]> git.ipfire.org Git - thirdparty/glibc.git/blob - posix/regex.c
Update.
[thirdparty/glibc.git] / posix / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
33
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
37 # else
38 # define PARAMS(args) ()
39 # endif /* GCC. */
40 #endif /* Not PARAMS. */
41
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
48
49 /* For platform which support the ISO C amendement 1 functionality we
50 support user defined character classes. */
51 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
52 # include <wctype.h>
53 # include <wchar.h>
54 #endif
55
56 /* This is for other GNU distributions with internationalized messages. */
57 #if HAVE_LIBINTL_H || defined _LIBC
58 # include <libintl.h>
59 #else
60 # define gettext(msgid) (msgid)
61 #endif
62
63 #ifndef gettext_noop
64 /* This define is so xgettext can find the internationalizable
65 strings. */
66 # define gettext_noop(String) String
67 #endif
68
69 /* The `emacs' switch turns on certain matching commands
70 that make sense only in Emacs. */
71 #ifdef emacs
72
73 # include "lisp.h"
74 # include "buffer.h"
75 # include "syntax.h"
76
77 #else /* not emacs */
78
79 /* If we are not linking with Emacs proper,
80 we can't use the relocating allocator
81 even if config.h says that we can. */
82 # undef REL_ALLOC
83
84 # if defined STDC_HEADERS || defined _LIBC
85 # include <stdlib.h>
86 # else
87 char *malloc ();
88 char *realloc ();
89 # endif
90
91 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
92 If nothing else has been done, use the method below. */
93 # ifdef INHIBIT_STRING_HEADER
94 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
95 # if !defined bzero && !defined bcopy
96 # undef INHIBIT_STRING_HEADER
97 # endif
98 # endif
99 # endif
100
101 /* This is the normal way of making sure we have a bcopy and a bzero.
102 This is used in most programs--a few other programs avoid this
103 by defining INHIBIT_STRING_HEADER. */
104 # ifndef INHIBIT_STRING_HEADER
105 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
106 # include <string.h>
107 # if !defined bzero && !defined _LIBC
108 # define bzero(s, n) (memset (s, '\0', n), (s))
109 # endif
110 # else
111 # include <strings.h>
112 # ifndef memcmp
113 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
114 # endif
115 # ifndef memcpy
116 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
117 # endif
118 # endif
119 # endif
120
121 /* Define the syntax stuff for \<, \>, etc. */
122
123 /* This must be nonzero for the wordchar and notwordchar pattern
124 commands in re_match_2. */
125 # ifndef Sword
126 # define Sword 1
127 # endif
128
129 # ifdef SWITCH_ENUM_BUG
130 # define SWITCH_ENUM_CAST(x) ((int)(x))
131 # else
132 # define SWITCH_ENUM_CAST(x) (x)
133 # endif
134
135 /* How many characters in the character set. */
136 # define CHAR_SET_SIZE 256
137
138 # ifdef SYNTAX_TABLE
139
140 extern char *re_syntax_table;
141
142 # else /* not SYNTAX_TABLE */
143
144 static char re_syntax_table[CHAR_SET_SIZE];
145
146 static void
147 init_syntax_once ()
148 {
149 register int c;
150 static int done = 0;
151
152 if (done)
153 return;
154
155 bzero (re_syntax_table, sizeof re_syntax_table);
156
157 for (c = 'a'; c <= 'z'; c++)
158 re_syntax_table[c] = Sword;
159
160 for (c = 'A'; c <= 'Z'; c++)
161 re_syntax_table[c] = Sword;
162
163 for (c = '0'; c <= '9'; c++)
164 re_syntax_table[c] = Sword;
165
166 re_syntax_table['_'] = Sword;
167
168 done = 1;
169 }
170
171 # endif /* not SYNTAX_TABLE */
172
173 # define SYNTAX(c) re_syntax_table[c]
174
175 #endif /* not emacs */
176 \f
177 /* Get the interface, including the syntax bits. */
178 #include "regex.h"
179
180 /* isalpha etc. are used for the character classes. */
181 #include <ctype.h>
182
183 /* Jim Meyering writes:
184
185 "... Some ctype macros are valid only for character codes that
186 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
187 using /bin/cc or gcc but without giving an ansi option). So, all
188 ctype uses should be through macros like ISPRINT... If
189 STDC_HEADERS is defined, then autoconf has verified that the ctype
190 macros don't need to be guarded with references to isascii. ...
191 Defining isascii to 1 should let any compiler worth its salt
192 eliminate the && through constant folding." */
193
194 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
195 # define ISASCII(c) 1
196 #else
197 # define ISASCII(c) isascii(c)
198 #endif
199
200 #ifdef isblank
201 # define ISBLANK(c) (ISASCII (c) && isblank (c))
202 #else
203 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
204 #endif
205 #ifdef isgraph
206 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
207 #else
208 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
209 #endif
210
211 #define ISPRINT(c) (ISASCII (c) && isprint (c))
212 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
213 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
214 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
215 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
216 #define ISLOWER(c) (ISASCII (c) && islower (c))
217 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
218 #define ISSPACE(c) (ISASCII (c) && isspace (c))
219 #define ISUPPER(c) (ISASCII (c) && isupper (c))
220 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
221
222 #ifndef NULL
223 # define NULL (void *)0
224 #endif
225
226 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
227 since ours (we hope) works properly with all combinations of
228 machines, compilers, `char' and `unsigned char' argument types.
229 (Per Bothner suggested the basic approach.) */
230 #undef SIGN_EXTEND_CHAR
231 #if __STDC__
232 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
233 #else /* not __STDC__ */
234 /* As in Harbison and Steele. */
235 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
236 #endif
237 \f
238 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
239 use `alloca' instead of `malloc'. This is because using malloc in
240 re_search* or re_match* could cause memory leaks when C-g is used in
241 Emacs; also, malloc is slower and causes storage fragmentation. On
242 the other hand, malloc is more portable, and easier to debug.
243
244 Because we sometimes use alloca, some routines have to be macros,
245 not functions -- `alloca'-allocated space disappears at the end of the
246 function it is called in. */
247
248 #ifdef REGEX_MALLOC
249
250 # define REGEX_ALLOCATE malloc
251 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
252 # define REGEX_FREE free
253
254 #else /* not REGEX_MALLOC */
255
256 /* Emacs already defines alloca, sometimes. */
257 # ifndef alloca
258
259 /* Make alloca work the best possible way. */
260 # ifdef __GNUC__
261 # define alloca __builtin_alloca
262 # else /* not __GNUC__ */
263 # if HAVE_ALLOCA_H
264 # include <alloca.h>
265 # endif /* HAVE_ALLOCA_H */
266 # endif /* not __GNUC__ */
267
268 # endif /* not alloca */
269
270 # define REGEX_ALLOCATE alloca
271
272 /* Assumes a `char *destination' variable. */
273 # define REGEX_REALLOCATE(source, osize, nsize) \
274 (destination = (char *) alloca (nsize), \
275 memcpy (destination, source, osize))
276
277 /* No need to do anything to free, after alloca. */
278 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
279
280 #endif /* not REGEX_MALLOC */
281
282 /* Define how to allocate the failure stack. */
283
284 #if defined REL_ALLOC && defined REGEX_MALLOC
285
286 # define REGEX_ALLOCATE_STACK(size) \
287 r_alloc (&failure_stack_ptr, (size))
288 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
289 r_re_alloc (&failure_stack_ptr, (nsize))
290 # define REGEX_FREE_STACK(ptr) \
291 r_alloc_free (&failure_stack_ptr)
292
293 #else /* not using relocating allocator */
294
295 # ifdef REGEX_MALLOC
296
297 # define REGEX_ALLOCATE_STACK malloc
298 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
299 # define REGEX_FREE_STACK free
300
301 # else /* not REGEX_MALLOC */
302
303 # define REGEX_ALLOCATE_STACK alloca
304
305 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
306 REGEX_REALLOCATE (source, osize, nsize)
307 /* No need to explicitly free anything. */
308 # define REGEX_FREE_STACK(arg)
309
310 # endif /* not REGEX_MALLOC */
311 #endif /* not using relocating allocator */
312
313
314 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
315 `string1' or just past its end. This works if PTR is NULL, which is
316 a good thing. */
317 #define FIRST_STRING_P(ptr) \
318 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
319
320 /* (Re)Allocate N items of type T using malloc, or fail. */
321 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
322 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
323 #define RETALLOC_IF(addr, n, t) \
324 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
325 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
326
327 #define BYTEWIDTH 8 /* In bits. */
328
329 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
330
331 #undef MAX
332 #undef MIN
333 #define MAX(a, b) ((a) > (b) ? (a) : (b))
334 #define MIN(a, b) ((a) < (b) ? (a) : (b))
335
336 typedef char boolean;
337 #define false 0
338 #define true 1
339
340 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
341 const char *string1, int size1,
342 const char *string2, int size2,
343 int pos,
344 struct re_registers *regs,
345 int stop));
346 \f
347 /* These are the command codes that appear in compiled regular
348 expressions. Some opcodes are followed by argument bytes. A
349 command code can specify any interpretation whatsoever for its
350 arguments. Zero bytes may appear in the compiled regular expression. */
351
352 typedef enum
353 {
354 no_op = 0,
355
356 /* Succeed right away--no more backtracking. */
357 succeed,
358
359 /* Followed by one byte giving n, then by n literal bytes. */
360 exactn,
361
362 /* Matches any (more or less) character. */
363 anychar,
364
365 /* Matches any one char belonging to specified set. First
366 following byte is number of bitmap bytes. Then come bytes
367 for a bitmap saying which chars are in. Bits in each byte
368 are ordered low-bit-first. A character is in the set if its
369 bit is 1. A character too large to have a bit in the map is
370 automatically not in the set. */
371 charset,
372
373 /* Same parameters as charset, but match any character that is
374 not one of those specified. */
375 charset_not,
376
377 /* Start remembering the text that is matched, for storing in a
378 register. Followed by one byte with the register number, in
379 the range 0 to one less than the pattern buffer's re_nsub
380 field. Then followed by one byte with the number of groups
381 inner to this one. (This last has to be part of the
382 start_memory only because we need it in the on_failure_jump
383 of re_match_2.) */
384 start_memory,
385
386 /* Stop remembering the text that is matched and store it in a
387 memory register. Followed by one byte with the register
388 number, in the range 0 to one less than `re_nsub' in the
389 pattern buffer, and one byte with the number of inner groups,
390 just like `start_memory'. (We need the number of inner
391 groups here because we don't have any easy way of finding the
392 corresponding start_memory when we're at a stop_memory.) */
393 stop_memory,
394
395 /* Match a duplicate of something remembered. Followed by one
396 byte containing the register number. */
397 duplicate,
398
399 /* Fail unless at beginning of line. */
400 begline,
401
402 /* Fail unless at end of line. */
403 endline,
404
405 /* Succeeds if at beginning of buffer (if emacs) or at beginning
406 of string to be matched (if not). */
407 begbuf,
408
409 /* Analogously, for end of buffer/string. */
410 endbuf,
411
412 /* Followed by two byte relative address to which to jump. */
413 jump,
414
415 /* Same as jump, but marks the end of an alternative. */
416 jump_past_alt,
417
418 /* Followed by two-byte relative address of place to resume at
419 in case of failure. */
420 on_failure_jump,
421
422 /* Like on_failure_jump, but pushes a placeholder instead of the
423 current string position when executed. */
424 on_failure_keep_string_jump,
425
426 /* Throw away latest failure point and then jump to following
427 two-byte relative address. */
428 pop_failure_jump,
429
430 /* Change to pop_failure_jump if know won't have to backtrack to
431 match; otherwise change to jump. This is used to jump
432 back to the beginning of a repeat. If what follows this jump
433 clearly won't match what the repeat does, such that we can be
434 sure that there is no use backtracking out of repetitions
435 already matched, then we change it to a pop_failure_jump.
436 Followed by two-byte address. */
437 maybe_pop_jump,
438
439 /* Jump to following two-byte address, and push a dummy failure
440 point. This failure point will be thrown away if an attempt
441 is made to use it for a failure. A `+' construct makes this
442 before the first repeat. Also used as an intermediary kind
443 of jump when compiling an alternative. */
444 dummy_failure_jump,
445
446 /* Push a dummy failure point and continue. Used at the end of
447 alternatives. */
448 push_dummy_failure,
449
450 /* Followed by two-byte relative address and two-byte number n.
451 After matching N times, jump to the address upon failure. */
452 succeed_n,
453
454 /* Followed by two-byte relative address, and two-byte number n.
455 Jump to the address N times, then fail. */
456 jump_n,
457
458 /* Set the following two-byte relative address to the
459 subsequent two-byte number. The address *includes* the two
460 bytes of number. */
461 set_number_at,
462
463 wordchar, /* Matches any word-constituent character. */
464 notwordchar, /* Matches any char that is not a word-constituent. */
465
466 wordbeg, /* Succeeds if at word beginning. */
467 wordend, /* Succeeds if at word end. */
468
469 wordbound, /* Succeeds if at a word boundary. */
470 notwordbound /* Succeeds if not at a word boundary. */
471
472 #ifdef emacs
473 ,before_dot, /* Succeeds if before point. */
474 at_dot, /* Succeeds if at point. */
475 after_dot, /* Succeeds if after point. */
476
477 /* Matches any character whose syntax is specified. Followed by
478 a byte which contains a syntax code, e.g., Sword. */
479 syntaxspec,
480
481 /* Matches any character whose syntax is not that specified. */
482 notsyntaxspec
483 #endif /* emacs */
484 } re_opcode_t;
485 \f
486 /* Common operations on the compiled pattern. */
487
488 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
489
490 #define STORE_NUMBER(destination, number) \
491 do { \
492 (destination)[0] = (number) & 0377; \
493 (destination)[1] = (number) >> 8; \
494 } while (0)
495
496 /* Same as STORE_NUMBER, except increment DESTINATION to
497 the byte after where the number is stored. Therefore, DESTINATION
498 must be an lvalue. */
499
500 #define STORE_NUMBER_AND_INCR(destination, number) \
501 do { \
502 STORE_NUMBER (destination, number); \
503 (destination) += 2; \
504 } while (0)
505
506 /* Put into DESTINATION a number stored in two contiguous bytes starting
507 at SOURCE. */
508
509 #define EXTRACT_NUMBER(destination, source) \
510 do { \
511 (destination) = *(source) & 0377; \
512 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
513 } while (0)
514
515 #ifdef DEBUG
516 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
517 static void
518 extract_number (dest, source)
519 int *dest;
520 unsigned char *source;
521 {
522 int temp = SIGN_EXTEND_CHAR (*(source + 1));
523 *dest = *source & 0377;
524 *dest += temp << 8;
525 }
526
527 # ifndef EXTRACT_MACROS /* To debug the macros. */
528 # undef EXTRACT_NUMBER
529 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
530 # endif /* not EXTRACT_MACROS */
531
532 #endif /* DEBUG */
533
534 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
535 SOURCE must be an lvalue. */
536
537 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
538 do { \
539 EXTRACT_NUMBER (destination, source); \
540 (source) += 2; \
541 } while (0)
542
543 #ifdef DEBUG
544 static void extract_number_and_incr _RE_ARGS ((int *destination,
545 unsigned char **source));
546 static void
547 extract_number_and_incr (destination, source)
548 int *destination;
549 unsigned char **source;
550 {
551 extract_number (destination, *source);
552 *source += 2;
553 }
554
555 # ifndef EXTRACT_MACROS
556 # undef EXTRACT_NUMBER_AND_INCR
557 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
558 extract_number_and_incr (&dest, &src)
559 # endif /* not EXTRACT_MACROS */
560
561 #endif /* DEBUG */
562 \f
563 /* If DEBUG is defined, Regex prints many voluminous messages about what
564 it is doing (if the variable `debug' is nonzero). If linked with the
565 main program in `iregex.c', you can enter patterns and strings
566 interactively. And if linked with the main program in `main.c' and
567 the other test files, you can run the already-written tests. */
568
569 #ifdef DEBUG
570
571 /* We use standard I/O for debugging. */
572 # include <stdio.h>
573
574 /* It is useful to test things that ``must'' be true when debugging. */
575 # include <assert.h>
576
577 static int debug = 0;
578
579 # define DEBUG_STATEMENT(e) e
580 # define DEBUG_PRINT1(x) if (debug) printf (x)
581 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
582 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
583 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
584 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
585 if (debug) print_partial_compiled_pattern (s, e)
586 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
587 if (debug) print_double_string (w, s1, sz1, s2, sz2)
588
589
590 /* Print the fastmap in human-readable form. */
591
592 void
593 print_fastmap (fastmap)
594 char *fastmap;
595 {
596 unsigned was_a_range = 0;
597 unsigned i = 0;
598
599 while (i < (1 << BYTEWIDTH))
600 {
601 if (fastmap[i++])
602 {
603 was_a_range = 0;
604 putchar (i - 1);
605 while (i < (1 << BYTEWIDTH) && fastmap[i])
606 {
607 was_a_range = 1;
608 i++;
609 }
610 if (was_a_range)
611 {
612 printf ("-");
613 putchar (i - 1);
614 }
615 }
616 }
617 putchar ('\n');
618 }
619
620
621 /* Print a compiled pattern string in human-readable form, starting at
622 the START pointer into it and ending just before the pointer END. */
623
624 void
625 print_partial_compiled_pattern (start, end)
626 unsigned char *start;
627 unsigned char *end;
628 {
629 int mcnt, mcnt2;
630 unsigned char *p1;
631 unsigned char *p = start;
632 unsigned char *pend = end;
633
634 if (start == NULL)
635 {
636 printf ("(null)\n");
637 return;
638 }
639
640 /* Loop over pattern commands. */
641 while (p < pend)
642 {
643 printf ("%d:\t", p - start);
644
645 switch ((re_opcode_t) *p++)
646 {
647 case no_op:
648 printf ("/no_op");
649 break;
650
651 case exactn:
652 mcnt = *p++;
653 printf ("/exactn/%d", mcnt);
654 do
655 {
656 putchar ('/');
657 putchar (*p++);
658 }
659 while (--mcnt);
660 break;
661
662 case start_memory:
663 mcnt = *p++;
664 printf ("/start_memory/%d/%d", mcnt, *p++);
665 break;
666
667 case stop_memory:
668 mcnt = *p++;
669 printf ("/stop_memory/%d/%d", mcnt, *p++);
670 break;
671
672 case duplicate:
673 printf ("/duplicate/%d", *p++);
674 break;
675
676 case anychar:
677 printf ("/anychar");
678 break;
679
680 case charset:
681 case charset_not:
682 {
683 register int c, last = -100;
684 register int in_range = 0;
685
686 printf ("/charset [%s",
687 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
688
689 assert (p + *p < pend);
690
691 for (c = 0; c < 256; c++)
692 if (c / 8 < *p
693 && (p[1 + (c/8)] & (1 << (c % 8))))
694 {
695 /* Are we starting a range? */
696 if (last + 1 == c && ! in_range)
697 {
698 putchar ('-');
699 in_range = 1;
700 }
701 /* Have we broken a range? */
702 else if (last + 1 != c && in_range)
703 {
704 putchar (last);
705 in_range = 0;
706 }
707
708 if (! in_range)
709 putchar (c);
710
711 last = c;
712 }
713
714 if (in_range)
715 putchar (last);
716
717 putchar (']');
718
719 p += 1 + *p;
720 }
721 break;
722
723 case begline:
724 printf ("/begline");
725 break;
726
727 case endline:
728 printf ("/endline");
729 break;
730
731 case on_failure_jump:
732 extract_number_and_incr (&mcnt, &p);
733 printf ("/on_failure_jump to %d", p + mcnt - start);
734 break;
735
736 case on_failure_keep_string_jump:
737 extract_number_and_incr (&mcnt, &p);
738 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
739 break;
740
741 case dummy_failure_jump:
742 extract_number_and_incr (&mcnt, &p);
743 printf ("/dummy_failure_jump to %d", p + mcnt - start);
744 break;
745
746 case push_dummy_failure:
747 printf ("/push_dummy_failure");
748 break;
749
750 case maybe_pop_jump:
751 extract_number_and_incr (&mcnt, &p);
752 printf ("/maybe_pop_jump to %d", p + mcnt - start);
753 break;
754
755 case pop_failure_jump:
756 extract_number_and_incr (&mcnt, &p);
757 printf ("/pop_failure_jump to %d", p + mcnt - start);
758 break;
759
760 case jump_past_alt:
761 extract_number_and_incr (&mcnt, &p);
762 printf ("/jump_past_alt to %d", p + mcnt - start);
763 break;
764
765 case jump:
766 extract_number_and_incr (&mcnt, &p);
767 printf ("/jump to %d", p + mcnt - start);
768 break;
769
770 case succeed_n:
771 extract_number_and_incr (&mcnt, &p);
772 p1 = p + mcnt;
773 extract_number_and_incr (&mcnt2, &p);
774 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
775 break;
776
777 case jump_n:
778 extract_number_and_incr (&mcnt, &p);
779 p1 = p + mcnt;
780 extract_number_and_incr (&mcnt2, &p);
781 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
782 break;
783
784 case set_number_at:
785 extract_number_and_incr (&mcnt, &p);
786 p1 = p + mcnt;
787 extract_number_and_incr (&mcnt2, &p);
788 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
789 break;
790
791 case wordbound:
792 printf ("/wordbound");
793 break;
794
795 case notwordbound:
796 printf ("/notwordbound");
797 break;
798
799 case wordbeg:
800 printf ("/wordbeg");
801 break;
802
803 case wordend:
804 printf ("/wordend");
805
806 # ifdef emacs
807 case before_dot:
808 printf ("/before_dot");
809 break;
810
811 case at_dot:
812 printf ("/at_dot");
813 break;
814
815 case after_dot:
816 printf ("/after_dot");
817 break;
818
819 case syntaxspec:
820 printf ("/syntaxspec");
821 mcnt = *p++;
822 printf ("/%d", mcnt);
823 break;
824
825 case notsyntaxspec:
826 printf ("/notsyntaxspec");
827 mcnt = *p++;
828 printf ("/%d", mcnt);
829 break;
830 # endif /* emacs */
831
832 case wordchar:
833 printf ("/wordchar");
834 break;
835
836 case notwordchar:
837 printf ("/notwordchar");
838 break;
839
840 case begbuf:
841 printf ("/begbuf");
842 break;
843
844 case endbuf:
845 printf ("/endbuf");
846 break;
847
848 default:
849 printf ("?%d", *(p-1));
850 }
851
852 putchar ('\n');
853 }
854
855 printf ("%d:\tend of pattern.\n", p - start);
856 }
857
858
859 void
860 print_compiled_pattern (bufp)
861 struct re_pattern_buffer *bufp;
862 {
863 unsigned char *buffer = bufp->buffer;
864
865 print_partial_compiled_pattern (buffer, buffer + bufp->used);
866 printf ("%ld bytes used/%ld bytes allocated.\n",
867 bufp->used, bufp->allocated);
868
869 if (bufp->fastmap_accurate && bufp->fastmap)
870 {
871 printf ("fastmap: ");
872 print_fastmap (bufp->fastmap);
873 }
874
875 printf ("re_nsub: %d\t", bufp->re_nsub);
876 printf ("regs_alloc: %d\t", bufp->regs_allocated);
877 printf ("can_be_null: %d\t", bufp->can_be_null);
878 printf ("newline_anchor: %d\n", bufp->newline_anchor);
879 printf ("no_sub: %d\t", bufp->no_sub);
880 printf ("not_bol: %d\t", bufp->not_bol);
881 printf ("not_eol: %d\t", bufp->not_eol);
882 printf ("syntax: %lx\n", bufp->syntax);
883 /* Perhaps we should print the translate table? */
884 }
885
886
887 void
888 print_double_string (where, string1, size1, string2, size2)
889 const char *where;
890 const char *string1;
891 const char *string2;
892 int size1;
893 int size2;
894 {
895 int this_char;
896
897 if (where == NULL)
898 printf ("(null)");
899 else
900 {
901 if (FIRST_STRING_P (where))
902 {
903 for (this_char = where - string1; this_char < size1; this_char++)
904 putchar (string1[this_char]);
905
906 where = string2;
907 }
908
909 for (this_char = where - string2; this_char < size2; this_char++)
910 putchar (string2[this_char]);
911 }
912 }
913
914 void
915 printchar (c)
916 int c;
917 {
918 putc (c, stderr);
919 }
920
921 #else /* not DEBUG */
922
923 # undef assert
924 # define assert(e)
925
926 # define DEBUG_STATEMENT(e)
927 # define DEBUG_PRINT1(x)
928 # define DEBUG_PRINT2(x1, x2)
929 # define DEBUG_PRINT3(x1, x2, x3)
930 # define DEBUG_PRINT4(x1, x2, x3, x4)
931 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
932 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
933
934 #endif /* not DEBUG */
935 \f
936 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
937 also be assigned to arbitrarily: each pattern buffer stores its own
938 syntax, so it can be changed between regex compilations. */
939 /* This has no initializer because initialized variables in Emacs
940 become read-only after dumping. */
941 reg_syntax_t re_syntax_options;
942
943
944 /* Specify the precise syntax of regexps for compilation. This provides
945 for compatibility for various utilities which historically have
946 different, incompatible syntaxes.
