]> git.ipfire.org Git - thirdparty/glibc.git/blob - posix/regex.c
* elf/dl-lookup.c (_dl_lookup_symbol): Arg NOSELF renamed to NOPLT.
[thirdparty/glibc.git] / posix / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
7
8 This file is part of the GNU C Library. Its master source is NOT part of
9 the C library, however. The master source lives in /gd/gnu/lib.
10
11 The GNU C Library is free software; you can redistribute it and/or
12 modify it under the terms of the GNU Library General Public License as
13 published by the Free Software Foundation; either version 2 of the
14 License, or (at your option) any later version.
15
16 The GNU C Library is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 Library General Public License for more details.
20
21 You should have received a copy of the GNU Library General Public
22 License along with the GNU C Library; see the file COPYING.LIB. If
23 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
24 Cambridge, MA 02139, USA. */
25
26 /* AIX requires this to be the first thing in the file. */
27 #if defined (_AIX) && !defined (REGEX_MALLOC)
28 #pragma alloca
29 #endif
30
31 #undef _GNU_SOURCE
32 #define _GNU_SOURCE
33
34 #ifdef HAVE_CONFIG_H
35 #include <config.h>
36 #endif
37
38 /* We need this for `regex.h', and perhaps for the Emacs include files. */
39 #include <sys/types.h>
40
41 /* This is for other GNU distributions with internationalized messages. */
42 #if HAVE_LIBINTL_H || defined (_LIBC)
43 # include <libintl.h>
44 #else
45 # define gettext(msgid) (msgid)
46 #endif
47
48 #ifndef gettext_noop
49 /* This define is so xgettext can find the internationalizable
50 strings. */
51 #define gettext_noop(String) String
52 #endif
53
54 /* The `emacs' switch turns on certain matching commands
55 that make sense only in Emacs. */
56 #ifdef emacs
57
58 #include "lisp.h"
59 #include "buffer.h"
60 #include "syntax.h"
61
62 #else /* not emacs */
63
64 /* If we are not linking with Emacs proper,
65 we can't use the relocating allocator
66 even if config.h says that we can. */
67 #undef REL_ALLOC
68
69 #if defined (STDC_HEADERS) || defined (_LIBC)
70 #include <stdlib.h>
71 #else
72 char *malloc ();
73 char *realloc ();
74 #endif
75
76 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
77 If nothing else has been done, use the method below. */
78 #ifdef INHIBIT_STRING_HEADER
79 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
80 #if !defined (bzero) && !defined (bcopy)
81 #undef INHIBIT_STRING_HEADER
82 #endif
83 #endif
84 #endif
85
86 /* This is the normal way of making sure we have a bcopy and a bzero.
87 This is used in most programs--a few other programs avoid this
88 by defining INHIBIT_STRING_HEADER. */
89 #ifndef INHIBIT_STRING_HEADER
90 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
91 #include <string.h>
92 #ifndef bcmp
93 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
94 #endif
95 #ifndef bcopy
96 #define bcopy(s, d, n) memcpy ((d), (s), (n))
97 #endif
98 #ifndef bzero
99 #define bzero(s, n) memset ((s), 0, (n))
100 #endif
101 #else
102 #include <strings.h>
103 #endif
104 #endif
105
106 /* Define the syntax stuff for \<, \>, etc. */
107
108 /* This must be nonzero for the wordchar and notwordchar pattern
109 commands in re_match_2. */
110 #ifndef Sword
111 #define Sword 1
112 #endif
113
114 #ifdef SWITCH_ENUM_BUG
115 #define SWITCH_ENUM_CAST(x) ((int)(x))
116 #else
117 #define SWITCH_ENUM_CAST(x) (x)
118 #endif
119
120 #ifdef SYNTAX_TABLE
121
122 extern char *re_syntax_table;
123
124 #else /* not SYNTAX_TABLE */
125
126 /* How many characters in the character set. */
127 #define CHAR_SET_SIZE 256
128
129 static char re_syntax_table[CHAR_SET_SIZE];
130
131 static void
132 init_syntax_once ()
133 {
134 register int c;
135 static int done = 0;
136
137 if (done)
138 return;
139
140 bzero (re_syntax_table, sizeof re_syntax_table);
141
142 for (c = 'a'; c <= 'z'; c++)
143 re_syntax_table[c] = Sword;
144
145 for (c = 'A'; c <= 'Z'; c++)
146 re_syntax_table[c] = Sword;
147
148 for (c = '0'; c <= '9'; c++)
149 re_syntax_table[c] = Sword;
150
151 re_syntax_table['_'] = Sword;
152
153 done = 1;
154 }
155
156 #endif /* not SYNTAX_TABLE */
157
158 #define SYNTAX(c) re_syntax_table[c]
159
160 #endif /* not emacs */
161 \f
162 /* Get the interface, including the syntax bits. */
163 #include "regex.h"
164
165 /* isalpha etc. are used for the character classes. */
166 #include <ctype.h>
167
168 /* Jim Meyering writes:
169
170 "... Some ctype macros are valid only for character codes that
171 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
172 using /bin/cc or gcc but without giving an ansi option). So, all
173 ctype uses should be through macros like ISPRINT... If
174 STDC_HEADERS is defined, then autoconf has verified that the ctype
175 macros don't need to be guarded with references to isascii. ...
176 Defining isascii to 1 should let any compiler worth its salt
177 eliminate the && through constant folding." */
178
179 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
180 #define ISASCII(c) 1
181 #else
182 #define ISASCII(c) isascii(c)
183 #endif
184
185 #ifdef isblank
186 #define ISBLANK(c) (ISASCII (c) && isblank (c))
187 #else
188 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
189 #endif
190 #ifdef isgraph
191 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
192 #else
193 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
194 #endif
195
196 #define ISPRINT(c) (ISASCII (c) && isprint (c))
197 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
198 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
199 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
200 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
201 #define ISLOWER(c) (ISASCII (c) && islower (c))
202 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
203 #define ISSPACE(c) (ISASCII (c) && isspace (c))
204 #define ISUPPER(c) (ISASCII (c) && isupper (c))
205 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
206
207 #ifndef NULL
208 #define NULL (void *)0
209 #endif
210
211 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
212 since ours (we hope) works properly with all combinations of
213 machines, compilers, `char' and `unsigned char' argument types.
214 (Per Bothner suggested the basic approach.) */
215 #undef SIGN_EXTEND_CHAR
216 #if __STDC__
217 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
218 #else /* not __STDC__ */
219 /* As in Harbison and Steele. */
220 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
221 #endif
222 \f
223 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
224 use `alloca' instead of `malloc'. This is because using malloc in
225 re_search* or re_match* could cause memory leaks when C-g is used in
226 Emacs; also, malloc is slower and causes storage fragmentation. On
227 the other hand, malloc is more portable, and easier to debug.
228
229 Because we sometimes use alloca, some routines have to be macros,
230 not functions -- `alloca'-allocated space disappears at the end of the
231 function it is called in. */
232
233 #ifdef REGEX_MALLOC
234
235 #define REGEX_ALLOCATE malloc
236 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
237 #define REGEX_FREE free
238
239 #else /* not REGEX_MALLOC */
240
241 /* Emacs already defines alloca, sometimes. */
242 #ifndef alloca
243
244 /* Make alloca work the best possible way. */
245 #ifdef __GNUC__
246 #define alloca __builtin_alloca
247 #else /* not __GNUC__ */
248 #if HAVE_ALLOCA_H
249 #include <alloca.h>
250 #else /* not __GNUC__ or HAVE_ALLOCA_H */
251 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
252 #ifndef _AIX /* Already did AIX, up at the top. */
253 char *alloca ();
254 #endif /* not _AIX */
255 #endif
256 #endif /* not HAVE_ALLOCA_H */
257 #endif /* not __GNUC__ */
258
259 #endif /* not alloca */
260
261 #define REGEX_ALLOCATE alloca
262
263 /* Assumes a `char *destination' variable. */
264 #define REGEX_REALLOCATE(source, osize, nsize) \
265 (destination = (char *) alloca (nsize), \
266 bcopy (source, destination, osize), \
267 destination)
268
269 /* No need to do anything to free, after alloca. */
270 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
271
272 #endif /* not REGEX_MALLOC */
273
274 /* Define how to allocate the failure stack. */
275
276 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
277
278 #define REGEX_ALLOCATE_STACK(size) \
279 r_alloc (&failure_stack_ptr, (size))
280 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
281 r_re_alloc (&failure_stack_ptr, (nsize))
282 #define REGEX_FREE_STACK(ptr) \
283 r_alloc_free (&failure_stack_ptr)
284
285 #else /* not using relocating allocator */
286
287 #ifdef REGEX_MALLOC
288
289 #define REGEX_ALLOCATE_STACK malloc
290 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
291 #define REGEX_FREE_STACK free
292
293 #else /* not REGEX_MALLOC */
294
295 #define REGEX_ALLOCATE_STACK alloca
296
297 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
298 REGEX_REALLOCATE (source, osize, nsize)
299 /* No need to explicitly free anything. */
300 #define REGEX_FREE_STACK(arg)
301
302 #endif /* not REGEX_MALLOC */
303 #endif /* not using relocating allocator */
304
305
306 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
307 `string1' or just past its end. This works if PTR is NULL, which is
308 a good thing. */
309 #define FIRST_STRING_P(ptr) \
310 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
311
312 /* (Re)Allocate N items of type T using malloc, or fail. */
313 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
314 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
315 #define RETALLOC_IF(addr, n, t) \
316 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
317 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
318
319 #define BYTEWIDTH 8 /* In bits. */
320
321 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
322
323 #undef MAX
324 #undef MIN
325 #define MAX(a, b) ((a) > (b) ? (a) : (b))
326 #define MIN(a, b) ((a) < (b) ? (a) : (b))
327
328 typedef char boolean;
329 #define false 0
330 #define true 1
331
332 static int re_match_2_internal ();
333 \f
334 /* These are the command codes that appear in compiled regular
335 expressions. Some opcodes are followed by argument bytes. A
336 command code can specify any interpretation whatsoever for its
337 arguments. Zero bytes may appear in the compiled regular expression. */
338
339 typedef enum
340 {
341 no_op = 0,
342
343 /* Succeed right away--no more backtracking. */
344 succeed,
345
346 /* Followed by one byte giving n, then by n literal bytes. */
347 exactn,
348
349 /* Matches any (more or less) character. */
350 anychar,
351
352 /* Matches any one char belonging to specified set. First
353 following byte is number of bitmap bytes. Then come bytes
354 for a bitmap saying which chars are in. Bits in each byte
355 are ordered low-bit-first. A character is in the set if its
356 bit is 1. A character too large to have a bit in the map is
357 automatically not in the set. */
358 charset,
359
360 /* Same parameters as charset, but match any character that is
361 not one of those specified. */
362 charset_not,
363
364 /* Start remembering the text that is matched, for storing in a
365 register. Followed by one byte with the register number, in
366 the range 0 to one less than the pattern buffer's re_nsub
367 field. Then followed by one byte with the number of groups
368 inner to this one. (This last has to be part of the
369 start_memory only because we need it in the on_failure_jump
370 of re_match_2.) */
371 start_memory,
372
373 /* Stop remembering the text that is matched and store it in a
374 memory register. Followed by one byte with the register
375 number, in the range 0 to one less than `re_nsub' in the
376 pattern buffer, and one byte with the number of inner groups,
377 just like `start_memory'. (We need the number of inner
378 groups here because we don't have any easy way of finding the
379 corresponding start_memory when we're at a stop_memory.) */
380 stop_memory,
381
382 /* Match a duplicate of something remembered. Followed by one
383 byte containing the register number. */
384 duplicate,
385
386 /* Fail unless at beginning of line. */
387 begline,
388
389 /* Fail unless at end of line. */
390 endline,
391
392 /* Succeeds if at beginning of buffer (if emacs) or at beginning
393 of string to be matched (if not). */
394 begbuf,
395
396 /* Analogously, for end of buffer/string. */
397 endbuf,
398
399 /* Followed by two byte relative address to which to jump. */
400 jump,
401
402 /* Same as jump, but marks the end of an alternative. */
403 jump_past_alt,
404
405 /* Followed by two-byte relative address of place to resume at
406 in case of failure. */
407 on_failure_jump,
408
409 /* Like on_failure_jump, but pushes a placeholder instead of the
410 current string position when executed. */
411 on_failure_keep_string_jump,
412
413 /* Throw away latest failure point and then jump to following
414 two-byte relative address. */
415 pop_failure_jump,
416
417 /* Change to pop_failure_jump if know won't have to backtrack to
418 match; otherwise change to jump. This is used to jump
419 back to the beginning of a repeat. If what follows this jump
420 clearly won't match what the repeat does, such that we can be
421 sure that there is no use backtracking out of repetitions
422 already matched, then we change it to a pop_failure_jump.
423 Followed by two-byte address. */
424 maybe_pop_jump,
425
426 /* Jump to following two-byte address, and push a dummy failure
427 point. This failure point will be thrown away if an attempt
428 is made to use it for a failure. A `+' construct makes this
429 before the first repeat. Also used as an intermediary kind
430 of jump when compiling an alternative. */
431 dummy_failure_jump,
432
433 /* Push a dummy failure point and continue. Used at the end of
434 alternatives. */
435 push_dummy_failure,
436
437 /* Followed by two-byte relative address and two-byte number n.
438 After matching N times, jump to the address upon failure. */
439 succeed_n,
440
441 /* Followed by two-byte relative address, and two-byte number n.
442 Jump to the address N times, then fail. */
443 jump_n,
444
445 /* Set the following two-byte relative address to the
446 subsequent two-byte number. The address *includes* the two
447 bytes of number. */
448 set_number_at,
449
450 wordchar, /* Matches any word-constituent character. */
451 notwordchar, /* Matches any char that is not a word-constituent. */
452
453 wordbeg, /* Succeeds if at word beginning. */
454 wordend, /* Succeeds if at word end. */
455
456 wordbound, /* Succeeds if at a word boundary. */
457 notwordbound /* Succeeds if not at a word boundary. */
458
459 #ifdef emacs
460 ,before_dot, /* Succeeds if before point. */
461 at_dot, /* Succeeds if at point. */
462 after_dot, /* Succeeds if after point. */
463
464 /* Matches any character whose syntax is specified. Followed by
465 a byte which contains a syntax code, e.g., Sword. */
466 syntaxspec,
467
468 /* Matches any character whose syntax is not that specified. */
469 notsyntaxspec
470 #endif /* emacs */
471 } re_opcode_t;
472 \f
473 /* Common operations on the compiled pattern. */
474
475 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
476
477 #define STORE_NUMBER(destination, number) \
478 do { \
479 (destination)[0] = (number) & 0377; \
480 (destination)[1] = (number) >> 8; \
481 } while (0)
482
483 /* Same as STORE_NUMBER, except increment DESTINATION to
484 the byte after where the number is stored. Therefore, DESTINATION
485 must be an lvalue. */
486
487 #define STORE_NUMBER_AND_INCR(destination, number) \
488 do { \
489 STORE_NUMBER (destination, number); \
490 (destination) += 2; \
491 } while (0)
492
493 /* Put into DESTINATION a number stored in two contiguous bytes starting
494 at SOURCE. */
495
496 #define EXTRACT_NUMBER(destination, source) \
497 do { \
498 (destination) = *(source) & 0377; \
499 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
500 } while (0)
501
502 #ifdef DEBUG
503 static void
504 extract_number (dest, source)
505 int *dest;
506 unsigned char *source;
507 {
508 int temp = SIGN_EXTEND_CHAR (*(source + 1));
509 *dest = *source & 0377;
510 *dest += temp << 8;
511 }
512
513 #ifndef EXTRACT_MACROS /* To debug the macros. */
514 #undef EXTRACT_NUMBER
515 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
516 #endif /* not EXTRACT_MACROS */
517
518 #endif /* DEBUG */
519
520 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
521 SOURCE must be an lvalue. */
522
523 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
524 do { \
525 EXTRACT_NUMBER (destination, source); \
526 (source) += 2; \
527 } while (0)
528
529 #ifdef DEBUG
530 static void
531 extract_number_and_incr (destination, source)
532 int *destination;
533 unsigned char **source;
534 {
535 extract_number (destination, *source);
536 *source += 2;
537 }
538
539 #ifndef EXTRACT_MACROS
540 #undef EXTRACT_NUMBER_AND_INCR
541 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
542 extract_number_and_incr (&dest, &src)
543 #endif /* not EXTRACT_MACROS */
544
545 #endif /* DEBUG */
546 \f
547 /* If DEBUG is defined, Regex prints many voluminous messages about what
548 it is doing (if the variable `debug' is nonzero). If linked with the
549 main program in `iregex.c', you can enter patterns and strings
550 interactively. And if linked with the main program in `main.c' and
551 the other test files, you can run the already-written tests. */
552
553 #ifdef DEBUG
554
555 /* We use standard I/O for debugging. */
556 #include <stdio.h>
557
558 /* It is useful to test things that ``must'' be true when debugging. */
559 #include <assert.h>
560
561 static int debug = 0;
562
563 #define DEBUG_STATEMENT(e) e
564 #define DEBUG_PRINT1(x) if (debug) printf (x)
565 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
566 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
567 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
568 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
569 if (debug) print_partial_compiled_pattern (s, e)
570 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
571 if (debug) print_double_string (w, s1, sz1, s2, sz2)
572
573
574 /* Print the fastmap in human-readable form. */
575
576 void
577 print_fastmap (fastmap)
578 char *fastmap;
579 {
580 unsigned was_a_range = 0;
581 unsigned i = 0;
582
583 while (i < (1 << BYTEWIDTH))
584 {
585 if (fastmap[i++])
586 {
587 was_a_range = 0;
588 putchar (i - 1);
589 while (i < (1 << BYTEWIDTH) && fastmap[i])
590 {
591 was_a_range = 1;
592 i++;
593 }
594 if (was_a_range)
595 {
596 printf ("-");
597 putchar (i - 1);
598 }
599 }
600 }
601 putchar ('\n');
602 }
603
604
605 /* Print a compiled pattern string in human-readable form, starting at
606 the START pointer into it and ending just before the pointer END. */
607
608 void
609 print_partial_compiled_pattern (start, end)
610 unsigned char *start;
611 unsigned char *end;
612 {
613 int mcnt, mcnt2;
614 unsigned char *p = start;
615 unsigned char *pend = end;
616
617 if (start == NULL)
618 {
619 printf ("(null)\n");
620 return;
621 }
622
623 /* Loop over pattern commands. */
624 while (p < pend)
625 {
626 printf ("%d:\t", p - start);
627
628 switch ((re_opcode_t) *p++)
629 {
630 case no_op:
631 printf ("/no_op");
632 break;
633
634 case exactn:
635 mcnt = *p++;
636 printf ("/exactn/%d", mcnt);
637 do
638 {
639 putchar ('/');
640 putchar (*p++);
641 }
642 while (--mcnt);
643 break;
644
645 case start_memory:
646 mcnt = *p++;
647 printf ("/start_memory/%d/%d", mcnt, *p++);
648 break;
649
650 case stop_memory:
651 mcnt = *p++;
652 printf ("/stop_memory/%d/%d", mcnt, *p++);
653 break;
654
655 case duplicate:
656 printf ("/duplicate/%d", *p++);
657 break;
658
659 case anychar:
660 printf ("/anychar");
661 break;
662
663 case charset:
664 case charset_not:
665 {
666 register int c, last = -100;
667 register int in_range = 0;
668
669 printf ("/charset [%s",
670 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
671
672 assert (p + *p < pend);
673
674 for (c = 0; c < 256; c++)
675 if (c / 8 < *p
676 && (p[1 + (c/8)] & (1 << (c % 8))))
677 {
678 /* Are we starting a range? */
679 if (last + 1 == c && ! in_range)
680 {
681 putchar ('-');
682 in_range = 1;
683 }
684 /* Have we broken a range? */
685 else if (last + 1 != c && in_range)
686 {
687 putchar (last);
688 in_range = 0;
689 }
690
691 if (! in_range)
692 putchar (c);
693
694 last = c;
695 }
696
697 if (in_range)
698 putchar (last);
699
700 putchar (']');
701
702 p += 1 + *p;
703 }
704 break;
705
706 case begline:
707 printf ("/begline");
708 break;
709
710 case endline:
711 printf ("/endline");
712 break;
713
714 case on_failure_jump:
715 extract_number_and_incr (&mcnt, &p);
716 printf ("/on_failure_jump to %d", p + mcnt - start);
717 break;
718
719 case on_failure_keep_string_jump:
720 extract_number_and_incr (&mcnt, &p);
721 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
722 break;
723
724 case dummy_failure_jump:
725 extract_number_and_incr (&mcnt, &p);
726 printf ("/dummy_failure_jump to %d", p + mcnt - start);
727 break;
728
729 case push_dummy_failure:
730 printf ("/push_dummy_failure");
731 break;
732
733 case maybe_pop_jump:
734 extract_number_and_incr (&mcnt, &p);
735 printf ("/maybe_pop_jump to %d", p + mcnt - start);
736 break;
737
738 case pop_failure_jump:
739 extract_number_and_incr (&mcnt, &p);
740 printf ("/pop_failure_jump to %d", p + mcnt - start);
741 break;
742
743 case jump_past_alt:
744 extract_number_and_incr (&mcnt, &p);
745 printf ("/jump_past_alt to %d", p + mcnt - start);
746 break;
747
748 case jump:
749 extract_number_and_incr (&mcnt, &p);
750 printf ("/jump to %d", p + mcnt - start);
751 break;
752
753 case succeed_n:
754 extract_number_and_incr (&mcnt, &p);
755 extract_number_and_incr (&mcnt2, &p);
756 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
757 break;
758
759 case jump_n:
760 extract_number_and_incr (&mcnt, &p);
761 extract_number_and_incr (&mcnt2, &p);
762 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
763 break;
764
765 case set_number_at:
766 extract_number_and_incr (&mcnt, &p);
767 extract_number_and_incr (&mcnt2, &p);
768 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
769 break;
770
771 case wordbound:
772 printf ("/wordbound");
773 break;
774
775 case notwordbound:
776 printf ("/notwordbound");
777 break;
778
779 case wordbeg:
780 printf ("/wordbeg");
781 break;
782
783 case wordend:
784 printf ("/wordend");
785
786 #ifdef emacs
787 case before_dot:
788 printf ("/before_dot");
789 break;
790
791 case at_dot:
792 printf ("/at_dot");
793 break;
794
795 case after_dot:
796 printf ("/after_dot");
797 break;
798
799 case syntaxspec:
800 printf ("/syntaxspec");
801 mcnt = *p++;
802 printf ("/%d", mcnt);
803 break;
804
805 case notsyntaxspec:
806 printf ("/notsyntaxspec");
807 mcnt = *p++;
808 printf ("/%d", mcnt);
809 break;
810 #endif /* emacs */
811
812 case wordchar:
813 printf ("/wordchar");
814 break;
815
816 case notwordchar:
817 printf ("/notwordchar");
818 break;
819
820 case begbuf:
821 printf ("/begbuf");
822 break;
823
824 case endbuf:
825 printf ("/endbuf");
826 break;
827
828 default:
829 printf ("?%d", *(p-1));
830 }
831
832 putchar ('\n');
833 }
834
835 printf ("%d:\tend of pattern.\n", p - start);
836 }
837
838
839 void
840 print_compiled_pattern (bufp)
841 struct re_pattern_buffer *bufp;
842 {
843 unsigned char *buffer = bufp->buffer;
844
845 print_partial_compiled_pattern (buffer, buffer + bufp->used);
846 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
847
848 if (bufp->fastmap_accurate && bufp->fastmap)
849 {
850 printf ("fastmap: ");
851 print_fastmap (bufp->fastmap);
852 }
853
854 printf ("re_nsub: %d\t", bufp->re_nsub);
855 printf ("regs_alloc: %d\t", bufp->regs_allocated);
856 printf ("can_be_null: %d\t", bufp->can_be_null);
857 printf ("newline_anchor: %d\n", bufp->newline_anchor);
858 printf ("no_sub: %d\t", bufp->no_sub);
859 printf ("not_bol: %d\t", bufp->not_bol);
860 printf ("not_eol: %d\t", bufp->not_eol);
861 printf ("syntax: %d\n", bufp->syntax);
862 /* Perhaps we should print the translate table? */
863 }
864
865
866 void
867 print_double_string (where, string1, size1, string2, size2)
868 const char *where;
869 const char *string1;
870 const char *string2;
871 int size1;
872 int size2;
873 {
874 unsigned this_char;
875
876 if (where == NULL)
877 printf ("(null)");
878 else
879 {
880 if (FIRST_STRING_P (where))
881 {
882 for (this_char = where - string1; this_char < size1; this_char++)
883 putchar (string1[this_char]);
884
885 where = string2;
886 }
887
888 for (this_char = where - string2; this_char < size2; this_char++)
889 putchar (string2[this_char]);
890 }
891 }
892
893 #else /* not DEBUG */
894
895 #undef assert
896 #define assert(e)
897
898 #define DEBUG_STATEMENT(e)
899 #define DEBUG_PRINT1(x)
900 #define DEBUG_PRINT2(x1, x2)
901 #define DEBUG_PRINT3(x1, x2, x3)
902 #define DEBUG_PRINT4(x1, x2, x3, x4)
903 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
904 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
905
906 #endif /* not DEBUG */
907 \f
908 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
909 also be assigned to arbitrarily: each pattern buffer stores its own
910 syntax, so it can be changed between regex compilations. */
911 /* This has no initializer because initialized variables in Emacs
912 become read-only after dumping. */
913 reg_syntax_t re_syntax_options;
914
915
916 /* Specify the precise syntax of regexps for compilation. This provides
917 for compatibility for various utilities which historically have
918 different, incompatible syntaxes.
