]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/proto.c
RIP: Use message authentication interface
[thirdparty/bird.git] / nest / proto.c
1 /*
2 * BIRD -- Protocols
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #undef LOCAL_DEBUG
10
11 #include "nest/bird.h"
12 #include "nest/protocol.h"
13 #include "lib/resource.h"
14 #include "lib/lists.h"
15 #include "lib/event.h"
16 #include "lib/string.h"
17 #include "conf/conf.h"
18 #include "nest/route.h"
19 #include "nest/iface.h"
20 #include "nest/cli.h"
21 #include "filter/filter.h"
22
23 pool *proto_pool;
24
25 static list protocol_list;
26 static list proto_list;
27
28 #define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)
29
30 list active_proto_list;
31 static list inactive_proto_list;
32 static list initial_proto_list;
33 static list flush_proto_list;
34 static struct proto *initial_device_proto;
35
36 static event *proto_flush_event;
37 static timer *proto_shutdown_timer;
38 static timer *gr_wait_timer;
39
40 #define GRS_NONE 0
41 #define GRS_INIT 1
42 #define GRS_ACTIVE 2
43 #define GRS_DONE 3
44
45 static int graceful_restart_state;
46 static u32 graceful_restart_locks;
47
48 static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
49 static char *c_states[] = { "HUNGRY", "???", "HAPPY", "FLUSHING" };
50
51 static void proto_flush_loop(void *);
52 static void proto_shutdown_loop(struct timer *);
53 static void proto_rethink_goal(struct proto *p);
54 static void proto_want_export_up(struct proto *p);
55 static void proto_fell_down(struct proto *p);
56 static char *proto_state_name(struct proto *p);
57
58 static void
59 proto_relink(struct proto *p)
60 {
61 list *l = NULL;
62
63 switch (p->core_state)
64 {
65 case FS_HUNGRY:
66 l = &inactive_proto_list;
67 break;
68 case FS_HAPPY:
69 l = &active_proto_list;
70 break;
71 case FS_FLUSHING:
72 l = &flush_proto_list;
73 break;
74 default:
75 ASSERT(0);
76 }
77
78 rem_node(&p->n);
79 add_tail(l, &p->n);
80 }
81
82 static void
83 proto_log_state_change(struct proto *p)
84 {
85 if (p->debug & D_STATES)
86 {
87 char *name = proto_state_name(p);
88 if (name != p->last_state_name_announced)
89 {
90 p->last_state_name_announced = name;
91 PD(p, "State changed to %s", proto_state_name(p));
92 }
93 }
94 else
95 p->last_state_name_announced = NULL;
96 }
97
98
99 /**
100 * proto_new - create a new protocol instance
101 * @c: protocol configuration
102 * @size: size of protocol data structure (each protocol instance is represented by
103 * a structure starting with generic part [struct &proto] and continued
104 * with data specific to the protocol)
105 *
106 * When a new configuration has been read in, the core code starts
107 * initializing all the protocol instances configured by calling their
108 * init() hooks with the corresponding instance configuration. The initialization
109 * code of the protocol is expected to create a new instance according to the
110 * configuration by calling this function and then modifying the default settings
111 * to values wanted by the protocol.
112 */
113 void *
114 proto_new(struct proto_config *c, unsigned size)
115 {
116 struct protocol *pr = c->protocol;
117 struct proto *p = mb_allocz(proto_pool, size);
118
119 p->cf = c;
120 p->debug = c->debug;
121 p->mrtdump = c->mrtdump;
122 p->name = c->name;
123 p->preference = c->preference;
124 p->disabled = c->disabled;
125 p->proto = pr;
126 p->table = c->table->table;
127 p->hash_key = random_u32();
128 c->proto = p;
129 return p;
130 }
131
132 static void
133 proto_init_instance(struct proto *p)
134 {
135 /* Here we cannot use p->cf->name since it won't survive reconfiguration */
136 p->pool = rp_new(proto_pool, p->proto->name);
137 p->attn = ev_new(p->pool);
138 p->attn->data = p;
139
140 if (graceful_restart_state == GRS_INIT)
141 p->gr_recovery = 1;
142
143 if (! p->proto->multitable)
144 rt_lock_table(p->table);
145 }
146
147 extern pool *rt_table_pool;
148 /**
149 * proto_add_announce_hook - connect protocol to a routing table
150 * @p: protocol instance
151 * @t: routing table to connect to
152 * @stats: per-table protocol statistics
153 *
154 * This function creates a connection between the protocol instance @p and the
155 * routing table @t, making the protocol hear all changes in the table.
156 *
157 * The announce hook is linked in the protocol ahook list. Announce hooks are
158 * allocated from the routing table resource pool and when protocol accepts
159 * routes also in the table ahook list. The are linked to the table ahook list
160 * and unlinked from it depending on export_state (in proto_want_export_up() and
161 * proto_want_export_down()) and they are automatically freed after the protocol
162 * is flushed (in proto_fell_down()).
163 *
164 * Unless you want to listen to multiple routing tables (as the Pipe protocol
165 * does), you needn't to worry about this function since the connection to the
166 * protocol's primary routing table is initialized automatically by the core
167 * code.
168 */
169 struct announce_hook *
170 proto_add_announce_hook(struct proto *p, struct rtable *t, struct proto_stats *stats)
171 {
172 struct announce_hook *h;
173
174 DBG("Connecting protocol %s to table %s\n", p->name, t->name);
175 PD(p, "Connected to table %s", t->name);
176
177 h = mb_allocz(rt_table_pool, sizeof(struct announce_hook));
178 h->table = t;
179 h->proto = p;
180 h->stats = stats;
181
182 h->next = p->ahooks;
183 p->ahooks = h;
184
185 if (p->rt_notify && (p->export_state != ES_DOWN))
186 add_tail(&t->hooks, &h->n);
187 return h;
188 }
189
190 /**
191 * proto_find_announce_hook - find announce hooks
192 * @p: protocol instance
193 * @t: routing table
194 *
195 * Returns pointer to announce hook or NULL
196 */
197 struct announce_hook *
198 proto_find_announce_hook(struct proto *p, struct rtable *t)
199 {
200 struct announce_hook *a;
201
202 for (a = p->ahooks; a; a = a->next)
203 if (a->table == t)
204 return a;
205
206 return NULL;
207 }
208
209 static void
210 proto_link_ahooks(struct proto *p)
211 {
212 struct announce_hook *h;
213
214 if (p->rt_notify)
215 for(h=p->ahooks; h; h=h->next)
216 add_tail(&h->table->hooks, &h->n);
217 }
218
219 static void
220 proto_unlink_ahooks(struct proto *p)
221 {
222 struct announce_hook *h;
223
224 if (p->rt_notify)
225 for(h=p->ahooks; h; h=h->next)
226 rem_node(&h->n);
227 }
228
229 static void
230 proto_free_ahooks(struct proto *p)
231 {
232 struct announce_hook *h, *hn;
233
234 for(h = p->ahooks; h; h = hn)
235 {
236 hn = h->next;
237 mb_free(h);
238 }
239
240 p->ahooks = NULL;
241 p->main_ahook = NULL;
242 }
243
244
245 /**
246 * proto_config_new - create a new protocol configuration
247 * @pr: protocol the configuration will belong to
248 * @class: SYM_PROTO or SYM_TEMPLATE
249 *
250 * Whenever the configuration file says that a new instance
251 * of a routing protocol should be created, the parser calls
252 * proto_config_new() to create a configuration entry for this
253 * instance (a structure staring with the &proto_config header
254 * containing all the generic items followed by protocol-specific
255 * ones). Also, the configuration entry gets added to the list
256 * of protocol instances kept in the configuration.
