1586 * unmapped_area_topdown() - Find an area between the low_limit and the
1587 * high_limit with the correct alignment and offset at the highest available
1588 * address, all from @info. Note: current->mm is used for the search.
1589 *
1590 * @info: The unmapped area information including the range [low_limit -
1591 * high_limit), the alignment offset and mask.
1592 *
1593 * Return: A memory address or -ENOMEM.
1594 */
1595 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1596 {
1597 unsigned long length, gap, gap_end;
1598 unsigned long low_limit, high_limit;
1599 struct vm_area_struct *tmp;
1600
1601 MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1602 /* Adjust search length to account for worst case alignment overhead */
1603 length = info->length + info->align_mask;
1604 if (length < info->length)
1605 return -ENOMEM;
1606
1607 low_limit = info->low_limit;
1608 if (low_limit < mmap_min_addr)
1609 low_limit = mmap_min_addr;
1610 high_limit = info->high_limit;
1611 retry:
1612 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1613 return -ENOMEM;
1614
1615 gap = mas.last + 1 - info->length;
1616 gap -= (gap - info->align_offset) & info->align_mask;
1617 gap_end = mas.last;
1618 tmp = mas_next(&mas, ULONG_MAX);
1619 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1620 if (vm_start_gap(tmp) <= gap_end) {
1621 high_limit = vm_start_gap(tmp);
1622 mas_reset(&mas);
1623 goto retry;
1624 }
1625 } else {
1626 tmp = mas_prev(&mas, 0);
1627 if (tmp && vm_end_gap(tmp) > gap) {
1628 high_limit = tmp->vm_start;
1629 mas_reset(&mas);
1630 goto retry;
1631 }
1632 }
1633
1634 return gap;
1635 }
1636
1637 /*
1638 * Search for an unmapped address range.
1639 *
1640 * We are looking for a range that:
1641 * - does not intersect with any VMA;
1642 * - is contained within the [low_limit, high_limit) interval;
1643 * - is at least the desired size.
1644 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1645 */
1646 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1647 {
1648 unsigned long addr;
1649
1650 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1651 addr = unmapped_area_topdown(info);
1652 else
1653 addr = unmapped_area(info);
1654
1655 trace_vm_unmapped_area(addr, info);
1656 return addr;
1657 }
1658
1659 /* Get an address range which is currently unmapped.
1660 * For shmat() with addr=0.
1661 *
1662 * Ugly calling convention alert:
1663 * Return value with the low bits set means error value,
1664 * ie
1665 * if (ret & ~PAGE_MASK)
1666 * error = ret;
1667 *
1668 * This function "knows" that -ENOMEM has the bits set.
1669 */
1670 unsigned long
1671 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1672 unsigned long len, unsigned long pgoff,
1673 unsigned long flags)
1674 {
1675 struct mm_struct *mm = current->mm;
1676 struct vm_area_struct *vma, *prev;
1677 struct vm_unmapped_area_info info;
1678 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1679
1680 if (len > mmap_end - mmap_min_addr)
1681 return -ENOMEM;
1682
1683 if (flags & MAP_FIXED)
1684 return addr;
1685
1686 if (addr) {
1687 addr = PAGE_ALIGN(addr);
1688 vma = find_vma_prev(mm, addr, &prev);
1689 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1690 (!vma || addr + len <= vm_start_gap(vma)) &&
1691 (!prev || addr >= vm_end_gap(prev)))
1692 return addr;
1693 }
1694
1695 info.flags = 0;
1696 info.length = len;
1697 info.low_limit = mm->mmap_base;
1698 info.high_limit = mmap_end;
1699 info.align_mask = 0;
1700 info.align_offset = 0;
1701 return vm_unmapped_area(&info);
1702 }
1703
1704 #ifndef HAVE_ARCH_UNMAPPED_AREA
1705 unsigned long
1706 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1707 unsigned long len, unsigned long pgoff,
1708 unsigned long flags)
1709 {
1710 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1711 }
1712 #endif
1713
1714 /*
1715 * This mmap-allocator allocates new areas top-down from below the
1716 * stack's low limit (the base):
1717 */
1718 unsigned long
1719 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1720 unsigned long len, unsigned long pgoff,
1721 unsigned long flags)
1722 {
1723 struct vm_area_struct *vma, *prev;
1724 struct mm_struct *mm = current->mm;
1725 struct vm_unmapped_area_info info;
1726 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727
1728 /* requested length too big for entire address space */
1729 if (len > mmap_end - mmap_min_addr)
1730 return -ENOMEM;
1731
1732 if (flags & MAP_FIXED)
1733 return addr;
1734
1735 /* requesting a specific address */
1736 if (addr) {
1737 addr = PAGE_ALIGN(addr);
1738 vma = find_vma_prev(mm, addr, &prev);
1739 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1740 (!vma || addr + len <= vm_start_gap(vma)) &&
1741 (!prev || addr >= vm_end_gap(prev)))
1742 return addr;
1743 }
1744
1745 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1746 info.length = len;
1747 info.low_limit = PAGE_SIZE;
1748 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1749 info.align_mask = 0;
1750 info.align_offset = 0;
1751 addr = vm_unmapped_area(&info);
1752
1753 /*
1754 * A failed mmap() very likely causes application failure,
1755 * so fall back to the bottom-up function here. This scenario
1756 * can happen with large stack limits and large mmap()
1757 * allocations.
1758 */
1759 if (offset_in_page(addr)) {
1760 VM_BUG_ON(addr != -ENOMEM);
1761 info.flags = 0;
1762 info.low_limit = TASK_UNMAPPED_BASE;
1763 info.high_limit = mmap_end;
1764 addr = vm_unmapped_area(&info);
1765 }
1766
1767 return addr;
1768 }
1769
1770 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1771 unsigned long
1772 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1773 unsigned long len, unsigned long pgoff,
1774 unsigned long flags)
1775 {
1776 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1777 }
1778 #endif
1779
1780 unsigned long
1781 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1782 unsigned long pgoff, unsigned long flags)
1783 {
1784 unsigned long (*get_area)(struct file *, unsigned long,
1785 unsigned long, unsigned long, unsigned long);
1786
1787 unsigned long error = arch_mmap_check(addr, len, flags);
1788 if (error)
1789 return error;
1790
1791 /* Careful about overflows.. */
1792 if (len > TASK_SIZE)
1793 return -ENOMEM;
1794
1795 get_area = current->mm->get_unmapped_area;
1796 if (file) {
1797 if (file->f_op->get_unmapped_area)
1798 get_area = file->f_op->get_unmapped_area;
1799 } else if (flags & MAP_SHARED) {
1800 /*
1801 * mmap_region() will call shmem_zero_setup() to create a file,
1802 * so use shmem's get_unmapped_area in case it can be huge.
1803 * do_mmap() will clear pgoff, so match alignment.
1804 */
1805 pgoff = 0;
1806 get_area = shmem_get_unmapped_area;
1807 }
1808
1809 addr = get_area(file, addr, len, pgoff, flags);
1810 if (IS_ERR_VALUE(addr))
1811 return addr;
1812
1813 if (addr > TASK_SIZE - len)
1814 return -ENOMEM;
1815 if (offset_in_page(addr))
1816 return -EINVAL;
1817
1818 error = security_mmap_addr(addr);
1819 return error ? error : addr;
1820 }
1821
1822 EXPORT_SYMBOL(get_unmapped_area);
1823
1824 /**
1825 * find_vma_intersection() - Look up the first VMA which intersects the interval
1826 * @mm: The process address space.
1827 * @start_addr: The inclusive start user address.
1828 * @end_addr: The exclusive end user address.
1829 *
1830 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1831 * start_addr < end_addr.
1832 */
1833 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1834 unsigned long start_addr,
1835 unsigned long end_addr)
1836 {
1837 unsigned long index = start_addr;
1838
1839 mmap_assert_locked(mm);
1840 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1841 }
1842 EXPORT_SYMBOL(find_vma_intersection);
1843
1844 /**
1845 * find_vma() - Find the VMA for a given address, or the next VMA.
1846 * @mm: The mm_struct to check
1847 * @addr: The address
1848 *
1849 * Returns: The VMA associated with addr, or the next VMA.
1850 * May return %NULL in the case of no VMA at addr or above.
1851 */
1852 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1853 {
1854 unsigned long index = addr;
1855
1856 mmap_assert_locked(mm);
1857 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1858 }
1859 EXPORT_SYMBOL(find_vma);
1860
1861 /**
1862 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1863 * set %pprev to the previous VMA, if any.
1864 * @mm: The mm_struct to check
1865 * @addr: The address
1866 * @pprev: The pointer to set to the previous VMA
1867 *
1868 * Note that RCU lock is missing here since the external mmap_lock() is used
1869 * instead.
1870 *
1871 * Returns: The VMA associated with @addr, or the next vma.
1872 * May return %NULL in the case of no vma at addr or above.