919
920 The argument SYNTAX is a bit mask comprised of the various bits
921 defined in regex.h. We return the old syntax. */
922
923 reg_syntax_t
924 re_set_syntax (syntax)
925 reg_syntax_t syntax;
926 {
927 reg_syntax_t ret = re_syntax_options;
928
929 re_syntax_options = syntax;
930 return ret;
931 }
932 \f
933 /* This table gives an error message for each of the error codes listed
934 in regex.h. Obviously the order here has to be same as there.
935 POSIX doesn't require that we do anything for REG_NOERROR,
936 but why not be nice? */
937
938 static const char *re_error_msgid[] =
939 {
940 gettext_noop ("Success"), /* REG_NOERROR */
941 gettext_noop ("No match"), /* REG_NOMATCH */
942 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
943 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
944 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
945 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
946 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
947 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
948 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
949 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
950 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
951 gettext_noop ("Invalid range end"), /* REG_ERANGE */
952 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
953 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
954 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
955 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
956 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
957 };
958 \f
959 /* Avoiding alloca during matching, to placate r_alloc. */
960
961 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
962 searching and matching functions should not call alloca. On some
963 systems, alloca is implemented in terms of malloc, and if we're
964 using the relocating allocator routines, then malloc could cause a
965 relocation, which might (if the strings being searched are in the
966 ralloc heap) shift the data out from underneath the regexp
967 routines.
968
969 Here's another reason to avoid allocation: Emacs
970 processes input from X in a signal handler; processing X input may
971 call malloc; if input arrives while a matching routine is calling
972 malloc, then we're scrod. But Emacs can't just block input while
973 calling matching routines; then we don't notice interrupts when
974 they come in. So, Emacs blocks input around all regexp calls
975 except the matching calls, which it leaves unprotected, in the
976 faith that they will not malloc. */
977
978 /* Normally, this is fine. */
979 #define MATCH_MAY_ALLOCATE
980
981 /* When using GNU C, we are not REALLY using the C alloca, no matter
982 what config.h may say. So don't take precautions for it. */
983 #ifdef __GNUC__
984 #undef C_ALLOCA
985 #endif
986
987 /* The match routines may not allocate if (1) they would do it with malloc
988 and (2) it's not safe for them to use malloc.
989 Note that if REL_ALLOC is defined, matching would not use malloc for the
990 failure stack, but we would still use it for the register vectors;
991 so REL_ALLOC should not affect this. */
992 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
993 #undef MATCH_MAY_ALLOCATE
994 #endif
995
996 \f
997 /* Failure stack declarations and macros; both re_compile_fastmap and
998 re_match_2 use a failure stack. These have to be macros because of
999 REGEX_ALLOCATE_STACK. */
1000
1001
1002 /* Number of failure points for which to initially allocate space
1003 when matching. If this number is exceeded, we allocate more
1004 space, so it is not a hard limit. */
1005 #ifndef INIT_FAILURE_ALLOC
1006 #define INIT_FAILURE_ALLOC 5
1007 #endif
1008
1009 /* Roughly the maximum number of failure points on the stack. Would be
1010 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1011 This is a variable only so users of regex can assign to it; we never
1012 change it ourselves. */
1013 #if defined (MATCH_MAY_ALLOCATE)
1014 int re_max_failures = 20000;
1015 #else
1016 int re_max_failures = 2000;
1017 #endif
1018
1019 union fail_stack_elt
1020 {
1021 unsigned char *pointer;
1022 int integer;
1023 };
1024
1025 typedef union fail_stack_elt fail_stack_elt_t;
1026
1027 typedef struct
1028 {
1029 fail_stack_elt_t *stack;
1030 unsigned size;
1031 unsigned avail; /* Offset of next open position. */
1032 } fail_stack_type;
1033
1034 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1035 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1036 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1037
1038
1039 /* Define macros to initialize and free the failure stack.
1040 Do `return -2' if the alloc fails. */
1041
1042 #ifdef MATCH_MAY_ALLOCATE
1043 #define INIT_FAIL_STACK() \
1044 do { \
1045 fail_stack.stack = (fail_stack_elt_t *) \
1046 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1047 \
1048 if (fail_stack.stack == NULL) \
1049 return -2; \
1050 \
1051 fail_stack.size = INIT_FAILURE_ALLOC; \
1052 fail_stack.avail = 0; \
1053 } while (0)
1054
1055 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1056 #else
1057 #define INIT_FAIL_STACK() \
1058 do { \
1059 fail_stack.avail = 0; \
1060 } while (0)
1061
1062 #define RESET_FAIL_STACK()
1063 #endif
1064
1065
1066 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1067
1068 Return 1 if succeeds, and 0 if either ran out of memory
1069 allocating space for it or it was already too large.
1070
1071 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1072
1073 #define DOUBLE_FAIL_STACK(fail_stack) \
1074 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1075 ? 0 \
1076 : ((fail_stack).stack = (fail_stack_elt_t *) \
1077 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1078 (fail_stack).size * sizeof (fail_stack_elt_t), \
1079 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1080 \
1081 (fail_stack).stack == NULL \
1082 ? 0 \
1083 : ((fail_stack).size <<= 1, \
1084 1)))
1085
1086
1087 /* Push pointer POINTER on FAIL_STACK.
1088 Return 1 if was able to do so and 0 if ran out of memory allocating
1089 space to do so. */
1090 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1091 ((FAIL_STACK_FULL () \
1092 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1093 ? 0 \
1094 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1095 1))
1096
1097 /* Push a pointer value onto the failure stack.
1098 Assumes the variable `fail_stack'. Probably should only
1099 be called from within `PUSH_FAILURE_POINT'. */
1100 #define PUSH_FAILURE_POINTER(item) \
1101 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1102
1103 /* This pushes an integer-valued item onto the failure stack.
1104 Assumes the variable `fail_stack'. Probably should only
1105 be called from within `PUSH_FAILURE_POINT'. */
1106 #define PUSH_FAILURE_INT(item) \
1107 fail_stack.stack[fail_stack.avail++].integer = (item)
1108
1109 /* Push a fail_stack_elt_t value onto the failure stack.
1110 Assumes the variable `fail_stack'. Probably should only
1111 be called from within `PUSH_FAILURE_POINT'. */
1112 #define PUSH_FAILURE_ELT(item) \
1113 fail_stack.stack[fail_stack.avail++] = (item)
1114
1115 /* These three POP... operations complement the three PUSH... operations.
1116 All assume that `fail_stack' is nonempty. */
1117 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1118 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1119 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1120
1121 /* Used to omit pushing failure point id's when we're not debugging. */
1122 #ifdef DEBUG
1123 #define DEBUG_PUSH PUSH_FAILURE_INT
1124 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1125 #else
1126 #define DEBUG_PUSH(item)
1127 #define DEBUG_POP(item_addr)
1128 #endif
1129
1130
1131 /* Push the information about the state we will need
1132 if we ever fail back to it.
1133
1134 Requires variables fail_stack, regstart, regend, reg_info, and
1135 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1136 declared.
1137
1138 Does `return FAILURE_CODE' if runs out of memory. */
1139
1140 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1141 do { \
1142 char *destination; \
1143 /* Must be int, so when we don't save any registers, the arithmetic \
1144 of 0 + -1 isn't done as unsigned. */ \
1145 int this_reg; \
1146 \
1147 DEBUG_STATEMENT (failure_id++); \
1148 DEBUG_STATEMENT (nfailure_points_pushed++); \
1149 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1150 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1151 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1152 \
1153 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1154 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1155 \
1156 /* Ensure we have enough space allocated for what we will push. */ \
1157 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1158 { \
1159 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1160 return failure_code; \
1161 \
1162 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1163 (fail_stack).size); \
1164 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1165 } \
1166 \
1167 /* Push the info, starting with the registers. */ \
1168 DEBUG_PRINT1 ("\n"); \
1169 \
1170 if (1) \
1171 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1172 this_reg++) \
1173 { \
1174 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1175 DEBUG_STATEMENT (num_regs_pushed++); \
1176 \
1177 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1178 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1179 \
1180 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1181 PUSH_FAILURE_POINTER (regend[this_reg]); \
1182 \
1183 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1184 DEBUG_PRINT2 (" match_null=%d", \
1185 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1186 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" matched_something=%d", \
1188 MATCHED_SOMETHING (reg_info[this_reg])); \
1189 DEBUG_PRINT2 (" ever_matched=%d", \
1190 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1191 DEBUG_PRINT1 ("\n"); \
1192 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1193 } \
1194 \
1195 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1196 PUSH_FAILURE_INT (lowest_active_reg); \
1197 \
1198 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1199 PUSH_FAILURE_INT (highest_active_reg); \
1200 \
1201 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1202 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1203 PUSH_FAILURE_POINTER (pattern_place); \
1204 \
1205 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1206 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1207 size2); \
1208 DEBUG_PRINT1 ("'\n"); \
1209 PUSH_FAILURE_POINTER (string_place); \
1210 \
1211 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1212 DEBUG_PUSH (failure_id); \
1213 } while (0)
1214
1215 /* This is the number of items that are pushed and popped on the stack
1216 for each register. */
1217 #define NUM_REG_ITEMS 3
1218
1219 /* Individual items aside from the registers. */
1220 #ifdef DEBUG
1221 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1222 #else
1223 #define NUM_NONREG_ITEMS 4
1224 #endif
1225
1226 /* We push at most this many items on the stack. */
1227 /* We used to use (num_regs - 1), which is the number of registers
1228 this regexp will save; but that was changed to 5
1229 to avoid stack overflow for a regexp with lots of parens. */
1230 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1231
1232 /* We actually push this many items. */
1233 #define NUM_FAILURE_ITEMS \
1234 (((0 \
1235 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1236 * NUM_REG_ITEMS) \
1237 + NUM_NONREG_ITEMS)
1238
1239 /* How many items can still be added to the stack without overflowing it. */
1240 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1241
1242
1243 /* Pops what PUSH_FAIL_STACK pushes.
1244
1245 We restore into the parameters, all of which should be lvalues:
1246 STR -- the saved data position.
1247 PAT -- the saved pattern position.
1248 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1249 REGSTART, REGEND -- arrays of string positions.
1250 REG_INFO -- array of information about each subexpression.
1251
1252 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1253 `pend', `string1', `size1', `string2', and `size2'. */
1254
1255 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1256 { \
1257 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1258 int this_reg; \
1259 const unsigned char *string_temp; \
1260 \
1261 assert (!FAIL_STACK_EMPTY ()); \
1262 \
1263 /* Remove failure points and point to how many regs pushed. */ \
1264 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1265 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1266 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1267 \
1268 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1269 \
1270 DEBUG_POP (&failure_id); \
1271 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1272 \
1273 /* If the saved string location is NULL, it came from an \
1274 on_failure_keep_string_jump opcode, and we want to throw away the \
1275 saved NULL, thus retaining our current position in the string. */ \
1276 string_temp = POP_FAILURE_POINTER (); \
1277 if (string_temp != NULL) \
1278 str = (const char *) string_temp; \
1279 \
1280 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1281 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1282 DEBUG_PRINT1 ("'\n"); \
1283 \
1284 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1285 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1286 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1287 \
1288 /* Restore register info. */ \
1289 high_reg = (unsigned) POP_FAILURE_INT (); \
1290 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1291 \
1292 low_reg = (unsigned) POP_FAILURE_INT (); \
1293 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1294 \
1295 if (1) \
1296 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1297 { \
1298 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1299 \
1300 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1301 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1302 \
1303 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1304 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1305 \
1306 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1307 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1308 } \
1309 else \
1310 { \
1311 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1312 { \
1313 reg_info[this_reg].word.integer = 0; \
1314 regend[this_reg] = 0; \
1315 regstart[this_reg] = 0; \
1316 } \
1317 highest_active_reg = high_reg; \
1318 } \
1319 \
1320 set_regs_matched_done = 0; \
1321 DEBUG_STATEMENT (nfailure_points_popped++); \
1322 } /* POP_FAILURE_POINT */
1323
1324
1325 \f
1326 /* Structure for per-register (a.k.a. per-group) information.
1327 Other register information, such as the
1328 starting and ending positions (which are addresses), and the list of
1329 inner groups (which is a bits list) are maintained in separate
1330 variables.
