]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/page_alloc.c
arm64: tegra: Use correct interrupts for Tegra234 TKE
[thirdparty/linux.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62
63 /* No special request */
64 #define FPI_NONE ((__force fpi_t)0)
65
66 /*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
76 /*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97 #define pcp_trylock_prepare(flags) do { } while (0)
98 #define pcp_trylock_finish(flag) do { } while (0)
99 #else
100
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags) local_irq_save(flags)
103 #define pcp_trylock_finish(flags) local_irq_restore(flags)
104 #endif
105
106 /*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin() preempt_disable()
116 #define pcpu_task_unpin() preempt_enable()
117 #else
118 #define pcpu_task_pin() migrate_disable()
119 #define pcpu_task_unpin() migrate_enable()
120 #endif
121
122 /*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126 #define pcpu_spin_lock(type, member, ptr) \
127 ({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133 })
134
135 #define pcpu_spin_trylock(type, member, ptr) \
136 ({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
140 if (!spin_trylock(&_ret->member)) { \
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145 })
146
147 #define pcpu_spin_unlock(member, ptr) \
148 ({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151 })
152
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
157 #define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187
188 /*
189 * Array of node states.
190 */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 [N_MEMORY] = { { [0] = 1UL } },
200 [N_CPU] = { { [0] = 1UL } },
201 #endif /* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206
207 /*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 return page->index;
218 }
219
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 page->index = migratetype;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
231
232 /*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
242 */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 [ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 [ZONE_DMA32] = 256,
249 #endif
250 [ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 [ZONE_HIGHMEM] = 0,
253 #endif
254 [ZONE_MOVABLE] = 0,
255 };
256
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 "DMA32",
263 #endif
264 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 "HighMem",
267 #endif
268 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 "Device",
271 #endif
272 };
273
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279 #ifdef CONFIG_CMA
280 "CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284 #endif
285 };
286
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308
309 int page_group_by_mobility_disabled __read_mostly;
310
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313 * During boot we initialize deferred pages on-demand, as needed, but once
314 * page_alloc_init_late() has finished, the deferred pages are all initialized,
315 * and we can permanently disable that path.
316 */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318
319 static inline bool deferred_pages_enabled(void)
320 {
321 return static_branch_unlikely(&deferred_pages);
322 }
323
324 /*
325 * deferred_grow_zone() is __init, but it is called from
326 * get_page_from_freelist() during early boot until deferred_pages permanently
327 * disables this call. This is why we have refdata wrapper to avoid warning,
328 * and to ensure that the function body gets unloaded.
329 */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333 return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 #else
358 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362
363 /**
364 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365 * @page: The page within the block of interest
366 * @pfn: The target page frame number
367 * @mask: mask of bits that the caller is interested in
368 *
369 * Return: pageblock_bits flags
370 */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 unsigned long pfn, unsigned long mask)
373 {
374 unsigned long *bitmap;
375 unsigned long bitidx, word_bitidx;
376 unsigned long word;
377
378 bitmap = get_pageblock_bitmap(page, pfn);
379 bitidx = pfn_to_bitidx(page, pfn);
380 word_bitidx = bitidx / BITS_PER_LONG;
381 bitidx &= (BITS_PER_LONG-1);
382 /*
383 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 * a consistent read of the memory array, so that results, even though
385 * racy, are not corrupted.
386 */
387 word = READ_ONCE(bitmap[word_bitidx]);
388 return (word >> bitidx) & mask;
389 }
390
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 unsigned long pfn)
393 {
394 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396
397 /**
398 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @flags: The flags to set
401 * @pfn: The target page frame number
402 * @mask: mask of bits that the caller is interested in
403 */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 unsigned long pfn,
406 unsigned long mask)
407 {
408 unsigned long *bitmap;
409 unsigned long bitidx, word_bitidx;
410 unsigned long word;
411
412 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
419
420 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421
422 mask <<= bitidx;
423 flags <<= bitidx;
424
425 word = READ_ONCE(bitmap[word_bitidx]);
426 do {
427 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 if (unlikely(page_group_by_mobility_disabled &&
433 migratetype < MIGRATE_PCPTYPES))
434 migratetype = MIGRATE_UNMOVABLE;
435
436 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 int ret;
444 unsigned seq;
445 unsigned long pfn = page_to_pfn(page);
446 unsigned long sp, start_pfn;
447
448 do {
449 seq = zone_span_seqbegin(zone);
450 start_pfn = zone->zone_start_pfn;
451 sp = zone->spanned_pages;
452 ret = !zone_spans_pfn(zone, pfn);
453 } while (zone_span_seqretry(zone, seq));
454
455 if (ret)
456 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 pfn, zone_to_nid(zone), zone->name,
458 start_pfn, start_pfn + sp);
459
460 return ret;
461 }
462
463 /*
464 * Temporary debugging check for pages not lying within a given zone.
465 */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 if (page_outside_zone_boundaries(zone, page))
469 return 1;
470 if (zone != page_zone(page))
471 return 1;
472
473 return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 return 0;
479 }
480 #endif
481
482 static void bad_page(struct page *page, const char *reason)
483 {
484 static unsigned long resume;
485 static unsigned long nr_shown;
486 static unsigned long nr_unshown;
487
488 /*
489 * Allow a burst of 60 reports, then keep quiet for that minute;
490 * or allow a steady drip of one report per second.
491 */
492 if (nr_shown == 60) {
493 if (time_before(jiffies, resume)) {
494 nr_unshown++;
495 goto out;
496 }
497 if (nr_unshown) {
498 pr_alert(
499 "BUG: Bad page state: %lu messages suppressed\n",
500 nr_unshown);
501 nr_unshown = 0;
502 }
503 nr_shown = 0;
504 }
505 if (nr_shown++ == 0)
506 resume = jiffies + 60 * HZ;
507
508 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
509 current->comm, page_to_pfn(page));
510 dump_page(page, reason);
511
512 print_modules();
513 dump_stack();
514 out:
515 /* Leave bad fields for debug, except PageBuddy could make trouble */
516 page_mapcount_reset(page); /* remove PageBuddy */
517 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 if (order > PAGE_ALLOC_COSTLY_ORDER) {
524 VM_BUG_ON(order != pageblock_order);
525 return NR_LOWORDER_PCP_LISTS;
526 }
527 #else
528 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
529 #endif
530
531 return (MIGRATE_PCPTYPES * order) + migratetype;
532 }
533
534 static inline int pindex_to_order(unsigned int pindex)
535 {
536 int order = pindex / MIGRATE_PCPTYPES;
537
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 if (pindex == NR_LOWORDER_PCP_LISTS)
540 order = pageblock_order;
541 #else
542 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
543 #endif
544
545 return order;
546 }
547
548 static inline bool pcp_allowed_order(unsigned int order)
549 {
550 if (order <= PAGE_ALLOC_COSTLY_ORDER)
551 return true;
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 if (order == pageblock_order)
554 return true;
555 #endif
556 return false;
557 }
558
559 static inline void free_the_page(struct page *page, unsigned int order)
560 {
561 if (pcp_allowed_order(order)) /* Via pcp? */
562 free_unref_page(page, order);
563 else
564 __free_pages_ok(page, order, FPI_NONE);
565 }
566
567 /*
568 * Higher-order pages are called "compound pages". They are structured thusly:
569 *
570 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
571 *
572 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
573 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
574 *
575 * The first tail page's ->compound_order holds the order of allocation.
576 * This usage means that zero-order pages may not be compound.
577 */
578
579 void prep_compound_page(struct page *page, unsigned int order)
580 {
581 int i;
582 int nr_pages = 1 << order;
583
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++)
586 prep_compound_tail(page, i);
587
588 prep_compound_head(page, order);
589 }
590
591 void destroy_large_folio(struct folio *folio)
592 {
593 if (folio_test_hugetlb(folio)) {
594 free_huge_folio(folio);
595 return;
596 }
597
598 if (folio_test_large_rmappable(folio))
599 folio_undo_large_rmappable(folio);
600
601 mem_cgroup_uncharge(folio);
602 free_the_page(&folio->page, folio_order(folio));
603 }
604
605 static inline void set_buddy_order(struct page *page, unsigned int order)
606 {
607 set_page_private(page, order);
608 __SetPageBuddy(page);
609 }
610
611 #ifdef CONFIG_COMPACTION
612 static inline struct capture_control *task_capc(struct zone *zone)
613 {
614 struct capture_control *capc = current->capture_control;
615
616 return unlikely(capc) &&
617 !(current->flags & PF_KTHREAD) &&
618 !capc->page &&
619 capc->cc->zone == zone ? capc : NULL;
620 }
621
622 static inline bool
623 compaction_capture(struct capture_control *capc, struct page *page,
624 int order, int migratetype)
625 {
626 if (!capc || order != capc->cc->order)
627 return false;
628
629 /* Do not accidentally pollute CMA or isolated regions*/
630 if (is_migrate_cma(migratetype) ||
631 is_migrate_isolate(migratetype))
632 return false;
633
634 /*
635 * Do not let lower order allocations pollute a movable pageblock.
636 * This might let an unmovable request use a reclaimable pageblock
637 * and vice-versa but no more than normal fallback logic which can
638 * have trouble finding a high-order free page.
639 */
640 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
641 return false;
642
643 capc->page = page;
644 return true;
645 }
646
647 #else
648 static inline struct capture_control *task_capc(struct zone *zone)
649 {
650 return NULL;
651 }
652
653 static inline bool
654 compaction_capture(struct capture_control *capc, struct page *page,
655 int order, int migratetype)
656 {
657 return false;
658 }
659 #endif /* CONFIG_COMPACTION */
660
661 /* Used for pages not on another list */
662 static inline void add_to_free_list(struct page *page, struct zone *zone,
663 unsigned int order, int migratetype)
664 {
665 struct free_area *area = &zone->free_area[order];
666
667 list_add(&page->buddy_list, &area->free_list[migratetype]);
668 area->nr_free++;
669 }
670
671 /* Used for pages not on another list */
672 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
673 unsigned int order, int migratetype)
674 {
675 struct free_area *area = &zone->free_area[order];
676
677 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
678 area->nr_free++;
679 }
680
681 /*
682 * Used for pages which are on another list. Move the pages to the tail
683 * of the list - so the moved pages won't immediately be considered for
684 * allocation again (e.g., optimization for memory onlining).
685 */
686 static inline void move_to_free_list(struct page *page, struct zone *zone,
687 unsigned int order, int migratetype)
688 {
689 struct free_area *area = &zone->free_area[order];
690
691 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
692 }
693
694 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 unsigned int order)
696 {
697 /* clear reported state and update reported page count */
698 if (page_reported(page))
699 __ClearPageReported(page);
700
701 list_del(&page->buddy_list);
702 __ClearPageBuddy(page);
703 set_page_private(page, 0);
704 zone->free_area[order].nr_free--;
705 }
706
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 int migratetype)
709 {
710 return list_first_entry_or_null(&area->free_list[migratetype],
711 struct page, buddy_list);
712 }
713
714 /*
715 * If this is not the largest possible page, check if the buddy
716 * of the next-highest order is free. If it is, it's possible
717 * that pages are being freed that will coalesce soon. In case,
718 * that is happening, add the free page to the tail of the list
719 * so it's less likely to be used soon and more likely to be merged
720 * as a higher order page
721 */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 struct page *page, unsigned int order)
725 {
726 unsigned long higher_page_pfn;
727 struct page *higher_page;
728
729 if (order >= MAX_ORDER - 1)
730 return false;
731
732 higher_page_pfn = buddy_pfn & pfn;
733 higher_page = page + (higher_page_pfn - pfn);
734
735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 NULL) != NULL;
737 }
738
739 /*
740 * Freeing function for a buddy system allocator.
741 *
742 * The concept of a buddy system is to maintain direct-mapped table
743 * (containing bit values) for memory blocks of various "orders".
744 * The bottom level table contains the map for the smallest allocatable
745 * units of memory (here, pages), and each level above it describes
746 * pairs of units from the levels below, hence, "buddies".
747 * At a high level, all that happens here is marking the table entry
748 * at the bottom level available, and propagating the changes upward
749 * as necessary, plus some accounting needed to play nicely with other
750 * parts of the VM system.
751 * At each level, we keep a list of pages, which are heads of continuous
752 * free pages of length of (1 << order) and marked with PageBuddy.
753 * Page's order is recorded in page_private(page) field.
754 * So when we are allocating or freeing one, we can derive the state of the
755 * other. That is, if we allocate a small block, and both were
756 * free, the remainder of the region must be split into blocks.
757 * If a block is freed, and its buddy is also free, then this
758 * triggers coalescing into a block of larger size.
759 *
760 * -- nyc
761 */
762
763 static inline void __free_one_page(struct page *page,
764 unsigned long pfn,
765 struct zone *zone, unsigned int order,
766 int migratetype, fpi_t fpi_flags)
767 {
768 struct capture_control *capc = task_capc(zone);
769 unsigned long buddy_pfn = 0;
770 unsigned long combined_pfn;
771 struct page *buddy;
772 bool to_tail;
773
774 VM_BUG_ON(!zone_is_initialized(zone));
775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776
777 VM_BUG_ON(migratetype == -1);
778 if (likely(!is_migrate_isolate(migratetype)))
779 __mod_zone_freepage_state(zone, 1 << order, migratetype);
780
781 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 VM_BUG_ON_PAGE(bad_range(zone, page), page);
783
784 while (order < MAX_ORDER) {
785 if (compaction_capture(capc, page, order, migratetype)) {
786 __mod_zone_freepage_state(zone, -(1 << order),
787 migratetype);
788 return;
789 }
790
791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 if (!buddy)
793 goto done_merging;
794
795 if (unlikely(order >= pageblock_order)) {
796 /*
797 * We want to prevent merge between freepages on pageblock
798 * without fallbacks and normal pageblock. Without this,
799 * pageblock isolation could cause incorrect freepage or CMA
800 * accounting or HIGHATOMIC accounting.
801 */
802 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803
804 if (migratetype != buddy_mt
805 && (!migratetype_is_mergeable(migratetype) ||
806 !migratetype_is_mergeable(buddy_mt)))
807 goto done_merging;
808 }
809
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy))
815 clear_page_guard(zone, buddy, order, migratetype);
816 else
817 del_page_from_free_list(buddy, zone, order);
818 combined_pfn = buddy_pfn & pfn;
819 page = page + (combined_pfn - pfn);
820 pfn = combined_pfn;
821 order++;
822 }
823
824 done_merging:
825 set_buddy_order(page, order);
826
827 if (fpi_flags & FPI_TO_TAIL)
828 to_tail = true;
829 else if (is_shuffle_order(order))
830 to_tail = shuffle_pick_tail();
831 else
832 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
833
834 if (to_tail)
835 add_to_free_list_tail(page, zone, order, migratetype);
836 else
837 add_to_free_list(page, zone, order, migratetype);
838
839 /* Notify page reporting subsystem of freed page */
840 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
841 page_reporting_notify_free(order);
842 }
843
844 /**
845 * split_free_page() -- split a free page at split_pfn_offset
846 * @free_page: the original free page
847 * @order: the order of the page
848 * @split_pfn_offset: split offset within the page
849 *
850 * Return -ENOENT if the free page is changed, otherwise 0
851 *
852 * It is used when the free page crosses two pageblocks with different migratetypes
853 * at split_pfn_offset within the page. The split free page will be put into
854 * separate migratetype lists afterwards. Otherwise, the function achieves
855 * nothing.
856 */
857 int split_free_page(struct page *free_page,
858 unsigned int order, unsigned long split_pfn_offset)
859 {
860 struct zone *zone = page_zone(free_page);
861 unsigned long free_page_pfn = page_to_pfn(free_page);
862 unsigned long pfn;
863 unsigned long flags;
864 int free_page_order;
865 int mt;
866 int ret = 0;
867
868 if (split_pfn_offset == 0)
869 return ret;
870
871 spin_lock_irqsave(&zone->lock, flags);
872
873 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
874 ret = -ENOENT;
875 goto out;
876 }
877
878 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
879 if (likely(!is_migrate_isolate(mt)))
880 __mod_zone_freepage_state(zone, -(1UL << order), mt);
881
882 del_page_from_free_list(free_page, zone, order);
883 for (pfn = free_page_pfn;
884 pfn < free_page_pfn + (1UL << order);) {
885 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
886
887 free_page_order = min_t(unsigned int,
888 pfn ? __ffs(pfn) : order,
889 __fls(split_pfn_offset));
890 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
891 mt, FPI_NONE);
892 pfn += 1UL << free_page_order;
893 split_pfn_offset -= (1UL << free_page_order);
894 /* we have done the first part, now switch to second part */
895 if (split_pfn_offset == 0)
896 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
897 }
898 out:
899 spin_unlock_irqrestore(&zone->lock, flags);
900 return ret;
901 }
902 /*
903 * A bad page could be due to a number of fields. Instead of multiple branches,
904 * try and check multiple fields with one check. The caller must do a detailed
905 * check if necessary.
906 */
907 static inline bool page_expected_state(struct page *page,
908 unsigned long check_flags)
909 {
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 return false;
912
913 if (unlikely((unsigned long)page->mapping |
914 page_ref_count(page) |
915 #ifdef CONFIG_MEMCG
916 page->memcg_data |
917 #endif
918 (page->flags & check_flags)))
919 return false;
920
921 return true;
922 }
923
924 static const char *page_bad_reason(struct page *page, unsigned long flags)
925 {
926 const char *bad_reason = NULL;
927
928 if (unlikely(atomic_read(&page->_mapcount) != -1))
929 bad_reason = "nonzero mapcount";
930 if (unlikely(page->mapping != NULL))
931 bad_reason = "non-NULL mapping";
932 if (unlikely(page_ref_count(page) != 0))
933 bad_reason = "nonzero _refcount";
934 if (unlikely(page->flags & flags)) {
935 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
936 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
937 else
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 }
940 #ifdef CONFIG_MEMCG
941 if (unlikely(page->memcg_data))
942 bad_reason = "page still charged to cgroup";
943 #endif
944 return bad_reason;
945 }
946
947 static void free_page_is_bad_report(struct page *page)
948 {
949 bad_page(page,
950 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
951 }
952
953 static inline bool free_page_is_bad(struct page *page)
954 {
955 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
956 return false;
957
958 /* Something has gone sideways, find it */
959 free_page_is_bad_report(page);
960 return true;
961 }
962
963 static inline bool is_check_pages_enabled(void)
964 {
965 return static_branch_unlikely(&check_pages_enabled);
966 }
967
968 static int free_tail_page_prepare(struct page *head_page, struct page *page)
969 {
970 struct folio *folio = (struct folio *)head_page;
971 int ret = 1;
972
973 /*
974 * We rely page->lru.next never has bit 0 set, unless the page
975 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 */
977 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978
979 if (!is_check_pages_enabled()) {
980 ret = 0;
981 goto out;
982 }
983 switch (page - head_page) {
984 case 1:
985 /* the first tail page: these may be in place of ->mapping */
986 if (unlikely(folio_entire_mapcount(folio))) {
987 bad_page(page, "nonzero entire_mapcount");
988 goto out;
989 }
990 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
991 bad_page(page, "nonzero nr_pages_mapped");
992 goto out;
993 }
994 if (unlikely(atomic_read(&folio->_pincount))) {
995 bad_page(page, "nonzero pincount");
996 goto out;
997 }
998 break;
999 case 2:
1000 /*
1001 * the second tail page: ->mapping is
1002 * deferred_list.next -- ignore value.
1003 */
1004 break;
1005 default:
1006 if (page->mapping != TAIL_MAPPING) {
1007 bad_page(page, "corrupted mapping in tail page");
1008 goto out;
1009 }
1010 break;
1011 }
1012 if (unlikely(!PageTail(page))) {
1013 bad_page(page, "PageTail not set");
1014 goto out;
1015 }
1016 if (unlikely(compound_head(page) != head_page)) {
1017 bad_page(page, "compound_head not consistent");
1018 goto out;
1019 }
1020 ret = 0;
1021 out:
1022 page->mapping = NULL;
1023 clear_compound_head(page);
1024 return ret;
1025 }
1026
1027 /*
1028 * Skip KASAN memory poisoning when either:
1029 *
1030 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1031 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1032 * using page tags instead (see below).
1033 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1034 * that error detection is disabled for accesses via the page address.
1035 *
1036 * Pages will have match-all tags in the following circumstances:
1037 *
1038 * 1. Pages are being initialized for the first time, including during deferred
1039 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1040 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1041 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1042 * 3. The allocation was excluded from being checked due to sampling,
1043 * see the call to kasan_unpoison_pages.
1044 *
1045 * Poisoning pages during deferred memory init will greatly lengthen the
1046 * process and cause problem in large memory systems as the deferred pages
1047 * initialization is done with interrupt disabled.
1048 *
1049 * Assuming that there will be no reference to those newly initialized
1050 * pages before they are ever allocated, this should have no effect on
1051 * KASAN memory tracking as the poison will be properly inserted at page
1052 * allocation time. The only corner case is when pages are allocated by
1053 * on-demand allocation and then freed again before the deferred pages
1054 * initialization is done, but this is not likely to happen.
1055 */
1056 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1057 {
1058 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1059 return deferred_pages_enabled();
1060
1061 return page_kasan_tag(page) == 0xff;
1062 }
1063
1064 static void kernel_init_pages(struct page *page, int numpages)
1065 {
1066 int i;
1067
1068 /* s390's use of memset() could override KASAN redzones. */
1069 kasan_disable_current();
1070 for (i = 0; i < numpages; i++)
1071 clear_highpage_kasan_tagged(page + i);
1072 kasan_enable_current();
1073 }
1074
1075 static __always_inline bool free_pages_prepare(struct page *page,
1076 unsigned int order, fpi_t fpi_flags)
1077 {
1078 int bad = 0;
1079 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1080 bool init = want_init_on_free();
1081
1082 VM_BUG_ON_PAGE(PageTail(page), page);
1083
1084 trace_mm_page_free(page, order);
1085 kmsan_free_page(page, order);
1086
1087 if (unlikely(PageHWPoison(page)) && !order) {
1088 /*
1089 * Do not let hwpoison pages hit pcplists/buddy
1090 * Untie memcg state and reset page's owner
1091 */
1092 if (memcg_kmem_online() && PageMemcgKmem(page))
1093 __memcg_kmem_uncharge_page(page, order);
1094 reset_page_owner(page, order);
1095 page_table_check_free(page, order);
1096 return false;
1097 }
1098
1099 /*
1100 * Check tail pages before head page information is cleared to
1101 * avoid checking PageCompound for order-0 pages.
1102 */
1103 if (unlikely(order)) {
1104 bool compound = PageCompound(page);
1105 int i;
1106
1107 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108
1109 if (compound)
1110 page[1].flags &= ~PAGE_FLAGS_SECOND;
1111 for (i = 1; i < (1 << order); i++) {
1112 if (compound)
1113 bad += free_tail_page_prepare(page, page + i);
1114 if (is_check_pages_enabled()) {
1115 if (free_page_is_bad(page + i)) {
1116 bad++;
1117 continue;
1118 }
1119 }
1120 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1121 }
1122 }
1123 if (PageMappingFlags(page))
1124 page->mapping = NULL;
1125 if (memcg_kmem_online() && PageMemcgKmem(page))
1126 __memcg_kmem_uncharge_page(page, order);
1127 if (is_check_pages_enabled()) {
1128 if (free_page_is_bad(page))
1129 bad++;
1130 if (bad)
1131 return false;
1132 }
1133
1134 page_cpupid_reset_last(page);
1135 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1136 reset_page_owner(page, order);
1137 page_table_check_free(page, order);
1138
1139 if (!PageHighMem(page)) {
1140 debug_check_no_locks_freed(page_address(page),
1141 PAGE_SIZE << order);
1142 debug_check_no_obj_freed(page_address(page),
1143 PAGE_SIZE << order);
1144 }
1145
1146 kernel_poison_pages(page, 1 << order);
1147
1148 /*
1149 * As memory initialization might be integrated into KASAN,
1150 * KASAN poisoning and memory initialization code must be
1151 * kept together to avoid discrepancies in behavior.