1873 */
1874 struct vm_area_struct *
1875 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1876 struct vm_area_struct **pprev)
1877 {
1878 struct vm_area_struct *vma;
1879 MA_STATE(mas, &mm->mm_mt, addr, addr);
1880
1881 vma = mas_walk(&mas);
1882 *pprev = mas_prev(&mas, 0);
1883 if (!vma)
1884 vma = mas_next(&mas, ULONG_MAX);
1885 return vma;
1886 }
1887
1888 /*
1889 * Verify that the stack growth is acceptable and
1890 * update accounting. This is shared with both the
1891 * grow-up and grow-down cases.
1892 */
1893 static int acct_stack_growth(struct vm_area_struct *vma,
1894 unsigned long size, unsigned long grow)
1895 {
1896 struct mm_struct *mm = vma->vm_mm;
1897 unsigned long new_start;
1898
1899 /* address space limit tests */
1900 if (!may_expand_vm(mm, vma->vm_flags, grow))
1901 return -ENOMEM;
1902
1903 /* Stack limit test */
1904 if (size > rlimit(RLIMIT_STACK))
1905 return -ENOMEM;
1906
1907 /* mlock limit tests */
1908 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1909 return -ENOMEM;
1910
1911 /* Check to ensure the stack will not grow into a hugetlb-only region */
1912 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1913 vma->vm_end - size;
1914 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1915 return -EFAULT;
1916
1917 /*
1918 * Overcommit.. This must be the final test, as it will
1919 * update security statistics.
1920 */
1921 if (security_vm_enough_memory_mm(mm, grow))
1922 return -ENOMEM;
1923
1924 return 0;
1925 }
1926
1927 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1928 /*
1929 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1930 * vma is the last one with address > vma->vm_end. Have to extend vma.
1931 */
1932 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1933 {
1934 struct mm_struct *mm = vma->vm_mm;
1935 struct vm_area_struct *next;
1936 unsigned long gap_addr;
1937 int error = 0;
1938 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1939
1940 if (!(vma->vm_flags & VM_GROWSUP))
1941 return -EFAULT;
1942
1943 /* Guard against exceeding limits of the address space. */
1944 address &= PAGE_MASK;
1945 if (address >= (TASK_SIZE & PAGE_MASK))
1946 return -ENOMEM;
1947 address += PAGE_SIZE;
1948
1949 /* Enforce stack_guard_gap */
1950 gap_addr = address + stack_guard_gap;
1951
1952 /* Guard against overflow */
1953 if (gap_addr < address || gap_addr > TASK_SIZE)
1954 gap_addr = TASK_SIZE;
1955
1956 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1957 if (next && vma_is_accessible(next)) {
1958 if (!(next->vm_flags & VM_GROWSUP))
1959 return -ENOMEM;
1960 /* Check that both stack segments have the same anon_vma? */
1961 }
1962
1963 if (next)
1964 mas_prev_range(&mas, address);
1965
1966 __mas_set_range(&mas, vma->vm_start, address - 1);
1967 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1968 return -ENOMEM;
1969
1970 /* We must make sure the anon_vma is allocated. */
1971 if (unlikely(anon_vma_prepare(vma))) {
1972 mas_destroy(&mas);
1973 return -ENOMEM;
1974 }
1975
1976 /* Lock the VMA before expanding to prevent concurrent page faults */
1977 vma_start_write(vma);
1978 /*
1979 * vma->vm_start/vm_end cannot change under us because the caller
1980 * is required to hold the mmap_lock in read mode. We need the
1981 * anon_vma lock to serialize against concurrent expand_stacks.
1982 */
1983 anon_vma_lock_write(vma->anon_vma);
1984
1985 /* Somebody else might have raced and expanded it already */
1986 if (address > vma->vm_end) {
1987 unsigned long size, grow;
1988
1989 size = address - vma->vm_start;
1990 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1991
1992 error = -ENOMEM;
1993 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994 error = acct_stack_growth(vma, size, grow);
1995 if (!error) {
1996 /*
1997 * We only hold a shared mmap_lock lock here, so
1998 * we need to protect against concurrent vma
1999 * expansions. anon_vma_lock_write() doesn't
2000 * help here, as we don't guarantee that all
2001 * growable vmas in a mm share the same root
2002 * anon vma. So, we reuse mm->page_table_lock
2003 * to guard against concurrent vma expansions.
2004 */
2005 spin_lock(&mm->page_table_lock);
2006 if (vma->vm_flags & VM_LOCKED)
2007 mm->locked_vm += grow;
2008 vm_stat_account(mm, vma->vm_flags, grow);
2009 anon_vma_interval_tree_pre_update_vma(vma);
2010 vma->vm_end = address;
2011 /* Overwrite old entry in mtree. */
2012 mas_store_prealloc(&mas, vma);
2013 anon_vma_interval_tree_post_update_vma(vma);
2014 spin_unlock(&mm->page_table_lock);
2015
2016 perf_event_mmap(vma);
2017 }
2018 }
2019 }
2020 anon_vma_unlock_write(vma->anon_vma);
2021 khugepaged_enter_vma(vma, vma->vm_flags);
2022 mas_destroy(&mas);
2023 validate_mm(mm);
2024 return error;
2025 }
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2027
2028 /*
2029 * vma is the first one with address < vma->vm_start. Have to extend vma.
2030 * mmap_lock held for writing.
2031 */
2032 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2033 {
2034 struct mm_struct *mm = vma->vm_mm;
2035 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2036 struct vm_area_struct *prev;
2037 int error = 0;
2038
2039 if (!(vma->vm_flags & VM_GROWSDOWN))
2040 return -EFAULT;
2041
2042 address &= PAGE_MASK;
2043 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2044 return -EPERM;
2045
2046 /* Enforce stack_guard_gap */
2047 prev = mas_prev(&mas, 0);
2048 /* Check that both stack segments have the same anon_vma? */
2049 if (prev) {
2050 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2051 vma_is_accessible(prev) &&
2052 (address - prev->vm_end < stack_guard_gap))
2053 return -ENOMEM;
2054 }
2055
2056 if (prev)
2057 mas_next_range(&mas, vma->vm_start);
2058
2059 __mas_set_range(&mas, address, vma->vm_end - 1);
2060 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2061 return -ENOMEM;
2062
2063 /* We must make sure the anon_vma is allocated. */
2064 if (unlikely(anon_vma_prepare(vma))) {
2065 mas_destroy(&mas);
2066 return -ENOMEM;
2067 }
2068
2069 /* Lock the VMA before expanding to prevent concurrent page faults */
2070 vma_start_write(vma);
2071 /*
2072 * vma->vm_start/vm_end cannot change under us because the caller
2073 * is required to hold the mmap_lock in read mode. We need the
2074 * anon_vma lock to serialize against concurrent expand_stacks.
2075 */
2076 anon_vma_lock_write(vma->anon_vma);
2077
2078 /* Somebody else might have raced and expanded it already */
2079 if (address < vma->vm_start) {
2080 unsigned long size, grow;
2081
2082 size = vma->vm_end - address;
2083 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2084
2085 error = -ENOMEM;
2086 if (grow <= vma->vm_pgoff) {
2087 error = acct_stack_growth(vma, size, grow);
2088 if (!error) {
2089 /*
2090 * We only hold a shared mmap_lock lock here, so
2091 * we need to protect against concurrent vma
2092 * expansions. anon_vma_lock_write() doesn't
2093 * help here, as we don't guarantee that all
2094 * growable vmas in a mm share the same root
2095 * anon vma. So, we reuse mm->page_table_lock
2096 * to guard against concurrent vma expansions.
2097 */
2098 spin_lock(&mm->page_table_lock);
2099 if (vma->vm_flags & VM_LOCKED)
2100 mm->locked_vm += grow;
2101 vm_stat_account(mm, vma->vm_flags, grow);
2102 anon_vma_interval_tree_pre_update_vma(vma);
2103 vma->vm_start = address;
2104 vma->vm_pgoff -= grow;
2105 /* Overwrite old entry in mtree. */
2106 mas_store_prealloc(&mas, vma);
2107 anon_vma_interval_tree_post_update_vma(vma);
2108 spin_unlock(&mm->page_table_lock);
2109
2110 perf_event_mmap(vma);
2111 }
2112 }
2113 }
2114 anon_vma_unlock_write(vma->anon_vma);
2115 khugepaged_enter_vma(vma, vma->vm_flags);
2116 mas_destroy(&mas);
2117 validate_mm(mm);
2118 return error;
2119 }
2120
2121 /* enforced gap between the expanding stack and other mappings. */
2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2123
2124 static int __init cmdline_parse_stack_guard_gap(char *p)
2125 {
2126 unsigned long val;
2127 char *endptr;
2128
2129 val = simple_strtoul(p, &endptr, 10);
2130 if (!*endptr)
2131 stack_guard_gap = val << PAGE_SHIFT;
2132
2133 return 1;
2134 }
2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2136
2137 #ifdef CONFIG_STACK_GROWSUP
2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2139 {
2140 return expand_upwards(vma, address);
2141 }
2142
2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2144 {
2145 struct vm_area_struct *vma, *prev;
2146
2147 addr &= PAGE_MASK;
2148 vma = find_vma_prev(mm, addr, &prev);
2149 if (vma && (vma->vm_start <= addr))
2150 return vma;
2151 if (!prev)
2152 return NULL;
2153 if (expand_stack_locked(prev, addr))
2154 return NULL;
2155 if (prev->vm_flags & VM_LOCKED)
2156 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2157 return prev;
2158 }
2159 #else
2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2161 {
2162 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2163 return -EINVAL;
2164 return expand_downwards(vma, address);
2165 }
2166
2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2168 {
2169 struct vm_area_struct *vma;
2170 unsigned long start;
2171
2172 addr &= PAGE_MASK;
2173 vma = find_vma(mm, addr);
2174 if (!vma)
2175 return NULL;
2176 if (vma->vm_start <= addr)
2177 return vma;
2178 start = vma->vm_start;
2179 if (expand_stack_locked(vma, addr))
2180 return NULL;
2181 if (vma->vm_flags & VM_LOCKED)
2182 populate_vma_page_range(vma, addr, start, NULL);
2183 return vma;
2184 }
2185 #endif
2186
2187 /*
2188 * IA64 has some horrid mapping rules: it can expand both up and down,
2189 * but with various special rules.