1331
1332 We are making a (strictly speaking) nonportable assumption here: that
1333 the compiler will pack our bit fields into something that fits into
1334 the type of `word', i.e., is something that fits into one item on the
1335 failure stack. */
1336
1337 typedef union
1338 {
1339 fail_stack_elt_t word;
1340 struct
1341 {
1342 /* This field is one if this group can match the empty string,
1343 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1344 #define MATCH_NULL_UNSET_VALUE 3
1345 unsigned match_null_string_p : 2;
1346 unsigned is_active : 1;
1347 unsigned matched_something : 1;
1348 unsigned ever_matched_something : 1;
1349 } bits;
1350 } register_info_type;
1351
1352 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1353 #define IS_ACTIVE(R) ((R).bits.is_active)
1354 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1355 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1356
1357
1358 /* Call this when have matched a real character; it sets `matched' flags
1359 for the subexpressions which we are currently inside. Also records
1360 that those subexprs have matched. */
1361 #define SET_REGS_MATCHED() \
1362 do \
1363 { \
1364 if (!set_regs_matched_done) \
1365 { \
1366 unsigned r; \
1367 set_regs_matched_done = 1; \
1368 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1369 { \
1370 MATCHED_SOMETHING (reg_info[r]) \
1371 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1372 = 1; \
1373 } \
1374 } \
1375 } \
1376 while (0)
1377
1378 /* Registers are set to a sentinel when they haven't yet matched. */
1379 static char reg_unset_dummy;
1380 #define REG_UNSET_VALUE (&reg_unset_dummy)
1381 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1382 \f
1383 /* Subroutine declarations and macros for regex_compile. */
1384
1385 static void store_op1 (), store_op2 ();
1386 static void insert_op1 (), insert_op2 ();
1387 static boolean at_begline_loc_p (), at_endline_loc_p ();
1388 static boolean group_in_compile_stack ();
1389 static reg_errcode_t compile_range ();
1390
1391 /* Fetch the next character in the uncompiled pattern---translating it
1392 if necessary. Also cast from a signed character in the constant
1393 string passed to us by the user to an unsigned char that we can use
1394 as an array index (in, e.g., `translate'). */
1395 #ifndef PATFETCH
1396 #define PATFETCH(c) \
1397 do {if (p == pend) return REG_EEND; \
1398 c = (unsigned char) *p++; \
1399 if (translate) c = (unsigned char) translate[c]; \
1400 } while (0)
1401 #endif
1402
1403 /* Fetch the next character in the uncompiled pattern, with no
1404 translation. */
1405 #define PATFETCH_RAW(c) \
1406 do {if (p == pend) return REG_EEND; \
1407 c = (unsigned char) *p++; \
1408 } while (0)
1409
1410 /* Go backwards one character in the pattern. */
1411 #define PATUNFETCH p--
1412
1413
1414 /* If `translate' is non-null, return translate[D], else just D. We
1415 cast the subscript to translate because some data is declared as
1416 `char *', to avoid warnings when a string constant is passed. But
1417 when we use a character as a subscript we must make it unsigned. */
1418 #ifndef TRANSLATE
1419 #define TRANSLATE(d) \
1420 (translate ? (char) translate[(unsigned char) (d)] : (d))
1421 #endif
1422
1423
1424 /* Macros for outputting the compiled pattern into `buffer'. */
1425
1426 /* If the buffer isn't allocated when it comes in, use this. */
1427 #define INIT_BUF_SIZE 32
1428
1429 /* Make sure we have at least N more bytes of space in buffer. */
1430 #define GET_BUFFER_SPACE(n) \
1431 while (b - bufp->buffer + (n) > bufp->allocated) \
1432 EXTEND_BUFFER ()
1433
1434 /* Make sure we have one more byte of buffer space and then add C to it. */
1435 #define BUF_PUSH(c) \
1436 do { \
1437 GET_BUFFER_SPACE (1); \
1438 *b++ = (unsigned char) (c); \
1439 } while (0)
1440
1441
1442 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1443 #define BUF_PUSH_2(c1, c2) \
1444 do { \
1445 GET_BUFFER_SPACE (2); \
1446 *b++ = (unsigned char) (c1); \
1447 *b++ = (unsigned char) (c2); \
1448 } while (0)
1449
1450
1451 /* As with BUF_PUSH_2, except for three bytes. */
1452 #define BUF_PUSH_3(c1, c2, c3) \
1453 do { \
1454 GET_BUFFER_SPACE (3); \
1455 *b++ = (unsigned char) (c1); \
1456 *b++ = (unsigned char) (c2); \
1457 *b++ = (unsigned char) (c3); \
1458 } while (0)
1459
1460
1461 /* Store a jump with opcode OP at LOC to location TO. We store a
1462 relative address offset by the three bytes the jump itself occupies. */
1463 #define STORE_JUMP(op, loc, to) \
1464 store_op1 (op, loc, (to) - (loc) - 3)
1465
1466 /* Likewise, for a two-argument jump. */
1467 #define STORE_JUMP2(op, loc, to, arg) \
1468 store_op2 (op, loc, (to) - (loc) - 3, arg)
1469
1470 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1471 #define INSERT_JUMP(op, loc, to) \
1472 insert_op1 (op, loc, (to) - (loc) - 3, b)
1473
1474 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1475 #define INSERT_JUMP2(op, loc, to, arg) \
1476 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1477
1478
1479 /* This is not an arbitrary limit: the arguments which represent offsets
1480 into the pattern are two bytes long. So if 2^16 bytes turns out to
1481 be too small, many things would have to change. */
1482 #define MAX_BUF_SIZE (1L << 16)
1483
1484
1485 /* Extend the buffer by twice its current size via realloc and
1486 reset the pointers that pointed into the old block to point to the
1487 correct places in the new one. If extending the buffer results in it
1488 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1489 #define EXTEND_BUFFER() \
1490 do { \
1491 unsigned char *old_buffer = bufp->buffer; \
1492 if (bufp->allocated == MAX_BUF_SIZE) \
1493 return REG_ESIZE; \
1494 bufp->allocated <<= 1; \
1495 if (bufp->allocated > MAX_BUF_SIZE) \
1496 bufp->allocated = MAX_BUF_SIZE; \
1497 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1498 if (bufp->buffer == NULL) \
1499 return REG_ESPACE; \
1500 /* If the buffer moved, move all the pointers into it. */ \
1501 if (old_buffer != bufp->buffer) \
1502 { \
1503 b = (b - old_buffer) + bufp->buffer; \
1504 begalt = (begalt - old_buffer) + bufp->buffer; \
1505 if (fixup_alt_jump) \
1506 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1507 if (laststart) \
1508 laststart = (laststart - old_buffer) + bufp->buffer; \
1509 if (pending_exact) \
1510 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1511 } \
1512 } while (0)
1513
1514
1515 /* Since we have one byte reserved for the register number argument to
1516 {start,stop}_memory, the maximum number of groups we can report
1517 things about is what fits in that byte. */
1518 #define MAX_REGNUM 255
1519
1520 /* But patterns can have more than `MAX_REGNUM' registers. We just
1521 ignore the excess. */
1522 typedef unsigned regnum_t;
1523
1524
1525 /* Macros for the compile stack. */
1526
1527 /* Since offsets can go either forwards or backwards, this type needs to
1528 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1529 typedef int pattern_offset_t;
1530
1531 typedef struct
1532 {
1533 pattern_offset_t begalt_offset;
1534 pattern_offset_t fixup_alt_jump;
1535 pattern_offset_t inner_group_offset;
1536 pattern_offset_t laststart_offset;
1537 regnum_t regnum;
1538 } compile_stack_elt_t;
1539
1540
1541 typedef struct
1542 {
1543 compile_stack_elt_t *stack;
1544 unsigned size;
1545 unsigned avail; /* Offset of next open position. */
1546 } compile_stack_type;
1547
1548
1549 #define INIT_COMPILE_STACK_SIZE 32
1550
1551 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1552 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1553
1554 /* The next available element. */
1555 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1556
1557
1558 /* Set the bit for character C in a list. */
1559 #define SET_LIST_BIT(c) \
1560 (b[((unsigned char) (c)) / BYTEWIDTH] \
1561 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1562
1563
1564 /* Get the next unsigned number in the uncompiled pattern. */
1565 #define GET_UNSIGNED_NUMBER(num) \
1566 { if (p != pend) \
1567 { \
1568 PATFETCH (c); \
1569 while (ISDIGIT (c)) \
1570 { \
1571 if (num < 0) \
1572 num = 0; \
1573 num = num * 10 + c - '0'; \
1574 if (p == pend) \
1575 break; \
1576 PATFETCH (c); \
1577 } \
1578 } \
1579 }
1580
1581 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1582
1583 #define IS_CHAR_CLASS(string) \
1584 (STREQ (string, "alpha") || STREQ (string, "upper") \
1585 || STREQ (string, "lower") || STREQ (string, "digit") \
1586 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1587 || STREQ (string, "space") || STREQ (string, "print") \
1588 || STREQ (string, "punct") || STREQ (string, "graph") \
1589 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1590 \f
1591 #ifndef MATCH_MAY_ALLOCATE
1592
1593 /* If we cannot allocate large objects within re_match_2_internal,
1594 we make the fail stack and register vectors global.
1595 The fail stack, we grow to the maximum size when a regexp
1596 is compiled.
1597 The register vectors, we adjust in size each time we
1598 compile a regexp, according to the number of registers it needs. */
1599
1600 static fail_stack_type fail_stack;
1601
1602 /* Size with which the following vectors are currently allocated.
1603 That is so we can make them bigger as needed,
1604 but never make them smaller. */
1605 static int regs_allocated_size;
1606
1607 static const char ** regstart, ** regend;
1608 static const char ** old_regstart, ** old_regend;
1609 static const char **best_regstart, **best_regend;
1610 static register_info_type *reg_info;
1611 static const char **reg_dummy;
1612 static register_info_type *reg_info_dummy;
1613
1614 /* Make the register vectors big enough for NUM_REGS registers,
1615 but don't make them smaller. */
1616
1617 static
1618 regex_grow_registers (num_regs)
1619 int num_regs;
1620 {
1621 if (num_regs > regs_allocated_size)
1622 {
1623 RETALLOC_IF (regstart, num_regs, const char *);
1624 RETALLOC_IF (regend, num_regs, const char *);
1625 RETALLOC_IF (old_regstart, num_regs, const char *);
1626 RETALLOC_IF (old_regend, num_regs, const char *);
1627 RETALLOC_IF (best_regstart, num_regs, const char *);
1628 RETALLOC_IF (best_regend, num_regs, const char *);
1629 RETALLOC_IF (reg_info, num_regs, register_info_type);
1630 RETALLOC_IF (reg_dummy, num_regs, const char *);
1631 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1632
1633 regs_allocated_size = num_regs;
1634 }
1635 }
1636
1637 #endif /* not MATCH_MAY_ALLOCATE */
1638 \f
1639 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1640 Returns one of error codes defined in `regex.h', or zero for success.
1641
1642 Assumes the `allocated' (and perhaps `buffer') and `translate'
1643 fields are set in BUFP on entry.
1644
1645 If it succeeds, results are put in BUFP (if it returns an error, the
1646 contents of BUFP are undefined):
1647 `buffer' is the compiled pattern;
1648 `syntax' is set to SYNTAX;
1649 `used' is set to the length of the compiled pattern;
1650 `fastmap_accurate' is zero;
1651 `re_nsub' is the number of subexpressions in PATTERN;
1652 `not_bol' and `not_eol' are zero;
1653
1654 The `fastmap' and `newline_anchor' fields are neither
1655 examined nor set. */
1656
1657 /* Return, freeing storage we allocated. */
1658 #define FREE_STACK_RETURN(value) \
1659 return (free (compile_stack.stack), value)
1660
1661 static reg_errcode_t
1662 regex_compile (pattern, size, syntax, bufp)
1663 const char *pattern;
1664 int size;
1665 reg_syntax_t syntax;
1666 struct re_pattern_buffer *bufp;
1667 {
1668 /* We fetch characters from PATTERN here. Even though PATTERN is
1669 `char *' (i.e., signed), we declare these variables as unsigned, so
1670 they can be reliably used as array indices. */
1671 register unsigned char c, c1;
1672
1673 /* A random temporary spot in PATTERN. */
1674 const char *p1;
1675
1676 /* Points to the end of the buffer, where we should append. */
1677 register unsigned char *b;
1678
1679 /* Keeps track of unclosed groups. */
1680 compile_stack_type compile_stack;
1681
1682 /* Points to the current (ending) position in the pattern. */
1683 const char *p = pattern;
1684 const char *pend = pattern + size;
1685
1686 /* How to translate the characters in the pattern. */
1687 RE_TRANSLATE_TYPE translate = bufp->translate;
1688
1689 /* Address of the count-byte of the most recently inserted `exactn'
1690 command. This makes it possible to tell if a new exact-match
1691 character can be added to that command or if the character requires
1692 a new `exactn' command. */
1693 unsigned char *pending_exact = 0;
1694
1695 /* Address of start of the most recently finished expression.
1696 This tells, e.g., postfix * where to find the start of its
1697 operand. Reset at the beginning of groups and alternatives. */
1698 unsigned char *laststart = 0;
1699
1700 /* Address of beginning of regexp, or inside of last group. */
1701 unsigned char *begalt;
1702
1703 /* Place in the uncompiled pattern (i.e., the {) to
1704 which to go back if the interval is invalid. */
1705 const char *beg_interval;
1706
1707 /* Address of the place where a forward jump should go to the end of
1708 the containing expression. Each alternative of an `or' -- except the
1709 last -- ends with a forward jump of this sort. */
1710 unsigned char *fixup_alt_jump = 0;
1711
1712 /* Counts open-groups as they are encountered. Remembered for the
1713 matching close-group on the compile stack, so the same register
1714 number is put in the stop_memory as the start_memory. */
1715 regnum_t regnum = 0;
1716
1717 #ifdef DEBUG
1718 DEBUG_PRINT1 ("\nCompiling pattern: ");
1719 if (debug)
1720 {
1721 unsigned debug_count;
1722
1723 for (debug_count = 0; debug_count < size; debug_count++)
1724 putchar (pattern[debug_count]);
1725 putchar ('\n');
1726 }
1727 #endif /* DEBUG */
1728
1729 /* Initialize the compile stack. */
1730 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1731 if (compile_stack.stack == NULL)
1732 return REG_ESPACE;
1733
1734 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1735 compile_stack.avail = 0;
1736
1737 /* Initialize the pattern buffer. */
1738 bufp->syntax = syntax;
1739 bufp->fastmap_accurate = 0;
1740 bufp->not_bol = bufp->not_eol = 0;
1741
1742 /* Set `used' to zero, so that if we return an error, the pattern
1743 printer (for debugging) will think there's no pattern. We reset it
1744 at the end. */
1745 bufp->used = 0;
1746
1747 /* Always count groups, whether or not bufp->no_sub is set. */
1748 bufp->re_nsub = 0;
1749
1750 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1751 /* Initialize the syntax table. */
1752 init_syntax_once ();
1753 #endif
1754
1755 if (bufp->allocated == 0)
1756 {
1757 if (bufp->buffer)
1758 { /* If zero allocated, but buffer is non-null, try to realloc
1759 enough space. This loses if buffer's address is bogus, but
1760 that is the user's responsibility. */
1761 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1762 }
1763 else
1764 { /* Caller did not allocate a buffer. Do it for them. */
1765 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1766 }
1767 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1768
1769 bufp->allocated = INIT_BUF_SIZE;
1770 }
1771
1772 begalt = b = bufp->buffer;
1773
1774 /* Loop through the uncompiled pattern until we're at the end. */
1775 while (p != pend)
1776 {
1777 PATFETCH (c);
1778
1779 switch (c)
1780 {
1781 case '^':
1782 {
1783 if ( /* If at start of pattern, it's an operator. */
1784 p == pattern + 1
1785 /* If context independent, it's an operator. */
1786 || syntax & RE_CONTEXT_INDEP_ANCHORS
1787 /* Otherwise, depends on what's come before. */
1788 || at_begline_loc_p (pattern, p, syntax))
1789 BUF_PUSH (begline);
1790 else
1791 goto normal_char;
1792 }
1793 break;
1794
1795
1796 case '$':
1797 {
1798 if ( /* If at end of pattern, it's an operator. */
1799 p == pend
1800 /* If context independent, it's an operator. */
1801 || syntax & RE_CONTEXT_INDEP_ANCHORS
1802 /* Otherwise, depends on what's next. */
1803 || at_endline_loc_p (p, pend, syntax))
1804 BUF_PUSH (endline);
1805 else
1806 goto normal_char;
1807 }
1808 break;
1809
1810
1811 case '+':
1812 case '?':
1813 if ((syntax & RE_BK_PLUS_QM)
1814 || (syntax & RE_LIMITED_OPS))
1815 goto normal_char;
1816 handle_plus:
1817 case '*':
1818 /* If there is no previous pattern... */
1819 if (!laststart)
1820 {
1821 if (syntax & RE_CONTEXT_INVALID_OPS)
1822 FREE_STACK_RETURN (REG_BADRPT);
1823 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1824 goto normal_char;
1825 }
1826
1827 {
1828 /* Are we optimizing this jump? */
1829 boolean keep_string_p = false;
1830
1831 /* 1 means zero (many) matches is allowed. */
1832 char zero_times_ok = 0, many_times_ok = 0;
1833
1834 /* If there is a sequence of repetition chars, collapse it
1835 down to just one (the right one). We can't combine
1836 interval operators with these because of, e.g., `a{2}*',
1837 which should only match an even number of `a's. */
1838
1839 for (;;)
1840 {
1841 zero_times_ok |= c != '+';
1842 many_times_ok |= c != '?';
1843
1844 if (p == pend)
1845 break;
1846
1847 PATFETCH (c);
1848
1849 if (c == '*'
1850 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1851 ;
1852
1853 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1854 {
1855 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1856
1857 PATFETCH (c1);
1858 if (!(c1 == '+' || c1 == '?'))
1859 {
1860 PATUNFETCH;
1861 PATUNFETCH;
1862 break;
1863 }
1864
1865 c = c1;
1866 }
1867 else
1868 {
1869 PATUNFETCH;
1870 break;
1871 }
1872
1873 /* If we get here, we found another repeat character. */
1874 }
1875
1876 /* Star, etc. applied to an empty pattern is equivalent
1877 to an empty pattern. */
1878 if (!laststart)
1879 break;
1880
1881 /* Now we know whether or not zero matches is allowed
1882 and also whether or not two or more matches is allowed. */
1883 if (many_times_ok)
1884 { /* More than one repetition is allowed, so put in at the
1885 end a backward relative jump from `b' to before the next
1886 jump we're going to put in below (which jumps from
1887 laststart to after this jump).