947
948 The argument SYNTAX is a bit mask comprised of the various bits
949 defined in regex.h. We return the old syntax. */
950
951 reg_syntax_t
952 re_set_syntax (syntax)
953 reg_syntax_t syntax;
954 {
955 reg_syntax_t ret = re_syntax_options;
956
957 re_syntax_options = syntax;
958 #ifdef DEBUG
959 if (syntax & RE_DEBUG)
960 debug = 1;
961 else if (debug) /* was on but now is not */
962 debug = 0;
963 #endif /* DEBUG */
964 return ret;
965 }
966 \f
967 /* This table gives an error message for each of the error codes listed
968 in regex.h. Obviously the order here has to be same as there.
969 POSIX doesn't require that we do anything for REG_NOERROR,
970 but why not be nice? */
971
972 static const char *re_error_msgid[] =
973 {
974 gettext_noop ("Success"), /* REG_NOERROR */
975 gettext_noop ("No match"), /* REG_NOMATCH */
976 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
977 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
978 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
979 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
980 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
981 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
982 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
983 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
984 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
985 gettext_noop ("Invalid range end"), /* REG_ERANGE */
986 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
987 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
988 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
989 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
990 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
991 };
992 \f
993 /* Avoiding alloca during matching, to placate r_alloc. */
994
995 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
996 searching and matching functions should not call alloca. On some
997 systems, alloca is implemented in terms of malloc, and if we're
998 using the relocating allocator routines, then malloc could cause a
999 relocation, which might (if the strings being searched are in the
1000 ralloc heap) shift the data out from underneath the regexp
1001 routines.
1002
1003 Here's another reason to avoid allocation: Emacs
1004 processes input from X in a signal handler; processing X input may
1005 call malloc; if input arrives while a matching routine is calling
1006 malloc, then we're scrod. But Emacs can't just block input while
1007 calling matching routines; then we don't notice interrupts when
1008 they come in. So, Emacs blocks input around all regexp calls
1009 except the matching calls, which it leaves unprotected, in the
1010 faith that they will not malloc. */
1011
1012 /* Normally, this is fine. */
1013 #define MATCH_MAY_ALLOCATE
1014
1015 /* When using GNU C, we are not REALLY using the C alloca, no matter
1016 what config.h may say. So don't take precautions for it. */
1017 #ifdef __GNUC__
1018 # undef C_ALLOCA
1019 #endif
1020
1021 /* The match routines may not allocate if (1) they would do it with malloc
1022 and (2) it's not safe for them to use malloc.
1023 Note that if REL_ALLOC is defined, matching would not use malloc for the
1024 failure stack, but we would still use it for the register vectors;
1025 so REL_ALLOC should not affect this. */
1026 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1027 # undef MATCH_MAY_ALLOCATE
1028 #endif
1029
1030 \f
1031 /* Failure stack declarations and macros; both re_compile_fastmap and
1032 re_match_2 use a failure stack. These have to be macros because of
1033 REGEX_ALLOCATE_STACK. */
1034
1035
1036 /* Number of failure points for which to initially allocate space
1037 when matching. If this number is exceeded, we allocate more
1038 space, so it is not a hard limit. */
1039 #ifndef INIT_FAILURE_ALLOC
1040 # define INIT_FAILURE_ALLOC 5
1041 #endif
1042
1043 /* Roughly the maximum number of failure points on the stack. Would be
1044 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1045 This is a variable only so users of regex can assign to it; we never
1046 change it ourselves. */
1047
1048 #ifdef INT_IS_16BIT
1049
1050 # if defined MATCH_MAY_ALLOCATE
1051 /* 4400 was enough to cause a crash on Alpha OSF/1,
1052 whose default stack limit is 2mb. */
1053 long int re_max_failures = 4000;
1054 # else
1055 long int re_max_failures = 2000;
1056 # endif
1057
1058 union fail_stack_elt
1059 {
1060 unsigned char *pointer;
1061 long int integer;
1062 };
1063
1064 typedef union fail_stack_elt fail_stack_elt_t;
1065
1066 typedef struct
1067 {
1068 fail_stack_elt_t *stack;
1069 unsigned long int size;
1070 unsigned long int avail; /* Offset of next open position. */
1071 } fail_stack_type;
1072
1073 #else /* not INT_IS_16BIT */
1074
1075 # if defined MATCH_MAY_ALLOCATE
1076 /* 4400 was enough to cause a crash on Alpha OSF/1,
1077 whose default stack limit is 2mb. */
1078 int re_max_failures = 20000;
1079 # else
1080 int re_max_failures = 2000;
1081 # endif
1082
1083 union fail_stack_elt
1084 {
1085 unsigned char *pointer;
1086 int integer;
1087 };
1088
1089 typedef union fail_stack_elt fail_stack_elt_t;
1090
1091 typedef struct
1092 {
1093 fail_stack_elt_t *stack;
1094 unsigned size;
1095 unsigned avail; /* Offset of next open position. */
1096 } fail_stack_type;
1097
1098 #endif /* INT_IS_16BIT */
1099
1100 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1101 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1102 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1103
1104
1105 /* Define macros to initialize and free the failure stack.
1106 Do `return -2' if the alloc fails. */
1107
1108 #ifdef MATCH_MAY_ALLOCATE
1109 # define INIT_FAIL_STACK() \
1110 do { \
1111 fail_stack.stack = (fail_stack_elt_t *) \
1112 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1113 \
1114 if (fail_stack.stack == NULL) \
1115 return -2; \
1116 \
1117 fail_stack.size = INIT_FAILURE_ALLOC; \
1118 fail_stack.avail = 0; \
1119 } while (0)
1120
1121 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1122 #else
1123 # define INIT_FAIL_STACK() \
1124 do { \
1125 fail_stack.avail = 0; \
1126 } while (0)
1127
1128 # define RESET_FAIL_STACK()
1129 #endif
1130
1131
1132 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1133
1134 Return 1 if succeeds, and 0 if either ran out of memory
1135 allocating space for it or it was already too large.
1136
1137 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1138
1139 #define DOUBLE_FAIL_STACK(fail_stack) \
1140 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1141 ? 0 \
1142 : ((fail_stack).stack = (fail_stack_elt_t *) \
1143 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1144 (fail_stack).size * sizeof (fail_stack_elt_t), \
1145 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1146 \
1147 (fail_stack).stack == NULL \
1148 ? 0 \
1149 : ((fail_stack).size <<= 1, \
1150 1)))
1151
1152
1153 /* Push pointer POINTER on FAIL_STACK.
1154 Return 1 if was able to do so and 0 if ran out of memory allocating
1155 space to do so. */
1156 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1157 ((FAIL_STACK_FULL () \
1158 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1159 ? 0 \
1160 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1161 1))
1162
1163 /* Push a pointer value onto the failure stack.
1164 Assumes the variable `fail_stack'. Probably should only
1165 be called from within `PUSH_FAILURE_POINT'. */
1166 #define PUSH_FAILURE_POINTER(item) \
1167 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1168
1169 /* This pushes an integer-valued item onto the failure stack.
1170 Assumes the variable `fail_stack'. Probably should only
1171 be called from within `PUSH_FAILURE_POINT'. */
1172 #define PUSH_FAILURE_INT(item) \
1173 fail_stack.stack[fail_stack.avail++].integer = (item)
1174
1175 /* Push a fail_stack_elt_t value onto the failure stack.
1176 Assumes the variable `fail_stack'. Probably should only
1177 be called from within `PUSH_FAILURE_POINT'. */
1178 #define PUSH_FAILURE_ELT(item) \
1179 fail_stack.stack[fail_stack.avail++] = (item)
1180
1181 /* These three POP... operations complement the three PUSH... operations.
1182 All assume that `fail_stack' is nonempty. */
1183 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1184 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1185 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1186
1187 /* Used to omit pushing failure point id's when we're not debugging. */
1188 #ifdef DEBUG
1189 # define DEBUG_PUSH PUSH_FAILURE_INT
1190 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1191 #else
1192 # define DEBUG_PUSH(item)
1193 # define DEBUG_POP(item_addr)
1194 #endif
1195
1196
1197 /* Push the information about the state we will need
1198 if we ever fail back to it.
1199
1200 Requires variables fail_stack, regstart, regend, reg_info, and
1201 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1202 declared.
1203
1204 Does `return FAILURE_CODE' if runs out of memory. */
1205
1206 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1207 do { \
1208 char *destination; \
1209 /* Must be int, so when we don't save any registers, the arithmetic \
1210 of 0 + -1 isn't done as unsigned. */ \
1211 /* Can't be int, since there is not a shred of a guarantee that int \
1212 is wide enough to hold a value of something to which pointer can \
1213 be assigned */ \
1214 active_reg_t this_reg; \
1215 \
1216 DEBUG_STATEMENT (failure_id++); \
1217 DEBUG_STATEMENT (nfailure_points_pushed++); \
1218 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1219 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1220 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1221 \
1222 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1223 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1224 \
1225 /* Ensure we have enough space allocated for what we will push. */ \
1226 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1227 { \
1228 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1229 return failure_code; \
1230 \
1231 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1232 (fail_stack).size); \
1233 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1234 } \
1235 \
1236 /* Push the info, starting with the registers. */ \
1237 DEBUG_PRINT1 ("\n"); \
1238 \
1239 if (1) \
1240 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1241 this_reg++) \
1242 { \
1243 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1244 DEBUG_STATEMENT (num_regs_pushed++); \
1245 \
1246 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1247 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1248 \
1249 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1250 PUSH_FAILURE_POINTER (regend[this_reg]); \
1251 \
1252 DEBUG_PRINT2 (" info: %p\n ", \
1253 reg_info[this_reg].word.pointer); \
1254 DEBUG_PRINT2 (" match_null=%d", \
1255 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1256 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1257 DEBUG_PRINT2 (" matched_something=%d", \
1258 MATCHED_SOMETHING (reg_info[this_reg])); \
1259 DEBUG_PRINT2 (" ever_matched=%d", \
1260 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1261 DEBUG_PRINT1 ("\n"); \
1262 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1263 } \
1264 \
1265 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1266 PUSH_FAILURE_INT (lowest_active_reg); \
1267 \
1268 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1269 PUSH_FAILURE_INT (highest_active_reg); \
1270 \
1271 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1272 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1273 PUSH_FAILURE_POINTER (pattern_place); \
1274 \
1275 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1276 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1277 size2); \
1278 DEBUG_PRINT1 ("'\n"); \
1279 PUSH_FAILURE_POINTER (string_place); \
1280 \
1281 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1282 DEBUG_PUSH (failure_id); \
1283 } while (0)
1284
1285 /* This is the number of items that are pushed and popped on the stack
1286 for each register. */
1287 #define NUM_REG_ITEMS 3
1288
1289 /* Individual items aside from the registers. */
1290 #ifdef DEBUG
1291 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1292 #else
1293 # define NUM_NONREG_ITEMS 4
1294 #endif
1295
1296 /* We push at most this many items on the stack. */
1297 /* We used to use (num_regs - 1), which is the number of registers
1298 this regexp will save; but that was changed to 5
1299 to avoid stack overflow for a regexp with lots of parens. */
1300 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1301
1302 /* We actually push this many items. */
1303 #define NUM_FAILURE_ITEMS \
1304 (((0 \
1305 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1306 * NUM_REG_ITEMS) \
1307 + NUM_NONREG_ITEMS)
1308
1309 /* How many items can still be added to the stack without overflowing it. */
1310 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1311
1312
1313 /* Pops what PUSH_FAIL_STACK pushes.
1314
1315 We restore into the parameters, all of which should be lvalues:
1316 STR -- the saved data position.
1317 PAT -- the saved pattern position.
1318 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1319 REGSTART, REGEND -- arrays of string positions.
1320 REG_INFO -- array of information about each subexpression.
1321
1322 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1323 `pend', `string1', `size1', `string2', and `size2'. */
1324
1325 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1326 { \
1327 DEBUG_STATEMENT (unsigned failure_id;) \
1328 active_reg_t this_reg; \
1329 const unsigned char *string_temp; \
1330 \
1331 assert (!FAIL_STACK_EMPTY ()); \
1332 \
1333 /* Remove failure points and point to how many regs pushed. */ \
1334 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1335 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1336 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1337 \
1338 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1339 \
1340 DEBUG_POP (&failure_id); \
1341 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1342 \
1343 /* If the saved string location is NULL, it came from an \
1344 on_failure_keep_string_jump opcode, and we want to throw away the \
1345 saved NULL, thus retaining our current position in the string. */ \
1346 string_temp = POP_FAILURE_POINTER (); \
1347 if (string_temp != NULL) \
1348 str = (const char *) string_temp; \
1349 \
1350 DEBUG_PRINT2 (" Popping string %p: `", str); \
1351 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1352 DEBUG_PRINT1 ("'\n"); \
1353 \
1354 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1355 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1356 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1357 \
1358 /* Restore register info. */ \
1359 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1360 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1361 \
1362 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1363 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1364 \
1365 if (1) \
1366 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1367 { \
1368 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1369 \
1370 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1371 DEBUG_PRINT2 (" info: %p\n", \
1372 reg_info[this_reg].word.pointer); \
1373 \
1374 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1375 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1376 \
1377 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1378 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1379 } \
1380 else \
1381 { \
1382 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1383 { \
1384 reg_info[this_reg].word.integer = 0; \
1385 regend[this_reg] = 0; \
1386 regstart[this_reg] = 0; \
1387 } \
1388 highest_active_reg = high_reg; \
1389 } \
1390 \
1391 set_regs_matched_done = 0; \
1392 DEBUG_STATEMENT (nfailure_points_popped++); \
1393 } /* POP_FAILURE_POINT */
1394
1395
1396 \f
1397 /* Structure for per-register (a.k.a. per-group) information.
1398 Other register information, such as the
1399 starting and ending positions (which are addresses), and the list of
1400 inner groups (which is a bits list) are maintained in separate
1401 variables.
