]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/proto.c
KRT: Fix route learn scan when route changed
[thirdparty/bird.git] / nest / proto.c
1 /*
2 * BIRD -- Protocols
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #undef LOCAL_DEBUG
10
11 #include "nest/bird.h"
12 #include "nest/protocol.h"
13 #include "lib/resource.h"
14 #include "lib/lists.h"
15 #include "lib/event.h"
16 #include "lib/string.h"
17 #include "conf/conf.h"
18 #include "nest/route.h"
19 #include "nest/iface.h"
20 #include "nest/cli.h"
21 #include "filter/filter.h"
22
23 pool *proto_pool;
24
25 static list protocol_list;
26 static list proto_list;
27
28 #define PD(pr, msg, args...) do { if (pr->debug & D_STATES) { log(L_TRACE "%s: " msg, pr->name , ## args); } } while(0)
29
30 list active_proto_list;
31 static list inactive_proto_list;
32 static list initial_proto_list;
33 static list flush_proto_list;
34 static struct proto *initial_device_proto;
35
36 static event *proto_flush_event;
37 static timer *proto_shutdown_timer;
38 static timer *gr_wait_timer;
39
40 #define GRS_NONE 0
41 #define GRS_INIT 1
42 #define GRS_ACTIVE 2
43 #define GRS_DONE 3
44
45 static int graceful_restart_state;
46 static u32 graceful_restart_locks;
47
48 static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
49 static char *c_states[] = { "HUNGRY", "???", "HAPPY", "FLUSHING" };
50
51 static void proto_flush_loop(void *);
52 static void proto_shutdown_loop(struct timer *);
53 static void proto_rethink_goal(struct proto *p);
54 static void proto_want_export_up(struct proto *p);
55 static void proto_fell_down(struct proto *p);
56 static char *proto_state_name(struct proto *p);
57
58 static void
59 proto_relink(struct proto *p)
60 {
61 list *l = NULL;
62
63 switch (p->core_state)
64 {
65 case FS_HUNGRY:
66 l = &inactive_proto_list;
67 break;
68 case FS_HAPPY:
69 l = &active_proto_list;
70 break;
71 case FS_FLUSHING:
72 l = &flush_proto_list;
73 break;
74 default:
75 ASSERT(0);
76 }
77
78 rem_node(&p->n);
79 add_tail(l, &p->n);
80 }
81
82 static void
83 proto_log_state_change(struct proto *p)
84 {
85 if (p->debug & D_STATES)
86 {
87 char *name = proto_state_name(p);
88 if (name != p->last_state_name_announced)
89 {
90 p->last_state_name_announced = name;
91 PD(p, "State changed to %s", proto_state_name(p));
92 }
93 }
94 else
95 p->last_state_name_announced = NULL;
96 }
97
98
99 /**
100 * proto_new - create a new protocol instance
101 * @c: protocol configuration
102 * @size: size of protocol data structure (each protocol instance is represented by
103 * a structure starting with generic part [struct &proto] and continued
104 * with data specific to the protocol)
105 *
106 * When a new configuration has been read in, the core code starts
107 * initializing all the protocol instances configured by calling their
108 * init() hooks with the corresponding instance configuration. The initialization
109 * code of the protocol is expected to create a new instance according to the
110 * configuration by calling this function and then modifying the default settings
111 * to values wanted by the protocol.
112 */
113 void *
114 proto_new(struct proto_config *c, unsigned size)
115 {
116 struct protocol *pr = c->protocol;
117 struct proto *p = mb_allocz(proto_pool, size);
118
119 p->cf = c;
120 p->debug = c->debug;
121 p->mrtdump = c->mrtdump;
122 p->name = c->name;
123 p->preference = c->preference;
124 p->disabled = c->disabled;
125 p->proto = pr;
126 p->table = c->table->table;
127 p->hash_key = random_u32();
128 c->proto = p;
129 return p;
130 }
131
132 static void
133 proto_init_instance(struct proto *p)
134 {
135 /* Here we cannot use p->cf->name since it won't survive reconfiguration */
136 p->pool = rp_new(proto_pool, p->proto->name);
137 p->attn = ev_new(p->pool);
138 p->attn->data = p;
139
140 if (graceful_restart_state == GRS_INIT)
141 p->gr_recovery = 1;
142
143 if (! p->proto->multitable)
144 rt_lock_table(p->table);
145 }
146
147 extern pool *rt_table_pool;
148 /**
149 * proto_add_announce_hook - connect protocol to a routing table
150 * @p: protocol instance
151 * @t: routing table to connect to
152 * @stats: per-table protocol statistics
153 *
154 * This function creates a connection between the protocol instance @p and the
155 * routing table @t, making the protocol hear all changes in the table.
156 *
157 * The announce hook is linked in the protocol ahook list. Announce hooks are
158 * allocated from the routing table resource pool and when protocol accepts
159 * routes also in the table ahook list. The are linked to the table ahook list
160 * and unlinked from it depending on export_state (in proto_want_export_up() and
161 * proto_want_export_down()) and they are automatically freed after the protocol
162 * is flushed (in proto_fell_down()).
163 *
164 * Unless you want to listen to multiple routing tables (as the Pipe protocol
165 * does), you needn't to worry about this function since the connection to the
166 * protocol's primary routing table is initialized automatically by the core
167 * code.
168 */
169 struct announce_hook *
170 proto_add_announce_hook(struct proto *p, struct rtable *t, struct proto_stats *stats)
171 {
172 struct announce_hook *h;
173
174 DBG("Connecting protocol %s to table %s\n", p->name, t->name);
175 PD(p, "Connected to table %s", t->name);
176
177 h = mb_allocz(rt_table_pool, sizeof(struct announce_hook));
178 h->table = t;
179 h->proto = p;
180 h->stats = stats;
181
182 h->next = p->ahooks;
183 p->ahooks = h;
184
185 if (p->rt_notify && (p->export_state != ES_DOWN))
186 add_tail(&t->hooks, &h->n);
187 return h;
188 }
189
190 /**
191 * proto_find_announce_hook - find announce hooks
192 * @p: protocol instance
193 * @t: routing table
194 *
195 * Returns pointer to announce hook or NULL
196 */
197 struct announce_hook *
198 proto_find_announce_hook(struct proto *p, struct rtable *t)
199 {
200 struct announce_hook *a;
201
202 for (a = p->ahooks; a; a = a->next)
203 if (a->table == t)
204 return a;
205
206 return NULL;
207 }
208
209 static void
210 proto_link_ahooks(struct proto *p)
211 {
212 struct announce_hook *h;
213
214 if (p->rt_notify)
215 for(h=p->ahooks; h; h=h->next)
216 add_tail(&h->table->hooks, &h->n);
217 }
218
219 static void
220 proto_unlink_ahooks(struct proto *p)
221 {
222 struct announce_hook *h;
223
224 if (p->rt_notify)
225 for(h=p->ahooks; h; h=h->next)
226 rem_node(&h->n);
227 }
228
229 static void
230 proto_free_ahooks(struct proto *p)
231 {
232 struct announce_hook *h, *hn;
233
234 for(h = p->ahooks; h; h = hn)
235 {
236 hn = h->next;
237 mb_free(h);
238 }
239
240 p->ahooks = NULL;
241 p->main_ahook = NULL;
242 }
243
244
245 /**
246 * proto_config_new - create a new protocol configuration
247 * @pr: protocol the configuration will belong to
248 * @class: SYM_PROTO or SYM_TEMPLATE
249 *
250 * Whenever the configuration file says that a new instance
251 * of a routing protocol should be created, the parser calls
252 * proto_config_new() to create a configuration entry for this
253 * instance (a structure staring with the &proto_config header
254 * containing all the generic items followed by protocol-specific
255 * ones). Also, the configuration entry gets added to the list
256 * of protocol instances kept in the configuration.