1152 *
1153 * With hardware tag-based KASAN, memory tags must be set before the
1154 * page becomes unavailable via debug_pagealloc or arch_free_page.
1155 */
1156 if (!skip_kasan_poison) {
1157 kasan_poison_pages(page, order, init);
1158
1159 /* Memory is already initialized if KASAN did it internally. */
1160 if (kasan_has_integrated_init())
1161 init = false;
1162 }
1163 if (init)
1164 kernel_init_pages(page, 1 << order);
1165
1166 /*
1167 * arch_free_page() can make the page's contents inaccessible. s390
1168 * does this. So nothing which can access the page's contents should
1169 * happen after this.
1170 */
1171 arch_free_page(page, order);
1172
1173 debug_pagealloc_unmap_pages(page, 1 << order);
1174
1175 return true;
1176 }
1177
1178 /*
1179 * Frees a number of pages from the PCP lists
1180 * Assumes all pages on list are in same zone.
1181 * count is the number of pages to free.
1182 */
1183 static void free_pcppages_bulk(struct zone *zone, int count,
1184 struct per_cpu_pages *pcp,
1185 int pindex)
1186 {
1187 unsigned long flags;
1188 unsigned int order;
1189 bool isolated_pageblocks;
1190 struct page *page;
1191
1192 /*
1193 * Ensure proper count is passed which otherwise would stuck in the
1194 * below while (list_empty(list)) loop.
1195 */
1196 count = min(pcp->count, count);
1197
1198 /* Ensure requested pindex is drained first. */
1199 pindex = pindex - 1;
1200
1201 spin_lock_irqsave(&zone->lock, flags);
1202 isolated_pageblocks = has_isolate_pageblock(zone);
1203
1204 while (count > 0) {
1205 struct list_head *list;
1206 int nr_pages;
1207
1208 /* Remove pages from lists in a round-robin fashion. */
1209 do {
1210 if (++pindex > NR_PCP_LISTS - 1)
1211 pindex = 0;
1212 list = &pcp->lists[pindex];
1213 } while (list_empty(list));
1214
1215 order = pindex_to_order(pindex);
1216 nr_pages = 1 << order;
1217 do {
1218 int mt;
1219
1220 page = list_last_entry(list, struct page, pcp_list);
1221 mt = get_pcppage_migratetype(page);
1222
1223 /* must delete to avoid corrupting pcp list */
1224 list_del(&page->pcp_list);
1225 count -= nr_pages;
1226 pcp->count -= nr_pages;
1227
1228 /* MIGRATE_ISOLATE page should not go to pcplists */
1229 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1230 /* Pageblock could have been isolated meanwhile */
1231 if (unlikely(isolated_pageblocks))
1232 mt = get_pageblock_migratetype(page);
1233
1234 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1235 trace_mm_page_pcpu_drain(page, order, mt);
1236 } while (count > 0 && !list_empty(list));
1237 }
1238
1239 spin_unlock_irqrestore(&zone->lock, flags);
1240 }
1241
1242 static void free_one_page(struct zone *zone,
1243 struct page *page, unsigned long pfn,
1244 unsigned int order,
1245 int migratetype, fpi_t fpi_flags)
1246 {
1247 unsigned long flags;
1248
1249 spin_lock_irqsave(&zone->lock, flags);
1250 if (unlikely(has_isolate_pageblock(zone) ||
1251 is_migrate_isolate(migratetype))) {
1252 migratetype = get_pfnblock_migratetype(page, pfn);
1253 }
1254 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1255 spin_unlock_irqrestore(&zone->lock, flags);
1256 }
1257
1258 static void __free_pages_ok(struct page *page, unsigned int order,
1259 fpi_t fpi_flags)
1260 {
1261 unsigned long flags;
1262 int migratetype;
1263 unsigned long pfn = page_to_pfn(page);
1264 struct zone *zone = page_zone(page);
1265
1266 if (!free_pages_prepare(page, order, fpi_flags))
1267 return;
1268
1269 /*
1270 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1271 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1272 * This will reduce the lock holding time.
1273 */
1274 migratetype = get_pfnblock_migratetype(page, pfn);
1275
1276 spin_lock_irqsave(&zone->lock, flags);
1277 if (unlikely(has_isolate_pageblock(zone) ||
1278 is_migrate_isolate(migratetype))) {
1279 migratetype = get_pfnblock_migratetype(page, pfn);
1280 }
1281 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1282 spin_unlock_irqrestore(&zone->lock, flags);
1283
1284 __count_vm_events(PGFREE, 1 << order);
1285 }
1286
1287 void __free_pages_core(struct page *page, unsigned int order)
1288 {
1289 unsigned int nr_pages = 1 << order;
1290 struct page *p = page;
1291 unsigned int loop;
1292
1293 /*
1294 * When initializing the memmap, __init_single_page() sets the refcount
1295 * of all pages to 1 ("allocated"/"not free"). We have to set the
1296 * refcount of all involved pages to 0.
1297 */
1298 prefetchw(p);
1299 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1300 prefetchw(p + 1);
1301 __ClearPageReserved(p);
1302 set_page_count(p, 0);
1303 }
1304 __ClearPageReserved(p);
1305 set_page_count(p, 0);
1306
1307 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1308
1309 if (page_contains_unaccepted(page, order)) {
1310 if (order == MAX_ORDER && __free_unaccepted(page))
1311 return;
1312
1313 accept_page(page, order);
1314 }
1315
1316 /*
1317 * Bypass PCP and place fresh pages right to the tail, primarily
1318 * relevant for memory onlining.
1319 */
1320 __free_pages_ok(page, order, FPI_TO_TAIL);
1321 }
1322
1323 /*
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner.
1327 *
1328 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1329 *
1330 * It's possible on some configurations to have a setup like node0 node1 node0
1331 * i.e. it's possible that all pages within a zones range of pages do not
1332 * belong to a single zone. We assume that a border between node0 and node1
1333 * can occur within a single pageblock, but not a node0 node1 node0
1334 * interleaving within a single pageblock. It is therefore sufficient to check
1335 * the first and last page of a pageblock and avoid checking each individual
1336 * page in a pageblock.
1337 *
1338 * Note: the function may return non-NULL struct page even for a page block
1339 * which contains a memory hole (i.e. there is no physical memory for a subset
1340 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1341 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1342 * even though the start pfn is online and valid. This should be safe most of
1343 * the time because struct pages are still initialized via init_unavailable_range()
1344 * and pfn walkers shouldn't touch any physical memory range for which they do
1345 * not recognize any specific metadata in struct pages.
1346 */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349 {
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_online_page(start_pfn);
1360 if (!start_page)
1361 return NULL;
1362
1363 if (page_zone(start_page) != zone)
1364 return NULL;
1365
1366 end_page = pfn_to_page(end_pfn);
1367
1368 /* This gives a shorter code than deriving page_zone(end_page) */
1369 if (page_zone_id(start_page) != page_zone_id(end_page))
1370 return NULL;
1371
1372 return start_page;
1373 }
1374
1375 /*
1376 * The order of subdivision here is critical for the IO subsystem.
1377 * Please do not alter this order without good reasons and regression
1378 * testing. Specifically, as large blocks of memory are subdivided,
1379 * the order in which smaller blocks are delivered depends on the order
1380 * they're subdivided in this function. This is the primary factor
1381 * influencing the order in which pages are delivered to the IO
1382 * subsystem according to empirical testing, and this is also justified
1383 * by considering the behavior of a buddy system containing a single
1384 * large block of memory acted on by a series of small allocations.
1385 * This behavior is a critical factor in sglist merging's success.
1386 *
1387 * -- nyc
1388 */
1389 static inline void expand(struct zone *zone, struct page *page,
1390 int low, int high, int migratetype)
1391 {
1392 unsigned long size = 1 << high;
1393
1394 while (high > low) {
1395 high--;
1396 size >>= 1;
1397 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1398
1399 /*
1400 * Mark as guard pages (or page), that will allow to
1401 * merge back to allocator when buddy will be freed.
1402 * Corresponding page table entries will not be touched,
1403 * pages will stay not present in virtual address space
1404 */
1405 if (set_page_guard(zone, &page[size], high, migratetype))
1406 continue;
1407
1408 add_to_free_list(&page[size], zone, high, migratetype);
1409 set_buddy_order(&page[size], high);
1410 }
1411 }
1412
1413 static void check_new_page_bad(struct page *page)
1414 {
1415 if (unlikely(page->flags & __PG_HWPOISON)) {
1416 /* Don't complain about hwpoisoned pages */
1417 page_mapcount_reset(page); /* remove PageBuddy */
1418 return;
1419 }
1420
1421 bad_page(page,
1422 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1423 }
1424
1425 /*
1426 * This page is about to be returned from the page allocator
1427 */
1428 static int check_new_page(struct page *page)
1429 {
1430 if (likely(page_expected_state(page,
1431 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1432 return 0;
1433
1434 check_new_page_bad(page);
1435 return 1;
1436 }
1437
1438 static inline bool check_new_pages(struct page *page, unsigned int order)
1439 {
1440 if (is_check_pages_enabled()) {
1441 for (int i = 0; i < (1 << order); i++) {
1442 struct page *p = page + i;
1443
1444 if (check_new_page(p))
1445 return true;
1446 }
1447 }
1448
1449 return false;
1450 }
1451
1452 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1453 {
1454 /* Don't skip if a software KASAN mode is enabled. */
1455 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1456 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1457 return false;
1458
1459 /* Skip, if hardware tag-based KASAN is not enabled. */
1460 if (!kasan_hw_tags_enabled())
1461 return true;
1462
1463 /*
1464 * With hardware tag-based KASAN enabled, skip if this has been
1465 * requested via __GFP_SKIP_KASAN.
1466 */
1467 return flags & __GFP_SKIP_KASAN;
1468 }
1469
1470 static inline bool should_skip_init(gfp_t flags)
1471 {
1472 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1473 if (!kasan_hw_tags_enabled())
1474 return false;
1475
1476 /* For hardware tag-based KASAN, skip if requested. */
1477 return (flags & __GFP_SKIP_ZERO);
1478 }
1479
1480 inline void post_alloc_hook(struct page *page, unsigned int order,
1481 gfp_t gfp_flags)
1482 {
1483 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1484 !should_skip_init(gfp_flags);
1485 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1486 int i;
1487
1488 set_page_private(page, 0);
1489 set_page_refcounted(page);
1490
1491 arch_alloc_page(page, order);
1492 debug_pagealloc_map_pages(page, 1 << order);
1493
1494 /*
1495 * Page unpoisoning must happen before memory initialization.
1496 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1497 * allocations and the page unpoisoning code will complain.
1498 */
1499 kernel_unpoison_pages(page, 1 << order);
1500
1501 /*
1502 * As memory initialization might be integrated into KASAN,
1503 * KASAN unpoisoning and memory initializion code must be
1504 * kept together to avoid discrepancies in behavior.
1505 */
1506
1507 /*
1508 * If memory tags should be zeroed
1509 * (which happens only when memory should be initialized as well).
1510 */
1511 if (zero_tags) {
1512 /* Initialize both memory and memory tags. */
1513 for (i = 0; i != 1 << order; ++i)
1514 tag_clear_highpage(page + i);
1515
1516 /* Take note that memory was initialized by the loop above. */
1517 init = false;
1518 }
1519 if (!should_skip_kasan_unpoison(gfp_flags) &&
1520 kasan_unpoison_pages(page, order, init)) {
1521 /* Take note that memory was initialized by KASAN. */
1522 if (kasan_has_integrated_init())
1523 init = false;
1524 } else {
1525 /*
1526 * If memory tags have not been set by KASAN, reset the page
1527 * tags to ensure page_address() dereferencing does not fault.
1528 */
1529 for (i = 0; i != 1 << order; ++i)
1530 page_kasan_tag_reset(page + i);
1531 }
1532 /* If memory is still not initialized, initialize it now. */
1533 if (init)
1534 kernel_init_pages(page, 1 << order);
1535
1536 set_page_owner(page, order, gfp_flags);
1537 page_table_check_alloc(page, order);
1538 }
1539
1540 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1541 unsigned int alloc_flags)
1542 {
1543 post_alloc_hook(page, order, gfp_flags);
1544
1545 if (order && (gfp_flags & __GFP_COMP))
1546 prep_compound_page(page, order);
1547
1548 /*
1549 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1550 * allocate the page. The expectation is that the caller is taking
1551 * steps that will free more memory. The caller should avoid the page
1552 * being used for !PFMEMALLOC purposes.
1553 */
1554 if (alloc_flags & ALLOC_NO_WATERMARKS)
1555 set_page_pfmemalloc(page);
1556 else
1557 clear_page_pfmemalloc(page);
1558 }
1559
1560 /*
1561 * Go through the free lists for the given migratetype and remove
1562 * the smallest available page from the freelists
1563 */
1564 static __always_inline
1565 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1566 int migratetype)
1567 {
1568 unsigned int current_order;
1569 struct free_area *area;
1570 struct page *page;
1571
1572 /* Find a page of the appropriate size in the preferred list */
1573 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1574 area = &(zone->free_area[current_order]);
1575 page = get_page_from_free_area(area, migratetype);
1576 if (!page)
1577 continue;
1578 del_page_from_free_list(page, zone, current_order);
1579 expand(zone, page, order, current_order, migratetype);
1580 set_pcppage_migratetype(page, migratetype);
1581 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1582 pcp_allowed_order(order) &&
1583 migratetype < MIGRATE_PCPTYPES);
1584 return page;
1585 }
1586
1587 return NULL;
1588 }
1589
1590
1591 /*
1592 * This array describes the order lists are fallen back to when
1593 * the free lists for the desirable migrate type are depleted
1594 *
1595 * The other migratetypes do not have fallbacks.
1596 */
1597 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1598 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1599 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1601 };
1602
1603 #ifdef CONFIG_CMA
1604 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1605 unsigned int order)
1606 {
1607 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1608 }
1609 #else
1610 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1611 unsigned int order) { return NULL; }
1612 #endif
1613
1614 /*
1615 * Move the free pages in a range to the freelist tail of the requested type.
1616 * Note that start_page and end_pages are not aligned on a pageblock
1617 * boundary. If alignment is required, use move_freepages_block()
1618 */
1619 static int move_freepages(struct zone *zone,
1620 unsigned long start_pfn, unsigned long end_pfn,
1621 int migratetype, int *num_movable)
1622 {
1623 struct page *page;
1624 unsigned long pfn;
1625 unsigned int order;
1626 int pages_moved = 0;
1627
1628 for (pfn = start_pfn; pfn <= end_pfn;) {
1629 page = pfn_to_page(pfn);
1630 if (!PageBuddy(page)) {
1631 /*
1632 * We assume that pages that could be isolated for
1633 * migration are movable. But we don't actually try
1634 * isolating, as that would be expensive.
1635 */
1636 if (num_movable &&
1637 (PageLRU(page) || __PageMovable(page)))
1638 (*num_movable)++;
1639 pfn++;
1640 continue;
1641 }
1642
1643 /* Make sure we are not inadvertently changing nodes */
1644 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1645 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1646
1647 order = buddy_order(page);
1648 move_to_free_list(page, zone, order, migratetype);
1649 pfn += 1 << order;
1650 pages_moved += 1 << order;
1651 }
1652
1653 return pages_moved;
1654 }
1655
1656 int move_freepages_block(struct zone *zone, struct page *page,
1657 int migratetype, int *num_movable)
1658 {
1659 unsigned long start_pfn, end_pfn, pfn;
1660
1661 if (num_movable)
1662 *num_movable = 0;
1663
1664 pfn = page_to_pfn(page);
1665 start_pfn = pageblock_start_pfn(pfn);
1666 end_pfn = pageblock_end_pfn(pfn) - 1;
1667
1668 /* Do not cross zone boundaries */
1669 if (!zone_spans_pfn(zone, start_pfn))
1670 start_pfn = pfn;
1671 if (!zone_spans_pfn(zone, end_pfn))
1672 return 0;
1673
1674 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1675 num_movable);
1676 }
1677
1678 static void change_pageblock_range(struct page *pageblock_page,
1679 int start_order, int migratetype)
1680 {
1681 int nr_pageblocks = 1 << (start_order - pageblock_order);
1682
1683 while (nr_pageblocks--) {
1684 set_pageblock_migratetype(pageblock_page, migratetype);
1685 pageblock_page += pageblock_nr_pages;
1686 }
1687 }
1688
1689 /*
1690 * When we are falling back to another migratetype during allocation, try to
1691 * steal extra free pages from the same pageblocks to satisfy further
1692 * allocations, instead of polluting multiple pageblocks.
1693 *
1694 * If we are stealing a relatively large buddy page, it is likely there will
1695 * be more free pages in the pageblock, so try to steal them all. For
1696 * reclaimable and unmovable allocations, we steal regardless of page size,
1697 * as fragmentation caused by those allocations polluting movable pageblocks
1698 * is worse than movable allocations stealing from unmovable and reclaimable
1699 * pageblocks.
1700 */
1701 static bool can_steal_fallback(unsigned int order, int start_mt)
1702 {
1703 /*
1704 * Leaving this order check is intended, although there is
1705 * relaxed order check in next check. The reason is that
1706 * we can actually steal whole pageblock if this condition met,
1707 * but, below check doesn't guarantee it and that is just heuristic
1708 * so could be changed anytime.
1709 */
1710 if (order >= pageblock_order)
1711 return true;
1712
1713 if (order >= pageblock_order / 2 ||
1714 start_mt == MIGRATE_RECLAIMABLE ||
1715 start_mt == MIGRATE_UNMOVABLE ||
1716 page_group_by_mobility_disabled)
1717 return true;
1718
1719 return false;
1720 }
1721
1722 static inline bool boost_watermark(struct zone *zone)
1723 {
1724 unsigned long max_boost;
1725
1726 if (!watermark_boost_factor)
1727 return false;
1728 /*
1729 * Don't bother in zones that are unlikely to produce results.
1730 * On small machines, including kdump capture kernels running
1731 * in a small area, boosting the watermark can cause an out of
1732 * memory situation immediately.
1733 */
1734 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1735 return false;
1736
1737 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1738 watermark_boost_factor, 10000);
1739
1740 /*
1741 * high watermark may be uninitialised if fragmentation occurs
1742 * very early in boot so do not boost. We do not fall
1743 * through and boost by pageblock_nr_pages as failing
1744 * allocations that early means that reclaim is not going
1745 * to help and it may even be impossible to reclaim the
1746 * boosted watermark resulting in a hang.
1747 */
1748 if (!max_boost)
1749 return false;
1750
1751 max_boost = max(pageblock_nr_pages, max_boost);
1752
1753 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1754 max_boost);
1755
1756 return true;
1757 }
1758
1759 /*
1760 * This function implements actual steal behaviour. If order is large enough,
1761 * we can steal whole pageblock. If not, we first move freepages in this
1762 * pageblock to our migratetype and determine how many already-allocated pages
1763 * are there in the pageblock with a compatible migratetype. If at least half
1764 * of pages are free or compatible, we can change migratetype of the pageblock
1765 * itself, so pages freed in the future will be put on the correct free list.
1766 */
1767 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1768 unsigned int alloc_flags, int start_type, bool whole_block)
1769 {
1770 unsigned int current_order = buddy_order(page);
1771 int free_pages, movable_pages, alike_pages;
1772 int old_block_type;
1773
1774 old_block_type = get_pageblock_migratetype(page);
1775
1776 /*
1777 * This can happen due to races and we want to prevent broken
1778 * highatomic accounting.
1779 */
1780 if (is_migrate_highatomic(old_block_type))
1781 goto single_page;
1782
1783 /* Take ownership for orders >= pageblock_order */
1784 if (current_order >= pageblock_order) {
1785 change_pageblock_range(page, current_order, start_type);
1786 goto single_page;
1787 }
1788
1789 /*
1790 * Boost watermarks to increase reclaim pressure to reduce the
1791 * likelihood of future fallbacks. Wake kswapd now as the node
1792 * may be balanced overall and kswapd will not wake naturally.
1793 */
1794 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1795 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1796
1797 /* We are not allowed to try stealing from the whole block */
1798 if (!whole_block)
1799 goto single_page;
1800
1801 free_pages = move_freepages_block(zone, page, start_type,
1802 &movable_pages);
1803 /* moving whole block can fail due to zone boundary conditions */
1804 if (!free_pages)
1805 goto single_page;
1806
1807 /*
1808 * Determine how many pages are compatible with our allocation.
1809 * For movable allocation, it's the number of movable pages which
1810 * we just obtained. For other types it's a bit more tricky.
1811 */
1812 if (start_type == MIGRATE_MOVABLE) {
1813 alike_pages = movable_pages;
1814 } else {
1815 /*
1816 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1817 * to MOVABLE pageblock, consider all non-movable pages as
1818 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1819 * vice versa, be conservative since we can't distinguish the
1820 * exact migratetype of non-movable pages.
1821 */
1822 if (old_block_type == MIGRATE_MOVABLE)
1823 alike_pages = pageblock_nr_pages
1824 - (free_pages + movable_pages);
1825 else
1826 alike_pages = 0;
1827 }
1828 /*
1829 * If a sufficient number of pages in the block are either free or of
1830 * compatible migratability as our allocation, claim the whole block.
1831 */
1832 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1833 page_group_by_mobility_disabled)
1834 set_pageblock_migratetype(page, start_type);
1835
1836 return;
1837
1838 single_page:
1839 move_to_free_list(page, zone, current_order, start_type);
1840 }
1841
1842 /*
1843 * Check whether there is a suitable fallback freepage with requested order.
1844 * If only_stealable is true, this function returns fallback_mt only if
1845 * we can steal other freepages all together. This would help to reduce
1846 * fragmentation due to mixed migratetype pages in one pageblock.
1847 */
1848 int find_suitable_fallback(struct free_area *area, unsigned int order,
1849 int migratetype, bool only_stealable, bool *can_steal)
1850 {
1851 int i;
1852 int fallback_mt;
1853
1854 if (area->nr_free == 0)
1855 return -1;
1856
1857 *can_steal = false;
1858 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1859 fallback_mt = fallbacks[migratetype][i];
1860 if (free_area_empty(area, fallback_mt))
1861 continue;
1862
1863 if (can_steal_fallback(order, migratetype))
1864 *can_steal = true;
1865
1866 if (!only_stealable)
1867 return fallback_mt;
1868
1869 if (*can_steal)
1870 return fallback_mt;
1871 }
1872
1873 return -1;
1874 }
1875
1876 /*
1877 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1878 * there are no empty page blocks that contain a page with a suitable order
1879 */
1880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1881 {
1882 int mt;
1883 unsigned long max_managed, flags;
1884
1885 /*
1886 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1887 * Check is race-prone but harmless.
1888 */
1889 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1890 if (zone->nr_reserved_highatomic >= max_managed)
1891 return;
1892
1893 spin_lock_irqsave(&zone->lock, flags);
1894
1895 /* Recheck the nr_reserved_highatomic limit under the lock */
1896 if (zone->nr_reserved_highatomic >= max_managed)
1897 goto out_unlock;
1898
1899 /* Yoink! */
1900 mt = get_pageblock_migratetype(page);
1901 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1902 if (migratetype_is_mergeable(mt)) {
1903 zone->nr_reserved_highatomic += pageblock_nr_pages;
1904 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1905 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1906 }
1907
1908 out_unlock:
1909 spin_unlock_irqrestore(&zone->lock, flags);
1910 }
1911
1912 /*
1913 * Used when an allocation is about to fail under memory pressure. This
1914 * potentially hurts the reliability of high-order allocations when under
1915 * intense memory pressure but failed atomic allocations should be easier
1916 * to recover from than an OOM.
