]> git.ipfire.org Git - thirdparty/glibc.git/blob - nscd/hstcache.c
* nscd/cache.c (cache_add): Take additional parameter specifying
[thirdparty/glibc.git] / nscd / hstcache.c
1 /* Cache handling for host lookup.
2 Copyright (C) 1998-2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published
8 by the Free Software Foundation; version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include <alloca.h>
21 #include <assert.h>
22 #include <errno.h>
23 #include <error.h>
24 #include <libintl.h>
25 #include <netdb.h>
26 #include <stdbool.h>
27 #include <stddef.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <time.h>
32 #include <unistd.h>
33 #include <arpa/inet.h>
34 #include <arpa/nameser.h>
35 #include <sys/mman.h>
36 #include <stackinfo.h>
37
38 #include "nscd.h"
39 #include "dbg_log.h"
40 #ifdef HAVE_SENDFILE
41 # include <kernel-features.h>
42 #endif
43
44
45 /* This is the standard reply in case the service is disabled. */
46 static const hst_response_header disabled =
47 {
48 .version = NSCD_VERSION,
49 .found = -1,
50 .h_name_len = 0,
51 .h_aliases_cnt = 0,
52 .h_addrtype = -1,
53 .h_length = -1,
54 .h_addr_list_cnt = 0,
55 .error = NETDB_INTERNAL
56 };
57
58 /* This is the struct describing how to write this record. */
59 const struct iovec hst_iov_disabled =
60 {
61 .iov_base = (void *) &disabled,
62 .iov_len = sizeof (disabled)
63 };
64
65
66 /* This is the standard reply in case we haven't found the dataset. */
67 static const hst_response_header notfound =
68 {
69 .version = NSCD_VERSION,
70 .found = 0,
71 .h_name_len = 0,
72 .h_aliases_cnt = 0,
73 .h_addrtype = -1,
74 .h_length = -1,
75 .h_addr_list_cnt = 0,
76 .error = HOST_NOT_FOUND
77 };
78
79
80 static void
81 cache_addhst (struct database_dyn *db, int fd, request_header *req,
82 const void *key, struct hostent *hst, uid_t owner,
83 struct hashentry *he, struct datahead *dh, int errval,
84 int32_t ttl)
85 {
86 ssize_t total;
87 ssize_t written;
88 time_t t = time (NULL);
89
90 /* We allocate all data in one memory block: the iov vector,
91 the response header and the dataset itself. */
92 struct dataset
93 {
94 struct datahead head;
95 hst_response_header resp;
96 char strdata[0];
97 } *dataset;
98
99 assert (offsetof (struct dataset, resp) == offsetof (struct datahead, data));
100
101 if (hst == NULL)
102 {
103 if (he != NULL && errval == EAGAIN)
104 {
105 /* If we have an old record available but cannot find one
106 now because the service is not available we keep the old
107 record and make sure it does not get removed. */
108 if (reload_count != UINT_MAX)
109 /* Do not reset the value if we never not reload the record. */
110 dh->nreloads = reload_count - 1;
111
112 written = total = 0;
113 }
114 else
115 {
116 /* We have no data. This means we send the standard reply for this
117 case. */
118 written = total = sizeof (notfound);
119
120 if (fd != -1)
121 written = TEMP_FAILURE_RETRY (send (fd, &notfound, total,
122 MSG_NOSIGNAL));
123
124 dataset = mempool_alloc (db, sizeof (struct dataset) + req->key_len,
125 IDX_result_data);
126 /* If we cannot permanently store the result, so be it. */
127 if (dataset != NULL)
128 {
129 dataset->head.allocsize = sizeof (struct dataset) + req->key_len;
130 dataset->head.recsize = total;
131 dataset->head.notfound = true;
132 dataset->head.nreloads = 0;
133 dataset->head.usable = true;
134
135 /* Compute the timeout time. */
136 dataset->head.timeout = t + (ttl == INT32_MAX
137 ? db->negtimeout : ttl);
138
139 /* This is the reply. */
140 memcpy (&dataset->resp, &notfound, total);
141
142 /* Copy the key data. */
143 memcpy (dataset->strdata, key, req->key_len);
144
145 /* If necessary, we also propagate the data to disk. */
146 if (db->persistent)
147 {
148 // XXX async OK?