1888
1889 But if we are at the `*' in the exact sequence `.*\n',
1890 insert an unconditional jump backwards to the .,
1891 instead of the beginning of the loop. This way we only
1892 push a failure point once, instead of every time
1893 through the loop. */
1894 assert (p - 1 > pattern);
1895
1896 /* Allocate the space for the jump. */
1897 GET_BUFFER_SPACE (3);
1898
1899 /* We know we are not at the first character of the pattern,
1900 because laststart was nonzero. And we've already
1901 incremented `p', by the way, to be the character after
1902 the `*'. Do we have to do something analogous here
1903 for null bytes, because of RE_DOT_NOT_NULL? */
1904 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1905 && zero_times_ok
1906 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1907 && !(syntax & RE_DOT_NEWLINE))
1908 { /* We have .*\n. */
1909 STORE_JUMP (jump, b, laststart);
1910 keep_string_p = true;
1911 }
1912 else
1913 /* Anything else. */
1914 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1915
1916 /* We've added more stuff to the buffer. */
1917 b += 3;
1918 }
1919
1920 /* On failure, jump from laststart to b + 3, which will be the
1921 end of the buffer after this jump is inserted. */
1922 GET_BUFFER_SPACE (3);
1923 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1924 : on_failure_jump,
1925 laststart, b + 3);
1926 pending_exact = 0;
1927 b += 3;
1928
1929 if (!zero_times_ok)
1930 {
1931 /* At least one repetition is required, so insert a
1932 `dummy_failure_jump' before the initial
1933 `on_failure_jump' instruction of the loop. This
1934 effects a skip over that instruction the first time
1935 we hit that loop. */
1936 GET_BUFFER_SPACE (3);
1937 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1938 b += 3;
1939 }
1940 }
1941 break;
1942
1943
1944 case '.':
1945 laststart = b;
1946 BUF_PUSH (anychar);
1947 break;
1948
1949
1950 case '[':
1951 {
1952 boolean had_char_class = false;
1953
1954 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1955
1956 /* Ensure that we have enough space to push a charset: the
1957 opcode, the length count, and the bitset; 34 bytes in all. */
1958 GET_BUFFER_SPACE (34);
1959
1960 laststart = b;
1961
1962 /* We test `*p == '^' twice, instead of using an if
1963 statement, so we only need one BUF_PUSH. */
1964 BUF_PUSH (*p == '^' ? charset_not : charset);
1965 if (*p == '^')
1966 p++;
1967
1968 /* Remember the first position in the bracket expression. */
1969 p1 = p;
1970
1971 /* Push the number of bytes in the bitmap. */
1972 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1973
1974 /* Clear the whole map. */
1975 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1976
1977 /* charset_not matches newline according to a syntax bit. */
1978 if ((re_opcode_t) b[-2] == charset_not
1979 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1980 SET_LIST_BIT ('\n');
1981
1982 /* Read in characters and ranges, setting map bits. */
1983 for (;;)
1984 {
1985 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1986
1987 PATFETCH (c);
1988
1989 /* \ might escape characters inside [...] and [^...]. */
1990 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1991 {
1992 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1993
1994 PATFETCH (c1);
1995 SET_LIST_BIT (c1);
1996 continue;
1997 }
1998
1999 /* Could be the end of the bracket expression. If it's
2000 not (i.e., when the bracket expression is `[]' so
2001 far), the ']' character bit gets set way below. */
2002 if (c == ']' && p != p1 + 1)
2003 break;
2004
2005 /* Look ahead to see if it's a range when the last thing
2006 was a character class. */
2007 if (had_char_class && c == '-' && *p != ']')
2008 FREE_STACK_RETURN (REG_ERANGE);
2009
2010 /* Look ahead to see if it's a range when the last thing
2011 was a character: if this is a hyphen not at the
2012 beginning or the end of a list, then it's the range
2013 operator. */
2014 if (c == '-'
2015 && !(p - 2 >= pattern && p[-2] == '[')
2016 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2017 && *p != ']')
2018 {
2019 reg_errcode_t ret
2020 = compile_range (&p, pend, translate, syntax, b);
2021 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2022 }
2023
2024 else if (p[0] == '-' && p[1] != ']')
2025 { /* This handles ranges made up of characters only. */
2026 reg_errcode_t ret;
2027
2028 /* Move past the `-'. */
2029 PATFETCH (c1);
2030
2031 ret = compile_range (&p, pend, translate, syntax, b);
2032 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2033 }
2034
2035 /* See if we're at the beginning of a possible character
2036 class. */
2037
2038 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2039 { /* Leave room for the null. */
2040 char str[CHAR_CLASS_MAX_LENGTH + 1];
2041
2042 PATFETCH (c);
2043 c1 = 0;
2044
2045 /* If pattern is `[[:'. */
2046 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2047
2048 for (;;)
2049 {
2050 PATFETCH (c);
2051 if (c == ':' || c == ']' || p == pend
2052 || c1 == CHAR_CLASS_MAX_LENGTH)
2053 break;
2054 str[c1++] = c;
2055 }
2056 str[c1] = '\0';
2057
2058 /* If isn't a word bracketed by `[:' and:`]':
2059 undo the ending character, the letters, and leave
2060 the leading `:' and `[' (but set bits for them). */
2061 if (c == ':' && *p == ']')
2062 {
2063 int ch;
2064 boolean is_alnum = STREQ (str, "alnum");
2065 boolean is_alpha = STREQ (str, "alpha");
2066 boolean is_blank = STREQ (str, "blank");
2067 boolean is_cntrl = STREQ (str, "cntrl");
2068 boolean is_digit = STREQ (str, "digit");
2069 boolean is_graph = STREQ (str, "graph");
2070 boolean is_lower = STREQ (str, "lower");
2071 boolean is_print = STREQ (str, "print");
2072 boolean is_punct = STREQ (str, "punct");
2073 boolean is_space = STREQ (str, "space");
2074 boolean is_upper = STREQ (str, "upper");
2075 boolean is_xdigit = STREQ (str, "xdigit");
2076
2077 if (!IS_CHAR_CLASS (str))
2078 FREE_STACK_RETURN (REG_ECTYPE);
2079
2080 /* Throw away the ] at the end of the character
2081 class. */
2082 PATFETCH (c);
2083
2084 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2085
2086 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2087 {
2088 /* This was split into 3 if's to
2089 avoid an arbitrary limit in some compiler. */
2090 if ( (is_alnum && ISALNUM (ch))
2091 || (is_alpha && ISALPHA (ch))
2092 || (is_blank && ISBLANK (ch))
2093 || (is_cntrl && ISCNTRL (ch)))
2094 SET_LIST_BIT (ch);
2095 if ( (is_digit && ISDIGIT (ch))
2096 || (is_graph && ISGRAPH (ch))
2097 || (is_lower && ISLOWER (ch))
2098 || (is_print && ISPRINT (ch)))
2099 SET_LIST_BIT (ch);
2100 if ( (is_punct && ISPUNCT (ch))
2101 || (is_space && ISSPACE (ch))
2102 || (is_upper && ISUPPER (ch))
2103 || (is_xdigit && ISXDIGIT (ch)))
2104 SET_LIST_BIT (ch);
2105 }
2106 had_char_class = true;
2107 }
2108 else
2109 {
2110 c1++;
2111 while (c1--)
2112 PATUNFETCH;
2113 SET_LIST_BIT ('[');
2114 SET_LIST_BIT (':');
2115 had_char_class = false;
2116 }
2117 }
2118 else
2119 {
2120 had_char_class = false;
2121 SET_LIST_BIT (c);
2122 }
2123 }
2124
2125 /* Discard any (non)matching list bytes that are all 0 at the
2126 end of the map. Decrease the map-length byte too. */
2127 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2128 b[-1]--;
2129 b += b[-1];
2130 }
2131 break;
2132
2133
2134 case '(':
2135 if (syntax & RE_NO_BK_PARENS)
2136 goto handle_open;
2137 else
2138 goto normal_char;
2139
2140
2141 case ')':
2142 if (syntax & RE_NO_BK_PARENS)
2143 goto handle_close;
2144 else
2145 goto normal_char;
2146
2147
2148 case '\n':
2149 if (syntax & RE_NEWLINE_ALT)
2150 goto handle_alt;
2151 else
2152 goto normal_char;
2153
2154
2155 case '|':
2156 if (syntax & RE_NO_BK_VBAR)
2157 goto handle_alt;
2158 else
2159 goto normal_char;
2160
2161
2162 case '{':
2163 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2164 goto handle_interval;
2165 else
2166 goto normal_char;
2167
2168
2169 case '\\':
2170 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2171
2172 /* Do not translate the character after the \, so that we can
2173 distinguish, e.g., \B from \b, even if we normally would
2174 translate, e.g., B to b. */
2175 PATFETCH_RAW (c);
2176
2177 switch (c)
2178 {
2179 case '(':
2180 if (syntax & RE_NO_BK_PARENS)
2181 goto normal_backslash;
2182
2183 handle_open:
2184 bufp->re_nsub++;
2185 regnum++;
2186
2187 if (COMPILE_STACK_FULL)
2188 {
2189 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2190 compile_stack_elt_t);
2191 if (compile_stack.stack == NULL) return REG_ESPACE;
2192
2193 compile_stack.size <<= 1;
2194 }
2195
2196 /* These are the values to restore when we hit end of this
2197 group. They are all relative offsets, so that if the
2198 whole pattern moves because of realloc, they will still
2199 be valid. */
2200 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2201 COMPILE_STACK_TOP.fixup_alt_jump
2202 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2203 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2204 COMPILE_STACK_TOP.regnum = regnum;
2205
2206 /* We will eventually replace the 0 with the number of
2207 groups inner to this one. But do not push a
2208 start_memory for groups beyond the last one we can
2209 represent in the compiled pattern. */
2210 if (regnum <= MAX_REGNUM)
2211 {
2212 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2213 BUF_PUSH_3 (start_memory, regnum, 0);
2214 }
2215
2216 compile_stack.avail++;
2217
2218 fixup_alt_jump = 0;
2219 laststart = 0;
2220 begalt = b;
2221 /* If we've reached MAX_REGNUM groups, then this open
2222 won't actually generate any code, so we'll have to
2223 clear pending_exact explicitly. */
2224 pending_exact = 0;
2225 break;
2226
2227
2228 case ')':
2229 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2230
2231 if (COMPILE_STACK_EMPTY)
2232 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2233 goto normal_backslash;
2234 else
2235 FREE_STACK_RETURN (REG_ERPAREN);
2236
2237 handle_close:
2238 if (fixup_alt_jump)
2239 { /* Push a dummy failure point at the end of the
2240 alternative for a possible future
2241 `pop_failure_jump' to pop. See comments at
2242 `push_dummy_failure' in `re_match_2'. */
2243 BUF_PUSH (push_dummy_failure);
2244
2245 /* We allocated space for this jump when we assigned
2246 to `fixup_alt_jump', in the `handle_alt' case below. */
2247 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2248 }
2249
2250 /* See similar code for backslashed left paren above. */
2251 if (COMPILE_STACK_EMPTY)
2252 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2253 goto normal_char;
2254 else
2255 FREE_STACK_RETURN (REG_ERPAREN);
2256
2257 /* Since we just checked for an empty stack above, this
2258 ``can't happen''. */
2259 assert (compile_stack.avail != 0);
2260 {
2261 /* We don't just want to restore into `regnum', because
2262 later groups should continue to be numbered higher,
2263 as in `(ab)c(de)' -- the second group is #2. */
2264 regnum_t this_group_regnum;
2265
2266 compile_stack.avail--;
2267 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2268 fixup_alt_jump
2269 = COMPILE_STACK_TOP.fixup_alt_jump
2270 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2271 : 0;
2272 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2273 this_group_regnum = COMPILE_STACK_TOP.regnum;
2274 /* If we've reached MAX_REGNUM groups, then this open
2275 won't actually generate any code, so we'll have to
2276 clear pending_exact explicitly. */
2277 pending_exact = 0;
2278
2279 /* We're at the end of the group, so now we know how many
2280 groups were inside this one. */
2281 if (this_group_regnum <= MAX_REGNUM)
2282 {
2283 unsigned char *inner_group_loc
2284 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2285
2286 *inner_group_loc = regnum - this_group_regnum;
2287 BUF_PUSH_3 (stop_memory, this_group_regnum,
2288 regnum - this_group_regnum);
2289 }
2290 }
2291 break;
2292
2293
2294 case '|': /* `\|'. */
2295 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2296 goto normal_backslash;
2297 handle_alt:
2298 if (syntax & RE_LIMITED_OPS)
2299 goto normal_char;
2300
2301 /* Insert before the previous alternative a jump which
2302 jumps to this alternative if the former fails. */
2303 GET_BUFFER_SPACE (3);
2304 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2305 pending_exact = 0;
2306 b += 3;
2307
2308 /* The alternative before this one has a jump after it
2309 which gets executed if it gets matched. Adjust that
2310 jump so it will jump to this alternative's analogous
2311 jump (put in below, which in turn will jump to the next
2312 (if any) alternative's such jump, etc.). The last such
2313 jump jumps to the correct final destination. A picture:
2314 _____ _____
2315 | | | |
2316 | v | v
2317 a | b | c
2318
2319 If we are at `b', then fixup_alt_jump right now points to a
2320 three-byte space after `a'. We'll put in the jump, set
2321 fixup_alt_jump to right after `b', and leave behind three
2322 bytes which we'll fill in when we get to after `c'. */
2323
2324 if (fixup_alt_jump)
2325 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2326
2327 /* Mark and leave space for a jump after this alternative,
2328 to be filled in later either by next alternative or
2329 when know we're at the end of a series of alternatives. */
2330 fixup_alt_jump = b;
2331 GET_BUFFER_SPACE (3);
2332 b += 3;
2333
2334 laststart = 0;
2335 begalt = b;
2336 break;
2337
2338
2339 case '{':
2340 /* If \{ is a literal. */
2341 if (!(syntax & RE_INTERVALS)
2342 /* If we're at `\{' and it's not the open-interval
2343 operator. */
2344 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2345 || (p - 2 == pattern && p == pend))
2346 goto normal_backslash;
2347
2348 handle_interval:
2349 {
2350 /* If got here, then the syntax allows intervals. */
2351
2352 /* At least (most) this many matches must be made. */
2353 int lower_bound = -1, upper_bound = -1;
2354
2355 beg_interval = p - 1;
2356
2357 if (p == pend)
2358 {
2359 if (syntax & RE_NO_BK_BRACES)
2360 goto unfetch_interval;
2361 else
2362 FREE_STACK_RETURN (REG_EBRACE);
2363 }
2364
2365 GET_UNSIGNED_NUMBER (lower_bound);
2366
2367 if (c == ',')
2368 {
2369 GET_UNSIGNED_NUMBER (upper_bound);
2370 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2371 }
2372 else
2373 /* Interval such as `{1}' => match exactly once. */
2374 upper_bound = lower_bound;
2375
2376 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2377 || lower_bound > upper_bound)
2378 {
2379 if (syntax & RE_NO_BK_BRACES)
2380 goto unfetch_interval;
2381 else
2382 FREE_STACK_RETURN (REG_BADBR);
2383 }
2384
2385 if (!(syntax & RE_NO_BK_BRACES))
2386 {
2387 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2388
2389 PATFETCH (c);
2390 }
2391
2392 if (c != '}')
2393 {
2394 if (syntax & RE_NO_BK_BRACES)
2395 goto unfetch_interval;
2396 else
2397 FREE_STACK_RETURN (REG_BADBR);
2398 }
2399
2400 /* We just parsed a valid interval. */
2401
2402 /* If it's invalid to have no preceding re. */
2403 if (!laststart)
2404 {
2405 if (syntax & RE_CONTEXT_INVALID_OPS)
2406 FREE_STACK_RETURN (REG_BADRPT);
2407 else if (syntax & RE_CONTEXT_INDEP_OPS)
2408 laststart = b;
2409 else
2410 goto unfetch_interval;
2411 }
2412
2413 /* If the upper bound is zero, don't want to succeed at
2414 all; jump from `laststart' to `b + 3', which will be
2415 the end of the buffer after we insert the jump. */
2416 if (upper_bound == 0)
2417 {
2418 GET_BUFFER_SPACE (3);
2419 INSERT_JUMP (jump, laststart, b + 3);
2420 b += 3;
2421 }
2422
2423 /* Otherwise, we have a nontrivial interval. When
2424 we're all done, the pattern will look like:
2425 set_number_at <jump count> <upper bound>
2426 set_number_at <succeed_n count> <lower bound>
2427 succeed_n <after jump addr> <succeed_n count>
2428 <body of loop>
2429 jump_n <succeed_n addr> <jump count>
2430 (The upper bound and `jump_n' are omitted if
2431 `upper_bound' is 1, though.) */
2432 else
2433 { /* If the upper bound is > 1, we need to insert
2434 more at the end of the loop. */
2435 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2436
2437 GET_BUFFER_SPACE (nbytes);
2438
2439 /* Initialize lower bound of the `succeed_n', even
2440 though it will be set during matching by its
2441 attendant `set_number_at' (inserted next),
2442 because `re_compile_fastmap' needs to know.
2443 Jump to the `jump_n' we might insert below. */
2444 INSERT_JUMP2 (succeed_n, laststart,
2445 b + 5 + (upper_bound > 1) * 5,
2446 lower_bound);
2447 b += 5;
2448
2449 /* Code to initialize the lower bound. Insert
2450 before the `succeed_n'. The `5' is the last two
2451 bytes of this `set_number_at', plus 3 bytes of
2452 the following `succeed_n'. */
2453 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2454 b += 5;
2455
2456 if (upper_bound > 1)
2457 { /* More than one repetition is allowed, so
2458 append a backward jump to the `succeed_n'
2459 that starts this interval.
2460
2461 When we've reached this during matching,
2462 we'll have matched the interval once, so
2463 jump back only `upper_bound - 1' times. */
2464 STORE_JUMP2 (jump_n, b, laststart + 5,
2465 upper_bound - 1);
2466 b += 5;
2467
2468 /* The location we want to set is the second
2469 parameter of the `jump_n'; that is `b-2' as
2470 an absolute address. `laststart' will be
2471 the `set_number_at' we're about to insert;
2472 `laststart+3' the number to set, the source
2473 for the relative address. But we are
2474 inserting into the middle of the pattern --
2475 so everything is getting moved up by 5.
2476 Conclusion: (b - 2) - (laststart + 3) + 5,
2477 i.e., b - laststart.
2478
2479 We insert this at the beginning of the loop
2480 so that if we fail during matching, we'll
2481 reinitialize the bounds. */
2482 insert_op2 (set_number_at, laststart, b - laststart,
2483 upper_bound - 1, b);
2484 b += 5;
2485 }
2486 }
2487 pending_exact = 0;
2488 beg_interval = NULL;
2489 }
2490 break;
2491
2492 unfetch_interval:
2493 /* If an invalid interval, match the characters as literals. */
2494 assert (beg_interval);
2495 p = beg_interval;
2496 beg_interval = NULL;
2497
2498 /* normal_char and normal_backslash need `c'. */
2499 PATFETCH (c);
2500
2501 if (!(syntax & RE_NO_BK_BRACES))
2502 {
2503 if (p > pattern && p[-1] == '\\')
2504 goto normal_backslash;
2505 }
2506 goto normal_char;
2507
2508 #ifdef emacs
2509 /* There is no way to specify the before_dot and after_dot
2510 operators. rms says this is ok. --karl */
2511 case '=':
2512 BUF_PUSH (at_dot);
2513 break;
2514
2515 case 's':
2516 laststart = b;
2517 PATFETCH (c);
2518 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2519 break;
2520
2521 case 'S':
2522 laststart = b;
2523 PATFETCH (c);
2524 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2525 break;
2526 #endif /* emacs */
2527
2528
2529 case 'w':
2530 laststart = b;
2531 BUF_PUSH (wordchar);
2532 break;
2533
2534
2535 case 'W':
2536 laststart = b;
2537 BUF_PUSH (notwordchar);
2538 break;
2539
2540
2541 case '<':
2542 BUF_PUSH (wordbeg);
2543 break;
2544
2545 case '>':
2546 BUF_PUSH (wordend);
2547 break;
2548
2549 case 'b':
2550 BUF_PUSH (wordbound);
2551 break;
2552
2553 case 'B':
2554 BUF_PUSH (notwordbound);
2555 break;
2556
2557 case '`':
2558 BUF_PUSH (begbuf);
2559 break;
2560
2561 case '\'':
2562 BUF_PUSH (endbuf);
2563 break;
2564
2565 case '1': case '2': case '3': case '4': case '5':
2566 case '6': case '7': case '8': case '9':
2567 if (syntax & RE_NO_BK_REFS)
2568 goto normal_char;
2569
2570 c1 = c - '0';
2571
2572 if (c1 > regnum)
2573 FREE_STACK_RETURN (REG_ESUBREG);
2574
2575 /* Can't back reference to a subexpression if inside of it. */
2576 if (group_in_compile_stack (compile_stack, c1))
2577 goto normal_char;
2578
2579 laststart = b;
2580 BUF_PUSH_2 (duplicate, c1);
2581 break;
2582
2583
2584 case '+':
2585 case '?':
2586 if (syntax & RE_BK_PLUS_QM)
2587 goto handle_plus;
2588 else
2589 goto normal_backslash;
2590
2591 default:
2592 normal_backslash:
2593 /* You might think it would be useful for \ to mean
2594 not to translate; but if we don't translate it
2595 it will never match anything. */
2596 c = TRANSLATE (c);
2597 goto normal_char;
2598 }
2599 break;
2600
2601
2602 default:
2603 /* Expects the character in `c'. */
2604 normal_char:
2605 /* If no exactn currently being built. */
2606 if (!pending_exact
2607
2608 /* If last exactn not at current position. */
2609 || pending_exact + *pending_exact + 1 != b
2610
2611 /* We have only one byte following the exactn for the count. */
2612 || *pending_exact == (1 << BYTEWIDTH) - 1
2613
2614 /* If followed by a repetition operator. */
2615 || *p == '*' || *p == '^'
2616 || ((syntax & RE_BK_PLUS_QM)
2617 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2618 : (*p == '+' || *p == '?'))