1917 *
1918 * If @force is true, try to unreserve a pageblock even though highatomic
1919 * pageblock is exhausted.
1920 */
1921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1922 bool force)
1923 {
1924 struct zonelist *zonelist = ac->zonelist;
1925 unsigned long flags;
1926 struct zoneref *z;
1927 struct zone *zone;
1928 struct page *page;
1929 int order;
1930 bool ret;
1931
1932 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1933 ac->nodemask) {
1934 /*
1935 * Preserve at least one pageblock unless memory pressure
1936 * is really high.
1937 */
1938 if (!force && zone->nr_reserved_highatomic <=
1939 pageblock_nr_pages)
1940 continue;
1941
1942 spin_lock_irqsave(&zone->lock, flags);
1943 for (order = 0; order <= MAX_ORDER; order++) {
1944 struct free_area *area = &(zone->free_area[order]);
1945
1946 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1947 if (!page)
1948 continue;
1949
1950 /*
1951 * In page freeing path, migratetype change is racy so
1952 * we can counter several free pages in a pageblock
1953 * in this loop although we changed the pageblock type
1954 * from highatomic to ac->migratetype. So we should
1955 * adjust the count once.
1956 */
1957 if (is_migrate_highatomic_page(page)) {
1958 /*
1959 * It should never happen but changes to
1960 * locking could inadvertently allow a per-cpu
1961 * drain to add pages to MIGRATE_HIGHATOMIC
1962 * while unreserving so be safe and watch for
1963 * underflows.
1964 */
1965 zone->nr_reserved_highatomic -= min(
1966 pageblock_nr_pages,
1967 zone->nr_reserved_highatomic);
1968 }
1969
1970 /*
1971 * Convert to ac->migratetype and avoid the normal
1972 * pageblock stealing heuristics. Minimally, the caller
1973 * is doing the work and needs the pages. More
1974 * importantly, if the block was always converted to
1975 * MIGRATE_UNMOVABLE or another type then the number
1976 * of pageblocks that cannot be completely freed
1977 * may increase.
1978 */
1979 set_pageblock_migratetype(page, ac->migratetype);
1980 ret = move_freepages_block(zone, page, ac->migratetype,
1981 NULL);
1982 if (ret) {
1983 spin_unlock_irqrestore(&zone->lock, flags);
1984 return ret;
1985 }
1986 }
1987 spin_unlock_irqrestore(&zone->lock, flags);
1988 }
1989
1990 return false;
1991 }
1992
1993 /*
1994 * Try finding a free buddy page on the fallback list and put it on the free
1995 * list of requested migratetype, possibly along with other pages from the same
1996 * block, depending on fragmentation avoidance heuristics. Returns true if
1997 * fallback was found so that __rmqueue_smallest() can grab it.
1998 *
1999 * The use of signed ints for order and current_order is a deliberate
2000 * deviation from the rest of this file, to make the for loop
2001 * condition simpler.
2002 */
2003 static __always_inline bool
2004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2005 unsigned int alloc_flags)
2006 {
2007 struct free_area *area;
2008 int current_order;
2009 int min_order = order;
2010 struct page *page;
2011 int fallback_mt;
2012 bool can_steal;
2013
2014 /*
2015 * Do not steal pages from freelists belonging to other pageblocks
2016 * i.e. orders < pageblock_order. If there are no local zones free,
2017 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2018 */
2019 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2020 min_order = pageblock_order;
2021
2022 /*
2023 * Find the largest available free page in the other list. This roughly
2024 * approximates finding the pageblock with the most free pages, which
2025 * would be too costly to do exactly.
2026 */
2027 for (current_order = MAX_ORDER; current_order >= min_order;
2028 --current_order) {
2029 area = &(zone->free_area[current_order]);
2030 fallback_mt = find_suitable_fallback(area, current_order,
2031 start_migratetype, false, &can_steal);
2032 if (fallback_mt == -1)
2033 continue;
2034
2035 /*
2036 * We cannot steal all free pages from the pageblock and the
2037 * requested migratetype is movable. In that case it's better to
2038 * steal and split the smallest available page instead of the
2039 * largest available page, because even if the next movable
2040 * allocation falls back into a different pageblock than this
2041 * one, it won't cause permanent fragmentation.
2042 */
2043 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2044 && current_order > order)
2045 goto find_smallest;
2046
2047 goto do_steal;
2048 }
2049
2050 return false;
2051
2052 find_smallest:
2053 for (current_order = order; current_order <= MAX_ORDER;
2054 current_order++) {
2055 area = &(zone->free_area[current_order]);
2056 fallback_mt = find_suitable_fallback(area, current_order,
2057 start_migratetype, false, &can_steal);
2058 if (fallback_mt != -1)
2059 break;
2060 }
2061
2062 /*
2063 * This should not happen - we already found a suitable fallback
2064 * when looking for the largest page.
2065 */
2066 VM_BUG_ON(current_order > MAX_ORDER);
2067
2068 do_steal:
2069 page = get_page_from_free_area(area, fallback_mt);
2070
2071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072 can_steal);
2073
2074 trace_mm_page_alloc_extfrag(page, order, current_order,
2075 start_migratetype, fallback_mt);
2076
2077 return true;
2078
2079 }
2080
2081 /*
2082 * Do the hard work of removing an element from the buddy allocator.
2083 * Call me with the zone->lock already held.
2084 */
2085 static __always_inline struct page *
2086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087 unsigned int alloc_flags)
2088 {
2089 struct page *page;
2090
2091 if (IS_ENABLED(CONFIG_CMA)) {
2092 /*
2093 * Balance movable allocations between regular and CMA areas by
2094 * allocating from CMA when over half of the zone's free memory
2095 * is in the CMA area.
2096 */
2097 if (alloc_flags & ALLOC_CMA &&
2098 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100 page = __rmqueue_cma_fallback(zone, order);
2101 if (page)
2102 return page;
2103 }
2104 }
2105 retry:
2106 page = __rmqueue_smallest(zone, order, migratetype);
2107 if (unlikely(!page)) {
2108 if (alloc_flags & ALLOC_CMA)
2109 page = __rmqueue_cma_fallback(zone, order);
2110
2111 if (!page && __rmqueue_fallback(zone, order, migratetype,
2112 alloc_flags))
2113 goto retry;
2114 }
2115 return page;
2116 }
2117
2118 /*
2119 * Obtain a specified number of elements from the buddy allocator, all under
2120 * a single hold of the lock, for efficiency. Add them to the supplied list.
2121 * Returns the number of new pages which were placed at *list.
2122 */
2123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124 unsigned long count, struct list_head *list,
2125 int migratetype, unsigned int alloc_flags)
2126 {
2127 unsigned long flags;
2128 int i;
2129
2130 spin_lock_irqsave(&zone->lock, flags);
2131 for (i = 0; i < count; ++i) {
2132 struct page *page = __rmqueue(zone, order, migratetype,
2133 alloc_flags);
2134 if (unlikely(page == NULL))
2135 break;
2136
2137 /*
2138 * Split buddy pages returned by expand() are received here in
2139 * physical page order. The page is added to the tail of
2140 * caller's list. From the callers perspective, the linked list
2141 * is ordered by page number under some conditions. This is
2142 * useful for IO devices that can forward direction from the
2143 * head, thus also in the physical page order. This is useful
2144 * for IO devices that can merge IO requests if the physical
2145 * pages are ordered properly.
2146 */
2147 list_add_tail(&page->pcp_list, list);
2148 if (is_migrate_cma(get_pcppage_migratetype(page)))
2149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150 -(1 << order));
2151 }
2152
2153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154 spin_unlock_irqrestore(&zone->lock, flags);
2155
2156 return i;
2157 }
2158
2159 #ifdef CONFIG_NUMA
2160 /*
2161 * Called from the vmstat counter updater to drain pagesets of this
2162 * currently executing processor on remote nodes after they have
2163 * expired.
2164 */
2165 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2166 {
2167 int to_drain, batch;
2168
2169 batch = READ_ONCE(pcp->batch);
2170 to_drain = min(pcp->count, batch);
2171 if (to_drain > 0) {
2172 spin_lock(&pcp->lock);
2173 free_pcppages_bulk(zone, to_drain, pcp, 0);
2174 spin_unlock(&pcp->lock);
2175 }
2176 }
2177 #endif
2178
2179 /*
2180 * Drain pcplists of the indicated processor and zone.
2181 */
2182 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2183 {
2184 struct per_cpu_pages *pcp;
2185
2186 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2187 if (pcp->count) {
2188 spin_lock(&pcp->lock);
2189 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2190 spin_unlock(&pcp->lock);
2191 }
2192 }
2193
2194 /*
2195 * Drain pcplists of all zones on the indicated processor.
2196 */
2197 static void drain_pages(unsigned int cpu)
2198 {
2199 struct zone *zone;
2200
2201 for_each_populated_zone(zone) {
2202 drain_pages_zone(cpu, zone);
2203 }
2204 }
2205
2206 /*
2207 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2208 */
2209 void drain_local_pages(struct zone *zone)
2210 {
2211 int cpu = smp_processor_id();
2212
2213 if (zone)
2214 drain_pages_zone(cpu, zone);
2215 else
2216 drain_pages(cpu);
2217 }
2218
2219 /*
2220 * The implementation of drain_all_pages(), exposing an extra parameter to
2221 * drain on all cpus.
2222 *
2223 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2224 * not empty. The check for non-emptiness can however race with a free to
2225 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2226 * that need the guarantee that every CPU has drained can disable the
2227 * optimizing racy check.
2228 */
2229 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2230 {
2231 int cpu;
2232
2233 /*
2234 * Allocate in the BSS so we won't require allocation in
2235 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2236 */
2237 static cpumask_t cpus_with_pcps;
2238
2239 /*
2240 * Do not drain if one is already in progress unless it's specific to
2241 * a zone. Such callers are primarily CMA and memory hotplug and need
2242 * the drain to be complete when the call returns.
2243 */
2244 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2245 if (!zone)
2246 return;
2247 mutex_lock(&pcpu_drain_mutex);
2248 }
2249
2250 /*
2251 * We don't care about racing with CPU hotplug event
2252 * as offline notification will cause the notified
2253 * cpu to drain that CPU pcps and on_each_cpu_mask
2254 * disables preemption as part of its processing
2255 */
2256 for_each_online_cpu(cpu) {
2257 struct per_cpu_pages *pcp;
2258 struct zone *z;
2259 bool has_pcps = false;
2260
2261 if (force_all_cpus) {
2262 /*
2263 * The pcp.count check is racy, some callers need a
2264 * guarantee that no cpu is missed.
2265 */
2266 has_pcps = true;
2267 } else if (zone) {
2268 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2269 if (pcp->count)
2270 has_pcps = true;
2271 } else {
2272 for_each_populated_zone(z) {
2273 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2274 if (pcp->count) {
2275 has_pcps = true;
2276 break;
2277 }
2278 }
2279 }
2280
2281 if (has_pcps)
2282 cpumask_set_cpu(cpu, &cpus_with_pcps);
2283 else
2284 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2285 }
2286
2287 for_each_cpu(cpu, &cpus_with_pcps) {
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
2292 }
2293
2294 mutex_unlock(&pcpu_drain_mutex);
2295 }
2296
2297 /*
2298 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2299 *
2300 * When zone parameter is non-NULL, spill just the single zone's pages.
2301 */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 __drain_all_pages(zone, false);
2305 }
2306
2307 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2308 unsigned int order)
2309 {
2310 int migratetype;
2311
2312 if (!free_pages_prepare(page, order, FPI_NONE))
2313 return false;
2314
2315 migratetype = get_pfnblock_migratetype(page, pfn);
2316 set_pcppage_migratetype(page, migratetype);
2317 return true;
2318 }
2319
2320 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2321 {
2322 int min_nr_free, max_nr_free;
2323 int batch = READ_ONCE(pcp->batch);
2324
2325 /* Free everything if batch freeing high-order pages. */
2326 if (unlikely(free_high))
2327 return pcp->count;
2328
2329 /* Check for PCP disabled or boot pageset */
2330 if (unlikely(high < batch))
2331 return 1;
2332
2333 /* Leave at least pcp->batch pages on the list */
2334 min_nr_free = batch;
2335 max_nr_free = high - batch;
2336
2337 /*
2338 * Double the number of pages freed each time there is subsequent
2339 * freeing of pages without any allocation.
2340 */
2341 batch <<= pcp->free_factor;
2342 if (batch < max_nr_free)
2343 pcp->free_factor++;
2344 batch = clamp(batch, min_nr_free, max_nr_free);
2345
2346 return batch;
2347 }
2348
2349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2350 bool free_high)
2351 {
2352 int high = READ_ONCE(pcp->high);
2353
2354 if (unlikely(!high || free_high))
2355 return 0;
2356
2357 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2358 return high;
2359
2360 /*
2361 * If reclaim is active, limit the number of pages that can be
2362 * stored on pcp lists
2363 */
2364 return min(READ_ONCE(pcp->batch) << 2, high);
2365 }
2366
2367 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2368 struct page *page, int migratetype,
2369 unsigned int order)
2370 {
2371 int high;
2372 int pindex;
2373 bool free_high;
2374
2375 __count_vm_events(PGFREE, 1 << order);
2376 pindex = order_to_pindex(migratetype, order);
2377 list_add(&page->pcp_list, &pcp->lists[pindex]);
2378 pcp->count += 1 << order;
2379
2380 /*
2381 * As high-order pages other than THP's stored on PCP can contribute
2382 * to fragmentation, limit the number stored when PCP is heavily
2383 * freeing without allocation. The remainder after bulk freeing
2384 * stops will be drained from vmstat refresh context.
2385 */
2386 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2387
2388 high = nr_pcp_high(pcp, zone, free_high);
2389 if (pcp->count >= high) {
2390 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2391 }
2392 }
2393
2394 /*
2395 * Free a pcp page
2396 */
2397 void free_unref_page(struct page *page, unsigned int order)
2398 {
2399 unsigned long __maybe_unused UP_flags;
2400 struct per_cpu_pages *pcp;
2401 struct zone *zone;
2402 unsigned long pfn = page_to_pfn(page);
2403 int migratetype;
2404
2405 if (!free_unref_page_prepare(page, pfn, order))
2406 return;
2407
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Place ISOLATE pages on the isolated list because they are being
2411 * offlined but treat HIGHATOMIC as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 migratetype = get_pcppage_migratetype(page);
2416 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2417 if (unlikely(is_migrate_isolate(migratetype))) {
2418 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2419 return;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
2424 zone = page_zone(page);
2425 pcp_trylock_prepare(UP_flags);
2426 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2427 if (pcp) {
2428 free_unref_page_commit(zone, pcp, page, migratetype, order);
2429 pcp_spin_unlock(pcp);
2430 } else {
2431 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2432 }
2433 pcp_trylock_finish(UP_flags);
2434 }
2435
2436 /*
2437 * Free a list of 0-order pages
2438 */
2439 void free_unref_page_list(struct list_head *list)
2440 {
2441 unsigned long __maybe_unused UP_flags;
2442 struct page *page, *next;
2443 struct per_cpu_pages *pcp = NULL;
2444 struct zone *locked_zone = NULL;
2445 int batch_count = 0;
2446 int migratetype;
2447
2448 /* Prepare pages for freeing */
2449 list_for_each_entry_safe(page, next, list, lru) {
2450 unsigned long pfn = page_to_pfn(page);
2451 if (!free_unref_page_prepare(page, pfn, 0)) {
2452 list_del(&page->lru);
2453 continue;
2454 }
2455
2456 /*
2457 * Free isolated pages directly to the allocator, see
2458 * comment in free_unref_page.
2459 */
2460 migratetype = get_pcppage_migratetype(page);
2461 if (unlikely(is_migrate_isolate(migratetype))) {
2462 list_del(&page->lru);
2463 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2464 continue;
2465 }
2466 }
2467
2468 list_for_each_entry_safe(page, next, list, lru) {
2469 struct zone *zone = page_zone(page);
2470
2471 list_del(&page->lru);
2472 migratetype = get_pcppage_migratetype(page);
2473
2474 /*
2475 * Either different zone requiring a different pcp lock or
2476 * excessive lock hold times when freeing a large list of
2477 * pages.
2478 */
2479 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2480 if (pcp) {
2481 pcp_spin_unlock(pcp);
2482 pcp_trylock_finish(UP_flags);
2483 }
2484
2485 batch_count = 0;
2486
2487 /*
2488 * trylock is necessary as pages may be getting freed
2489 * from IRQ or SoftIRQ context after an IO completion.
2490 */
2491 pcp_trylock_prepare(UP_flags);
2492 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2493 if (unlikely(!pcp)) {
2494 pcp_trylock_finish(UP_flags);
2495 free_one_page(zone, page, page_to_pfn(page),
2496 0, migratetype, FPI_NONE);
2497 locked_zone = NULL;
2498 continue;
2499 }
2500 locked_zone = zone;
2501 }
2502
2503 /*
2504 * Non-isolated types over MIGRATE_PCPTYPES get added
2505 * to the MIGRATE_MOVABLE pcp list.
2506 */
2507 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2508 migratetype = MIGRATE_MOVABLE;
2509
2510 trace_mm_page_free_batched(page);
2511 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2512 batch_count++;
2513 }
2514
2515 if (pcp) {
2516 pcp_spin_unlock(pcp);
2517 pcp_trylock_finish(UP_flags);
2518 }
2519 }
2520
2521 /*
2522 * split_page takes a non-compound higher-order page, and splits it into
2523 * n (1<<order) sub-pages: page[0..n]
2524 * Each sub-page must be freed individually.
2525 *
2526 * Note: this is probably too low level an operation for use in drivers.
2527 * Please consult with lkml before using this in your driver.
2528 */
2529 void split_page(struct page *page, unsigned int order)
2530 {
2531 int i;
2532
2533 VM_BUG_ON_PAGE(PageCompound(page), page);
2534 VM_BUG_ON_PAGE(!page_count(page), page);
2535
2536 for (i = 1; i < (1 << order); i++)
2537 set_page_refcounted(page + i);
2538 split_page_owner(page, 1 << order);
2539 split_page_memcg(page, 1 << order);
2540 }
2541 EXPORT_SYMBOL_GPL(split_page);
2542
2543 int __isolate_free_page(struct page *page, unsigned int order)
2544 {
2545 struct zone *zone = page_zone(page);
2546 int mt = get_pageblock_migratetype(page);
2547
2548 if (!is_migrate_isolate(mt)) {
2549 unsigned long watermark;
2550 /*
2551 * Obey watermarks as if the page was being allocated. We can
2552 * emulate a high-order watermark check with a raised order-0
2553 * watermark, because we already know our high-order page
2554 * exists.
2555 */
2556 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2557 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2558 return 0;
2559
2560 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2561 }
2562
2563 del_page_from_free_list(page, zone, order);
2564
2565 /*
2566 * Set the pageblock if the isolated page is at least half of a
2567 * pageblock
2568 */
2569 if (order >= pageblock_order - 1) {
2570 struct page *endpage = page + (1 << order) - 1;
2571 for (; page < endpage; page += pageblock_nr_pages) {
2572 int mt = get_pageblock_migratetype(page);
2573 /*
2574 * Only change normal pageblocks (i.e., they can merge
2575 * with others)
2576 */
2577 if (migratetype_is_mergeable(mt))
2578 set_pageblock_migratetype(page,
2579 MIGRATE_MOVABLE);
2580 }
2581 }
2582
2583 return 1UL << order;
2584 }
2585
2586 /**
2587 * __putback_isolated_page - Return a now-isolated page back where we got it
2588 * @page: Page that was isolated
2589 * @order: Order of the isolated page
2590 * @mt: The page's pageblock's migratetype
2591 *
2592 * This function is meant to return a page pulled from the free lists via
2593 * __isolate_free_page back to the free lists they were pulled from.
2594 */
2595 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2596 {
2597 struct zone *zone = page_zone(page);
2598
2599 /* zone lock should be held when this function is called */
2600 lockdep_assert_held(&zone->lock);
2601
2602 /* Return isolated page to tail of freelist. */
2603 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2604 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2605 }
2606
2607 /*
2608 * Update NUMA hit/miss statistics
2609 */
2610 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2611 long nr_account)
2612 {
2613 #ifdef CONFIG_NUMA
2614 enum numa_stat_item local_stat = NUMA_LOCAL;
2615
2616 /* skip numa counters update if numa stats is disabled */
2617 if (!static_branch_likely(&vm_numa_stat_key))
2618 return;
2619
2620 if (zone_to_nid(z) != numa_node_id())
2621 local_stat = NUMA_OTHER;
2622
2623 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2624 __count_numa_events(z, NUMA_HIT, nr_account);
2625 else {
2626 __count_numa_events(z, NUMA_MISS, nr_account);
2627 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2628 }
2629 __count_numa_events(z, local_stat, nr_account);
2630 #endif
2631 }
2632
2633 static __always_inline
2634 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2635 unsigned int order, unsigned int alloc_flags,
2636 int migratetype)
2637 {
2638 struct page *page;
2639 unsigned long flags;
2640
2641 do {
2642 page = NULL;
2643 spin_lock_irqsave(&zone->lock, flags);
2644 if (alloc_flags & ALLOC_HIGHATOMIC)
2645 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2646 if (!page) {
2647 page = __rmqueue(zone, order, migratetype, alloc_flags);
2648
2649 /*
2650 * If the allocation fails, allow OOM handling access
2651 * to HIGHATOMIC reserves as failing now is worse than
2652 * failing a high-order atomic allocation in the
2653 * future.
2654 */
2655 if (!page && (alloc_flags & ALLOC_OOM))
2656 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2657
2658 if (!page) {
2659 spin_unlock_irqrestore(&zone->lock, flags);
2660 return NULL;
2661 }
2662 }
2663 __mod_zone_freepage_state(zone, -(1 << order),
2664 get_pcppage_migratetype(page));
2665 spin_unlock_irqrestore(&zone->lock, flags);
2666 } while (check_new_pages(page, order));
2667
2668 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 zone_statistics(preferred_zone, zone, 1);
2670
2671 return page;
2672 }
2673
2674 /* Remove page from the per-cpu list, caller must protect the list */
2675 static inline
2676 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2677 int migratetype,
2678 unsigned int alloc_flags,
2679 struct per_cpu_pages *pcp,
2680 struct list_head *list)
2681 {
2682 struct page *page;
2683
2684 do {
2685 if (list_empty(list)) {
2686 int batch = READ_ONCE(pcp->batch);
2687 int alloced;
2688
2689 /*
2690 * Scale batch relative to order if batch implies
2691 * free pages can be stored on the PCP. Batch can
2692 * be 1 for small zones or for boot pagesets which
2693 * should never store free pages as the pages may
2694 * belong to arbitrary zones.
2695 */
2696 if (batch > 1)
2697 batch = max(batch >> order, 2);
2698 alloced = rmqueue_bulk(zone, order,
2699 batch, list,
2700 migratetype, alloc_flags);
2701
2702 pcp->count += alloced << order;
2703 if (unlikely(list_empty(list)))
2704 return NULL;
2705 }
2706
2707 page = list_first_entry(list, struct page, pcp_list);
2708 list_del(&page->pcp_list);
2709 pcp->count -= 1 << order;
2710 } while (check_new_pages(page, order));
2711
2712 return page;
2713 }
2714
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 struct zone *zone, unsigned int order,
2718 int migratetype, unsigned int alloc_flags)
2719 {
2720 struct per_cpu_pages *pcp;
2721 struct list_head *list;
2722 struct page *page;
2723 unsigned long __maybe_unused UP_flags;
2724
2725 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2726 pcp_trylock_prepare(UP_flags);
2727 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2728 if (!pcp) {
2729 pcp_trylock_finish(UP_flags);
2730 return NULL;
2731 }
2732
2733 /*
2734 * On allocation, reduce the number of pages that are batch freed.
