]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/route.h
Routing table is now a resource allocated from its own pool
[thirdparty/bird.git] / nest / route.h
1 /*
2 * BIRD Internet Routing Daemon -- Routing Table
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 #ifndef _BIRD_ROUTE_H_
10 #define _BIRD_ROUTE_H_
11
12 #include "lib/lists.h"
13 #include "lib/bitmap.h"
14 #include "lib/resource.h"
15 #include "lib/net.h"
16
17 struct ea_list;
18 struct protocol;
19 struct proto;
20 struct rte_src;
21 struct symbol;
22 struct timer;
23 struct filter;
24 struct cli;
25
26 /*
27 * Generic data structure for storing network prefixes. Also used
28 * for the master routing table. Currently implemented as a hash
29 * table.
30 *
31 * Available operations:
32 * - insertion of new entry
33 * - deletion of entry
34 * - searching for entry by network prefix
35 * - asynchronous retrieval of fib contents
36 */
37
38 struct fib_node {
39 struct fib_node *next; /* Next in hash chain */
40 struct fib_iterator *readers; /* List of readers of this node */
41 net_addr addr[0];
42 };
43
44 struct fib_iterator { /* See lib/slists.h for an explanation */
45 struct fib_iterator *prev, *next; /* Must be synced with struct fib_node! */
46 byte efef; /* 0xff to distinguish between iterator and node */
47 byte pad[3];
48 struct fib_node *node; /* Or NULL if freshly merged */
49 uint hash;
50 };
51
52 typedef void (*fib_init_fn)(void *);
53
54 struct fib {
55 pool *fib_pool; /* Pool holding all our data */
56 slab *fib_slab; /* Slab holding all fib nodes */
57 struct fib_node **hash_table; /* Node hash table */
58 uint hash_size; /* Number of hash table entries (a power of two) */
59 uint hash_order; /* Binary logarithm of hash_size */
60 uint hash_shift; /* 32 - hash_order */
61 uint addr_type; /* Type of address data stored in fib (NET_*) */
62 uint node_size; /* FIB node size, 0 for nonuniform */
63 uint node_offset; /* Offset of fib_node struct inside of user data */
64 uint entries; /* Number of entries */
65 uint entries_min, entries_max; /* Entry count limits (else start rehashing) */
66 fib_init_fn init; /* Constructor */
67 };
68
69 static inline void * fib_node_to_user(struct fib *f, struct fib_node *e)
70 { return e ? (void *) ((char *) e - f->node_offset) : NULL; }
71
72 static inline struct fib_node * fib_user_to_node(struct fib *f, void *e)
73 { return e ? (void *) ((char *) e + f->node_offset) : NULL; }
74
75 void fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init);
76 void *fib_find(struct fib *, const net_addr *); /* Find or return NULL if doesn't exist */
77 void *fib_get_chain(struct fib *f, const net_addr *a); /* Find first node in linked list from hash table */
78 void *fib_get(struct fib *, const net_addr *); /* Find or create new if nonexistent */
79 void *fib_route(struct fib *, const net_addr *); /* Longest-match routing lookup */
80 void fib_delete(struct fib *, void *); /* Remove fib entry */
81 void fib_free(struct fib *); /* Destroy the fib */
82 void fib_check(struct fib *); /* Consistency check for debugging */
83
84 void fit_init(struct fib_iterator *, struct fib *); /* Internal functions, don't call */
85 struct fib_node *fit_get(struct fib *, struct fib_iterator *);
86 void fit_put(struct fib_iterator *, struct fib_node *);
87 void fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos);
88 void fit_put_end(struct fib_iterator *i);
89 void fit_copy(struct fib *f, struct fib_iterator *dst, struct fib_iterator *src);
90
91
92 #define FIB_WALK(fib, type, z) do { \
93 struct fib_node *fn_, **ff_ = (fib)->hash_table; \
94 uint count_ = (fib)->hash_size; \
95 type *z; \
96 while (count_--) \
97 for (fn_ = *ff_++; z = fib_node_to_user(fib, fn_); fn_=fn_->next)
98
99 #define FIB_WALK_END } while (0)
100
101 #define FIB_ITERATE_INIT(it, fib) fit_init(it, fib)
102
103 #define FIB_ITERATE_START(fib, it, type, z) do { \
104 struct fib_node *fn_ = fit_get(fib, it); \
105 uint count_ = (fib)->hash_size; \
106 uint hpos_ = (it)->hash; \
107 type *z; \
108 for(;;) { \
109 if (!fn_) \
110 { \
111 if (++hpos_ >= count_) \
112 break; \
113 fn_ = (fib)->hash_table[hpos_]; \
114 continue; \
115 } \
116 z = fib_node_to_user(fib, fn_);
117
118 #define FIB_ITERATE_END fn_ = fn_->next; } } while(0)
119
120 #define FIB_ITERATE_PUT(it) fit_put(it, fn_)
121
122 #define FIB_ITERATE_PUT_NEXT(it, fib) fit_put_next(fib, it, fn_, hpos_)
123
124 #define FIB_ITERATE_PUT_END(it) fit_put_end(it)
125
126 #define FIB_ITERATE_UNLINK(it, fib) fit_get(fib, it)
127
128 #define FIB_ITERATE_COPY(dst, src, fib) fit_copy(fib, dst, src)
129
130
131 /*
132 * Master Routing Tables. Generally speaking, each of them contains a FIB
133 * with each entry pointing to a list of route entries representing routes
134 * to given network (with the selected one at the head).