257 *
258 * The function is also used to create protocol templates (when class
259 * SYM_TEMPLATE is specified), the only difference is that templates
260 * are not added to the list of protocol instances and therefore not
261 * initialized during protos_commit()).
262 */
263 void *
264 proto_config_new(struct protocol *pr, int class)
265 {
266 struct proto_config *c = cfg_allocz(pr->config_size);
267
268 if (class == SYM_PROTO)
269 add_tail(&new_config->protos, &c->n);
270 c->global = new_config;
271 c->protocol = pr;
272 c->name = pr->name;
273 c->preference = pr->preference;
274 c->class = class;
275 c->out_filter = FILTER_REJECT;
276 c->table = c->global->master_rtc;
277 c->debug = new_config->proto_default_debug;
278 c->mrtdump = new_config->proto_default_mrtdump;
279 return c;
280 }
281
282 /**
283 * proto_copy_config - copy a protocol configuration
284 * @dest: destination protocol configuration
285 * @src: source protocol configuration
286 *
287 * Whenever a new instance of a routing protocol is created from the
288 * template, proto_copy_config() is called to copy a content of
289 * the source protocol configuration to the new protocol configuration.
290 * Name, class and a node in protos list of @dest are kept intact.
291 * copy_config() protocol hook is used to copy protocol-specific data.
292 */
293 void
294 proto_copy_config(struct proto_config *dest, struct proto_config *src)
295 {
296 node old_node;
297 int old_class;
298 char *old_name;
299
300 if (dest->protocol != src->protocol)
301 cf_error("Can't copy configuration from a different protocol type");
302
303 if (dest->protocol->copy_config == NULL)
304 cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
305
306 DBG("Copying configuration from %s to %s\n", src->name, dest->name);
307
308 /*
309 * Copy struct proto_config here. Keep original node, class and name.
310 * protocol-specific config copy is handled by protocol copy_config() hook
311 */
312
313 old_node = dest->n;
314 old_class = dest->class;
315 old_name = dest->name;
316
317 memcpy(dest, src, sizeof(struct proto_config));
318
319 dest->n = old_node;
320 dest->class = old_class;
321 dest->name = old_name;
322
323 dest->protocol->copy_config(dest, src);
324 }
325
326 /**
327 * protos_preconfig - pre-configuration processing
328 * @c: new configuration
329 *
330 * This function calls the preconfig() hooks of all routing
331 * protocols available to prepare them for reading of the new
332 * configuration.
333 */
334 void
335 protos_preconfig(struct config *c)
336 {
337 struct protocol *p;
338
339 init_list(&c->protos);
340 DBG("Protocol preconfig:");
341 WALK_LIST(p, protocol_list)
342 {
343 DBG(" %s", p->name);
344 p->name_counter = 0;
345 if (p->preconfig)
346 p->preconfig(p, c);
347 }
348 DBG("\n");
349 }
350
351 /**
352 * protos_postconfig - post-configuration processing
353 * @c: new configuration
354 *
355 * This function calls the postconfig() hooks of all protocol
356 * instances specified in configuration @c. The hooks are not
357 * called for protocol templates.
358 */
359 void
360 protos_postconfig(struct config *c)
361 {
362 struct proto_config *x;
363 struct protocol *p;
364
365 DBG("Protocol postconfig:");
366 WALK_LIST(x, c->protos)
367 {
368 DBG(" %s", x->name);
369
370 p = x->protocol;
371 if (p->postconfig)
372 p->postconfig(x);
373 }
374 DBG("\n");
375 }
376
377 extern struct protocol proto_unix_iface;
378
379 static struct proto *
380 proto_init(struct proto_config *c)
381 {
382 struct protocol *p = c->protocol;
383 struct proto *q = p->init(c);
384
385 q->proto_state = PS_DOWN;
386 q->core_state = FS_HUNGRY;
387 q->export_state = ES_DOWN;
388 q->last_state_change = now;
389
390 add_tail(&initial_proto_list, &q->n);
391
392 if (p == &proto_unix_iface)
393 initial_device_proto = q;
394
395 add_tail(&proto_list, &q->glob_node);
396 PD(q, "Initializing%s", q->disabled ? " [disabled]" : "");
397 return q;
398 }
399
400 int proto_reconfig_type; /* Hack to propagate type info to pipe reconfigure hook */
401
402 static int
403 proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
404 {
405 /* If the protocol is DOWN, we just restart it */
406 if (p->proto_state == PS_DOWN)
407 return 0;
408
409 /* If there is a too big change in core attributes, ... */
410 if ((nc->protocol != oc->protocol) ||
411 (nc->disabled != p->disabled) ||
412 (nc->table->table != oc->table->table))
413 return 0;
414
415 p->debug = nc->debug;
416 p->mrtdump = nc->mrtdump;
417 proto_reconfig_type = type;
418
419 /* Execute protocol specific reconfigure hook */
420 if (! (p->proto->reconfigure && p->proto->reconfigure(p, nc)))
421 return 0;
422
423 DBG("\t%s: same\n", oc->name);
424 PD(p, "Reconfigured");
425 p->cf = nc;
426 p->name = nc->name;
427 p->preference = nc->preference;
428
429
430 /* Multitable protocols handle rest in their reconfigure hooks */
431 if (p->proto->multitable)
432 return 1;
433
434 /* Update filters and limits in the main announce hook
435 Note that this also resets limit state */
436 if (p->main_ahook)
437 {
438 struct announce_hook *ah = p->main_ahook;
439 ah->in_filter = nc->in_filter;
440 ah->out_filter = nc->out_filter;
441 ah->rx_limit = nc->rx_limit;
442 ah->in_limit = nc->in_limit;
443 ah->out_limit = nc->out_limit;
444 ah->in_keep_filtered = nc->in_keep_filtered;
445 proto_verify_limits(ah);
446 }
447
448 /* Update routes when filters changed. If the protocol in not UP,
449 it has no routes and we can ignore such changes */
450 if ((p->proto_state != PS_UP) || (type == RECONFIG_SOFT))
451 return 1;
452
453 int import_changed = ! filter_same(nc->in_filter, oc->in_filter);
454 int export_changed = ! filter_same(nc->out_filter, oc->out_filter);
455
456 /* We treat a change in preferences by reimporting routes */
457 if (nc->preference != oc->preference)
458 import_changed = 1;
459
460 if (import_changed || export_changed)
461 log(L_INFO "Reloading protocol %s", p->name);
462
463 /* If import filter changed, call reload hook */
464 if (import_changed && ! (p->reload_routes && p->reload_routes(p)))
465 {
466 /* Now, the protocol is reconfigured. But route reload failed
467 and we have to do regular protocol restart. */
468 log(L_INFO "Restarting protocol %s", p->name);
469 p->disabled = 1;
470 p->down_code = PDC_CF_RESTART;
471 proto_rethink_goal(p);
472 p->disabled = 0;
473 proto_rethink_goal(p);
474 return 1;
475 }
476
477 if (export_changed)
478 proto_request_feeding(p);
479
480 return 1;
481 }
482
483 /**
484 * protos_commit - commit new protocol configuration
485 * @new: new configuration
486 * @old: old configuration or %NULL if it's boot time config
487 * @force_reconfig: force restart of all protocols (used for example
488 * when the router ID changes)
489 * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
490 *
491 * Scan differences between @old and @new configuration and adjust all
492 * protocol instances to conform to the new configuration.