1402
1403 We are making a (strictly speaking) nonportable assumption here: that
1404 the compiler will pack our bit fields into something that fits into
1405 the type of `word', i.e., is something that fits into one item on the
1406 failure stack. */
1407
1408
1409 /* Declarations and macros for re_match_2. */
1410
1411 typedef union
1412 {
1413 fail_stack_elt_t word;
1414 struct
1415 {
1416 /* This field is one if this group can match the empty string,
1417 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1418 #define MATCH_NULL_UNSET_VALUE 3
1419 unsigned match_null_string_p : 2;
1420 unsigned is_active : 1;
1421 unsigned matched_something : 1;
1422 unsigned ever_matched_something : 1;
1423 } bits;
1424 } register_info_type;
1425
1426 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1427 #define IS_ACTIVE(R) ((R).bits.is_active)
1428 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1429 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1430
1431
1432 /* Call this when have matched a real character; it sets `matched' flags
1433 for the subexpressions which we are currently inside. Also records
1434 that those subexprs have matched. */
1435 #define SET_REGS_MATCHED() \
1436 do \
1437 { \
1438 if (!set_regs_matched_done) \
1439 { \
1440 active_reg_t r; \
1441 set_regs_matched_done = 1; \
1442 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1443 { \
1444 MATCHED_SOMETHING (reg_info[r]) \
1445 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1446 = 1; \
1447 } \
1448 } \
1449 } \
1450 while (0)
1451
1452 /* Registers are set to a sentinel when they haven't yet matched. */
1453 static char reg_unset_dummy;
1454 #define REG_UNSET_VALUE (&reg_unset_dummy)
1455 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1456 \f
1457 /* Subroutine declarations and macros for regex_compile. */
1458
1459 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1460 reg_syntax_t syntax,
1461 struct re_pattern_buffer *bufp));
1462 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1463 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1464 int arg1, int arg2));
1465 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1466 int arg, unsigned char *end));
1467 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1468 int arg1, int arg2, unsigned char *end));
1469 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1470 reg_syntax_t syntax));
1471 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1472 reg_syntax_t syntax));
1473 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1474 const char *pend,
1475 char *translate,
1476 reg_syntax_t syntax,
1477 unsigned char *b));
1478
1479 /* Fetch the next character in the uncompiled pattern---translating it
1480 if necessary. Also cast from a signed character in the constant
1481 string passed to us by the user to an unsigned char that we can use
1482 as an array index (in, e.g., `translate'). */
1483 #ifndef PATFETCH
1484 # define PATFETCH(c) \
1485 do {if (p == pend) return REG_EEND; \
1486 c = (unsigned char) *p++; \
1487 if (translate) c = (unsigned char) translate[c]; \
1488 } while (0)
1489 #endif
1490
1491 /* Fetch the next character in the uncompiled pattern, with no
1492 translation. */
1493 #define PATFETCH_RAW(c) \
1494 do {if (p == pend) return REG_EEND; \
1495 c = (unsigned char) *p++; \
1496 } while (0)
1497
1498 /* Go backwards one character in the pattern. */
1499 #define PATUNFETCH p--
1500
1501
1502 /* If `translate' is non-null, return translate[D], else just D. We
1503 cast the subscript to translate because some data is declared as
1504 `char *', to avoid warnings when a string constant is passed. But
1505 when we use a character as a subscript we must make it unsigned. */
1506 #ifndef TRANSLATE
1507 # define TRANSLATE(d) \
1508 (translate ? (char) translate[(unsigned char) (d)] : (d))
1509 #endif
1510
1511
1512 /* Macros for outputting the compiled pattern into `buffer'. */
1513
1514 /* If the buffer isn't allocated when it comes in, use this. */
1515 #define INIT_BUF_SIZE 32
1516
1517 /* Make sure we have at least N more bytes of space in buffer. */
1518 #define GET_BUFFER_SPACE(n) \
1519 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1520 EXTEND_BUFFER ()
1521
1522 /* Make sure we have one more byte of buffer space and then add C to it. */
1523 #define BUF_PUSH(c) \
1524 do { \
1525 GET_BUFFER_SPACE (1); \
1526 *b++ = (unsigned char) (c); \
1527 } while (0)
1528
1529
1530 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1531 #define BUF_PUSH_2(c1, c2) \
1532 do { \
1533 GET_BUFFER_SPACE (2); \
1534 *b++ = (unsigned char) (c1); \
1535 *b++ = (unsigned char) (c2); \
1536 } while (0)
1537
1538
1539 /* As with BUF_PUSH_2, except for three bytes. */
1540 #define BUF_PUSH_3(c1, c2, c3) \
1541 do { \
1542 GET_BUFFER_SPACE (3); \
1543 *b++ = (unsigned char) (c1); \
1544 *b++ = (unsigned char) (c2); \
1545 *b++ = (unsigned char) (c3); \
1546 } while (0)
1547
1548
1549 /* Store a jump with opcode OP at LOC to location TO. We store a
1550 relative address offset by the three bytes the jump itself occupies. */
1551 #define STORE_JUMP(op, loc, to) \
1552 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1553
1554 /* Likewise, for a two-argument jump. */
1555 #define STORE_JUMP2(op, loc, to, arg) \
1556 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1557
1558 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1559 #define INSERT_JUMP(op, loc, to) \
1560 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1561
1562 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1563 #define INSERT_JUMP2(op, loc, to, arg) \
1564 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1565
1566
1567 /* This is not an arbitrary limit: the arguments which represent offsets
1568 into the pattern are two bytes long. So if 2^16 bytes turns out to
1569 be too small, many things would have to change. */
1570 /* Any other compiler which, like MSC, has allocation limit below 2^16
1571 bytes will have to use approach similar to what was done below for
1572 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1573 reallocating to 0 bytes. Such thing is not going to work too well.
1574 You have been warned!! */
1575 #if defined _MSC_VER && !defined WIN32
1576 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1577 The REALLOC define eliminates a flurry of conversion warnings,
1578 but is not required. */
1579 # define MAX_BUF_SIZE 65500L
1580 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1581 #else
1582 # define MAX_BUF_SIZE (1L << 16)
1583 # define REALLOC(p,s) realloc ((p), (s))
1584 #endif
1585
1586 /* Extend the buffer by twice its current size via realloc and
1587 reset the pointers that pointed into the old block to point to the
1588 correct places in the new one. If extending the buffer results in it
1589 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1590 #define EXTEND_BUFFER() \
1591 do { \
1592 unsigned char *old_buffer = bufp->buffer; \
1593 if (bufp->allocated == MAX_BUF_SIZE) \
1594 return REG_ESIZE; \
1595 bufp->allocated <<= 1; \
1596 if (bufp->allocated > MAX_BUF_SIZE) \
1597 bufp->allocated = MAX_BUF_SIZE; \
1598 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1599 if (bufp->buffer == NULL) \
1600 return REG_ESPACE; \
1601 /* If the buffer moved, move all the pointers into it. */ \
1602 if (old_buffer != bufp->buffer) \
1603 { \
1604 b = (b - old_buffer) + bufp->buffer; \
1605 begalt = (begalt - old_buffer) + bufp->buffer; \
1606 if (fixup_alt_jump) \
1607 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1608 if (laststart) \
1609 laststart = (laststart - old_buffer) + bufp->buffer; \
1610 if (pending_exact) \
1611 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1612 } \
1613 } while (0)
1614
1615
1616 /* Since we have one byte reserved for the register number argument to
1617 {start,stop}_memory, the maximum number of groups we can report
1618 things about is what fits in that byte. */
1619 #define MAX_REGNUM 255
1620
1621 /* But patterns can have more than `MAX_REGNUM' registers. We just
1622 ignore the excess. */
1623 typedef unsigned regnum_t;
1624
1625
1626 /* Macros for the compile stack. */
1627
1628 /* Since offsets can go either forwards or backwards, this type needs to
1629 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1630 /* int may be not enough when sizeof(int) == 2. */
1631 typedef long pattern_offset_t;
1632
1633 typedef struct
1634 {
1635 pattern_offset_t begalt_offset;
1636 pattern_offset_t fixup_alt_jump;
1637 pattern_offset_t inner_group_offset;
1638 pattern_offset_t laststart_offset;
1639 regnum_t regnum;
1640 } compile_stack_elt_t;
1641
1642
1643 typedef struct
1644 {
1645 compile_stack_elt_t *stack;
1646 unsigned size;
1647 unsigned avail; /* Offset of next open position. */
1648 } compile_stack_type;
1649
1650
1651 #define INIT_COMPILE_STACK_SIZE 32
1652
1653 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1654 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1655
1656 /* The next available element. */
1657 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1658
1659
1660 /* Set the bit for character C in a list. */
1661 #define SET_LIST_BIT(c) \
1662 (b[((unsigned char) (c)) / BYTEWIDTH] \
1663 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1664
1665
1666 /* Get the next unsigned number in the uncompiled pattern. */
1667 #define GET_UNSIGNED_NUMBER(num) \
1668 { if (p != pend) \
1669 { \
1670 PATFETCH (c); \
1671 while (ISDIGIT (c)) \
1672 { \
1673 if (num < 0) \
1674 num = 0; \
1675 num = num * 10 + c - '0'; \
1676 if (p == pend) \
1677 break; \
1678 PATFETCH (c); \
1679 } \
1680 } \
1681 }
1682
1683 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1684 /* The GNU C library provides support for user-defined character classes
1685 and the functions from ISO C amendement 1. */
1686 # ifdef CHARCLASS_NAME_MAX
1687 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1688 # else
1689 /* This shouldn't happen but some implementation might still have this
1690 problem. Use a reasonable default value. */
1691 # define CHAR_CLASS_MAX_LENGTH 256
1692 # endif
1693
1694 # define IS_CHAR_CLASS(string) wctype (string)
1695 #else
1696 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1697
1698 # define IS_CHAR_CLASS(string) \
1699 (STREQ (string, "alpha") || STREQ (string, "upper") \
1700 || STREQ (string, "lower") || STREQ (string, "digit") \
1701 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1702 || STREQ (string, "space") || STREQ (string, "print") \
1703 || STREQ (string, "punct") || STREQ (string, "graph") \
1704 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1705 #endif
1706 \f
1707 #ifndef MATCH_MAY_ALLOCATE
1708
1709 /* If we cannot allocate large objects within re_match_2_internal,
1710 we make the fail stack and register vectors global.
1711 The fail stack, we grow to the maximum size when a regexp
1712 is compiled.
1713 The register vectors, we adjust in size each time we
1714 compile a regexp, according to the number of registers it needs. */
1715
1716 static fail_stack_type fail_stack;
1717
1718 /* Size with which the following vectors are currently allocated.
1719 That is so we can make them bigger as needed,
1720 but never make them smaller. */
1721 static int regs_allocated_size;
1722
1723 static const char ** regstart, ** regend;
1724 static const char ** old_regstart, ** old_regend;
1725 static const char **best_regstart, **best_regend;
1726 static register_info_type *reg_info;
1727 static const char **reg_dummy;
1728 static register_info_type *reg_info_dummy;
1729
1730 /* Make the register vectors big enough for NUM_REGS registers,
1731 but don't make them smaller. */
1732
1733 static
1734 regex_grow_registers (num_regs)
1735 int num_regs;
1736 {
1737 if (num_regs > regs_allocated_size)
1738 {
1739 RETALLOC_IF (regstart, num_regs, const char *);
1740 RETALLOC_IF (regend, num_regs, const char *);
1741 RETALLOC_IF (old_regstart, num_regs, const char *);
1742 RETALLOC_IF (old_regend, num_regs, const char *);
1743 RETALLOC_IF (best_regstart, num_regs, const char *);
1744 RETALLOC_IF (best_regend, num_regs, const char *);
1745 RETALLOC_IF (reg_info, num_regs, register_info_type);
1746 RETALLOC_IF (reg_dummy, num_regs, const char *);
1747 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1748
1749 regs_allocated_size = num_regs;
1750 }
1751 }
1752
1753 #endif /* not MATCH_MAY_ALLOCATE */
1754 \f
1755 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1756 compile_stack,
1757 regnum_t regnum));
1758
1759 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1760 Returns one of error codes defined in `regex.h', or zero for success.
1761
1762 Assumes the `allocated' (and perhaps `buffer') and `translate'
1763 fields are set in BUFP on entry.
1764
1765 If it succeeds, results are put in BUFP (if it returns an error, the
1766 contents of BUFP are undefined):
1767 `buffer' is the compiled pattern;
1768 `syntax' is set to SYNTAX;
1769 `used' is set to the length of the compiled pattern;
1770 `fastmap_accurate' is zero;
1771 `re_nsub' is the number of subexpressions in PATTERN;
1772 `not_bol' and `not_eol' are zero;
1773
1774 The `fastmap' and `newline_anchor' fields are neither
1775 examined nor set. */
1776
1777 /* Return, freeing storage we allocated. */
1778 #define FREE_STACK_RETURN(value) \
1779 return (free (compile_stack.stack), value)
1780
1781 static reg_errcode_t
1782 regex_compile (pattern, size, syntax, bufp)
1783 const char *pattern;
1784 size_t size;
1785 reg_syntax_t syntax;
1786 struct re_pattern_buffer *bufp;
1787 {
1788 /* We fetch characters from PATTERN here. Even though PATTERN is
1789 `char *' (i.e., signed), we declare these variables as unsigned, so
1790 they can be reliably used as array indices. */
1791 register unsigned char c, c1;
1792
1793 /* A random temporary spot in PATTERN. */
1794 const char *p1;
1795
1796 /* Points to the end of the buffer, where we should append. */
1797 register unsigned char *b;
1798
1799 /* Keeps track of unclosed groups. */
1800 compile_stack_type compile_stack;
1801
1802 /* Points to the current (ending) position in the pattern. */
1803 const char *p = pattern;
1804 const char *pend = pattern + size;
1805
1806 /* How to translate the characters in the pattern. */
1807 RE_TRANSLATE_TYPE translate = bufp->translate;
1808
1809 /* Address of the count-byte of the most recently inserted `exactn'
1810 command. This makes it possible to tell if a new exact-match
1811 character can be added to that command or if the character requires
1812 a new `exactn' command. */
1813 unsigned char *pending_exact = 0;
1814
1815 /* Address of start of the most recently finished expression.
1816 This tells, e.g., postfix * where to find the start of its
1817 operand. Reset at the beginning of groups and alternatives. */
1818 unsigned char *laststart = 0;
1819
1820 /* Address of beginning of regexp, or inside of last group. */
1821 unsigned char *begalt;
1822
1823 /* Place in the uncompiled pattern (i.e., the {) to
1824 which to go back if the interval is invalid. */
1825 const char *beg_interval;
1826
1827 /* Address of the place where a forward jump should go to the end of
1828 the containing expression. Each alternative of an `or' -- except the
1829 last -- ends with a forward jump of this sort. */
1830 unsigned char *fixup_alt_jump = 0;
1831
1832 /* Counts open-groups as they are encountered. Remembered for the
1833 matching close-group on the compile stack, so the same register
1834 number is put in the stop_memory as the start_memory. */
1835 regnum_t regnum = 0;
1836
1837 #ifdef DEBUG
1838 DEBUG_PRINT1 ("\nCompiling pattern: ");
1839 if (debug)
1840 {
1841 unsigned debug_count;
1842
1843 for (debug_count = 0; debug_count < size; debug_count++)
1844 putchar (pattern[debug_count]);
1845 putchar ('\n');
1846 }
1847 #endif /* DEBUG */
1848
1849 /* Initialize the compile stack. */
1850 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1851 if (compile_stack.stack == NULL)
1852 return REG_ESPACE;
1853
1854 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1855 compile_stack.avail = 0;
1856
1857 /* Initialize the pattern buffer. */
1858 bufp->syntax = syntax;
1859 bufp->fastmap_accurate = 0;
1860 bufp->not_bol = bufp->not_eol = 0;
1861
1862 /* Set `used' to zero, so that if we return an error, the pattern
1863 printer (for debugging) will think there's no pattern. We reset it
1864 at the end. */
1865 bufp->used = 0;
1866
1867 /* Always count groups, whether or not bufp->no_sub is set. */
1868 bufp->re_nsub = 0;
1869
1870 #if !defined emacs && !defined SYNTAX_TABLE
1871 /* Initialize the syntax table. */
1872 init_syntax_once ();
1873 #endif
1874
1875 if (bufp->allocated == 0)
1876 {
1877 if (bufp->buffer)
1878 { /* If zero allocated, but buffer is non-null, try to realloc
1879 enough space. This loses if buffer's address is bogus, but
1880 that is the user's responsibility. */
1881 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1882 }
1883 else
1884 { /* Caller did not allocate a buffer. Do it for them. */
1885 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1886 }
1887 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1888
1889 bufp->allocated = INIT_BUF_SIZE;
1890 }
1891
1892 begalt = b = bufp->buffer;
1893
1894 /* Loop through the uncompiled pattern until we're at the end. */
1895 while (p != pend)
1896 {
1897 PATFETCH (c);
1898
1899 switch (c)
1900 {
1901 case '^':
1902 {
1903 if ( /* If at start of pattern, it's an operator. */
1904 p == pattern + 1
1905 /* If context independent, it's an operator. */
1906 || syntax & RE_CONTEXT_INDEP_ANCHORS
1907 /* Otherwise, depends on what's come before. */
1908 || at_begline_loc_p (pattern, p, syntax))
1909 BUF_PUSH (begline);
1910 else
1911 goto normal_char;
1912 }
1913 break;
1914
1915
1916 case '$':
1917 {
1918 if ( /* If at end of pattern, it's an operator. */
1919 p == pend
1920 /* If context independent, it's an operator. */
1921 || syntax & RE_CONTEXT_INDEP_ANCHORS
1922 /* Otherwise, depends on what's next. */
1923 || at_endline_loc_p (p, pend, syntax))
1924 BUF_PUSH (endline);
1925 else
1926 goto normal_char;
1927 }
1928 break;
1929
1930
1931 case '+':
1932 case '?':
1933 if ((syntax & RE_BK_PLUS_QM)
1934 || (syntax & RE_LIMITED_OPS))
1935 goto normal_char;
1936 handle_plus:
1937 case '*':
1938 /* If there is no previous pattern... */
1939 if (!laststart)
1940 {
1941 if (syntax & RE_CONTEXT_INVALID_OPS)
1942 FREE_STACK_RETURN (REG_BADRPT);
1943 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1944 goto normal_char;
1945 }
1946
1947 {
1948 /* Are we optimizing this jump? */
1949 boolean keep_string_p = false;
1950
1951 /* 1 means zero (many) matches is allowed. */
1952 char zero_times_ok = 0, many_times_ok = 0;
1953
1954 /* If there is a sequence of repetition chars, collapse it
1955 down to just one (the right one). We can't combine
1956 interval operators with these because of, e.g., `a{2}*',
1957 which should only match an even number of `a's. */
1958
1959 for (;;)
1960 {
1961 zero_times_ok |= c != '+';
1962 many_times_ok |= c != '?';
1963
1964 if (p == pend)
1965 break;
1966
1967 PATFETCH (c);
1968
1969 if (c == '*'
1970 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1971 ;
1972
1973 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1974 {
1975 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1976
1977 PATFETCH (c1);
1978 if (!(c1 == '+' || c1 == '?'))
1979 {
1980 PATUNFETCH;
1981 PATUNFETCH;
1982 break;
1983 }
1984
1985 c = c1;
1986 }
1987 else
1988 {
1989 PATUNFETCH;
1990 break;
1991 }
1992
1993 /* If we get here, we found another repeat character. */
1994 }
1995
1996 /* Star, etc. applied to an empty pattern is equivalent
1997 to an empty pattern. */
1998 if (!laststart)
1999 break;
2000
2001 /* Now we know whether or not zero matches is allowed
2002 and also whether or not two or more matches is allowed. */
2003 if (many_times_ok)
2004 { /* More than one repetition is allowed, so put in at the
2005 end a backward relative jump from `b' to before the next
2006 jump we're going to put in below (which jumps from
2007 laststart to after this jump).