2190 *
2191 * We'll get rid of this architecture eventually, so the ugliness is
2192 * temporary.
2193 */
2194 #ifdef CONFIG_IA64
2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2196 {
2197 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2198 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2199 }
2200
2201 /*
2202 * IA64 stacks grow down, but there's a special register backing store
2203 * that can grow up. Only sequentially, though, so the new address must
2204 * match vm_end.
2205 */
2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2207 {
2208 if (!vma_expand_ok(vma, addr))
2209 return -EFAULT;
2210 if (vma->vm_end != (addr & PAGE_MASK))
2211 return -EFAULT;
2212 return expand_upwards(vma, addr);
2213 }
2214
2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2216 {
2217 if (!vma_expand_ok(vma, addr))
2218 return -EFAULT;
2219 return expand_downwards(vma, addr);
2220 }
2221
2222 #elif defined(CONFIG_STACK_GROWSUP)
2223
2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2225 #define vma_expand_down(vma, addr) (-EFAULT)
2226
2227 #else
2228
2229 #define vma_expand_up(vma,addr) (-EFAULT)
2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2231
2232 #endif
2233
2234 /*
2235 * expand_stack(): legacy interface for page faulting. Don't use unless
2236 * you have to.
2237 *
2238 * This is called with the mm locked for reading, drops the lock, takes
2239 * the lock for writing, tries to look up a vma again, expands it if
2240 * necessary, and downgrades the lock to reading again.
2241 *
2242 * If no vma is found or it can't be expanded, it returns NULL and has
2243 * dropped the lock.
2244 */
2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2246 {
2247 struct vm_area_struct *vma, *prev;
2248
2249 mmap_read_unlock(mm);
2250 if (mmap_write_lock_killable(mm))
2251 return NULL;
2252
2253 vma = find_vma_prev(mm, addr, &prev);
2254 if (vma && vma->vm_start <= addr)
2255 goto success;
2256
2257 if (prev && !vma_expand_up(prev, addr)) {
2258 vma = prev;
2259 goto success;
2260 }
2261
2262 if (vma && !vma_expand_down(vma, addr))
2263 goto success;
2264
2265 mmap_write_unlock(mm);
2266 return NULL;
2267
2268 success:
2269 mmap_write_downgrade(mm);
2270 return vma;
2271 }
2272
2273 /*
2274 * Ok - we have the memory areas we should free on a maple tree so release them,
2275 * and do the vma updates.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2280 {
2281 unsigned long nr_accounted = 0;
2282 struct vm_area_struct *vma;
2283
2284 /* Update high watermark before we lower total_vm */
2285 update_hiwater_vm(mm);
2286 mas_for_each(mas, vma, ULONG_MAX) {
2287 long nrpages = vma_pages(vma);
2288
2289 if (vma->vm_flags & VM_ACCOUNT)
2290 nr_accounted += nrpages;
2291 vm_stat_account(mm, vma->vm_flags, -nrpages);
2292 remove_vma(vma, false);
2293 }
2294 vm_unacct_memory(nr_accounted);
2295 }
2296
2297 /*
2298 * Get rid of page table information in the indicated region.
2299 *
2300 * Called with the mm semaphore held.
2301 */
2302 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2303 struct vm_area_struct *vma, struct vm_area_struct *prev,
2304 struct vm_area_struct *next, unsigned long start,
2305 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2306 {
2307 struct mmu_gather tlb;
2308 unsigned long mt_start = mas->index;
2309
2310 lru_add_drain();
2311 tlb_gather_mmu(&tlb, mm);
2312 update_hiwater_rss(mm);
2313 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2314 mas_set(mas, mt_start);
2315 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316 next ? next->vm_start : USER_PGTABLES_CEILING,
2317 mm_wr_locked);
2318 tlb_finish_mmu(&tlb);
2319 }
2320
2321 /*
2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2323 * has already been checked or doesn't make sense to fail.
2324 * VMA Iterator will point to the end VMA.
2325 */
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327 unsigned long addr, int new_below)
2328 {
2329 struct vma_prepare vp;
2330 struct vm_area_struct *new;
2331 int err;
2332
2333 WARN_ON(vma->vm_start >= addr);
2334 WARN_ON(vma->vm_end <= addr);
2335
2336 if (vma->vm_ops && vma->vm_ops->may_split) {
2337 err = vma->vm_ops->may_split(vma, addr);
2338 if (err)
2339 return err;
2340 }
2341
2342 new = vm_area_dup(vma);
2343 if (!new)
2344 return -ENOMEM;
2345
2346 if (new_below) {
2347 new->vm_end = addr;
2348 } else {
2349 new->vm_start = addr;
2350 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2351 }
2352
2353 err = -ENOMEM;
2354 vma_iter_config(vmi, new->vm_start, new->vm_end);
2355 if (vma_iter_prealloc(vmi, new))
2356 goto out_free_vma;
2357
2358 err = vma_dup_policy(vma, new);
2359 if (err)
2360 goto out_free_vmi;
2361
2362 err = anon_vma_clone(new, vma);
2363 if (err)
2364 goto out_free_mpol;
2365
2366 if (new->vm_file)
2367 get_file(new->vm_file);
2368
2369 if (new->vm_ops && new->vm_ops->open)
2370 new->vm_ops->open(new);
2371
2372 vma_start_write(vma);
2373 vma_start_write(new);
2374
2375 init_vma_prep(&vp, vma);
2376 vp.insert = new;
2377 vma_prepare(&vp);
2378 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2379
2380 if (new_below) {
2381 vma->vm_start = addr;
2382 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2383 } else {
2384 vma->vm_end = addr;
2385 }
2386
2387 /* vma_complete stores the new vma */
2388 vma_complete(&vp, vmi, vma->vm_mm);
2389
2390 /* Success. */
2391 if (new_below)
2392 vma_next(vmi);
2393 return 0;
2394
2395 out_free_mpol:
2396 mpol_put(vma_policy(new));
2397 out_free_vmi:
2398 vma_iter_free(vmi);
2399 out_free_vma:
2400 vm_area_free(new);
2401 return err;
2402 }
2403
2404 /*
2405 * Split a vma into two pieces at address 'addr', a new vma is allocated
2406 * either for the first part or the tail.
2407 */
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409 unsigned long addr, int new_below)
2410 {
2411 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2412 return -ENOMEM;
2413
2414 return __split_vma(vmi, vma, addr, new_below);
2415 }
2416
2417 /*
2418 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419 * @vmi: The vma iterator
2420 * @vma: The starting vm_area_struct
2421 * @mm: The mm_struct
2422 * @start: The aligned start address to munmap.
2423 * @end: The aligned end address to munmap.
2424 * @uf: The userfaultfd list_head
2425 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2426 * success.
2427 *
2428 * Return: 0 on success and drops the lock if so directed, error and leaves the
2429 * lock held otherwise.
2430 */
2431 static int
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433 struct mm_struct *mm, unsigned long start,
2434 unsigned long end, struct list_head *uf, bool unlock)
2435 {
2436 struct vm_area_struct *prev, *next = NULL;
2437 struct maple_tree mt_detach;
2438 int count = 0;
2439 int error = -ENOMEM;
2440 unsigned long locked_vm = 0;
2441 MA_STATE(mas_detach, &mt_detach, 0, 0);
2442 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443 mt_on_stack(mt_detach);
2444
2445 /*
2446 * If we need to split any vma, do it now to save pain later.
2447 *
2448 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449 * unmapped vm_area_struct will remain in use: so lower split_vma
2450 * places tmp vma above, and higher split_vma places tmp vma below.
2451 */
2452
2453 /* Does it split the first one? */
2454 if (start > vma->vm_start) {
2455
2456 /*
2457 * Make sure that map_count on return from munmap() will
2458 * not exceed its limit; but let map_count go just above
2459 * its limit temporarily, to help free resources as expected.