257 *
258 * The function is also used to create protocol templates (when class
259 * SYM_TEMPLATE is specified), the only difference is that templates
260 * are not added to the list of protocol instances and therefore not
261 * initialized during protos_commit()).
262 */
263 void *
264 proto_config_new(struct protocol *pr, int class)
265 {
266 struct proto_config *c = cfg_allocz(pr->config_size);
267
268 if (class == SYM_PROTO)
269 add_tail(&new_config->protos, &c->n);
270 c->global = new_config;
271 c->protocol = pr;
272 c->name = pr->name;
273 c->preference = pr->preference;
274 c->class = class;
275 c->out_filter = FILTER_REJECT;
276 c->table = c->global->master_rtc;
277 c->debug = new_config->proto_default_debug;
278 c->mrtdump = new_config->proto_default_mrtdump;
279 return c;
280 }
281
282 /**
283 * proto_copy_config - copy a protocol configuration
284 * @dest: destination protocol configuration
285 * @src: source protocol configuration
286 *
287 * Whenever a new instance of a routing protocol is created from the
288 * template, proto_copy_config() is called to copy a content of
289 * the source protocol configuration to the new protocol configuration.
290 * Name, class and a node in protos list of @dest are kept intact.
291 * copy_config() protocol hook is used to copy protocol-specific data.
292 */
293 void
294 proto_copy_config(struct proto_config *dest, struct proto_config *src)
295 {
296 node old_node;
297 int old_class;
298 char *old_name;
299
300 if (dest->protocol != src->protocol)
301 cf_error("Can't copy configuration from a different protocol type");
302
303 if (dest->protocol->copy_config == NULL)
304 cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
305
306 DBG("Copying configuration from %s to %s\n", src->name, dest->name);
307
308 /*
309 * Copy struct proto_config here. Keep original node, class and name.
310 * protocol-specific config copy is handled by protocol copy_config() hook
311 */
312
313 old_node = dest->n;
314 old_class = dest->class;
315 old_name = dest->name;
316
317 memcpy(dest, src, sizeof(struct proto_config));
318
319 dest->n = old_node;
320 dest->class = old_class;
321 dest->name = old_name;
322
323 dest->protocol->copy_config(dest, src);
324 }
325
326 /**
327 * protos_preconfig - pre-configuration processing
328 * @c: new configuration
329 *
330 * This function calls the preconfig() hooks of all routing
331 * protocols available to prepare them for reading of the new
332 * configuration.
333 */
334 void
335 protos_preconfig(struct config *c)
336 {
337 struct protocol *p;
338
339 init_list(&c->protos);
340 DBG("Protocol preconfig:");
341 WALK_LIST(p, protocol_list)
342 {
343 DBG(" %s", p->name);
344 p->name_counter = 0;
345 if (p->preconfig)
346 p->preconfig(p, c);
347 }
348 DBG("\n");
349 }
350
351 /**
352 * protos_postconfig - post-configuration processing
353 * @c: new configuration
354 *
355 * This function calls the postconfig() hooks of all protocol
356 * instances specified in configuration @c. The hooks are not
357 * called for protocol templates.
358 */
359 void
360 protos_postconfig(struct config *c)
361 {
362 struct proto_config *x;
363 struct protocol *p;
364
365 DBG("Protocol postconfig:");
366 WALK_LIST(x, c->protos)
367 {
368 DBG(" %s", x->name);
369
370 p = x->protocol;
371 if (p->postconfig)
372 p->postconfig(x);
373 }
374 DBG("\n");
375 }
376
377 extern struct protocol proto_unix_iface;
378
379 static struct proto *
380 proto_init(struct proto_config *c)
381 {
382 struct protocol *p = c->protocol;
383 struct proto *q = p->init(c);
384
385 q->proto_state = PS_DOWN;
386 q->core_state = FS_HUNGRY;
387 q->export_state = ES_DOWN;
388 q->last_state_change = now;
389
390 add_tail(&initial_proto_list, &q->n);
391
392 if (p == &proto_unix_iface)
393 initial_device_proto = q;
394
395 add_tail(&proto_list, &q->glob_node);
396 PD(q, "Initializing%s", q->disabled ? " [disabled]" : "");
397 return q;
398 }
399
400 int proto_reconfig_type; /* Hack to propagate type info to pipe reconfigure hook */
401
402 static int
403 proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
404 {
405 /* If the protocol is DOWN, we just restart it */
406 if (p->proto_state == PS_DOWN)
407 return 0;
408
409 /* If there is a too big change in core attributes, ... */
410 if ((nc->protocol != oc->protocol) ||
411 (nc->disabled != p->disabled) ||
412 (nc->table->table != oc->table->table))
413 return 0;
414
415 p->debug = nc->debug;
416 p->mrtdump = nc->mrtdump;
417 proto_reconfig_type = type;
418
419 /* Execute protocol specific reconfigure hook */
420 if (! (p->proto->reconfigure && p->proto->reconfigure(p, nc)))
421 return 0;
422
423 DBG("\t%s: same\n", oc->name);
424 PD(p, "Reconfigured");
425 p->cf = nc;
426 p->name = nc->name;
427 p->preference = nc->preference;
428
429
430 /* Multitable protocols handle rest in their reconfigure hooks */
431 if (p->proto->multitable)
432 return 1;
433
434 /* Update filters and limits in the main announce hook
435 Note that this also resets limit state */
436 if (p->main_ahook)
437 {
438 struct announce_hook *ah = p->main_ahook;
439 ah->in_filter = nc->in_filter;
440 ah->out_filter = nc->out_filter;
441 ah->rx_limit = nc->rx_limit;
442 ah->in_limit = nc->in_limit;
443 ah->out_limit = nc->out_limit;
444 ah->in_keep_filtered = nc->in_keep_filtered;
445 proto_verify_limits(ah);
446 }
447
448 /* Update routes when filters changed. If the protocol in not UP,
449 it has no routes and we can ignore such changes */
450 if ((p->proto_state != PS_UP) || (type == RECONFIG_SOFT))
451 return 1;
452
453 int import_changed = ! filter_same(nc->in_filter, oc->in_filter);
454 int export_changed = ! filter_same(nc->out_filter, oc->out_filter);
455
456 /* We treat a change in preferences by reimporting routes */
457 if (nc->preference != oc->preference)
458 import_changed = 1;
459
460 if (import_changed || export_changed)
461 log(L_INFO "Reloading protocol %s", p->name);
462
463 /* If import filter changed, call reload hook */
464 if (import_changed && ! (p->reload_routes && p->reload_routes(p)))
465 {
466 /* Now, the protocol is reconfigured. But route reload failed
467 and we have to do regular protocol restart. */
468 log(L_INFO "Restarting protocol %s", p->name);
469 p->disabled = 1;
470 p->down_code = PDC_CF_RESTART;
471 proto_rethink_goal(p);
472 p->disabled = 0;
473 proto_rethink_goal(p);
474 return 1;
475 }
476
477 if (export_changed)
478 proto_request_feeding(p);
479
480 return 1;
481 }
482
483 /**
484 * protos_commit - commit new protocol configuration
485 * @new: new configuration
486 * @old: old configuration or %NULL if it's boot time config
487 * @force_reconfig: force restart of all protocols (used for example
488 * when the router ID changes)
489 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
490 *
491 * Scan differences between @old and @new configuration and adjust all
492 * protocol instances to conform to the new configuration.