2735 * See nr_pcp_free() where free_factor is increased for subsequent
2736 * frees.
2737 */
2738 pcp->free_factor >>= 1;
2739 list = &pcp->lists[order_to_pindex(migratetype, order)];
2740 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2741 pcp_spin_unlock(pcp);
2742 pcp_trylock_finish(UP_flags);
2743 if (page) {
2744 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2745 zone_statistics(preferred_zone, zone, 1);
2746 }
2747 return page;
2748 }
2749
2750 /*
2751 * Allocate a page from the given zone.
2752 * Use pcplists for THP or "cheap" high-order allocations.
2753 */
2754
2755 /*
2756 * Do not instrument rmqueue() with KMSAN. This function may call
2757 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2758 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2759 * may call rmqueue() again, which will result in a deadlock.
2760 */
2761 __no_sanitize_memory
2762 static inline
2763 struct page *rmqueue(struct zone *preferred_zone,
2764 struct zone *zone, unsigned int order,
2765 gfp_t gfp_flags, unsigned int alloc_flags,
2766 int migratetype)
2767 {
2768 struct page *page;
2769
2770 /*
2771 * We most definitely don't want callers attempting to
2772 * allocate greater than order-1 page units with __GFP_NOFAIL.
2773 */
2774 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2775
2776 if (likely(pcp_allowed_order(order))) {
2777 page = rmqueue_pcplist(preferred_zone, zone, order,
2778 migratetype, alloc_flags);
2779 if (likely(page))
2780 goto out;
2781 }
2782
2783 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2784 migratetype);
2785
2786 out:
2787 /* Separate test+clear to avoid unnecessary atomics */
2788 if ((alloc_flags & ALLOC_KSWAPD) &&
2789 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2790 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2792 }
2793
2794 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2795 return page;
2796 }
2797
2798 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2799 {
2800 return __should_fail_alloc_page(gfp_mask, order);
2801 }
2802 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2803
2804 static inline long __zone_watermark_unusable_free(struct zone *z,
2805 unsigned int order, unsigned int alloc_flags)
2806 {
2807 long unusable_free = (1 << order) - 1;
2808
2809 /*
2810 * If the caller does not have rights to reserves below the min
2811 * watermark then subtract the high-atomic reserves. This will
2812 * over-estimate the size of the atomic reserve but it avoids a search.
2813 */
2814 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2815 unusable_free += z->nr_reserved_highatomic;
2816
2817 #ifdef CONFIG_CMA
2818 /* If allocation can't use CMA areas don't use free CMA pages */
2819 if (!(alloc_flags & ALLOC_CMA))
2820 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2821 #endif
2822 #ifdef CONFIG_UNACCEPTED_MEMORY
2823 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2824 #endif
2825
2826 return unusable_free;
2827 }
2828
2829 /*
2830 * Return true if free base pages are above 'mark'. For high-order checks it
2831 * will return true of the order-0 watermark is reached and there is at least
2832 * one free page of a suitable size. Checking now avoids taking the zone lock
2833 * to check in the allocation paths if no pages are free.
2834 */
2835 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2836 int highest_zoneidx, unsigned int alloc_flags,
2837 long free_pages)
2838 {
2839 long min = mark;
2840 int o;
2841
2842 /* free_pages may go negative - that's OK */
2843 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2844
2845 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2846 /*
2847 * __GFP_HIGH allows access to 50% of the min reserve as well
2848 * as OOM.
2849 */
2850 if (alloc_flags & ALLOC_MIN_RESERVE) {
2851 min -= min / 2;
2852
2853 /*
2854 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2855 * access more reserves than just __GFP_HIGH. Other
2856 * non-blocking allocations requests such as GFP_NOWAIT
2857 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2858 * access to the min reserve.
2859 */
2860 if (alloc_flags & ALLOC_NON_BLOCK)
2861 min -= min / 4;
2862 }
2863
2864 /*
2865 * OOM victims can try even harder than the normal reserve
2866 * users on the grounds that it's definitely going to be in
2867 * the exit path shortly and free memory. Any allocation it
2868 * makes during the free path will be small and short-lived.
2869 */
2870 if (alloc_flags & ALLOC_OOM)
2871 min -= min / 2;
2872 }
2873
2874 /*
2875 * Check watermarks for an order-0 allocation request. If these
2876 * are not met, then a high-order request also cannot go ahead
2877 * even if a suitable page happened to be free.
2878 */
2879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2880 return false;
2881
2882 /* If this is an order-0 request then the watermark is fine */
2883 if (!order)
2884 return true;
2885
2886 /* For a high-order request, check at least one suitable page is free */
2887 for (o = order; o <= MAX_ORDER; o++) {
2888 struct free_area *area = &z->free_area[o];
2889 int mt;
2890
2891 if (!area->nr_free)
2892 continue;
2893
2894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2895 if (!free_area_empty(area, mt))
2896 return true;
2897 }
2898
2899 #ifdef CONFIG_CMA
2900 if ((alloc_flags & ALLOC_CMA) &&
2901 !free_area_empty(area, MIGRATE_CMA)) {
2902 return true;
2903 }
2904 #endif
2905 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2906 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2907 return true;
2908 }
2909 }
2910 return false;
2911 }
2912
2913 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2914 int highest_zoneidx, unsigned int alloc_flags)
2915 {
2916 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2917 zone_page_state(z, NR_FREE_PAGES));
2918 }
2919
2920 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2921 unsigned long mark, int highest_zoneidx,
2922 unsigned int alloc_flags, gfp_t gfp_mask)
2923 {
2924 long free_pages;
2925
2926 free_pages = zone_page_state(z, NR_FREE_PAGES);
2927
2928 /*
2929 * Fast check for order-0 only. If this fails then the reserves
2930 * need to be calculated.
2931 */
2932 if (!order) {
2933 long usable_free;
2934 long reserved;
2935
2936 usable_free = free_pages;
2937 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2938
2939 /* reserved may over estimate high-atomic reserves. */
2940 usable_free -= min(usable_free, reserved);
2941 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2942 return true;
2943 }
2944
2945 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2946 free_pages))
2947 return true;
2948
2949 /*
2950 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2951 * when checking the min watermark. The min watermark is the
2952 * point where boosting is ignored so that kswapd is woken up
2953 * when below the low watermark.
2954 */
2955 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2956 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2957 mark = z->_watermark[WMARK_MIN];
2958 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2959 alloc_flags, free_pages);
2960 }
2961
2962 return false;
2963 }
2964
2965 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2966 unsigned long mark, int highest_zoneidx)
2967 {
2968 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2969
2970 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2971 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2972
2973 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2974 free_pages);
2975 }
2976
2977 #ifdef CONFIG_NUMA
2978 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2979
2980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2981 {
2982 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2983 node_reclaim_distance;
2984 }
2985 #else /* CONFIG_NUMA */
2986 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2987 {
2988 return true;
2989 }
2990 #endif /* CONFIG_NUMA */
2991
2992 /*
2993 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
2994 * fragmentation is subtle. If the preferred zone was HIGHMEM then
2995 * premature use of a lower zone may cause lowmem pressure problems that
2996 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
2997 * probably too small. It only makes sense to spread allocations to avoid
2998 * fragmentation between the Normal and DMA32 zones.
2999 */
3000 static inline unsigned int
3001 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3002 {
3003 unsigned int alloc_flags;
3004
3005 /*
3006 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3007 * to save a branch.
3008 */
3009 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3010
3011 #ifdef CONFIG_ZONE_DMA32
3012 if (!zone)
3013 return alloc_flags;
3014
3015 if (zone_idx(zone) != ZONE_NORMAL)
3016 return alloc_flags;
3017
3018 /*
3019 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3020 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3021 * on UMA that if Normal is populated then so is DMA32.
3022 */
3023 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3024 if (nr_online_nodes > 1 && !populated_zone(--zone))
3025 return alloc_flags;
3026
3027 alloc_flags |= ALLOC_NOFRAGMENT;
3028 #endif /* CONFIG_ZONE_DMA32 */
3029 return alloc_flags;
3030 }
3031
3032 /* Must be called after current_gfp_context() which can change gfp_mask */
3033 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3034 unsigned int alloc_flags)
3035 {
3036 #ifdef CONFIG_CMA
3037 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3038 alloc_flags |= ALLOC_CMA;
3039 #endif
3040 return alloc_flags;
3041 }
3042
3043 /*
3044 * get_page_from_freelist goes through the zonelist trying to allocate
3045 * a page.
3046 */
3047 static struct page *
3048 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3049 const struct alloc_context *ac)
3050 {
3051 struct zoneref *z;
3052 struct zone *zone;
3053 struct pglist_data *last_pgdat = NULL;
3054 bool last_pgdat_dirty_ok = false;
3055 bool no_fallback;
3056
3057 retry:
3058 /*
3059 * Scan zonelist, looking for a zone with enough free.
3060 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3061 */
3062 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3063 z = ac->preferred_zoneref;
3064 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3065 ac->nodemask) {
3066 struct page *page;
3067 unsigned long mark;
3068
3069 if (cpusets_enabled() &&
3070 (alloc_flags & ALLOC_CPUSET) &&
3071 !__cpuset_zone_allowed(zone, gfp_mask))
3072 continue;
3073 /*
3074 * When allocating a page cache page for writing, we
3075 * want to get it from a node that is within its dirty
3076 * limit, such that no single node holds more than its
3077 * proportional share of globally allowed dirty pages.
3078 * The dirty limits take into account the node's
3079 * lowmem reserves and high watermark so that kswapd
3080 * should be able to balance it without having to
3081 * write pages from its LRU list.
3082 *
3083 * XXX: For now, allow allocations to potentially
3084 * exceed the per-node dirty limit in the slowpath
3085 * (spread_dirty_pages unset) before going into reclaim,
3086 * which is important when on a NUMA setup the allowed
3087 * nodes are together not big enough to reach the
3088 * global limit. The proper fix for these situations
3089 * will require awareness of nodes in the
3090 * dirty-throttling and the flusher threads.
3091 */
3092 if (ac->spread_dirty_pages) {
3093 if (last_pgdat != zone->zone_pgdat) {
3094 last_pgdat = zone->zone_pgdat;
3095 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3096 }
3097
3098 if (!last_pgdat_dirty_ok)
3099 continue;
3100 }
3101
3102 if (no_fallback && nr_online_nodes > 1 &&
3103 zone != ac->preferred_zoneref->zone) {
3104 int local_nid;
3105
3106 /*
3107 * If moving to a remote node, retry but allow
3108 * fragmenting fallbacks. Locality is more important
3109 * than fragmentation avoidance.
3110 */
3111 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3112 if (zone_to_nid(zone) != local_nid) {
3113 alloc_flags &= ~ALLOC_NOFRAGMENT;
3114 goto retry;
3115 }
3116 }
3117
3118 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3119 if (!zone_watermark_fast(zone, order, mark,
3120 ac->highest_zoneidx, alloc_flags,
3121 gfp_mask)) {
3122 int ret;
3123
3124 if (has_unaccepted_memory()) {
3125 if (try_to_accept_memory(zone, order))
3126 goto try_this_zone;
3127 }
3128
3129 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3130 /*
3131 * Watermark failed for this zone, but see if we can
3132 * grow this zone if it contains deferred pages.
3133 */
3134 if (deferred_pages_enabled()) {
3135 if (_deferred_grow_zone(zone, order))
3136 goto try_this_zone;
3137 }
3138 #endif
3139 /* Checked here to keep the fast path fast */
3140 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3141 if (alloc_flags & ALLOC_NO_WATERMARKS)
3142 goto try_this_zone;
3143
3144 if (!node_reclaim_enabled() ||
3145 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3146 continue;
3147
3148 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3149 switch (ret) {
3150 case NODE_RECLAIM_NOSCAN:
3151 /* did not scan */
3152 continue;
3153 case NODE_RECLAIM_FULL:
3154 /* scanned but unreclaimable */
3155 continue;
3156 default:
3157 /* did we reclaim enough */
3158 if (zone_watermark_ok(zone, order, mark,
3159 ac->highest_zoneidx, alloc_flags))
3160 goto try_this_zone;
3161
3162 continue;
3163 }
3164 }
3165
3166 try_this_zone:
3167 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3168 gfp_mask, alloc_flags, ac->migratetype);
3169 if (page) {
3170 prep_new_page(page, order, gfp_mask, alloc_flags);
3171
3172 /*
3173 * If this is a high-order atomic allocation then check
3174 * if the pageblock should be reserved for the future
3175 */
3176 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3177 reserve_highatomic_pageblock(page, zone);
3178
3179 return page;
3180 } else {
3181 if (has_unaccepted_memory()) {
3182 if (try_to_accept_memory(zone, order))
3183 goto try_this_zone;
3184 }
3185
3186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3187 /* Try again if zone has deferred pages */
3188 if (deferred_pages_enabled()) {
3189 if (_deferred_grow_zone(zone, order))
3190 goto try_this_zone;
3191 }
3192 #endif
3193 }
3194 }
3195
3196 /*
3197 * It's possible on a UMA machine to get through all zones that are
3198 * fragmented. If avoiding fragmentation, reset and try again.
3199 */
3200 if (no_fallback) {
3201 alloc_flags &= ~ALLOC_NOFRAGMENT;
3202 goto retry;
3203 }
3204
3205 return NULL;
3206 }
3207
3208 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3209 {
3210 unsigned int filter = SHOW_MEM_FILTER_NODES;
3211
3212 /*
3213 * This documents exceptions given to allocations in certain
3214 * contexts that are allowed to allocate outside current's set
3215 * of allowed nodes.
3216 */
3217 if (!(gfp_mask & __GFP_NOMEMALLOC))
3218 if (tsk_is_oom_victim(current) ||
3219 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3220 filter &= ~SHOW_MEM_FILTER_NODES;
3221 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3222 filter &= ~SHOW_MEM_FILTER_NODES;
3223
3224 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3225 }
3226
3227 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3228 {
3229 struct va_format vaf;
3230 va_list args;
3231 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3232
3233 if ((gfp_mask & __GFP_NOWARN) ||
3234 !__ratelimit(&nopage_rs) ||
3235 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3236 return;
3237
3238 va_start(args, fmt);
3239 vaf.fmt = fmt;
3240 vaf.va = &args;
3241 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3242 current->comm, &vaf, gfp_mask, &gfp_mask,
3243 nodemask_pr_args(nodemask));
3244 va_end(args);
3245
3246 cpuset_print_current_mems_allowed();
3247 pr_cont("\n");
3248 dump_stack();
3249 warn_alloc_show_mem(gfp_mask, nodemask);
3250 }
3251
3252 static inline struct page *
3253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3254 unsigned int alloc_flags,
3255 const struct alloc_context *ac)
3256 {
3257 struct page *page;
3258
3259 page = get_page_from_freelist(gfp_mask, order,
3260 alloc_flags|ALLOC_CPUSET, ac);
3261 /*
3262 * fallback to ignore cpuset restriction if our nodes
3263 * are depleted
3264 */
3265 if (!page)
3266 page = get_page_from_freelist(gfp_mask, order,
3267 alloc_flags, ac);
3268
3269 return page;
3270 }
3271
3272 static inline struct page *
3273 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3274 const struct alloc_context *ac, unsigned long *did_some_progress)
3275 {
3276 struct oom_control oc = {
3277 .zonelist = ac->zonelist,
3278 .nodemask = ac->nodemask,
3279 .memcg = NULL,
3280 .gfp_mask = gfp_mask,
3281 .order = order,
3282 };
3283 struct page *page;
3284
3285 *did_some_progress = 0;
3286
3287 /*
3288 * Acquire the oom lock. If that fails, somebody else is
3289 * making progress for us.
3290 */
3291 if (!mutex_trylock(&oom_lock)) {
3292 *did_some_progress = 1;
3293 schedule_timeout_uninterruptible(1);
3294 return NULL;
3295 }
3296
3297 /*
3298 * Go through the zonelist yet one more time, keep very high watermark
3299 * here, this is only to catch a parallel oom killing, we must fail if
3300 * we're still under heavy pressure. But make sure that this reclaim
3301 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3302 * allocation which will never fail due to oom_lock already held.
3303 */
3304 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3305 ~__GFP_DIRECT_RECLAIM, order,
3306 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3307 if (page)
3308 goto out;
3309
3310 /* Coredumps can quickly deplete all memory reserves */
3311 if (current->flags & PF_DUMPCORE)
3312 goto out;
3313 /* The OOM killer will not help higher order allocs */
3314 if (order > PAGE_ALLOC_COSTLY_ORDER)
3315 goto out;
3316 /*
3317 * We have already exhausted all our reclaim opportunities without any
3318 * success so it is time to admit defeat. We will skip the OOM killer
3319 * because it is very likely that the caller has a more reasonable
3320 * fallback than shooting a random task.
3321 *
3322 * The OOM killer may not free memory on a specific node.
3323 */
3324 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3325 goto out;
3326 /* The OOM killer does not needlessly kill tasks for lowmem */
3327 if (ac->highest_zoneidx < ZONE_NORMAL)
3328 goto out;
3329 if (pm_suspended_storage())
3330 goto out;
3331 /*
3332 * XXX: GFP_NOFS allocations should rather fail than rely on
3333 * other request to make a forward progress.
3334 * We are in an unfortunate situation where out_of_memory cannot
3335 * do much for this context but let's try it to at least get
3336 * access to memory reserved if the current task is killed (see
3337 * out_of_memory). Once filesystems are ready to handle allocation
3338 * failures more gracefully we should just bail out here.
3339 */
3340
3341 /* Exhausted what can be done so it's blame time */
3342 if (out_of_memory(&oc) ||
3343 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3344 *did_some_progress = 1;
3345
3346 /*
3347 * Help non-failing allocations by giving them access to memory
3348 * reserves
3349 */
3350 if (gfp_mask & __GFP_NOFAIL)
3351 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3352 ALLOC_NO_WATERMARKS, ac);
3353 }
3354 out:
3355 mutex_unlock(&oom_lock);
3356 return page;
3357 }
3358
3359 /*
3360 * Maximum number of compaction retries with a progress before OOM
3361 * killer is consider as the only way to move forward.
3362 */
3363 #define MAX_COMPACT_RETRIES 16
3364
3365 #ifdef CONFIG_COMPACTION
3366 /* Try memory compaction for high-order allocations before reclaim */
3367 static struct page *
3368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3369 unsigned int alloc_flags, const struct alloc_context *ac,
3370 enum compact_priority prio, enum compact_result *compact_result)
3371 {
3372 struct page *page = NULL;
3373 unsigned long pflags;
3374 unsigned int noreclaim_flag;
3375
3376 if (!order)
3377 return NULL;
3378
3379 psi_memstall_enter(&pflags);
3380 delayacct_compact_start();
3381 noreclaim_flag = memalloc_noreclaim_save();
3382
3383 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3384 prio, &page);
3385
3386 memalloc_noreclaim_restore(noreclaim_flag);
3387 psi_memstall_leave(&pflags);
3388 delayacct_compact_end();
3389
3390 if (*compact_result == COMPACT_SKIPPED)
3391 return NULL;
3392 /*
3393 * At least in one zone compaction wasn't deferred or skipped, so let's
3394 * count a compaction stall
3395 */
3396 count_vm_event(COMPACTSTALL);
3397
3398 /* Prep a captured page if available */
3399 if (page)
3400 prep_new_page(page, order, gfp_mask, alloc_flags);
3401
3402 /* Try get a page from the freelist if available */
3403 if (!page)
3404 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3405
3406 if (page) {
3407 struct zone *zone = page_zone(page);
3408
3409 zone->compact_blockskip_flush = false;
3410 compaction_defer_reset(zone, order, true);
3411 count_vm_event(COMPACTSUCCESS);
3412 return page;
3413 }
3414
3415 /*
3416 * It's bad if compaction run occurs and fails. The most likely reason
3417 * is that pages exist, but not enough to satisfy watermarks.
3418 */
3419 count_vm_event(COMPACTFAIL);
3420
3421 cond_resched();
3422
3423 return NULL;
3424 }
3425
3426 static inline bool
3427 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3428 enum compact_result compact_result,
3429 enum compact_priority *compact_priority,
3430 int *compaction_retries)
3431 {
3432 int max_retries = MAX_COMPACT_RETRIES;
3433 int min_priority;
3434 bool ret = false;
3435 int retries = *compaction_retries;
3436 enum compact_priority priority = *compact_priority;
3437
3438 if (!order)
3439 return false;
3440
3441 if (fatal_signal_pending(current))
3442 return false;
3443
3444 /*
3445 * Compaction was skipped due to a lack of free order-0
3446 * migration targets. Continue if reclaim can help.
3447 */
3448 if (compact_result == COMPACT_SKIPPED) {
3449 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3450 goto out;
3451 }
3452
3453 /*
3454 * Compaction managed to coalesce some page blocks, but the
3455 * allocation failed presumably due to a race. Retry some.
3456 */
3457 if (compact_result == COMPACT_SUCCESS) {
3458 /*
3459 * !costly requests are much more important than
3460 * __GFP_RETRY_MAYFAIL costly ones because they are de
3461 * facto nofail and invoke OOM killer to move on while
3462 * costly can fail and users are ready to cope with
3463 * that. 1/4 retries is rather arbitrary but we would
3464 * need much more detailed feedback from compaction to
3465 * make a better decision.
3466 */
3467 if (order > PAGE_ALLOC_COSTLY_ORDER)
3468 max_retries /= 4;
3469
3470 if (++(*compaction_retries) <= max_retries) {
3471 ret = true;
3472 goto out;
3473 }
3474 }
3475
3476 /*
3477 * Compaction failed. Retry with increasing priority.
3478 */
3479 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3480 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3481
3482 if (*compact_priority > min_priority) {
3483 (*compact_priority)--;
3484 *compaction_retries = 0;
3485 ret = true;
3486 }
3487 out:
3488 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3489 return ret;
3490 }
3491 #else
3492 static inline struct page *
3493 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3494 unsigned int alloc_flags, const struct alloc_context *ac,
3495 enum compact_priority prio, enum compact_result *compact_result)
3496 {
3497 *compact_result = COMPACT_SKIPPED;
3498 return NULL;
3499 }
3500
3501 static inline bool
3502 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3503 enum compact_result compact_result,
3504 enum compact_priority *compact_priority,
3505 int *compaction_retries)
3506 {
3507 struct zone *zone;
3508 struct zoneref *z;
3509
3510 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3511 return false;
3512
3513 /*
3514 * There are setups with compaction disabled which would prefer to loop
3515 * inside the allocator rather than hit the oom killer prematurely.
3516 * Let's give them a good hope and keep retrying while the order-0
3517 * watermarks are OK.