493 *
494 * When a protocol exists in the new configuration, but it doesn't in the
495 * original one, it's immediately started. When a collision with the other
496 * running protocol would arise, the new protocol will be temporarily stopped
497 * by the locking mechanism.
498 *
499 * When a protocol exists in the old configuration, but it doesn't in the
500 * new one, it's shut down and deleted after the shutdown completes.
501 *
502 * When a protocol exists in both configurations, the core decides
503 * whether it's possible to reconfigure it dynamically - it checks all
504 * the core properties of the protocol (changes in filters are ignored
505 * if type is RECONFIG_SOFT) and if they match, it asks the
506 * reconfigure() hook of the protocol to see if the protocol is able
507 * to switch to the new configuration. If it isn't possible, the
508 * protocol is shut down and a new instance is started with the new
509 * configuration after the shutdown is completed.
510 */
511 void
512 protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
513 {
514 struct proto_config *oc, *nc;
515 struct proto *p, *n;
516 struct symbol *sym;
517
518 DBG("protos_commit:\n");
519 if (old)
520 {
521 WALK_LIST(oc, old->protos)
522 {
523 p = oc->proto;
524 sym = cf_find_symbol(new, oc->name);
525 if (sym && sym->class == SYM_PROTO && !new->shutdown)
526 {
527 /* Found match, let's check if we can smoothly switch to new configuration */
528 /* No need to check description */
529 nc = sym->def;
530 nc->proto = p;
531
532 /* We will try to reconfigure protocol p */
533 if (! force_reconfig && proto_reconfigure(p, oc, nc, type))
534 continue;
535
536 /* Unsuccessful, we will restart it */
537 if (!p->disabled && !nc->disabled)
538 log(L_INFO "Restarting protocol %s", p->name);
539 else if (p->disabled && !nc->disabled)
540 log(L_INFO "Enabling protocol %s", p->name);
541 else if (!p->disabled && nc->disabled)
542 log(L_INFO "Disabling protocol %s", p->name);
543
544 p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
545 p->cf_new = nc;
546 }
547 else if (!new->shutdown)
548 {
549 log(L_INFO "Removing protocol %s", p->name);
550 p->down_code = PDC_CF_REMOVE;
551 p->cf_new = NULL;
552 }
553 else /* global shutdown */
554 {
555 p->down_code = PDC_CMD_SHUTDOWN;
556 p->cf_new = NULL;
557 }
558
559 p->reconfiguring = 1;
560 config_add_obstacle(old);
561 proto_rethink_goal(p);
562 }
563 }
564
565 WALK_LIST(nc, new->protos)
566 if (!nc->proto)
567 {
568 if (old) /* Not a first-time configuration */
569 log(L_INFO "Adding protocol %s", nc->name);
570 proto_init(nc);
571 }
572 DBG("\tdone\n");
573
574 DBG("Protocol start\n");
575
576 /* Start device protocol first */
577 if (initial_device_proto)
578 {
579 proto_rethink_goal(initial_device_proto);
580 initial_device_proto = NULL;
581 }
582
583 /* Determine router ID for the first time - it has to be here and not in
584 global_commit() because it is postponed after start of device protocol */
585 if (!config->router_id)
586 {
587 config->router_id = if_choose_router_id(config->router_id_from, 0);
588 if (!config->router_id)
589 die("Cannot determine router ID, please configure it manually");
590 }
591
592 /* Start all other protocols */
593 WALK_LIST_DELSAFE(p, n, initial_proto_list)
594 proto_rethink_goal(p);
595 }
596
597 static void
598 proto_rethink_goal(struct proto *p)
599 {
600 struct protocol *q;
601 byte goal;
602
603 if (p->reconfiguring && p->core_state == FS_HUNGRY && p->proto_state == PS_DOWN)
604 {
605 struct proto_config *nc = p->cf_new;
606 DBG("%s has shut down for reconfiguration\n", p->name);
607 p->cf->proto = NULL;
608 config_del_obstacle(p->cf->global);
609 rem_node(&p->n);
610 rem_node(&p->glob_node);
611 mb_free(p);
612 if (!nc)
613 return;
614 p = proto_init(nc);
615 }
616
617 /* Determine what state we want to reach */
618 if (p->disabled || p->reconfiguring)
619 goal = PS_DOWN;
620 else
621 goal = PS_UP;
622
623 q = p->proto;
624 if (goal == PS_UP) /* Going up */
625 {
626 if (p->proto_state == PS_DOWN && p->core_state == FS_HUNGRY)
627 {
628 DBG("Kicking %s up\n", p->name);
629 PD(p, "Starting");
630 proto_init_instance(p);
631 proto_notify_state(p, (q->start ? q->start(p) : PS_UP));
632 }
633 }
634 else /* Going down */
635 {
636 if (p->proto_state == PS_START || p->proto_state == PS_UP)
637 {
638 DBG("Kicking %s down\n", p->name);
639 PD(p, "Shutting down");
640 proto_notify_state(p, (q->shutdown ? q->shutdown(p) : PS_DOWN));
641 }
642 }
643 }
644
645
646 /**
647 * DOC: Graceful restart recovery
648 *
649 * Graceful restart of a router is a process when the routing plane (e.g. BIRD)
650 * restarts but both the forwarding plane (e.g kernel routing table) and routing
651 * neighbors keep proper routes, and therefore uninterrupted packet forwarding
652 * is maintained.
653 *
654 * BIRD implements graceful restart recovery by deferring export of routes to
655 * protocols until routing tables are refilled with the expected content. After
656 * start, protocols generate routes as usual, but routes are not propagated to
657 * them, until protocols report that they generated all routes. After that,
658 * graceful restart recovery is finished and the export (and the initial feed)
659 * to protocols is enabled.