135 *
136 * Each of the RTE's contains variable data (the preference and protocol-dependent
137 * metrics) and a pointer to a route attribute block common for many routes).
138 *
139 * It's guaranteed that there is at most one RTE for every (prefix,proto) pair.
140 */
141
142 struct rtable_config {
143 node n;
144 char *name;
145 struct rtable *table;
146 struct proto_config *krt_attached; /* Kernel syncer attached to this table */
147 uint addr_type; /* Type of address data stored in table (NET_*) */
148 int gc_max_ops; /* Maximum number of operations before GC is run */
149 int gc_min_time; /* Minimum time between two consecutive GC runs */
150 byte sorted; /* Routes of network are sorted according to rte_better() */
151 byte internal; /* Internal table of a protocol */
152 btime min_settle_time; /* Minimum settle time for notifications */
153 btime max_settle_time; /* Maximum settle time for notifications */
154 };
155
156 typedef struct rtable {
157 resource r;
158 node n; /* Node in list of all tables */
159 pool *rp; /* Resource pool to allocate everything from, including itself */
160 struct fib fib;
161 char *name; /* Name of this table */
162 list channels; /* List of attached channels (struct channel) */
163 uint addr_type; /* Type of address data stored in table (NET_*) */
164 int pipe_busy; /* Pipe loop detection */
165 int use_count; /* Number of protocols using this table */
166 u32 rt_count; /* Number of routes in the table */
167 struct hmap id_map;
168 struct hostcache *hostcache;
169 struct rtable_config *config; /* Configuration of this table */
170 struct config *deleted; /* Table doesn't exist in current configuration,
171 * delete as soon as use_count becomes 0 and remove
172 * obstacle from this routing table.
173 */
174 struct event *rt_event; /* Routing table event */
175 btime last_rt_change; /* Last time when route changed */
176 btime base_settle_time; /* Start time of rtable settling interval */
177 btime gc_time; /* Time of last GC */
178 int gc_counter; /* Number of operations since last GC */
179 byte prune_state; /* Table prune state, 1 -> scheduled, 2-> running */
180 byte hcu_scheduled; /* Hostcache update is scheduled */
181 byte nhu_state; /* Next Hop Update state */
182 struct fib_iterator prune_fit; /* Rtable prune FIB iterator */
183 struct fib_iterator nhu_fit; /* Next Hop Update FIB iterator */
184
185 list subscribers; /* Subscribers for notifications */
186 struct timer *settle_timer; /* Settle time for notifications */
187 } rtable;
188
189 struct rt_subscription {
190 node n;
191 rtable *tab;
192 void (*hook)(struct rt_subscription *b);
193 void *data;
194 };
195
196 #define NHU_CLEAN 0
197 #define NHU_SCHEDULED 1
198 #define NHU_RUNNING 2
199 #define NHU_DIRTY 3
200
201 typedef struct network {
202 struct rte *routes; /* Available routes for this network */
203 struct fib_node n; /* FIB flags reserved for kernel syncer */
204 } net;
205
206 struct hostcache {
207 slab *slab; /* Slab holding all hostentries */
208 struct hostentry **hash_table; /* Hash table for hostentries */
209 unsigned hash_order, hash_shift;
210 unsigned hash_max, hash_min;
211 unsigned hash_items;
212 linpool *lp; /* Linpool for trie */
213 struct f_trie *trie; /* Trie of prefixes that might affect hostentries */
214 list hostentries; /* List of all hostentries */
215 byte update_hostcache;
216 };
217
218 struct hostentry {
219 node ln;
220 ip_addr addr; /* IP address of host, part of key */
221 ip_addr link; /* (link-local) IP address of host, used as gw
222 if host is directly attached */