149 uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
150 msync ((void *) pval,
151 ((uintptr_t) dataset & pagesize_m1)
152 + sizeof (struct dataset) + req->key_len, MS_ASYNC);
153 }
154
155 /* Now get the lock to safely insert the records. */
156 pthread_rwlock_rdlock (&db->lock);
157
158 (void) cache_add (req->type, &dataset->strdata, req->key_len,
159 &dataset->head, true, db, owner, he == NULL);
160
161 pthread_rwlock_unlock (&db->lock);
162
163 /* Mark the old entry as obsolete. */
164 if (dh != NULL)
165 dh->usable = false;
166 }
167 else
168 ++db->head->addfailed;
169 }
170 }
171 else
172 {
173 /* Determine the I/O structure. */
174 size_t h_name_len = strlen (hst->h_name) + 1;
175 size_t h_aliases_cnt;
176 uint32_t *h_aliases_len;
177 size_t h_addr_list_cnt;
178 int addr_list_type;
179 char *addresses;
180 char *aliases;
181 char *key_copy = NULL;
182 char *cp;
183 size_t cnt;
184
185 /* Determine the number of aliases. */
186 h_aliases_cnt = 0;
187 for (cnt = 0; hst->h_aliases[cnt] != NULL; ++cnt)
188 ++h_aliases_cnt;
189 /* Determine the length of all aliases. */
190 h_aliases_len = (uint32_t *) alloca (h_aliases_cnt * sizeof (uint32_t));
191 total = 0;
192 for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
193 {
194 h_aliases_len[cnt] = strlen (hst->h_aliases[cnt]) + 1;
195 total += h_aliases_len[cnt];
196 }
197
198 /* Determine the number of addresses. */
199 h_addr_list_cnt = 0;
200 while (hst->h_addr_list[h_addr_list_cnt] != NULL)
201 ++h_addr_list_cnt;
202
203 if (h_addr_list_cnt == 0)
204 /* Invalid entry. */
205 return;
206
207 total += (sizeof (struct dataset)
208 + h_name_len
209 + h_aliases_cnt * sizeof (uint32_t)
210 + h_addr_list_cnt * hst->h_length);
211 written = total;
212
213 /* If we refill the cache, first assume the reconrd did not
214 change. Allocate memory on the cache since it is likely
215 discarded anyway. If it turns out to be necessary to have a
216 new record we can still allocate real memory. */
217 bool alloca_used = false;
218 dataset = NULL;
219
220 /* If the record contains more than one IP address (used for
221 load balancing etc) don't cache the entry. This is something
222 the current cache handling cannot handle and it is more than
223 questionable whether it is worthwhile complicating the cache
224 handling just for handling such a special case. */
225 if (he == NULL && h_addr_list_cnt == 1)
226 {
227 dataset = (struct dataset *) mempool_alloc (db,
228 total + req->key_len,
229 IDX_result_data);
230 if (dataset == NULL)
231 ++db->head->addfailed;
232 }
233
234 if (dataset == NULL)
235 {
236 /* We cannot permanently add the result in the moment. But
237 we can provide the result as is. Store the data in some
238 temporary memory. */
239 dataset = (struct dataset *) alloca (total + req->key_len);
240
241 /* We cannot add this record to the permanent database. */
242 alloca_used = true;
243 }
244
245 dataset->head.allocsize = total + req->key_len;
246 dataset->head.recsize = total - offsetof (struct dataset, resp);
247 dataset->head.notfound = false;
248 dataset->head.nreloads = he == NULL ? 0 : (dh->nreloads + 1);
249 dataset->head.usable = true;
250
251 /* Compute the timeout time. */
252 dataset->head.timeout = t + (ttl == INT32_MAX ? db->postimeout : ttl);
253
254 dataset->resp.version = NSCD_VERSION;
255 dataset->resp.found = 1;
256 dataset->resp.h_name_len = h_name_len;
257 dataset->resp.h_aliases_cnt = h_aliases_cnt;
258 dataset->resp.h_addrtype = hst->h_addrtype;