493 *
494 * When a protocol exists in the new configuration, but it doesn't in the
495 * original one, it's immediately started. When a collision with the other
496 * running protocol would arise, the new protocol will be temporarily stopped
497 * by the locking mechanism.
498 *
499 * When a protocol exists in the old configuration, but it doesn't in the
500 * new one, it's shut down and deleted after the shutdown completes.
501 *
502 * When a protocol exists in both configurations, the core decides
503 * whether it's possible to reconfigure it dynamically - it checks all
504 * the core properties of the protocol (changes in filters are ignored
505 * if type is RECONFIG_SOFT) and if they match, it asks the
506 * reconfigure() hook of the protocol to see if the protocol is able
507 * to switch to the new configuration. If it isn't possible, the
508 * protocol is shut down and a new instance is started with the new
509 * configuration after the shutdown is completed.
510 */
511 void
512 protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
513 {
514 struct proto_config *oc, *nc;
515 struct proto *p, *n;
516 struct symbol *sym;
517
518 DBG("protos_commit:\n");
519 if (old)
520 {
521 WALK_LIST(oc, old->protos)
522 {
523 p = oc->proto;
524 sym = cf_find_symbol(new, oc->name);
525 if (sym && sym->class == SYM_PROTO && !new->shutdown)
526 {
527 /* Found match, let's check if we can smoothly switch to new configuration */
528 /* No need to check description */
529 nc = sym->def;
530 nc->proto = p;
531
532 /* We will try to reconfigure protocol p */
533 if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
534 continue;
535
536 /* Unsuccessful, we will restart it */
537 if (!p->disabled && !nc->disabled)
538 log(L_INFO "Restarting protocol %s", p->name);
539 else if (p->disabled && !nc->disabled)
540 log(L_INFO "Enabling protocol %s", p->name);
541 else if (!p->disabled && nc->disabled)
542 log(L_INFO "Disabling protocol %s", p->name);
543
544 p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
545 p->cf_new = nc;
546 }
547 else if (!new->shutdown)
548 {
549 log(L_INFO "Removing protocol %s", p->name);
550 p->down_code = PDC_CF_REMOVE;
551 p->cf_new = NULL;
552 }
553 else /* global shutdown */
554 {
555 p->down_code = PDC_CMD_SHUTDOWN;
556 p->cf_new = NULL;
557 }
558
559 p->reconfiguring = 1;
560 config_add_obstacle(old);
561 proto_rethink_goal(p);
562 }
563 }
564
565 WALK_LIST(nc, new->protos)
566 if (!nc->proto)
567 {
568 if (old) /* Not a first-time configuration */
569 log(L_INFO "Adding protocol %s", nc->name);
570 proto_init(nc);
571 }
572 DBG("\tdone\n");
573
574 DBG("Protocol start\n");
575
576 /* Start device protocol first */
577 if (initial_device_proto)
578 {
579 proto_rethink_goal(initial_device_proto);
580 initial_device_proto = NULL;
581 }
582
583 /* Determine router ID for the first time - it has to be here and not in
584 global_commit() because it is postponed after start of device protocol */
585 if (!config->router_id)
586 {
587 config->router_id = if_choose_router_id(config->router_id_from, 0);
588 if (!config->router_id)
589 die("Cannot determine router ID, please configure it manually");
590 }
591
592 /* Start all other protocols */
593 WALK_LIST_DELSAFE(p, n, initial_proto_list)
594 proto_rethink_goal(p);
595 }
596
597 static void
598 proto_rethink_goal(struct proto *p)
599 {
600 struct protocol *q;
601 byte goal;
602
603 if (p->reconfiguring && p->core_state == FS_HUNGRY && p->proto_state == PS_DOWN)
604 {
605 struct proto_config *nc = p->cf_new;
606 DBG("%s has shut down for reconfiguration\n", p->name);
607 p->cf->proto = NULL;
608 config_del_obstacle(p->cf->global);
609 rem_node(&p->n);
610 rem_node(&p->glob_node);
611 mb_free(p);
612 if (!nc)
613 return;
614 p = proto_init(nc);
615 }
616
617 /* Determine what state we want to reach */
618 if (p->disabled || p->reconfiguring)
619 goal = PS_DOWN;
620 else
621 goal = PS_UP;
622
623 q = p->proto;
624 if (goal == PS_UP) /* Going up */
625 {
626 if (p->proto_state == PS_DOWN && p->core_state == FS_HUNGRY)
627 {
628 DBG("Kicking %s up\n", p->name);
629 PD(p, "Starting");
630 proto_init_instance(p);
631 proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
632 }
633 }
634 else /* Going down */
635 {
636 if (p->proto_state == PS_START || p->proto_state == PS_UP)
637 {
638 DBG("Kicking %s down\n", p->name);
639 PD(p, "Shutting down");
640 proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
641 }
642 }
643 }
644
645
646 /**
647 * DOC: Graceful restart recovery
648 *
649 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
650 * restarts but both the forwarding plane (e.g kernel routing table) and routing
651 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
652 * is maintained.
653 *
654 * BIRD implements graceful restart recovery by deferring export of routes to
655 * protocols until routing tables are refilled with the expected content. After
656 * start, protocols generate routes as usual, but routes are not propagated to
657 * them, until protocols report that they generated all routes. After that,
658 * graceful restart recovery is finished and the export (and the initial feed)
659 * to protocols is enabled.