223 struct rtable *tab; /* Dependent table, part of key */
224 struct hostentry *next; /* Next in hash chain */
225 unsigned hash_key; /* Hash key */
226 unsigned uc; /* Use count */
227 struct rta *src; /* Source rta entry */
228 byte dest; /* Chosen route destination type (RTD_...) */
229 byte nexthop_linkable; /* Nexthop list is completely non-device */
230 u32 igp_metric; /* Chosen route IGP metric */
231 };
232
233 typedef struct rte {
234 struct rte *next;
235 net *net; /* Network this RTE belongs to */
236 struct channel *sender; /* Channel used to send the route to the routing table */
237 struct rta *attrs; /* Attributes of this route */
238 u32 id; /* Table specific route id */
239 byte flags; /* Flags (REF_...) */
240 byte pflags; /* Protocol-specific flags */
241 word pref; /* Route preference */
242 btime lastmod; /* Last modified */
243 union { /* Protocol-dependent data (metrics etc.) */
244 #ifdef CONFIG_RIP
245 struct {
246 struct iface *from; /* Incoming iface */
247 u8 metric; /* RIP metric */
248 u16 tag; /* External route tag */
249 } rip;
250 #endif
251 #ifdef CONFIG_OSPF
252 struct {
253 u32 metric1, metric2; /* OSPF Type 1 and Type 2 metrics */
254 u32 tag; /* External route tag */
255 u32 router_id; /* Router that originated this route */
256 } ospf;
257 #endif
258 #ifdef CONFIG_BGP
259 struct {
260 u8 suppressed; /* Used for deterministic MED comparison */
261 s8 stale; /* Route is LLGR_STALE, -1 if unknown */
262 } bgp;
263 #endif
264 #ifdef CONFIG_BABEL
265 struct {
266 u16 seqno; /* Babel seqno */
267 u16 metric; /* Babel metric */
268 u64 router_id; /* Babel router id */
269 } babel;
270 #endif
271 struct { /* Routes generated by krt sync (both temporary and inherited ones) */
272 s8 src; /* Alleged route source (see krt.h) */
273 u8 proto; /* Kernel source protocol ID */
274 u8 seen; /* Seen during last scan */
275 u8 best; /* Best route in network, propagated to core */
276 u32 metric; /* Kernel metric */
277 } krt;
278 } u;
279 } rte;
280
281 #define REF_COW 1 /* Copy this rte on write */
282 #define REF_FILTERED 2 /* Route is rejected by import filter */
283 #define REF_STALE 4 /* Route is stale in a refresh cycle */
284 #define REF_DISCARD 8 /* Route is scheduled for discard */
285 #define REF_MODIFY 16 /* Route is scheduled for modify */
286
287 /* Route is valid for propagation (may depend on other flags in the future), accepts NULL */
288 static inline int rte_is_valid(rte *r) { return r && !(r->flags & REF_FILTERED); }
289
290 /* Route just has REF_FILTERED flag */
291 static inline int rte_is_filtered(rte *r) { return !!(r->flags & REF_FILTERED); }
292
293
294 /* Types of route announcement, also used as flags */
295 #define RA_UNDEF 0 /* Undefined RA type */
296 #define RA_OPTIMAL 1 /* Announcement of optimal route change */
297 #define RA_ACCEPTED 2 /* Announcement of first accepted route */
298 #define RA_ANY 3 /* Announcement of any route change */
299 #define RA_MERGED 4 /* Announcement of optimal route merged with next ones */
300
301 /* Return value of preexport() callback */
302 #define RIC_ACCEPT 1 /* Accepted by protocol */
303 #define RIC_PROCESS 0 /* Process it through import filter */
304 #define RIC_REJECT -1 /* Rejected by protocol */
305 #define RIC_DROP -2 /* Silently dropped by protocol */
306
307 extern list routing_tables;
308 struct config;
309
310 void rt_init(void);
311 void rt_preconfig(struct config *);
312 void rt_commit(struct config *new, struct config *old);
313 void rt_lock_table(rtable *);
314 void rt_unlock_table(rtable *);