259 dataset->resp.h_length = hst->h_length;
260 dataset->resp.h_addr_list_cnt = h_addr_list_cnt;
261 dataset->resp.error = NETDB_SUCCESS;
262
263 cp = dataset->strdata;
264
265 cp = mempcpy (cp, hst->h_name, h_name_len);
266 cp = mempcpy (cp, h_aliases_len, h_aliases_cnt * sizeof (uint32_t));
267
268 /* The normal addresses first. */
269 addresses = cp;
270 for (cnt = 0; cnt < h_addr_list_cnt; ++cnt)
271 cp = mempcpy (cp, hst->h_addr_list[cnt], hst->h_length);
272
273 /* Then the aliases. */
274 aliases = cp;
275 for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
276 cp = mempcpy (cp, hst->h_aliases[cnt], h_aliases_len[cnt]);
277
278 assert (cp
279 == dataset->strdata + total - offsetof (struct dataset,
280 strdata));
281
282 /* If we are adding a GETHOSTBYNAME{,v6} entry we must be prepared
283 that the answer we get from the NSS does not contain the key
284 itself. This is the case if the resolver is used and the name
285 is extended by the domainnames from /etc/resolv.conf. Therefore
286 we explicitly add the name here. */
287 key_copy = memcpy (cp, key, req->key_len);
288
289 /* Now we can determine whether on refill we have to create a new
290 record or not. */
291 if (he != NULL)
292 {
293 assert (fd == -1);
294
295 if (total + req->key_len == dh->allocsize
296 && total - offsetof (struct dataset, resp) == dh->recsize
297 && memcmp (&dataset->resp, dh->data,
298 dh->allocsize - offsetof (struct dataset, resp)) == 0)
299 {
300 /* The data has not changed. We will just bump the
301 timeout value. Note that the new record has been
302 allocated on the stack and need not be freed. */
303 assert (h_addr_list_cnt == 1);
304 dh->timeout = dataset->head.timeout;
305 ++dh->nreloads;
306 }
307 else
308 {
309 if (h_addr_list_cnt == 1)
310 {
311 /* We have to create a new record. Just allocate
312 appropriate memory and copy it. */
313 struct dataset *newp
314 = (struct dataset *) mempool_alloc (db,
315 total + req->key_len,
316 IDX_result_data);
317 if (newp != NULL)
318 {
319 /* Adjust pointers into the memory block. */
320 addresses = (char *) newp + (addresses
321 - (char *) dataset);
322 aliases = (char *) newp + (aliases - (char *) dataset);
323 assert (key_copy != NULL);
324 key_copy = (char *) newp + (key_copy - (char *) dataset);
325
326 dataset = memcpy (newp, dataset, total + req->key_len);
327 alloca_used = false;
328 }
329 else
330 ++db->head->addfailed;
331 }
332
333 /* Mark the old record as obsolete. */
334 dh->usable = false;
335 }
336 }
337 else
338 {
339 /* We write the dataset before inserting it to the database
340 since while inserting this thread might block and so would
341 unnecessarily keep the receiver waiting. */
342 assert (fd != -1);
343
344 #ifdef HAVE_SENDFILE
345 if (__builtin_expect (db->mmap_used, 1) && !alloca_used)
346 {
347 assert (db->wr_fd != -1);
348 assert ((char *) &dataset->resp > (char *) db->data);
349 assert ((char *) &dataset->resp - (char *) db->head
350 + total
351 <= (sizeof (struct database_pers_head)
352 + db->head->module * sizeof (ref_t)
353 + db->head->data_size));
354 written = sendfileall (fd, db->wr_fd,
355 (char *) &dataset->resp
356 - (char *) db->head, total);
357 # ifndef __ASSUME_SENDFILE
358 if (written == -1 && errno == ENOSYS)
359 goto use_write;
360 # endif
361 }
362 else
363 # ifndef __ASSUME_SENDFILE
364 use_write:
365 # endif
366 #endif
367 written = writeall (fd, &dataset->resp, total);
368 }
369
370 /* Add the record to the database. But only if it has not been
371 stored on the stack.