3518 */
3519 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3520 ac->highest_zoneidx, ac->nodemask) {
3521 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3522 ac->highest_zoneidx, alloc_flags))
3523 return true;
3524 }
3525 return false;
3526 }
3527 #endif /* CONFIG_COMPACTION */
3528
3529 #ifdef CONFIG_LOCKDEP
3530 static struct lockdep_map __fs_reclaim_map =
3531 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3532
3533 static bool __need_reclaim(gfp_t gfp_mask)
3534 {
3535 /* no reclaim without waiting on it */
3536 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3537 return false;
3538
3539 /* this guy won't enter reclaim */
3540 if (current->flags & PF_MEMALLOC)
3541 return false;
3542
3543 if (gfp_mask & __GFP_NOLOCKDEP)
3544 return false;
3545
3546 return true;
3547 }
3548
3549 void __fs_reclaim_acquire(unsigned long ip)
3550 {
3551 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3552 }
3553
3554 void __fs_reclaim_release(unsigned long ip)
3555 {
3556 lock_release(&__fs_reclaim_map, ip);
3557 }
3558
3559 void fs_reclaim_acquire(gfp_t gfp_mask)
3560 {
3561 gfp_mask = current_gfp_context(gfp_mask);
3562
3563 if (__need_reclaim(gfp_mask)) {
3564 if (gfp_mask & __GFP_FS)
3565 __fs_reclaim_acquire(_RET_IP_);
3566
3567 #ifdef CONFIG_MMU_NOTIFIER
3568 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3569 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3570 #endif
3571
3572 }
3573 }
3574 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3575
3576 void fs_reclaim_release(gfp_t gfp_mask)
3577 {
3578 gfp_mask = current_gfp_context(gfp_mask);
3579
3580 if (__need_reclaim(gfp_mask)) {
3581 if (gfp_mask & __GFP_FS)
3582 __fs_reclaim_release(_RET_IP_);
3583 }
3584 }
3585 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3586 #endif
3587
3588 /*
3589 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3590 * have been rebuilt so allocation retries. Reader side does not lock and
3591 * retries the allocation if zonelist changes. Writer side is protected by the
3592 * embedded spin_lock.
3593 */
3594 static DEFINE_SEQLOCK(zonelist_update_seq);
3595
3596 static unsigned int zonelist_iter_begin(void)
3597 {
3598 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3599 return read_seqbegin(&zonelist_update_seq);
3600
3601 return 0;
3602 }
3603
3604 static unsigned int check_retry_zonelist(unsigned int seq)
3605 {
3606 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3607 return read_seqretry(&zonelist_update_seq, seq);
3608
3609 return seq;
3610 }
3611
3612 /* Perform direct synchronous page reclaim */
3613 static unsigned long
3614 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3615 const struct alloc_context *ac)
3616 {
3617 unsigned int noreclaim_flag;
3618 unsigned long progress;
3619
3620 cond_resched();
3621
3622 /* We now go into synchronous reclaim */
3623 cpuset_memory_pressure_bump();
3624 fs_reclaim_acquire(gfp_mask);
3625 noreclaim_flag = memalloc_noreclaim_save();
3626
3627 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3628 ac->nodemask);
3629
3630 memalloc_noreclaim_restore(noreclaim_flag);
3631 fs_reclaim_release(gfp_mask);
3632
3633 cond_resched();
3634
3635 return progress;
3636 }
3637
3638 /* The really slow allocator path where we enter direct reclaim */
3639 static inline struct page *
3640 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3641 unsigned int alloc_flags, const struct alloc_context *ac,
3642 unsigned long *did_some_progress)
3643 {
3644 struct page *page = NULL;
3645 unsigned long pflags;
3646 bool drained = false;
3647
3648 psi_memstall_enter(&pflags);
3649 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3650 if (unlikely(!(*did_some_progress)))
3651 goto out;
3652
3653 retry:
3654 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3655
3656 /*
3657 * If an allocation failed after direct reclaim, it could be because
3658 * pages are pinned on the per-cpu lists or in high alloc reserves.
3659 * Shrink them and try again
3660 */
3661 if (!page && !drained) {
3662 unreserve_highatomic_pageblock(ac, false);
3663 drain_all_pages(NULL);
3664 drained = true;
3665 goto retry;
3666 }
3667 out:
3668 psi_memstall_leave(&pflags);
3669
3670 return page;
3671 }
3672
3673 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3674 const struct alloc_context *ac)
3675 {
3676 struct zoneref *z;
3677 struct zone *zone;
3678 pg_data_t *last_pgdat = NULL;
3679 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3680
3681 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3682 ac->nodemask) {
3683 if (!managed_zone(zone))
3684 continue;
3685 if (last_pgdat != zone->zone_pgdat) {
3686 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3687 last_pgdat = zone->zone_pgdat;
3688 }
3689 }
3690 }
3691
3692 static inline unsigned int
3693 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3694 {
3695 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3696
3697 /*
3698 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3699 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3700 * to save two branches.
3701 */
3702 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3703 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3704
3705 /*
3706 * The caller may dip into page reserves a bit more if the caller
3707 * cannot run direct reclaim, or if the caller has realtime scheduling
3708 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3709 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3710 */
3711 alloc_flags |= (__force int)
3712 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3713
3714 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3715 /*
3716 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3717 * if it can't schedule.
3718 */
3719 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3720 alloc_flags |= ALLOC_NON_BLOCK;
3721
3722 if (order > 0)
3723 alloc_flags |= ALLOC_HIGHATOMIC;
3724 }
3725
3726 /*
3727 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3728 * GFP_ATOMIC) rather than fail, see the comment for
3729 * cpuset_node_allowed().
3730 */
3731 if (alloc_flags & ALLOC_MIN_RESERVE)
3732 alloc_flags &= ~ALLOC_CPUSET;
3733 } else if (unlikely(rt_task(current)) && in_task())
3734 alloc_flags |= ALLOC_MIN_RESERVE;
3735
3736 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3737
3738 return alloc_flags;
3739 }
3740
3741 static bool oom_reserves_allowed(struct task_struct *tsk)
3742 {
3743 if (!tsk_is_oom_victim(tsk))
3744 return false;
3745
3746 /*
3747 * !MMU doesn't have oom reaper so give access to memory reserves
3748 * only to the thread with TIF_MEMDIE set
3749 */
3750 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3751 return false;
3752
3753 return true;
3754 }
3755
3756 /*
3757 * Distinguish requests which really need access to full memory
3758 * reserves from oom victims which can live with a portion of it
3759 */
3760 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3761 {
3762 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3763 return 0;
3764 if (gfp_mask & __GFP_MEMALLOC)
3765 return ALLOC_NO_WATERMARKS;
3766 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3767 return ALLOC_NO_WATERMARKS;
3768 if (!in_interrupt()) {
3769 if (current->flags & PF_MEMALLOC)
3770 return ALLOC_NO_WATERMARKS;
3771 else if (oom_reserves_allowed(current))
3772 return ALLOC_OOM;
3773 }
3774
3775 return 0;
3776 }
3777
3778 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3779 {
3780 return !!__gfp_pfmemalloc_flags(gfp_mask);
3781 }
3782
3783 /*
3784 * Checks whether it makes sense to retry the reclaim to make a forward progress
3785 * for the given allocation request.
3786 *
3787 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3788 * without success, or when we couldn't even meet the watermark if we
3789 * reclaimed all remaining pages on the LRU lists.
3790 *
3791 * Returns true if a retry is viable or false to enter the oom path.
3792 */
3793 static inline bool
3794 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3795 struct alloc_context *ac, int alloc_flags,
3796 bool did_some_progress, int *no_progress_loops)
3797 {
3798 struct zone *zone;
3799 struct zoneref *z;
3800 bool ret = false;
3801
3802 /*
3803 * Costly allocations might have made a progress but this doesn't mean
3804 * their order will become available due to high fragmentation so
3805 * always increment the no progress counter for them
3806 */
3807 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3808 *no_progress_loops = 0;
3809 else
3810 (*no_progress_loops)++;
3811
3812 /*
3813 * Make sure we converge to OOM if we cannot make any progress
3814 * several times in the row.
3815 */
3816 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3817 /* Before OOM, exhaust highatomic_reserve */
3818 return unreserve_highatomic_pageblock(ac, true);
3819 }
3820
3821 /*
3822 * Keep reclaiming pages while there is a chance this will lead
3823 * somewhere. If none of the target zones can satisfy our allocation
3824 * request even if all reclaimable pages are considered then we are
3825 * screwed and have to go OOM.
3826 */
3827 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3828 ac->highest_zoneidx, ac->nodemask) {
3829 unsigned long available;
3830 unsigned long reclaimable;
3831 unsigned long min_wmark = min_wmark_pages(zone);
3832 bool wmark;
3833
3834 available = reclaimable = zone_reclaimable_pages(zone);
3835 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3836
3837 /*
3838 * Would the allocation succeed if we reclaimed all
3839 * reclaimable pages?
3840 */
3841 wmark = __zone_watermark_ok(zone, order, min_wmark,
3842 ac->highest_zoneidx, alloc_flags, available);
3843 trace_reclaim_retry_zone(z, order, reclaimable,
3844 available, min_wmark, *no_progress_loops, wmark);
3845 if (wmark) {
3846 ret = true;
3847 break;
3848 }
3849 }
3850
3851 /*
3852 * Memory allocation/reclaim might be called from a WQ context and the
3853 * current implementation of the WQ concurrency control doesn't
3854 * recognize that a particular WQ is congested if the worker thread is
3855 * looping without ever sleeping. Therefore we have to do a short sleep
3856 * here rather than calling cond_resched().
3857 */
3858 if (current->flags & PF_WQ_WORKER)
3859 schedule_timeout_uninterruptible(1);
3860 else
3861 cond_resched();
3862 return ret;
3863 }
3864
3865 static inline bool
3866 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3867 {
3868 /*
3869 * It's possible that cpuset's mems_allowed and the nodemask from
3870 * mempolicy don't intersect. This should be normally dealt with by
3871 * policy_nodemask(), but it's possible to race with cpuset update in
3872 * such a way the check therein was true, and then it became false
3873 * before we got our cpuset_mems_cookie here.
3874 * This assumes that for all allocations, ac->nodemask can come only
3875 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3876 * when it does not intersect with the cpuset restrictions) or the
3877 * caller can deal with a violated nodemask.
3878 */
3879 if (cpusets_enabled() && ac->nodemask &&
3880 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3881 ac->nodemask = NULL;
3882 return true;
3883 }
3884
3885 /*
3886 * When updating a task's mems_allowed or mempolicy nodemask, it is
3887 * possible to race with parallel threads in such a way that our
3888 * allocation can fail while the mask is being updated. If we are about
3889 * to fail, check if the cpuset changed during allocation and if so,
3890 * retry.
3891 */
3892 if (read_mems_allowed_retry(cpuset_mems_cookie))
3893 return true;
3894
3895 return false;
3896 }
3897
3898 static inline struct page *
3899 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3900 struct alloc_context *ac)
3901 {
3902 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3903 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3904 struct page *page = NULL;
3905 unsigned int alloc_flags;
3906 unsigned long did_some_progress;
3907 enum compact_priority compact_priority;
3908 enum compact_result compact_result;
3909 int compaction_retries;
3910 int no_progress_loops;
3911 unsigned int cpuset_mems_cookie;
3912 unsigned int zonelist_iter_cookie;
3913 int reserve_flags;
3914
3915 restart:
3916 compaction_retries = 0;
3917 no_progress_loops = 0;
3918 compact_priority = DEF_COMPACT_PRIORITY;
3919 cpuset_mems_cookie = read_mems_allowed_begin();
3920 zonelist_iter_cookie = zonelist_iter_begin();
3921
3922 /*
3923 * The fast path uses conservative alloc_flags to succeed only until
3924 * kswapd needs to be woken up, and to avoid the cost of setting up
3925 * alloc_flags precisely. So we do that now.
3926 */
3927 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3928
3929 /*
3930 * We need to recalculate the starting point for the zonelist iterator
3931 * because we might have used different nodemask in the fast path, or
3932 * there was a cpuset modification and we are retrying - otherwise we
3933 * could end up iterating over non-eligible zones endlessly.
3934 */
3935 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3936 ac->highest_zoneidx, ac->nodemask);
3937 if (!ac->preferred_zoneref->zone)
3938 goto nopage;
3939
3940 /*
3941 * Check for insane configurations where the cpuset doesn't contain
3942 * any suitable zone to satisfy the request - e.g. non-movable
3943 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3944 */
3945 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3946 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3947 ac->highest_zoneidx,
3948 &cpuset_current_mems_allowed);
3949 if (!z->zone)
3950 goto nopage;
3951 }
3952
3953 if (alloc_flags & ALLOC_KSWAPD)
3954 wake_all_kswapds(order, gfp_mask, ac);
3955
3956 /*
3957 * The adjusted alloc_flags might result in immediate success, so try
3958 * that first
3959 */
3960 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3961 if (page)
3962 goto got_pg;
3963
3964 /*
3965 * For costly allocations, try direct compaction first, as it's likely
3966 * that we have enough base pages and don't need to reclaim. For non-
3967 * movable high-order allocations, do that as well, as compaction will
3968 * try prevent permanent fragmentation by migrating from blocks of the
3969 * same migratetype.
3970 * Don't try this for allocations that are allowed to ignore
3971 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3972 */
3973 if (can_direct_reclaim &&
3974 (costly_order ||
3975 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3976 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3977 page = __alloc_pages_direct_compact(gfp_mask, order,
3978 alloc_flags, ac,
3979 INIT_COMPACT_PRIORITY,
3980 &compact_result);
3981 if (page)
3982 goto got_pg;
3983
3984 /*
3985 * Checks for costly allocations with __GFP_NORETRY, which
3986 * includes some THP page fault allocations
3987 */
3988 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3989 /*
3990 * If allocating entire pageblock(s) and compaction
3991 * failed because all zones are below low watermarks
3992 * or is prohibited because it recently failed at this
3993 * order, fail immediately unless the allocator has
3994 * requested compaction and reclaim retry.
3995 *
3996 * Reclaim is
3997 * - potentially very expensive because zones are far
3998 * below their low watermarks or this is part of very
3999 * bursty high order allocations,
4000 * - not guaranteed to help because isolate_freepages()
4001 * may not iterate over freed pages as part of its
4002 * linear scan, and
4003 * - unlikely to make entire pageblocks free on its
4004 * own.
4005 */
4006 if (compact_result == COMPACT_SKIPPED ||
4007 compact_result == COMPACT_DEFERRED)
4008 goto nopage;
4009
4010 /*
4011 * Looks like reclaim/compaction is worth trying, but
4012 * sync compaction could be very expensive, so keep
4013 * using async compaction.
4014 */
4015 compact_priority = INIT_COMPACT_PRIORITY;
4016 }
4017 }
4018
4019 retry:
4020 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4021 if (alloc_flags & ALLOC_KSWAPD)
4022 wake_all_kswapds(order, gfp_mask, ac);
4023
4024 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4025 if (reserve_flags)
4026 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4027 (alloc_flags & ALLOC_KSWAPD);
4028
4029 /*
4030 * Reset the nodemask and zonelist iterators if memory policies can be
4031 * ignored. These allocations are high priority and system rather than
4032 * user oriented.
4033 */
4034 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4035 ac->nodemask = NULL;
4036 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4037 ac->highest_zoneidx, ac->nodemask);
4038 }
4039
4040 /* Attempt with potentially adjusted zonelist and alloc_flags */
4041 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4042 if (page)
4043 goto got_pg;
4044
4045 /* Caller is not willing to reclaim, we can't balance anything */
4046 if (!can_direct_reclaim)
4047 goto nopage;
4048
4049 /* Avoid recursion of direct reclaim */
4050 if (current->flags & PF_MEMALLOC)
4051 goto nopage;
4052
4053 /* Try direct reclaim and then allocating */
4054 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4055 &did_some_progress);
4056 if (page)
4057 goto got_pg;
4058
4059 /* Try direct compaction and then allocating */
4060 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4061 compact_priority, &compact_result);
4062 if (page)
4063 goto got_pg;
4064
4065 /* Do not loop if specifically requested */
4066 if (gfp_mask & __GFP_NORETRY)
4067 goto nopage;
4068
4069 /*
4070 * Do not retry costly high order allocations unless they are
4071 * __GFP_RETRY_MAYFAIL
4072 */
4073 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4074 goto nopage;
4075
4076 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4077 did_some_progress > 0, &no_progress_loops))
4078 goto retry;
4079
4080 /*
4081 * It doesn't make any sense to retry for the compaction if the order-0
4082 * reclaim is not able to make any progress because the current
4083 * implementation of the compaction depends on the sufficient amount
4084 * of free memory (see __compaction_suitable)
4085 */
4086 if (did_some_progress > 0 &&
4087 should_compact_retry(ac, order, alloc_flags,
4088 compact_result, &compact_priority,
4089 &compaction_retries))
4090 goto retry;
4091
4092
4093 /*
4094 * Deal with possible cpuset update races or zonelist updates to avoid
4095 * a unnecessary OOM kill.
4096 */
4097 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4098 check_retry_zonelist(zonelist_iter_cookie))
4099 goto restart;
4100
4101 /* Reclaim has failed us, start killing things */
4102 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4103 if (page)
4104 goto got_pg;
4105
4106 /* Avoid allocations with no watermarks from looping endlessly */
4107 if (tsk_is_oom_victim(current) &&
4108 (alloc_flags & ALLOC_OOM ||
4109 (gfp_mask & __GFP_NOMEMALLOC)))
4110 goto nopage;
4111
4112 /* Retry as long as the OOM killer is making progress */
4113 if (did_some_progress) {
4114 no_progress_loops = 0;
4115 goto retry;
4116 }
4117
4118 nopage:
4119 /*
4120 * Deal with possible cpuset update races or zonelist updates to avoid
4121 * a unnecessary OOM kill.
4122 */
4123 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4124 check_retry_zonelist(zonelist_iter_cookie))
4125 goto restart;
4126
4127 /*
4128 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4129 * we always retry
4130 */
4131 if (gfp_mask & __GFP_NOFAIL) {
4132 /*
4133 * All existing users of the __GFP_NOFAIL are blockable, so warn
4134 * of any new users that actually require GFP_NOWAIT
4135 */
4136 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4137 goto fail;
4138
4139 /*
4140 * PF_MEMALLOC request from this context is rather bizarre
4141 * because we cannot reclaim anything and only can loop waiting
4142 * for somebody to do a work for us
4143 */
4144 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4145
4146 /*
4147 * non failing costly orders are a hard requirement which we
4148 * are not prepared for much so let's warn about these users
4149 * so that we can identify them and convert them to something
4150 * else.
4151 */
4152 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4153
4154 /*
4155 * Help non-failing allocations by giving some access to memory
4156 * reserves normally used for high priority non-blocking
4157 * allocations but do not use ALLOC_NO_WATERMARKS because this
4158 * could deplete whole memory reserves which would just make
4159 * the situation worse.
4160 */
4161 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4162 if (page)
4163 goto got_pg;
4164
4165 cond_resched();
4166 goto retry;
4167 }
4168 fail:
4169 warn_alloc(gfp_mask, ac->nodemask,
4170 "page allocation failure: order:%u", order);
4171 got_pg:
4172 return page;
4173 }
4174
4175 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4176 int preferred_nid, nodemask_t *nodemask,
4177 struct alloc_context *ac, gfp_t *alloc_gfp,
4178 unsigned int *alloc_flags)
4179 {
4180 ac->highest_zoneidx = gfp_zone(gfp_mask);
4181 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4182 ac->nodemask = nodemask;
4183 ac->migratetype = gfp_migratetype(gfp_mask);
4184
4185 if (cpusets_enabled()) {
4186 *alloc_gfp |= __GFP_HARDWALL;
4187 /*
4188 * When we are in the interrupt context, it is irrelevant
4189 * to the current task context. It means that any node ok.
4190 */
4191 if (in_task() && !ac->nodemask)
4192 ac->nodemask = &cpuset_current_mems_allowed;
4193 else
4194 *alloc_flags |= ALLOC_CPUSET;
4195 }
4196
4197 might_alloc(gfp_mask);
4198
4199 if (should_fail_alloc_page(gfp_mask, order))
4200 return false;
4201
4202 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4203
4204 /* Dirty zone balancing only done in the fast path */
4205 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4206
4207 /*
4208 * The preferred zone is used for statistics but crucially it is
4209 * also used as the starting point for the zonelist iterator. It
4210 * may get reset for allocations that ignore memory policies.
4211 */
4212 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4213 ac->highest_zoneidx, ac->nodemask);
4214
4215 return true;
4216 }
4217
4218 /*
4219 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4220 * @gfp: GFP flags for the allocation
4221 * @preferred_nid: The preferred NUMA node ID to allocate from
4222 * @nodemask: Set of nodes to allocate from, may be NULL
4223 * @nr_pages: The number of pages desired on the list or array
4224 * @page_list: Optional list to store the allocated pages
4225 * @page_array: Optional array to store the pages
4226 *
4227 * This is a batched version of the page allocator that attempts to
4228 * allocate nr_pages quickly. Pages are added to page_list if page_list
4229 * is not NULL, otherwise it is assumed that the page_array is valid.
4230 *
4231 * For lists, nr_pages is the number of pages that should be allocated.
4232 *
4233 * For arrays, only NULL elements are populated with pages and nr_pages
4234 * is the maximum number of pages that will be stored in the array.
4235 *
4236 * Returns the number of pages on the list or array.
4237 */
4238 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4239 nodemask_t *nodemask, int nr_pages,
4240 struct list_head *page_list,
4241 struct page **page_array)
4242 {
4243 struct page *page;
4244 unsigned long __maybe_unused UP_flags;
4245 struct zone *zone;
4246 struct zoneref *z;
4247 struct per_cpu_pages *pcp;
4248 struct list_head *pcp_list;
4249 struct alloc_context ac;
4250 gfp_t alloc_gfp;
4251 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4252 int nr_populated = 0, nr_account = 0;
4253
4254 /*
4255 * Skip populated array elements to determine if any pages need
4256 * to be allocated before disabling IRQs.
4257 */
4258 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4259 nr_populated++;
4260
4261 /* No pages requested? */
4262 if (unlikely(nr_pages <= 0))
4263 goto out;
4264
4265 /* Already populated array? */
4266 if (unlikely(page_array && nr_pages - nr_populated == 0))
4267 goto out;
4268
4269 /* Bulk allocator does not support memcg accounting. */
4270 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4271 goto failed;
4272
4273 /* Use the single page allocator for one page. */
4274 if (nr_pages - nr_populated == 1)
4275 goto failed;
4276
4277 #ifdef CONFIG_PAGE_OWNER
4278 /*
4279 * PAGE_OWNER may recurse into the allocator to allocate space to
4280 * save the stack with pagesets.lock held. Releasing/reacquiring
4281 * removes much of the performance benefit of bulk allocation so
4282 * force the caller to allocate one page at a time as it'll have
4283 * similar performance to added complexity to the bulk allocator.
4284 */
4285 if (static_branch_unlikely(&page_owner_inited))
4286 goto failed;
4287 #endif
4288
4289 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4290 gfp &= gfp_allowed_mask;
4291 alloc_gfp = gfp;
4292 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4293 goto out;
4294 gfp = alloc_gfp;
4295
4296 /* Find an allowed local zone that meets the low watermark. */
4297 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4298 unsigned long mark;
4299
4300 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4301 !__cpuset_zone_allowed(zone, gfp)) {
4302 continue;
4303 }
4304
4305 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4306 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4307 goto failed;
4308 }
4309
4310 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4311 if (zone_watermark_fast(zone, 0, mark,
4312 zonelist_zone_idx(ac.preferred_zoneref),
4313 alloc_flags, gfp)) {
4314 break;
4315 }
4316 }
4317
4318 /*
4319 * If there are no allowed local zones that meets the watermarks then
4320 * try to allocate a single page and reclaim if necessary.
4321 */
4322 if (unlikely(!zone))
4323 goto failed;
4324
4325 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4326 pcp_trylock_prepare(UP_flags);
4327 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4328 if (!pcp)
4329 goto failed_irq;
4330
4331 /* Attempt the batch allocation */
4332 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4333 while (nr_populated < nr_pages) {
4334
4335 /* Skip existing pages */
4336 if (page_array && page_array[nr_populated]) {
4337 nr_populated++;
4338 continue;
4339 }
4340
4341 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4342 pcp, pcp_list);
4343 if (unlikely(!page)) {
4344 /* Try and allocate at least one page */
4345 if (!nr_account) {
4346 pcp_spin_unlock(pcp);
4347 goto failed_irq;
4348 }
4349 break;
4350 }
4351 nr_account++;
4352
4353 prep_new_page(page, 0, gfp, 0);
4354 if (page_list)
4355 list_add(&page->lru, page_list);
4356 else
4357 page_array[nr_populated] = page;
4358 nr_populated++;
4359 }
4360
4361 pcp_spin_unlock(pcp);
4362 pcp_trylock_finish(UP_flags);
4363
4364 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4365 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4366
4367 out:
4368 return nr_populated;
4369
4370 failed_irq:
4371 pcp_trylock_finish(UP_flags);
4372
4373 failed:
4374 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4375 if (page) {
4376 if (page_list)
4377 list_add(&page->lru, page_list);
4378 else
4379 page_array[nr_populated] = page;
4380 nr_populated++;
4381 }
4382
4383 goto out;
4384 }
4385 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4386
4387 /*
4388 * This is the 'heart' of the zoned buddy allocator.