315 void rt_subscribe(rtable *tab, struct rt_subscription *s);
316 void rt_unsubscribe(struct rt_subscription *s);
317 rtable *rt_setup(pool *, struct rtable_config *);
318 static inline void rt_shutdown(rtable *r) { rfree(r->rp); }
319
320 static inline net *net_find(rtable *tab, const net_addr *addr) { return (net *) fib_find(&tab->fib, addr); }
321 static inline net *net_find_valid(rtable *tab, const net_addr *addr)
322 { net *n = net_find(tab, addr); return (n && rte_is_valid(n->routes)) ? n : NULL; }
323 static inline net *net_get(rtable *tab, const net_addr *addr) { return (net *) fib_get(&tab->fib, addr); }
324 void *net_route(rtable *tab, const net_addr *n);
325 int net_roa_check(rtable *tab, const net_addr *n, u32 asn);
326 rte *rte_find(net *net, struct rte_src *src);
327 rte *rte_get_temp(struct rta *);
328 void rte_update2(struct channel *c, const net_addr *n, rte *new, struct rte_src *src);
329 /* rte_update() moved to protocol.h to avoid dependency conflicts */
330 int rt_examine(rtable *t, net_addr *a, struct proto *p, const struct filter *filter);
331 rte *rt_export_merged(struct channel *c, net *net, rte **rt_free, linpool *pool, int silent);
332 void rt_refresh_begin(rtable *t, struct channel *c);
333 void rt_refresh_end(rtable *t, struct channel *c);
334 void rt_modify_stale(rtable *t, struct channel *c);
335 void rt_schedule_prune(rtable *t);
336 void rte_dump(rte *);
337 void rte_free(rte *);
338 rte *rte_do_cow(rte *);
339 static inline rte * rte_cow(rte *r) { return (r->flags & REF_COW) ? rte_do_cow(r) : r; }
340 rte *rte_cow_rta(rte *r, linpool *lp);
341 void rte_init_tmp_attrs(struct rte *r, linpool *lp, uint max);
342 void rte_make_tmp_attr(struct rte *r, uint id, uint type, uintptr_t val);
343 void rte_make_tmp_attrs(struct rte **r, struct linpool *pool, struct rta **old_attrs);
344 uintptr_t rte_store_tmp_attr(struct rte *r, uint id);
345 void rt_dump(rtable *);
346 void rt_dump_all(void);
347 int rt_feed_channel(struct channel *c);
348 void rt_feed_channel_abort(struct channel *c);
349 int rte_update_in(struct channel *c, const net_addr *n, rte *new, struct rte_src *src);
350 int rt_reload_channel(struct channel *c);
351 void rt_reload_channel_abort(struct channel *c);
352 void rt_prune_sync(rtable *t, int all);
353 int rte_update_out(struct channel *c, const net_addr *n, rte *new, rte *old0, int refeed);
354 struct rtable_config *rt_new_table(struct symbol *s, uint addr_type);
355
356
357 /* Default limit for ECMP next hops, defined in sysdep code */
358 extern const int rt_default_ecmp;
359
360 struct rt_show_data_rtable {
361 node n;
362 rtable *table;
363 struct channel *export_channel;
364 };
365
366 struct rt_show_data {
367 net_addr *addr;
368 list tables;
369 struct rt_show_data_rtable *tab; /* Iterator over table list */
370 struct rt_show_data_rtable *last_table; /* Last table in output */
371 struct fib_iterator fit; /* Iterator over networks in table */
372 int verbose, tables_defined_by;
373 const struct filter *filter;
374 struct proto *show_protocol;
375 struct proto *export_protocol;
376 struct channel *export_channel;
377 struct config *running_on_config;
378 struct krt_proto *kernel;
379 int export_mode, primary_only, filtered, stats, show_for;
380
381 int table_open; /* Iteration (fit) is open */
382 int net_counter, rt_counter, show_counter, table_counter;
383 int net_counter_last, rt_counter_last, show_counter_last;
384 };
385
386 void rt_show(struct rt_show_data *);
387 struct rt_show_data_rtable * rt_show_add_table(struct rt_show_data *d, rtable *t);
388
389 /* Value of table definition mode in struct rt_show_data */