2008
2009 But if we are at the `*' in the exact sequence `.*\n',
2010 insert an unconditional jump backwards to the .,
2011 instead of the beginning of the loop. This way we only
2012 push a failure point once, instead of every time
2013 through the loop. */
2014 assert (p - 1 > pattern);
2015
2016 /* Allocate the space for the jump. */
2017 GET_BUFFER_SPACE (3);
2018
2019 /* We know we are not at the first character of the pattern,
2020 because laststart was nonzero. And we've already
2021 incremented `p', by the way, to be the character after
2022 the `*'. Do we have to do something analogous here
2023 for null bytes, because of RE_DOT_NOT_NULL? */
2024 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2025 && zero_times_ok
2026 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2027 && !(syntax & RE_DOT_NEWLINE))
2028 { /* We have .*\n. */
2029 STORE_JUMP (jump, b, laststart);
2030 keep_string_p = true;
2031 }
2032 else
2033 /* Anything else. */
2034 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2035
2036 /* We've added more stuff to the buffer. */
2037 b += 3;
2038 }
2039
2040 /* On failure, jump from laststart to b + 3, which will be the
2041 end of the buffer after this jump is inserted. */
2042 GET_BUFFER_SPACE (3);
2043 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2044 : on_failure_jump,
2045 laststart, b + 3);
2046 pending_exact = 0;
2047 b += 3;
2048
2049 if (!zero_times_ok)
2050 {
2051 /* At least one repetition is required, so insert a
2052 `dummy_failure_jump' before the initial
2053 `on_failure_jump' instruction of the loop. This
2054 effects a skip over that instruction the first time
2055 we hit that loop. */
2056 GET_BUFFER_SPACE (3);
2057 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2058 b += 3;
2059 }
2060 }
2061 break;
2062
2063
2064 case '.':
2065 laststart = b;
2066 BUF_PUSH (anychar);
2067 break;
2068
2069
2070 case '[':
2071 {
2072 boolean had_char_class = false;
2073
2074 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2075
2076 /* Ensure that we have enough space to push a charset: the
2077 opcode, the length count, and the bitset; 34 bytes in all. */
2078 GET_BUFFER_SPACE (34);
2079
2080 laststart = b;
2081
2082 /* We test `*p == '^' twice, instead of using an if
2083 statement, so we only need one BUF_PUSH. */
2084 BUF_PUSH (*p == '^' ? charset_not : charset);
2085 if (*p == '^')
2086 p++;
2087
2088 /* Remember the first position in the bracket expression. */
2089 p1 = p;
2090
2091 /* Push the number of bytes in the bitmap. */
2092 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2093
2094 /* Clear the whole map. */
2095 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2096
2097 /* charset_not matches newline according to a syntax bit. */
2098 if ((re_opcode_t) b[-2] == charset_not
2099 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2100 SET_LIST_BIT ('\n');
2101
2102 /* Read in characters and ranges, setting map bits. */
2103 for (;;)
2104 {
2105 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2106
2107 PATFETCH (c);
2108
2109 /* \ might escape characters inside [...] and [^...]. */
2110 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2111 {
2112 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2113
2114 PATFETCH (c1);
2115 SET_LIST_BIT (c1);
2116 continue;
2117 }
2118
2119 /* Could be the end of the bracket expression. If it's
2120 not (i.e., when the bracket expression is `[]' so
2121 far), the ']' character bit gets set way below. */
2122 if (c == ']' && p != p1 + 1)
2123 break;
2124
2125 /* Look ahead to see if it's a range when the last thing
2126 was a character class. */
2127 if (had_char_class && c == '-' && *p != ']')
2128 FREE_STACK_RETURN (REG_ERANGE);
2129
2130 /* Look ahead to see if it's a range when the last thing
2131 was a character: if this is a hyphen not at the
2132 beginning or the end of a list, then it's the range
2133 operator. */
2134 if (c == '-'
2135 && !(p - 2 >= pattern && p[-2] == '[')
2136 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2137 && *p != ']')
2138 {
2139 reg_errcode_t ret
2140 = compile_range (&p, pend, translate, syntax, b);
2141 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2142 }
2143
2144 else if (p[0] == '-' && p[1] != ']')
2145 { /* This handles ranges made up of characters only. */
2146 reg_errcode_t ret;
2147
2148 /* Move past the `-'. */
2149 PATFETCH (c1);
2150
2151 ret = compile_range (&p, pend, translate, syntax, b);
2152 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2153 }
2154
2155 /* See if we're at the beginning of a possible character
2156 class. */
2157
2158 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2159 { /* Leave room for the null. */
2160 char str[CHAR_CLASS_MAX_LENGTH + 1];
2161
2162 PATFETCH (c);
2163 c1 = 0;
2164
2165 /* If pattern is `[[:'. */
2166 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2167
2168 for (;;)
2169 {
2170 PATFETCH (c);
2171 if (c == ':' || c == ']' || p == pend
2172 || c1 == CHAR_CLASS_MAX_LENGTH)
2173 break;
2174 str[c1++] = c;
2175 }
2176 str[c1] = '\0';
2177
2178 /* If isn't a word bracketed by `[:' and:`]':
2179 undo the ending character, the letters, and leave
2180 the leading `:' and `[' (but set bits for them). */
2181 if (c == ':' && *p == ']')
2182 {
2183 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2184 boolean is_lower = STREQ (str, "lower");
2185 boolean is_upper = STREQ (str, "upper");
2186 wctype_t wt;
2187 int ch;
2188
2189 wt = wctype (str);
2190 if (wt == 0)
2191 FREE_STACK_RETURN (REG_ECTYPE);
2192
2193 /* Throw away the ] at the end of the character
2194 class. */
2195 PATFETCH (c);
2196
2197 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2198
2199 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2200 {
2201 if (iswctype (btowc (ch), wt))
2202 SET_LIST_BIT (ch);
2203
2204 if (translate && (is_upper || is_lower)
2205 && (ISUPPER (ch) || ISLOWER (ch)))
2206 SET_LIST_BIT (ch);
2207 }
2208
2209 had_char_class = true;
2210 #else
2211 int ch;
2212 boolean is_alnum = STREQ (str, "alnum");
2213 boolean is_alpha = STREQ (str, "alpha");
2214 boolean is_blank = STREQ (str, "blank");
2215 boolean is_cntrl = STREQ (str, "cntrl");
2216 boolean is_digit = STREQ (str, "digit");
2217 boolean is_graph = STREQ (str, "graph");
2218 boolean is_lower = STREQ (str, "lower");
2219 boolean is_print = STREQ (str, "print");
2220 boolean is_punct = STREQ (str, "punct");
2221 boolean is_space = STREQ (str, "space");
2222 boolean is_upper = STREQ (str, "upper");
2223 boolean is_xdigit = STREQ (str, "xdigit");
2224
2225 if (!IS_CHAR_CLASS (str))
2226 FREE_STACK_RETURN (REG_ECTYPE);
2227
2228 /* Throw away the ] at the end of the character
2229 class. */
2230 PATFETCH (c);
2231
2232 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2233
2234 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2235 {
2236 /* This was split into 3 if's to
2237 avoid an arbitrary limit in some compiler. */
2238 if ( (is_alnum && ISALNUM (ch))
2239 || (is_alpha && ISALPHA (ch))
2240 || (is_blank && ISBLANK (ch))
2241 || (is_cntrl && ISCNTRL (ch)))
2242 SET_LIST_BIT (ch);
2243 if ( (is_digit && ISDIGIT (ch))
2244 || (is_graph && ISGRAPH (ch))
2245 || (is_lower && ISLOWER (ch))
2246 || (is_print && ISPRINT (ch)))
2247 SET_LIST_BIT (ch);
2248 if ( (is_punct && ISPUNCT (ch))
2249 || (is_space && ISSPACE (ch))
2250 || (is_upper && ISUPPER (ch))
2251 || (is_xdigit && ISXDIGIT (ch)))
2252 SET_LIST_BIT (ch);
2253 if ( translate && (is_upper || is_lower)
2254 && (ISUPPER (ch) || ISLOWER (ch)))
2255 SET_LIST_BIT (ch);
2256 }
2257 had_char_class = true;
2258 #endif /* libc || wctype.h */
2259 }
2260 else
2261 {
2262 c1++;
2263 while (c1--)
2264 PATUNFETCH;
2265 SET_LIST_BIT ('[');
2266 SET_LIST_BIT (':');
2267 had_char_class = false;
2268 }
2269 }
2270 else
2271 {
2272 had_char_class = false;
2273 SET_LIST_BIT (c);
2274 }
2275 }
2276
2277 /* Discard any (non)matching list bytes that are all 0 at the
2278 end of the map. Decrease the map-length byte too. */
2279 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2280 b[-1]--;
2281 b += b[-1];
2282 }
2283 break;
2284
2285
2286 case '(':
2287 if (syntax & RE_NO_BK_PARENS)
2288 goto handle_open;
2289 else
2290 goto normal_char;
2291
2292
2293 case ')':
2294 if (syntax & RE_NO_BK_PARENS)
2295 goto handle_close;
2296 else
2297 goto normal_char;
2298
2299
2300 case '\n':
2301 if (syntax & RE_NEWLINE_ALT)
2302 goto handle_alt;
2303 else
2304 goto normal_char;
2305
2306
2307 case '|':
2308 if (syntax & RE_NO_BK_VBAR)
2309 goto handle_alt;
2310 else
2311 goto normal_char;
2312
2313
2314 case '{':
2315 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2316 goto handle_interval;
2317 else
2318 goto normal_char;
2319
2320
2321 case '\\':
2322 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2323
2324 /* Do not translate the character after the \, so that we can
2325 distinguish, e.g., \B from \b, even if we normally would
2326 translate, e.g., B to b. */
2327 PATFETCH_RAW (c);
2328
2329 switch (c)
2330 {
2331 case '(':
2332 if (syntax & RE_NO_BK_PARENS)
2333 goto normal_backslash;
2334
2335 handle_open:
2336 bufp->re_nsub++;
2337 regnum++;
2338
2339 if (COMPILE_STACK_FULL)
2340 {
2341 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2342 compile_stack_elt_t);
2343 if (compile_stack.stack == NULL) return REG_ESPACE;
2344
2345 compile_stack.size <<= 1;
2346 }
2347
2348 /* These are the values to restore when we hit end of this
2349 group. They are all relative offsets, so that if the
2350 whole pattern moves because of realloc, they will still
2351 be valid. */
2352 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2353 COMPILE_STACK_TOP.fixup_alt_jump
2354 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2355 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2356 COMPILE_STACK_TOP.regnum = regnum;
2357
2358 /* We will eventually replace the 0 with the number of
2359 groups inner to this one. But do not push a
2360 start_memory for groups beyond the last one we can
2361 represent in the compiled pattern. */
2362 if (regnum <= MAX_REGNUM)
2363 {
2364 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2365 BUF_PUSH_3 (start_memory, regnum, 0);
2366 }
2367
2368 compile_stack.avail++;
2369
2370 fixup_alt_jump = 0;
2371 laststart = 0;
2372 begalt = b;
2373 /* If we've reached MAX_REGNUM groups, then this open
2374 won't actually generate any code, so we'll have to
2375 clear pending_exact explicitly. */
2376 pending_exact = 0;
2377 break;
2378
2379
2380 case ')':
2381 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2382
2383 if (COMPILE_STACK_EMPTY)
2384 {
2385 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2386 goto normal_backslash;
2387 else
2388 FREE_STACK_RETURN (REG_ERPAREN);
2389 }
2390
2391 handle_close:
2392 if (fixup_alt_jump)
2393 { /* Push a dummy failure point at the end of the
2394 alternative for a possible future
2395 `pop_failure_jump' to pop. See comments at
2396 `push_dummy_failure' in `re_match_2'. */
2397 BUF_PUSH (push_dummy_failure);
2398
2399 /* We allocated space for this jump when we assigned
2400 to `fixup_alt_jump', in the `handle_alt' case below. */
2401 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2402 }
2403
2404 /* See similar code for backslashed left paren above. */
2405 if (COMPILE_STACK_EMPTY)
2406 {
2407 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2408 goto normal_char;
2409 else
2410 FREE_STACK_RETURN (REG_ERPAREN);
2411 }
2412
2413 /* Since we just checked for an empty stack above, this
2414 ``can't happen''. */
2415 assert (compile_stack.avail != 0);
2416 {
2417 /* We don't just want to restore into `regnum', because
2418 later groups should continue to be numbered higher,
2419 as in `(ab)c(de)' -- the second group is #2. */
2420 regnum_t this_group_regnum;
2421
2422 compile_stack.avail--;
2423 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2424 fixup_alt_jump
2425 = COMPILE_STACK_TOP.fixup_alt_jump
2426 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2427 : 0;
2428 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2429 this_group_regnum = COMPILE_STACK_TOP.regnum;
2430 /* If we've reached MAX_REGNUM groups, then this open
2431 won't actually generate any code, so we'll have to
2432 clear pending_exact explicitly. */
2433 pending_exact = 0;
2434
2435 /* We're at the end of the group, so now we know how many
2436 groups were inside this one. */
2437 if (this_group_regnum <= MAX_REGNUM)
2438 {
2439 unsigned char *inner_group_loc
2440 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2441
2442 *inner_group_loc = regnum - this_group_regnum;
2443 BUF_PUSH_3 (stop_memory, this_group_regnum,
2444 regnum - this_group_regnum);
2445 }
2446 }
2447 break;
2448
2449
2450 case '|': /* `\|'. */
2451 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2452 goto normal_backslash;
2453 handle_alt:
2454 if (syntax & RE_LIMITED_OPS)
2455 goto normal_char;
2456
2457 /* Insert before the previous alternative a jump which
2458 jumps to this alternative if the former fails. */
2459 GET_BUFFER_SPACE (3);
2460 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2461 pending_exact = 0;
2462 b += 3;
2463
2464 /* The alternative before this one has a jump after it
2465 which gets executed if it gets matched. Adjust that
2466 jump so it will jump to this alternative's analogous
2467 jump (put in below, which in turn will jump to the next
2468 (if any) alternative's such jump, etc.). The last such
2469 jump jumps to the correct final destination. A picture:
2470 _____ _____
2471 | | | |
2472 | v | v
2473 a | b | c
2474
2475 If we are at `b', then fixup_alt_jump right now points to a
2476 three-byte space after `a'. We'll put in the jump, set
2477 fixup_alt_jump to right after `b', and leave behind three
2478 bytes which we'll fill in when we get to after `c'. */
2479
2480 if (fixup_alt_jump)
2481 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2482
2483 /* Mark and leave space for a jump after this alternative,
2484 to be filled in later either by next alternative or
2485 when know we're at the end of a series of alternatives. */
2486 fixup_alt_jump = b;
2487 GET_BUFFER_SPACE (3);
2488 b += 3;
2489
2490 laststart = 0;
2491 begalt = b;
2492 break;
2493
2494
2495 case '{':
2496 /* If \{ is a literal. */
2497 if (!(syntax & RE_INTERVALS)
2498 /* If we're at `\{' and it's not the open-interval
2499 operator. */
2500 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2501 || (p - 2 == pattern && p == pend))
2502 goto normal_backslash;
2503
2504 handle_interval:
2505 {
2506 /* If got here, then the syntax allows intervals. */
2507
2508 /* At least (most) this many matches must be made. */
2509 int lower_bound = -1, upper_bound = -1;
2510
2511 beg_interval = p - 1;
2512
2513 if (p == pend)
2514 {
2515 if (syntax & RE_NO_BK_BRACES)
2516 goto unfetch_interval;
2517 else
2518 FREE_STACK_RETURN (REG_EBRACE);
2519 }
2520
2521 GET_UNSIGNED_NUMBER (lower_bound);
2522
2523 if (c == ',')
2524 {
2525 GET_UNSIGNED_NUMBER (upper_bound);
2526 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2527 }
2528 else
2529 /* Interval such as `{1}' => match exactly once. */
2530 upper_bound = lower_bound;
2531
2532 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2533 || lower_bound > upper_bound)
2534 {
2535 if (syntax & RE_NO_BK_BRACES)
2536 goto unfetch_interval;
2537 else
2538 FREE_STACK_RETURN (REG_BADBR);
2539 }
2540
2541 if (!(syntax & RE_NO_BK_BRACES))
2542 {
2543 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2544
2545 PATFETCH (c);
2546 }
2547
2548 if (c != '}')
2549 {
2550 if (syntax & RE_NO_BK_BRACES)
2551 goto unfetch_interval;
2552 else
2553 FREE_STACK_RETURN (REG_BADBR);
2554 }
2555
2556 /* We just parsed a valid interval. */
2557
2558 /* If it's invalid to have no preceding re. */
2559 if (!laststart)
2560 {
2561 if (syntax & RE_CONTEXT_INVALID_OPS)
2562 FREE_STACK_RETURN (REG_BADRPT);
2563 else if (syntax & RE_CONTEXT_INDEP_OPS)
2564 laststart = b;
2565 else
2566 goto unfetch_interval;
2567 }
2568
2569 /* If the upper bound is zero, don't want to succeed at
2570 all; jump from `laststart' to `b + 3', which will be
2571 the end of the buffer after we insert the jump. */
2572 if (upper_bound == 0)
2573 {
2574 GET_BUFFER_SPACE (3);
2575 INSERT_JUMP (jump, laststart, b + 3);
2576 b += 3;
2577 }
2578
2579 /* Otherwise, we have a nontrivial interval. When
2580 we're all done, the pattern will look like:
2581 set_number_at <jump count> <upper bound>
2582 set_number_at <succeed_n count> <lower bound>
2583 succeed_n <after jump addr> <succeed_n count>
2584 <body of loop>
2585 jump_n <succeed_n addr> <jump count>
2586 (The upper bound and `jump_n' are omitted if
2587 `upper_bound' is 1, though.) */
2588 else
2589 { /* If the upper bound is > 1, we need to insert
2590 more at the end of the loop. */
2591 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2592
2593 GET_BUFFER_SPACE (nbytes);
2594
2595 /* Initialize lower bound of the `succeed_n', even
2596 though it will be set during matching by its
2597 attendant `set_number_at' (inserted next),
2598 because `re_compile_fastmap' needs to know.
2599 Jump to the `jump_n' we might insert below. */
2600 INSERT_JUMP2 (succeed_n, laststart,
2601 b + 5 + (upper_bound > 1) * 5,
2602 lower_bound);
2603 b += 5;
2604
2605 /* Code to initialize the lower bound. Insert
2606 before the `succeed_n'. The `5' is the last two
2607 bytes of this `set_number_at', plus 3 bytes of
2608 the following `succeed_n'. */
2609 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2610 b += 5;
2611
2612 if (upper_bound > 1)
2613 { /* More than one repetition is allowed, so
2614 append a backward jump to the `succeed_n'
2615 that starts this interval.
2616
2617 When we've reached this during matching,
2618 we'll have matched the interval once, so
2619 jump back only `upper_bound - 1' times. */
2620 STORE_JUMP2 (jump_n, b, laststart + 5,
2621 upper_bound - 1);
2622 b += 5;
2623
2624 /* The location we want to set is the second
2625 parameter of the `jump_n'; that is `b-2' as
2626 an absolute address. `laststart' will be
2627 the `set_number_at' we're about to insert;
2628 `laststart+3' the number to set, the source
2629 for the relative address. But we are
2630 inserting into the middle of the pattern --
2631 so everything is getting moved up by 5.
2632 Conclusion: (b - 2) - (laststart + 3) + 5,
2633 i.e., b - laststart.
2634
2635 We insert this at the beginning of the loop
2636 so that if we fail during matching, we'll
2637 reinitialize the bounds. */
2638 insert_op2 (set_number_at, laststart, b - laststart,
2639 upper_bound - 1, b);
2640 b += 5;
2641 }
2642 }
2643 pending_exact = 0;
2644 beg_interval = NULL;
2645 }
2646 break;
2647
2648 unfetch_interval:
2649 /* If an invalid interval, match the characters as literals. */
2650 assert (beg_interval);
2651 p = beg_interval;
2652 beg_interval = NULL;
2653
2654 /* normal_char and normal_backslash need `c'. */
2655 PATFETCH (c);
2656
2657 if (!(syntax & RE_NO_BK_BRACES))
2658 {
2659 if (p > pattern && p[-1] == '\\')
2660 goto normal_backslash;
2661 }
2662 goto normal_char;
2663
2664 #ifdef emacs
2665 /* There is no way to specify the before_dot and after_dot
2666 operators. rms says this is ok. --karl */
2667 case '=':
2668 BUF_PUSH (at_dot);
2669 break;
2670
2671 case 's':
2672 laststart = b;
2673 PATFETCH (c);
2674 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2675 break;
2676
2677 case 'S':
2678 laststart = b;
2679 PATFETCH (c);
2680 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2681 break;
2682 #endif /* emacs */
2683
2684
2685 case 'w':
2686 if (re_syntax_options & RE_NO_GNU_OPS)
2687 goto normal_char;
2688 laststart = b;
2689 BUF_PUSH (wordchar);
2690 break;
2691
2692
2693 case 'W':
2694 if (re_syntax_options & RE_NO_GNU_OPS)
2695 goto normal_char;
2696 laststart = b;
2697 BUF_PUSH (notwordchar);
2698 break;
2699
2700
2701 case '<':
2702 if (re_syntax_options & RE_NO_GNU_OPS)
2703 goto normal_char;
2704 BUF_PUSH (wordbeg);
2705 break;
2706
2707 case '>':
2708 if (re_syntax_options & RE_NO_GNU_OPS)
2709 goto normal_char;
2710 BUF_PUSH (wordend);
2711 break;
2712
2713 case 'b':
2714 if (re_syntax_options & RE_NO_GNU_OPS)
2715 goto normal_char;
2716 BUF_PUSH (wordbound);
2717 break;
2718
2719 case 'B':
2720 if (re_syntax_options & RE_NO_GNU_OPS)
2721 goto normal_char;
2722 BUF_PUSH (notwordbound);
2723 break;
2724
2725 case '`':
2726 if (re_syntax_options & RE_NO_GNU_OPS)
2727 goto normal_char;
2728 BUF_PUSH (begbuf);
2729 break;
2730
2731 case '\'':
2732 if (re_syntax_options & RE_NO_GNU_OPS)
2733 goto normal_char;
2734 BUF_PUSH (endbuf);
2735 break;
2736
2737 case '1': case '2': case '3': case '4': case '5':
2738 case '6': case '7': case '8': case '9':
2739 if (syntax & RE_NO_BK_REFS)
2740 goto normal_char;
2741
2742 c1 = c - '0';
2743
2744 if (c1 > regnum)
2745 FREE_STACK_RETURN (REG_ESUBREG);
2746
2747 /* Can't back reference to a subexpression if inside of it. */
2748 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2749 goto normal_char;
2750
2751 laststart = b;
2752 BUF_PUSH_2 (duplicate, c1);
2753 break;
2754
2755
2756 case '+':
2757 case '?':
2758 if (syntax & RE_BK_PLUS_QM)
2759 goto handle_plus;
2760 else
2761 goto normal_backslash;
2762
2763 default:
2764 normal_backslash:
2765 /* You might think it would be useful for \ to mean
2766 not to translate; but if we don't translate it
2767 it will never match anything. */
2768 c = TRANSLATE (c);
2769 goto normal_char;
2770 }
2771 break;
2772
2773
2774 default:
2775 /* Expects the character in `c'. */
2776 normal_char:
2777 /* If no exactn currently being built. */
2778 if (!pending_exact
2779
2780 /* If last exactn not at current position. */
2781 || pending_exact + *pending_exact + 1 != b
2782
2783 /* We have only one byte following the exactn for the count. */
2784 || *pending_exact == (1 << BYTEWIDTH) - 1
2785
2786 /* If followed by a repetition operator. */
2787 || *p == '*' || *p == '^'
2788 || ((syntax & RE_BK_PLUS_QM)
2789 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2790 : (*p == '+' || *p == '?'))