2619 || ((syntax & RE_INTERVALS)
2620 && ((syntax & RE_NO_BK_BRACES)
2621 ? *p == '{'
2622 : (p[0] == '\\' && p[1] == '{'))))
2623 {
2624 /* Start building a new exactn. */
2625
2626 laststart = b;
2627
2628 BUF_PUSH_2 (exactn, 0);
2629 pending_exact = b - 1;
2630 }
2631
2632 BUF_PUSH (c);
2633 (*pending_exact)++;
2634 break;
2635 } /* switch (c) */
2636 } /* while p != pend */
2637
2638
2639 /* Through the pattern now. */
2640
2641 if (fixup_alt_jump)
2642 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2643
2644 if (!COMPILE_STACK_EMPTY)
2645 FREE_STACK_RETURN (REG_EPAREN);
2646
2647 /* If we don't want backtracking, force success
2648 the first time we reach the end of the compiled pattern. */
2649 if (syntax & RE_NO_POSIX_BACKTRACKING)
2650 BUF_PUSH (succeed);
2651
2652 free (compile_stack.stack);
2653
2654 /* We have succeeded; set the length of the buffer. */
2655 bufp->used = b - bufp->buffer;
2656
2657 #ifdef DEBUG
2658 if (debug)
2659 {
2660 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2661 print_compiled_pattern (bufp);
2662 }
2663 #endif /* DEBUG */
2664
2665 #ifndef MATCH_MAY_ALLOCATE
2666 /* Initialize the failure stack to the largest possible stack. This
2667 isn't necessary unless we're trying to avoid calling alloca in
2668 the search and match routines. */
2669 {
2670 int num_regs = bufp->re_nsub + 1;
2671
2672 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2673 is strictly greater than re_max_failures, the largest possible stack
2674 is 2 * re_max_failures failure points. */
2675 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2676 {
2677 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2678
2679 #ifdef emacs
2680 if (! fail_stack.stack)
2681 fail_stack.stack
2682 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2683 * sizeof (fail_stack_elt_t));
2684 else
2685 fail_stack.stack
2686 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2687 (fail_stack.size
2688 * sizeof (fail_stack_elt_t)));
2689 #else /* not emacs */
2690 if (! fail_stack.stack)
2691 fail_stack.stack
2692 = (fail_stack_elt_t *) malloc (fail_stack.size
2693 * sizeof (fail_stack_elt_t));
2694 else
2695 fail_stack.stack
2696 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2697 (fail_stack.size
2698 * sizeof (fail_stack_elt_t)));
2699 #endif /* not emacs */
2700 }
2701
2702 regex_grow_registers (num_regs);
2703 }
2704 #endif /* not MATCH_MAY_ALLOCATE */
2705
2706 return REG_NOERROR;
2707 } /* regex_compile */
2708 \f
2709 /* Subroutines for `regex_compile'. */
2710
2711 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2712
2713 static void
2714 store_op1 (op, loc, arg)
2715 re_opcode_t op;
2716 unsigned char *loc;
2717 int arg;
2718 {
2719 *loc = (unsigned char) op;
2720 STORE_NUMBER (loc + 1, arg);
2721 }
2722
2723
2724 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2725
2726 static void
2727 store_op2 (op, loc, arg1, arg2)
2728 re_opcode_t op;
2729 unsigned char *loc;
2730 int arg1, arg2;
2731 {
2732 *loc = (unsigned char) op;
2733 STORE_NUMBER (loc + 1, arg1);
2734 STORE_NUMBER (loc + 3, arg2);
2735 }
2736
2737
2738 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2739 for OP followed by two-byte integer parameter ARG. */
2740
2741 static void
2742 insert_op1 (op, loc, arg, end)
2743 re_opcode_t op;
2744 unsigned char *loc;
2745 int arg;
2746 unsigned char *end;
2747 {
2748 register unsigned char *pfrom = end;
2749 register unsigned char *pto = end + 3;
2750
2751 while (pfrom != loc)
2752 *--pto = *--pfrom;
2753
2754 store_op1 (op, loc, arg);
2755 }
2756
2757
2758 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2759
2760 static void
2761 insert_op2 (op, loc, arg1, arg2, end)
2762 re_opcode_t op;
2763 unsigned char *loc;
2764 int arg1, arg2;
2765 unsigned char *end;
2766 {
2767 register unsigned char *pfrom = end;
2768 register unsigned char *pto = end + 5;
2769
2770 while (pfrom != loc)
2771 *--pto = *--pfrom;
2772
2773 store_op2 (op, loc, arg1, arg2);
2774 }
2775
2776
2777 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2778 after an alternative or a begin-subexpression. We assume there is at
2779 least one character before the ^. */
2780
2781 static boolean
2782 at_begline_loc_p (pattern, p, syntax)
2783 const char *pattern, *p;
2784 reg_syntax_t syntax;
2785 {
2786 const char *prev = p - 2;
2787 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2788
2789 return
2790 /* After a subexpression? */
2791 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2792 /* After an alternative? */
2793 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2794 }
2795
2796
2797 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2798 at least one character after the $, i.e., `P < PEND'. */
2799
2800 static boolean
2801 at_endline_loc_p (p, pend, syntax)
2802 const char *p, *pend;
2803 int syntax;
2804 {
2805 const char *next = p;
2806 boolean next_backslash = *next == '\\';
2807 const char *next_next = p + 1 < pend ? p + 1 : 0;
2808
2809 return
2810 /* Before a subexpression? */
2811 (syntax & RE_NO_BK_PARENS ? *next == ')'
2812 : next_backslash && next_next && *next_next == ')')
2813 /* Before an alternative? */
2814 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2815 : next_backslash && next_next && *next_next == '|');
2816 }
2817
2818
2819 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2820 false if it's not. */
2821
2822 static boolean
2823 group_in_compile_stack (compile_stack, regnum)
2824 compile_stack_type compile_stack;
2825 regnum_t regnum;
2826 {
2827 int this_element;
2828
2829 for (this_element = compile_stack.avail - 1;
2830 this_element >= 0;
2831 this_element--)
2832 if (compile_stack.stack[this_element].regnum == regnum)
2833 return true;
2834
2835 return false;
2836 }
2837
2838
2839 /* Read the ending character of a range (in a bracket expression) from the
2840 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2841 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2842 Then we set the translation of all bits between the starting and
2843 ending characters (inclusive) in the compiled pattern B.
2844
2845 Return an error code.
2846
2847 We use these short variable names so we can use the same macros as
2848 `regex_compile' itself. */
2849
2850 static reg_errcode_t
2851 compile_range (p_ptr, pend, translate, syntax, b)
2852 const char **p_ptr, *pend;
2853 RE_TRANSLATE_TYPE translate;
2854 reg_syntax_t syntax;
2855 unsigned char *b;
2856 {
2857 unsigned this_char;
2858
2859 const char *p = *p_ptr;
2860 int range_start, range_end;
2861
2862 if (p == pend)
2863 return REG_ERANGE;
2864
2865 /* Even though the pattern is a signed `char *', we need to fetch
2866 with unsigned char *'s; if the high bit of the pattern character
2867 is set, the range endpoints will be negative if we fetch using a
2868 signed char *.
2869
2870 We also want to fetch the endpoints without translating them; the
2871 appropriate translation is done in the bit-setting loop below. */
2872 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2873 range_start = ((const unsigned char *) p)[-2];
2874 range_end = ((const unsigned char *) p)[0];
2875
2876 /* Have to increment the pointer into the pattern string, so the
2877 caller isn't still at the ending character. */
2878 (*p_ptr)++;
2879
2880 /* If the start is after the end, the range is empty. */
2881 if (range_start > range_end)
2882 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2883
2884 /* Here we see why `this_char' has to be larger than an `unsigned
2885 char' -- the range is inclusive, so if `range_end' == 0xff
2886 (assuming 8-bit characters), we would otherwise go into an infinite
2887 loop, since all characters <= 0xff. */
2888 for (this_char = range_start; this_char <= range_end; this_char++)
2889 {
2890 SET_LIST_BIT (TRANSLATE (this_char));
2891 }
2892
2893 return REG_NOERROR;
2894 }
2895 \f
2896 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2897 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2898 characters can start a string that matches the pattern. This fastmap
2899 is used by re_search to skip quickly over impossible starting points.
2900
2901 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2902 area as BUFP->fastmap.
2903
2904 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2905 the pattern buffer.
2906
2907 Returns 0 if we succeed, -2 if an internal error. */
2908
2909 int
2910 re_compile_fastmap (bufp)
2911 struct re_pattern_buffer *bufp;
2912 {
2913 int j, k;
2914 #ifdef MATCH_MAY_ALLOCATE
2915 fail_stack_type fail_stack;
2916 #endif
2917 #ifndef REGEX_MALLOC
2918 char *destination;
2919 #endif
2920 /* We don't push any register information onto the failure stack. */
2921 unsigned num_regs = 0;
2922
2923 register char *fastmap = bufp->fastmap;
2924 unsigned char *pattern = bufp->buffer;
2925 unsigned long size = bufp->used;
2926 unsigned char *p = pattern;
2927 register unsigned char *pend = pattern + size;
2928
2929 /* This holds the pointer to the failure stack, when
2930 it is allocated relocatably. */
2931 fail_stack_elt_t *failure_stack_ptr;
2932
2933 /* Assume that each path through the pattern can be null until
2934 proven otherwise. We set this false at the bottom of switch
2935 statement, to which we get only if a particular path doesn't
2936 match the empty string. */
2937 boolean path_can_be_null = true;
2938
2939 /* We aren't doing a `succeed_n' to begin with. */
2940 boolean succeed_n_p = false;
2941
2942 assert (fastmap != NULL && p != NULL);
2943
2944 INIT_FAIL_STACK ();
2945 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2946 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2947 bufp->can_be_null = 0;
2948
2949 while (1)
2950 {
2951 if (p == pend || *p == succeed)
2952 {
2953 /* We have reached the (effective) end of pattern. */
2954 if (!FAIL_STACK_EMPTY ())
2955 {
2956 bufp->can_be_null |= path_can_be_null;
2957
2958 /* Reset for next path. */
2959 path_can_be_null = true;
2960
2961 p = fail_stack.stack[--fail_stack.avail].pointer;
2962
2963 continue;
2964 }
2965 else
2966 break;
2967 }
2968
2969 /* We should never be about to go beyond the end of the pattern. */
2970 assert (p < pend);
2971
2972 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2973 {
2974
2975 /* I guess the idea here is to simply not bother with a fastmap
2976 if a backreference is used, since it's too hard to figure out
2977 the fastmap for the corresponding group. Setting
2978 `can_be_null' stops `re_search_2' from using the fastmap, so
2979 that is all we do. */
2980 case duplicate:
2981 bufp->can_be_null = 1;
2982 goto done;
2983
2984
2985 /* Following are the cases which match a character. These end
2986 with `break'. */
2987
2988 case exactn:
2989 fastmap[p[1]] = 1;
2990 break;
2991
2992
2993 case charset:
2994 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2995 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2996 fastmap[j] = 1;
2997 break;
2998
2999
3000 case charset_not:
3001 /* Chars beyond end of map must be allowed. */
3002 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3003 fastmap[j] = 1;
3004
3005 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3006 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3007 fastmap[j] = 1;
3008 break;
3009
3010
3011 case wordchar:
3012 for (j = 0; j < (1 << BYTEWIDTH); j++)
3013 if (SYNTAX (j) == Sword)
3014 fastmap[j] = 1;
3015 break;
3016
3017
3018 case notwordchar:
3019 for (j = 0; j < (1 << BYTEWIDTH); j++)
3020 if (SYNTAX (j) != Sword)
3021 fastmap[j] = 1;
3022 break;
3023
3024
3025 case anychar:
3026 {
3027 int fastmap_newline = fastmap['\n'];
3028
3029 /* `.' matches anything ... */
3030 for (j = 0; j < (1 << BYTEWIDTH); j++)
3031 fastmap[j] = 1;
3032
3033 /* ... except perhaps newline. */
3034 if (!(bufp->syntax & RE_DOT_NEWLINE))
3035 fastmap['\n'] = fastmap_newline;
3036
3037 /* Return if we have already set `can_be_null'; if we have,
3038 then the fastmap is irrelevant. Something's wrong here. */
3039 else if (bufp->can_be_null)
3040 goto done;
3041
3042 /* Otherwise, have to check alternative paths. */
3043 break;
3044 }
3045
3046 #ifdef emacs
3047 case syntaxspec:
3048 k = *p++;
3049 for (j = 0; j < (1 << BYTEWIDTH); j++)
3050 if (SYNTAX (j) == (enum syntaxcode) k)
3051 fastmap[j] = 1;
3052 break;
3053
3054
3055 case notsyntaxspec:
3056 k = *p++;
3057 for (j = 0; j < (1 << BYTEWIDTH); j++)
3058 if (SYNTAX (j) != (enum syntaxcode) k)
3059 fastmap[j] = 1;
3060 break;
3061
3062
3063 /* All cases after this match the empty string. These end with
3064 `continue'. */
3065
3066
3067 case before_dot:
3068 case at_dot:
3069 case after_dot:
3070 continue;
3071 #endif /* emacs */
3072
3073
3074 case no_op:
3075 case begline:
3076 case endline:
3077 case begbuf:
3078 case endbuf:
3079 case wordbound:
3080 case notwordbound:
3081 case wordbeg:
3082 case wordend:
3083 case push_dummy_failure:
3084 continue;
3085
3086
3087 case jump_n:
3088 case pop_failure_jump:
3089 case maybe_pop_jump:
3090 case jump:
3091 case jump_past_alt:
3092 case dummy_failure_jump:
3093 EXTRACT_NUMBER_AND_INCR (j, p);
3094 p += j;
3095 if (j > 0)
3096 continue;
3097
3098 /* Jump backward implies we just went through the body of a
3099 loop and matched nothing. Opcode jumped to should be
3100 `on_failure_jump' or `succeed_n'. Just treat it like an
3101 ordinary jump. For a * loop, it has pushed its failure
3102 point already; if so, discard that as redundant. */
3103 if ((re_opcode_t) *p != on_failure_jump
3104 && (re_opcode_t) *p != succeed_n)
3105 continue;
3106
3107 p++;
3108 EXTRACT_NUMBER_AND_INCR (j, p);
3109 p += j;
3110
3111 /* If what's on the stack is where we are now, pop it. */
3112 if (!FAIL_STACK_EMPTY ()
3113 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3114 fail_stack.avail--;
3115
3116 continue;
3117
3118
3119 case on_failure_jump:
3120 case on_failure_keep_string_jump:
3121 handle_on_failure_jump:
3122 EXTRACT_NUMBER_AND_INCR (j, p);
3123
3124 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3125 end of the pattern. We don't want to push such a point,
3126 since when we restore it above, entering the switch will
3127 increment `p' past the end of the pattern. We don't need
3128 to push such a point since we obviously won't find any more
3129 fastmap entries beyond `pend'. Such a pattern can match
3130 the null string, though. */
3131 if (p + j < pend)
3132 {
3133 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3134 {
3135 RESET_FAIL_STACK ();
3136 return -2;
3137 }
3138 }
3139 else
3140 bufp->can_be_null = 1;
3141
3142 if (succeed_n_p)
3143 {
3144 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3145 succeed_n_p = false;
3146 }
3147
3148 continue;
3149
3150
3151 case succeed_n:
3152 /* Get to the number of times to succeed. */
3153 p += 2;
3154
3155 /* Increment p past the n for when k != 0. */
3156 EXTRACT_NUMBER_AND_INCR (k, p);
3157 if (k == 0)
3158 {
3159 p -= 4;
3160 succeed_n_p = true; /* Spaghetti code alert. */
3161 goto handle_on_failure_jump;
3162 }
3163 continue;
3164
3165
3166 case set_number_at:
3167 p += 4;
3168 continue;
3169
3170
3171 case start_memory:
3172 case stop_memory:
3173 p += 2;
3174 continue;
3175
3176
3177 default:
3178 abort (); /* We have listed all the cases. */
3179 } /* switch *p++ */
3180
3181 /* Getting here means we have found the possible starting
3182 characters for one path of the pattern -- and that the empty
3183 string does not match. We need not follow this path further.
3184 Instead, look at the next alternative (remembered on the
3185 stack), or quit if no more. The test at the top of the loop
3186 does these things. */
3187 path_can_be_null = false;
3188 p = pend;
3189 } /* while p */
3190
3191 /* Set `can_be_null' for the last path (also the first path, if the
3192 pattern is empty). */
3193 bufp->can_be_null |= path_can_be_null;
3194
3195 done:
3196 RESET_FAIL_STACK ();
3197 return 0;
3198 } /* re_compile_fastmap */
3199 \f
3200 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3201 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3202 this memory for recording register information. STARTS and ENDS
3203 must be allocated using the malloc library routine, and must each
3204 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3205
3206 If NUM_REGS == 0, then subsequent matches should allocate their own
3207 register data.
3208
3209 Unless this function is called, the first search or match using
3210 PATTERN_BUFFER will allocate its own register data, without
3211 freeing the old data. */
3212
3213 void
3214 re_set_registers (bufp, regs, num_regs, starts, ends)
3215 struct re_pattern_buffer *bufp;
3216 struct re_registers *regs;
3217 unsigned num_regs;
3218 regoff_t *starts, *ends;
3219 {
3220 if (num_regs)
3221 {
3222 bufp->regs_allocated = REGS_REALLOCATE;
3223 regs->num_regs = num_regs;
3224 regs->start = starts;
3225 regs->end = ends;
3226 }
3227 else
3228 {
3229 bufp->regs_allocated = REGS_UNALLOCATED;
3230 regs->num_regs = 0;
3231 regs->start = regs->end = (regoff_t *) 0;
3232 }
3233 }
3234 \f
3235 /* Searching routines. */
3236
3237 /* Like re_search_2, below, but only one string is specified, and
3238 doesn't let you say where to stop matching. */
3239
3240 int
3241 re_search (bufp, string, size, startpos, range, regs)
3242 struct re_pattern_buffer *bufp;
3243 const char *string;
3244 int size, startpos, range;
3245 struct re_registers *regs;
3246 {
3247 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3248 regs, size);
3249 }
3250
3251
3252 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3253 virtual concatenation of STRING1 and STRING2, starting first at index
3254 STARTPOS, then at STARTPOS + 1, and so on.
3255
3256 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3257
3258 RANGE is how far to scan while trying to match. RANGE = 0 means try
3259 only at STARTPOS; in general, the last start tried is STARTPOS +
3260 RANGE.
3261
3262 In REGS, return the indices of the virtual concatenation of STRING1
3263 and STRING2 that matched the entire BUFP->buffer and its contained
3264 subexpressions.
3265
3266 Do not consider matching one past the index STOP in the virtual
3267 concatenation of STRING1 and STRING2.
3268
3269 We return either the position in the strings at which the match was
3270 found, -1 if no match, or -2 if error (such as failure
3271 stack overflow). */
3272
3273 int
3274 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3275 struct re_pattern_buffer *bufp;
3276 const char *string1, *string2;
3277 int size1, size2;
3278 int startpos;
3279 int range;
3280 struct re_registers *regs;
3281 int stop;
3282 {
3283 int val;
3284 register char *fastmap = bufp->fastmap;
3285 register RE_TRANSLATE_TYPE translate = bufp->translate;
3286 int total_size = size1 + size2;
3287 int endpos = startpos + range;
3288
3289 /* Check for out-of-range STARTPOS. */
3290 if (startpos < 0 || startpos > total_size)
3291 return -1;
3292
3293 /* Fix up RANGE if it might eventually take us outside
3294 the virtual concatenation of STRING1 and STRING2.
3295 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3296 if (endpos < 0)
3297 range = 0 - startpos;
3298 else if (endpos > total_size)
3299 range = total_size - startpos;
3300
3301 /* If the search isn't to be a backwards one, don't waste time in a
3302 search for a pattern that must be anchored. */
3303 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3304 {
3305 if (startpos > 0)
3306 return -1;
3307 else
3308 range = 1;
3309 }
3310
3311 #ifdef emacs
3312 /* In a forward search for something that starts with \=.
3313 don't keep searching past point. */
3314 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3315 {
3316 range = PT - startpos;
3317 if (range <= 0)
3318 return -1;
3319 }
3320 #endif /* emacs */
3321
3322 /* Update the fastmap now if not correct already. */
3323 if (fastmap && !bufp->fastmap_accurate)
3324 if (re_compile_fastmap (bufp) == -2)
3325 return -2;
3326
3327 /* Loop through the string, looking for a place to start matching. */
3328 for (;;)
3329 {
3330 /* If a fastmap is supplied, skip quickly over characters that
3331 cannot be the start of a match. If the pattern can match the
3332 null string, however, we don't need to skip characters; we want
3333 the first null string. */
3334 if (fastmap && startpos < total_size && !bufp->can_be_null)
3335 {
3336 if (range > 0) /* Searching forwards. */
3337 {
3338 register const char *d;
3339 register int lim = 0;
3340 int irange = range;
3341
3342 if (startpos < size1 && startpos + range >= size1)
3343 lim = range - (size1 - startpos);
3344
3345 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3346
3347 /* Written out as an if-else to avoid testing `translate'
3348 inside the loop. */
3349 if (translate)
3350 while (range > lim
3351 && !fastmap[(unsigned char)
3352 translate[(unsigned char) *d++]])
3353 range--;
3354 else
3355 while (range > lim && !fastmap[(unsigned char) *d++])
3356 range--;
3357
3358 startpos += irange - range;
3359 }
3360 else /* Searching backwards. */
3361 {
3362 register char c = (size1 == 0 || startpos >= size1
3363 ? string2[startpos - size1]
3364 : string1[startpos]);
3365
3366 if (!fastmap[(unsigned char) TRANSLATE (c)])
3367 goto advance;
3368 }
3369 }
3370
3371 /* If can't match the null string, and that's all we have left, fail. */
3372 if (range >= 0 && startpos == total_size && fastmap
3373 && !bufp->can_be_null)
3374 return -1;
3375
3376 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3377 startpos, regs, stop);
3378 #ifndef REGEX_MALLOC
3379 #ifdef C_ALLOCA
3380 alloca (0);
3381 #endif
3382 #endif
3383
3384 if (val >= 0)
3385 return startpos;
3386
3387 if (val == -2)
3388 return -2;
3389
3390 advance:
3391 if (!range)
3392 break;
3393 else if (range > 0)
3394 {
3395 range--;
3396 startpos++;
3397 }
3398 else
3399 {
3400 range++;
3401 startpos--;
3402 }
3403 }
3404 return -1;
3405 } /* re_search_2 */
3406 \f
3407 /* Declarations and macros for re_match_2. */
3408
3409 static int bcmp_translate ();
3410 static boolean alt_match_null_string_p (),
3411 common_op_match_null_string_p (),
3412 group_match_null_string_p ();
3413
3414 /* This converts PTR, a pointer into one of the search strings `string1'
3415 and `string2' into an offset from the beginning of that string. */
3416 #define POINTER_TO_OFFSET(ptr) \
3417 (FIRST_STRING_P (ptr) \
3418 ? ((regoff_t) ((ptr) - string1)) \
3419 : ((regoff_t) ((ptr) - string2 + size1)))
3420
3421 /* Macros for dealing with the split strings in re_match_2. */
3422
3423 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3424
3425 /* Call before fetching a character with *d. This switches over to
3426 string2 if necessary. */
3427 #define PREFETCH() \
3428 while (d == dend) \
3429 { \
3430 /* End of string2 => fail. */ \
3431 if (dend == end_match_2) \
3432 goto fail; \
3433 /* End of string1 => advance to string2. */ \
3434 d = string2; \
3435 dend = end_match_2; \
3436 }
3437
3438
3439 /* Test if at very beginning or at very end of the virtual concatenation
3440 of `string1' and `string2'. If only one string, it's `string2'. */
3441 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3442 #define AT_STRINGS_END(d) ((d) == end2)
3443
3444
3445 /* Test if D points to a character which is word-constituent. We have
3446 two special cases to check for: if past the end of string1, look at
3447 the first character in string2; and if before the beginning of
3448 string2, look at the last character in string1. */
3449 #define WORDCHAR_P(d) \
3450 (SYNTAX ((d) == end1 ? *string2 \
3451 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3452 == Sword)
3453
3454 /* Disabled due to a compiler bug -- see comment at case wordbound */
3455 #if 0
3456 /* Test if the character before D and the one at D differ with respect
3457 to being word-constituent. */
3458 #define AT_WORD_BOUNDARY(d) \
3459 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3460 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3461 #endif
3462
3463 /* Free everything we malloc. */
3464 #ifdef MATCH_MAY_ALLOCATE
3465 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3466 #define FREE_VARIABLES() \
3467 do { \
3468 REGEX_FREE_STACK (fail_stack.stack); \
3469 FREE_VAR (regstart); \
3470 FREE_VAR (regend); \
3471 FREE_VAR (old_regstart); \
3472 FREE_VAR (old_regend); \
3473 FREE_VAR (best_regstart); \
3474 FREE_VAR (best_regend); \
3475 FREE_VAR (reg_info); \
3476 FREE_VAR (reg_dummy); \
3477 FREE_VAR (reg_info_dummy); \
3478 } while (0)
3479 #else
3480 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3481 #endif /* not MATCH_MAY_ALLOCATE */
3482
3483 /* These values must meet several constraints. They must not be valid
3484 register values; since we have a limit of 255 registers (because
3485 we use only one byte in the pattern for the register number), we can
3486 use numbers larger than 255. They must differ by 1, because of
3487 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3488 be larger than the value for the highest register, so we do not try
3489 to actually save any registers when none are active. */
3490 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3491 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3492 \f
3493 /* Matching routines. */
3494
3495 #ifndef emacs /* Emacs never uses this. */
3496 /* re_match is like re_match_2 except it takes only a single string. */
3497
3498 int
3499 re_match (bufp, string, size, pos, regs)
3500 struct re_pattern_buffer *bufp;
3501 const char *string;
3502 int size, pos;
3503 struct re_registers *regs;
3504 {
3505 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3506 pos, regs, size);
3507 alloca (0);
3508 return result;
3509 }
3510 #endif /* not emacs */
3511
3512
3513 /* re_match_2 matches the compiled pattern in BUFP against the
3514 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3515 and SIZE2, respectively). We start matching at POS, and stop
3516 matching at STOP.