660 *
661 * When graceful restart recovery need is detected during initialization, then
662 * enabled protocols are marked with @gr_recovery flag before start. Such
663 * protocols then decide how to proceed with graceful restart, participation is
664 * voluntary. Protocols could lock the recovery by proto_graceful_restart_lock()
665 * (stored in @gr_lock flag), which means that they want to postpone the end of
666 * the recovery until they converge and then unlock it. They also could set
667 * @gr_wait before advancing to %PS_UP, which means that the core should defer
668 * route export to that protocol until the end of the recovery. This should be
669 * done by protocols that expect their neigbors to keep the proper routes
670 * (kernel table, BGP sessions with BGP graceful restart capability).
671 *
672 * The graceful restart recovery is finished when either all graceful restart
673 * locks are unlocked or when graceful restart wait timer fires.
674 *
675 */
676
677 static void graceful_restart_done(struct timer *t);
678
679 /**
680 * graceful_restart_recovery - request initial graceful restart recovery
681 *
682 * Called by the platform initialization code if the need for recovery
683 * after graceful restart is detected during boot. Have to be called
684 * before protos_commit().
685 */
686 void
687 graceful_restart_recovery(void)
688 {
689 graceful_restart_state = GRS_INIT;
690 }
691
692 /**
693 * graceful_restart_init - initialize graceful restart
694 *
695 * When graceful restart recovery was requested, the function starts an active
696 * phase of the recovery and initializes graceful restart wait timer. The
697 * function have to be called after protos_commit().
698 */
699 void
700 graceful_restart_init(void)
701 {
702 if (!graceful_restart_state)
703 return;
704
705 log(L_INFO "Graceful restart started");
706
707 if (!graceful_restart_locks)
708 {
709 graceful_restart_done(NULL);
710 return;
711 }
712
713 graceful_restart_state = GRS_ACTIVE;
714 gr_wait_timer = tm_new(proto_pool);
715 gr_wait_timer->hook = graceful_restart_done;
716 tm_start(gr_wait_timer, config->gr_wait);
717 }
718
719 /**
720 * graceful_restart_done - finalize graceful restart
721 *
722 * When there are no locks on graceful restart, the functions finalizes the
723 * graceful restart recovery. Protocols postponing route export until the end of
724 * the recovery are awakened and the export to them is enabled. All other
725 * related state is cleared. The function is also called when the graceful
726 * restart wait timer fires (but there are still some locks).
727 */
728 static void
729 graceful_restart_done(struct timer *t UNUSED)
730 {
731 struct proto *p;
732 node *n;
733
734 log(L_INFO "Graceful restart done");
735 graceful_restart_state = GRS_DONE;
736
737 WALK_LIST2(p, n, proto_list, glob_node)
738 {
739 if (!p->gr_recovery)
740 continue;
741
742 /* Resume postponed export of routes */
743 if ((p->proto_state == PS_UP) && p->gr_wait)
744 {
745 proto_want_export_up(p);
746 proto_log_state_change(p);
747 }
748
749 /* Cleanup */
750 p->gr_recovery = 0;
751 p->gr_wait = 0;
752 p->gr_lock = 0;
753 }
754
755 graceful_restart_locks = 0;
756 }
757
758 void
759 graceful_restart_show_status(void)
760 {
761 if (graceful_restart_state != GRS_ACTIVE)
762 return;
763
764 cli_msg(-24, "Graceful restart recovery in progress");
765 cli_msg(-24, " Waiting for %d protocols to recover", graceful_restart_locks);
766 cli_msg(-24, " Wait timer is %d/%d", tm_remains(gr_wait_timer), config->gr_wait);
767 }
768
769 /**
770 * proto_graceful_restart_lock - lock graceful restart by protocol
771 * @p: protocol instance
772 *
773 * This function allows a protocol to postpone the end of graceful restart
774 * recovery until it converges. The lock is removed when the protocol calls
775 * proto_graceful_restart_unlock() or when the protocol is stopped.
776 *
777 * The function have to be called during the initial phase of graceful restart
778 * recovery and only for protocols that are part of graceful restart (i.e. their
779 * @gr_recovery is set), which means it should be called from protocol start
780 * hooks.
781 */
782 void
783 proto_graceful_restart_lock(struct proto *p)
784 {
785 ASSERT(graceful_restart_state == GRS_INIT);
786 ASSERT(p->gr_recovery);
787
788 if (p->gr_lock)
789 return;
790
791 p->gr_lock = 1;
792 graceful_restart_locks++;
793 }
794
795 /**
796 * proto_graceful_restart_unlock - unlock graceful restart by protocol
797 * @p: protocol instance
798 *
799 * This function unlocks a lock from proto_graceful_restart_lock(). It is also
800 * automatically called when the lock holding protocol went down.
801 */
802 void
803 proto_graceful_restart_unlock(struct proto *p)
804 {
805 if (!p->gr_lock)
806 return;
807
808 p->gr_lock = 0;
809 graceful_restart_locks--;
810
811 if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
812 tm_start(gr_wait_timer, 0);
813 }
814
815
816
817 /**
818 * protos_dump_all - dump status of all protocols
819 *
820 * This function dumps status of all existing protocol instances to the
821 * debug output. It involves printing of general status information
822 * such as protocol states, its position on the protocol lists
823 * and also calling of a dump() hook of the protocol to print
824 * the internals.
825 */
826 void
827 protos_dump_all(void)
828 {
829 struct proto *p;
830 struct announce_hook *a;
831
832 debug("Protocols:\n");
833
834 WALK_LIST(p, active_proto_list)
835 {
836 debug(" protocol %s state %s/%s\n", p->name,
837 p_states[p->proto_state], c_states[p->core_state]);
838 for (a = p->ahooks; a; a = a->next)
839 {
840 debug("\tTABLE %s\n", a->table->name);
841 if (a->in_filter)
842 debug("\tInput filter: %s\n", filter_name(a->in_filter));
843 if (a->out_filter != FILTER_REJECT)
844 debug("\tOutput filter: %s\n", filter_name(a->out_filter));
845 }
846 if (p->disabled)
847 debug("\tDISABLED\n");
848 else if (p->proto->dump)
849 p->proto->dump(p);
850 }
851 WALK_LIST(p, inactive_proto_list)
852 debug(" inactive %s: state %s/%s\n", p->name, p_states[p->proto_state], c_states[p->core_state]);
853 WALK_LIST(p, initial_proto_list)
854 debug(" initial %s\n", p->name);
855 WALK_LIST(p, flush_proto_list)
856 debug(" flushing %s\n", p->name);
857 }
858
859 /**
860 * proto_build - make a single protocol available
861 * @p: the protocol
862 *
863 * After the platform specific initialization code uses protos_build()
864 * to add all the standard protocols, it should call proto_build() for
865 * all platform specific protocols to inform the core that they exist.