2791 || ((syntax & RE_INTERVALS)
2792 && ((syntax & RE_NO_BK_BRACES)
2793 ? *p == '{'
2794 : (p[0] == '\\' && p[1] == '{'))))
2795 {
2796 /* Start building a new exactn. */
2797
2798 laststart = b;
2799
2800 BUF_PUSH_2 (exactn, 0);
2801 pending_exact = b - 1;
2802 }
2803
2804 BUF_PUSH (c);
2805 (*pending_exact)++;
2806 break;
2807 } /* switch (c) */
2808 } /* while p != pend */
2809
2810
2811 /* Through the pattern now. */
2812
2813 if (fixup_alt_jump)
2814 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2815
2816 if (!COMPILE_STACK_EMPTY)
2817 FREE_STACK_RETURN (REG_EPAREN);
2818
2819 /* If we don't want backtracking, force success
2820 the first time we reach the end of the compiled pattern. */
2821 if (syntax & RE_NO_POSIX_BACKTRACKING)
2822 BUF_PUSH (succeed);
2823
2824 free (compile_stack.stack);
2825
2826 /* We have succeeded; set the length of the buffer. */
2827 bufp->used = b - bufp->buffer;
2828
2829 #ifdef DEBUG
2830 if (debug)
2831 {
2832 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2833 print_compiled_pattern (bufp);
2834 }
2835 #endif /* DEBUG */
2836
2837 #ifndef MATCH_MAY_ALLOCATE
2838 /* Initialize the failure stack to the largest possible stack. This
2839 isn't necessary unless we're trying to avoid calling alloca in
2840 the search and match routines. */
2841 {
2842 int num_regs = bufp->re_nsub + 1;
2843
2844 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2845 is strictly greater than re_max_failures, the largest possible stack
2846 is 2 * re_max_failures failure points. */
2847 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2848 {
2849 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2850
2851 # ifdef emacs
2852 if (! fail_stack.stack)
2853 fail_stack.stack
2854 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2855 * sizeof (fail_stack_elt_t));
2856 else
2857 fail_stack.stack
2858 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2859 (fail_stack.size
2860 * sizeof (fail_stack_elt_t)));
2861 # else /* not emacs */
2862 if (! fail_stack.stack)
2863 fail_stack.stack
2864 = (fail_stack_elt_t *) malloc (fail_stack.size
2865 * sizeof (fail_stack_elt_t));
2866 else
2867 fail_stack.stack
2868 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2869 (fail_stack.size
2870 * sizeof (fail_stack_elt_t)));
2871 # endif /* not emacs */
2872 }
2873
2874 regex_grow_registers (num_regs);
2875 }
2876 #endif /* not MATCH_MAY_ALLOCATE */
2877
2878 return REG_NOERROR;
2879 } /* regex_compile */
2880 \f
2881 /* Subroutines for `regex_compile'. */
2882
2883 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2884
2885 static void
2886 store_op1 (op, loc, arg)
2887 re_opcode_t op;
2888 unsigned char *loc;
2889 int arg;
2890 {
2891 *loc = (unsigned char) op;
2892 STORE_NUMBER (loc + 1, arg);
2893 }
2894
2895
2896 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2897
2898 static void
2899 store_op2 (op, loc, arg1, arg2)
2900 re_opcode_t op;
2901 unsigned char *loc;
2902 int arg1, arg2;
2903 {
2904 *loc = (unsigned char) op;
2905 STORE_NUMBER (loc + 1, arg1);
2906 STORE_NUMBER (loc + 3, arg2);
2907 }
2908
2909
2910 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2911 for OP followed by two-byte integer parameter ARG. */
2912
2913 static void
2914 insert_op1 (op, loc, arg, end)
2915 re_opcode_t op;
2916 unsigned char *loc;
2917 int arg;
2918 unsigned char *end;
2919 {
2920 register unsigned char *pfrom = end;
2921 register unsigned char *pto = end + 3;
2922
2923 while (pfrom != loc)
2924 *--pto = *--pfrom;
2925
2926 store_op1 (op, loc, arg);
2927 }
2928
2929
2930 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2931
2932 static void
2933 insert_op2 (op, loc, arg1, arg2, end)
2934 re_opcode_t op;
2935 unsigned char *loc;
2936 int arg1, arg2;
2937 unsigned char *end;
2938 {
2939 register unsigned char *pfrom = end;
2940 register unsigned char *pto = end + 5;
2941
2942 while (pfrom != loc)
2943 *--pto = *--pfrom;
2944
2945 store_op2 (op, loc, arg1, arg2);
2946 }
2947
2948
2949 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2950 after an alternative or a begin-subexpression. We assume there is at
2951 least one character before the ^. */
2952
2953 static boolean
2954 at_begline_loc_p (pattern, p, syntax)
2955 const char *pattern, *p;
2956 reg_syntax_t syntax;
2957 {
2958 const char *prev = p - 2;
2959 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2960
2961 return
2962 /* After a subexpression? */
2963 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2964 /* After an alternative? */
2965 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2966 }
2967
2968
2969 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2970 at least one character after the $, i.e., `P < PEND'. */
2971
2972 static boolean
2973 at_endline_loc_p (p, pend, syntax)
2974 const char *p, *pend;
2975 reg_syntax_t syntax;
2976 {
2977 const char *next = p;
2978 boolean next_backslash = *next == '\\';
2979 const char *next_next = p + 1 < pend ? p + 1 : 0;
2980
2981 return
2982 /* Before a subexpression? */
2983 (syntax & RE_NO_BK_PARENS ? *next == ')'
2984 : next_backslash && next_next && *next_next == ')')
2985 /* Before an alternative? */
2986 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2987 : next_backslash && next_next && *next_next == '|');
2988 }
2989
2990
2991 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2992 false if it's not. */
2993
2994 static boolean
2995 group_in_compile_stack (compile_stack, regnum)
2996 compile_stack_type compile_stack;
2997 regnum_t regnum;
2998 {
2999 int this_element;
3000
3001 for (this_element = compile_stack.avail - 1;
3002 this_element >= 0;
3003 this_element--)
3004 if (compile_stack.stack[this_element].regnum == regnum)
3005 return true;
3006
3007 return false;
3008 }
3009
3010
3011 /* Read the ending character of a range (in a bracket expression) from the
3012 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3013 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3014 Then we set the translation of all bits between the starting and
3015 ending characters (inclusive) in the compiled pattern B.
3016
3017 Return an error code.
3018
3019 We use these short variable names so we can use the same macros as
3020 `regex_compile' itself. */
3021
3022 static reg_errcode_t
3023 compile_range (p_ptr, pend, translate, syntax, b)
3024 const char **p_ptr, *pend;
3025 RE_TRANSLATE_TYPE translate;
3026 reg_syntax_t syntax;
3027 unsigned char *b;
3028 {
3029 unsigned this_char;
3030
3031 const char *p = *p_ptr;
3032 unsigned int range_start, range_end;
3033
3034 if (p == pend)
3035 return REG_ERANGE;
3036
3037 /* Even though the pattern is a signed `char *', we need to fetch
3038 with unsigned char *'s; if the high bit of the pattern character
3039 is set, the range endpoints will be negative if we fetch using a
3040 signed char *.
3041
3042 We also want to fetch the endpoints without translating them; the
3043 appropriate translation is done in the bit-setting loop below. */
3044 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3045 range_start = ((const unsigned char *) p)[-2];
3046 range_end = ((const unsigned char *) p)[0];
3047
3048 /* Have to increment the pointer into the pattern string, so the
3049 caller isn't still at the ending character. */
3050 (*p_ptr)++;
3051
3052 /* If the start is after the end, the range is empty. */
3053 if (range_start > range_end)
3054 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3055
3056 /* Here we see why `this_char' has to be larger than an `unsigned
3057 char' -- the range is inclusive, so if `range_end' == 0xff
3058 (assuming 8-bit characters), we would otherwise go into an infinite
3059 loop, since all characters <= 0xff. */
3060 for (this_char = range_start; this_char <= range_end; this_char++)
3061 {
3062 SET_LIST_BIT (TRANSLATE (this_char));
3063 }
3064
3065 return REG_NOERROR;
3066 }
3067 \f
3068 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3069 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3070 characters can start a string that matches the pattern. This fastmap
3071 is used by re_search to skip quickly over impossible starting points.
3072
3073 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3074 area as BUFP->fastmap.
3075
3076 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3077 the pattern buffer.
3078
3079 Returns 0 if we succeed, -2 if an internal error. */
3080
3081 int
3082 re_compile_fastmap (bufp)
3083 struct re_pattern_buffer *bufp;
3084 {
3085 int j, k;
3086 #ifdef MATCH_MAY_ALLOCATE
3087 fail_stack_type fail_stack;
3088 #endif
3089 #ifndef REGEX_MALLOC
3090 char *destination;
3091 #endif
3092 /* We don't push any register information onto the failure stack. */
3093 unsigned num_regs = 0;
3094
3095 register char *fastmap = bufp->fastmap;
3096 unsigned char *pattern = bufp->buffer;
3097 unsigned char *p = pattern;
3098 register unsigned char *pend = pattern + bufp->used;
3099
3100 #ifdef REL_ALLOC
3101 /* This holds the pointer to the failure stack, when
3102 it is allocated relocatably. */
3103 fail_stack_elt_t *failure_stack_ptr;
3104 #endif
3105
3106 /* Assume that each path through the pattern can be null until
3107 proven otherwise. We set this false at the bottom of switch
3108 statement, to which we get only if a particular path doesn't
3109 match the empty string. */
3110 boolean path_can_be_null = true;
3111
3112 /* We aren't doing a `succeed_n' to begin with. */
3113 boolean succeed_n_p = false;
3114
3115 assert (fastmap != NULL && p != NULL);
3116
3117 INIT_FAIL_STACK ();
3118 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3119 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3120 bufp->can_be_null = 0;
3121
3122 while (1)
3123 {
3124 if (p == pend || *p == succeed)
3125 {
3126 /* We have reached the (effective) end of pattern. */
3127 if (!FAIL_STACK_EMPTY ())
3128 {
3129 bufp->can_be_null |= path_can_be_null;
3130
3131 /* Reset for next path. */
3132 path_can_be_null = true;
3133
3134 p = fail_stack.stack[--fail_stack.avail].pointer;
3135
3136 continue;
3137 }
3138 else
3139 break;
3140 }
3141
3142 /* We should never be about to go beyond the end of the pattern. */
3143 assert (p < pend);
3144
3145 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3146 {
3147
3148 /* I guess the idea here is to simply not bother with a fastmap
3149 if a backreference is used, since it's too hard to figure out
3150 the fastmap for the corresponding group. Setting
3151 `can_be_null' stops `re_search_2' from using the fastmap, so
3152 that is all we do. */
3153 case duplicate:
3154 bufp->can_be_null = 1;
3155 goto done;
3156
3157
3158 /* Following are the cases which match a character. These end
3159 with `break'. */
3160
3161 case exactn:
3162 fastmap[p[1]] = 1;
3163 break;
3164
3165
3166 case charset:
3167 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3168 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3169 fastmap[j] = 1;
3170 break;
3171
3172
3173 case charset_not:
3174 /* Chars beyond end of map must be allowed. */
3175 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3176 fastmap[j] = 1;
3177
3178 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3179 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3180 fastmap[j] = 1;
3181 break;
3182
3183
3184 case wordchar:
3185 for (j = 0; j < (1 << BYTEWIDTH); j++)
3186 if (SYNTAX (j) == Sword)
3187 fastmap[j] = 1;
3188 break;
3189
3190
3191 case notwordchar:
3192 for (j = 0; j < (1 << BYTEWIDTH); j++)
3193 if (SYNTAX (j) != Sword)
3194 fastmap[j] = 1;
3195 break;
3196
3197
3198 case anychar:
3199 {
3200 int fastmap_newline = fastmap['\n'];
3201
3202 /* `.' matches anything ... */
3203 for (j = 0; j < (1 << BYTEWIDTH); j++)
3204 fastmap[j] = 1;
3205
3206 /* ... except perhaps newline. */
3207 if (!(bufp->syntax & RE_DOT_NEWLINE))
3208 fastmap['\n'] = fastmap_newline;
3209
3210 /* Return if we have already set `can_be_null'; if we have,
3211 then the fastmap is irrelevant. Something's wrong here. */
3212 else if (bufp->can_be_null)
3213 goto done;
3214
3215 /* Otherwise, have to check alternative paths. */
3216 break;
3217 }
3218
3219 #ifdef emacs
3220 case syntaxspec:
3221 k = *p++;
3222 for (j = 0; j < (1 << BYTEWIDTH); j++)
3223 if (SYNTAX (j) == (enum syntaxcode) k)
3224 fastmap[j] = 1;
3225 break;
3226
3227
3228 case notsyntaxspec:
3229 k = *p++;
3230 for (j = 0; j < (1 << BYTEWIDTH); j++)
3231 if (SYNTAX (j) != (enum syntaxcode) k)
3232 fastmap[j] = 1;
3233 break;
3234
3235
3236 /* All cases after this match the empty string. These end with
3237 `continue'. */
3238
3239
3240 case before_dot:
3241 case at_dot:
3242 case after_dot:
3243 continue;
3244 #endif /* emacs */
3245
3246
3247 case no_op:
3248 case begline:
3249 case endline:
3250 case begbuf:
3251 case endbuf:
3252 case wordbound:
3253 case notwordbound:
3254 case wordbeg:
3255 case wordend:
3256 case push_dummy_failure:
3257 continue;
3258
3259
3260 case jump_n:
3261 case pop_failure_jump:
3262 case maybe_pop_jump:
3263 case jump:
3264 case jump_past_alt:
3265 case dummy_failure_jump:
3266 EXTRACT_NUMBER_AND_INCR (j, p);
3267 p += j;
3268 if (j > 0)
3269 continue;
3270
3271 /* Jump backward implies we just went through the body of a
3272 loop and matched nothing. Opcode jumped to should be
3273 `on_failure_jump' or `succeed_n'. Just treat it like an
3274 ordinary jump. For a * loop, it has pushed its failure
3275 point already; if so, discard that as redundant. */
3276 if ((re_opcode_t) *p != on_failure_jump
3277 && (re_opcode_t) *p != succeed_n)
3278 continue;
3279
3280 p++;
3281 EXTRACT_NUMBER_AND_INCR (j, p);
3282 p += j;
3283
3284 /* If what's on the stack is where we are now, pop it. */
3285 if (!FAIL_STACK_EMPTY ()
3286 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3287 fail_stack.avail--;
3288
3289 continue;
3290
3291
3292 case on_failure_jump:
3293 case on_failure_keep_string_jump:
3294 handle_on_failure_jump:
3295 EXTRACT_NUMBER_AND_INCR (j, p);
3296
3297 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3298 end of the pattern. We don't want to push such a point,
3299 since when we restore it above, entering the switch will
3300 increment `p' past the end of the pattern. We don't need
3301 to push such a point since we obviously won't find any more
3302 fastmap entries beyond `pend'. Such a pattern can match
3303 the null string, though. */
3304 if (p + j < pend)
3305 {
3306 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3307 {
3308 RESET_FAIL_STACK ();
3309 return -2;
3310 }
3311 }
3312 else
3313 bufp->can_be_null = 1;
3314
3315 if (succeed_n_p)
3316 {
3317 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3318 succeed_n_p = false;
3319 }
3320
3321 continue;
3322
3323
3324 case succeed_n:
3325 /* Get to the number of times to succeed. */
3326 p += 2;
3327
3328 /* Increment p past the n for when k != 0. */
3329 EXTRACT_NUMBER_AND_INCR (k, p);
3330 if (k == 0)
3331 {
3332 p -= 4;
3333 succeed_n_p = true; /* Spaghetti code alert. */
3334 goto handle_on_failure_jump;
3335 }
3336 continue;
3337
3338
3339 case set_number_at:
3340 p += 4;
3341 continue;
3342
3343
3344 case start_memory:
3345 case stop_memory:
3346 p += 2;
3347 continue;
3348
3349
3350 default:
3351 abort (); /* We have listed all the cases. */
3352 } /* switch *p++ */
3353
3354 /* Getting here means we have found the possible starting
3355 characters for one path of the pattern -- and that the empty
3356 string does not match. We need not follow this path further.
3357 Instead, look at the next alternative (remembered on the
3358 stack), or quit if no more. The test at the top of the loop
3359 does these things. */
3360 path_can_be_null = false;
3361 p = pend;
3362 } /* while p */
3363
3364 /* Set `can_be_null' for the last path (also the first path, if the
3365 pattern is empty). */
3366 bufp->can_be_null |= path_can_be_null;
3367
3368 done:
3369 RESET_FAIL_STACK ();
3370 return 0;
3371 } /* re_compile_fastmap */
3372 \f
3373 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3374 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3375 this memory for recording register information. STARTS and ENDS
3376 must be allocated using the malloc library routine, and must each
3377 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3378
3379 If NUM_REGS == 0, then subsequent matches should allocate their own
3380 register data.
3381
3382 Unless this function is called, the first search or match using
3383 PATTERN_BUFFER will allocate its own register data, without
3384 freeing the old data. */
3385
3386 void
3387 re_set_registers (bufp, regs, num_regs, starts, ends)
3388 struct re_pattern_buffer *bufp;
3389 struct re_registers *regs;
3390 unsigned num_regs;
3391 regoff_t *starts, *ends;
3392 {
3393 if (num_regs)
3394 {
3395 bufp->regs_allocated = REGS_REALLOCATE;
3396 regs->num_regs = num_regs;
3397 regs->start = starts;
3398 regs->end = ends;
3399 }
3400 else
3401 {
3402 bufp->regs_allocated = REGS_UNALLOCATED;
3403 regs->num_regs = 0;
3404 regs->start = regs->end = (regoff_t *) 0;
3405 }
3406 }
3407 \f
3408 /* Searching routines. */
3409
3410 /* Like re_search_2, below, but only one string is specified, and
3411 doesn't let you say where to stop matching. */
3412
3413 int
3414 re_search (bufp, string, size, startpos, range, regs)
3415 struct re_pattern_buffer *bufp;
3416 const char *string;
3417 int size, startpos, range;
3418 struct re_registers *regs;
3419 {
3420 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3421 regs, size);
3422 }
3423
3424
3425 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3426 virtual concatenation of STRING1 and STRING2, starting first at index
3427 STARTPOS, then at STARTPOS + 1, and so on.
3428
3429 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3430
3431 RANGE is how far to scan while trying to match. RANGE = 0 means try
3432 only at STARTPOS; in general, the last start tried is STARTPOS +
3433 RANGE.
3434
3435 In REGS, return the indices of the virtual concatenation of STRING1
3436 and STRING2 that matched the entire BUFP->buffer and its contained
3437 subexpressions.