390 #define RSD_TDB_DEFAULT 0 /* no table specified */
391 #define RSD_TDB_INDIRECT 0 /* show route ... protocol P ... */
392 #define RSD_TDB_ALL RSD_TDB_SET /* show route ... table all ... */
393 #define RSD_TDB_DIRECT RSD_TDB_SET | RSD_TDB_NMN /* show route ... table X table Y ... */
394
395 #define RSD_TDB_SET 0x1 /* internal: show empty tables */
396 #define RSD_TDB_NMN 0x2 /* internal: need matching net */
397
398 /* Value of export_mode in struct rt_show_data */
399 #define RSEM_NONE 0 /* Export mode not used */
400 #define RSEM_PREEXPORT 1 /* Routes ready for export, before filtering */
401 #define RSEM_EXPORT 2 /* Routes accepted by export filter */
402 #define RSEM_NOEXPORT 3 /* Routes rejected by export filter */
403 #define RSEM_EXPORTED 4 /* Routes marked in export map */
404
405 /*
406 * Route Attributes
407 *
408 * Beware: All standard BGP attributes must be represented here instead
409 * of making them local to the route. This is needed to ensure proper
410 * construction of BGP route attribute lists.
411 */
412
413 /* Nexthop structure */
414 struct nexthop {
415 ip_addr gw; /* Next hop */
416 struct iface *iface; /* Outgoing interface */
417 struct nexthop *next;
418 byte flags;
419 byte weight;
420 byte labels_orig; /* Number of labels before hostentry was applied */
421 byte labels; /* Number of all labels */
422 u32 label[0];
423 };
424
425 #define RNF_ONLINK 0x1 /* Gateway is onlink regardless of IP ranges */
426
427
428 struct rte_src {
429 struct rte_src *next; /* Hash chain */
430 struct proto *proto; /* Protocol the source is based on */
431 u32 private_id; /* Private ID, assigned by the protocol */
432 u32 global_id; /* Globally unique ID of the source */
433 unsigned uc; /* Use count */
434 };
435
436
437 typedef struct rta {
438 struct rta *next, **pprev; /* Hash chain */
439 u32 uc; /* Use count */
440 u32 hash_key; /* Hash over important fields */
441 struct ea_list *eattrs; /* Extended Attribute chain */
442 struct rte_src *src; /* Route source that created the route */
443 struct hostentry *hostentry; /* Hostentry for recursive next-hops */
444 ip_addr from; /* Advertising router */
445 u32 igp_metric; /* IGP metric to next hop (for iBGP routes) */
446 u8 source; /* Route source (RTS_...) */
447 u8 scope; /* Route scope (SCOPE_... -- see ip.h) */
448 u8 dest; /* Route destination type (RTD_...) */
449 u8 aflags;
450 struct nexthop nh; /* Next hop */
451 } rta;
452
453 #define RTS_DUMMY 0 /* Dummy route to be removed soon */
454 #define RTS_STATIC 1 /* Normal static route */
455 #define RTS_INHERIT 2 /* Route inherited from kernel */
456 #define RTS_DEVICE 3 /* Device route */
457 #define RTS_STATIC_DEVICE 4 /* Static device route */
458 #define RTS_REDIRECT 5 /* Learned via redirect */
459 #define RTS_RIP 6 /* RIP route */
460 #define RTS_OSPF 7 /* OSPF route */
461 #define RTS_OSPF_IA 8 /* OSPF inter-area route */
462 #define RTS_OSPF_EXT1 9 /* OSPF external route type 1 */
463 #define RTS_OSPF_EXT2 10 /* OSPF external route type 2 */
464 #define RTS_BGP 11 /* BGP route */
465 #define RTS_PIPE 12 /* Inter-table wormhole */
466 #define RTS_BABEL 13 /* Babel route */
467 #define RTS_RPKI 14 /* Route Origin Authorization */
468 #define RTS_PERF 15 /* Perf checker */
469 #define RTS_MAX 16
470
471 #define RTC_UNICAST 0
472 #define RTC_BROADCAST 1
473 #define RTC_MULTICAST 2
474 #define RTC_ANYCAST 3 /* IPv6 Anycast */
475
476 #define RTD_NONE 0 /* Undefined next hop */
477 #define RTD_UNICAST 1 /* Next hop is neighbor router */
478 #define RTD_BLACKHOLE 2 /* Silently drop packets */