660 *
661 * When graceful restart recovery need is detected during initialization, then
662 * enabled protocols are marked with @gr_recovery flag before start. Such
663 * protocols then decide how to proceed with graceful restart, participation is
664 * voluntary. Protocols could lock the recovery by proto_graceful_restart_lock()
665 * (stored in @gr_lock flag), which means that they want to postpone the end of
666 * the recovery until they converge and then unlock it. They also could set
667 * @gr_wait before advancing to %PS_UP, which means that the core should defer
668 * route export to that protocol until the end of the recovery. This should be
669 * done by protocols that expect their neigbors to keep the proper routes
670 * (kernel table, BGP sessions with BGP graceful restart capability).
671 *
672 * The graceful restart recovery is finished when either all graceful restart
673 * locks are unlocked or when graceful restart wait timer fires.
674 *
675 */
676
677 static void graceful_restart_done(struct timer *t);
678
679 /**
680 * graceful_restart_recovery - request initial graceful restart recovery
681 *
682 * Called by the platform initialization code if the need for recovery
683 * after graceful restart is detected during boot. Have to be called
684 * before protos_commit().
685 */
686 void
687 graceful_restart_recovery(void)
688 {
689 graceful_restart_state = GRS_INIT;
690 }
691
692 /**
693 * graceful_restart_init - initialize graceful restart
694 *
695 * When graceful restart recovery was requested, the function starts an active
696 * phase of the recovery and initializes graceful restart wait timer. The
697 * function have to be called after protos_commit().
698 */
699 void
700 graceful_restart_init(void)
701 {
702 if (!graceful_restart_state)
703 return;
704
705 log(L_INFO "Graceful restart started");
706
707 if (!graceful_restart_locks)
708 {
709 graceful_restart_done(NULL);
710 return;
711 }
712
713 graceful_restart_state = GRS_ACTIVE;
714 gr_wait_timer = tm_new(proto_pool);
715 gr_wait_timer->hook = graceful_restart_done;
716 tm_start(gr_wait_timer, config->gr_wait);
717 }
718
719 /**
720 * graceful_restart_done - finalize graceful restart
721 * @t: unused
722 *
723 * When there are no locks on graceful restart, the functions finalizes the
724 * graceful restart recovery. Protocols postponing route export until the end of
725 * the recovery are awakened and the export to them is enabled. All other
726 * related state is cleared. The function is also called when the graceful
727 * restart wait timer fires (but there are still some locks).
728 */
729 static void
730 graceful_restart_done(struct timer *t UNUSED)
731 {
732 struct proto *p;
733 node *n;
734
735 log(L_INFO "Graceful restart done");
736 graceful_restart_state = GRS_DONE;
737
738 WALK_LIST2(p, n, proto_list, glob_node)
739 {
740 if (!p->gr_recovery)
741 continue;
742
743 /* Resume postponed export of routes */
744 if ((p->proto_state == PS_UP) && p->gr_wait)
745 {
746 proto_want_export_up(p);
747 proto_log_state_change(p);
748 }
749
750 /* Cleanup */
751 p->gr_recovery = 0;
752 p->gr_wait = 0;
753 p->gr_lock = 0;
754 }
755
756 graceful_restart_locks = 0;
757 }
758
759 void
760 graceful_restart_show_status(void)
761 {
762 if (graceful_restart_state != GRS_ACTIVE)
763 return;
764
765 cli_msg(-24, "Graceful restart recovery in progress");
766 cli_msg(-24, " Waiting for %d protocols to recover", graceful_restart_locks);
767 cli_msg(-24, " Wait timer is %d/%d", tm_remains(gr_wait_timer), config->gr_wait);
768 }
769
770 /**
771 * proto_graceful_restart_lock - lock graceful restart by protocol
772 * @p: protocol instance
773 *
774 * This function allows a protocol to postpone the end of graceful restart
775 * recovery until it converges. The lock is removed when the protocol calls
776 * proto_graceful_restart_unlock() or when the protocol is stopped.
777 *
778 * The function have to be called during the initial phase of graceful restart
779 * recovery and only for protocols that are part of graceful restart (i.e. their
780 * @gr_recovery is set), which means it should be called from protocol start
781 * hooks.
782 */
783 void
784 proto_graceful_restart_lock(struct proto *p)
785 {
786 ASSERT(graceful_restart_state == GRS_INIT);
787 ASSERT(p->gr_recovery);
788
789 if (p->gr_lock)
790 return;
791
792 p->gr_lock = 1;
793 graceful_restart_locks++;
794 }
795
796 /**
797 * proto_graceful_restart_unlock - unlock graceful restart by protocol
798 * @p: protocol instance
799 *
800 * This function unlocks a lock from proto_graceful_restart_lock(). It is also
801 * automatically called when the lock holding protocol went down.
802 */
803 void
804 proto_graceful_restart_unlock(struct proto *p)
805 {
806 if (!p->gr_lock)
807 return;
808
809 p->gr_lock = 0;
810 graceful_restart_locks--;
811
812 if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
813 tm_start(gr_wait_timer, 0);
814 }
815
816
817
818 /**
819 * protos_dump_all - dump status of all protocols
820 *
821 * This function dumps status of all existing protocol instances to the
822 * debug output. It involves printing of general status information
823 * such as protocol states, its position on the protocol lists
824 * and also calling of a dump() hook of the protocol to print
825 * the internals.
826 */
827 void
828 protos_dump_all(void)
829 {
830 struct proto *p;
831 struct announce_hook *a;
832
833 debug("Protocols:\n");
834
835 WALK_LIST(p, active_proto_list)
836 {
837 debug(" protocol %s state %s/%s\n", p->name,
838 p_states[p->proto_state], c_states[p->core_state]);
839 for (a = p->ahooks; a; a = a->next)
840 {
841 debug("\tTABLE %s\n", a->table->name);
842 if (a->in_filter)
843 debug("\tInput filter: %s\n", filter_name(a->in_filter));
844 if (a->out_filter != FILTER_REJECT)
845 debug("\tOutput filter: %s\n", filter_name(a->out_filter));
846 }
847 if (p->disabled)
848 debug("\tDISABLED\n");
849 else if (p->proto->dump)
850 p->proto->dump(p);
851 }
852 WALK_LIST(p, inactive_proto_list)
853 debug(" inactive %s: state %s/%s\n", p->name, p_states[p->proto_state], c_states[p->core_state]);
854 WALK_LIST(p, initial_proto_list)
855 debug(" initial %s\n", p->name);
856 WALK_LIST(p, flush_proto_list)
857 debug(" flushing %s\n", p->name);
858 }
859
860 /**
861 * proto_build - make a single protocol available
862 * @p: the protocol
863 *
864 * After the platform specific initialization code uses protos_build()
865 * to add all the standard protocols, it should call proto_build() for
866 * all platform specific protocols to inform the core that they exist.