4389 */
4390 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4391 nodemask_t *nodemask)
4392 {
4393 struct page *page;
4394 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4395 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4396 struct alloc_context ac = { };
4397
4398 /*
4399 * There are several places where we assume that the order value is sane
4400 * so bail out early if the request is out of bound.
4401 */
4402 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4403 return NULL;
4404
4405 gfp &= gfp_allowed_mask;
4406 /*
4407 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4408 * resp. GFP_NOIO which has to be inherited for all allocation requests
4409 * from a particular context which has been marked by
4410 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4411 * movable zones are not used during allocation.
4412 */
4413 gfp = current_gfp_context(gfp);
4414 alloc_gfp = gfp;
4415 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4416 &alloc_gfp, &alloc_flags))
4417 return NULL;
4418
4419 /*
4420 * Forbid the first pass from falling back to types that fragment
4421 * memory until all local zones are considered.
4422 */
4423 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4424
4425 /* First allocation attempt */
4426 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4427 if (likely(page))
4428 goto out;
4429
4430 alloc_gfp = gfp;
4431 ac.spread_dirty_pages = false;
4432
4433 /*
4434 * Restore the original nodemask if it was potentially replaced with
4435 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4436 */
4437 ac.nodemask = nodemask;
4438
4439 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4440
4441 out:
4442 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4443 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4444 __free_pages(page, order);
4445 page = NULL;
4446 }
4447
4448 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4449 kmsan_alloc_page(page, order, alloc_gfp);
4450
4451 return page;
4452 }
4453 EXPORT_SYMBOL(__alloc_pages);
4454
4455 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4456 nodemask_t *nodemask)
4457 {
4458 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4459 preferred_nid, nodemask);
4460 struct folio *folio = (struct folio *)page;
4461
4462 if (folio && order > 1)
4463 folio_prep_large_rmappable(folio);
4464 return folio;
4465 }
4466 EXPORT_SYMBOL(__folio_alloc);
4467
4468 /*
4469 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4470 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4471 * you need to access high mem.
4472 */
4473 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4474 {
4475 struct page *page;
4476
4477 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4478 if (!page)
4479 return 0;
4480 return (unsigned long) page_address(page);
4481 }
4482 EXPORT_SYMBOL(__get_free_pages);
4483
4484 unsigned long get_zeroed_page(gfp_t gfp_mask)
4485 {
4486 return __get_free_page(gfp_mask | __GFP_ZERO);
4487 }
4488 EXPORT_SYMBOL(get_zeroed_page);
4489
4490 /**
4491 * __free_pages - Free pages allocated with alloc_pages().
4492 * @page: The page pointer returned from alloc_pages().
4493 * @order: The order of the allocation.
4494 *
4495 * This function can free multi-page allocations that are not compound
4496 * pages. It does not check that the @order passed in matches that of
4497 * the allocation, so it is easy to leak memory. Freeing more memory
4498 * than was allocated will probably emit a warning.
4499 *
4500 * If the last reference to this page is speculative, it will be released
4501 * by put_page() which only frees the first page of a non-compound
4502 * allocation. To prevent the remaining pages from being leaked, we free
4503 * the subsequent pages here. If you want to use the page's reference
4504 * count to decide when to free the allocation, you should allocate a
4505 * compound page, and use put_page() instead of __free_pages().
4506 *
4507 * Context: May be called in interrupt context or while holding a normal
4508 * spinlock, but not in NMI context or while holding a raw spinlock.
4509 */
4510 void __free_pages(struct page *page, unsigned int order)
4511 {
4512 /* get PageHead before we drop reference */
4513 int head = PageHead(page);
4514
4515 if (put_page_testzero(page))
4516 free_the_page(page, order);
4517 else if (!head)
4518 while (order-- > 0)
4519 free_the_page(page + (1 << order), order);
4520 }
4521 EXPORT_SYMBOL(__free_pages);
4522
4523 void free_pages(unsigned long addr, unsigned int order)
4524 {
4525 if (addr != 0) {
4526 VM_BUG_ON(!virt_addr_valid((void *)addr));
4527 __free_pages(virt_to_page((void *)addr), order);
4528 }
4529 }
4530
4531 EXPORT_SYMBOL(free_pages);
4532
4533 /*
4534 * Page Fragment:
4535 * An arbitrary-length arbitrary-offset area of memory which resides
4536 * within a 0 or higher order page. Multiple fragments within that page
4537 * are individually refcounted, in the page's reference counter.
4538 *
4539 * The page_frag functions below provide a simple allocation framework for
4540 * page fragments. This is used by the network stack and network device
4541 * drivers to provide a backing region of memory for use as either an
4542 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4543 */
4544 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4545 gfp_t gfp_mask)
4546 {
4547 struct page *page = NULL;
4548 gfp_t gfp = gfp_mask;
4549
4550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4551 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4552 __GFP_NOMEMALLOC;
4553 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4554 PAGE_FRAG_CACHE_MAX_ORDER);
4555 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4556 #endif
4557 if (unlikely(!page))
4558 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4559
4560 nc->va = page ? page_address(page) : NULL;
4561
4562 return page;
4563 }
4564
4565 void __page_frag_cache_drain(struct page *page, unsigned int count)
4566 {
4567 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4568
4569 if (page_ref_sub_and_test(page, count))
4570 free_the_page(page, compound_order(page));
4571 }
4572 EXPORT_SYMBOL(__page_frag_cache_drain);
4573
4574 void *page_frag_alloc_align(struct page_frag_cache *nc,
4575 unsigned int fragsz, gfp_t gfp_mask,
4576 unsigned int align_mask)
4577 {
4578 unsigned int size = PAGE_SIZE;
4579 struct page *page;
4580 int offset;
4581
4582 if (unlikely(!nc->va)) {
4583 refill:
4584 page = __page_frag_cache_refill(nc, gfp_mask);
4585 if (!page)
4586 return NULL;
4587
4588 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4589 /* if size can vary use size else just use PAGE_SIZE */
4590 size = nc->size;
4591 #endif
4592 /* Even if we own the page, we do not use atomic_set().
4593 * This would break get_page_unless_zero() users.
4594 */
4595 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4596
4597 /* reset page count bias and offset to start of new frag */
4598 nc->pfmemalloc = page_is_pfmemalloc(page);
4599 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4600 nc->offset = size;
4601 }
4602
4603 offset = nc->offset - fragsz;
4604 if (unlikely(offset < 0)) {
4605 page = virt_to_page(nc->va);
4606
4607 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4608 goto refill;
4609
4610 if (unlikely(nc->pfmemalloc)) {
4611 free_the_page(page, compound_order(page));
4612 goto refill;
4613 }
4614
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 /* if size can vary use size else just use PAGE_SIZE */
4617 size = nc->size;
4618 #endif
4619 /* OK, page count is 0, we can safely set it */
4620 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4621
4622 /* reset page count bias and offset to start of new frag */
4623 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4624 offset = size - fragsz;
4625 if (unlikely(offset < 0)) {
4626 /*
4627 * The caller is trying to allocate a fragment
4628 * with fragsz > PAGE_SIZE but the cache isn't big
4629 * enough to satisfy the request, this may
4630 * happen in low memory conditions.
4631 * We don't release the cache page because
4632 * it could make memory pressure worse
4633 * so we simply return NULL here.
4634 */
4635 return NULL;
4636 }
4637 }
4638
4639 nc->pagecnt_bias--;
4640 offset &= align_mask;
4641 nc->offset = offset;
4642
4643 return nc->va + offset;
4644 }
4645 EXPORT_SYMBOL(page_frag_alloc_align);
4646
4647 /*
4648 * Frees a page fragment allocated out of either a compound or order 0 page.
4649 */
4650 void page_frag_free(void *addr)
4651 {
4652 struct page *page = virt_to_head_page(addr);
4653
4654 if (unlikely(put_page_testzero(page)))
4655 free_the_page(page, compound_order(page));
4656 }
4657 EXPORT_SYMBOL(page_frag_free);
4658
4659 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4660 size_t size)
4661 {
4662 if (addr) {
4663 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4664 struct page *page = virt_to_page((void *)addr);
4665 struct page *last = page + nr;
4666
4667 split_page_owner(page, 1 << order);
4668 split_page_memcg(page, 1 << order);
4669 while (page < --last)
4670 set_page_refcounted(last);
4671
4672 last = page + (1UL << order);
4673 for (page += nr; page < last; page++)
4674 __free_pages_ok(page, 0, FPI_TO_TAIL);
4675 }
4676 return (void *)addr;
4677 }
4678
4679 /**
4680 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4681 * @size: the number of bytes to allocate
4682 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4683 *
4684 * This function is similar to alloc_pages(), except that it allocates the
4685 * minimum number of pages to satisfy the request. alloc_pages() can only
4686 * allocate memory in power-of-two pages.
4687 *
4688 * This function is also limited by MAX_ORDER.
4689 *
4690 * Memory allocated by this function must be released by free_pages_exact().
4691 *
4692 * Return: pointer to the allocated area or %NULL in case of error.
4693 */
4694 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4695 {
4696 unsigned int order = get_order(size);
4697 unsigned long addr;
4698
4699 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4700 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4701
4702 addr = __get_free_pages(gfp_mask, order);
4703 return make_alloc_exact(addr, order, size);
4704 }
4705 EXPORT_SYMBOL(alloc_pages_exact);
4706
4707 /**
4708 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4709 * pages on a node.
4710 * @nid: the preferred node ID where memory should be allocated
4711 * @size: the number of bytes to allocate
4712 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4713 *
4714 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4715 * back.
4716 *
4717 * Return: pointer to the allocated area or %NULL in case of error.
4718 */
4719 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4720 {
4721 unsigned int order = get_order(size);
4722 struct page *p;
4723
4724 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4725 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4726
4727 p = alloc_pages_node(nid, gfp_mask, order);
4728 if (!p)
4729 return NULL;
4730 return make_alloc_exact((unsigned long)page_address(p), order, size);
4731 }
4732
4733 /**
4734 * free_pages_exact - release memory allocated via alloc_pages_exact()
4735 * @virt: the value returned by alloc_pages_exact.
4736 * @size: size of allocation, same value as passed to alloc_pages_exact().
4737 *
4738 * Release the memory allocated by a previous call to alloc_pages_exact.
4739 */
4740 void free_pages_exact(void *virt, size_t size)
4741 {
4742 unsigned long addr = (unsigned long)virt;
4743 unsigned long end = addr + PAGE_ALIGN(size);
4744
4745 while (addr < end) {
4746 free_page(addr);
4747 addr += PAGE_SIZE;
4748 }
4749 }
4750 EXPORT_SYMBOL(free_pages_exact);
4751
4752 /**
4753 * nr_free_zone_pages - count number of pages beyond high watermark
4754 * @offset: The zone index of the highest zone
4755 *
4756 * nr_free_zone_pages() counts the number of pages which are beyond the
4757 * high watermark within all zones at or below a given zone index. For each
4758 * zone, the number of pages is calculated as:
4759 *
4760 * nr_free_zone_pages = managed_pages - high_pages
4761 *
4762 * Return: number of pages beyond high watermark.
4763 */
4764 static unsigned long nr_free_zone_pages(int offset)
4765 {
4766 struct zoneref *z;
4767 struct zone *zone;
4768
4769 /* Just pick one node, since fallback list is circular */
4770 unsigned long sum = 0;
4771
4772 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4773
4774 for_each_zone_zonelist(zone, z, zonelist, offset) {
4775 unsigned long size = zone_managed_pages(zone);
4776 unsigned long high = high_wmark_pages(zone);
4777 if (size > high)
4778 sum += size - high;
4779 }
4780
4781 return sum;
4782 }
4783
4784 /**
4785 * nr_free_buffer_pages - count number of pages beyond high watermark
4786 *
4787 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4788 * watermark within ZONE_DMA and ZONE_NORMAL.
4789 *
4790 * Return: number of pages beyond high watermark within ZONE_DMA and
4791 * ZONE_NORMAL.
4792 */
4793 unsigned long nr_free_buffer_pages(void)
4794 {
4795 return nr_free_zone_pages(gfp_zone(GFP_USER));
4796 }
4797 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4798
4799 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4800 {
4801 zoneref->zone = zone;
4802 zoneref->zone_idx = zone_idx(zone);
4803 }
4804
4805 /*
4806 * Builds allocation fallback zone lists.
4807 *
4808 * Add all populated zones of a node to the zonelist.
4809 */
4810 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4811 {
4812 struct zone *zone;
4813 enum zone_type zone_type = MAX_NR_ZONES;
4814 int nr_zones = 0;
4815
4816 do {
4817 zone_type--;
4818 zone = pgdat->node_zones + zone_type;
4819 if (populated_zone(zone)) {
4820 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4821 check_highest_zone(zone_type);
4822 }
4823 } while (zone_type);
4824
4825 return nr_zones;
4826 }
4827
4828 #ifdef CONFIG_NUMA
4829
4830 static int __parse_numa_zonelist_order(char *s)
4831 {
4832 /*
4833 * We used to support different zonelists modes but they turned
4834 * out to be just not useful. Let's keep the warning in place
4835 * if somebody still use the cmd line parameter so that we do
4836 * not fail it silently
4837 */
4838 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4839 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4840 return -EINVAL;
4841 }
4842 return 0;
4843 }
4844
4845 static char numa_zonelist_order[] = "Node";
4846 #define NUMA_ZONELIST_ORDER_LEN 16
4847 /*
4848 * sysctl handler for numa_zonelist_order
4849 */
4850 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4851 void *buffer, size_t *length, loff_t *ppos)
4852 {
4853 if (write)
4854 return __parse_numa_zonelist_order(buffer);
4855 return proc_dostring(table, write, buffer, length, ppos);
4856 }
4857
4858 static int node_load[MAX_NUMNODES];
4859
4860 /**
4861 * find_next_best_node - find the next node that should appear in a given node's fallback list
4862 * @node: node whose fallback list we're appending
4863 * @used_node_mask: nodemask_t of already used nodes
4864 *
4865 * We use a number of factors to determine which is the next node that should
4866 * appear on a given node's fallback list. The node should not have appeared
4867 * already in @node's fallback list, and it should be the next closest node
4868 * according to the distance array (which contains arbitrary distance values
4869 * from each node to each node in the system), and should also prefer nodes
4870 * with no CPUs, since presumably they'll have very little allocation pressure
4871 * on them otherwise.
4872 *
4873 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4874 */
4875 int find_next_best_node(int node, nodemask_t *used_node_mask)
4876 {
4877 int n, val;
4878 int min_val = INT_MAX;
4879 int best_node = NUMA_NO_NODE;
4880
4881 /* Use the local node if we haven't already */
4882 if (!node_isset(node, *used_node_mask)) {
4883 node_set(node, *used_node_mask);
4884 return node;
4885 }
4886
4887 for_each_node_state(n, N_MEMORY) {
4888
4889 /* Don't want a node to appear more than once */
4890 if (node_isset(n, *used_node_mask))
4891 continue;
4892
4893 /* Use the distance array to find the distance */
4894 val = node_distance(node, n);
4895
4896 /* Penalize nodes under us ("prefer the next node") */
4897 val += (n < node);
4898
4899 /* Give preference to headless and unused nodes */
4900 if (!cpumask_empty(cpumask_of_node(n)))
4901 val += PENALTY_FOR_NODE_WITH_CPUS;
4902
4903 /* Slight preference for less loaded node */
4904 val *= MAX_NUMNODES;
4905 val += node_load[n];
4906
4907 if (val < min_val) {
4908 min_val = val;
4909 best_node = n;
4910 }
4911 }
4912
4913 if (best_node >= 0)
4914 node_set(best_node, *used_node_mask);
4915
4916 return best_node;
4917 }
4918
4919
4920 /*
4921 * Build zonelists ordered by node and zones within node.
4922 * This results in maximum locality--normal zone overflows into local
4923 * DMA zone, if any--but risks exhausting DMA zone.
4924 */
4925 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4926 unsigned nr_nodes)
4927 {
4928 struct zoneref *zonerefs;
4929 int i;
4930
4931 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4932
4933 for (i = 0; i < nr_nodes; i++) {
4934 int nr_zones;
4935
4936 pg_data_t *node = NODE_DATA(node_order[i]);
4937
4938 nr_zones = build_zonerefs_node(node, zonerefs);
4939 zonerefs += nr_zones;
4940 }
4941 zonerefs->zone = NULL;
4942 zonerefs->zone_idx = 0;
4943 }
4944
4945 /*
4946 * Build gfp_thisnode zonelists
4947 */
4948 static void build_thisnode_zonelists(pg_data_t *pgdat)
4949 {
4950 struct zoneref *zonerefs;
4951 int nr_zones;
4952
4953 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4954 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4955 zonerefs += nr_zones;
4956 zonerefs->zone = NULL;
4957 zonerefs->zone_idx = 0;
4958 }
4959
4960 /*
4961 * Build zonelists ordered by zone and nodes within zones.
4962 * This results in conserving DMA zone[s] until all Normal memory is
4963 * exhausted, but results in overflowing to remote node while memory
4964 * may still exist in local DMA zone.
4965 */
4966
4967 static void build_zonelists(pg_data_t *pgdat)
4968 {
4969 static int node_order[MAX_NUMNODES];
4970 int node, nr_nodes = 0;
4971 nodemask_t used_mask = NODE_MASK_NONE;
4972 int local_node, prev_node;
4973
4974 /* NUMA-aware ordering of nodes */
4975 local_node = pgdat->node_id;
4976 prev_node = local_node;
4977
4978 memset(node_order, 0, sizeof(node_order));
4979 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4980 /*
4981 * We don't want to pressure a particular node.
4982 * So adding penalty to the first node in same
4983 * distance group to make it round-robin.
4984 */
4985 if (node_distance(local_node, node) !=
4986 node_distance(local_node, prev_node))
4987 node_load[node] += 1;
4988
4989 node_order[nr_nodes++] = node;
4990 prev_node = node;
4991 }
4992
4993 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
4994 build_thisnode_zonelists(pgdat);
4995 pr_info("Fallback order for Node %d: ", local_node);
4996 for (node = 0; node < nr_nodes; node++)
4997 pr_cont("%d ", node_order[node]);
4998 pr_cont("\n");
4999 }
5000
5001 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5002 /*
5003 * Return node id of node used for "local" allocations.
5004 * I.e., first node id of first zone in arg node's generic zonelist.
5005 * Used for initializing percpu 'numa_mem', which is used primarily
5006 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5007 */
5008 int local_memory_node(int node)
5009 {
5010 struct zoneref *z;
5011
5012 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5013 gfp_zone(GFP_KERNEL),
5014 NULL);
5015 return zone_to_nid(z->zone);
5016 }
5017 #endif
5018
5019 static void setup_min_unmapped_ratio(void);
5020 static void setup_min_slab_ratio(void);
5021 #else /* CONFIG_NUMA */
5022
5023 static void build_zonelists(pg_data_t *pgdat)
5024 {
5025 int node, local_node;
5026 struct zoneref *zonerefs;
5027 int nr_zones;
5028
5029 local_node = pgdat->node_id;
5030
5031 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5032 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5033 zonerefs += nr_zones;
5034
5035 /*
5036 * Now we build the zonelist so that it contains the zones
5037 * of all the other nodes.
5038 * We don't want to pressure a particular node, so when
5039 * building the zones for node N, we make sure that the
5040 * zones coming right after the local ones are those from
5041 * node N+1 (modulo N)
5042 */
5043 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5044 if (!node_online(node))
5045 continue;
5046 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5047 zonerefs += nr_zones;
5048 }
5049 for (node = 0; node < local_node; node++) {
5050 if (!node_online(node))
5051 continue;
5052 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5053 zonerefs += nr_zones;
5054 }
5055
5056 zonerefs->zone = NULL;
5057 zonerefs->zone_idx = 0;
5058 }
5059
5060 #endif /* CONFIG_NUMA */
5061
5062 /*
5063 * Boot pageset table. One per cpu which is going to be used for all
5064 * zones and all nodes. The parameters will be set in such a way
5065 * that an item put on a list will immediately be handed over to
5066 * the buddy list. This is safe since pageset manipulation is done
5067 * with interrupts disabled.
5068 *
5069 * The boot_pagesets must be kept even after bootup is complete for
5070 * unused processors and/or zones. They do play a role for bootstrapping
5071 * hotplugged processors.
5072 *
5073 * zoneinfo_show() and maybe other functions do
5074 * not check if the processor is online before following the pageset pointer.
5075 * Other parts of the kernel may not check if the zone is available.
5076 */
5077 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5078 /* These effectively disable the pcplists in the boot pageset completely */
5079 #define BOOT_PAGESET_HIGH 0
5080 #define BOOT_PAGESET_BATCH 1
5081 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5082 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5083
5084 static void __build_all_zonelists(void *data)
5085 {
5086 int nid;
5087 int __maybe_unused cpu;
5088 pg_data_t *self = data;
5089 unsigned long flags;
5090
5091 /*
5092 * The zonelist_update_seq must be acquired with irqsave because the
5093 * reader can be invoked from IRQ with GFP_ATOMIC.
5094 */
5095 write_seqlock_irqsave(&zonelist_update_seq, flags);
5096 /*
5097 * Also disable synchronous printk() to prevent any printk() from
5098 * trying to hold port->lock, for
5099 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5100 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5101 */
5102 printk_deferred_enter();
5103
5104 #ifdef CONFIG_NUMA
5105 memset(node_load, 0, sizeof(node_load));
5106 #endif
5107
5108 /*
5109 * This node is hotadded and no memory is yet present. So just
5110 * building zonelists is fine - no need to touch other nodes.
5111 */
5112 if (self && !node_online(self->node_id)) {
5113 build_zonelists(self);
5114 } else {
5115 /*
5116 * All possible nodes have pgdat preallocated
5117 * in free_area_init
5118 */
5119 for_each_node(nid) {
5120 pg_data_t *pgdat = NODE_DATA(nid);
5121
5122 build_zonelists(pgdat);
5123 }
5124
5125 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5126 /*
5127 * We now know the "local memory node" for each node--
5128 * i.e., the node of the first zone in the generic zonelist.
5129 * Set up numa_mem percpu variable for on-line cpus. During
5130 * boot, only the boot cpu should be on-line; we'll init the
5131 * secondary cpus' numa_mem as they come on-line. During
5132 * node/memory hotplug, we'll fixup all on-line cpus.
5133 */
5134 for_each_online_cpu(cpu)
5135 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5136 #endif
5137 }
5138
5139 printk_deferred_exit();
5140 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5141 }
5142
5143 static noinline void __init
5144 build_all_zonelists_init(void)
5145 {
5146 int cpu;
5147
5148 __build_all_zonelists(NULL);
5149
5150 /*
5151 * Initialize the boot_pagesets that are going to be used
5152 * for bootstrapping processors. The real pagesets for
5153 * each zone will be allocated later when the per cpu
5154 * allocator is available.
5155 *
5156 * boot_pagesets are used also for bootstrapping offline
5157 * cpus if the system is already booted because the pagesets
5158 * are needed to initialize allocators on a specific cpu too.