2460 */
2461 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462 goto map_count_exceeded;
2463
2464 error = __split_vma(vmi, vma, start, 1);
2465 if (error)
2466 goto start_split_failed;
2467 }
2468
2469 /*
2470 * Detach a range of VMAs from the mm. Using next as a temp variable as
2471 * it is always overwritten.
2472 */
2473 next = vma;
2474 do {
2475 /* Does it split the end? */
2476 if (next->vm_end > end) {
2477 error = __split_vma(vmi, next, end, 0);
2478 if (error)
2479 goto end_split_failed;
2480 }
2481 vma_start_write(next);
2482 mas_set(&mas_detach, count);
2483 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2484 if (error)
2485 goto munmap_gather_failed;
2486 vma_mark_detached(next, true);
2487 if (next->vm_flags & VM_LOCKED)
2488 locked_vm += vma_pages(next);
2489
2490 count++;
2491 if (unlikely(uf)) {
2492 /*
2493 * If userfaultfd_unmap_prep returns an error the vmas
2494 * will remain split, but userland will get a
2495 * highly unexpected error anyway. This is no
2496 * different than the case where the first of the two
2497 * __split_vma fails, but we don't undo the first
2498 * split, despite we could. This is unlikely enough
2499 * failure that it's not worth optimizing it for.
2500 */
2501 error = userfaultfd_unmap_prep(next, start, end, uf);
2502
2503 if (error)
2504 goto userfaultfd_error;
2505 }
2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2507 BUG_ON(next->vm_start < start);
2508 BUG_ON(next->vm_start > end);
2509 #endif
2510 } for_each_vma_range(*vmi, next, end);
2511
2512 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2513 /* Make sure no VMAs are about to be lost. */
2514 {
2515 MA_STATE(test, &mt_detach, 0, 0);
2516 struct vm_area_struct *vma_mas, *vma_test;
2517 int test_count = 0;
2518
2519 vma_iter_set(vmi, start);
2520 rcu_read_lock();
2521 vma_test = mas_find(&test, count - 1);
2522 for_each_vma_range(*vmi, vma_mas, end) {
2523 BUG_ON(vma_mas != vma_test);
2524 test_count++;
2525 vma_test = mas_next(&test, count - 1);
2526 }
2527 rcu_read_unlock();
2528 BUG_ON(count != test_count);
2529 }
2530 #endif
2531
2532 while (vma_iter_addr(vmi) > start)
2533 vma_iter_prev_range(vmi);
2534
2535 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2536 if (error)
2537 goto clear_tree_failed;
2538
2539 /* Point of no return */
2540 mm->locked_vm -= locked_vm;
2541 mm->map_count -= count;
2542 if (unlock)
2543 mmap_write_downgrade(mm);
2544
2545 prev = vma_iter_prev_range(vmi);
2546 next = vma_next(vmi);
2547 if (next)
2548 vma_iter_prev_range(vmi);
2549
2550 /*
2551 * We can free page tables without write-locking mmap_lock because VMAs
2552 * were isolated before we downgraded mmap_lock.
2553 */
2554 mas_set(&mas_detach, 1);
2555 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2556 !unlock);
2557 /* Statistics and freeing VMAs */
2558 mas_set(&mas_detach, 0);
2559 remove_mt(mm, &mas_detach);
2560 validate_mm(mm);
2561 if (unlock)
2562 mmap_read_unlock(mm);
2563
2564 __mt_destroy(&mt_detach);
2565 return 0;
2566
2567 clear_tree_failed:
2568 userfaultfd_error:
2569 munmap_gather_failed:
2570 end_split_failed:
2571 mas_set(&mas_detach, 0);
2572 mas_for_each(&mas_detach, next, end)
2573 vma_mark_detached(next, false);
2574
2575 __mt_destroy(&mt_detach);
2576 start_split_failed:
2577 map_count_exceeded:
2578 validate_mm(mm);
2579 return error;
2580 }
2581
2582 /*
2583 * do_vmi_munmap() - munmap a given range.
2584 * @vmi: The vma iterator
2585 * @mm: The mm_struct
2586 * @start: The start address to munmap
2587 * @len: The length of the range to munmap
2588 * @uf: The userfaultfd list_head
2589 * @unlock: set to true if the user wants to drop the mmap_lock on success
2590 *
2591 * This function takes a @mas that is either pointing to the previous VMA or set
2592 * to MA_START and sets it up to remove the mapping(s). The @len will be
2593 * aligned and any arch_unmap work will be preformed.
2594 *
2595 * Return: 0 on success and drops the lock if so directed, error and leaves the
2596 * lock held otherwise.
2597 */
2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2599 unsigned long start, size_t len, struct list_head *uf,
2600 bool unlock)
2601 {
2602 unsigned long end;
2603 struct vm_area_struct *vma;
2604
2605 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2606 return -EINVAL;
2607
2608 end = start + PAGE_ALIGN(len);
2609 if (end == start)
2610 return -EINVAL;
2611
2612 /* arch_unmap() might do unmaps itself. */
2613 arch_unmap(mm, start, end);
2614
2615 /* Find the first overlapping VMA */
2616 vma = vma_find(vmi, end);
2617 if (!vma) {
2618 if (unlock)
2619 mmap_write_unlock(mm);
2620 return 0;
2621 }
2622
2623 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2624 }
2625
2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2627 * @mm: The mm_struct
2628 * @start: The start address to munmap
2629 * @len: The length to be munmapped.
2630 * @uf: The userfaultfd list_head
2631 *
2632 * Return: 0 on success, error otherwise.
2633 */
2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2635 struct list_head *uf)
2636 {
2637 VMA_ITERATOR(vmi, mm, start);
2638
2639 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2640 }
2641
2642 unsigned long mmap_region(struct file *file, unsigned long addr,
2643 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2644 struct list_head *uf)
2645 {
2646 struct mm_struct *mm = current->mm;
2647 struct vm_area_struct *vma = NULL;
2648 struct vm_area_struct *next, *prev, *merge;
2649 pgoff_t pglen = len >> PAGE_SHIFT;
2650 unsigned long charged = 0;
2651 unsigned long end = addr + len;
2652 unsigned long merge_start = addr, merge_end = end;
2653 pgoff_t vm_pgoff;
2654 int error;
2655 VMA_ITERATOR(vmi, mm, addr);
2656
2657 /* Check against address space limit. */
2658 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2659 unsigned long nr_pages;
2660
2661 /*
2662 * MAP_FIXED may remove pages of mappings that intersects with
2663 * requested mapping. Account for the pages it would unmap.
2664 */
2665 nr_pages = count_vma_pages_range(mm, addr, end);
2666
2667 if (!may_expand_vm(mm, vm_flags,
2668 (len >> PAGE_SHIFT) - nr_pages))
2669 return -ENOMEM;
2670 }
2671
2672 /* Unmap any existing mapping in the area */
2673 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2674 return -ENOMEM;
2675
2676 /*
2677 * Private writable mapping: check memory availability
2678 */
2679 if (accountable_mapping(file, vm_flags)) {
2680 charged = len >> PAGE_SHIFT;
2681 if (security_vm_enough_memory_mm(mm, charged))
2682 return -ENOMEM;
2683 vm_flags |= VM_ACCOUNT;
2684 }
2685
2686 next = vma_next(&vmi);
2687 prev = vma_prev(&vmi);
2688 if (vm_flags & VM_SPECIAL) {
2689 if (prev)
2690 vma_iter_next_range(&vmi);
2691 goto cannot_expand;
2692 }
2693
2694 /* Attempt to expand an old mapping */
2695 /* Check next */
2696 if (next && next->vm_start == end && !vma_policy(next) &&
2697 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2698 NULL_VM_UFFD_CTX, NULL)) {
2699 merge_end = next->vm_end;
2700 vma = next;
2701 vm_pgoff = next->vm_pgoff - pglen;
2702 }
2703
2704 /* Check prev */
2705 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2706 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2707 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2708 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2709 NULL_VM_UFFD_CTX, NULL))) {
2710 merge_start = prev->vm_start;
2711 vma = prev;
2712 vm_pgoff = prev->vm_pgoff;
2713 } else if (prev) {
2714 vma_iter_next_range(&vmi);
2715 }
2716
2717 /* Actually expand, if possible */
2718 if (vma &&
2719 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2720 khugepaged_enter_vma(vma, vm_flags);
2721 goto expanded;
2722 }
2723
2724 if (vma == prev)
2725 vma_iter_set(&vmi, addr);
2726 cannot_expand:
2727
2728 /*
2729 * Determine the object being mapped and call the appropriate
2730 * specific mapper. the address has already been validated, but
2731 * not unmapped, but the maps are removed from the list.