3438
3439 Do not consider matching one past the index STOP in the virtual
3440 concatenation of STRING1 and STRING2.
3441
3442 We return either the position in the strings at which the match was
3443 found, -1 if no match, or -2 if error (such as failure
3444 stack overflow). */
3445
3446 int
3447 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3448 struct re_pattern_buffer *bufp;
3449 const char *string1, *string2;
3450 int size1, size2;
3451 int startpos;
3452 int range;
3453 struct re_registers *regs;
3454 int stop;
3455 {
3456 int val;
3457 register char *fastmap = bufp->fastmap;
3458 register RE_TRANSLATE_TYPE translate = bufp->translate;
3459 int total_size = size1 + size2;
3460 int endpos = startpos + range;
3461
3462 /* Check for out-of-range STARTPOS. */
3463 if (startpos < 0 || startpos > total_size)
3464 return -1;
3465
3466 /* Fix up RANGE if it might eventually take us outside
3467 the virtual concatenation of STRING1 and STRING2.
3468 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3469 if (endpos < 0)
3470 range = 0 - startpos;
3471 else if (endpos > total_size)
3472 range = total_size - startpos;
3473
3474 /* If the search isn't to be a backwards one, don't waste time in a
3475 search for a pattern that must be anchored. */
3476 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3477 {
3478 if (startpos > 0)
3479 return -1;
3480 else
3481 range = 1;
3482 }
3483
3484 #ifdef emacs
3485 /* In a forward search for something that starts with \=.
3486 don't keep searching past point. */
3487 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3488 {
3489 range = PT - startpos;
3490 if (range <= 0)
3491 return -1;
3492 }
3493 #endif /* emacs */
3494
3495 /* Update the fastmap now if not correct already. */
3496 if (fastmap && !bufp->fastmap_accurate)
3497 if (re_compile_fastmap (bufp) == -2)
3498 return -2;
3499
3500 /* Loop through the string, looking for a place to start matching. */
3501 for (;;)
3502 {
3503 /* If a fastmap is supplied, skip quickly over characters that
3504 cannot be the start of a match. If the pattern can match the
3505 null string, however, we don't need to skip characters; we want
3506 the first null string. */
3507 if (fastmap && startpos < total_size && !bufp->can_be_null)
3508 {
3509 if (range > 0) /* Searching forwards. */
3510 {
3511 register const char *d;
3512 register int lim = 0;
3513 int irange = range;
3514
3515 if (startpos < size1 && startpos + range >= size1)
3516 lim = range - (size1 - startpos);
3517
3518 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3519
3520 /* Written out as an if-else to avoid testing `translate'
3521 inside the loop. */
3522 if (translate)
3523 while (range > lim
3524 && !fastmap[(unsigned char)
3525 translate[(unsigned char) *d++]])
3526 range--;
3527 else
3528 while (range > lim && !fastmap[(unsigned char) *d++])
3529 range--;
3530
3531 startpos += irange - range;
3532 }
3533 else /* Searching backwards. */
3534 {
3535 register char c = (size1 == 0 || startpos >= size1
3536 ? string2[startpos - size1]
3537 : string1[startpos]);
3538
3539 if (!fastmap[(unsigned char) TRANSLATE (c)])
3540 goto advance;
3541 }
3542 }
3543
3544 /* If can't match the null string, and that's all we have left, fail. */
3545 if (range >= 0 && startpos == total_size && fastmap
3546 && !bufp->can_be_null)
3547 return -1;
3548
3549 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3550 startpos, regs, stop);
3551 #ifndef REGEX_MALLOC
3552 # ifdef C_ALLOCA
3553 alloca (0);
3554 # endif
3555 #endif
3556
3557 if (val >= 0)
3558 return startpos;
3559
3560 if (val == -2)
3561 return -2;
3562
3563 advance:
3564 if (!range)
3565 break;
3566 else if (range > 0)
3567 {
3568 range--;
3569 startpos++;
3570 }
3571 else
3572 {
3573 range++;
3574 startpos--;
3575 }
3576 }
3577 return -1;
3578 } /* re_search_2 */
3579 \f
3580 /* This converts PTR, a pointer into one of the search strings `string1'
3581 and `string2' into an offset from the beginning of that string. */
3582 #define POINTER_TO_OFFSET(ptr) \
3583 (FIRST_STRING_P (ptr) \
3584 ? ((regoff_t) ((ptr) - string1)) \
3585 : ((regoff_t) ((ptr) - string2 + size1)))
3586
3587 /* Macros for dealing with the split strings in re_match_2. */
3588
3589 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3590
3591 /* Call before fetching a character with *d. This switches over to
3592 string2 if necessary. */
3593 #define PREFETCH() \
3594 while (d == dend) \
3595 { \
3596 /* End of string2 => fail. */ \
3597 if (dend == end_match_2) \
3598 goto fail; \
3599 /* End of string1 => advance to string2. */ \
3600 d = string2; \
3601 dend = end_match_2; \
3602 }
3603
3604
3605 /* Test if at very beginning or at very end of the virtual concatenation
3606 of `string1' and `string2'. If only one string, it's `string2'. */
3607 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3608 #define AT_STRINGS_END(d) ((d) == end2)
3609
3610
3611 /* Test if D points to a character which is word-constituent. We have
3612 two special cases to check for: if past the end of string1, look at
3613 the first character in string2; and if before the beginning of
3614 string2, look at the last character in string1. */
3615 #define WORDCHAR_P(d) \
3616 (SYNTAX ((d) == end1 ? *string2 \
3617 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3618 == Sword)
3619
3620 /* Disabled due to a compiler bug -- see comment at case wordbound */
3621 #if 0
3622 /* Test if the character before D and the one at D differ with respect
3623 to being word-constituent. */
3624 #define AT_WORD_BOUNDARY(d) \
3625 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3626 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3627 #endif
3628
3629 /* Free everything we malloc. */
3630 #ifdef MATCH_MAY_ALLOCATE
3631 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3632 # define FREE_VARIABLES() \
3633 do { \
3634 REGEX_FREE_STACK (fail_stack.stack); \
3635 FREE_VAR (regstart); \
3636 FREE_VAR (regend); \
3637 FREE_VAR (old_regstart); \
3638 FREE_VAR (old_regend); \
3639 FREE_VAR (best_regstart); \
3640 FREE_VAR (best_regend); \
3641 FREE_VAR (reg_info); \
3642 FREE_VAR (reg_dummy); \
3643 FREE_VAR (reg_info_dummy); \
3644 } while (0)
3645 #else
3646 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3647 #endif /* not MATCH_MAY_ALLOCATE */
3648
3649 /* These values must meet several constraints. They must not be valid
3650 register values; since we have a limit of 255 registers (because
3651 we use only one byte in the pattern for the register number), we can
3652 use numbers larger than 255. They must differ by 1, because of
3653 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3654 be larger than the value for the highest register, so we do not try
3655 to actually save any registers when none are active. */
3656 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3657 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3658 \f
3659 /* Matching routines. */
3660
3661 #ifndef emacs /* Emacs never uses this. */
3662 /* re_match is like re_match_2 except it takes only a single string. */
3663
3664 int
3665 re_match (bufp, string, size, pos, regs)
3666 struct re_pattern_buffer *bufp;
3667 const char *string;
3668 int size, pos;
3669 struct re_registers *regs;
3670 {
3671 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3672 pos, regs, size);
3673 # ifndef REGEX_MALLOC
3674 # ifdef C_ALLOCA
3675 alloca (0);
3676 # endif
3677 # endif
3678 return result;
3679 }
3680 #endif /* not emacs */
3681
3682 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3683 unsigned char *end,
3684 register_info_type *reg_info));
3685 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3686 unsigned char *end,
3687 register_info_type *reg_info));
3688 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3689 unsigned char *end,
3690 register_info_type *reg_info));
3691 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3692 int len, char *translate));
3693
3694 /* re_match_2 matches the compiled pattern in BUFP against the
3695 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3696 and SIZE2, respectively). We start matching at POS, and stop
3697 matching at STOP.
3698
3699 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3700 store offsets for the substring each group matched in REGS. See the
3701 documentation for exactly how many groups we fill.
3702
3703 We return -1 if no match, -2 if an internal error (such as the
3704 failure stack overflowing). Otherwise, we return the length of the
3705 matched substring. */
3706
3707 int
3708 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3709 struct re_pattern_buffer *bufp;
3710 const char *string1, *string2;
3711 int size1, size2;
3712 int pos;
3713 struct re_registers *regs;
3714 int stop;
3715 {
3716 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3717 pos, regs, stop);
3718 #ifndef REGEX_MALLOC
3719 # ifdef C_ALLOCA
3720 alloca (0);
3721 # endif
3722 #endif
3723 return result;
3724 }
3725
3726 /* This is a separate function so that we can force an alloca cleanup
3727 afterwards. */
3728 static int
3729 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3730 struct re_pattern_buffer *bufp;
3731 const char *string1, *string2;
3732 int size1, size2;
3733 int pos;
3734 struct re_registers *regs;
3735 int stop;
3736 {
3737 /* General temporaries. */
3738 int mcnt;
3739 unsigned char *p1;
3740
3741 /* Just past the end of the corresponding string. */
3742 const char *end1, *end2;
3743
3744 /* Pointers into string1 and string2, just past the last characters in
3745 each to consider matching. */
3746 const char *end_match_1, *end_match_2;
3747
3748 /* Where we are in the data, and the end of the current string. */
3749 const char *d, *dend;
3750
3751 /* Where we are in the pattern, and the end of the pattern. */
3752 unsigned char *p = bufp->buffer;
3753 register unsigned char *pend = p + bufp->used;
3754
3755 /* Mark the opcode just after a start_memory, so we can test for an
3756 empty subpattern when we get to the stop_memory. */
3757 unsigned char *just_past_start_mem = 0;
3758
3759 /* We use this to map every character in the string. */
3760 RE_TRANSLATE_TYPE translate = bufp->translate;
3761
3762 /* Failure point stack. Each place that can handle a failure further
3763 down the line pushes a failure point on this stack. It consists of
3764 restart, regend, and reg_info for all registers corresponding to
3765 the subexpressions we're currently inside, plus the number of such
3766 registers, and, finally, two char *'s. The first char * is where
3767 to resume scanning the pattern; the second one is where to resume
3768 scanning the strings. If the latter is zero, the failure point is
3769 a ``dummy''; if a failure happens and the failure point is a dummy,
3770 it gets discarded and the next next one is tried. */
3771 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3772 fail_stack_type fail_stack;
3773 #endif
3774 #ifdef DEBUG
3775 static unsigned failure_id = 0;
3776 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3777 #endif
3778
3779 #ifdef REL_ALLOC
3780 /* This holds the pointer to the failure stack, when
3781 it is allocated relocatably. */
3782 fail_stack_elt_t *failure_stack_ptr;
3783 #endif
3784
3785 /* We fill all the registers internally, independent of what we
3786 return, for use in backreferences. The number here includes
3787 an element for register zero. */
3788 size_t num_regs = bufp->re_nsub + 1;
3789
3790 /* The currently active registers. */
3791 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3792 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3793
3794 /* Information on the contents of registers. These are pointers into
3795 the input strings; they record just what was matched (on this
3796 attempt) by a subexpression part of the pattern, that is, the
3797 regnum-th regstart pointer points to where in the pattern we began
3798 matching and the regnum-th regend points to right after where we
3799 stopped matching the regnum-th subexpression. (The zeroth register
3800 keeps track of what the whole pattern matches.) */
3801 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3802 const char **regstart, **regend;
3803 #endif
3804
3805 /* If a group that's operated upon by a repetition operator fails to
3806 match anything, then the register for its start will need to be
3807 restored because it will have been set to wherever in the string we
3808 are when we last see its open-group operator. Similarly for a
3809 register's end. */
3810 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3811 const char **old_regstart, **old_regend;
3812 #endif
3813
3814 /* The is_active field of reg_info helps us keep track of which (possibly
3815 nested) subexpressions we are currently in. The matched_something
3816 field of reg_info[reg_num] helps us tell whether or not we have
3817 matched any of the pattern so far this time through the reg_num-th
3818 subexpression. These two fields get reset each time through any
3819 loop their register is in. */
3820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3821 register_info_type *reg_info;
3822 #endif
3823
3824 /* The following record the register info as found in the above
3825 variables when we find a match better than any we've seen before.
3826 This happens as we backtrack through the failure points, which in
3827 turn happens only if we have not yet matched the entire string. */
3828 unsigned best_regs_set = false;
3829 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3830 const char **best_regstart, **best_regend;
3831 #endif
3832
3833 /* Logically, this is `best_regend[0]'. But we don't want to have to
3834 allocate space for that if we're not allocating space for anything
3835 else (see below). Also, we never need info about register 0 for
3836 any of the other register vectors, and it seems rather a kludge to
3837 treat `best_regend' differently than the rest. So we keep track of
3838 the end of the best match so far in a separate variable. We
3839 initialize this to NULL so that when we backtrack the first time
3840 and need to test it, it's not garbage. */
3841 const char *match_end = NULL;
3842
3843 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3844 int set_regs_matched_done = 0;
3845
3846 /* Used when we pop values we don't care about. */
3847 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3848 const char **reg_dummy;
3849 register_info_type *reg_info_dummy;
3850 #endif
3851
3852 #ifdef DEBUG
3853 /* Counts the total number of registers pushed. */
3854 unsigned num_regs_pushed = 0;
3855 #endif
3856
3857 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3858
3859 INIT_FAIL_STACK ();
3860
3861 #ifdef MATCH_MAY_ALLOCATE
3862 /* Do not bother to initialize all the register variables if there are
3863 no groups in the pattern, as it takes a fair amount of time. If
3864 there are groups, we include space for register 0 (the whole
3865 pattern), even though we never use it, since it simplifies the
3866 array indexing. We should fix this. */
3867 if (bufp->re_nsub)
3868 {
3869 regstart = REGEX_TALLOC (num_regs, const char *);
3870 regend = REGEX_TALLOC (num_regs, const char *);
3871 old_regstart = REGEX_TALLOC (num_regs, const char *);
3872 old_regend = REGEX_TALLOC (num_regs, const char *);
3873 best_regstart = REGEX_TALLOC (num_regs, const char *);
3874 best_regend = REGEX_TALLOC (num_regs, const char *);
3875 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3876 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3877 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3878
3879 if (!(regstart && regend && old_regstart && old_regend && reg_info
3880 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3881 {
3882 FREE_VARIABLES ();
3883 return -2;
3884 }
3885 }
3886 else
3887 {
3888 /* We must initialize all our variables to NULL, so that
3889 `FREE_VARIABLES' doesn't try to free them. */
3890 regstart = regend = old_regstart = old_regend = best_regstart
3891 = best_regend = reg_dummy = NULL;
3892 reg_info = reg_info_dummy = (register_info_type *) NULL;
3893 }
3894 #endif /* MATCH_MAY_ALLOCATE */
3895
3896 /* The starting position is bogus. */
3897 if (pos < 0 || pos > size1 + size2)
3898 {
3899 FREE_VARIABLES ();
3900 return -1;
3901 }
3902
3903 /* Initialize subexpression text positions to -1 to mark ones that no
3904 start_memory/stop_memory has been seen for. Also initialize the
3905 register information struct. */
3906 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3907 {
3908 regstart[mcnt] = regend[mcnt]
3909 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3910
3911 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3912 IS_ACTIVE (reg_info[mcnt]) = 0;
3913 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3914 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3915 }
3916
3917 /* We move `string1' into `string2' if the latter's empty -- but not if
3918 `string1' is null. */
3919 if (size2 == 0 && string1 != NULL)
3920 {
3921 string2 = string1;
3922 size2 = size1;
3923 string1 = 0;
3924 size1 = 0;
3925 }
3926 end1 = string1 + size1;
3927 end2 = string2 + size2;
3928
3929 /* Compute where to stop matching, within the two strings. */
3930 if (stop <= size1)
3931 {
3932 end_match_1 = string1 + stop;
3933 end_match_2 = string2;
3934 }
3935 else
3936 {
3937 end_match_1 = end1;
3938 end_match_2 = string2 + stop - size1;
3939 }
3940
3941 /* `p' scans through the pattern as `d' scans through the data.
3942 `dend' is the end of the input string that `d' points within. `d'
3943 is advanced into the following input string whenever necessary, but
3944 this happens before fetching; therefore, at the beginning of the
3945 loop, `d' can be pointing at the end of a string, but it cannot
3946 equal `string2'. */
3947 if (size1 > 0 && pos <= size1)
3948 {
3949 d = string1 + pos;
3950 dend = end_match_1;
3951 }
3952 else
3953 {
3954 d = string2 + pos - size1;
3955 dend = end_match_2;
3956 }
3957
3958 DEBUG_PRINT1 ("The compiled pattern is:\n");
3959 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3960 DEBUG_PRINT1 ("The string to match is: `");
3961 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3962 DEBUG_PRINT1 ("'\n");
3963
3964 /* This loops over pattern commands. It exits by returning from the
3965 function if the match is complete, or it drops through if the match
3966 fails at this starting point in the input data. */
3967 for (;;)
3968 {
3969 #ifdef _LIBC
3970 DEBUG_PRINT2 ("\n%p: ", p);
3971 #else
3972 DEBUG_PRINT2 ("\n0x%x: ", p);
3973 #endif
3974
3975 if (p == pend)
3976 { /* End of pattern means we might have succeeded. */
3977 DEBUG_PRINT1 ("end of pattern ... ");
3978
3979 /* If we haven't matched the entire string, and we want the
3980 longest match, try backtracking. */
3981 if (d != end_match_2)
3982 {
3983 /* 1 if this match ends in the same string (string1 or string2)
3984 as the best previous match. */
3985 boolean same_str_p = (FIRST_STRING_P (match_end)
3986 == MATCHING_IN_FIRST_STRING);
3987 /* 1 if this match is the best seen so far. */
3988 boolean best_match_p;
3989
3990 /* AIX compiler got confused when this was combined
3991 with the previous declaration. */
3992 if (same_str_p)
3993 best_match_p = d > match_end;
3994 else
3995 best_match_p = !MATCHING_IN_FIRST_STRING;
3996
3997 DEBUG_PRINT1 ("backtracking.\n");
3998
3999 if (!FAIL_STACK_EMPTY ())
4000 { /* More failure points to try. */
4001
4002 /* If exceeds best match so far, save it. */
4003 if (!best_regs_set || best_match_p)
4004 {
4005 best_regs_set = true;
4006 match_end = d;
4007
4008 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4009
4010 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4011 {
4012 best_regstart[mcnt] = regstart[mcnt];
4013 best_regend[mcnt] = regend[mcnt];
4014 }
4015 }
4016 goto fail;
4017 }
4018
4019 /* If no failure points, don't restore garbage. And if
4020 last match is real best match, don't restore second
4021 best one. */
4022 else if (best_regs_set && !best_match_p)
4023 {
4024 restore_best_regs:
4025 /* Restore best match. It may happen that `dend ==
4026 end_match_1' while the restored d is in string2.