3517
3518 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3519 store offsets for the substring each group matched in REGS. See the
3520 documentation for exactly how many groups we fill.
3521
3522 We return -1 if no match, -2 if an internal error (such as the
3523 failure stack overflowing). Otherwise, we return the length of the
3524 matched substring. */
3525
3526 int
3527 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3528 struct re_pattern_buffer *bufp;
3529 const char *string1, *string2;
3530 int size1, size2;
3531 int pos;
3532 struct re_registers *regs;
3533 int stop;
3534 {
3535 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3536 pos, regs, stop);
3537 alloca (0);
3538 return result;
3539 }
3540
3541 /* This is a separate function so that we can force an alloca cleanup
3542 afterwards. */
3543 static int
3544 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3545 struct re_pattern_buffer *bufp;
3546 const char *string1, *string2;
3547 int size1, size2;
3548 int pos;
3549 struct re_registers *regs;
3550 int stop;
3551 {
3552 /* General temporaries. */
3553 int mcnt;
3554 unsigned char *p1;
3555
3556 /* Just past the end of the corresponding string. */
3557 const char *end1, *end2;
3558
3559 /* Pointers into string1 and string2, just past the last characters in
3560 each to consider matching. */
3561 const char *end_match_1, *end_match_2;
3562
3563 /* Where we are in the data, and the end of the current string. */
3564 const char *d, *dend;
3565
3566 /* Where we are in the pattern, and the end of the pattern. */
3567 unsigned char *p = bufp->buffer;
3568 register unsigned char *pend = p + bufp->used;
3569
3570 /* Mark the opcode just after a start_memory, so we can test for an
3571 empty subpattern when we get to the stop_memory. */
3572 unsigned char *just_past_start_mem = 0;
3573
3574 /* We use this to map every character in the string. */
3575 RE_TRANSLATE_TYPE translate = bufp->translate;
3576
3577 /* Failure point stack. Each place that can handle a failure further
3578 down the line pushes a failure point on this stack. It consists of
3579 restart, regend, and reg_info for all registers corresponding to
3580 the subexpressions we're currently inside, plus the number of such
3581 registers, and, finally, two char *'s. The first char * is where
3582 to resume scanning the pattern; the second one is where to resume
3583 scanning the strings. If the latter is zero, the failure point is
3584 a ``dummy''; if a failure happens and the failure point is a dummy,
3585 it gets discarded and the next next one is tried. */
3586 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3587 fail_stack_type fail_stack;
3588 #endif
3589 #ifdef DEBUG
3590 static unsigned failure_id = 0;
3591 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3592 #endif
3593
3594 /* This holds the pointer to the failure stack, when
3595 it is allocated relocatably. */
3596 fail_stack_elt_t *failure_stack_ptr;
3597
3598 /* We fill all the registers internally, independent of what we
3599 return, for use in backreferences. The number here includes
3600 an element for register zero. */
3601 unsigned num_regs = bufp->re_nsub + 1;
3602
3603 /* The currently active registers. */
3604 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3605 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3606
3607 /* Information on the contents of registers. These are pointers into
3608 the input strings; they record just what was matched (on this
3609 attempt) by a subexpression part of the pattern, that is, the
3610 regnum-th regstart pointer points to where in the pattern we began
3611 matching and the regnum-th regend points to right after where we
3612 stopped matching the regnum-th subexpression. (The zeroth register
3613 keeps track of what the whole pattern matches.) */
3614 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3615 const char **regstart, **regend;
3616 #endif
3617
3618 /* If a group that's operated upon by a repetition operator fails to
3619 match anything, then the register for its start will need to be
3620 restored because it will have been set to wherever in the string we
3621 are when we last see its open-group operator. Similarly for a
3622 register's end. */
3623 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3624 const char **old_regstart, **old_regend;
3625 #endif
3626
3627 /* The is_active field of reg_info helps us keep track of which (possibly
3628 nested) subexpressions we are currently in. The matched_something
3629 field of reg_info[reg_num] helps us tell whether or not we have
3630 matched any of the pattern so far this time through the reg_num-th
3631 subexpression. These two fields get reset each time through any
3632 loop their register is in. */
3633 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3634 register_info_type *reg_info;
3635 #endif
3636
3637 /* The following record the register info as found in the above
3638 variables when we find a match better than any we've seen before.
3639 This happens as we backtrack through the failure points, which in
3640 turn happens only if we have not yet matched the entire string. */
3641 unsigned best_regs_set = false;
3642 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3643 const char **best_regstart, **best_regend;
3644 #endif
3645
3646 /* Logically, this is `best_regend[0]'. But we don't want to have to
3647 allocate space for that if we're not allocating space for anything
3648 else (see below). Also, we never need info about register 0 for
3649 any of the other register vectors, and it seems rather a kludge to
3650 treat `best_regend' differently than the rest. So we keep track of
3651 the end of the best match so far in a separate variable. We
3652 initialize this to NULL so that when we backtrack the first time
3653 and need to test it, it's not garbage. */
3654 const char *match_end = NULL;
3655
3656 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3657 int set_regs_matched_done = 0;
3658
3659 /* Used when we pop values we don't care about. */
3660 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3661 const char **reg_dummy;
3662 register_info_type *reg_info_dummy;
3663 #endif
3664
3665 #ifdef DEBUG
3666 /* Counts the total number of registers pushed. */
3667 unsigned num_regs_pushed = 0;
3668 #endif
3669
3670 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3671
3672 INIT_FAIL_STACK ();
3673
3674 #ifdef MATCH_MAY_ALLOCATE
3675 /* Do not bother to initialize all the register variables if there are
3676 no groups in the pattern, as it takes a fair amount of time. If
3677 there are groups, we include space for register 0 (the whole
3678 pattern), even though we never use it, since it simplifies the
3679 array indexing. We should fix this. */
3680 if (bufp->re_nsub)
3681 {
3682 regstart = REGEX_TALLOC (num_regs, const char *);
3683 regend = REGEX_TALLOC (num_regs, const char *);
3684 old_regstart = REGEX_TALLOC (num_regs, const char *);
3685 old_regend = REGEX_TALLOC (num_regs, const char *);
3686 best_regstart = REGEX_TALLOC (num_regs, const char *);
3687 best_regend = REGEX_TALLOC (num_regs, const char *);
3688 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3689 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3690 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3691
3692 if (!(regstart && regend && old_regstart && old_regend && reg_info
3693 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3694 {
3695 FREE_VARIABLES ();
3696 return -2;
3697 }
3698 }
3699 else
3700 {
3701 /* We must initialize all our variables to NULL, so that
3702 `FREE_VARIABLES' doesn't try to free them. */
3703 regstart = regend = old_regstart = old_regend = best_regstart
3704 = best_regend = reg_dummy = NULL;
3705 reg_info = reg_info_dummy = (register_info_type *) NULL;
3706 }
3707 #endif /* MATCH_MAY_ALLOCATE */
3708
3709 /* The starting position is bogus. */
3710 if (pos < 0 || pos > size1 + size2)
3711 {
3712 FREE_VARIABLES ();
3713 return -1;
3714 }
3715
3716 /* Initialize subexpression text positions to -1 to mark ones that no
3717 start_memory/stop_memory has been seen for. Also initialize the
3718 register information struct. */
3719 for (mcnt = 1; mcnt < num_regs; mcnt++)
3720 {
3721 regstart[mcnt] = regend[mcnt]
3722 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3723
3724 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3725 IS_ACTIVE (reg_info[mcnt]) = 0;
3726 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3727 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3728 }
3729
3730 /* We move `string1' into `string2' if the latter's empty -- but not if
3731 `string1' is null. */
3732 if (size2 == 0 && string1 != NULL)
3733 {
3734 string2 = string1;
3735 size2 = size1;
3736 string1 = 0;
3737 size1 = 0;
3738 }
3739 end1 = string1 + size1;
3740 end2 = string2 + size2;
3741
3742 /* Compute where to stop matching, within the two strings. */
3743 if (stop <= size1)
3744 {
3745 end_match_1 = string1 + stop;
3746 end_match_2 = string2;
3747 }
3748 else
3749 {
3750 end_match_1 = end1;
3751 end_match_2 = string2 + stop - size1;
3752 }
3753
3754 /* `p' scans through the pattern as `d' scans through the data.
3755 `dend' is the end of the input string that `d' points within. `d'
3756 is advanced into the following input string whenever necessary, but
3757 this happens before fetching; therefore, at the beginning of the
3758 loop, `d' can be pointing at the end of a string, but it cannot
3759 equal `string2'. */
3760 if (size1 > 0 && pos <= size1)
3761 {
3762 d = string1 + pos;
3763 dend = end_match_1;
3764 }
3765 else
3766 {
3767 d = string2 + pos - size1;
3768 dend = end_match_2;
3769 }
3770
3771 DEBUG_PRINT1 ("The compiled pattern is: ");
3772 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3773 DEBUG_PRINT1 ("The string to match is: `");
3774 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3775 DEBUG_PRINT1 ("'\n");
3776
3777 /* This loops over pattern commands. It exits by returning from the
3778 function if the match is complete, or it drops through if the match
3779 fails at this starting point in the input data. */
3780 for (;;)
3781 {
3782 DEBUG_PRINT2 ("\n0x%x: ", p);
3783
3784 if (p == pend)
3785 { /* End of pattern means we might have succeeded. */
3786 DEBUG_PRINT1 ("end of pattern ... ");
3787
3788 /* If we haven't matched the entire string, and we want the
3789 longest match, try backtracking. */
3790 if (d != end_match_2)
3791 {
3792 /* 1 if this match ends in the same string (string1 or string2)
3793 as the best previous match. */
3794 boolean same_str_p = (FIRST_STRING_P (match_end)
3795 == MATCHING_IN_FIRST_STRING);
3796 /* 1 if this match is the best seen so far. */
3797 boolean best_match_p;
3798
3799 /* AIX compiler got confused when this was combined
3800 with the previous declaration. */
3801 if (same_str_p)
3802 best_match_p = d > match_end;
3803 else
3804 best_match_p = !MATCHING_IN_FIRST_STRING;
3805
3806 DEBUG_PRINT1 ("backtracking.\n");
3807
3808 if (!FAIL_STACK_EMPTY ())
3809 { /* More failure points to try. */
3810
3811 /* If exceeds best match so far, save it. */
3812 if (!best_regs_set || best_match_p)
3813 {
3814 best_regs_set = true;
3815 match_end = d;
3816
3817 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3818
3819 for (mcnt = 1; mcnt < num_regs; mcnt++)
3820 {
3821 best_regstart[mcnt] = regstart[mcnt];
3822 best_regend[mcnt] = regend[mcnt];
3823 }
3824 }
3825 goto fail;
3826 }
3827
3828 /* If no failure points, don't restore garbage. And if
3829 last match is real best match, don't restore second
3830 best one. */
3831 else if (best_regs_set && !best_match_p)
3832 {
3833 restore_best_regs:
3834 /* Restore best match. It may happen that `dend ==
3835 end_match_1' while the restored d is in string2.
3836 For example, the pattern `x.*y.*z' against the
3837 strings `x-' and `y-z-', if the two strings are
3838 not consecutive in memory. */
3839 DEBUG_PRINT1 ("Restoring best registers.\n");
3840
3841 d = match_end;
3842 dend = ((d >= string1 && d <= end1)
3843 ? end_match_1 : end_match_2);
3844
3845 for (mcnt = 1; mcnt < num_regs; mcnt++)
3846 {
3847 regstart[mcnt] = best_regstart[mcnt];
3848 regend[mcnt] = best_regend[mcnt];
3849 }
3850 }
3851 } /* d != end_match_2 */
3852
3853 succeed_label:
3854 DEBUG_PRINT1 ("Accepting match.\n");
3855
3856 /* If caller wants register contents data back, do it. */
3857 if (regs && !bufp->no_sub)
3858 {
3859 /* Have the register data arrays been allocated? */
3860 if (bufp->regs_allocated == REGS_UNALLOCATED)
3861 { /* No. So allocate them with malloc. We need one
3862 extra element beyond `num_regs' for the `-1' marker
3863 GNU code uses. */
3864 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3865 regs->start = TALLOC (regs->num_regs, regoff_t);
3866 regs->end = TALLOC (regs->num_regs, regoff_t);
3867 if (regs->start == NULL || regs->end == NULL)
3868 {
3869 FREE_VARIABLES ();
3870 return -2;
3871 }
3872 bufp->regs_allocated = REGS_REALLOCATE;
3873 }
3874 else if (bufp->regs_allocated == REGS_REALLOCATE)
3875 { /* Yes. If we need more elements than were already
3876 allocated, reallocate them. If we need fewer, just
3877 leave it alone. */
3878 if (regs->num_regs < num_regs + 1)
3879 {
3880 regs->num_regs = num_regs + 1;
3881 RETALLOC (regs->start, regs->num_regs, regoff_t);
3882 RETALLOC (regs->end, regs->num_regs, regoff_t);
3883 if (regs->start == NULL || regs->end == NULL)
3884 {
3885 FREE_VARIABLES ();
3886 return -2;
3887 }
3888 }
3889 }
3890 else
3891 {
3892 /* These braces fend off a "empty body in an else-statement"
3893 warning under GCC when assert expands to nothing. */
3894 assert (bufp->regs_allocated == REGS_FIXED);
3895 }
3896
3897 /* Convert the pointer data in `regstart' and `regend' to
3898 indices. Register zero has to be set differently,
3899 since we haven't kept track of any info for it. */
3900 if (regs->num_regs > 0)
3901 {
3902 regs->start[0] = pos;
3903 regs->end[0] = (MATCHING_IN_FIRST_STRING
3904 ? ((regoff_t) (d - string1))
3905 : ((regoff_t) (d - string2 + size1)));
3906 }
3907
3908 /* Go through the first `min (num_regs, regs->num_regs)'
3909 registers, since that is all we initialized. */
3910 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3911 {
3912 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3913 regs->start[mcnt] = regs->end[mcnt] = -1;
3914 else
3915 {
3916 regs->start[mcnt]
3917 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3918 regs->end[mcnt]
3919 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3920 }
3921 }
3922
3923 /* If the regs structure we return has more elements than
3924 were in the pattern, set the extra elements to -1. If
3925 we (re)allocated the registers, this is the case,
3926 because we always allocate enough to have at least one
3927 -1 at the end. */
3928 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3929 regs->start[mcnt] = regs->end[mcnt] = -1;
3930 } /* regs && !bufp->no_sub */
3931
3932 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3933 nfailure_points_pushed, nfailure_points_popped,
3934 nfailure_points_pushed - nfailure_points_popped);
3935 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3936
3937 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3938 ? string1
3939 : string2 - size1);
3940
3941 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3942
3943 FREE_VARIABLES ();
3944 return mcnt;
3945 }
3946
3947 /* Otherwise match next pattern command. */
3948 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3949 {
3950 /* Ignore these. Used to ignore the n of succeed_n's which
3951 currently have n == 0. */
3952 case no_op:
3953 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3954 break;
3955
3956 case succeed:
3957 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3958 goto succeed_label;
3959
3960 /* Match the next n pattern characters exactly. The following
3961 byte in the pattern defines n, and the n bytes after that
3962 are the characters to match. */
3963 case exactn:
3964 mcnt = *p++;
3965 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3966
3967 /* This is written out as an if-else so we don't waste time
3968 testing `translate' inside the loop. */
3969 if (translate)
3970 {
3971 do
3972 {
3973 PREFETCH ();
3974 if ((unsigned char) translate[(unsigned char) *d++]
3975 != (unsigned char) *p++)
3976 goto fail;
3977 }
3978 while (--mcnt);
3979 }
3980 else
3981 {
3982 do
3983 {
3984 PREFETCH ();
3985 if (*d++ != (char) *p++) goto fail;
3986 }
3987 while (--mcnt);
3988 }
3989 SET_REGS_MATCHED ();
3990 break;
3991
3992
3993 /* Match any character except possibly a newline or a null. */
3994 case anychar:
3995 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3996
3997 PREFETCH ();
3998
3999 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4000 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4001 goto fail;
4002
4003 SET_REGS_MATCHED ();
4004 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4005 d++;
4006 break;
4007
4008
4009 case charset:
4010 case charset_not:
4011 {
4012 register unsigned char c;
4013 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4014
4015 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4016
4017 PREFETCH ();
4018 c = TRANSLATE (*d); /* The character to match. */
4019
4020 /* Cast to `unsigned' instead of `unsigned char' in case the
4021 bit list is a full 32 bytes long. */
4022 if (c < (unsigned) (*p * BYTEWIDTH)
4023 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4024 not = !not;
4025
4026 p += 1 + *p;
4027
4028 if (!not) goto fail;
4029
4030 SET_REGS_MATCHED ();
4031 d++;
4032 break;
4033 }
4034
4035
4036 /* The beginning of a group is represented by start_memory.