867 */
868 void
869 proto_build(struct protocol *p)
870 {
871 add_tail(&protocol_list, &p->n);
872 if (p->attr_class)
873 {
874 ASSERT(!attr_class_to_protocol[p->attr_class]);
875 attr_class_to_protocol[p->attr_class] = p;
876 }
877 }
878
879 /* FIXME: convert this call to some protocol hook */
880 extern void bfd_init_all(void);
881
882 /**
883 * protos_build - build a protocol list
884 *
885 * This function is called during BIRD startup to insert
886 * all standard protocols to the global protocol list. Insertion
887 * of platform specific protocols (such as the kernel syncer)
888 * is in the domain of competence of the platform dependent
889 * startup code.
890 */
891 void
892 protos_build(void)
893 {
894 init_list(&protocol_list);
895 init_list(&proto_list);
896 init_list(&active_proto_list);
897 init_list(&inactive_proto_list);
898 init_list(&initial_proto_list);
899 init_list(&flush_proto_list);
900 proto_build(&proto_device);
901 #ifdef CONFIG_RADV
902 proto_build(&proto_radv);
903 #endif
904 #ifdef CONFIG_RIP
905 proto_build(&proto_rip);
906 #endif
907 #ifdef CONFIG_STATIC
908 proto_build(&proto_static);
909 #endif
910 #ifdef CONFIG_OSPF
911 proto_build(&proto_ospf);
912 #endif
913 #ifdef CONFIG_PIPE
914 proto_build(&proto_pipe);
915 #endif
916 #ifdef CONFIG_BGP
917 proto_build(&proto_bgp);
918 #endif
919 #ifdef CONFIG_BFD
920 proto_build(&proto_bfd);
921 bfd_init_all();
922 #endif
923 #ifdef CONFIG_BABEL
924 proto_build(&proto_babel);
925 #endif
926
927 proto_pool = rp_new(&root_pool, "Protocols");
928 proto_flush_event = ev_new(proto_pool);
929 proto_flush_event->hook = proto_flush_loop;
930 proto_shutdown_timer = tm_new(proto_pool);
931 proto_shutdown_timer->hook = proto_shutdown_loop;
932 }
933
934 static void
935 proto_feed_more(void *P)
936 {
937 struct proto *p = P;
938
939 if (p->export_state != ES_FEEDING)
940 return;
941
942 DBG("Feeding protocol %s continued\n", p->name);
943 if (rt_feed_baby(p))
944 {
945 DBG("Feeding protocol %s finished\n", p->name);
946 p->export_state = ES_READY;
947 proto_log_state_change(p);
948
949 if (p->feed_end)
950 p->feed_end(p);
951 }
952 else
953 {
954 p->attn->hook = proto_feed_more;
955 ev_schedule(p->attn); /* Will continue later... */
956 }
957 }
958
959 static void
960 proto_feed_initial(void *P)
961 {
962 struct proto *p = P;
963
964 if (p->export_state != ES_FEEDING)
965 return;
966
967 DBG("Feeding protocol %s\n", p->name);
968
969 if_feed_baby(p);
970 proto_feed_more(P);
971 }
972
973 static void
974 proto_schedule_feed(struct proto *p, int initial)
975 {
976 DBG("%s: Scheduling meal\n", p->name);
977
978 p->export_state = ES_FEEDING;
979 p->refeeding = !initial;
980
981 p->attn->hook = initial ? proto_feed_initial : proto_feed_more;
982 ev_schedule(p->attn);
983
984 if (p->feed_begin)
985 p->feed_begin(p, initial);
986 }
987
988 /*
989 * Flushing loop is responsible for flushing routes and protocols
990 * after they went down. It runs in proto_flush_event. At the start of
991 * one round, protocols waiting to flush are marked in
992 * proto_schedule_flush_loop(). At the end of the round (when routing
993 * table flush is complete), marked protocols are flushed and a next
994 * round may start.
995 */
996
997 static int flush_loop_state; /* 1 -> running */
998
999 static void
1000 proto_schedule_flush_loop(void)
1001 {
1002 struct proto *p;
1003 struct announce_hook *h;
1004
1005 if (flush_loop_state)
1006 return;
1007 flush_loop_state = 1;
1008
1009 WALK_LIST(p, flush_proto_list)
1010 {
1011 p->flushing = 1;
1012 for (h=p->ahooks; h; h=h->next)
1013 rt_mark_for_prune(h->table);
1014 }
1015
1016 ev_schedule(proto_flush_event);
1017 }
1018
1019 static void
1020 proto_flush_loop(void *unused UNUSED)
1021 {
1022 struct proto *p;
1023
1024 if (! rt_prune_loop())
1025 {
1026 /* Rtable pruning is not finished */
1027 ev_schedule(proto_flush_event);
1028 return;
1029 }
1030
1031 rt_prune_sources();
1032
1033 again:
1034 WALK_LIST(p, flush_proto_list)
1035 if (p->flushing)
1036 {
1037 /* This will flush interfaces in the same manner
1038 like rt_prune_all() flushes routes */
1039 if (p->proto == &proto_unix_iface)
1040 if_flush_ifaces(p);
1041
1042 DBG("Flushing protocol %s\n", p->name);
1043 p->flushing = 0;
1044 p->core_state = FS_HUNGRY;
1045 proto_relink(p);
1046 proto_log_state_change(p);
1047 if (p->proto_state == PS_DOWN)
1048 proto_fell_down(p);
1049 goto again;
1050 }
1051
1052 /* This round finished, perhaps there will be another one */
1053 flush_loop_state = 0;
1054 if (!EMPTY_LIST(flush_proto_list))
1055 proto_schedule_flush_loop();
1056 }
1057
1058
1059 /* Temporary hack to propagate restart to BGP */
1060 int proto_restart;
1061
1062 static void
1063 proto_shutdown_loop(struct timer *t UNUSED)
1064 {
1065 struct proto *p, *p_next;
1066
1067 WALK_LIST_DELSAFE(p, p_next, active_proto_list)
1068 if (p->down_sched)
1069 {
1070 proto_restart = (p->down_sched == PDS_RESTART);
1071
1072 p->disabled = 1;
1073 proto_rethink_goal(p);
1074 if (proto_restart)
1075 {
1076 p->disabled = 0;
1077 proto_rethink_goal(p);
1078 }
1079 }
1080 }
1081
1082 static inline void
1083 proto_schedule_down(struct proto *p, byte restart, byte code)
1084 {
1085 /* Does not work for other states (even PS_START) */
1086 ASSERT(p->proto_state == PS_UP);
1087
1088 /* Scheduled restart may change to shutdown, but not otherwise */
1089 if (p->down_sched == PDS_DISABLE)
1090 return;
1091
1092 p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
1093 p->down_code = code;
1094 tm_start_max(proto_shutdown_timer, restart ? 2 : 0);
1095 }
1096
1097
1098 /**
1099 * proto_request_feeding - request feeding routes to the protocol
1100 * @p: given protocol
1101 *
1102 * Sometimes it is needed to send again all routes to the
1103 * protocol. This is called feeding and can be requested by this
1104 * function. This would cause protocol export state transition
1105 * to ES_FEEDING (during feeding) and when completed, it will
1106 * switch back to ES_READY. This function can be called even
1107 * when feeding is already running, in that case it is restarted.