866 */
867 void
868 proto_build(struct protocol *p)
869 {
870 add_tail(&protocol_list, &p->n);
871 if (p->attr_class)
872 {
873 ASSERT(!attr_class_to_protocol[p->attr_class]);
874 attr_class_to_protocol[p->attr_class] = p;
875 }
876 }
877
878 /* FIXME: convert this call to some protocol hook */
879 extern void bfd_init_all(void);
880
881 /**
882 * protos_build - build a protocol list
883 *
884 * This function is called during BIRD startup to insert
885 * all standard protocols to the global protocol list. Insertion
886 * of platform specific protocols (such as the kernel syncer)
887 * is in the domain of competence of the platform dependent
888 * startup code.
889 */
890 void
891 protos_build(void)
892 {
893 init_list(&protocol_list);
894 init_list(&proto_list);
895 init_list(&active_proto_list);
896 init_list(&inactive_proto_list);
897 init_list(&initial_proto_list);
898 init_list(&flush_proto_list);
899 proto_build(&proto_device);
900 #ifdef CONFIG_RADV
901 proto_build(&proto_radv);
902 #endif
903 #ifdef CONFIG_RIP
904 proto_build(&proto_rip);
905 #endif
906 #ifdef CONFIG_STATIC
907 proto_build(&proto_static);
908 #endif
909 #ifdef CONFIG_OSPF
910 proto_build(&proto_ospf);
911 #endif
912 #ifdef CONFIG_PIPE
913 proto_build(&proto_pipe);
914 #endif
915 #ifdef CONFIG_BGP
916 proto_build(&proto_bgp);
917 #endif
918 #ifdef CONFIG_BFD
919 proto_build(&proto_bfd);
920 bfd_init_all();
921 #endif
922
923 proto_pool = rp_new(&root_pool, "Protocols");
924 proto_flush_event = ev_new(proto_pool);
925 proto_flush_event->hook = proto_flush_loop;
926 proto_shutdown_timer = tm_new(proto_pool);
927 proto_shutdown_timer->hook = proto_shutdown_loop;
928 }
929
930 static void
931 proto_feed_more(void *P)
932 {
933 struct proto *p = P;
934
935 if (p->export_state != ES_FEEDING)
936 return;
937
938 DBG("Feeding protocol %s continued\n", p->name);
939 if (rt_feed_baby(p))
940 {
941 DBG("Feeding protocol %s finished\n", p->name);
942 p->export_state = ES_READY;
943 proto_log_state_change(p);
944
945 if (p->feed_end)
946 p->feed_end(p);
947 }
948 else
949 {
950 p->attn->hook = proto_feed_more;
951 ev_schedule(p->attn); /* Will continue later... */
952 }
953 }
954
955 static void
956 proto_feed_initial(void *P)
957 {
958 struct proto *p = P;
959
960 if (p->export_state != ES_FEEDING)
961 return;
962
963 DBG("Feeding protocol %s\n", p->name);
964
965 if_feed_baby(p);
966 proto_feed_more(P);
967 }
968
969 static void
970 proto_schedule_feed(struct proto *p, int initial)
971 {
972 DBG("%s: Scheduling meal\n", p->name);
973
974 p->export_state = ES_FEEDING;
975 p->refeeding = !initial;
976
977 p->attn->hook = initial ? proto_feed_initial : proto_feed_more;
978 ev_schedule(p->attn);
979
980 if (p->feed_begin)
981 p->feed_begin(p, initial);
982 }
983
984 /*
985 * Flushing loop is responsible for flushing routes and protocols
986 * after they went down. It runs in proto_flush_event. At the start of
987 * one round, protocols waiting to flush are marked in
988 * proto_schedule_flush_loop(). At the end of the round (when routing
989 * table flush is complete), marked protocols are flushed and a next
990 * round may start.
991 */
992
993 static int flush_loop_state; /* 1 -> running */
994
995 static void
996 proto_schedule_flush_loop(void)
997 {
998 struct proto *p;
999 struct announce_hook *h;
1000
1001 if (flush_loop_state)
1002 return;
1003 flush_loop_state = 1;
1004
1005 WALK_LIST(p, flush_proto_list)
1006 {
1007 p->flushing = 1;
1008 for (h=p->ahooks; h; h=h->next)
1009 rt_mark_for_prune(h->table);
1010 }
1011
1012 ev_schedule(proto_flush_event);
1013 }
1014
1015 static void
1016 proto_flush_loop(void *unused UNUSED)
1017 {
1018 struct proto *p;
1019
1020 if (! rt_prune_loop())
1021 {
1022 /* Rtable pruning is not finished */
1023 ev_schedule(proto_flush_event);
1024 return;
1025 }
1026
1027 rt_prune_sources();
1028
1029 again:
1030 WALK_LIST(p, flush_proto_list)
1031 if (p->flushing)
1032 {
1033 /* This will flush interfaces in the same manner
1034 like rt_prune_all() flushes routes */
1035 if (p->proto == &proto_unix_iface)
1036 if_flush_ifaces(p);
1037
1038 DBG("Flushing protocol %s\n", p->name);
1039 p->flushing = 0;
1040 p->core_state = FS_HUNGRY;
1041 proto_relink(p);
1042 proto_log_state_change(p);
1043 if (p->proto_state == PS_DOWN)
1044 proto_fell_down(p);
1045 goto again;
1046 }
1047
1048 /* This round finished, perhaps there will be another one */
1049 flush_loop_state = 0;
1050 if (!EMPTY_LIST(flush_proto_list))
1051 proto_schedule_flush_loop();
1052 }
1053
1054
1055 /* Temporary hack to propagate restart to BGP */
1056 int proto_restart;
1057
1058 static void
1059 proto_shutdown_loop(struct timer *t UNUSED)
1060 {
1061 struct proto *p, *p_next;
1062
1063 WALK_LIST_DELSAFE(p, p_next, active_proto_list)
1064 if (p->down_sched)
1065 {
1066 proto_restart = (p->down_sched == PDS_RESTART);
1067
1068 p->disabled = 1;
1069 proto_rethink_goal(p);
1070 if (proto_restart)
1071 {
1072 p->disabled = 0;
1073 proto_rethink_goal(p);
1074 }
1075 }
1076 }
1077
1078 static inline void
1079 proto_schedule_down(struct proto *p, byte restart, byte code)
1080 {
1081 /* Does not work for other states (even PS_START) */
1082 ASSERT(p->proto_state == PS_UP);
1083
1084 /* Scheduled restart may change to shutdown, but not otherwise */
1085 if (p->down_sched == PDS_DISABLE)
1086 return;
1087
1088 p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
1089 p->down_code = code;
1090 tm_start_max(proto_shutdown_timer, restart ? 2 : 0);
1091 }
1092
1093
1094 /**
1095 * proto_request_feeding - request feeding routes to the protocol
1096 * @p: given protocol
1097 *
1098 * Sometimes it is needed to send again all routes to the
1099 * protocol. This is called feeding and can be requested by this
1100 * function. This would cause protocol export state transition
1101 * to ES_FEEDING (during feeding) and when completed, it will
1102 * switch back to ES_READY. This function can be called even
1103 * when feeding is already running, in that case it is restarted.