4027 For example, the pattern `x.*y.*z' against the
4028 strings `x-' and `y-z-', if the two strings are
4029 not consecutive in memory. */
4030 DEBUG_PRINT1 ("Restoring best registers.\n");
4031
4032 d = match_end;
4033 dend = ((d >= string1 && d <= end1)
4034 ? end_match_1 : end_match_2);
4035
4036 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4037 {
4038 regstart[mcnt] = best_regstart[mcnt];
4039 regend[mcnt] = best_regend[mcnt];
4040 }
4041 }
4042 } /* d != end_match_2 */
4043
4044 succeed_label:
4045 DEBUG_PRINT1 ("Accepting match.\n");
4046
4047 /* If caller wants register contents data back, do it. */
4048 if (regs && !bufp->no_sub)
4049 {
4050 /* Have the register data arrays been allocated? */
4051 if (bufp->regs_allocated == REGS_UNALLOCATED)
4052 { /* No. So allocate them with malloc. We need one
4053 extra element beyond `num_regs' for the `-1' marker
4054 GNU code uses. */
4055 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4056 regs->start = TALLOC (regs->num_regs, regoff_t);
4057 regs->end = TALLOC (regs->num_regs, regoff_t);
4058 if (regs->start == NULL || regs->end == NULL)
4059 {
4060 FREE_VARIABLES ();
4061 return -2;
4062 }
4063 bufp->regs_allocated = REGS_REALLOCATE;
4064 }
4065 else if (bufp->regs_allocated == REGS_REALLOCATE)
4066 { /* Yes. If we need more elements than were already
4067 allocated, reallocate them. If we need fewer, just
4068 leave it alone. */
4069 if (regs->num_regs < num_regs + 1)
4070 {
4071 regs->num_regs = num_regs + 1;
4072 RETALLOC (regs->start, regs->num_regs, regoff_t);
4073 RETALLOC (regs->end, regs->num_regs, regoff_t);
4074 if (regs->start == NULL || regs->end == NULL)
4075 {
4076 FREE_VARIABLES ();
4077 return -2;
4078 }
4079 }
4080 }
4081 else
4082 {
4083 /* These braces fend off a "empty body in an else-statement"
4084 warning under GCC when assert expands to nothing. */
4085 assert (bufp->regs_allocated == REGS_FIXED);
4086 }
4087
4088 /* Convert the pointer data in `regstart' and `regend' to
4089 indices. Register zero has to be set differently,
4090 since we haven't kept track of any info for it. */
4091 if (regs->num_regs > 0)
4092 {
4093 regs->start[0] = pos;
4094 regs->end[0] = (MATCHING_IN_FIRST_STRING
4095 ? ((regoff_t) (d - string1))
4096 : ((regoff_t) (d - string2 + size1)));
4097 }
4098
4099 /* Go through the first `min (num_regs, regs->num_regs)'
4100 registers, since that is all we initialized. */
4101 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4102 mcnt++)
4103 {
4104 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4105 regs->start[mcnt] = regs->end[mcnt] = -1;
4106 else
4107 {
4108 regs->start[mcnt]
4109 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4110 regs->end[mcnt]
4111 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4112 }
4113 }
4114
4115 /* If the regs structure we return has more elements than
4116 were in the pattern, set the extra elements to -1. If
4117 we (re)allocated the registers, this is the case,
4118 because we always allocate enough to have at least one
4119 -1 at the end. */
4120 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4121 regs->start[mcnt] = regs->end[mcnt] = -1;
4122 } /* regs && !bufp->no_sub */
4123
4124 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4125 nfailure_points_pushed, nfailure_points_popped,
4126 nfailure_points_pushed - nfailure_points_popped);
4127 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4128
4129 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4130 ? string1
4131 : string2 - size1);
4132
4133 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4134
4135 FREE_VARIABLES ();
4136 return mcnt;
4137 }
4138
4139 /* Otherwise match next pattern command. */
4140 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4141 {
4142 /* Ignore these. Used to ignore the n of succeed_n's which
4143 currently have n == 0. */
4144 case no_op:
4145 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4146 break;
4147
4148 case succeed:
4149 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4150 goto succeed_label;
4151
4152 /* Match the next n pattern characters exactly. The following
4153 byte in the pattern defines n, and the n bytes after that
4154 are the characters to match. */
4155 case exactn:
4156 mcnt = *p++;
4157 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4158
4159 /* This is written out as an if-else so we don't waste time
4160 testing `translate' inside the loop. */
4161 if (translate)
4162 {
4163 do
4164 {
4165 PREFETCH ();
4166 if ((unsigned char) translate[(unsigned char) *d++]
4167 != (unsigned char) *p++)
4168 goto fail;
4169 }
4170 while (--mcnt);
4171 }
4172 else
4173 {
4174 do
4175 {
4176 PREFETCH ();
4177 if (*d++ != (char) *p++) goto fail;
4178 }
4179 while (--mcnt);
4180 }
4181 SET_REGS_MATCHED ();
4182 break;
4183
4184
4185 /* Match any character except possibly a newline or a null. */
4186 case anychar:
4187 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4188
4189 PREFETCH ();
4190
4191 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4192 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4193 goto fail;
4194
4195 SET_REGS_MATCHED ();
4196 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4197 d++;
4198 break;
4199
4200
4201 case charset:
4202 case charset_not:
4203 {
4204 register unsigned char c;
4205 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4206
4207 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4208
4209 PREFETCH ();
4210 c = TRANSLATE (*d); /* The character to match. */
4211
4212 /* Cast to `unsigned' instead of `unsigned char' in case the
4213 bit list is a full 32 bytes long. */
4214 if (c < (unsigned) (*p * BYTEWIDTH)
4215 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4216 not = !not;
4217
4218 p += 1 + *p;
4219
4220 if (!not) goto fail;
4221
4222 SET_REGS_MATCHED ();
4223 d++;
4224 break;
4225 }
4226
4227
4228 /* The beginning of a group is represented by start_memory.
4229 The arguments are the register number in the next byte, and the
4230 number of groups inner to this one in the next. The text
4231 matched within the group is recorded (in the internal
4232 registers data structure) under the register number. */
4233 case start_memory:
4234 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4235
4236 /* Find out if this group can match the empty string. */
4237 p1 = p; /* To send to group_match_null_string_p. */
4238
4239 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4240 REG_MATCH_NULL_STRING_P (reg_info[*p])
4241 = group_match_null_string_p (&p1, pend, reg_info);
4242
4243 /* Save the position in the string where we were the last time
4244 we were at this open-group operator in case the group is
4245 operated upon by a repetition operator, e.g., with `(a*)*b'
4246 against `ab'; then we want to ignore where we are now in
4247 the string in case this attempt to match fails. */
4248 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4249 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4250 : regstart[*p];
4251 DEBUG_PRINT2 (" old_regstart: %d\n",
4252 POINTER_TO_OFFSET (old_regstart[*p]));
4253
4254 regstart[*p] = d;
4255 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4256
4257 IS_ACTIVE (reg_info[*p]) = 1;
4258 MATCHED_SOMETHING (reg_info[*p]) = 0;
4259
4260 /* Clear this whenever we change the register activity status. */
4261 set_regs_matched_done = 0;
4262
4263 /* This is the new highest active register. */
4264 highest_active_reg = *p;
4265
4266 /* If nothing was active before, this is the new lowest active
4267 register. */
4268 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4269 lowest_active_reg = *p;
4270
4271 /* Move past the register number and inner group count. */
4272 p += 2;
4273 just_past_start_mem = p;
4274
4275 break;
4276
4277
4278 /* The stop_memory opcode represents the end of a group. Its
4279 arguments are the same as start_memory's: the register
4280 number, and the number of inner groups. */
4281 case stop_memory:
4282 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4283
4284 /* We need to save the string position the last time we were at
4285 this close-group operator in case the group is operated
4286 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4287 against `aba'; then we want to ignore where we are now in
4288 the string in case this attempt to match fails. */
4289 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4290 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4291 : regend[*p];
4292 DEBUG_PRINT2 (" old_regend: %d\n",
4293 POINTER_TO_OFFSET (old_regend[*p]));
4294
4295 regend[*p] = d;
4296 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4297
4298 /* This register isn't active anymore. */
4299 IS_ACTIVE (reg_info[*p]) = 0;
4300
4301 /* Clear this whenever we change the register activity status. */
4302 set_regs_matched_done = 0;
4303
4304 /* If this was the only register active, nothing is active
4305 anymore. */
4306 if (lowest_active_reg == highest_active_reg)
4307 {
4308 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4309 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4310 }
4311 else
4312 { /* We must scan for the new highest active register, since
4313 it isn't necessarily one less than now: consider
4314 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4315 new highest active register is 1. */
4316 unsigned char r = *p - 1;
4317 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4318 r--;
4319
4320 /* If we end up at register zero, that means that we saved
4321 the registers as the result of an `on_failure_jump', not
4322 a `start_memory', and we jumped to past the innermost
4323 `stop_memory'. For example, in ((.)*) we save
4324 registers 1 and 2 as a result of the *, but when we pop
4325 back to the second ), we are at the stop_memory 1.
4326 Thus, nothing is active. */
4327 if (r == 0)
4328 {
4329 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4330 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4331 }
4332 else
4333 highest_active_reg = r;
4334 }
4335
4336 /* If just failed to match something this time around with a
4337 group that's operated on by a repetition operator, try to
4338 force exit from the ``loop'', and restore the register
4339 information for this group that we had before trying this
4340 last match. */
4341 if ((!MATCHED_SOMETHING (reg_info[*p])
4342 || just_past_start_mem == p - 1)
4343 && (p + 2) < pend)
4344 {
4345 boolean is_a_jump_n = false;
4346
4347 p1 = p + 2;
4348 mcnt = 0;
4349 switch ((re_opcode_t) *p1++)
4350 {
4351 case jump_n:
4352 is_a_jump_n = true;
4353 case pop_failure_jump:
4354 case maybe_pop_jump:
4355 case jump:
4356 case dummy_failure_jump:
4357 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4358 if (is_a_jump_n)
4359 p1 += 2;
4360 break;
4361
4362 default:
4363 /* do nothing */ ;
4364 }
4365 p1 += mcnt;
4366
4367 /* If the next operation is a jump backwards in the pattern
4368 to an on_failure_jump right before the start_memory
4369 corresponding to this stop_memory, exit from the loop
4370 by forcing a failure after pushing on the stack the
4371 on_failure_jump's jump in the pattern, and d. */
4372 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4373 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4374 {
4375 /* If this group ever matched anything, then restore
4376 what its registers were before trying this last
4377 failed match, e.g., with `(a*)*b' against `ab' for
4378 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4379 against `aba' for regend[3].
4380
4381 Also restore the registers for inner groups for,
4382 e.g., `((a*)(b*))*' against `aba' (register 3 would
4383 otherwise get trashed). */
4384
4385 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4386 {
4387 unsigned r;
4388
4389 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4390
4391 /* Restore this and inner groups' (if any) registers. */
4392 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4393 r++)
4394 {
4395 regstart[r] = old_regstart[r];
4396
4397 /* xx why this test? */
4398 if (old_regend[r] >= regstart[r])
4399 regend[r] = old_regend[r];
4400 }
4401 }
4402 p1++;
4403 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4404 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4405
4406 goto fail;
4407 }
4408 }
4409
4410 /* Move past the register number and the inner group count. */
4411 p += 2;
4412 break;
4413
4414
4415 /* \<digit> has been turned into a `duplicate' command which is
4416 followed by the numeric value of <digit> as the register number. */
4417 case duplicate:
4418 {
4419 register const char *d2, *dend2;
4420 int regno = *p++; /* Get which register to match against. */
4421 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4422
4423 /* Can't back reference a group which we've never matched. */
4424 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4425 goto fail;
4426
4427 /* Where in input to try to start matching. */
4428 d2 = regstart[regno];
4429
4430 /* Where to stop matching; if both the place to start and
4431 the place to stop matching are in the same string, then
4432 set to the place to stop, otherwise, for now have to use
4433 the end of the first string. */
4434
4435 dend2 = ((FIRST_STRING_P (regstart[regno])
4436 == FIRST_STRING_P (regend[regno]))
4437 ? regend[regno] : end_match_1);
4438 for (;;)
4439 {
4440 /* If necessary, advance to next segment in register
4441 contents. */
4442 while (d2 == dend2)
4443 {
4444 if (dend2 == end_match_2) break;
4445 if (dend2 == regend[regno]) break;
4446
4447 /* End of string1 => advance to string2. */
4448 d2 = string2;
4449 dend2 = regend[regno];
4450 }
4451 /* At end of register contents => success */
4452 if (d2 == dend2) break;
4453
4454 /* If necessary, advance to next segment in data. */
4455 PREFETCH ();
4456
4457 /* How many characters left in this segment to match. */
4458 mcnt = dend - d;
4459
4460 /* Want how many consecutive characters we can match in
4461 one shot, so, if necessary, adjust the count. */
4462 if (mcnt > dend2 - d2)
4463 mcnt = dend2 - d2;
4464
4465 /* Compare that many; failure if mismatch, else move
4466 past them. */
4467 if (translate
4468 ? bcmp_translate (d, d2, mcnt, translate)
4469 : memcmp (d, d2, mcnt))
4470 goto fail;
4471 d += mcnt, d2 += mcnt;
4472
4473 /* Do this because we've match some characters. */
4474 SET_REGS_MATCHED ();
4475 }
4476 }
4477 break;
4478
4479
4480 /* begline matches the empty string at the beginning of the string
4481 (unless `not_bol' is set in `bufp'), and, if
4482 `newline_anchor' is set, after newlines. */
4483 case begline:
4484 DEBUG_PRINT1 ("EXECUTING begline.\n");
4485
4486 if (AT_STRINGS_BEG (d))
4487 {
4488 if (!bufp->not_bol) break;
4489 }
4490 else if (d[-1] == '\n' && bufp->newline_anchor)
4491 {
4492 break;
4493 }
4494 /* In all other cases, we fail. */
4495 goto fail;
4496
4497
4498 /* endline is the dual of begline. */
4499 case endline:
4500 DEBUG_PRINT1 ("EXECUTING endline.\n");
4501
4502 if (AT_STRINGS_END (d))
4503 {
4504 if (!bufp->not_eol) break;
4505 }
4506
4507 /* We have to ``prefetch'' the next character. */
4508 else if ((d == end1 ? *string2 : *d) == '\n'
4509 && bufp->newline_anchor)
4510 {
4511 break;
4512 }
4513 goto fail;
4514
4515
4516 /* Match at the very beginning of the data. */
4517 case begbuf:
4518 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4519 if (AT_STRINGS_BEG (d))
4520 break;
4521 goto fail;
4522
4523
4524 /* Match at the very end of the data. */
4525 case endbuf:
4526 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4527 if (AT_STRINGS_END (d))
4528 break;
4529 goto fail;
4530
4531
4532 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4533 pushes NULL as the value for the string on the stack. Then
4534 `pop_failure_point' will keep the current value for the
4535 string, instead of restoring it. To see why, consider
4536 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4537 then the . fails against the \n. But the next thing we want
4538 to do is match the \n against the \n; if we restored the
4539 string value, we would be back at the foo.
4540
4541 Because this is used only in specific cases, we don't need to
4542 check all the things that `on_failure_jump' does, to make
4543 sure the right things get saved on the stack. Hence we don't
4544 share its code. The only reason to push anything on the
4545 stack at all is that otherwise we would have to change
4546 `anychar's code to do something besides goto fail in this
4547 case; that seems worse than this. */
4548 case on_failure_keep_string_jump:
4549 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4550
4551 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4552 #ifdef _LIBC
4553 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4554 #else
4555 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4556 #endif
4557
4558 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4559 break;
4560
4561
4562 /* Uses of on_failure_jump:
4563
4564 Each alternative starts with an on_failure_jump that points
4565 to the beginning of the next alternative. Each alternative
4566 except the last ends with a jump that in effect jumps past
4567 the rest of the alternatives. (They really jump to the
4568 ending jump of the following alternative, because tensioning
4569 these jumps is a hassle.)
4570
4571 Repeats start with an on_failure_jump that points past both
4572 the repetition text and either the following jump or
4573 pop_failure_jump back to this on_failure_jump. */
4574 case on_failure_jump:
4575 on_failure:
4576 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4577
4578 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4579 #ifdef _LIBC
4580 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4581 #else
4582 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4583 #endif
4584
4585 /* If this on_failure_jump comes right before a group (i.e.,
4586 the original * applied to a group), save the information
4587 for that group and all inner ones, so that if we fail back
4588 to this point, the group's information will be correct.
4589 For example, in \(a*\)*\1, we need the preceding group,
4590 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4591
4592 /* We can't use `p' to check ahead because we push
4593 a failure point to `p + mcnt' after we do this. */
4594 p1 = p;
4595
4596 /* We need to skip no_op's before we look for the
4597 start_memory in case this on_failure_jump is happening as
4598 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4599 against aba. */
4600 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4601 p1++;
4602
4603 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4604 {
4605 /* We have a new highest active register now. This will
4606 get reset at the start_memory we are about to get to,
4607 but we will have saved all the registers relevant to
4608 this repetition op, as described above. */
4609 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4610 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4611 lowest_active_reg = *(p1 + 1);
4612 }
4613
4614 DEBUG_PRINT1 (":\n");
4615 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4616 break;
4617
4618
4619 /* A smart repeat ends with `maybe_pop_jump'.
4620 We change it to either `pop_failure_jump' or `jump'. */
4621 case maybe_pop_jump:
4622 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4623 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4624 {
4625 register unsigned char *p2 = p;
4626
4627 /* Compare the beginning of the repeat with what in the
4628 pattern follows its end. If we can establish that there
4629 is nothing that they would both match, i.e., that we
4630 would have to backtrack because of (as in, e.g., `a*a')
4631 then we can change to pop_failure_jump, because we'll
4632 never have to backtrack.
4633
4634 This is not true in the case of alternatives: in
4635 `(a|ab)*' we do need to backtrack to the `ab' alternative
4636 (e.g., if the string was `ab'). But instead of trying to
4637 detect that here, the alternative has put on a dummy
4638 failure point which is what we will end up popping. */
4639
4640 /* Skip over open/close-group commands.
4641 If what follows this loop is a ...+ construct,
4642 look at what begins its body, since we will have to
4643 match at least one of that. */
4644 while (1)
4645 {
4646 if (p2 + 2 < pend
4647 && ((re_opcode_t) *p2 == stop_memory
4648 || (re_opcode_t) *p2 == start_memory))
4649 p2 += 3;
4650 else if (p2 + 6 < pend
4651 && (re_opcode_t) *p2 == dummy_failure_jump)
4652 p2 += 6;
4653 else
4654 break;
4655 }
4656
4657 p1 = p + mcnt;
4658 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4659 to the `maybe_finalize_jump' of this case. Examine what
4660 follows. */
4661
4662 /* If we're at the end of the pattern, we can change. */
4663 if (p2 == pend)
4664 {
4665 /* Consider what happens when matching ":\(.*\)"
4666 against ":/". I don't really understand this code
4667 yet. */
4668 p[-3] = (unsigned char) pop_failure_jump;
4669 DEBUG_PRINT1
4670 (" End of pattern: change to `pop_failure_jump'.\n");
4671 }
4672
4673 else if ((re_opcode_t) *p2 == exactn
4674 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4675 {
4676 register unsigned char c
4677 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4678
4679 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4680 {
4681 p[-3] = (unsigned char) pop_failure_jump;
4682 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4683 c, p1[5]);
4684 }
4685
4686 else if ((re_opcode_t) p1[3] == charset
4687 || (re_opcode_t) p1[3] == charset_not)
4688 {
4689 int not = (re_opcode_t) p1[3] == charset_not;
4690
4691 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4692 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4693 not = !not;
4694
4695 /* `not' is equal to 1 if c would match, which means
4696 that we can't change to pop_failure_jump. */
4697 if (!not)
4698 {
4699 p[-3] = (unsigned char) pop_failure_jump;
4700 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4701 }
4702 }
4703 }
4704 else if ((re_opcode_t) *p2 == charset)
4705 {
4706 #ifdef DEBUG
4707 register unsigned char c
4708 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4709 #endif
4710
4711 #if 0
4712 if ((re_opcode_t) p1[3] == exactn
4713 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4714 && (p2[2 + p1[5] / BYTEWIDTH]
4715 & (1 << (p1[5] % BYTEWIDTH)))))
4716 #else
4717 if ((re_opcode_t) p1[3] == exactn
4718 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4719 && (p2[2 + p1[4] / BYTEWIDTH]
4720 & (1 << (p1[4] % BYTEWIDTH)))))
4721 #endif
4722 {
4723 p[-3] = (unsigned char) pop_failure_jump;
4724 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4725 c, p1[5]);
4726 }
4727
4728 else if ((re_opcode_t) p1[3] == charset_not)
4729 {
4730 int idx;
4731 /* We win if the charset_not inside the loop
4732 lists every character listed in the charset after. */
4733 for (idx = 0; idx < (int) p2[1]; idx++)
4734 if (! (p2[2 + idx] == 0
4735 || (idx < (int) p1[4]
4736 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4737 break;
4738
4739 if (idx == p2[1])
4740 {
4741 p[-3] = (unsigned char) pop_failure_jump;
4742 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4743 }
4744 }
4745 else if ((re_opcode_t) p1[3] == charset)
4746 {
4747 int idx;
4748 /* We win if the charset inside the loop
4749 has no overlap with the one after the loop. */
4750 for (idx = 0;
4751 idx < (int) p2[1] && idx < (int) p1[4];
4752 idx++)
4753 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4754 break;
4755
4756 if (idx == p2[1] || idx == p1[4])
4757 {
4758 p[-3] = (unsigned char) pop_failure_jump;
4759 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4760 }
4761 }
4762 }
4763 }
4764 p -= 2; /* Point at relative address again. */
4765 if ((re_opcode_t) p[-1] != pop_failure_jump)
4766 {
4767 p[-1] = (unsigned char) jump;
4768 DEBUG_PRINT1 (" Match => jump.\n");
4769 goto unconditional_jump;
4770 }
4771 /* Note fall through. */
4772
4773
4774 /* The end of a simple repeat has a pop_failure_jump back to
4775 its matching on_failure_jump, where the latter will push a
4776 failure point. The pop_failure_jump takes off failure
4777 points put on by this pop_failure_jump's matching
4778 on_failure_jump; we got through the pattern to here from the
4779 matching on_failure_jump, so didn't fail. */
4780 case pop_failure_jump:
4781 {
4782 /* We need to pass separate storage for the lowest and
4783 highest registers, even though we don't care about the
4784 actual values. Otherwise, we will restore only one
4785 register from the stack, since lowest will == highest in
4786 `pop_failure_point'. */
4787 active_reg_t dummy_low_reg, dummy_high_reg;
4788 unsigned char *pdummy;
4789 const char *sdummy;
4790
4791 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4792 POP_FAILURE_POINT (sdummy, pdummy,
4793 dummy_low_reg, dummy_high_reg,
4794 reg_dummy, reg_dummy, reg_info_dummy);
4795 }
4796 /* Note fall through. */
4797
4798 unconditional_jump:
4799 #ifdef _LIBC
4800 DEBUG_PRINT2 ("\n%p: ", p);
4801 #else
4802 DEBUG_PRINT2 ("\n0x%x: ", p);
4803 #endif
4804 /* Note fall through. */
4805
4806 /* Unconditionally jump (without popping any failure points). */
4807 case jump:
4808 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4809 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4810 p += mcnt; /* Do the jump. */
4811 #ifdef _LIBC
4812 DEBUG_PRINT2 ("(to %p).\n", p);
4813 #else
4814 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4815 #endif
4816 break;
4817
4818
4819 /* We need this opcode so we can detect where alternatives end
4820 in `group_match_null_string_p' et al. */
4821 case jump_past_alt:
4822 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4823 goto unconditional_jump;
4824
4825
4826 /* Normally, the on_failure_jump pushes a failure point, which
4827 then gets popped at pop_failure_jump. We will end up at
4828 pop_failure_jump, also, and with a pattern of, say, `a+', we
4829 are skipping over the on_failure_jump, so we have to push
4830 something meaningless for pop_failure_jump to pop. */
4831 case dummy_failure_jump:
4832 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4833 /* It doesn't matter what we push for the string here. What
4834 the code at `fail' tests is the value for the pattern. */
4835 PUSH_FAILURE_POINT (NULL, NULL, -2);
4836 goto unconditional_jump;
4837
4838
4839 /* At the end of an alternative, we need to push a dummy failure
4840 point in case we are followed by a `pop_failure_jump', because
4841 we don't want the failure point for the alternative to be
4842 popped. For example, matching `(a|ab)*' against `aab'
4843 requires that we match the `ab' alternative. */
4844 case push_dummy_failure:
4845 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4846 /* See comments just above at `dummy_failure_jump' about the
4847 two zeroes. */
4848 PUSH_FAILURE_POINT (NULL, NULL, -2);
4849 break;
4850
4851 /* Have to succeed matching what follows at least n times.