1108 */
1109 void
1110 proto_request_feeding(struct proto *p)
1111 {
1112 ASSERT(p->proto_state == PS_UP);
1113
1114 /* Do nothing if we are still waiting for feeding */
1115 if (p->export_state == ES_DOWN)
1116 return;
1117
1118 /* If we are already feeding, we want to restart it */
1119 if (p->export_state == ES_FEEDING)
1120 {
1121 /* Unless feeding is in initial state */
1122 if (p->attn->hook == proto_feed_initial)
1123 return;
1124
1125 rt_feed_baby_abort(p);
1126 }
1127
1128 /* FIXME: This should be changed for better support of multitable protos */
1129 struct announce_hook *ah;
1130 for (ah = p->ahooks; ah; ah = ah->next)
1131 proto_reset_limit(ah->out_limit);
1132
1133 /* Hack: reset exp_routes during refeed, and do not decrease it later */
1134 p->stats.exp_routes = 0;
1135
1136 proto_schedule_feed(p, 0);
1137 proto_log_state_change(p);
1138 }
1139
1140 static const char *
1141 proto_limit_name(struct proto_limit *l)
1142 {
1143 const char *actions[] = {
1144 [PLA_WARN] = "warn",
1145 [PLA_BLOCK] = "block",
1146 [PLA_RESTART] = "restart",
1147 [PLA_DISABLE] = "disable",
1148 };
1149
1150 return actions[l->action];
1151 }
1152
1153 /**
1154 * proto_notify_limit: notify about limit hit and take appropriate action
1155 * @ah: announce hook
1156 * @l: limit being hit
1157 * @dir: limit direction (PLD_*)
1158 * @rt_count: the number of routes
1159 *
1160 * The function is called by the route processing core when limit @l
1161 * is breached. It activates the limit and tooks appropriate action
1162 * according to @l->action.
1163 */
1164 void
1165 proto_notify_limit(struct announce_hook *ah, struct proto_limit *l, int dir, u32 rt_count)
1166 {
1167 const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
1168 const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1169 struct proto *p = ah->proto;
1170
1171 if (l->state == PLS_BLOCKED)
1172 return;
1173
1174 /* For warning action, we want the log message every time we hit the limit */
1175 if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1176 log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1177 p->name, dir_name[dir], l->limit, proto_limit_name(l));
1178
1179 switch (l->action)
1180 {
1181 case PLA_WARN:
1182 l->state = PLS_ACTIVE;
1183 break;
1184
1185 case PLA_BLOCK:
1186 l->state = PLS_BLOCKED;
1187 break;
1188
1189 case PLA_RESTART:
1190 case PLA_DISABLE:
1191 l->state = PLS_BLOCKED;
1192 if (p->proto_state == PS_UP)
1193 proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1194 break;
1195 }
1196 }
1197
1198 void
1199 proto_verify_limits(struct announce_hook *ah)
1200 {
1201 struct proto_limit *l;
1202 struct proto_stats *stats = ah->stats;
1203 u32 all_routes = stats->imp_routes + stats->filt_routes;
1204
1205 l = ah->rx_limit;
1206 if (l && (all_routes > l->limit))
1207 proto_notify_limit(ah, l, PLD_RX, all_routes);
1208
1209 l = ah->in_limit;
1210 if (l && (stats->imp_routes > l->limit))
1211 proto_notify_limit(ah, l, PLD_IN, stats->imp_routes);
1212
1213 l = ah->out_limit;
1214 if (l && (stats->exp_routes > l->limit))
1215 proto_notify_limit(ah, l, PLD_OUT, stats->exp_routes);
1216 }
1217
1218
1219 static void
1220 proto_want_core_up(struct proto *p)
1221 {
1222 ASSERT(p->core_state == FS_HUNGRY);
1223
1224 if (!p->proto->multitable)
1225 {
1226 p->main_source = rt_get_source(p, 0);
1227 rt_lock_source(p->main_source);
1228
1229 /* Connect protocol to routing table */
1230 p->main_ahook = proto_add_announce_hook(p, p->table, &p->stats);
1231 p->main_ahook->in_filter = p->cf->in_filter;
1232 p->main_ahook->out_filter = p->cf->out_filter;
1233 p->main_ahook->rx_limit = p->cf->rx_limit;
1234 p->main_ahook->in_limit = p->cf->in_limit;
1235 p->main_ahook->out_limit = p->cf->out_limit;
1236 p->main_ahook->in_keep_filtered = p->cf->in_keep_filtered;
1237
1238 proto_reset_limit(p->main_ahook->rx_limit);
1239 proto_reset_limit(p->main_ahook->in_limit);
1240 proto_reset_limit(p->main_ahook->out_limit);
1241 }
1242
1243 p->core_state = FS_HAPPY;
1244 proto_relink(p);
1245 }
1246
1247 static void
1248 proto_want_export_up(struct proto *p)
1249 {
1250 ASSERT(p->core_state == FS_HAPPY);
1251 ASSERT(p->export_state == ES_DOWN);
1252
1253 proto_link_ahooks(p);
1254 proto_schedule_feed(p, 1); /* Sets ES_FEEDING */
1255 }
1256
1257 static void
1258 proto_want_export_down(struct proto *p)
1259 {
1260 ASSERT(p->export_state != ES_DOWN);
1261
1262 /* Need to abort feeding */
1263 if (p->export_state == ES_FEEDING)
1264 rt_feed_baby_abort(p);
1265
1266 p->export_state = ES_DOWN;
1267 p->stats.exp_routes = 0;
1268 proto_unlink_ahooks(p);
1269 }
1270
1271 static void
1272 proto_want_core_down(struct proto *p)
1273 {
1274 ASSERT(p->core_state == FS_HAPPY);
1275 ASSERT(p->export_state == ES_DOWN);
1276
1277 p->core_state = FS_FLUSHING;
1278 proto_relink(p);
1279 proto_schedule_flush_loop();
1280
1281 if (!p->proto->multitable)
1282 {
1283 rt_unlock_source(p->main_source);
1284 p->main_source = NULL;
1285 }
1286 }
1287
1288 static void
1289 proto_falling_down(struct proto *p)
1290 {
1291 p->gr_recovery = 0;
1292 p->gr_wait = 0;
1293 if (p->gr_lock)
1294 proto_graceful_restart_unlock(p);
1295 }
1296
1297 static void
1298 proto_fell_down(struct proto *p)
1299 {
1300 DBG("Protocol %s down\n", p->name);
1301
1302 u32 all_routes = p->stats.imp_routes + p->stats.filt_routes;
1303 if (all_routes != 0)
1304 log(L_ERR "Protocol %s is down but still has %d routes", p->name, all_routes);
1305
1306 bzero(&p->stats, sizeof(struct proto_stats));
1307 proto_free_ahooks(p);
1308
1309 if (! p->proto->multitable)
1310 rt_unlock_table(p->table);
1311
1312 if (p->proto->cleanup)
1313 p->proto->cleanup(p);
1314
1315 proto_rethink_goal(p);
1316 }
1317
1318
1319 /**
1320 * proto_notify_state - notify core about protocol state change
1321 * @p: protocol the state of which has changed
1322 * @ps: the new status
1323 *
1324 * Whenever a state of a protocol changes due to some event internal
1325 * to the protocol (i.e., not inside a start() or shutdown() hook),
1326 * it should immediately notify the core about the change by calling
1327 * proto_notify_state() which will write the new state to the &proto
1328 * structure and take all the actions necessary to adapt to the new
1329 * state. State change to PS_DOWN immediately frees resources of protocol
1330 * and might execute start callback of protocol; therefore,
1331 * it should be used at tail positions of protocol callbacks.