479 #define RTD_UNREACHABLE 3 /* Reject as unreachable */
480 #define RTD_PROHIBIT 4 /* Administratively prohibited */
481 #define RTD_MAX 5
482
483 #define RTAF_CACHED 1 /* This is a cached rta */
484
485 #define IGP_METRIC_UNKNOWN 0x80000000 /* Default igp_metric used when no other
486 protocol-specific metric is availabe */
487
488
489 extern const char * rta_dest_names[RTD_MAX];
490
491 static inline const char *rta_dest_name(uint n)
492 { return (n < RTD_MAX) ? rta_dest_names[n] : "???"; }
493
494 /* Route has regular, reachable nexthop (i.e. not RTD_UNREACHABLE and like) */
495 static inline int rte_is_reachable(rte *r)
496 { return r->attrs->dest == RTD_UNICAST; }
497
498
499 /*
500 * Extended Route Attributes
501 */
502
503 typedef struct eattr {
504 word id; /* EA_CODE(PROTOCOL_..., protocol-dependent ID) */
505 byte flags; /* Protocol-dependent flags */
506 byte type; /* Attribute type and several flags (EAF_...) */
507 union {
508 u32 data;
509 const struct adata *ptr; /* Attribute data elsewhere */
510 } u;
511 } eattr;
512
513
514 #define EA_CODE(proto,id) (((proto) << 8) | (id))
515 #define EA_ID(ea) ((ea) & 0xff)
516 #define EA_PROTO(ea) ((ea) >> 8)
517 #define EA_ID_FLAG(ea) (1 << EA_ID(ea))
518 #define EA_CUSTOM(id) ((id) | EA_CUSTOM_BIT)
519 #define EA_IS_CUSTOM(ea) ((ea) & EA_CUSTOM_BIT)
520 #define EA_CUSTOM_ID(ea) ((ea) & ~EA_CUSTOM_BIT)
521
522 const char *ea_custom_name(uint ea);
523
524 #define EA_GEN_IGP_METRIC EA_CODE(PROTOCOL_NONE, 0)
525
526 #define EA_CODE_MASK 0xffff
527 #define EA_CUSTOM_BIT 0x8000
528 #define EA_ALLOW_UNDEF 0x10000 /* ea_find: allow EAF_TYPE_UNDEF */
529 #define EA_BIT(n) ((n) << 24) /* Used in bitfield accessors */
530 #define EA_BIT_GET(ea) ((ea) >> 24)
531
532 #define EAF_TYPE_MASK 0x1f /* Mask with this to get type */
533 #define EAF_TYPE_INT 0x01 /* 32-bit unsigned integer number */
534 #define EAF_TYPE_OPAQUE 0x02 /* Opaque byte string (not filterable) */
535 #define EAF_TYPE_IP_ADDRESS 0x04 /* IP address */
536 #define EAF_TYPE_ROUTER_ID 0x05 /* Router ID (IPv4 address) */
537 #define EAF_TYPE_AS_PATH 0x06 /* BGP AS path (encoding per RFC 1771:4.3) */
538 #define EAF_TYPE_BITFIELD 0x09 /* 32-bit embedded bitfield */
539 #define EAF_TYPE_INT_SET 0x0a /* Set of u32's (e.g., a community list) */
540 #define EAF_TYPE_EC_SET 0x0e /* Set of pairs of u32's - ext. community list */
541 #define EAF_TYPE_LC_SET 0x12 /* Set of triplets of u32's - large community list */
542 #define EAF_TYPE_UNDEF 0x1f /* `force undefined' entry */
543 #define EAF_EMBEDDED 0x01 /* Data stored in eattr.u.data (part of type spec) */
544 #define EAF_VAR_LENGTH 0x02 /* Attribute length is variable (part of type spec) */
545 #define EAF_ORIGINATED 0x20 /* The attribute has originated locally */
546 #define EAF_FRESH 0x40 /* An uncached attribute (e.g. modified in export filter) */
547
548 typedef struct adata {
549 uint length; /* Length of data */
550 byte data[0];
551 } adata;
552
553 extern const adata null_adata; /* adata of length 0 */
554
555 static inline struct adata *
556 lp_alloc_adata(struct linpool *pool, uint len)
557 {
558 struct adata *ad = lp_alloc(pool, sizeof(struct adata) + len);
559 ad->length = len;
560 return ad;
561 }
562
563 static inline int adata_same(const struct adata *a, const struct adata *b)
564 { return (a->length == b->length && !memcmp(a->data, b->data, a->length)); }
565
566
567 typedef struct ea_list {
568 struct ea_list *next; /* In case we have an override list */
569 byte flags; /* Flags: EALF_... */
570 byte rfu;
571 word count; /* Number of attributes */