1104 */
1105 void
1106 proto_request_feeding(struct proto *p)
1107 {
1108 ASSERT(p->proto_state == PS_UP);
1109
1110 /* Do nothing if we are still waiting for feeding */
1111 if (p->export_state == ES_DOWN)
1112 return;
1113
1114 /* If we are already feeding, we want to restart it */
1115 if (p->export_state == ES_FEEDING)
1116 {
1117 /* Unless feeding is in initial state */
1118 if (p->attn->hook == proto_feed_initial)
1119 return;
1120
1121 rt_feed_baby_abort(p);
1122 }
1123
1124 /* FIXME: This should be changed for better support of multitable protos */
1125 struct announce_hook *ah;
1126 for (ah = p->ahooks; ah; ah = ah->next)
1127 proto_reset_limit(ah->out_limit);
1128
1129 /* Hack: reset exp_routes during refeed, and do not decrease it later */
1130 p->stats.exp_routes = 0;
1131
1132 proto_schedule_feed(p, 0);
1133 proto_log_state_change(p);
1134 }
1135
1136 static const char *
1137 proto_limit_name(struct proto_limit *l)
1138 {
1139 const char *actions[] = {
1140 [PLA_WARN] = "warn",
1141 [PLA_BLOCK] = "block",
1142 [PLA_RESTART] = "restart",
1143 [PLA_DISABLE] = "disable",
1144 };
1145
1146 return actions[l->action];
1147 }
1148
1149 /**
1150 * proto_notify_limit: notify about limit hit and take appropriate action
1151 * @ah: announce hook
1152 * @l: limit being hit
1153 * @dir: limit direction (PLD_*)
1154 * @rt_count: the number of routes
1155 *
1156 * The function is called by the route processing core when limit @l
1157 * is breached. It activates the limit and tooks appropriate action
1158 * according to @l->action.
1159 */
1160 void
1161 proto_notify_limit(struct announce_hook *ah, struct proto_limit *l, int dir, u32 rt_count)
1162 {
1163 const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
1164 const byte dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
1165 struct proto *p = ah->proto;
1166
1167 if (l->state == PLS_BLOCKED)
1168 return;
1169
1170 /* For warning action, we want the log message every time we hit the limit */
1171 if (!l->state || ((l->action == PLA_WARN) && (rt_count == l->limit)))
1172 log(L_WARN "Protocol %s hits route %s limit (%d), action: %s",
1173 p->name, dir_name[dir], l->limit, proto_limit_name(l));
1174
1175 switch (l->action)
1176 {
1177 case PLA_WARN:
1178 l->state = PLS_ACTIVE;
1179 break;
1180
1181 case PLA_BLOCK:
1182 l->state = PLS_BLOCKED;
1183 break;
1184
1185 case PLA_RESTART:
1186 case PLA_DISABLE:
1187 l->state = PLS_BLOCKED;
1188 if (p->proto_state == PS_UP)
1189 proto_schedule_down(p, l->action == PLA_RESTART, dir_down[dir]);
1190 break;
1191 }
1192 }
1193
1194 void
1195 proto_verify_limits(struct announce_hook *ah)
1196 {
1197 struct proto_limit *l;
1198 struct proto_stats *stats = ah->stats;
1199 u32 all_routes = stats->imp_routes + stats->filt_routes;
1200
1201 l = ah->rx_limit;
1202 if (l && (all_routes > l->limit))
1203 proto_notify_limit(ah, l, PLD_RX, all_routes);
1204
1205 l = ah->in_limit;
1206 if (l && (stats->imp_routes > l->limit))
1207 proto_notify_limit(ah, l, PLD_IN, stats->imp_routes);
1208
1209 l = ah->out_limit;
1210 if (l && (stats->exp_routes > l->limit))
1211 proto_notify_limit(ah, l, PLD_OUT, stats->exp_routes);
1212 }
1213
1214
1215 static void
1216 proto_want_core_up(struct proto *p)
1217 {
1218 ASSERT(p->core_state == FS_HUNGRY);
1219
1220 if (!p->proto->multitable)
1221 {
1222 p->main_source = rt_get_source(p, 0);
1223 rt_lock_source(p->main_source);
1224
1225 /* Connect protocol to routing table */
1226 p->main_ahook = proto_add_announce_hook(p, p->table, &p->stats);
1227 p->main_ahook->in_filter = p->cf->in_filter;
1228 p->main_ahook->out_filter = p->cf->out_filter;
1229 p->main_ahook->rx_limit = p->cf->rx_limit;
1230 p->main_ahook->in_limit = p->cf->in_limit;
1231 p->main_ahook->out_limit = p->cf->out_limit;
1232 p->main_ahook->in_keep_filtered = p->cf->in_keep_filtered;
1233
1234 proto_reset_limit(p->main_ahook->rx_limit);
1235 proto_reset_limit(p->main_ahook->in_limit);
1236 proto_reset_limit(p->main_ahook->out_limit);
1237 }
1238
1239 p->core_state = FS_HAPPY;
1240 proto_relink(p);
1241 }
1242
1243 static void
1244 proto_want_export_up(struct proto *p)
1245 {
1246 ASSERT(p->core_state == FS_HAPPY);
1247 ASSERT(p->export_state == ES_DOWN);
1248
1249 proto_link_ahooks(p);
1250 proto_schedule_feed(p, 1); /* Sets ES_FEEDING */
1251 }
1252
1253 static void
1254 proto_want_export_down(struct proto *p)
1255 {
1256 ASSERT(p->export_state != ES_DOWN);
1257
1258 /* Need to abort feeding */
1259 if (p->export_state == ES_FEEDING)
1260 rt_feed_baby_abort(p);
1261
1262 p->export_state = ES_DOWN;
1263 proto_unlink_ahooks(p);
1264 }
1265
1266 static void
1267 proto_want_core_down(struct proto *p)
1268 {
1269 ASSERT(p->core_state == FS_HAPPY);
1270 ASSERT(p->export_state == ES_DOWN);
1271
1272 p->core_state = FS_FLUSHING;
1273 proto_relink(p);
1274 proto_schedule_flush_loop();
1275
1276 if (!p->proto->multitable)
1277 {
1278 rt_unlock_source(p->main_source);
1279 p->main_source = NULL;
1280 }
1281 }
1282
1283 static void
1284 proto_falling_down(struct proto *p)
1285 {
1286 p->gr_recovery = 0;
1287 p->gr_wait = 0;
1288 if (p->gr_lock)
1289 proto_graceful_restart_unlock(p);
1290 }
1291
1292 static void
1293 proto_fell_down(struct proto *p)
1294 {
1295 DBG("Protocol %s down\n", p->name);
1296
1297 u32 all_routes = p->stats.imp_routes + p->stats.filt_routes;
1298 if (all_routes != 0)
1299 log(L_ERR "Protocol %s is down but still has %d routes", p->name, all_routes);
1300
1301 bzero(&p->stats, sizeof(struct proto_stats));
1302 proto_free_ahooks(p);
1303
1304 if (! p->proto->multitable)
1305 rt_unlock_table(p->table);
1306
1307 if (p->proto->cleanup)
1308 p->proto->cleanup(p);
1309
1310 proto_rethink_goal(p);
1311 }
1312
1313
1314 /**
1315 * proto_notify_state - notify core about protocol state change
1316 * @p: protocol the state of which has changed
1317 * @ps: the new status
1318 *
1319 * Whenever a state of a protocol changes due to some event internal
1320 * to the protocol (i.e., not inside a start() or shutdown() hook),
1321 * it should immediately notify the core about the change by calling
1322 * proto_notify_state() which will write the new state to the &proto
1323 * structure and take all the actions necessary to adapt to the new
1324 * state. State change to PS_DOWN immediately frees resources of protocol
1325 * and might execute start callback of protocol; therefore,
1326 * it should be used at tail positions of protocol callbacks.