1332 */
1333 void
1334 proto_notify_state(struct proto *p, unsigned ps)
1335 {
1336 unsigned ops = p->proto_state;
1337 unsigned cs = p->core_state;
1338 unsigned es = p->export_state;
1339
1340 DBG("%s reporting state transition %s/%s -> */%s\n", p->name, c_states[cs], p_states[ops], p_states[ps]);
1341 if (ops == ps)
1342 return;
1343
1344 p->proto_state = ps;
1345 p->last_state_change = now;
1346
1347 switch (ps)
1348 {
1349 case PS_START:
1350 ASSERT(ops == PS_DOWN || ops == PS_UP);
1351 ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);
1352
1353 if (es != ES_DOWN)
1354 proto_want_export_down(p);
1355 break;
1356
1357 case PS_UP:
1358 ASSERT(ops == PS_DOWN || ops == PS_START);
1359 ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);
1360 ASSERT(es == ES_DOWN);
1361
1362 if (cs == FS_HUNGRY)
1363 proto_want_core_up(p);
1364 if (!p->gr_wait)
1365 proto_want_export_up(p);
1366 break;
1367
1368 case PS_STOP:
1369 ASSERT(ops == PS_START || ops == PS_UP);
1370
1371 p->down_sched = 0;
1372
1373 if (es != ES_DOWN)
1374 proto_want_export_down(p);
1375 if (cs == FS_HAPPY)
1376 proto_want_core_down(p);
1377 proto_falling_down(p);
1378 break;
1379
1380 case PS_DOWN:
1381 p->down_code = 0;
1382 p->down_sched = 0;
1383
1384 if (es != ES_DOWN)
1385 proto_want_export_down(p);
1386 if (cs == FS_HAPPY)
1387 proto_want_core_down(p);
1388 if (ops != PS_STOP)
1389 proto_falling_down(p);
1390
1391 neigh_prune(); // FIXME convert neighbors to resource?
1392 rfree(p->pool);
1393 p->pool = NULL;
1394
1395 if (cs == FS_HUNGRY) /* Shutdown finished */
1396 {
1397 proto_log_state_change(p);
1398 proto_fell_down(p);
1399 return; /* The protocol might have ceased to exist */
1400 }
1401 break;
1402
1403 default:
1404 bug("%s: Invalid state %d", p->name, ps);
1405 }
1406
1407 proto_log_state_change(p);
1408 }
1409
1410 /*
1411 * CLI Commands
1412 */
1413
1414 static char *
1415 proto_state_name(struct proto *p)
1416 {
1417 #define P(x,y) ((x << 4) | y)
1418 switch (P(p->proto_state, p->core_state))
1419 {
1420 case P(PS_DOWN, FS_HUNGRY): return "down";
1421 case P(PS_START, FS_HUNGRY):
1422 case P(PS_START, FS_HAPPY): return "start";
1423 case P(PS_UP, FS_HAPPY):
1424 switch (p->export_state)
1425 {
1426 case ES_DOWN: return "wait";
1427 case ES_FEEDING: return "feed";
1428 case ES_READY: return "up";
1429 default: return "???";
1430 }
1431 case P(PS_STOP, FS_HUNGRY):
1432 case P(PS_STOP, FS_FLUSHING): return "stop";
1433 case P(PS_DOWN, FS_FLUSHING): return "flush";
1434 default: return "???";
1435 }
1436 #undef P
1437 }
1438
1439 static void
1440 proto_show_stats(struct proto_stats *s, int in_keep_filtered)
1441 {
1442 if (in_keep_filtered)
1443 cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported, %u preferred",
1444 s->imp_routes, s->filt_routes, s->exp_routes, s->pref_routes);
1445 else
1446 cli_msg(-1006, " Routes: %u imported, %u exported, %u preferred",
1447 s->imp_routes, s->exp_routes, s->pref_routes);
1448
1449 cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted");
1450 cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u",
1451 s->imp_updates_received, s->imp_updates_invalid,
1452 s->imp_updates_filtered, s->imp_updates_ignored,
1453 s->imp_updates_accepted);
1454 cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u",
1455 s->imp_withdraws_received, s->imp_withdraws_invalid,
1456 s->imp_withdraws_ignored, s->imp_withdraws_accepted);
1457 cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u",
1458 s->exp_updates_received, s->exp_updates_rejected,
1459 s->exp_updates_filtered, s->exp_updates_accepted);
1460 cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u",
1461 s->exp_withdraws_received, s->exp_withdraws_accepted);
1462 }
1463
1464 void
1465 proto_show_limit(struct proto_limit *l, const char *dsc)
1466 {
1467 if (!l)
1468 return;
1469
1470 cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
1471 cli_msg(-1006, " Action: %s", proto_limit_name(l));
1472 }
1473
1474 void
1475 proto_show_basic_info(struct proto *p)
1476 {
1477 // cli_msg(-1006, " Table: %s", p->table->name);
1478 cli_msg(-1006, " Preference: %d", p->preference);
1479 cli_msg(-1006, " Input filter: %s", filter_name(p->cf->in_filter));
1480 cli_msg(-1006, " Output filter: %s", filter_name(p->cf->out_filter));
1481
1482 if (graceful_restart_state == GRS_ACTIVE)
1483 cli_msg(-1006, " GR recovery: %s%s",
1484 p->gr_lock ? " pending" : "",
1485 p->gr_wait ? " waiting" : "");
1486
1487 proto_show_limit(p->cf->rx_limit, "Receive limit:");
1488 proto_show_limit(p->cf->in_limit, "Import limit:");
1489 proto_show_limit(p->cf->out_limit, "Export limit:");
1490
1491 if (p->proto_state != PS_DOWN)
1492 proto_show_stats(&p->stats, p->cf->in_keep_filtered);
1493 }
1494
1495 void
1496 proto_cmd_show(struct proto *p, uint verbose, int cnt)
1497 {
1498 byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1499
1500 /* First protocol - show header */