572 eattr attrs[0]; /* Attribute definitions themselves */
573 } ea_list;
574
575 #define EALF_SORTED 1 /* Attributes are sorted by code */
576 #define EALF_BISECT 2 /* Use interval bisection for searching */
577 #define EALF_CACHED 4 /* Attributes belonging to cached rta */
578 #define EALF_TEMP 8 /* Temporary ea_list added by make_tmp_attrs hooks */
579
580 struct rte_src *rt_find_source(struct proto *p, u32 id);
581 struct rte_src *rt_get_source(struct proto *p, u32 id);
582 static inline void rt_lock_source(struct rte_src *src) { src->uc++; }
583 static inline void rt_unlock_source(struct rte_src *src) { src->uc--; }
584 void rt_prune_sources(void);
585
586 struct ea_walk_state {
587 ea_list *eattrs; /* Ccurrent ea_list, initially set by caller */
588 eattr *ea; /* Current eattr, initially NULL */
589 u32 visited[4]; /* Bitfield, limiting max to 128 */
590 };
591
592 eattr *ea_find(ea_list *, unsigned ea);
593 eattr *ea_walk(struct ea_walk_state *s, uint id, uint max);
594 int ea_get_int(ea_list *, unsigned ea, int def);
595 void ea_dump(ea_list *);
596 void ea_sort(ea_list *); /* Sort entries in all sub-lists */
597 unsigned ea_scan(ea_list *); /* How many bytes do we need for merged ea_list */
598 void ea_merge(ea_list *from, ea_list *to); /* Merge sub-lists to allocated buffer */
599 int ea_same(ea_list *x, ea_list *y); /* Test whether two ea_lists are identical */
600 uint ea_hash(ea_list *e); /* Calculate 16-bit hash value */
601 ea_list *ea_append(ea_list *to, ea_list *what);
602 void ea_format_bitfield(const struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max);
603
604 #define ea_normalize(ea) do { \
605 if (ea->next) { \
606 ea_list *t = alloca(ea_scan(ea)); \
607 ea_merge(ea, t); \
608 ea = t; \
609 } \
610 ea_sort(ea); \
611 if (ea->count == 0) \
612 ea = NULL; \
613 } while(0) \
614
615 static inline eattr *
616 ea_set_attr(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, uintptr_t val)
617 {
618 ea_list *a = lp_alloc(pool, sizeof(ea_list) + sizeof(eattr));
619 eattr *e = &a->attrs[0];
620
621 a->flags = EALF_SORTED;
622 a->count = 1;
623 a->next = *to;
624 *to = a;
625
626 e->id = id;
627 e->type = type;
628 e->flags = flags;
629
630 if (type & EAF_EMBEDDED)
631 e->u.data = (u32) val;
632 else
633 e->u.ptr = (struct adata *) val;
634
635 return e;
636 }
637
638 static inline void
639 ea_set_attr_u32(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, u32 val)
640 { ea_set_attr(to, pool, id, flags, type, (uintptr_t) val); }
641
642 static inline void
643 ea_set_attr_ptr(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, struct adata *val)
644 { ea_set_attr(to, pool, id, flags, type, (uintptr_t) val); }
645
646 static inline void
647 ea_set_attr_data(ea_list **to, struct linpool *pool, uint id, uint flags, uint type, void *data, uint len)
648 {
649 struct adata *a = lp_alloc_adata(pool, len);
650 memcpy(a->data, data, len);
651 ea_set_attr(to, pool, id, flags, type, (uintptr_t) a);
652 }
653
654
655 #define NEXTHOP_MAX_SIZE (sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK)
656
657 static inline size_t nexthop_size(const struct nexthop *nh)
658 { return sizeof(struct nexthop) + sizeof(u32)*nh->labels; }
659 int nexthop__same(struct nexthop *x, struct nexthop *y); /* Compare multipath nexthops */
660 static inline int nexthop_same(struct nexthop *x, struct nexthop *y)
661 { return (x == y) || nexthop__same(x, y); }
662 struct nexthop *nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp);
663 struct nexthop *nexthop_sort(struct nexthop *x);