2732 */
2733 vma = vm_area_alloc(mm);
2734 if (!vma) {
2735 error = -ENOMEM;
2736 goto unacct_error;
2737 }
2738
2739 vma_iter_config(&vmi, addr, end);
2740 vma->vm_start = addr;
2741 vma->vm_end = end;
2742 vm_flags_init(vma, vm_flags);
2743 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2744 vma->vm_pgoff = pgoff;
2745
2746 if (file) {
2747 if (vm_flags & VM_SHARED) {
2748 error = mapping_map_writable(file->f_mapping);
2749 if (error)
2750 goto free_vma;
2751 }
2752
2753 vma->vm_file = get_file(file);
2754 error = call_mmap(file, vma);
2755 if (error)
2756 goto unmap_and_free_vma;
2757
2758 /*
2759 * Expansion is handled above, merging is handled below.
2760 * Drivers should not alter the address of the VMA.
2761 */
2762 error = -EINVAL;
2763 if (WARN_ON((addr != vma->vm_start)))
2764 goto close_and_free_vma;
2765
2766 vma_iter_config(&vmi, addr, end);
2767 /*
2768 * If vm_flags changed after call_mmap(), we should try merge
2769 * vma again as we may succeed this time.
2770 */
2771 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2772 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2773 vma->vm_end, vma->vm_flags, NULL,
2774 vma->vm_file, vma->vm_pgoff, NULL,
2775 NULL_VM_UFFD_CTX, NULL);
2776 if (merge) {
2777 /*
2778 * ->mmap() can change vma->vm_file and fput
2779 * the original file. So fput the vma->vm_file
2780 * here or we would add an extra fput for file
2781 * and cause general protection fault
2782 * ultimately.
2783 */
2784 fput(vma->vm_file);
2785 vm_area_free(vma);
2786 vma = merge;
2787 /* Update vm_flags to pick up the change. */
2788 vm_flags = vma->vm_flags;
2789 goto unmap_writable;
2790 }
2791 }
2792
2793 vm_flags = vma->vm_flags;
2794 } else if (vm_flags & VM_SHARED) {
2795 error = shmem_zero_setup(vma);
2796 if (error)
2797 goto free_vma;
2798 } else {
2799 vma_set_anonymous(vma);
2800 }
2801
2802 if (map_deny_write_exec(vma, vma->vm_flags)) {
2803 error = -EACCES;
2804 goto close_and_free_vma;
2805 }
2806
2807 /* Allow architectures to sanity-check the vm_flags */
2808 error = -EINVAL;
2809 if (!arch_validate_flags(vma->vm_flags))
2810 goto close_and_free_vma;
2811
2812 error = -ENOMEM;
2813 if (vma_iter_prealloc(&vmi, vma))
2814 goto close_and_free_vma;
2815
2816 /* Lock the VMA since it is modified after insertion into VMA tree */
2817 vma_start_write(vma);
2818 vma_iter_store(&vmi, vma);
2819 mm->map_count++;
2820 if (vma->vm_file) {
2821 i_mmap_lock_write(vma->vm_file->f_mapping);
2822 if (vma->vm_flags & VM_SHARED)
2823 mapping_allow_writable(vma->vm_file->f_mapping);
2824
2825 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2826 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2827 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2828 i_mmap_unlock_write(vma->vm_file->f_mapping);
2829 }
2830
2831 /*
2832 * vma_merge() calls khugepaged_enter_vma() either, the below
2833 * call covers the non-merge case.
2834 */
2835 khugepaged_enter_vma(vma, vma->vm_flags);
2836
2837 /* Once vma denies write, undo our temporary denial count */
2838 unmap_writable:
2839 if (file && vm_flags & VM_SHARED)
2840 mapping_unmap_writable(file->f_mapping);
2841 file = vma->vm_file;
2842 ksm_add_vma(vma);
2843 expanded:
2844 perf_event_mmap(vma);
2845
2846 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2847 if (vm_flags & VM_LOCKED) {
2848 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2849 is_vm_hugetlb_page(vma) ||
2850 vma == get_gate_vma(current->mm))
2851 vm_flags_clear(vma, VM_LOCKED_MASK);
2852 else
2853 mm->locked_vm += (len >> PAGE_SHIFT);
2854 }
2855
2856 if (file)
2857 uprobe_mmap(vma);
2858
2859 /*
2860 * New (or expanded) vma always get soft dirty status.
2861 * Otherwise user-space soft-dirty page tracker won't
2862 * be able to distinguish situation when vma area unmapped,
2863 * then new mapped in-place (which must be aimed as
2864 * a completely new data area).
2865 */
2866 vm_flags_set(vma, VM_SOFTDIRTY);
2867
2868 vma_set_page_prot(vma);
2869
2870 validate_mm(mm);
2871 return addr;
2872
2873 close_and_free_vma:
2874 if (file && vma->vm_ops && vma->vm_ops->close)
2875 vma->vm_ops->close(vma);
2876
2877 if (file || vma->vm_file) {
2878 unmap_and_free_vma:
2879 fput(vma->vm_file);
2880 vma->vm_file = NULL;
2881
2882 vma_iter_set(&vmi, vma->vm_end);
2883 /* Undo any partial mapping done by a device driver. */
2884 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2885 vma->vm_end, vma->vm_end, true);
2886 }
2887 if (file && (vm_flags & VM_SHARED))
2888 mapping_unmap_writable(file->f_mapping);
2889 free_vma:
2890 vm_area_free(vma);
2891 unacct_error:
2892 if (charged)
2893 vm_unacct_memory(charged);
2894 validate_mm(mm);
2895 return error;
2896 }
2897
2898 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2899 {
2900 int ret;
2901 struct mm_struct *mm = current->mm;
2902 LIST_HEAD(uf);
2903 VMA_ITERATOR(vmi, mm, start);
2904
2905 if (mmap_write_lock_killable(mm))
2906 return -EINTR;
2907
2908 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2909 if (ret || !unlock)
2910 mmap_write_unlock(mm);
2911
2912 userfaultfd_unmap_complete(mm, &uf);
2913 return ret;
2914 }
2915
2916 int vm_munmap(unsigned long start, size_t len)
2917 {
2918 return __vm_munmap(start, len, false);
2919 }
2920 EXPORT_SYMBOL(vm_munmap);
2921
2922 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2923 {
2924 addr = untagged_addr(addr);
2925 return __vm_munmap(addr, len, true);
2926 }
2927
2928
2929 /*
2930 * Emulation of deprecated remap_file_pages() syscall.
2931 */
2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2933 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2934 {
2935
2936 struct mm_struct *mm = current->mm;
2937 struct vm_area_struct *vma;
2938 unsigned long populate = 0;
2939 unsigned long ret = -EINVAL;
2940 struct file *file;
2941
2942 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2943 current->comm, current->pid);
2944
2945 if (prot)
2946 return ret;
2947 start = start & PAGE_MASK;
2948 size = size & PAGE_MASK;
2949
2950 if (start + size <= start)
2951 return ret;
2952
2953 /* Does pgoff wrap? */
2954 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2955 return ret;
2956
2957 if (mmap_write_lock_killable(mm))
2958 return -EINTR;
2959
2960 vma = vma_lookup(mm, start);
2961
2962 if (!vma || !(vma->vm_flags & VM_SHARED))
2963 goto out;
2964
2965 if (start + size > vma->vm_end) {
2966 VMA_ITERATOR(vmi, mm, vma->vm_end);
2967 struct vm_area_struct *next, *prev = vma;
2968
2969 for_each_vma_range(vmi, next, start + size) {
2970 /* hole between vmas ? */
2971 if (next->vm_start != prev->vm_end)
2972 goto out;
2973
2974 if (next->vm_file != vma->vm_file)
2975 goto out;
2976
2977 if (next->vm_flags != vma->vm_flags)
2978 goto out;
2979
2980 if (start + size <= next->vm_end)
2981 break;
2982
2983 prev = next;
2984 }
2985
2986 if (!next)
2987 goto out;
2988 }
2989
2990 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2991 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2992 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2993
2994 flags &= MAP_NONBLOCK;
2995 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2996 if (vma->vm_flags & VM_LOCKED)
2997 flags |= MAP_LOCKED;
2998
2999 file = get_file(vma->vm_file);
3000 ret = do_mmap(vma->vm_file, start, size,
3001 prot, flags, 0, pgoff, &populate, NULL);
3002 fput(file);
3003 out:
3004 mmap_write_unlock(mm);
3005 if (populate)
3006 mm_populate(ret, populate);
3007 if (!IS_ERR_VALUE(ret))
3008 ret = 0;
3009 return ret;
3010 }
3011
3012 /*
3013 * do_vma_munmap() - Unmap a full or partial vma.
3014 * @vmi: The vma iterator pointing at the vma
3015 * @vma: The first vma to be munmapped
3016 * @start: the start of the address to unmap
3017 * @end: The end of the address to unmap
3018 * @uf: The userfaultfd list_head
3019 * @unlock: Drop the lock on success
3020 *
3021 * unmaps a VMA mapping when the vma iterator is already in position.
3022 * Does not handle alignment.
3023 *
3024 * Return: 0 on success drops the lock of so directed, error on failure and will
3025 * still hold the lock.
3026 */
3027 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3028 unsigned long start, unsigned long end, struct list_head *uf,
3029 bool unlock)
3030 {
3031 struct mm_struct *mm = vma->vm_mm;
3032
3033 arch_unmap(mm, start, end);
3034 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3035 }
3036
3037 /*
3038 * do_brk_flags() - Increase the brk vma if the flags match.