4037 The arguments are the register number in the next byte, and the
4038 number of groups inner to this one in the next. The text
4039 matched within the group is recorded (in the internal
4040 registers data structure) under the register number. */
4041 case start_memory:
4042 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4043
4044 /* Find out if this group can match the empty string. */
4045 p1 = p; /* To send to group_match_null_string_p. */
4046
4047 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4048 REG_MATCH_NULL_STRING_P (reg_info[*p])
4049 = group_match_null_string_p (&p1, pend, reg_info);
4050
4051 /* Save the position in the string where we were the last time
4052 we were at this open-group operator in case the group is
4053 operated upon by a repetition operator, e.g., with `(a*)*b'
4054 against `ab'; then we want to ignore where we are now in
4055 the string in case this attempt to match fails. */
4056 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4057 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4058 : regstart[*p];
4059 DEBUG_PRINT2 (" old_regstart: %d\n",
4060 POINTER_TO_OFFSET (old_regstart[*p]));
4061
4062 regstart[*p] = d;
4063 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4064
4065 IS_ACTIVE (reg_info[*p]) = 1;
4066 MATCHED_SOMETHING (reg_info[*p]) = 0;
4067
4068 /* Clear this whenever we change the register activity status. */
4069 set_regs_matched_done = 0;
4070
4071 /* This is the new highest active register. */
4072 highest_active_reg = *p;
4073
4074 /* If nothing was active before, this is the new lowest active
4075 register. */
4076 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4077 lowest_active_reg = *p;
4078
4079 /* Move past the register number and inner group count. */
4080 p += 2;
4081 just_past_start_mem = p;
4082
4083 break;
4084
4085
4086 /* The stop_memory opcode represents the end of a group. Its
4087 arguments are the same as start_memory's: the register
4088 number, and the number of inner groups. */
4089 case stop_memory:
4090 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4091
4092 /* We need to save the string position the last time we were at
4093 this close-group operator in case the group is operated
4094 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4095 against `aba'; then we want to ignore where we are now in
4096 the string in case this attempt to match fails. */
4097 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4098 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4099 : regend[*p];
4100 DEBUG_PRINT2 (" old_regend: %d\n",
4101 POINTER_TO_OFFSET (old_regend[*p]));
4102
4103 regend[*p] = d;
4104 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4105
4106 /* This register isn't active anymore. */
4107 IS_ACTIVE (reg_info[*p]) = 0;
4108
4109 /* Clear this whenever we change the register activity status. */
4110 set_regs_matched_done = 0;
4111
4112 /* If this was the only register active, nothing is active
4113 anymore. */
4114 if (lowest_active_reg == highest_active_reg)
4115 {
4116 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4117 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4118 }
4119 else
4120 { /* We must scan for the new highest active register, since
4121 it isn't necessarily one less than now: consider
4122 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4123 new highest active register is 1. */
4124 unsigned char r = *p - 1;
4125 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4126 r--;
4127
4128 /* If we end up at register zero, that means that we saved
4129 the registers as the result of an `on_failure_jump', not
4130 a `start_memory', and we jumped to past the innermost
4131 `stop_memory'. For example, in ((.)*) we save
4132 registers 1 and 2 as a result of the *, but when we pop
4133 back to the second ), we are at the stop_memory 1.
4134 Thus, nothing is active. */
4135 if (r == 0)
4136 {
4137 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4138 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4139 }
4140 else
4141 highest_active_reg = r;
4142 }
4143
4144 /* If just failed to match something this time around with a
4145 group that's operated on by a repetition operator, try to
4146 force exit from the ``loop'', and restore the register
4147 information for this group that we had before trying this
4148 last match. */
4149 if ((!MATCHED_SOMETHING (reg_info[*p])
4150 || just_past_start_mem == p - 1)
4151 && (p + 2) < pend)
4152 {
4153 boolean is_a_jump_n = false;
4154
4155 p1 = p + 2;
4156 mcnt = 0;
4157 switch ((re_opcode_t) *p1++)
4158 {
4159 case jump_n:
4160 is_a_jump_n = true;
4161 case pop_failure_jump:
4162 case maybe_pop_jump:
4163 case jump:
4164 case dummy_failure_jump:
4165 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4166 if (is_a_jump_n)
4167 p1 += 2;
4168 break;
4169
4170 default:
4171 /* do nothing */ ;
4172 }
4173 p1 += mcnt;
4174
4175 /* If the next operation is a jump backwards in the pattern
4176 to an on_failure_jump right before the start_memory
4177 corresponding to this stop_memory, exit from the loop
4178 by forcing a failure after pushing on the stack the
4179 on_failure_jump's jump in the pattern, and d. */
4180 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4181 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4182 {
4183 /* If this group ever matched anything, then restore
4184 what its registers were before trying this last
4185 failed match, e.g., with `(a*)*b' against `ab' for
4186 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4187 against `aba' for regend[3].
4188
4189 Also restore the registers for inner groups for,
4190 e.g., `((a*)(b*))*' against `aba' (register 3 would
4191 otherwise get trashed). */
4192
4193 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4194 {
4195 unsigned r;
4196
4197 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4198
4199 /* Restore this and inner groups' (if any) registers. */
4200 for (r = *p; r < *p + *(p + 1); r++)
4201 {
4202 regstart[r] = old_regstart[r];
4203
4204 /* xx why this test? */
4205 if (old_regend[r] >= regstart[r])
4206 regend[r] = old_regend[r];
4207 }
4208 }
4209 p1++;
4210 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4211 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4212
4213 goto fail;
4214 }
4215 }
4216
4217 /* Move past the register number and the inner group count. */
4218 p += 2;
4219 break;
4220
4221
4222 /* \<digit> has been turned into a `duplicate' command which is
4223 followed by the numeric value of <digit> as the register number. */
4224 case duplicate:
4225 {
4226 register const char *d2, *dend2;
4227 int regno = *p++; /* Get which register to match against. */
4228 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4229
4230 /* Can't back reference a group which we've never matched. */
4231 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4232 goto fail;
4233
4234 /* Where in input to try to start matching. */
4235 d2 = regstart[regno];
4236
4237 /* Where to stop matching; if both the place to start and
4238 the place to stop matching are in the same string, then
4239 set to the place to stop, otherwise, for now have to use
4240 the end of the first string. */
4241
4242 dend2 = ((FIRST_STRING_P (regstart[regno])
4243 == FIRST_STRING_P (regend[regno]))
4244 ? regend[regno] : end_match_1);
4245 for (;;)
4246 {
4247 /* If necessary, advance to next segment in register
4248 contents. */
4249 while (d2 == dend2)
4250 {
4251 if (dend2 == end_match_2) break;
4252 if (dend2 == regend[regno]) break;
4253
4254 /* End of string1 => advance to string2. */
4255 d2 = string2;
4256 dend2 = regend[regno];
4257 }
4258 /* At end of register contents => success */
4259 if (d2 == dend2) break;
4260
4261 /* If necessary, advance to next segment in data. */
4262 PREFETCH ();
4263
4264 /* How many characters left in this segment to match. */
4265 mcnt = dend - d;
4266
4267 /* Want how many consecutive characters we can match in
4268 one shot, so, if necessary, adjust the count. */
4269 if (mcnt > dend2 - d2)
4270 mcnt = dend2 - d2;
4271
4272 /* Compare that many; failure if mismatch, else move
4273 past them. */
4274 if (translate
4275 ? bcmp_translate (d, d2, mcnt, translate)
4276 : bcmp (d, d2, mcnt))
4277 goto fail;
4278 d += mcnt, d2 += mcnt;
4279
4280 /* Do this because we've match some characters. */
4281 SET_REGS_MATCHED ();
4282 }
4283 }
4284 break;
4285
4286
4287 /* begline matches the empty string at the beginning of the string
4288 (unless `not_bol' is set in `bufp'), and, if
4289 `newline_anchor' is set, after newlines. */
4290 case begline:
4291 DEBUG_PRINT1 ("EXECUTING begline.\n");
4292
4293 if (AT_STRINGS_BEG (d))
4294 {
4295 if (!bufp->not_bol) break;
4296 }
4297 else if (d[-1] == '\n' && bufp->newline_anchor)
4298 {
4299 break;
4300 }
4301 /* In all other cases, we fail. */
4302 goto fail;
4303
4304
4305 /* endline is the dual of begline. */
4306 case endline:
4307 DEBUG_PRINT1 ("EXECUTING endline.\n");
4308
4309 if (AT_STRINGS_END (d))
4310 {
4311 if (!bufp->not_eol) break;
4312 }
4313
4314 /* We have to ``prefetch'' the next character. */
4315 else if ((d == end1 ? *string2 : *d) == '\n'
4316 && bufp->newline_anchor)
4317 {
4318 break;
4319 }
4320 goto fail;
4321
4322
4323 /* Match at the very beginning of the data. */
4324 case begbuf:
4325 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4326 if (AT_STRINGS_BEG (d))
4327 break;
4328 goto fail;
4329
4330
4331 /* Match at the very end of the data. */
4332 case endbuf:
4333 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4334 if (AT_STRINGS_END (d))
4335 break;
4336 goto fail;
4337
4338
4339 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4340 pushes NULL as the value for the string on the stack. Then
4341 `pop_failure_point' will keep the current value for the
4342 string, instead of restoring it. To see why, consider
4343 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4344 then the . fails against the \n. But the next thing we want
4345 to do is match the \n against the \n; if we restored the
4346 string value, we would be back at the foo.
4347
4348 Because this is used only in specific cases, we don't need to
4349 check all the things that `on_failure_jump' does, to make
4350 sure the right things get saved on the stack. Hence we don't
4351 share its code. The only reason to push anything on the
4352 stack at all is that otherwise we would have to change
4353 `anychar's code to do something besides goto fail in this
4354 case; that seems worse than this. */
4355 case on_failure_keep_string_jump:
4356 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4357
4358 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4359 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4360
4361 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4362 break;
4363
4364
4365 /* Uses of on_failure_jump:
4366
4367 Each alternative starts with an on_failure_jump that points
4368 to the beginning of the next alternative. Each alternative
4369 except the last ends with a jump that in effect jumps past
4370 the rest of the alternatives. (They really jump to the
4371 ending jump of the following alternative, because tensioning
4372 these jumps is a hassle.)
4373
4374 Repeats start with an on_failure_jump that points past both
4375 the repetition text and either the following jump or
4376 pop_failure_jump back to this on_failure_jump. */
4377 case on_failure_jump:
4378 on_failure:
4379 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4380
4381 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4382 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4383
4384 /* If this on_failure_jump comes right before a group (i.e.,
4385 the original * applied to a group), save the information
4386 for that group and all inner ones, so that if we fail back
4387 to this point, the group's information will be correct.
4388 For example, in \(a*\)*\1, we need the preceding group,
4389 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4390
4391 /* We can't use `p' to check ahead because we push
4392 a failure point to `p + mcnt' after we do this. */
4393 p1 = p;
4394
4395 /* We need to skip no_op's before we look for the
4396 start_memory in case this on_failure_jump is happening as
4397 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4398 against aba. */
4399 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4400 p1++;
4401
4402 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4403 {
4404 /* We have a new highest active register now. This will
4405 get reset at the start_memory we are about to get to,
4406 but we will have saved all the registers relevant to
4407 this repetition op, as described above. */
4408 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4409 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4410 lowest_active_reg = *(p1 + 1);
4411 }
4412
4413 DEBUG_PRINT1 (":\n");
4414 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4415 break;
4416
4417
4418 /* A smart repeat ends with `maybe_pop_jump'.
4419 We change it to either `pop_failure_jump' or `jump'. */
4420 case maybe_pop_jump:
4421 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4422 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4423 {
4424 register unsigned char *p2 = p;
4425
4426 /* Compare the beginning of the repeat with what in the
4427 pattern follows its end. If we can establish that there
4428 is nothing that they would both match, i.e., that we
4429 would have to backtrack because of (as in, e.g., `a*a')
4430 then we can change to pop_failure_jump, because we'll
4431 never have to backtrack.
4432
4433 This is not true in the case of alternatives: in
4434 `(a|ab)*' we do need to backtrack to the `ab' alternative
4435 (e.g., if the string was `ab'). But instead of trying to
4436 detect that here, the alternative has put on a dummy
4437 failure point which is what we will end up popping. */
4438
4439 /* Skip over open/close-group commands.
4440 If what follows this loop is a ...+ construct,
4441 look at what begins its body, since we will have to
4442 match at least one of that. */
4443 while (1)
4444 {
4445 if (p2 + 2 < pend
4446 && ((re_opcode_t) *p2 == stop_memory
4447 || (re_opcode_t) *p2 == start_memory))
4448 p2 += 3;
4449 else if (p2 + 6 < pend
4450 && (re_opcode_t) *p2 == dummy_failure_jump)
4451 p2 += 6;
4452 else
4453 break;
4454 }
4455
4456 p1 = p + mcnt;
4457 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4458 to the `maybe_finalize_jump' of this case. Examine what
4459 follows. */
4460
4461 /* If we're at the end of the pattern, we can change. */
4462 if (p2 == pend)
4463 {
4464 /* Consider what happens when matching ":\(.*\)"
4465 against ":/". I don't really understand this code
4466 yet. */
4467 p[-3] = (unsigned char) pop_failure_jump;
4468 DEBUG_PRINT1
4469 (" End of pattern: change to `pop_failure_jump'.\n");
4470 }
4471
4472 else if ((re_opcode_t) *p2 == exactn
4473 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4474 {
4475 register unsigned char c
4476 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4477
4478 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4479 {
4480 p[-3] = (unsigned char) pop_failure_jump;
4481 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4482 c, p1[5]);
4483 }
4484
4485 else if ((re_opcode_t) p1[3] == charset
4486 || (re_opcode_t) p1[3] == charset_not)
4487 {
4488 int not = (re_opcode_t) p1[3] == charset_not;
4489
4490 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4491 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4492 not = !not;
4493
4494 /* `not' is equal to 1 if c would match, which means
4495 that we can't change to pop_failure_jump. */
4496 if (!not)
4497 {
4498 p[-3] = (unsigned char) pop_failure_jump;
4499 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4500 }
4501 }
4502 }
4503 else if ((re_opcode_t) *p2 == charset)
4504 {
4505 #ifdef DEBUG
4506 register unsigned char c
4507 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4508 #endif
4509
4510 if ((re_opcode_t) p1[3] == exactn
4511 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4512 && (p2[2 + p1[5] / BYTEWIDTH]
4513 & (1 << (p1[5] % BYTEWIDTH)))))
4514 {
4515 p[-3] = (unsigned char) pop_failure_jump;
4516 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4517 c, p1[5]);
4518 }
4519
4520 else if ((re_opcode_t) p1[3] == charset_not)
4521 {
4522 int idx;
4523 /* We win if the charset_not inside the loop
4524 lists every character listed in the charset after. */
4525 for (idx = 0; idx < (int) p2[1]; idx++)
4526 if (! (p2[2 + idx] == 0
4527 || (idx < (int) p1[4]
4528 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4529 break;
4530
4531 if (idx == p2[1])
4532 {
4533 p[-3] = (unsigned char) pop_failure_jump;
4534 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4535 }
4536 }
4537 else if ((re_opcode_t) p1[3] == charset)
4538 {
4539 int idx;
4540 /* We win if the charset inside the loop
4541 has no overlap with the one after the loop. */
4542 for (idx = 0;
4543 idx < (int) p2[1] && idx < (int) p1[4];
4544 idx++)
4545 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4546 break;
4547
4548 if (idx == p2[1] || idx == p1[4])
4549 {
4550 p[-3] = (unsigned char) pop_failure_jump;
4551 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4552 }
4553 }
4554 }
4555 }
4556 p -= 2; /* Point at relative address again. */
4557 if ((re_opcode_t) p[-1] != pop_failure_jump)
4558 {
4559 p[-1] = (unsigned char) jump;
4560 DEBUG_PRINT1 (" Match => jump.\n");
4561 goto unconditional_jump;
4562 }
4563 /* Note fall through. */
4564
4565
4566 /* The end of a simple repeat has a pop_failure_jump back to
4567 its matching on_failure_jump, where the latter will push a
4568 failure point. The pop_failure_jump takes off failure
4569 points put on by this pop_failure_jump's matching
4570 on_failure_jump; we got through the pattern to here from the
4571 matching on_failure_jump, so didn't fail. */
4572 case pop_failure_jump:
4573 {
4574 /* We need to pass separate storage for the lowest and
4575 highest registers, even though we don't care about the
4576 actual values. Otherwise, we will restore only one
4577 register from the stack, since lowest will == highest in
4578 `pop_failure_point'. */
4579 unsigned dummy_low_reg, dummy_high_reg;
4580 unsigned char *pdummy;
4581 const char *sdummy;
4582
4583 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4584 POP_FAILURE_POINT (sdummy, pdummy,
4585 dummy_low_reg, dummy_high_reg,
4586 reg_dummy, reg_dummy, reg_info_dummy);
4587 }
4588 /* Note fall through. */
4589
4590
4591 /* Unconditionally jump (without popping any failure points). */
4592 case jump:
4593 unconditional_jump:
4594 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4595 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4596 p += mcnt; /* Do the jump. */
4597 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4598 break;
4599
4600
4601 /* We need this opcode so we can detect where alternatives end
4602 in `group_match_null_string_p' et al. */
4603 case jump_past_alt:
4604 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4605 goto unconditional_jump;
4606
4607
4608 /* Normally, the on_failure_jump pushes a failure point, which
4609 then gets popped at pop_failure_jump. We will end up at
4610 pop_failure_jump, also, and with a pattern of, say, `a+', we
4611 are skipping over the on_failure_jump, so we have to push
4612 something meaningless for pop_failure_jump to pop. */
4613 case dummy_failure_jump:
4614 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4615 /* It doesn't matter what we push for the string here. What
4616 the code at `fail' tests is the value for the pattern. */
4617 PUSH_FAILURE_POINT (0, 0, -2);
4618 goto unconditional_jump;
4619
4620
4621 /* At the end of an alternative, we need to push a dummy failure
4622 point in case we are followed by a `pop_failure_jump', because
4623 we don't want the failure point for the alternative to be
4624 popped. For example, matching `(a|ab)*' against `aab'
4625 requires that we match the `ab' alternative. */
4626 case push_dummy_failure:
4627 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4628 /* See comments just above at `dummy_failure_jump' about the
4629 two zeroes. */
4630 PUSH_FAILURE_POINT (0, 0, -2);
4631 break;
4632
4633 /* Have to succeed matching what follows at least n times.