5159 * F.e. the percpu allocator needs the page allocator which
5160 * needs the percpu allocator in order to allocate its pagesets
5161 * (a chicken-egg dilemma).
5162 */
5163 for_each_possible_cpu(cpu)
5164 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5165
5166 mminit_verify_zonelist();
5167 cpuset_init_current_mems_allowed();
5168 }
5169
5170 /*
5171 * unless system_state == SYSTEM_BOOTING.
5172 *
5173 * __ref due to call of __init annotated helper build_all_zonelists_init
5174 * [protected by SYSTEM_BOOTING].
5175 */
5176 void __ref build_all_zonelists(pg_data_t *pgdat)
5177 {
5178 unsigned long vm_total_pages;
5179
5180 if (system_state == SYSTEM_BOOTING) {
5181 build_all_zonelists_init();
5182 } else {
5183 __build_all_zonelists(pgdat);
5184 /* cpuset refresh routine should be here */
5185 }
5186 /* Get the number of free pages beyond high watermark in all zones. */
5187 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5188 /*
5189 * Disable grouping by mobility if the number of pages in the
5190 * system is too low to allow the mechanism to work. It would be
5191 * more accurate, but expensive to check per-zone. This check is
5192 * made on memory-hotadd so a system can start with mobility
5193 * disabled and enable it later
5194 */
5195 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5196 page_group_by_mobility_disabled = 1;
5197 else
5198 page_group_by_mobility_disabled = 0;
5199
5200 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5201 nr_online_nodes,
5202 page_group_by_mobility_disabled ? "off" : "on",
5203 vm_total_pages);
5204 #ifdef CONFIG_NUMA
5205 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5206 #endif
5207 }
5208
5209 static int zone_batchsize(struct zone *zone)
5210 {
5211 #ifdef CONFIG_MMU
5212 int batch;
5213
5214 /*
5215 * The number of pages to batch allocate is either ~0.1%
5216 * of the zone or 1MB, whichever is smaller. The batch
5217 * size is striking a balance between allocation latency
5218 * and zone lock contention.
5219 */
5220 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5221 batch /= 4; /* We effectively *= 4 below */
5222 if (batch < 1)
5223 batch = 1;
5224
5225 /*
5226 * Clamp the batch to a 2^n - 1 value. Having a power
5227 * of 2 value was found to be more likely to have
5228 * suboptimal cache aliasing properties in some cases.
5229 *
5230 * For example if 2 tasks are alternately allocating
5231 * batches of pages, one task can end up with a lot
5232 * of pages of one half of the possible page colors
5233 * and the other with pages of the other colors.
5234 */
5235 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5236
5237 return batch;
5238
5239 #else
5240 /* The deferral and batching of frees should be suppressed under NOMMU
5241 * conditions.
5242 *
5243 * The problem is that NOMMU needs to be able to allocate large chunks
5244 * of contiguous memory as there's no hardware page translation to
5245 * assemble apparent contiguous memory from discontiguous pages.
5246 *
5247 * Queueing large contiguous runs of pages for batching, however,
5248 * causes the pages to actually be freed in smaller chunks. As there
5249 * can be a significant delay between the individual batches being
5250 * recycled, this leads to the once large chunks of space being
5251 * fragmented and becoming unavailable for high-order allocations.
5252 */
5253 return 0;
5254 #endif
5255 }
5256
5257 static int percpu_pagelist_high_fraction;
5258 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5259 {
5260 #ifdef CONFIG_MMU
5261 int high;
5262 int nr_split_cpus;
5263 unsigned long total_pages;
5264
5265 if (!percpu_pagelist_high_fraction) {
5266 /*
5267 * By default, the high value of the pcp is based on the zone
5268 * low watermark so that if they are full then background
5269 * reclaim will not be started prematurely.
5270 */
5271 total_pages = low_wmark_pages(zone);
5272 } else {
5273 /*
5274 * If percpu_pagelist_high_fraction is configured, the high
5275 * value is based on a fraction of the managed pages in the
5276 * zone.
5277 */
5278 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5279 }
5280
5281 /*
5282 * Split the high value across all online CPUs local to the zone. Note
5283 * that early in boot that CPUs may not be online yet and that during
5284 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5285 * onlined. For memory nodes that have no CPUs, split pcp->high across
5286 * all online CPUs to mitigate the risk that reclaim is triggered
5287 * prematurely due to pages stored on pcp lists.
5288 */
5289 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5290 if (!nr_split_cpus)
5291 nr_split_cpus = num_online_cpus();
5292 high = total_pages / nr_split_cpus;
5293
5294 /*
5295 * Ensure high is at least batch*4. The multiple is based on the
5296 * historical relationship between high and batch.
5297 */
5298 high = max(high, batch << 2);
5299
5300 return high;
5301 #else
5302 return 0;
5303 #endif
5304 }
5305
5306 /*
5307 * pcp->high and pcp->batch values are related and generally batch is lower
5308 * than high. They are also related to pcp->count such that count is lower
5309 * than high, and as soon as it reaches high, the pcplist is flushed.
5310 *
5311 * However, guaranteeing these relations at all times would require e.g. write
5312 * barriers here but also careful usage of read barriers at the read side, and
5313 * thus be prone to error and bad for performance. Thus the update only prevents
5314 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5315 * can cope with those fields changing asynchronously, and fully trust only the
5316 * pcp->count field on the local CPU with interrupts disabled.
5317 *
5318 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5319 * outside of boot time (or some other assurance that no concurrent updaters
5320 * exist).
5321 */
5322 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5323 unsigned long batch)
5324 {
5325 WRITE_ONCE(pcp->batch, batch);
5326 WRITE_ONCE(pcp->high, high);
5327 }
5328
5329 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5330 {
5331 int pindex;
5332
5333 memset(pcp, 0, sizeof(*pcp));
5334 memset(pzstats, 0, sizeof(*pzstats));
5335
5336 spin_lock_init(&pcp->lock);
5337 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5338 INIT_LIST_HEAD(&pcp->lists[pindex]);
5339
5340 /*
5341 * Set batch and high values safe for a boot pageset. A true percpu
5342 * pageset's initialization will update them subsequently. Here we don't
5343 * need to be as careful as pageset_update() as nobody can access the
5344 * pageset yet.
5345 */
5346 pcp->high = BOOT_PAGESET_HIGH;
5347 pcp->batch = BOOT_PAGESET_BATCH;
5348 pcp->free_factor = 0;
5349 }
5350
5351 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5352 unsigned long batch)
5353 {
5354 struct per_cpu_pages *pcp;
5355 int cpu;
5356
5357 for_each_possible_cpu(cpu) {
5358 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5359 pageset_update(pcp, high, batch);
5360 }
5361 }
5362
5363 /*
5364 * Calculate and set new high and batch values for all per-cpu pagesets of a
5365 * zone based on the zone's size.
5366 */
5367 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5368 {
5369 int new_high, new_batch;
5370
5371 new_batch = max(1, zone_batchsize(zone));
5372 new_high = zone_highsize(zone, new_batch, cpu_online);
5373
5374 if (zone->pageset_high == new_high &&
5375 zone->pageset_batch == new_batch)
5376 return;
5377
5378 zone->pageset_high = new_high;
5379 zone->pageset_batch = new_batch;
5380
5381 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5382 }
5383
5384 void __meminit setup_zone_pageset(struct zone *zone)
5385 {
5386 int cpu;
5387
5388 /* Size may be 0 on !SMP && !NUMA */
5389 if (sizeof(struct per_cpu_zonestat) > 0)
5390 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5391
5392 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5393 for_each_possible_cpu(cpu) {
5394 struct per_cpu_pages *pcp;
5395 struct per_cpu_zonestat *pzstats;
5396
5397 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5398 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5399 per_cpu_pages_init(pcp, pzstats);
5400 }
5401
5402 zone_set_pageset_high_and_batch(zone, 0);
5403 }
5404
5405 /*
5406 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5407 * page high values need to be recalculated.
5408 */
5409 static void zone_pcp_update(struct zone *zone, int cpu_online)
5410 {
5411 mutex_lock(&pcp_batch_high_lock);
5412 zone_set_pageset_high_and_batch(zone, cpu_online);
5413 mutex_unlock(&pcp_batch_high_lock);
5414 }
5415
5416 /*
5417 * Allocate per cpu pagesets and initialize them.
5418 * Before this call only boot pagesets were available.
5419 */
5420 void __init setup_per_cpu_pageset(void)
5421 {
5422 struct pglist_data *pgdat;
5423 struct zone *zone;
5424 int __maybe_unused cpu;
5425
5426 for_each_populated_zone(zone)
5427 setup_zone_pageset(zone);
5428
5429 #ifdef CONFIG_NUMA
5430 /*
5431 * Unpopulated zones continue using the boot pagesets.
5432 * The numa stats for these pagesets need to be reset.
5433 * Otherwise, they will end up skewing the stats of
5434 * the nodes these zones are associated with.
5435 */
5436 for_each_possible_cpu(cpu) {
5437 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5438 memset(pzstats->vm_numa_event, 0,
5439 sizeof(pzstats->vm_numa_event));
5440 }
5441 #endif
5442
5443 for_each_online_pgdat(pgdat)
5444 pgdat->per_cpu_nodestats =
5445 alloc_percpu(struct per_cpu_nodestat);
5446 }
5447
5448 __meminit void zone_pcp_init(struct zone *zone)
5449 {
5450 /*
5451 * per cpu subsystem is not up at this point. The following code
5452 * relies on the ability of the linker to provide the
5453 * offset of a (static) per cpu variable into the per cpu area.
5454 */
5455 zone->per_cpu_pageset = &boot_pageset;
5456 zone->per_cpu_zonestats = &boot_zonestats;
5457 zone->pageset_high = BOOT_PAGESET_HIGH;
5458 zone->pageset_batch = BOOT_PAGESET_BATCH;
5459
5460 if (populated_zone(zone))
5461 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5462 zone->present_pages, zone_batchsize(zone));
5463 }
5464
5465 void adjust_managed_page_count(struct page *page, long count)
5466 {
5467 atomic_long_add(count, &page_zone(page)->managed_pages);
5468 totalram_pages_add(count);
5469 #ifdef CONFIG_HIGHMEM
5470 if (PageHighMem(page))
5471 totalhigh_pages_add(count);
5472 #endif
5473 }
5474 EXPORT_SYMBOL(adjust_managed_page_count);
5475
5476 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5477 {
5478 void *pos;
5479 unsigned long pages = 0;
5480
5481 start = (void *)PAGE_ALIGN((unsigned long)start);
5482 end = (void *)((unsigned long)end & PAGE_MASK);
5483 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5484 struct page *page = virt_to_page(pos);
5485 void *direct_map_addr;
5486
5487 /*
5488 * 'direct_map_addr' might be different from 'pos'
5489 * because some architectures' virt_to_page()
5490 * work with aliases. Getting the direct map
5491 * address ensures that we get a _writeable_
5492 * alias for the memset().
5493 */
5494 direct_map_addr = page_address(page);
5495 /*
5496 * Perform a kasan-unchecked memset() since this memory
5497 * has not been initialized.
5498 */
5499 direct_map_addr = kasan_reset_tag(direct_map_addr);
5500 if ((unsigned int)poison <= 0xFF)
5501 memset(direct_map_addr, poison, PAGE_SIZE);
5502
5503 free_reserved_page(page);
5504 }
5505
5506 if (pages && s)
5507 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5508
5509 return pages;
5510 }
5511
5512 static int page_alloc_cpu_dead(unsigned int cpu)
5513 {
5514 struct zone *zone;
5515
5516 lru_add_drain_cpu(cpu);
5517 mlock_drain_remote(cpu);
5518 drain_pages(cpu);
5519
5520 /*
5521 * Spill the event counters of the dead processor
5522 * into the current processors event counters.
5523 * This artificially elevates the count of the current
5524 * processor.
5525 */
5526 vm_events_fold_cpu(cpu);
5527
5528 /*
5529 * Zero the differential counters of the dead processor
5530 * so that the vm statistics are consistent.
5531 *
5532 * This is only okay since the processor is dead and cannot
5533 * race with what we are doing.
5534 */
5535 cpu_vm_stats_fold(cpu);
5536
5537 for_each_populated_zone(zone)
5538 zone_pcp_update(zone, 0);
5539
5540 return 0;
5541 }
5542
5543 static int page_alloc_cpu_online(unsigned int cpu)
5544 {
5545 struct zone *zone;
5546
5547 for_each_populated_zone(zone)
5548 zone_pcp_update(zone, 1);
5549 return 0;
5550 }
5551
5552 void __init page_alloc_init_cpuhp(void)
5553 {
5554 int ret;
5555
5556 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5557 "mm/page_alloc:pcp",
5558 page_alloc_cpu_online,
5559 page_alloc_cpu_dead);
5560 WARN_ON(ret < 0);
5561 }
5562
5563 /*
5564 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5565 * or min_free_kbytes changes.
5566 */
5567 static void calculate_totalreserve_pages(void)
5568 {
5569 struct pglist_data *pgdat;
5570 unsigned long reserve_pages = 0;
5571 enum zone_type i, j;
5572
5573 for_each_online_pgdat(pgdat) {
5574
5575 pgdat->totalreserve_pages = 0;
5576
5577 for (i = 0; i < MAX_NR_ZONES; i++) {
5578 struct zone *zone = pgdat->node_zones + i;
5579 long max = 0;
5580 unsigned long managed_pages = zone_managed_pages(zone);
5581
5582 /* Find valid and maximum lowmem_reserve in the zone */
5583 for (j = i; j < MAX_NR_ZONES; j++) {
5584 if (zone->lowmem_reserve[j] > max)
5585 max = zone->lowmem_reserve[j];
5586 }
5587
5588 /* we treat the high watermark as reserved pages. */
5589 max += high_wmark_pages(zone);
5590
5591 if (max > managed_pages)
5592 max = managed_pages;
5593
5594 pgdat->totalreserve_pages += max;
5595
5596 reserve_pages += max;
5597 }
5598 }
5599 totalreserve_pages = reserve_pages;
5600 }
5601
5602 /*
5603 * setup_per_zone_lowmem_reserve - called whenever
5604 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5605 * has a correct pages reserved value, so an adequate number of
5606 * pages are left in the zone after a successful __alloc_pages().
5607 */
5608 static void setup_per_zone_lowmem_reserve(void)
5609 {
5610 struct pglist_data *pgdat;
5611 enum zone_type i, j;
5612
5613 for_each_online_pgdat(pgdat) {
5614 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5615 struct zone *zone = &pgdat->node_zones[i];
5616 int ratio = sysctl_lowmem_reserve_ratio[i];
5617 bool clear = !ratio || !zone_managed_pages(zone);
5618 unsigned long managed_pages = 0;
5619
5620 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5621 struct zone *upper_zone = &pgdat->node_zones[j];
5622
5623 managed_pages += zone_managed_pages(upper_zone);
5624
5625 if (clear)
5626 zone->lowmem_reserve[j] = 0;
5627 else
5628 zone->lowmem_reserve[j] = managed_pages / ratio;
5629 }
5630 }
5631 }
5632
5633 /* update totalreserve_pages */
5634 calculate_totalreserve_pages();
5635 }
5636
5637 static void __setup_per_zone_wmarks(void)
5638 {
5639 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5640 unsigned long lowmem_pages = 0;
5641 struct zone *zone;
5642 unsigned long flags;
5643
5644 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5645 for_each_zone(zone) {
5646 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5647 lowmem_pages += zone_managed_pages(zone);
5648 }
5649
5650 for_each_zone(zone) {
5651 u64 tmp;
5652
5653 spin_lock_irqsave(&zone->lock, flags);
5654 tmp = (u64)pages_min * zone_managed_pages(zone);
5655 do_div(tmp, lowmem_pages);
5656 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5657 /*
5658 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5659 * need highmem and movable zones pages, so cap pages_min
5660 * to a small value here.
5661 *
5662 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5663 * deltas control async page reclaim, and so should
5664 * not be capped for highmem and movable zones.
5665 */
5666 unsigned long min_pages;
5667
5668 min_pages = zone_managed_pages(zone) / 1024;
5669 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5670 zone->_watermark[WMARK_MIN] = min_pages;
5671 } else {
5672 /*
5673 * If it's a lowmem zone, reserve a number of pages
5674 * proportionate to the zone's size.
5675 */
5676 zone->_watermark[WMARK_MIN] = tmp;
5677 }
5678
5679 /*
5680 * Set the kswapd watermarks distance according to the
5681 * scale factor in proportion to available memory, but
5682 * ensure a minimum size on small systems.
5683 */
5684 tmp = max_t(u64, tmp >> 2,
5685 mult_frac(zone_managed_pages(zone),
5686 watermark_scale_factor, 10000));
5687
5688 zone->watermark_boost = 0;
5689 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5690 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5691 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5692
5693 spin_unlock_irqrestore(&zone->lock, flags);
5694 }
5695
5696 /* update totalreserve_pages */
5697 calculate_totalreserve_pages();
5698 }
5699
5700 /**
5701 * setup_per_zone_wmarks - called when min_free_kbytes changes
5702 * or when memory is hot-{added|removed}
5703 *
5704 * Ensures that the watermark[min,low,high] values for each zone are set
5705 * correctly with respect to min_free_kbytes.
5706 */
5707 void setup_per_zone_wmarks(void)
5708 {
5709 struct zone *zone;
5710 static DEFINE_SPINLOCK(lock);
5711
5712 spin_lock(&lock);
5713 __setup_per_zone_wmarks();
5714 spin_unlock(&lock);
5715
5716 /*
5717 * The watermark size have changed so update the pcpu batch
5718 * and high limits or the limits may be inappropriate.
5719 */
5720 for_each_zone(zone)
5721 zone_pcp_update(zone, 0);
5722 }
5723
5724 /*
5725 * Initialise min_free_kbytes.
5726 *
5727 * For small machines we want it small (128k min). For large machines
5728 * we want it large (256MB max). But it is not linear, because network
5729 * bandwidth does not increase linearly with machine size. We use
5730 *
5731 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5732 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5733 *
5734 * which yields
5735 *
5736 * 16MB: 512k
5737 * 32MB: 724k
5738 * 64MB: 1024k
5739 * 128MB: 1448k
5740 * 256MB: 2048k
5741 * 512MB: 2896k
5742 * 1024MB: 4096k
5743 * 2048MB: 5792k
5744 * 4096MB: 8192k
5745 * 8192MB: 11584k
5746 * 16384MB: 16384k
5747 */
5748 void calculate_min_free_kbytes(void)
5749 {
5750 unsigned long lowmem_kbytes;
5751 int new_min_free_kbytes;
5752
5753 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5754 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5755
5756 if (new_min_free_kbytes > user_min_free_kbytes)
5757 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5758 else
5759 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5760 new_min_free_kbytes, user_min_free_kbytes);
5761
5762 }
5763
5764 int __meminit init_per_zone_wmark_min(void)
5765 {
5766 calculate_min_free_kbytes();
5767 setup_per_zone_wmarks();
5768 refresh_zone_stat_thresholds();
5769 setup_per_zone_lowmem_reserve();
5770
5771 #ifdef CONFIG_NUMA
5772 setup_min_unmapped_ratio();
5773 setup_min_slab_ratio();
5774 #endif
5775
5776 khugepaged_min_free_kbytes_update();
5777
5778 return 0;
5779 }
5780 postcore_initcall(init_per_zone_wmark_min)
5781
5782 /*
5783 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5784 * that we can call two helper functions whenever min_free_kbytes
5785 * changes.
5786 */
5787 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5788 void *buffer, size_t *length, loff_t *ppos)
5789 {
5790 int rc;
5791
5792 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5793 if (rc)
5794 return rc;
5795
5796 if (write) {
5797 user_min_free_kbytes = min_free_kbytes;
5798 setup_per_zone_wmarks();
5799 }
5800 return 0;
5801 }
5802
5803 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5804 void *buffer, size_t *length, loff_t *ppos)
5805 {
5806 int rc;
5807
5808 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5809 if (rc)
5810 return rc;
5811
5812 if (write)
5813 setup_per_zone_wmarks();
5814
5815 return 0;
5816 }
5817
5818 #ifdef CONFIG_NUMA
5819 static void setup_min_unmapped_ratio(void)
5820 {
5821 pg_data_t *pgdat;
5822 struct zone *zone;
5823
5824 for_each_online_pgdat(pgdat)
5825 pgdat->min_unmapped_pages = 0;
5826
5827 for_each_zone(zone)
5828 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5829 sysctl_min_unmapped_ratio) / 100;
5830 }
5831
5832
5833 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5834 void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 int rc;
5837
5838 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 if (rc)
5840 return rc;
5841
5842 setup_min_unmapped_ratio();
5843
5844 return 0;
5845 }
5846
5847 static void setup_min_slab_ratio(void)
5848 {
5849 pg_data_t *pgdat;
5850 struct zone *zone;
5851
5852 for_each_online_pgdat(pgdat)
5853 pgdat->min_slab_pages = 0;
5854
5855 for_each_zone(zone)
5856 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5857 sysctl_min_slab_ratio) / 100;
5858 }
5859
5860 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 void *buffer, size_t *length, loff_t *ppos)
5862 {
5863 int rc;
5864
5865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 if (rc)
5867 return rc;
5868
5869 setup_min_slab_ratio();
5870
5871 return 0;
5872 }
5873 #endif
5874
5875 /*
5876 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5877 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5878 * whenever sysctl_lowmem_reserve_ratio changes.
5879 *
5880 * The reserve ratio obviously has absolutely no relation with the
5881 * minimum watermarks. The lowmem reserve ratio can only make sense
5882 * if in function of the boot time zone sizes.
5883 */
5884 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5885 int write, void *buffer, size_t *length, loff_t *ppos)
5886 {
5887 int i;
5888
5889 proc_dointvec_minmax(table, write, buffer, length, ppos);
5890
5891 for (i = 0; i < MAX_NR_ZONES; i++) {
5892 if (sysctl_lowmem_reserve_ratio[i] < 1)
5893 sysctl_lowmem_reserve_ratio[i] = 0;
5894 }
5895
5896 setup_per_zone_lowmem_reserve();
5897 return 0;
5898 }
5899
5900 /*
5901 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5902 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5903 * pagelist can have before it gets flushed back to buddy allocator.