3039 * @vmi: The vma iterator
3040 * @addr: The start address
3041 * @len: The length of the increase
3042 * @vma: The vma,
3043 * @flags: The VMA Flags
3044 *
3045 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3046 * do not match then create a new anonymous VMA. Eventually we may be able to
3047 * do some brk-specific accounting here.
3048 */
3049 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3050 unsigned long addr, unsigned long len, unsigned long flags)
3051 {
3052 struct mm_struct *mm = current->mm;
3053 struct vma_prepare vp;
3054
3055 /*
3056 * Check against address space limits by the changed size
3057 * Note: This happens *after* clearing old mappings in some code paths.
3058 */
3059 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3060 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3061 return -ENOMEM;
3062
3063 if (mm->map_count > sysctl_max_map_count)
3064 return -ENOMEM;
3065
3066 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3067 return -ENOMEM;
3068
3069 /*
3070 * Expand the existing vma if possible; Note that singular lists do not
3071 * occur after forking, so the expand will only happen on new VMAs.
3072 */
3073 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3074 can_vma_merge_after(vma, flags, NULL, NULL,
3075 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3076 vma_iter_config(vmi, vma->vm_start, addr + len);
3077 if (vma_iter_prealloc(vmi, vma))
3078 goto unacct_fail;
3079
3080 vma_start_write(vma);
3081
3082 init_vma_prep(&vp, vma);
3083 vma_prepare(&vp);
3084 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3085 vma->vm_end = addr + len;
3086 vm_flags_set(vma, VM_SOFTDIRTY);
3087 vma_iter_store(vmi, vma);
3088
3089 vma_complete(&vp, vmi, mm);
3090 khugepaged_enter_vma(vma, flags);
3091 goto out;
3092 }
3093
3094 if (vma)
3095 vma_iter_next_range(vmi);
3096 /* create a vma struct for an anonymous mapping */
3097 vma = vm_area_alloc(mm);
3098 if (!vma)
3099 goto unacct_fail;
3100
3101 vma_set_anonymous(vma);
3102 vma->vm_start = addr;
3103 vma->vm_end = addr + len;
3104 vma->vm_pgoff = addr >> PAGE_SHIFT;
3105 vm_flags_init(vma, flags);
3106 vma->vm_page_prot = vm_get_page_prot(flags);
3107 vma_start_write(vma);
3108 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3109 goto mas_store_fail;
3110
3111 mm->map_count++;
3112 validate_mm(mm);
3113 ksm_add_vma(vma);
3114 out:
3115 perf_event_mmap(vma);
3116 mm->total_vm += len >> PAGE_SHIFT;
3117 mm->data_vm += len >> PAGE_SHIFT;
3118 if (flags & VM_LOCKED)
3119 mm->locked_vm += (len >> PAGE_SHIFT);
3120 vm_flags_set(vma, VM_SOFTDIRTY);
3121 return 0;
3122
3123 mas_store_fail:
3124 vm_area_free(vma);
3125 unacct_fail:
3126 vm_unacct_memory(len >> PAGE_SHIFT);
3127 return -ENOMEM;
3128 }
3129
3130 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3131 {
3132 struct mm_struct *mm = current->mm;
3133 struct vm_area_struct *vma = NULL;
3134 unsigned long len;
3135 int ret;
3136 bool populate;
3137 LIST_HEAD(uf);
3138 VMA_ITERATOR(vmi, mm, addr);
3139
3140 len = PAGE_ALIGN(request);
3141 if (len < request)
3142 return -ENOMEM;
3143 if (!len)
3144 return 0;
3145
3146 if (mmap_write_lock_killable(mm))
3147 return -EINTR;
3148
3149 /* Until we need other flags, refuse anything except VM_EXEC. */
3150 if ((flags & (~VM_EXEC)) != 0)
3151 return -EINVAL;
3152
3153 ret = check_brk_limits(addr, len);
3154 if (ret)
3155 goto limits_failed;
3156
3157 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3158 if (ret)
3159 goto munmap_failed;
3160
3161 vma = vma_prev(&vmi);
3162 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3163 populate = ((mm->def_flags & VM_LOCKED) != 0);
3164 mmap_write_unlock(mm);
3165 userfaultfd_unmap_complete(mm, &uf);
3166 if (populate && !ret)
3167 mm_populate(addr, len);
3168 return ret;
3169
3170 munmap_failed:
3171 limits_failed:
3172 mmap_write_unlock(mm);
3173 return ret;
3174 }
3175 EXPORT_SYMBOL(vm_brk_flags);
3176
3177 int vm_brk(unsigned long addr, unsigned long len)
3178 {
3179 return vm_brk_flags(addr, len, 0);
3180 }
3181 EXPORT_SYMBOL(vm_brk);
3182
3183 /* Release all mmaps. */
3184 void exit_mmap(struct mm_struct *mm)
3185 {
3186 struct mmu_gather tlb;
3187 struct vm_area_struct *vma;
3188 unsigned long nr_accounted = 0;
3189 MA_STATE(mas, &mm->mm_mt, 0, 0);
3190 int count = 0;
3191
3192 /* mm's last user has gone, and its about to be pulled down */
3193 mmu_notifier_release(mm);
3194
3195 mmap_read_lock(mm);
3196 arch_exit_mmap(mm);
3197
3198 vma = mas_find(&mas, ULONG_MAX);
3199 if (!vma) {
3200 /* Can happen if dup_mmap() received an OOM */
3201 mmap_read_unlock(mm);
3202 return;
3203 }
3204
3205 lru_add_drain();
3206 flush_cache_mm(mm);
3207 tlb_gather_mmu_fullmm(&tlb, mm);
3208 /* update_hiwater_rss(mm) here? but nobody should be looking */
3209 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3210 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3211 mmap_read_unlock(mm);
3212
3213 /*
3214 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3215 * because the memory has been already freed.
3216 */
3217 set_bit(MMF_OOM_SKIP, &mm->flags);
3218 mmap_write_lock(mm);
3219 mt_clear_in_rcu(&mm->mm_mt);
3220 mas_set(&mas, vma->vm_end);
3221 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3222 USER_PGTABLES_CEILING, true);
3223 tlb_finish_mmu(&tlb);
3224
3225 /*
3226 * Walk the list again, actually closing and freeing it, with preemption
3227 * enabled, without holding any MM locks besides the unreachable
3228 * mmap_write_lock.
3229 */
3230 mas_set(&mas, vma->vm_end);
3231 do {
3232 if (vma->vm_flags & VM_ACCOUNT)
3233 nr_accounted += vma_pages(vma);
3234 remove_vma(vma, true);
3235 count++;
3236 cond_resched();
3237 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3238
3239 BUG_ON(count != mm->map_count);
3240
3241 trace_exit_mmap(mm);
3242 __mt_destroy(&mm->mm_mt);
3243 mmap_write_unlock(mm);
3244 vm_unacct_memory(nr_accounted);
3245 }
3246
3247 /* Insert vm structure into process list sorted by address
3248 * and into the inode's i_mmap tree. If vm_file is non-NULL
3249 * then i_mmap_rwsem is taken here.
3250 */
3251 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3252 {
3253 unsigned long charged = vma_pages(vma);
3254
3255
3256 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3257 return -ENOMEM;
3258
3259 if ((vma->vm_flags & VM_ACCOUNT) &&
3260 security_vm_enough_memory_mm(mm, charged))
3261 return -ENOMEM;
3262
3263 /*
3264 * The vm_pgoff of a purely anonymous vma should be irrelevant
3265 * until its first write fault, when page's anon_vma and index
3266 * are set. But now set the vm_pgoff it will almost certainly
3267 * end up with (unless mremap moves it elsewhere before that
3268 * first wfault), so /proc/pid/maps tells a consistent story.
3269 *
3270 * By setting it to reflect the virtual start address of the
3271 * vma, merges and splits can happen in a seamless way, just
3272 * using the existing file pgoff checks and manipulations.
3273 * Similarly in do_mmap and in do_brk_flags.
3274 */
3275 if (vma_is_anonymous(vma)) {
3276 BUG_ON(vma->anon_vma);
3277 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3278 }
3279
3280 if (vma_link(mm, vma)) {
3281 vm_unacct_memory(charged);
3282 return -ENOMEM;
3283 }
3284
3285 return 0;
3286 }
3287
3288 /*
3289 * Copy the vma structure to a new location in the same mm,
3290 * prior to moving page table entries, to effect an mremap move.
3291 */
3292 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3293 unsigned long addr, unsigned long len, pgoff_t pgoff,
3294 bool *need_rmap_locks)
3295 {
3296 struct vm_area_struct *vma = *vmap;
3297 unsigned long vma_start = vma->vm_start;
3298 struct mm_struct *mm = vma->vm_mm;
3299 struct vm_area_struct *new_vma, *prev;
3300 bool faulted_in_anon_vma = true;
3301 VMA_ITERATOR(vmi, mm, addr);
3302
3303 /*
3304 * If anonymous vma has not yet been faulted, update new pgoff
3305 * to match new location, to increase its chance of merging.