1327 */
1328 void
1329 proto_notify_state(struct proto *p, unsigned ps)
1330 {
1331 unsigned ops = p->proto_state;
1332 unsigned cs = p->core_state;
1333 unsigned es = p->export_state;
1334
1335 DBG("%s reporting state transition %s/%s -> */%s\n", p->name, c_states[cs], p_states[ops], p_states[ps]);
1336 if (ops == ps)
1337 return;
1338
1339 p->proto_state = ps;
1340 p->last_state_change = now;
1341
1342 switch (ps)
1343 {
1344 case PS_START:
1345 ASSERT(ops == PS_DOWN || ops == PS_UP);
1346 ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);
1347
1348 if (es != ES_DOWN)
1349 proto_want_export_down(p);
1350 break;
1351
1352 case PS_UP:
1353 ASSERT(ops == PS_DOWN || ops == PS_START);
1354 ASSERT(cs == FS_HUNGRY || cs == FS_HAPPY);
1355 ASSERT(es == ES_DOWN);
1356
1357 if (cs == FS_HUNGRY)
1358 proto_want_core_up(p);
1359 if (!p->gr_wait)
1360 proto_want_export_up(p);
1361 break;
1362
1363 case PS_STOP:
1364 ASSERT(ops == PS_START || ops == PS_UP);
1365
1366 p->down_sched = 0;
1367
1368 if (es != ES_DOWN)
1369 proto_want_export_down(p);
1370 if (cs == FS_HAPPY)
1371 proto_want_core_down(p);
1372 proto_falling_down(p);
1373 break;
1374
1375 case PS_DOWN:
1376 p->down_code = 0;
1377 p->down_sched = 0;
1378
1379 if (es != ES_DOWN)
1380 proto_want_export_down(p);
1381 if (cs == FS_HAPPY)
1382 proto_want_core_down(p);
1383 if (ops != PS_STOP)
1384 proto_falling_down(p);
1385
1386 neigh_prune(); // FIXME convert neighbors to resource?
1387 rfree(p->pool);
1388 p->pool = NULL;
1389
1390 if (cs == FS_HUNGRY) /* Shutdown finished */
1391 {
1392 proto_log_state_change(p);
1393 proto_fell_down(p);
1394 return; /* The protocol might have ceased to exist */
1395 }
1396 break;
1397
1398 default:
1399 bug("%s: Invalid state %d", p->name, ps);
1400 }
1401
1402 proto_log_state_change(p);
1403 }
1404
1405 /*
1406 * CLI Commands
1407 */
1408
1409 static char *
1410 proto_state_name(struct proto *p)
1411 {
1412 #define P(x,y) ((x << 4) | y)
1413 switch (P(p->proto_state, p->core_state))
1414 {
1415 case P(PS_DOWN, FS_HUNGRY): return "down";
1416 case P(PS_START, FS_HUNGRY):
1417 case P(PS_START, FS_HAPPY): return "start";
1418 case P(PS_UP, FS_HAPPY):
1419 switch (p->export_state)
1420 {
1421 case ES_DOWN: return "wait";
1422 case ES_FEEDING: return "feed";
1423 case ES_READY: return "up";
1424 default: return "???";
1425 }
1426 case P(PS_STOP, FS_HUNGRY):
1427 case P(PS_STOP, FS_FLUSHING): return "stop";
1428 case P(PS_DOWN, FS_FLUSHING): return "flush";
1429 default: return "???";
1430 }
1431 #undef P
1432 }
1433
1434 static void
1435 proto_show_stats(struct proto_stats *s, int in_keep_filtered)
1436 {
1437 if (in_keep_filtered)
1438 cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported, %u preferred",
1439 s->imp_routes, s->filt_routes, s->exp_routes, s->pref_routes);
1440 else
1441 cli_msg(-1006, " Routes: %u imported, %u exported, %u preferred",
1442 s->imp_routes, s->exp_routes, s->pref_routes);
1443
1444 cli_msg(-1006, " Route change stats: received rejected filtered ignored accepted");
1445 cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u",
1446 s->imp_updates_received, s->imp_updates_invalid,
1447 s->imp_updates_filtered, s->imp_updates_ignored,
1448 s->imp_updates_accepted);
1449 cli_msg(-1006, " Import withdraws: %10u %10u --- %10u %10u",
1450 s->imp_withdraws_received, s->imp_withdraws_invalid,
1451 s->imp_withdraws_ignored, s->imp_withdraws_accepted);
1452 cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u",
1453 s->exp_updates_received, s->exp_updates_rejected,
1454 s->exp_updates_filtered, s->exp_updates_accepted);
1455 cli_msg(-1006, " Export withdraws: %10u --- --- --- %10u",
1456 s->exp_withdraws_received, s->exp_withdraws_accepted);
1457 }
1458
1459 void
1460 proto_show_limit(struct proto_limit *l, const char *dsc)
1461 {
1462 if (!l)
1463 return;
1464
1465 cli_msg(-1006, " %-16s%d%s", dsc, l->limit, l->state ? " [HIT]" : "");
1466 cli_msg(-1006, " Action: %s", proto_limit_name(l));
1467 }
1468
1469 void
1470 proto_show_basic_info(struct proto *p)
1471 {
1472 // cli_msg(-1006, " Table: %s", p->table->name);
1473 cli_msg(-1006, " Preference: %d", p->preference);
1474 cli_msg(-1006, " Input filter: %s", filter_name(p->cf->in_filter));
1475 cli_msg(-1006, " Output filter: %s", filter_name(p->cf->out_filter));
1476
1477 if (graceful_restart_state == GRS_ACTIVE)
1478 cli_msg(-1006, " GR recovery: %s%s",
1479 p->gr_lock ? " pending" : "",
1480 p->gr_wait ? " waiting" : "");
1481
1482 proto_show_limit(p->cf->rx_limit, "Receive limit:");
1483 proto_show_limit(p->cf->in_limit, "Import limit:");
1484 proto_show_limit(p->cf->out_limit, "Export limit:");
1485
1486 if (p->proto_state != PS_DOWN)
1487 proto_show_stats(&p->stats, p->cf->in_keep_filtered);
1488 }
1489
1490 void
1491 proto_cmd_show(struct proto *p, uint verbose, int cnt)
1492 {
1493 byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
1494
1495 /* First protocol - show header */