4634 After that, handle like `on_failure_jump'. */
4635 case succeed_n:
4636 EXTRACT_NUMBER (mcnt, p + 2);
4637 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4638
4639 assert (mcnt >= 0);
4640 /* Originally, this is how many times we HAVE to succeed. */
4641 if (mcnt > 0)
4642 {
4643 mcnt--;
4644 p += 2;
4645 STORE_NUMBER_AND_INCR (p, mcnt);
4646 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4647 }
4648 else if (mcnt == 0)
4649 {
4650 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4651 p[2] = (unsigned char) no_op;
4652 p[3] = (unsigned char) no_op;
4653 goto on_failure;
4654 }
4655 break;
4656
4657 case jump_n:
4658 EXTRACT_NUMBER (mcnt, p + 2);
4659 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4660
4661 /* Originally, this is how many times we CAN jump. */
4662 if (mcnt)
4663 {
4664 mcnt--;
4665 STORE_NUMBER (p + 2, mcnt);
4666 goto unconditional_jump;
4667 }
4668 /* If don't have to jump any more, skip over the rest of command. */
4669 else
4670 p += 4;
4671 break;
4672
4673 case set_number_at:
4674 {
4675 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4676
4677 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4678 p1 = p + mcnt;
4679 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4680 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4681 STORE_NUMBER (p1, mcnt);
4682 break;
4683 }
4684
4685 #if 0
4686 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4687 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4688 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4689 macro and introducing temporary variables works around the bug. */
4690
4691 case wordbound:
4692 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4693 if (AT_WORD_BOUNDARY (d))
4694 break;
4695 goto fail;
4696
4697 case notwordbound:
4698 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4699 if (AT_WORD_BOUNDARY (d))
4700 goto fail;
4701 break;
4702 #else
4703 case wordbound:
4704 {
4705 boolean prevchar, thischar;
4706
4707 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4708 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4709 break;
4710
4711 prevchar = WORDCHAR_P (d - 1);
4712 thischar = WORDCHAR_P (d);
4713 if (prevchar != thischar)
4714 break;
4715 goto fail;
4716 }
4717
4718 case notwordbound:
4719 {
4720 boolean prevchar, thischar;
4721
4722 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4723 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4724 goto fail;
4725
4726 prevchar = WORDCHAR_P (d - 1);
4727 thischar = WORDCHAR_P (d);
4728 if (prevchar != thischar)
4729 goto fail;
4730 break;
4731 }
4732 #endif
4733
4734 case wordbeg:
4735 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4736 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4737 break;
4738 goto fail;
4739
4740 case wordend:
4741 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4742 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4743 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4744 break;
4745 goto fail;
4746
4747 #ifdef emacs
4748 case before_dot:
4749 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4750 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4751 goto fail;
4752 break;
4753
4754 case at_dot:
4755 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4756 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4757 goto fail;
4758 break;
4759
4760 case after_dot:
4761 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4762 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4763 goto fail;
4764 break;
4765
4766 case syntaxspec:
4767 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4768 mcnt = *p++;
4769 goto matchsyntax;
4770
4771 case wordchar:
4772 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4773 mcnt = (int) Sword;
4774 matchsyntax:
4775 PREFETCH ();
4776 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4777 d++;
4778 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4779 goto fail;
4780 SET_REGS_MATCHED ();
4781 break;
4782
4783 case notsyntaxspec:
4784 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4785 mcnt = *p++;
4786 goto matchnotsyntax;
4787
4788 case notwordchar:
4789 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4790 mcnt = (int) Sword;
4791 matchnotsyntax:
4792 PREFETCH ();
4793 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4794 d++;
4795 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4796 goto fail;
4797 SET_REGS_MATCHED ();
4798 break;
4799
4800 #else /* not emacs */
4801 case wordchar:
4802 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4803 PREFETCH ();
4804 if (!WORDCHAR_P (d))
4805 goto fail;
4806 SET_REGS_MATCHED ();
4807 d++;
4808 break;
4809
4810 case notwordchar:
4811 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4812 PREFETCH ();
4813 if (WORDCHAR_P (d))
4814 goto fail;
4815 SET_REGS_MATCHED ();
4816 d++;
4817 break;
4818 #endif /* not emacs */
4819
4820 default:
4821 abort ();
4822 }
4823 continue; /* Successfully executed one pattern command; keep going. */
4824
4825
4826 /* We goto here if a matching operation fails. */
4827 fail:
4828 if (!FAIL_STACK_EMPTY ())
4829 { /* A restart point is known. Restore to that state. */
4830 DEBUG_PRINT1 ("\nFAIL:\n");
4831 POP_FAILURE_POINT (d, p,
4832 lowest_active_reg, highest_active_reg,
4833 regstart, regend, reg_info);
4834
4835 /* If this failure point is a dummy, try the next one. */
4836 if (!p)
4837 goto fail;
4838
4839 /* If we failed to the end of the pattern, don't examine *p. */
4840 assert (p <= pend);
4841 if (p < pend)
4842 {
4843 boolean is_a_jump_n = false;
4844
4845 /* If failed to a backwards jump that's part of a repetition
4846 loop, need to pop this failure point and use the next one. */
4847 switch ((re_opcode_t) *p)
4848 {
4849 case jump_n:
4850 is_a_jump_n = true;
4851 case maybe_pop_jump:
4852 case pop_failure_jump:
4853 case jump:
4854 p1 = p + 1;
4855 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4856 p1 += mcnt;
4857
4858 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4859 || (!is_a_jump_n
4860 && (re_opcode_t) *p1 == on_failure_jump))
4861 goto fail;
4862 break;
4863 default:
4864 /* do nothing */ ;
4865 }
4866 }
4867
4868 if (d >= string1 && d <= end1)
4869 dend = end_match_1;
4870 }
4871 else
4872 break; /* Matching at this starting point really fails. */
4873 } /* for (;;) */
4874
4875 if (best_regs_set)
4876 goto restore_best_regs;
4877
4878 FREE_VARIABLES ();
4879
4880 return -1; /* Failure to match. */
4881 } /* re_match_2 */
4882 \f
4883 /* Subroutine definitions for re_match_2. */
4884
4885
4886 /* We are passed P pointing to a register number after a start_memory.
4887
4888 Return true if the pattern up to the corresponding stop_memory can
4889 match the empty string, and false otherwise.
4890
4891 If we find the matching stop_memory, sets P to point to one past its number.
4892 Otherwise, sets P to an undefined byte less than or equal to END.
4893
4894 We don't handle duplicates properly (yet). */
4895
4896 static boolean
4897 group_match_null_string_p (p, end, reg_info)
4898 unsigned char **p, *end;
4899 register_info_type *reg_info;
4900 {
4901 int mcnt;
4902 /* Point to after the args to the start_memory. */
4903 unsigned char *p1 = *p + 2;
4904
4905 while (p1 < end)
4906 {
4907 /* Skip over opcodes that can match nothing, and return true or
4908 false, as appropriate, when we get to one that can't, or to the
4909 matching stop_memory. */
4910
4911 switch ((re_opcode_t) *p1)
4912 {
4913 /* Could be either a loop or a series of alternatives. */
4914 case on_failure_jump:
4915 p1++;
4916 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4917
4918 /* If the next operation is not a jump backwards in the
4919 pattern. */
4920
4921 if (mcnt >= 0)
4922 {
4923 /* Go through the on_failure_jumps of the alternatives,
4924 seeing if any of the alternatives cannot match nothing.
4925 The last alternative starts with only a jump,
4926 whereas the rest start with on_failure_jump and end
4927 with a jump, e.g., here is the pattern for `a|b|c':
4928
4929 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4930 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4931 /exactn/1/c
4932
4933 So, we have to first go through the first (n-1)
4934 alternatives and then deal with the last one separately. */
4935
4936
4937 /* Deal with the first (n-1) alternatives, which start
4938 with an on_failure_jump (see above) that jumps to right
4939 past a jump_past_alt. */
4940
4941 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4942 {
4943 /* `mcnt' holds how many bytes long the alternative
4944 is, including the ending `jump_past_alt' and
4945 its number. */
4946
4947 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4948 reg_info))
4949 return false;
4950
4951 /* Move to right after this alternative, including the
4952 jump_past_alt. */
4953 p1 += mcnt;
4954
4955 /* Break if it's the beginning of an n-th alternative
4956 that doesn't begin with an on_failure_jump. */
4957 if ((re_opcode_t) *p1 != on_failure_jump)
4958 break;
4959
4960 /* Still have to check that it's not an n-th
4961 alternative that starts with an on_failure_jump. */
4962 p1++;
4963 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4964 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4965 {
4966 /* Get to the beginning of the n-th alternative. */
4967 p1 -= 3;
4968 break;
4969 }
4970 }
4971
4972 /* Deal with the last alternative: go back and get number
4973 of the `jump_past_alt' just before it. `mcnt' contains
4974 the length of the alternative. */
4975 EXTRACT_NUMBER (mcnt, p1 - 2);
4976
4977 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4978 return false;
4979
4980 p1 += mcnt; /* Get past the n-th alternative. */
4981 } /* if mcnt > 0 */
4982 break;
4983
4984
4985 case stop_memory:
4986 assert (p1[1] == **p);
4987 *p = p1 + 2;
4988 return true;
4989
4990
4991 default:
4992 if (!common_op_match_null_string_p (&p1, end, reg_info))
4993 return false;
4994 }
4995 } /* while p1 < end */
4996
4997 return false;
4998 } /* group_match_null_string_p */
4999
5000
5001 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5002 It expects P to be the first byte of a single alternative and END one
5003 byte past the last. The alternative can contain groups. */
5004
5005 static boolean
5006 alt_match_null_string_p (p, end, reg_info)
5007 unsigned char *p, *end;
5008 register_info_type *reg_info;
5009 {
5010 int mcnt;
5011 unsigned char *p1 = p;
5012
5013 while (p1 < end)
5014 {
5015 /* Skip over opcodes that can match nothing, and break when we get
5016 to one that can't. */
5017
5018 switch ((re_opcode_t) *p1)
5019 {
5020 /* It's a loop. */
5021 case on_failure_jump:
5022 p1++;
5023 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5024 p1 += mcnt;
5025 break;
5026
5027 default:
5028 if (!common_op_match_null_string_p (&p1, end, reg_info))
5029 return false;
5030 }
5031 } /* while p1 < end */
5032
5033 return true;
5034 } /* alt_match_null_string_p */
5035
5036
5037 /* Deals with the ops common to group_match_null_string_p and
5038 alt_match_null_string_p.
5039
5040 Sets P to one after the op and its arguments, if any. */
5041
5042 static boolean
5043 common_op_match_null_string_p (p, end, reg_info)
5044 unsigned char **p, *end;
5045 register_info_type *reg_info;
5046 {
5047 int mcnt;
5048 boolean ret;
5049 int reg_no;
5050 unsigned char *p1 = *p;
5051
5052 switch ((re_opcode_t) *p1++)
5053 {
5054 case no_op:
5055 case begline:
5056 case endline:
5057 case begbuf:
5058 case endbuf:
5059 case wordbeg:
5060 case wordend:
5061 case wordbound:
5062 case notwordbound:
5063 #ifdef emacs
5064 case before_dot:
5065 case at_dot:
5066 case after_dot:
5067 #endif
5068 break;
5069
5070 case start_memory:
5071 reg_no = *p1;
5072 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5073 ret = group_match_null_string_p (&p1, end, reg_info);
5074
5075 /* Have to set this here in case we're checking a group which
5076 contains a group and a back reference to it. */
5077
5078 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5079 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5080
5081 if (!ret)
5082 return false;
5083 break;
5084
5085 /* If this is an optimized succeed_n for zero times, make the jump. */
5086 case jump:
5087 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5088 if (mcnt >= 0)
5089 p1 += mcnt;
5090 else
5091 return false;
5092 break;
5093
5094 case succeed_n:
5095 /* Get to the number of times to succeed. */
5096 p1 += 2;
5097 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5098
5099 if (mcnt == 0)
5100 {
5101 p1 -= 4;
5102 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5103 p1 += mcnt;
5104 }
5105 else
5106 return false;
5107 break;
5108
5109 case duplicate:
5110 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5111 return false;
5112 break;
5113
5114 case set_number_at:
5115 p1 += 4;
5116
5117 default:
5118 /* All other opcodes mean we cannot match the empty string. */
5119 return false;
5120 }
5121
5122 *p = p1;
5123 return true;
5124 } /* common_op_match_null_string_p */
5125
5126
5127 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5128 bytes; nonzero otherwise. */
5129
5130 static int
5131 bcmp_translate (s1, s2, len, translate)
5132 unsigned char *s1, *s2;
5133 register int len;
5134 RE_TRANSLATE_TYPE translate;
5135 {
5136 register unsigned char *p1 = s1, *p2 = s2;
5137 while (len)
5138 {
5139 if (translate[*p1++] != translate[*p2++]) return 1;
5140 len--;
5141 }
5142 return 0;
5143 }
5144 \f
5145 /* Entry points for GNU code. */
5146
5147 /* re_compile_pattern is the GNU regular expression compiler: it
5148 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5149 Returns 0 if the pattern was valid, otherwise an error string.
5150
5151 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5152 are set in BUFP on entry.
5153
5154 We call regex_compile to do the actual compilation. */
5155
5156 const char *
5157 re_compile_pattern (pattern, length, bufp)
5158 const char *pattern;
5159 int length;
5160 struct re_pattern_buffer *bufp;
5161 {
5162 reg_errcode_t ret;
5163
5164 /* GNU code is written to assume at least RE_NREGS registers will be set
5165 (and at least one extra will be -1). */
5166 bufp->regs_allocated = REGS_UNALLOCATED;
5167
5168 /* And GNU code determines whether or not to get register information
5169 by passing null for the REGS argument to re_match, etc., not by
5170 setting no_sub. */
5171 bufp->no_sub = 0;
5172
5173 /* Match anchors at newline. */
5174 bufp->newline_anchor = 1;
5175
5176 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5177
5178 if (!ret)
5179 return NULL;
5180 return gettext (re_error_msgid[(int) ret]);
5181 }
5182 \f
5183 /* Entry points compatible with 4.2 BSD regex library. We don't define
5184 them unless specifically requested. */
5185
5186 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5187
5188 /* BSD has one and only one pattern buffer. */
5189 static struct re_pattern_buffer re_comp_buf;
5190
5191 char *
5192 re_comp (s)
5193 const char *s;
5194 {
5195 reg_errcode_t ret;
5196
5197 if (!s)
5198 {
5199 if (!re_comp_buf.buffer)
5200 return gettext ("No previous regular expression");
5201 return 0;
5202 }
5203
5204 if (!re_comp_buf.buffer)
5205 {
5206 re_comp_buf.buffer = (unsigned char *) malloc (200);
5207 if (re_comp_buf.buffer == NULL)
5208 return gettext (re_error_msgid[(int) REG_ESPACE]);
5209 re_comp_buf.allocated = 200;
5210
5211 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5212 if (re_comp_buf.fastmap == NULL)
5213 return gettext (re_error_msgid[(int) REG_ESPACE]);
5214 }
5215
5216 /* Since `re_exec' always passes NULL for the `regs' argument, we
5217 don't need to initialize the pattern buffer fields which affect it. */
5218
5219 /* Match anchors at newlines. */
5220 re_comp_buf.newline_anchor = 1;
5221
5222 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5223
5224 if (!ret)
5225 return NULL;
5226
5227 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5228 return (char *) gettext (re_error_msgid[(int) ret]);
5229 }
5230
5231
5232 int
5233 re_exec (s)
5234 const char *s;
5235 {
5236 const int len = strlen (s);
5237 return
5238 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5239 }
5240
5241 #ifdef _LIBC
5242 /* Make these definitions weak in libc, so POSIX programs can redefine
5243 these names if they don't use our functions, and still use
5244 regcomp/regexec below without link errors. */
5245 weak_symbol (re_comp)
5246 weak_symbol (re_exec)
5247 #endif
5248
5249 #endif /* _REGEX_RE_COMP */
5250 \f
5251 /* POSIX.2 functions. Don't define these for Emacs. */
5252
5253 #ifndef emacs
5254
5255 /* regcomp takes a regular expression as a string and compiles it.
5256
5257 PREG is a regex_t *. We do not expect any fields to be initialized,
5258 since POSIX says we shouldn't. Thus, we set
5259
5260 `buffer' to the compiled pattern;
5261 `used' to the length of the compiled pattern;
5262 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5263 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5264 RE_SYNTAX_POSIX_BASIC;
5265 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5266 `fastmap' and `fastmap_accurate' to zero;
5267 `re_nsub' to the number of subexpressions in PATTERN.
5268
5269 PATTERN is the address of the pattern string.
5270
5271 CFLAGS is a series of bits which affect compilation.
5272
5273 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5274 use POSIX basic syntax.
5275
5276 If REG_NEWLINE is set, then . and [^...] don't match newline.
5277 Also, regexec will try a match beginning after every newline.
5278
5279 If REG_ICASE is set, then we considers upper- and lowercase
5280 versions of letters to be equivalent when matching.
5281
5282 If REG_NOSUB is set, then when PREG is passed to regexec, that
5283 routine will report only success or failure, and nothing about the
5284 registers.
5285
5286 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5287 the return codes and their meanings.) */
5288
5289 int
5290 regcomp (preg, pattern, cflags)
5291 regex_t *preg;
5292 const char *pattern;
5293 int cflags;
5294 {
5295 reg_errcode_t ret;
5296 unsigned syntax
5297 = (cflags & REG_EXTENDED) ?
5298 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5299
5300 /* regex_compile will allocate the space for the compiled pattern. */
5301 preg->buffer = 0;
5302 preg->allocated = 0;
5303 preg->used = 0;
5304
5305 /* Don't bother to use a fastmap when searching. This simplifies the
5306 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5307 characters after newlines into the fastmap. This way, we just try
5308 every character. */
5309 preg->fastmap = 0;
5310
5311 if (cflags & REG_ICASE)
5312 {
5313 unsigned i;
5314
5315 preg->translate
5316 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5317 * sizeof (*(RE_TRANSLATE_TYPE)0));
5318 if (preg->translate == NULL)
5319 return (int) REG_ESPACE;
5320
5321 /* Map uppercase characters to corresponding lowercase ones. */
5322 for (i = 0; i < CHAR_SET_SIZE; i++)
5323 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5324 }
5325 else
5326 preg->translate = NULL;
5327
5328 /* If REG_NEWLINE is set, newlines are treated differently. */
5329 if (cflags & REG_NEWLINE)
5330 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5331 syntax &= ~RE_DOT_NEWLINE;
5332 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5333 /* It also changes the matching behavior. */
5334 preg->newline_anchor = 1;
5335 }
5336 else
5337 preg->newline_anchor = 0;
5338
5339 preg->no_sub = !!(cflags & REG_NOSUB);
5340
5341 /* POSIX says a null character in the pattern terminates it, so we
5342 can use strlen here in compiling the pattern. */
5343 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5344
5345 /* POSIX doesn't distinguish between an unmatched open-group and an
5346 unmatched close-group: both are REG_EPAREN. */
5347 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5348
5349 return (int) ret;
5350 }
5351
5352
5353 /* regexec searches for a given pattern, specified by PREG, in the
5354 string STRING.
5355
5356 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5357 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5358 least NMATCH elements, and we set them to the offsets of the
5359 corresponding matched substrings.
5360
5361 EFLAGS specifies `execution flags' which affect matching: if
5362 REG_NOTBOL is set, then ^ does not match at the beginning of the
5363 string; if REG_NOTEOL is set, then $ does not match at the end.
5364
5365 We return 0 if we find a match and REG_NOMATCH if not. */
5366
5367 int
5368 regexec (preg, string, nmatch, pmatch, eflags)
5369 const regex_t *preg;
5370 const char *string;
5371 size_t nmatch;
5372 regmatch_t pmatch[];
5373 int eflags;
5374 {
5375 int ret;
5376 struct re_registers regs;
5377 regex_t private_preg;
5378 int len = strlen (string);
5379 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5380
5381 private_preg = *preg;
5382
5383 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5384 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5385
5386 /* The user has told us exactly how many registers to return
5387 information about, via `nmatch'. We have to pass that on to the
5388 matching routines. */
5389 private_preg.regs_allocated = REGS_FIXED;
5390
5391 if (want_reg_info)
5392 {
5393 regs.num_regs = nmatch;
5394 regs.start = TALLOC (nmatch, regoff_t);
5395 regs.end = TALLOC (nmatch, regoff_t);
5396 if (regs.start == NULL || regs.end == NULL)
5397 return (int) REG_NOMATCH;
5398 }
5399
5400 /* Perform the searching operation. */
5401 ret = re_search (&private_preg, string, len,
5402 /* start: */ 0, /* range: */ len,
5403 want_reg_info ? &regs : (struct re_registers *) 0);
5404
5405 /* Copy the register information to the POSIX structure. */
5406 if (want_reg_info)
5407 {
5408 if (ret >= 0)
5409 {
5410 unsigned r;
5411
5412 for (r = 0; r < nmatch; r++)
5413 {
5414 pmatch[r].rm_so = regs.start[r];
5415 pmatch[r].rm_eo = regs.end[r];
5416 }
5417 }
5418
5419 /* If we needed the temporary register info, free the space now. */
5420 free (regs.start);
5421 free (regs.end);
5422 }
5423
5424 /* We want zero return to mean success, unlike `re_search'. */
5425 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5426 }
5427
5428
5429 /* Returns a message corresponding to an error code, ERRCODE, returned
5430 from either regcomp or regexec. We don't use PREG here. */
5431
5432 size_t
5433 regerror (errcode, preg, errbuf, errbuf_size)
5434 int errcode;
5435 const regex_t *preg;
5436 char *errbuf;
5437 size_t errbuf_size;
5438 {
5439 const char *msg;
5440 size_t msg_size;
5441
5442 if (errcode < 0
5443 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5444 /* Only error codes returned by the rest of the code should be passed
5445 to this routine. If we are given anything else, or if other regex
5446 code generates an invalid error code, then the program has a bug.
5447 Dump core so we can fix it. */
5448 abort ();
5449
5450 msg = gettext (re_error_msgid[errcode]);
5451
5452 msg_size = strlen (msg) + 1; /* Includes the null. */
5453
5454 if (errbuf_size != 0)
5455 {
5456 if (msg_size > errbuf_size)
5457 {
5458 strncpy (errbuf, msg, errbuf_size - 1);
5459 errbuf[errbuf_size - 1] = 0;
5460 }
5461 else
5462 strcpy (errbuf, msg);
5463 }
5464
5465 return msg_size;
5466 }
5467
5468
5469 /* Free dynamically allocated space used by PREG. */
5470
5471 void
5472 regfree (preg)
5473 regex_t *preg;
5474 {
5475 if (preg->buffer != NULL)
5476 free (preg->buffer);
5477 preg->buffer = NULL;
5478
5479 preg->allocated = 0;
5480 preg->used = 0;
5481
5482 if (preg->fastmap != NULL)
5483 free (preg->fastmap);
5484 preg->fastmap = NULL;
5485 preg->fastmap_accurate = 0;
5486
5487 if (preg->translate != NULL)
5488 free (preg->translate);
5489 preg->translate = NULL;
5490 }
5491
5492 #endif /* not emacs */