3306 */
3307 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3308 pgoff = addr >> PAGE_SHIFT;
3309 faulted_in_anon_vma = false;
3310 }
3311
3312 new_vma = find_vma_prev(mm, addr, &prev);
3313 if (new_vma && new_vma->vm_start < addr + len)
3314 return NULL; /* should never get here */
3315
3316 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3317 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3318 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3319 if (new_vma) {
3320 /*
3321 * Source vma may have been merged into new_vma
3322 */
3323 if (unlikely(vma_start >= new_vma->vm_start &&
3324 vma_start < new_vma->vm_end)) {
3325 /*
3326 * The only way we can get a vma_merge with
3327 * self during an mremap is if the vma hasn't
3328 * been faulted in yet and we were allowed to
3329 * reset the dst vma->vm_pgoff to the
3330 * destination address of the mremap to allow
3331 * the merge to happen. mremap must change the
3332 * vm_pgoff linearity between src and dst vmas
3333 * (in turn preventing a vma_merge) to be
3334 * safe. It is only safe to keep the vm_pgoff
3335 * linear if there are no pages mapped yet.
3336 */
3337 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3338 *vmap = vma = new_vma;
3339 }
3340 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3341 } else {
3342 new_vma = vm_area_dup(vma);
3343 if (!new_vma)
3344 goto out;
3345 new_vma->vm_start = addr;
3346 new_vma->vm_end = addr + len;
3347 new_vma->vm_pgoff = pgoff;
3348 if (vma_dup_policy(vma, new_vma))
3349 goto out_free_vma;
3350 if (anon_vma_clone(new_vma, vma))
3351 goto out_free_mempol;
3352 if (new_vma->vm_file)
3353 get_file(new_vma->vm_file);
3354 if (new_vma->vm_ops && new_vma->vm_ops->open)
3355 new_vma->vm_ops->open(new_vma);
3356 if (vma_link(mm, new_vma))
3357 goto out_vma_link;
3358 *need_rmap_locks = false;
3359 }
3360 return new_vma;
3361
3362 out_vma_link:
3363 if (new_vma->vm_ops && new_vma->vm_ops->close)
3364 new_vma->vm_ops->close(new_vma);
3365
3366 if (new_vma->vm_file)
3367 fput(new_vma->vm_file);
3368
3369 unlink_anon_vmas(new_vma);
3370 out_free_mempol:
3371 mpol_put(vma_policy(new_vma));
3372 out_free_vma:
3373 vm_area_free(new_vma);
3374 out:
3375 return NULL;
3376 }
3377
3378 /*
3379 * Return true if the calling process may expand its vm space by the passed
3380 * number of pages
3381 */
3382 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3383 {
3384 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3385 return false;
3386
3387 if (is_data_mapping(flags) &&
3388 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3389 /* Workaround for Valgrind */
3390 if (rlimit(RLIMIT_DATA) == 0 &&
3391 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3392 return true;
3393
3394 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3395 current->comm, current->pid,
3396 (mm->data_vm + npages) << PAGE_SHIFT,
3397 rlimit(RLIMIT_DATA),
3398 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3399
3400 if (!ignore_rlimit_data)
3401 return false;
3402 }
3403
3404 return true;
3405 }
3406
3407 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3408 {
3409 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3410
3411 if (is_exec_mapping(flags))
3412 mm->exec_vm += npages;
3413 else if (is_stack_mapping(flags))
3414 mm->stack_vm += npages;
3415 else if (is_data_mapping(flags))
3416 mm->data_vm += npages;
3417 }
3418
3419 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3420
3421 /*
3422 * Having a close hook prevents vma merging regardless of flags.
3423 */
3424 static void special_mapping_close(struct vm_area_struct *vma)
3425 {
3426 }
3427
3428 static const char *special_mapping_name(struct vm_area_struct *vma)
3429 {
3430 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3431 }
3432
3433 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3434 {
3435 struct vm_special_mapping *sm = new_vma->vm_private_data;
3436
3437 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3438 return -EFAULT;
3439
3440 if (sm->mremap)
3441 return sm->mremap(sm, new_vma);
3442
3443 return 0;
3444 }
3445
3446 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3447 {
3448 /*
3449 * Forbid splitting special mappings - kernel has expectations over
3450 * the number of pages in mapping. Together with VM_DONTEXPAND
3451 * the size of vma should stay the same over the special mapping's
3452 * lifetime.
3453 */
3454 return -EINVAL;
3455 }
3456
3457 static const struct vm_operations_struct special_mapping_vmops = {
3458 .close = special_mapping_close,
3459 .fault = special_mapping_fault,
3460 .mremap = special_mapping_mremap,
3461 .name = special_mapping_name,
3462 /* vDSO code relies that VVAR can't be accessed remotely */
3463 .access = NULL,
3464 .may_split = special_mapping_split,
3465 };
3466
3467 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3468 .close = special_mapping_close,
3469 .fault = special_mapping_fault,
3470 };
3471
3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3473 {
3474 struct vm_area_struct *vma = vmf->vma;
3475 pgoff_t pgoff;
3476 struct page **pages;
3477
3478 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3479 pages = vma->vm_private_data;
3480 } else {
3481 struct vm_special_mapping *sm = vma->vm_private_data;
3482
3483 if (sm->fault)
3484 return sm->fault(sm, vmf->vma, vmf);
3485
3486 pages = sm->pages;
3487 }
3488
3489 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3490 pgoff--;
3491
3492 if (*pages) {
3493 struct page *page = *pages;
3494 get_page(page);
3495 vmf->page = page;
3496 return 0;
3497 }
3498
3499 return VM_FAULT_SIGBUS;
3500 }
3501
3502 static struct vm_area_struct *__install_special_mapping(
3503 struct mm_struct *mm,
3504 unsigned long addr, unsigned long len,
3505 unsigned long vm_flags, void *priv,
3506 const struct vm_operations_struct *ops)
3507 {
3508 int ret;
3509 struct vm_area_struct *vma;
3510
3511 vma = vm_area_alloc(mm);
3512 if (unlikely(vma == NULL))
3513 return ERR_PTR(-ENOMEM);
3514
3515 vma->vm_start = addr;
3516 vma->vm_end = addr + len;
3517
3518 vm_flags_init(vma, (vm_flags | mm->def_flags |
3519 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3520 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3521
3522 vma->vm_ops = ops;
3523 vma->vm_private_data = priv;
3524
3525 ret = insert_vm_struct(mm, vma);
3526 if (ret)
3527 goto out;
3528
3529 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3530
3531 perf_event_mmap(vma);
3532
3533 return vma;
3534
3535 out:
3536 vm_area_free(vma);
3537 return ERR_PTR(ret);
3538 }
3539
3540 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3541 const struct vm_special_mapping *sm)
3542 {
3543 return vma->vm_private_data == sm &&
3544 (vma->vm_ops == &special_mapping_vmops ||
3545 vma->vm_ops == &legacy_special_mapping_vmops);
3546 }
3547
3548 /*
3549 * Called with mm->mmap_lock held for writing.
3550 * Insert a new vma covering the given region, with the given flags.
3551 * Its pages are supplied by the given array of struct page *.
3552 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3553 * The region past the last page supplied will always produce SIGBUS.
3554 * The array pointer and the pages it points to are assumed to stay alive
3555 * for as long as this mapping might exist.
3556 */
3557 struct vm_area_struct *_install_special_mapping(
3558 struct mm_struct *mm,
3559 unsigned long addr, unsigned long len,
3560 unsigned long vm_flags, const struct vm_special_mapping *spec)
3561 {
3562 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3563 &special_mapping_vmops);
3564 }
3565
3566 int install_special_mapping(struct mm_struct *mm,
3567 unsigned long addr, unsigned long len,
3568 unsigned long vm_flags, struct page **pages)
3569 {
3570 struct vm_area_struct *vma = __install_special_mapping(
3571 mm, addr, len, vm_flags, (void *)pages,
3572 &legacy_special_mapping_vmops);
3573
3574 return PTR_ERR_OR_ZERO(vma);
3575 }
3576
3577 static DEFINE_MUTEX(mm_all_locks_mutex);
3578
3579 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3580 {
3581 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3582 /*
3583 * The LSB of head.next can't change from under us
3584 * because we hold the mm_all_locks_mutex.
3585 */
3586 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3587 /*
3588 * We can safely modify head.next after taking the
3589 * anon_vma->root->rwsem. If some other vma in this mm shares
3590 * the same anon_vma we won't take it again.
3591 *
3592 * No need of atomic instructions here, head.next
3593 * can't change from under us thanks to the
3594 * anon_vma->root->rwsem.
3595 */
3596 if (__test_and_set_bit(0, (unsigned long *)
3597 &anon_vma->root->rb_root.rb_root.rb_node))
3598 BUG();
3599 }
3600 }
3601
3602 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3603 {
3604 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605 /*
3606 * AS_MM_ALL_LOCKS can't change from under us because
3607 * we hold the mm_all_locks_mutex.