372
373 If the record contains more than one IP address (used for
374 load balancing etc) don't cache the entry. This is something
375 the current cache handling cannot handle and it is more than
376 questionable whether it is worthwhile complicating the cache
377 handling just for handling such a special case. */
378 if (! alloca_used)
379 {
380 /* If necessary, we also propagate the data to disk. */
381 if (db->persistent)
382 {
383 // XXX async OK?
384 uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
385 msync ((void *) pval,
386 ((uintptr_t) dataset & pagesize_m1)
387 + total + req->key_len, MS_ASYNC);
388 }
389
390 addr_list_type = (hst->h_length == NS_INADDRSZ
391 ? GETHOSTBYADDR : GETHOSTBYADDRv6);
392
393 /* Now get the lock to safely insert the records. */
394 pthread_rwlock_rdlock (&db->lock);
395
396 /* NB: the following code is really complicated. It has
397 seemlingly duplicated code paths which do the same. The
398 problem is that we always must add the hash table entry
399 with the FIRST flag set first. Otherwise we get dangling
400 pointers in case memory allocation fails. */
401 assert (hst->h_addr_list[1] == NULL);
402
403 /* Avoid adding names if more than one address is available. See
404 above for more info. */
405 assert (req->type == GETHOSTBYNAME
406 || req->type == GETHOSTBYNAMEv6
407 || req->type == GETHOSTBYADDR
408 || req->type == GETHOSTBYADDRv6);
409
410 (void) cache_add (req->type, key_copy, req->key_len,
411 &dataset->head, true, db, owner, he == NULL);
412
413 pthread_rwlock_unlock (&db->lock);
414 }
415 }
416
417 if (__builtin_expect (written != total, 0) && debug_level > 0)
418 {
419 char buf[256];
420 dbg_log (_("short write in %s: %s"), __FUNCTION__,
421 strerror_r (errno, buf, sizeof (buf)));
422 }
423 }
424
425
426 static int
427 lookup (int type, void *key, struct hostent *resultbufp, char *buffer,
428 size_t buflen, struct hostent **hst, int32_t *ttlp)
429 {
430 if (type == GETHOSTBYNAME)
431 return __gethostbyname3_r (key, AF_INET, resultbufp, buffer, buflen, hst,
432 &h_errno, ttlp, NULL);
433 if (type == GETHOSTBYNAMEv6)
434 return __gethostbyname3_r (key, AF_INET6, resultbufp, buffer, buflen, hst,
435 &h_errno, ttlp, NULL);
436 if (type == GETHOSTBYADDR)
437 return __gethostbyaddr2_r (key, NS_INADDRSZ, AF_INET, resultbufp, buffer,
438 buflen, hst, &h_errno, ttlp);
439 return __gethostbyaddr2_r (key, NS_IN6ADDRSZ, AF_INET6, resultbufp, buffer,
440 buflen, hst, &h_errno, ttlp);
441 }
442
443
444 static void
445 addhstbyX (struct database_dyn *db, int fd, request_header *req,
446 void *key, uid_t uid, struct hashentry *he, struct datahead *dh)
447 {
448 /* Search for the entry matching the key. Please note that we don't
449 look again in the table whether the dataset is now available. We
450 simply insert it. It does not matter if it is in there twice. The
451 pruning function only will look at the timestamp. */
452 int buflen = 1024;
453 char *buffer = (char *) alloca (buflen);
454 struct hostent resultbuf;
455 struct hostent *hst;
456 bool use_malloc = false;
457 int errval = 0;
458 int32_t ttl = INT32_MAX;
459
460 if (__builtin_expect (debug_level > 0, 0))
461 {
462 const char *str;
463 char buf[INET6_ADDRSTRLEN + 1];