1501 if (!cnt)
1502 cli_msg(-2002, "name proto table state since info");
1503
1504 buf[0] = 0;
1505 if (p->proto->get_status)
1506 p->proto->get_status(p, buf);
1507 tm_format_datetime(tbuf, &config->tf_proto, p->last_state_change);
1508 cli_msg(-1002, "%-8s %-8s %-8s %-5s %-10s %s",
1509 p->name,
1510 p->proto->name,
1511 p->table->name,
1512 proto_state_name(p),
1513 tbuf,
1514 buf);
1515 if (verbose)
1516 {
1517 if (p->cf->dsc)
1518 cli_msg(-1006, " Description: %s", p->cf->dsc);
1519 if (p->cf->router_id)
1520 cli_msg(-1006, " Router ID: %R", p->cf->router_id);
1521
1522 if (p->proto->show_proto_info)
1523 p->proto->show_proto_info(p);
1524 else
1525 proto_show_basic_info(p);
1526
1527 cli_msg(-1006, "");
1528 }
1529 }
1530
1531 void
1532 proto_cmd_disable(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1533 {
1534 if (p->disabled)
1535 {
1536 cli_msg(-8, "%s: already disabled", p->name);
1537 return;
1538 }
1539
1540 log(L_INFO "Disabling protocol %s", p->name);
1541 p->disabled = 1;
1542 p->down_code = PDC_CMD_DISABLE;
1543 proto_rethink_goal(p);
1544 cli_msg(-9, "%s: disabled", p->name);
1545 }
1546
1547 void
1548 proto_cmd_enable(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1549 {
1550 if (!p->disabled)
1551 {
1552 cli_msg(-10, "%s: already enabled", p->name);
1553 return;
1554 }
1555
1556 log(L_INFO "Enabling protocol %s", p->name);
1557 p->disabled = 0;
1558 proto_rethink_goal(p);
1559 cli_msg(-11, "%s: enabled", p->name);
1560 }
1561
1562 void
1563 proto_cmd_restart(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1564 {
1565 if (p->disabled)
1566 {
1567 cli_msg(-8, "%s: already disabled", p->name);
1568 return;
1569 }
1570
1571 log(L_INFO "Restarting protocol %s", p->name);
1572 p->disabled = 1;
1573 p->down_code = PDC_CMD_RESTART;
1574 proto_rethink_goal(p);
1575 p->disabled = 0;
1576 proto_rethink_goal(p);
1577 cli_msg(-12, "%s: restarted", p->name);
1578 }
1579
1580 void
1581 proto_cmd_reload(struct proto *p, uint dir, int cnt UNUSED)
1582 {
1583 if (p->disabled)
1584 {
1585 cli_msg(-8, "%s: already disabled", p->name);
1586 return;
1587 }
1588
1589 /* If the protocol in not UP, it has no routes */
1590 if (p->proto_state != PS_UP)
1591 return;
1592
1593 log(L_INFO "Reloading protocol %s", p->name);
1594
1595 /* re-importing routes */
1596 if (dir != CMD_RELOAD_OUT)
1597 {
1598 if (! (p->reload_routes && p->reload_routes(p)))
1599 {
1600 cli_msg(-8006, "%s: reload failed", p->name);
1601 return;
1602 }
1603
1604 /*
1605 * Should be done before reload_routes() hook?
1606 * Perhaps, but these hooks work asynchronously.
1607 */
1608 if (!p->proto->multitable)
1609 {
1610 proto_reset_limit(p->main_ahook->rx_limit);
1611 proto_reset_limit(p->main_ahook->in_limit);
1612 }
1613 }
1614
1615 /* re-exporting routes */
1616 if (dir != CMD_RELOAD_IN)
1617 proto_request_feeding(p);
1618
1619 cli_msg(-15, "%s: reloading", p->name);
1620 }
1621
1622 void
1623 proto_cmd_debug(struct proto *p, uint mask, int cnt UNUSED)
1624 {
1625 p->debug = mask;
1626 }
1627
1628 void
1629 proto_cmd_mrtdump(struct proto *p, uint mask, int cnt UNUSED)
1630 {
1631 p->mrtdump = mask;
1632 }
1633
1634 static void
1635 proto_apply_cmd_symbol(struct symbol *s, void (* cmd)(struct proto *, uint, int), uint arg)
1636 {
1637 if (s->class != SYM_PROTO)
1638 {
1639 cli_msg(9002, "%s is not a protocol", s->name);
1640 return;
1641 }
1642
1643 cmd(((struct proto_config *)s->def)->proto, arg, 0);
1644 cli_msg(0, "");
1645 }
1646
1647 static void
1648 proto_apply_cmd_patt(char *patt, void (* cmd)(struct proto *, uint, int), uint arg)
1649 {
1650 int cnt = 0;
1651
1652 node *nn;
1653 WALK_LIST(nn, proto_list)
1654 {
1655 struct proto *p = SKIP_BACK(struct proto, glob_node, nn);
1656
1657 if (!patt || patmatch(patt, p->name))
1658 cmd(p, arg, cnt++);
1659 }
1660
1661 if (!cnt)
1662 cli_msg(8003, "No protocols match");
1663 else
1664 cli_msg(0, "");
1665 }
1666
1667 void
1668 proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uint, int),
1669 int restricted, uint arg)
1670 {
1671 if (restricted && cli_access_restricted())
1672 return;
1673
1674 if (ps.patt)
1675 proto_apply_cmd_patt(ps.ptr, cmd, arg);
1676 else
1677 proto_apply_cmd_symbol(ps.ptr, cmd, arg);
1678 }
1679
1680 struct proto *
1681 proto_get_named(struct symbol *sym, struct protocol *pr)
1682 {
1683 struct proto *p, *q;
1684
1685 if (sym)
1686 {
1687 if (sym->class != SYM_PROTO)
1688 cf_error("%s: Not a protocol", sym->name);
1689 p = ((struct proto_config *)sym->def)->proto;
1690 if (!p || p->proto != pr)
1691 cf_error("%s: Not a %s protocol", sym->name, pr->name);
1692 }
1693 else
1694 {
1695 p = NULL;
1696 WALK_LIST(q, active_proto_list)
1697 if (q->proto == pr)
1698 {
1699 if (p)
1700 cf_error("There are multiple %s protocols running", pr->name);
1701 p = q;
1702 }
1703 if (!p)
1704 cf_error("There is no %s protocol running", pr->name);
1705 }
1706 return p;
1707 }