3608 *
3609 * Operations on ->flags have to be atomic because
3610 * even if AS_MM_ALL_LOCKS is stable thanks to the
3611 * mm_all_locks_mutex, there may be other cpus
3612 * changing other bitflags in parallel to us.
3613 */
3614 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3615 BUG();
3616 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3617 }
3618 }
3619
3620 /*
3621 * This operation locks against the VM for all pte/vma/mm related
3622 * operations that could ever happen on a certain mm. This includes
3623 * vmtruncate, try_to_unmap, and all page faults.
3624 *
3625 * The caller must take the mmap_lock in write mode before calling
3626 * mm_take_all_locks(). The caller isn't allowed to release the
3627 * mmap_lock until mm_drop_all_locks() returns.
3628 *
3629 * mmap_lock in write mode is required in order to block all operations
3630 * that could modify pagetables and free pages without need of
3631 * altering the vma layout. It's also needed in write mode to avoid new
3632 * anon_vmas to be associated with existing vmas.
3633 *
3634 * A single task can't take more than one mm_take_all_locks() in a row
3635 * or it would deadlock.
3636 *
3637 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3638 * mapping->flags avoid to take the same lock twice, if more than one
3639 * vma in this mm is backed by the same anon_vma or address_space.
3640 *
3641 * We take locks in following order, accordingly to comment at beginning
3642 * of mm/rmap.c:
3643 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3644 * hugetlb mapping);
3645 * - all vmas marked locked
3646 * - all i_mmap_rwsem locks;
3647 * - all anon_vma->rwseml
3648 *
3649 * We can take all locks within these types randomly because the VM code
3650 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3651 * mm_all_locks_mutex.
3652 *
3653 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3654 * that may have to take thousand of locks.
3655 *
3656 * mm_take_all_locks() can fail if it's interrupted by signals.
3657 */
3658 int mm_take_all_locks(struct mm_struct *mm)
3659 {
3660 struct vm_area_struct *vma;
3661 struct anon_vma_chain *avc;
3662 MA_STATE(mas, &mm->mm_mt, 0, 0);
3663
3664 mmap_assert_write_locked(mm);
3665
3666 mutex_lock(&mm_all_locks_mutex);
3667
3668 /*
3669 * vma_start_write() does not have a complement in mm_drop_all_locks()
3670 * because vma_start_write() is always asymmetrical; it marks a VMA as
3671 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3672 * is reached.
3673 */
3674 mas_for_each(&mas, vma, ULONG_MAX) {
3675 if (signal_pending(current))
3676 goto out_unlock;
3677 vma_start_write(vma);
3678 }
3679
3680 mas_set(&mas, 0);
3681 mas_for_each(&mas, vma, ULONG_MAX) {
3682 if (signal_pending(current))
3683 goto out_unlock;
3684 if (vma->vm_file && vma->vm_file->f_mapping &&
3685 is_vm_hugetlb_page(vma))
3686 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3687 }
3688
3689 mas_set(&mas, 0);
3690 mas_for_each(&mas, vma, ULONG_MAX) {
3691 if (signal_pending(current))
3692 goto out_unlock;
3693 if (vma->vm_file && vma->vm_file->f_mapping &&
3694 !is_vm_hugetlb_page(vma))
3695 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3696 }
3697
3698 mas_set(&mas, 0);
3699 mas_for_each(&mas, vma, ULONG_MAX) {
3700 if (signal_pending(current))
3701 goto out_unlock;
3702 if (vma->anon_vma)
3703 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3704 vm_lock_anon_vma(mm, avc->anon_vma);
3705 }
3706
3707 return 0;
3708
3709 out_unlock:
3710 mm_drop_all_locks(mm);
3711 return -EINTR;
3712 }
3713
3714 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3715 {
3716 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3717 /*
3718 * The LSB of head.next can't change to 0 from under
3719 * us because we hold the mm_all_locks_mutex.
3720 *
3721 * We must however clear the bitflag before unlocking
3722 * the vma so the users using the anon_vma->rb_root will
3723 * never see our bitflag.
3724 *
3725 * No need of atomic instructions here, head.next
3726 * can't change from under us until we release the
3727 * anon_vma->root->rwsem.
3728 */
3729 if (!__test_and_clear_bit(0, (unsigned long *)
3730 &anon_vma->root->rb_root.rb_root.rb_node))
3731 BUG();
3732 anon_vma_unlock_write(anon_vma);
3733 }
3734 }
3735
3736 static void vm_unlock_mapping(struct address_space *mapping)
3737 {
3738 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3739 /*
3740 * AS_MM_ALL_LOCKS can't change to 0 from under us
3741 * because we hold the mm_all_locks_mutex.
3742 */
3743 i_mmap_unlock_write(mapping);
3744 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3745 &mapping->flags))
3746 BUG();
3747 }
3748 }
3749
3750 /*
3751 * The mmap_lock cannot be released by the caller until
3752 * mm_drop_all_locks() returns.
3753 */
3754 void mm_drop_all_locks(struct mm_struct *mm)
3755 {
3756 struct vm_area_struct *vma;
3757 struct anon_vma_chain *avc;
3758 MA_STATE(mas, &mm->mm_mt, 0, 0);
3759
3760 mmap_assert_write_locked(mm);
3761 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3762
3763 mas_for_each(&mas, vma, ULONG_MAX) {
3764 if (vma->anon_vma)
3765 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3766 vm_unlock_anon_vma(avc->anon_vma);
3767 if (vma->vm_file && vma->vm_file->f_mapping)
3768 vm_unlock_mapping(vma->vm_file->f_mapping);
3769 }
3770
3771 mutex_unlock(&mm_all_locks_mutex);
3772 }
3773
3774 /*
3775 * initialise the percpu counter for VM
3776 */
3777 void __init mmap_init(void)
3778 {
3779 int ret;
3780
3781 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3782 VM_BUG_ON(ret);
3783 }
3784
3785 /*
3786 * Initialise sysctl_user_reserve_kbytes.
3787 *
3788 * This is intended to prevent a user from starting a single memory hogging
3789 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3790 * mode.
3791 *
3792 * The default value is min(3% of free memory, 128MB)
3793 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3794 */
3795 static int init_user_reserve(void)
3796 {
3797 unsigned long free_kbytes;
3798
3799 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3800
3801 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3802 return 0;
3803 }
3804 subsys_initcall(init_user_reserve);
3805
3806 /*
3807 * Initialise sysctl_admin_reserve_kbytes.
3808 *
3809 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3810 * to log in and kill a memory hogging process.
3811 *
3812 * Systems with more than 256MB will reserve 8MB, enough to recover
3813 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3814 * only reserve 3% of free pages by default.
3815 */
3816 static int init_admin_reserve(void)
3817 {
3818 unsigned long free_kbytes;
3819
3820 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3821
3822 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3823 return 0;
3824 }
3825 subsys_initcall(init_admin_reserve);
3826
3827 /*
3828 * Reinititalise user and admin reserves if memory is added or removed.
3829 *
3830 * The default user reserve max is 128MB, and the default max for the
3831 * admin reserve is 8MB. These are usually, but not always, enough to
3832 * enable recovery from a memory hogging process using login/sshd, a shell,
3833 * and tools like top. It may make sense to increase or even disable the
3834 * reserve depending on the existence of swap or variations in the recovery
3835 * tools. So, the admin may have changed them.
3836 *
3837 * If memory is added and the reserves have been eliminated or increased above
3838 * the default max, then we'll trust the admin.
3839 *
3840 * If memory is removed and there isn't enough free memory, then we
3841 * need to reset the reserves.
3842 *
3843 * Otherwise keep the reserve set by the admin.
3844 */
3845 static int reserve_mem_notifier(struct notifier_block *nb,
3846 unsigned long action, void *data)
3847 {
3848 unsigned long tmp, free_kbytes;
3849
3850 switch (action) {
3851 case MEM_ONLINE:
3852 /* Default max is 128MB. Leave alone if modified by operator. */
3853 tmp = sysctl_user_reserve_kbytes;
3854 if (0 < tmp && tmp < (1UL << 17))
3855 init_user_reserve();
3856
3857 /* Default max is 8MB. Leave alone if modified by operator. */
3858 tmp = sysctl_admin_reserve_kbytes;
3859 if (0 < tmp && tmp < (1UL << 13))
3860 init_admin_reserve();
3861
3862 break;
3863 case MEM_OFFLINE:
3864 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3865
3866 if (sysctl_user_reserve_kbytes > free_kbytes) {
3867 init_user_reserve();
3868 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3869 sysctl_user_reserve_kbytes);
3870 }
3871
3872 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3873 init_admin_reserve();
3874 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3875 sysctl_admin_reserve_kbytes);
3876 }
3877 break;
3878 default:
3879 break;
3880 }
3881 return NOTIFY_OK;
3882 }
3883
3884 static int __meminit init_reserve_notifier(void)
3885 {
3886 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3887 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3888
3889 return 0;
3890 }
3891 subsys_initcall(init_reserve_notifier);