1496 if (!cnt)
1497 cli_msg(-2002, "name proto table state since info");
1498
1499 buf[0] = 0;
1500 if (p->proto->get_status)
1501 p->proto->get_status(p, buf);
1502 tm_format_datetime(tbuf, &config->tf_proto, p->last_state_change);
1503 cli_msg(-1002, "%-8s %-8s %-8s %-5s %-10s %s",
1504 p->name,
1505 p->proto->name,
1506 p->table->name,
1507 proto_state_name(p),
1508 tbuf,
1509 buf);
1510 if (verbose)
1511 {
1512 if (p->cf->dsc)
1513 cli_msg(-1006, " Description: %s", p->cf->dsc);
1514 if (p->cf->router_id)
1515 cli_msg(-1006, " Router ID: %R", p->cf->router_id);
1516
1517 if (p->proto->show_proto_info)
1518 p->proto->show_proto_info(p);
1519 else
1520 proto_show_basic_info(p);
1521
1522 cli_msg(-1006, "");
1523 }
1524 }
1525
1526 void
1527 proto_cmd_disable(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1528 {
1529 if (p->disabled)
1530 {
1531 cli_msg(-8, "%s: already disabled", p->name);
1532 return;
1533 }
1534
1535 log(L_INFO "Disabling protocol %s", p->name);
1536 p->disabled = 1;
1537 p->down_code = PDC_CMD_DISABLE;
1538 proto_rethink_goal(p);
1539 cli_msg(-9, "%s: disabled", p->name);
1540 }
1541
1542 void
1543 proto_cmd_enable(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1544 {
1545 if (!p->disabled)
1546 {
1547 cli_msg(-10, "%s: already enabled", p->name);
1548 return;
1549 }
1550
1551 log(L_INFO "Enabling protocol %s", p->name);
1552 p->disabled = 0;
1553 proto_rethink_goal(p);
1554 cli_msg(-11, "%s: enabled", p->name);
1555 }
1556
1557 void
1558 proto_cmd_restart(struct proto *p, uint arg UNUSED, int cnt UNUSED)
1559 {
1560 if (p->disabled)
1561 {
1562 cli_msg(-8, "%s: already disabled", p->name);
1563 return;
1564 }
1565
1566 log(L_INFO "Restarting protocol %s", p->name);
1567 p->disabled = 1;
1568 p->down_code = PDC_CMD_RESTART;
1569 proto_rethink_goal(p);
1570 p->disabled = 0;
1571 proto_rethink_goal(p);
1572 cli_msg(-12, "%s: restarted", p->name);
1573 }
1574
1575 void
1576 proto_cmd_reload(struct proto *p, uint dir, int cnt UNUSED)
1577 {
1578 if (p->disabled)
1579 {
1580 cli_msg(-8, "%s: already disabled", p->name);
1581 return;
1582 }
1583
1584 /* If the protocol in not UP, it has no routes */
1585 if (p->proto_state != PS_UP)
1586 return;
1587
1588 log(L_INFO "Reloading protocol %s", p->name);
1589
1590 /* re-importing routes */
1591 if (dir != CMD_RELOAD_OUT)
1592 {
1593 if (! (p->reload_routes && p->reload_routes(p)))
1594 {
1595 cli_msg(-8006, "%s: reload failed", p->name);
1596 return;
1597 }
1598
1599 /*
1600 * Should be done before reload_routes() hook?
1601 * Perhaps, but these hooks work asynchronously.
1602 */
1603 if (!p->proto->multitable)
1604 {
1605 proto_reset_limit(p->main_ahook->rx_limit);
1606 proto_reset_limit(p->main_ahook->in_limit);
1607 }
1608 }
1609
1610 /* re-exporting routes */
1611 if (dir != CMD_RELOAD_IN)
1612 proto_request_feeding(p);
1613
1614 cli_msg(-15, "%s: reloading", p->name);
1615 }
1616
1617 void
1618 proto_cmd_debug(struct proto *p, uint mask, int cnt UNUSED)
1619 {
1620 p->debug = mask;
1621 }
1622
1623 void
1624 proto_cmd_mrtdump(struct proto *p, uint mask, int cnt UNUSED)
1625 {
1626 p->mrtdump = mask;
1627 }
1628
1629 static void
1630 proto_apply_cmd_symbol(struct symbol *s, void (* cmd)(struct proto *, uint, int), uint arg)
1631 {
1632 if (s->class != SYM_PROTO)
1633 {
1634 cli_msg(9002, "%s is not a protocol", s->name);
1635 return;
1636 }
1637
1638 cmd(((struct proto_config *)s->def)->proto, arg, 0);
1639 cli_msg(0, "");
1640 }
1641
1642 static void
1643 proto_apply_cmd_patt(char *patt, void (* cmd)(struct proto *, uint, int), uint arg)
1644 {
1645 int cnt = 0;
1646
1647 node *nn;
1648 WALK_LIST(nn, proto_list)
1649 {
1650 struct proto *p = SKIP_BACK(struct proto, glob_node, nn);
1651
1652 if (!patt || patmatch(patt, p->name))
1653 cmd(p, arg, cnt++);
1654 }
1655
1656 if (!cnt)
1657 cli_msg(8003, "No protocols match");
1658 else
1659 cli_msg(0, "");
1660 }
1661
1662 void
1663 proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uint, int),
1664 int restricted, uint arg)
1665 {
1666 if (restricted && cli_access_restricted())
1667 return;
1668
1669 if (ps.patt)
1670 proto_apply_cmd_patt(ps.ptr, cmd, arg);
1671 else
1672 proto_apply_cmd_symbol(ps.ptr, cmd, arg);
1673 }
1674
1675 struct proto *
1676 proto_get_named(struct symbol *sym, struct protocol *pr)
1677 {
1678 struct proto *p, *q;
1679
1680 if (sym)
1681 {
1682 if (sym->class != SYM_PROTO)
1683 cf_error("%s: Not a protocol", sym->name);
1684 p = ((struct proto_config *)sym->def)->proto;
1685 if (!p || p->proto != pr)
1686 cf_error("%s: Not a %s protocol", sym->name, pr->name);
1687 }
1688 else
1689 {
1690 p = NULL;
1691 WALK_LIST(q, active_proto_list)
1692 if (q->proto == pr)
1693 {
1694 if (p)
1695 cf_error("There are multiple %s protocols running", pr->name);
1696 p = q;
1697 }
1698 if (!p)
1699 cf_error("There is no %s protocol running", pr->name);
1700 }
1701 return p;
1702 }