664 static inline void nexthop_link(struct rta *a, struct nexthop *from)
665 { memcpy(&a->nh, from, nexthop_size(from)); }
666 void nexthop_insert(struct nexthop **n, struct nexthop *y);
667 int nexthop_is_sorted(struct nexthop *x);
668
669 void rta_init(void);
670 static inline size_t rta_size(const rta *a) { return sizeof(rta) + sizeof(u32)*a->nh.labels; }
671 #define RTA_MAX_SIZE (sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK)
672 rta *rta_lookup(rta *); /* Get rta equivalent to this one, uc++ */
673 static inline int rta_is_cached(rta *r) { return r->aflags & RTAF_CACHED; }
674 static inline rta *rta_clone(rta *r) { r->uc++; return r; }
675 void rta__free(rta *r);
676 static inline void rta_free(rta *r) { if (r && !--r->uc) rta__free(r); }
677 rta *rta_do_cow(rta *o, linpool *lp);
678 static inline rta * rta_cow(rta *r, linpool *lp) { return rta_is_cached(r) ? rta_do_cow(r, lp) : r; }
679 void rta_dump(rta *);
680 void rta_dump_all(void);
681 void rta_show(struct cli *, rta *);
682
683 u32 rt_get_igp_metric(rte *rt);
684 struct hostentry * rt_get_hostentry(rtable *tab, ip_addr a, ip_addr ll, rtable *dep);
685 void rta_apply_hostentry(rta *a, struct hostentry *he, mpls_label_stack *mls);
686
687 static inline void
688 rta_set_recursive_next_hop(rtable *dep, rta *a, rtable *tab, ip_addr gw, ip_addr ll, mpls_label_stack *mls)
689 {
690 rta_apply_hostentry(a, rt_get_hostentry(tab, gw, ll, dep), mls);
691 }
692
693 /*
694 * rta_set_recursive_next_hop() acquires hostentry from hostcache and fills
695 * rta->hostentry field. New hostentry has zero use count. Cached rta locks its
696 * hostentry (increases its use count), uncached rta does not lock it. Hostentry
697 * with zero use count is removed asynchronously during host cache update,
698 * therefore it is safe to hold such hostentry temorarily. Hostentry holds a
699 * lock for a 'source' rta, mainly to share multipath nexthops.
700 *
701 * There is no need to hold a lock for hostentry->dep table, because that table
702 * contains routes responsible for that hostentry, and therefore is non-empty if
703 * given hostentry has non-zero use count. If the hostentry has zero use count,
704 * the entry is removed before dep is referenced.
705 *
706 * The protocol responsible for routes with recursive next hops should hold a
707 * lock for a 'source' table governing that routes (argument tab to
708 * rta_set_recursive_next_hop()), because its routes reference hostentries
709 * (through rta) related to the governing table. When all such routes are
710 * removed, rtas are immediately removed achieving zero uc. Then the 'source'
711 * table lock could be immediately released, although hostentries may still
712 * exist - they will be freed together with the 'source' table.
713 */
714
715 static inline void rt_lock_hostentry(struct hostentry *he) { if (he) he->uc++; }
716 static inline void rt_unlock_hostentry(struct hostentry *he) { if (he) he->uc--; }
717
718 /*
719 * Default protocol preferences
720 */
721
722 #define DEF_PREF_DIRECT 240 /* Directly connected */
723 #define DEF_PREF_STATIC 200 /* Static route */
724 #define DEF_PREF_OSPF 150 /* OSPF intra-area, inter-area and type 1 external routes */
725 #define DEF_PREF_BABEL 130 /* Babel */
726 #define DEF_PREF_RIP 120 /* RIP */
727 #define DEF_PREF_BGP 100 /* BGP */
728 #define DEF_PREF_RPKI 100 /* RPKI */
729 #define DEF_PREF_INHERITED 10 /* Routes inherited from other routing daemons */
730
731 /*
732 * Route Origin Authorization
733 */
734
735 #define ROA_UNKNOWN 0
736 #define ROA_VALID 1
737 #define ROA_INVALID 2
738
739 #endif