464 if (req->type == GETHOSTBYNAME || req->type == GETHOSTBYNAMEv6)
465 str = key;
466 else
467 str = inet_ntop (req->type == GETHOSTBYADDR ? AF_INET : AF_INET6,
468 key, buf, sizeof (buf));
469
470 if (he == NULL)
471 dbg_log (_("Haven't found \"%s\" in hosts cache!"), (char *) str);
472 else
473 dbg_log (_("Reloading \"%s\" in hosts cache!"), (char *) str);
474 }
475
476 while (lookup (req->type, key, &resultbuf, buffer, buflen, &hst, &ttl) != 0
477 && h_errno == NETDB_INTERNAL
478 && (errval = errno) == ERANGE)
479 {
480 errno = 0;
481
482 if (__builtin_expect (buflen > 32768, 0))
483 {
484 char *old_buffer = buffer;
485 buflen *= 2;
486 buffer = (char *) realloc (use_malloc ? buffer : NULL, buflen);
487 if (buffer == NULL)
488 {
489 /* We ran out of memory. We cannot do anything but
490 sending a negative response. In reality this should
491 never happen. */
492 hst = NULL;
493 buffer = old_buffer;
494
495 /* We set the error to indicate this is (possibly) a
496 temporary error and that it does not mean the entry
497 is not available at all. */
498 errval = EAGAIN;
499 break;
500 }
501 use_malloc = true;
502 }
503 else
504 /* Allocate a new buffer on the stack. If possible combine it
505 with the previously allocated buffer. */
506 buffer = (char *) extend_alloca (buffer, buflen, 2 * buflen);
507 }
508
509 cache_addhst (db, fd, req, key, hst, uid, he, dh,
510 h_errno == TRY_AGAIN ? errval : 0, ttl);
511
512 if (use_malloc)
513 free (buffer);
514 }
515
516
517 void
518 addhstbyname (struct database_dyn *db, int fd, request_header *req,
519 void *key, uid_t uid)
520 {
521 addhstbyX (db, fd, req, key, uid, NULL, NULL);
522 }
523
524
525 void
526 readdhstbyname (struct database_dyn *db, struct hashentry *he,
527 struct datahead *dh)
528 {
529 request_header req =
530 {
531 .type = GETHOSTBYNAME,
532 .key_len = he->len
533 };
534
535 addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
536 }
537
538
539 void
540 addhstbyaddr (struct database_dyn *db, int fd, request_header *req,
541 void *key, uid_t uid)
542 {
543 addhstbyX (db, fd, req, key, uid, NULL, NULL);
544 }
545
546
547 void
548 readdhstbyaddr (struct database_dyn *db, struct hashentry *he,
549 struct datahead *dh)
550 {
551 request_header req =
552 {
553 .type = GETHOSTBYADDR,
554 .key_len = he->len
555 };
556
557 addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
558 }
559
560
561 void
562 addhstbynamev6 (struct database_dyn *db, int fd, request_header *req,
563 void *key, uid_t uid)
564 {
565 addhstbyX (db, fd, req, key, uid, NULL, NULL);
566 }
567
568
569 void
570 readdhstbynamev6 (struct database_dyn *db, struct hashentry *he,
571 struct datahead *dh)
572 {
573 request_header req =
574 {
575 .type = GETHOSTBYNAMEv6,
576 .key_len = he->len
577 };
578
579 addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
580 }
581
582
583 void
584 addhstbyaddrv6 (struct database_dyn *db, int fd, request_header *req,
585 void *key, uid_t uid)
586 {
587 addhstbyX (db, fd, req, key, uid, NULL, NULL);
588 }
589
590
591 void
592 readdhstbyaddrv6 (struct database_dyn *db, struct hashentry *he,
593 struct datahead *dh)
594 {
595 request_header req =
596 {
597 .type = GETHOSTBYADDRv6,
598 .key_len = he->len
599 };
600
601 addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
602 }