5904 */
5905 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5906 int write, void *buffer, size_t *length, loff_t *ppos)
5907 {
5908 struct zone *zone;
5909 int old_percpu_pagelist_high_fraction;
5910 int ret;
5911
5912 mutex_lock(&pcp_batch_high_lock);
5913 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5914
5915 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5916 if (!write || ret < 0)
5917 goto out;
5918
5919 /* Sanity checking to avoid pcp imbalance */
5920 if (percpu_pagelist_high_fraction &&
5921 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5922 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5923 ret = -EINVAL;
5924 goto out;
5925 }
5926
5927 /* No change? */
5928 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5929 goto out;
5930
5931 for_each_populated_zone(zone)
5932 zone_set_pageset_high_and_batch(zone, 0);
5933 out:
5934 mutex_unlock(&pcp_batch_high_lock);
5935 return ret;
5936 }
5937
5938 static struct ctl_table page_alloc_sysctl_table[] = {
5939 {
5940 .procname = "min_free_kbytes",
5941 .data = &min_free_kbytes,
5942 .maxlen = sizeof(min_free_kbytes),
5943 .mode = 0644,
5944 .proc_handler = min_free_kbytes_sysctl_handler,
5945 .extra1 = SYSCTL_ZERO,
5946 },
5947 {
5948 .procname = "watermark_boost_factor",
5949 .data = &watermark_boost_factor,
5950 .maxlen = sizeof(watermark_boost_factor),
5951 .mode = 0644,
5952 .proc_handler = proc_dointvec_minmax,
5953 .extra1 = SYSCTL_ZERO,
5954 },
5955 {
5956 .procname = "watermark_scale_factor",
5957 .data = &watermark_scale_factor,
5958 .maxlen = sizeof(watermark_scale_factor),
5959 .mode = 0644,
5960 .proc_handler = watermark_scale_factor_sysctl_handler,
5961 .extra1 = SYSCTL_ONE,
5962 .extra2 = SYSCTL_THREE_THOUSAND,
5963 },
5964 {
5965 .procname = "percpu_pagelist_high_fraction",
5966 .data = &percpu_pagelist_high_fraction,
5967 .maxlen = sizeof(percpu_pagelist_high_fraction),
5968 .mode = 0644,
5969 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
5970 .extra1 = SYSCTL_ZERO,
5971 },
5972 {
5973 .procname = "lowmem_reserve_ratio",
5974 .data = &sysctl_lowmem_reserve_ratio,
5975 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
5976 .mode = 0644,
5977 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
5978 },
5979 #ifdef CONFIG_NUMA
5980 {
5981 .procname = "numa_zonelist_order",
5982 .data = &numa_zonelist_order,
5983 .maxlen = NUMA_ZONELIST_ORDER_LEN,
5984 .mode = 0644,
5985 .proc_handler = numa_zonelist_order_handler,
5986 },
5987 {
5988 .procname = "min_unmapped_ratio",
5989 .data = &sysctl_min_unmapped_ratio,
5990 .maxlen = sizeof(sysctl_min_unmapped_ratio),
5991 .mode = 0644,
5992 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
5993 .extra1 = SYSCTL_ZERO,
5994 .extra2 = SYSCTL_ONE_HUNDRED,
5995 },
5996 {
5997 .procname = "min_slab_ratio",
5998 .data = &sysctl_min_slab_ratio,
5999 .maxlen = sizeof(sysctl_min_slab_ratio),
6000 .mode = 0644,
6001 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6002 .extra1 = SYSCTL_ZERO,
6003 .extra2 = SYSCTL_ONE_HUNDRED,
6004 },
6005 #endif
6006 {}
6007 };
6008
6009 void __init page_alloc_sysctl_init(void)
6010 {
6011 register_sysctl_init("vm", page_alloc_sysctl_table);
6012 }
6013
6014 #ifdef CONFIG_CONTIG_ALLOC
6015 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6016 static void alloc_contig_dump_pages(struct list_head *page_list)
6017 {
6018 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6019
6020 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6021 struct page *page;
6022
6023 dump_stack();
6024 list_for_each_entry(page, page_list, lru)
6025 dump_page(page, "migration failure");
6026 }
6027 }
6028
6029 /* [start, end) must belong to a single zone. */
6030 int __alloc_contig_migrate_range(struct compact_control *cc,
6031 unsigned long start, unsigned long end)
6032 {
6033 /* This function is based on compact_zone() from compaction.c. */
6034 unsigned int nr_reclaimed;
6035 unsigned long pfn = start;
6036 unsigned int tries = 0;
6037 int ret = 0;
6038 struct migration_target_control mtc = {
6039 .nid = zone_to_nid(cc->zone),
6040 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6041 };
6042
6043 lru_cache_disable();
6044
6045 while (pfn < end || !list_empty(&cc->migratepages)) {
6046 if (fatal_signal_pending(current)) {
6047 ret = -EINTR;
6048 break;
6049 }
6050
6051 if (list_empty(&cc->migratepages)) {
6052 cc->nr_migratepages = 0;
6053 ret = isolate_migratepages_range(cc, pfn, end);
6054 if (ret && ret != -EAGAIN)
6055 break;
6056 pfn = cc->migrate_pfn;
6057 tries = 0;
6058 } else if (++tries == 5) {
6059 ret = -EBUSY;
6060 break;
6061 }
6062
6063 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6064 &cc->migratepages);
6065 cc->nr_migratepages -= nr_reclaimed;
6066
6067 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6068 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6069
6070 /*
6071 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6072 * to retry again over this error, so do the same here.
6073 */
6074 if (ret == -ENOMEM)
6075 break;
6076 }
6077
6078 lru_cache_enable();
6079 if (ret < 0) {
6080 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6081 alloc_contig_dump_pages(&cc->migratepages);
6082 putback_movable_pages(&cc->migratepages);
6083 return ret;
6084 }
6085 return 0;
6086 }
6087
6088 /**
6089 * alloc_contig_range() -- tries to allocate given range of pages
6090 * @start: start PFN to allocate
6091 * @end: one-past-the-last PFN to allocate
6092 * @migratetype: migratetype of the underlying pageblocks (either
6093 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6094 * in range must have the same migratetype and it must
6095 * be either of the two.
6096 * @gfp_mask: GFP mask to use during compaction
6097 *
6098 * The PFN range does not have to be pageblock aligned. The PFN range must
6099 * belong to a single zone.
6100 *
6101 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6102 * pageblocks in the range. Once isolated, the pageblocks should not
6103 * be modified by others.
6104 *
6105 * Return: zero on success or negative error code. On success all
6106 * pages which PFN is in [start, end) are allocated for the caller and
6107 * need to be freed with free_contig_range().
6108 */
6109 int alloc_contig_range(unsigned long start, unsigned long end,
6110 unsigned migratetype, gfp_t gfp_mask)
6111 {
6112 unsigned long outer_start, outer_end;
6113 int order;
6114 int ret = 0;
6115
6116 struct compact_control cc = {
6117 .nr_migratepages = 0,
6118 .order = -1,
6119 .zone = page_zone(pfn_to_page(start)),
6120 .mode = MIGRATE_SYNC,
6121 .ignore_skip_hint = true,
6122 .no_set_skip_hint = true,
6123 .gfp_mask = current_gfp_context(gfp_mask),
6124 .alloc_contig = true,
6125 };
6126 INIT_LIST_HEAD(&cc.migratepages);
6127
6128 /*
6129 * What we do here is we mark all pageblocks in range as
6130 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6131 * have different sizes, and due to the way page allocator
6132 * work, start_isolate_page_range() has special handlings for this.
6133 *
6134 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6135 * migrate the pages from an unaligned range (ie. pages that
6136 * we are interested in). This will put all the pages in
6137 * range back to page allocator as MIGRATE_ISOLATE.
6138 *
6139 * When this is done, we take the pages in range from page
6140 * allocator removing them from the buddy system. This way
6141 * page allocator will never consider using them.
6142 *
6143 * This lets us mark the pageblocks back as
6144 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6145 * aligned range but not in the unaligned, original range are
6146 * put back to page allocator so that buddy can use them.
6147 */
6148
6149 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6150 if (ret)
6151 goto done;
6152
6153 drain_all_pages(cc.zone);
6154
6155 /*
6156 * In case of -EBUSY, we'd like to know which page causes problem.
6157 * So, just fall through. test_pages_isolated() has a tracepoint
6158 * which will report the busy page.
6159 *
6160 * It is possible that busy pages could become available before
6161 * the call to test_pages_isolated, and the range will actually be
6162 * allocated. So, if we fall through be sure to clear ret so that
6163 * -EBUSY is not accidentally used or returned to caller.
6164 */
6165 ret = __alloc_contig_migrate_range(&cc, start, end);
6166 if (ret && ret != -EBUSY)
6167 goto done;
6168 ret = 0;
6169
6170 /*
6171 * Pages from [start, end) are within a pageblock_nr_pages
6172 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6173 * more, all pages in [start, end) are free in page allocator.
6174 * What we are going to do is to allocate all pages from
6175 * [start, end) (that is remove them from page allocator).
6176 *
6177 * The only problem is that pages at the beginning and at the
6178 * end of interesting range may be not aligned with pages that
6179 * page allocator holds, ie. they can be part of higher order
6180 * pages. Because of this, we reserve the bigger range and
6181 * once this is done free the pages we are not interested in.
6182 *
6183 * We don't have to hold zone->lock here because the pages are
6184 * isolated thus they won't get removed from buddy.
6185 */
6186
6187 order = 0;
6188 outer_start = start;
6189 while (!PageBuddy(pfn_to_page(outer_start))) {
6190 if (++order > MAX_ORDER) {
6191 outer_start = start;
6192 break;
6193 }
6194 outer_start &= ~0UL << order;
6195 }
6196
6197 if (outer_start != start) {
6198 order = buddy_order(pfn_to_page(outer_start));
6199
6200 /*
6201 * outer_start page could be small order buddy page and
6202 * it doesn't include start page. Adjust outer_start
6203 * in this case to report failed page properly
6204 * on tracepoint in test_pages_isolated()
6205 */
6206 if (outer_start + (1UL << order) <= start)
6207 outer_start = start;
6208 }
6209
6210 /* Make sure the range is really isolated. */
6211 if (test_pages_isolated(outer_start, end, 0)) {
6212 ret = -EBUSY;
6213 goto done;
6214 }
6215
6216 /* Grab isolated pages from freelists. */
6217 outer_end = isolate_freepages_range(&cc, outer_start, end);
6218 if (!outer_end) {
6219 ret = -EBUSY;
6220 goto done;
6221 }
6222
6223 /* Free head and tail (if any) */
6224 if (start != outer_start)
6225 free_contig_range(outer_start, start - outer_start);
6226 if (end != outer_end)
6227 free_contig_range(end, outer_end - end);
6228
6229 done:
6230 undo_isolate_page_range(start, end, migratetype);
6231 return ret;
6232 }
6233 EXPORT_SYMBOL(alloc_contig_range);
6234
6235 static int __alloc_contig_pages(unsigned long start_pfn,
6236 unsigned long nr_pages, gfp_t gfp_mask)
6237 {
6238 unsigned long end_pfn = start_pfn + nr_pages;
6239
6240 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6241 gfp_mask);
6242 }
6243
6244 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6245 unsigned long nr_pages)
6246 {
6247 unsigned long i, end_pfn = start_pfn + nr_pages;
6248 struct page *page;
6249
6250 for (i = start_pfn; i < end_pfn; i++) {
6251 page = pfn_to_online_page(i);
6252 if (!page)
6253 return false;
6254
6255 if (page_zone(page) != z)
6256 return false;
6257
6258 if (PageReserved(page))
6259 return false;
6260
6261 if (PageHuge(page))
6262 return false;
6263 }
6264 return true;
6265 }
6266
6267 static bool zone_spans_last_pfn(const struct zone *zone,
6268 unsigned long start_pfn, unsigned long nr_pages)
6269 {
6270 unsigned long last_pfn = start_pfn + nr_pages - 1;
6271
6272 return zone_spans_pfn(zone, last_pfn);
6273 }
6274
6275 /**
6276 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6277 * @nr_pages: Number of contiguous pages to allocate
6278 * @gfp_mask: GFP mask to limit search and used during compaction
6279 * @nid: Target node
6280 * @nodemask: Mask for other possible nodes
6281 *
6282 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6283 * on an applicable zonelist to find a contiguous pfn range which can then be
6284 * tried for allocation with alloc_contig_range(). This routine is intended
6285 * for allocation requests which can not be fulfilled with the buddy allocator.
6286 *
6287 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6288 * power of two, then allocated range is also guaranteed to be aligned to same
6289 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6290 *
6291 * Allocated pages can be freed with free_contig_range() or by manually calling
6292 * __free_page() on each allocated page.
6293 *
6294 * Return: pointer to contiguous pages on success, or NULL if not successful.
6295 */
6296 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6297 int nid, nodemask_t *nodemask)
6298 {
6299 unsigned long ret, pfn, flags;
6300 struct zonelist *zonelist;
6301 struct zone *zone;
6302 struct zoneref *z;
6303
6304 zonelist = node_zonelist(nid, gfp_mask);
6305 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6306 gfp_zone(gfp_mask), nodemask) {
6307 spin_lock_irqsave(&zone->lock, flags);
6308
6309 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6310 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6311 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6312 /*
6313 * We release the zone lock here because
6314 * alloc_contig_range() will also lock the zone
6315 * at some point. If there's an allocation
6316 * spinning on this lock, it may win the race
6317 * and cause alloc_contig_range() to fail...
6318 */
6319 spin_unlock_irqrestore(&zone->lock, flags);
6320 ret = __alloc_contig_pages(pfn, nr_pages,
6321 gfp_mask);
6322 if (!ret)
6323 return pfn_to_page(pfn);
6324 spin_lock_irqsave(&zone->lock, flags);
6325 }
6326 pfn += nr_pages;
6327 }
6328 spin_unlock_irqrestore(&zone->lock, flags);
6329 }
6330 return NULL;
6331 }
6332 #endif /* CONFIG_CONTIG_ALLOC */
6333
6334 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6335 {
6336 unsigned long count = 0;
6337
6338 for (; nr_pages--; pfn++) {
6339 struct page *page = pfn_to_page(pfn);
6340
6341 count += page_count(page) != 1;
6342 __free_page(page);
6343 }
6344 WARN(count != 0, "%lu pages are still in use!\n", count);
6345 }
6346 EXPORT_SYMBOL(free_contig_range);
6347
6348 /*
6349 * Effectively disable pcplists for the zone by setting the high limit to 0
6350 * and draining all cpus. A concurrent page freeing on another CPU that's about
6351 * to put the page on pcplist will either finish before the drain and the page
6352 * will be drained, or observe the new high limit and skip the pcplist.
6353 *
6354 * Must be paired with a call to zone_pcp_enable().
6355 */
6356 void zone_pcp_disable(struct zone *zone)
6357 {
6358 mutex_lock(&pcp_batch_high_lock);
6359 __zone_set_pageset_high_and_batch(zone, 0, 1);
6360 __drain_all_pages(zone, true);
6361 }
6362
6363 void zone_pcp_enable(struct zone *zone)
6364 {
6365 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6366 mutex_unlock(&pcp_batch_high_lock);
6367 }
6368
6369 void zone_pcp_reset(struct zone *zone)
6370 {
6371 int cpu;
6372 struct per_cpu_zonestat *pzstats;
6373
6374 if (zone->per_cpu_pageset != &boot_pageset) {
6375 for_each_online_cpu(cpu) {
6376 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6377 drain_zonestat(zone, pzstats);
6378 }
6379 free_percpu(zone->per_cpu_pageset);
6380 zone->per_cpu_pageset = &boot_pageset;
6381 if (zone->per_cpu_zonestats != &boot_zonestats) {
6382 free_percpu(zone->per_cpu_zonestats);
6383 zone->per_cpu_zonestats = &boot_zonestats;
6384 }
6385 }
6386 }
6387
6388 #ifdef CONFIG_MEMORY_HOTREMOVE
6389 /*
6390 * All pages in the range must be in a single zone, must not contain holes,
6391 * must span full sections, and must be isolated before calling this function.
6392 */
6393 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6394 {
6395 unsigned long pfn = start_pfn;
6396 struct page *page;
6397 struct zone *zone;
6398 unsigned int order;
6399 unsigned long flags;
6400
6401 offline_mem_sections(pfn, end_pfn);
6402 zone = page_zone(pfn_to_page(pfn));
6403 spin_lock_irqsave(&zone->lock, flags);
6404 while (pfn < end_pfn) {
6405 page = pfn_to_page(pfn);
6406 /*
6407 * The HWPoisoned page may be not in buddy system, and
6408 * page_count() is not 0.
6409 */
6410 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6411 pfn++;
6412 continue;
6413 }
6414 /*
6415 * At this point all remaining PageOffline() pages have a
6416 * reference count of 0 and can simply be skipped.
6417 */
6418 if (PageOffline(page)) {
6419 BUG_ON(page_count(page));
6420 BUG_ON(PageBuddy(page));
6421 pfn++;
6422 continue;
6423 }
6424
6425 BUG_ON(page_count(page));
6426 BUG_ON(!PageBuddy(page));
6427 order = buddy_order(page);
6428 del_page_from_free_list(page, zone, order);
6429 pfn += (1 << order);
6430 }
6431 spin_unlock_irqrestore(&zone->lock, flags);
6432 }
6433 #endif
6434
6435 /*
6436 * This function returns a stable result only if called under zone lock.
6437 */
6438 bool is_free_buddy_page(struct page *page)
6439 {
6440 unsigned long pfn = page_to_pfn(page);
6441 unsigned int order;
6442
6443 for (order = 0; order <= MAX_ORDER; order++) {
6444 struct page *page_head = page - (pfn & ((1 << order) - 1));
6445
6446 if (PageBuddy(page_head) &&
6447 buddy_order_unsafe(page_head) >= order)
6448 break;
6449 }
6450
6451 return order <= MAX_ORDER;
6452 }
6453 EXPORT_SYMBOL(is_free_buddy_page);
6454
6455 #ifdef CONFIG_MEMORY_FAILURE
6456 /*
6457 * Break down a higher-order page in sub-pages, and keep our target out of
6458 * buddy allocator.
6459 */
6460 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6461 struct page *target, int low, int high,
6462 int migratetype)
6463 {
6464 unsigned long size = 1 << high;
6465 struct page *current_buddy, *next_page;
6466
6467 while (high > low) {
6468 high--;
6469 size >>= 1;
6470
6471 if (target >= &page[size]) {
6472 next_page = page + size;
6473 current_buddy = page;
6474 } else {
6475 next_page = page;
6476 current_buddy = page + size;
6477 }
6478
6479 if (set_page_guard(zone, current_buddy, high, migratetype))
6480 continue;
6481
6482 if (current_buddy != target) {
6483 add_to_free_list(current_buddy, zone, high, migratetype);
6484 set_buddy_order(current_buddy, high);
6485 page = next_page;
6486 }
6487 }
6488 }
6489
6490 /*
6491 * Take a page that will be marked as poisoned off the buddy allocator.
6492 */
6493 bool take_page_off_buddy(struct page *page)
6494 {
6495 struct zone *zone = page_zone(page);
6496 unsigned long pfn = page_to_pfn(page);
6497 unsigned long flags;
6498 unsigned int order;
6499 bool ret = false;
6500
6501 spin_lock_irqsave(&zone->lock, flags);
6502 for (order = 0; order <= MAX_ORDER; order++) {
6503 struct page *page_head = page - (pfn & ((1 << order) - 1));
6504 int page_order = buddy_order(page_head);
6505
6506 if (PageBuddy(page_head) && page_order >= order) {
6507 unsigned long pfn_head = page_to_pfn(page_head);
6508 int migratetype = get_pfnblock_migratetype(page_head,
6509 pfn_head);
6510
6511 del_page_from_free_list(page_head, zone, page_order);
6512 break_down_buddy_pages(zone, page_head, page, 0,
6513 page_order, migratetype);
6514 SetPageHWPoisonTakenOff(page);
6515 if (!is_migrate_isolate(migratetype))
6516 __mod_zone_freepage_state(zone, -1, migratetype);
6517 ret = true;
6518 break;
6519 }
6520 if (page_count(page_head) > 0)
6521 break;
6522 }
6523 spin_unlock_irqrestore(&zone->lock, flags);
6524 return ret;
6525 }
6526
6527 /*
6528 * Cancel takeoff done by take_page_off_buddy().
6529 */
6530 bool put_page_back_buddy(struct page *page)
6531 {
6532 struct zone *zone = page_zone(page);
6533 unsigned long pfn = page_to_pfn(page);
6534 unsigned long flags;
6535 int migratetype = get_pfnblock_migratetype(page, pfn);
6536 bool ret = false;
6537
6538 spin_lock_irqsave(&zone->lock, flags);
6539 if (put_page_testzero(page)) {
6540 ClearPageHWPoisonTakenOff(page);
6541 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6542 if (TestClearPageHWPoison(page)) {
6543 ret = true;
6544 }
6545 }
6546 spin_unlock_irqrestore(&zone->lock, flags);
6547
6548 return ret;
6549 }
6550 #endif
6551
6552 #ifdef CONFIG_ZONE_DMA
6553 bool has_managed_dma(void)
6554 {
6555 struct pglist_data *pgdat;
6556
6557 for_each_online_pgdat(pgdat) {
6558 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6559
6560 if (managed_zone(zone))
6561 return true;
6562 }
6563 return false;
6564 }
6565 #endif /* CONFIG_ZONE_DMA */
6566
6567 #ifdef CONFIG_UNACCEPTED_MEMORY
6568
6569 /* Counts number of zones with unaccepted pages. */
6570 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6571
6572 static bool lazy_accept = true;
6573
6574 static int __init accept_memory_parse(char *p)
6575 {
6576 if (!strcmp(p, "lazy")) {
6577 lazy_accept = true;
6578 return 0;
6579 } else if (!strcmp(p, "eager")) {
6580 lazy_accept = false;
6581 return 0;
6582 } else {
6583 return -EINVAL;
6584 }
6585 }
6586 early_param("accept_memory", accept_memory_parse);
6587
6588 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6589 {
6590 phys_addr_t start = page_to_phys(page);
6591 phys_addr_t end = start + (PAGE_SIZE << order);
6592
6593 return range_contains_unaccepted_memory(start, end);
6594 }
6595
6596 static void accept_page(struct page *page, unsigned int order)
6597 {
6598 phys_addr_t start = page_to_phys(page);
6599
6600 accept_memory(start, start + (PAGE_SIZE << order));
6601 }
6602
6603 static bool try_to_accept_memory_one(struct zone *zone)
6604 {
6605 unsigned long flags;
6606 struct page *page;
6607 bool last;
6608
6609 if (list_empty(&zone->unaccepted_pages))
6610 return false;
6611
6612 spin_lock_irqsave(&zone->lock, flags);
6613 page = list_first_entry_or_null(&zone->unaccepted_pages,
6614 struct page, lru);
6615 if (!page) {
6616 spin_unlock_irqrestore(&zone->lock, flags);
6617 return false;
6618 }
6619
6620 list_del(&page->lru);
6621 last = list_empty(&zone->unaccepted_pages);
6622
6623 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6624 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6625 spin_unlock_irqrestore(&zone->lock, flags);
6626
6627 accept_page(page, MAX_ORDER);
6628
6629 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6630
6631 if (last)
6632 static_branch_dec(&zones_with_unaccepted_pages);
6633
6634 return true;
6635 }
6636
6637 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6638 {
6639 long to_accept;
6640 int ret = false;
6641
6642 /* How much to accept to get to high watermark? */
6643 to_accept = high_wmark_pages(zone) -
6644 (zone_page_state(zone, NR_FREE_PAGES) -
6645 __zone_watermark_unusable_free(zone, order, 0));
6646
6647 /* Accept at least one page */
6648 do {
6649 if (!try_to_accept_memory_one(zone))
6650 break;
6651 ret = true;
6652 to_accept -= MAX_ORDER_NR_PAGES;
6653 } while (to_accept > 0);
6654
6655 return ret;
6656 }
6657
6658 static inline bool has_unaccepted_memory(void)
6659 {
6660 return static_branch_unlikely(&zones_with_unaccepted_pages);
6661 }
6662
6663 static bool __free_unaccepted(struct page *page)
6664 {
6665 struct zone *zone = page_zone(page);
6666 unsigned long flags;
6667 bool first = false;
6668
6669 if (!lazy_accept)
6670 return false;
6671
6672 spin_lock_irqsave(&zone->lock, flags);
6673 first = list_empty(&zone->unaccepted_pages);
6674 list_add_tail(&page->lru, &zone->unaccepted_pages);
6675 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6676 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6677 spin_unlock_irqrestore(&zone->lock, flags);
6678
6679 if (first)
6680 static_branch_inc(&zones_with_unaccepted_pages);
6681
6682 return true;
6683 }
6684
6685 #else
6686
6687 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6688 {
6689 return false;
6690 }
6691
6692 static void accept_page(struct page *page, unsigned int order)
6693 {
6694 }
6695
6696 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6697 {
6698 return false;
6699 }
6700
6701 static inline bool has_unaccepted_memory(void)
6702 {
6703 return false;
6704 }
6705
6706 static bool __free_unaccepted(struct page *page)
6707 {
6708 BUILD_BUG();
6709 return false;
6710 }
6711
6712 #endif /* CONFIG_UNACCEPTED_MEMORY */