4852 After that, handle like `on_failure_jump'. */
4853 case succeed_n:
4854 EXTRACT_NUMBER (mcnt, p + 2);
4855 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4856
4857 assert (mcnt >= 0);
4858 /* Originally, this is how many times we HAVE to succeed. */
4859 if (mcnt > 0)
4860 {
4861 mcnt--;
4862 p += 2;
4863 STORE_NUMBER_AND_INCR (p, mcnt);
4864 #ifdef _LIBC
4865 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4866 #else
4867 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4868 #endif
4869 }
4870 else if (mcnt == 0)
4871 {
4872 #ifdef _LIBC
4873 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4874 #else
4875 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4876 #endif
4877 p[2] = (unsigned char) no_op;
4878 p[3] = (unsigned char) no_op;
4879 goto on_failure;
4880 }
4881 break;
4882
4883 case jump_n:
4884 EXTRACT_NUMBER (mcnt, p + 2);
4885 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4886
4887 /* Originally, this is how many times we CAN jump. */
4888 if (mcnt)
4889 {
4890 mcnt--;
4891 STORE_NUMBER (p + 2, mcnt);
4892 #ifdef _LIBC
4893 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4894 #else
4895 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4896 #endif
4897 goto unconditional_jump;
4898 }
4899 /* If don't have to jump any more, skip over the rest of command. */
4900 else
4901 p += 4;
4902 break;
4903
4904 case set_number_at:
4905 {
4906 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4907
4908 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4909 p1 = p + mcnt;
4910 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4911 #ifdef _LIBC
4912 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4913 #else
4914 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4915 #endif
4916 STORE_NUMBER (p1, mcnt);
4917 break;
4918 }
4919
4920 #if 0
4921 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4922 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4923 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4924 macro and introducing temporary variables works around the bug. */
4925
4926 case wordbound:
4927 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4928 if (AT_WORD_BOUNDARY (d))
4929 break;
4930 goto fail;
4931
4932 case notwordbound:
4933 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4934 if (AT_WORD_BOUNDARY (d))
4935 goto fail;
4936 break;
4937 #else
4938 case wordbound:
4939 {
4940 boolean prevchar, thischar;
4941
4942 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4943 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4944 break;
4945
4946 prevchar = WORDCHAR_P (d - 1);
4947 thischar = WORDCHAR_P (d);
4948 if (prevchar != thischar)
4949 break;
4950 goto fail;
4951 }
4952
4953 case notwordbound:
4954 {
4955 boolean prevchar, thischar;
4956
4957 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4958 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4959 goto fail;
4960
4961 prevchar = WORDCHAR_P (d - 1);
4962 thischar = WORDCHAR_P (d);
4963 if (prevchar != thischar)
4964 goto fail;
4965 break;
4966 }
4967 #endif
4968
4969 case wordbeg:
4970 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4971 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4972 break;
4973 goto fail;
4974
4975 case wordend:
4976 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4977 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4978 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4979 break;
4980 goto fail;
4981
4982 #ifdef emacs
4983 case before_dot:
4984 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4985 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4986 goto fail;
4987 break;
4988
4989 case at_dot:
4990 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4991 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4992 goto fail;
4993 break;
4994
4995 case after_dot:
4996 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4997 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4998 goto fail;
4999 break;
5000
5001 case syntaxspec:
5002 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5003 mcnt = *p++;
5004 goto matchsyntax;
5005
5006 case wordchar:
5007 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5008 mcnt = (int) Sword;
5009 matchsyntax:
5010 PREFETCH ();
5011 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5012 d++;
5013 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5014 goto fail;
5015 SET_REGS_MATCHED ();
5016 break;
5017
5018 case notsyntaxspec:
5019 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5020 mcnt = *p++;
5021 goto matchnotsyntax;
5022
5023 case notwordchar:
5024 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5025 mcnt = (int) Sword;
5026 matchnotsyntax:
5027 PREFETCH ();
5028 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5029 d++;
5030 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5031 goto fail;
5032 SET_REGS_MATCHED ();
5033 break;
5034
5035 #else /* not emacs */
5036 case wordchar:
5037 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5038 PREFETCH ();
5039 if (!WORDCHAR_P (d))
5040 goto fail;
5041 SET_REGS_MATCHED ();
5042 d++;
5043 break;
5044
5045 case notwordchar:
5046 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5047 PREFETCH ();
5048 if (WORDCHAR_P (d))
5049 goto fail;
5050 SET_REGS_MATCHED ();
5051 d++;
5052 break;
5053 #endif /* not emacs */
5054
5055 default:
5056 abort ();
5057 }
5058 continue; /* Successfully executed one pattern command; keep going. */
5059
5060
5061 /* We goto here if a matching operation fails. */
5062 fail:
5063 if (!FAIL_STACK_EMPTY ())
5064 { /* A restart point is known. Restore to that state. */
5065 DEBUG_PRINT1 ("\nFAIL:\n");
5066 POP_FAILURE_POINT (d, p,
5067 lowest_active_reg, highest_active_reg,
5068 regstart, regend, reg_info);
5069
5070 /* If this failure point is a dummy, try the next one. */
5071 if (!p)
5072 goto fail;
5073
5074 /* If we failed to the end of the pattern, don't examine *p. */
5075 assert (p <= pend);
5076 if (p < pend)
5077 {
5078 boolean is_a_jump_n = false;
5079
5080 /* If failed to a backwards jump that's part of a repetition
5081 loop, need to pop this failure point and use the next one. */
5082 switch ((re_opcode_t) *p)
5083 {
5084 case jump_n:
5085 is_a_jump_n = true;
5086 case maybe_pop_jump:
5087 case pop_failure_jump:
5088 case jump:
5089 p1 = p + 1;
5090 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5091 p1 += mcnt;
5092
5093 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5094 || (!is_a_jump_n
5095 && (re_opcode_t) *p1 == on_failure_jump))
5096 goto fail;
5097 break;
5098 default:
5099 /* do nothing */ ;
5100 }
5101 }
5102
5103 if (d >= string1 && d <= end1)
5104 dend = end_match_1;
5105 }
5106 else
5107 break; /* Matching at this starting point really fails. */
5108 } /* for (;;) */
5109
5110 if (best_regs_set)
5111 goto restore_best_regs;
5112
5113 FREE_VARIABLES ();
5114
5115 return -1; /* Failure to match. */
5116 } /* re_match_2 */
5117 \f
5118 /* Subroutine definitions for re_match_2. */
5119
5120
5121 /* We are passed P pointing to a register number after a start_memory.
5122
5123 Return true if the pattern up to the corresponding stop_memory can
5124 match the empty string, and false otherwise.
5125
5126 If we find the matching stop_memory, sets P to point to one past its number.
5127 Otherwise, sets P to an undefined byte less than or equal to END.
5128
5129 We don't handle duplicates properly (yet). */
5130
5131 static boolean
5132 group_match_null_string_p (p, end, reg_info)
5133 unsigned char **p, *end;
5134 register_info_type *reg_info;
5135 {
5136 int mcnt;
5137 /* Point to after the args to the start_memory. */
5138 unsigned char *p1 = *p + 2;
5139
5140 while (p1 < end)
5141 {
5142 /* Skip over opcodes that can match nothing, and return true or
5143 false, as appropriate, when we get to one that can't, or to the
5144 matching stop_memory. */
5145
5146 switch ((re_opcode_t) *p1)
5147 {
5148 /* Could be either a loop or a series of alternatives. */
5149 case on_failure_jump:
5150 p1++;
5151 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5152
5153 /* If the next operation is not a jump backwards in the
5154 pattern. */
5155
5156 if (mcnt >= 0)
5157 {
5158 /* Go through the on_failure_jumps of the alternatives,
5159 seeing if any of the alternatives cannot match nothing.
5160 The last alternative starts with only a jump,
5161 whereas the rest start with on_failure_jump and end
5162 with a jump, e.g., here is the pattern for `a|b|c':
5163
5164 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5165 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5166 /exactn/1/c
5167
5168 So, we have to first go through the first (n-1)
5169 alternatives and then deal with the last one separately. */
5170
5171
5172 /* Deal with the first (n-1) alternatives, which start
5173 with an on_failure_jump (see above) that jumps to right
5174 past a jump_past_alt. */
5175
5176 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5177 {
5178 /* `mcnt' holds how many bytes long the alternative
5179 is, including the ending `jump_past_alt' and
5180 its number. */
5181
5182 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5183 reg_info))
5184 return false;
5185
5186 /* Move to right after this alternative, including the
5187 jump_past_alt. */
5188 p1 += mcnt;
5189
5190 /* Break if it's the beginning of an n-th alternative
5191 that doesn't begin with an on_failure_jump. */
5192 if ((re_opcode_t) *p1 != on_failure_jump)
5193 break;
5194
5195 /* Still have to check that it's not an n-th
5196 alternative that starts with an on_failure_jump. */
5197 p1++;
5198 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5199 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5200 {
5201 /* Get to the beginning of the n-th alternative. */
5202 p1 -= 3;
5203 break;
5204 }
5205 }
5206
5207 /* Deal with the last alternative: go back and get number
5208 of the `jump_past_alt' just before it. `mcnt' contains
5209 the length of the alternative. */
5210 EXTRACT_NUMBER (mcnt, p1 - 2);
5211
5212 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5213 return false;
5214
5215 p1 += mcnt; /* Get past the n-th alternative. */
5216 } /* if mcnt > 0 */
5217 break;
5218
5219
5220 case stop_memory:
5221 assert (p1[1] == **p);
5222 *p = p1 + 2;
5223 return true;
5224
5225
5226 default:
5227 if (!common_op_match_null_string_p (&p1, end, reg_info))
5228 return false;
5229 }
5230 } /* while p1 < end */
5231
5232 return false;
5233 } /* group_match_null_string_p */
5234
5235
5236 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5237 It expects P to be the first byte of a single alternative and END one
5238 byte past the last. The alternative can contain groups. */
5239
5240 static boolean
5241 alt_match_null_string_p (p, end, reg_info)
5242 unsigned char *p, *end;
5243 register_info_type *reg_info;
5244 {
5245 int mcnt;
5246 unsigned char *p1 = p;
5247
5248 while (p1 < end)
5249 {
5250 /* Skip over opcodes that can match nothing, and break when we get
5251 to one that can't. */
5252
5253 switch ((re_opcode_t) *p1)
5254 {
5255 /* It's a loop. */
5256 case on_failure_jump:
5257 p1++;
5258 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5259 p1 += mcnt;
5260 break;
5261
5262 default:
5263 if (!common_op_match_null_string_p (&p1, end, reg_info))
5264 return false;
5265 }
5266 } /* while p1 < end */
5267
5268 return true;
5269 } /* alt_match_null_string_p */
5270
5271
5272 /* Deals with the ops common to group_match_null_string_p and
5273 alt_match_null_string_p.
5274
5275 Sets P to one after the op and its arguments, if any. */
5276
5277 static boolean
5278 common_op_match_null_string_p (p, end, reg_info)
5279 unsigned char **p, *end;
5280 register_info_type *reg_info;
5281 {
5282 int mcnt;
5283 boolean ret;
5284 int reg_no;
5285 unsigned char *p1 = *p;
5286
5287 switch ((re_opcode_t) *p1++)
5288 {
5289 case no_op:
5290 case begline:
5291 case endline:
5292 case begbuf:
5293 case endbuf:
5294 case wordbeg:
5295 case wordend:
5296 case wordbound:
5297 case notwordbound:
5298 #ifdef emacs
5299 case before_dot:
5300 case at_dot:
5301 case after_dot:
5302 #endif
5303 break;
5304
5305 case start_memory:
5306 reg_no = *p1;
5307 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5308 ret = group_match_null_string_p (&p1, end, reg_info);
5309
5310 /* Have to set this here in case we're checking a group which
5311 contains a group and a back reference to it. */
5312
5313 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5314 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5315
5316 if (!ret)
5317 return false;
5318 break;
5319
5320 /* If this is an optimized succeed_n for zero times, make the jump. */
5321 case jump:
5322 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5323 if (mcnt >= 0)
5324 p1 += mcnt;
5325 else
5326 return false;
5327 break;
5328
5329 case succeed_n:
5330 /* Get to the number of times to succeed. */
5331 p1 += 2;
5332 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5333
5334 if (mcnt == 0)
5335 {
5336 p1 -= 4;
5337 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5338 p1 += mcnt;
5339 }
5340 else
5341 return false;
5342 break;
5343
5344 case duplicate:
5345 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5346 return false;
5347 break;
5348
5349 case set_number_at:
5350 p1 += 4;
5351
5352 default:
5353 /* All other opcodes mean we cannot match the empty string. */
5354 return false;
5355 }
5356
5357 *p = p1;
5358 return true;
5359 } /* common_op_match_null_string_p */
5360
5361
5362 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5363 bytes; nonzero otherwise. */
5364
5365 static int
5366 bcmp_translate (s1, s2, len, translate)
5367 const char *s1, *s2;
5368 register int len;
5369 RE_TRANSLATE_TYPE translate;
5370 {
5371 register const unsigned char *p1 = (const unsigned char *) s1;
5372 register const unsigned char *p2 = (const unsigned char *) s2;
5373 while (len)
5374 {
5375 if (translate[*p1++] != translate[*p2++]) return 1;
5376 len--;
5377 }
5378 return 0;
5379 }
5380 \f
5381 /* Entry points for GNU code. */
5382
5383 /* re_compile_pattern is the GNU regular expression compiler: it
5384 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5385 Returns 0 if the pattern was valid, otherwise an error string.
5386
5387 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5388 are set in BUFP on entry.
5389
5390 We call regex_compile to do the actual compilation. */
5391
5392 const char *
5393 re_compile_pattern (pattern, length, bufp)
5394 const char *pattern;
5395 size_t length;
5396 struct re_pattern_buffer *bufp;
5397 {
5398 reg_errcode_t ret;
5399
5400 /* GNU code is written to assume at least RE_NREGS registers will be set
5401 (and at least one extra will be -1). */
5402 bufp->regs_allocated = REGS_UNALLOCATED;
5403
5404 /* And GNU code determines whether or not to get register information
5405 by passing null for the REGS argument to re_match, etc., not by
5406 setting no_sub. */
5407 bufp->no_sub = 0;
5408
5409 /* Match anchors at newline. */
5410 bufp->newline_anchor = 1;
5411
5412 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5413
5414 if (!ret)
5415 return NULL;
5416 return gettext (re_error_msgid[(int) ret]);
5417 }
5418 \f
5419 /* Entry points compatible with 4.2 BSD regex library. We don't define
5420 them unless specifically requested. */
5421
5422 #if defined _REGEX_RE_COMP || defined _LIBC
5423
5424 /* BSD has one and only one pattern buffer. */
5425 static struct re_pattern_buffer re_comp_buf;
5426
5427 char *
5428 #ifdef _LIBC
5429 /* Make these definitions weak in libc, so POSIX programs can redefine
5430 these names if they don't use our functions, and still use
5431 regcomp/regexec below without link errors. */
5432 weak_function
5433 #endif
5434 re_comp (s)
5435 const char *s;
5436 {
5437 reg_errcode_t ret;
5438
5439 if (!s)
5440 {
5441 if (!re_comp_buf.buffer)
5442 return gettext ("No previous regular expression");
5443 return 0;
5444 }
5445
5446 if (!re_comp_buf.buffer)
5447 {
5448 re_comp_buf.buffer = (unsigned char *) malloc (200);
5449 if (re_comp_buf.buffer == NULL)
5450 return gettext (re_error_msgid[(int) REG_ESPACE]);
5451 re_comp_buf.allocated = 200;
5452
5453 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5454 if (re_comp_buf.fastmap == NULL)
5455 return gettext (re_error_msgid[(int) REG_ESPACE]);
5456 }
5457
5458 /* Since `re_exec' always passes NULL for the `regs' argument, we
5459 don't need to initialize the pattern buffer fields which affect it. */
5460
5461 /* Match anchors at newlines. */
5462 re_comp_buf.newline_anchor = 1;
5463
5464 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5465
5466 if (!ret)
5467 return NULL;
5468
5469 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5470 return (char *) gettext (re_error_msgid[(int) ret]);
5471 }
5472
5473
5474 int
5475 #ifdef _LIBC
5476 weak_function
5477 #endif
5478 re_exec (s)
5479 const char *s;
5480 {
5481 const int len = strlen (s);
5482 return
5483 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5484 }
5485
5486 #endif /* _REGEX_RE_COMP */
5487 \f
5488 /* POSIX.2 functions. Don't define these for Emacs. */
5489
5490 #ifndef emacs
5491
5492 /* regcomp takes a regular expression as a string and compiles it.
5493
5494 PREG is a regex_t *. We do not expect any fields to be initialized,
5495 since POSIX says we shouldn't. Thus, we set
5496
5497 `buffer' to the compiled pattern;
5498 `used' to the length of the compiled pattern;
5499 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5500 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5501 RE_SYNTAX_POSIX_BASIC;
5502 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5503 `fastmap' and `fastmap_accurate' to zero;
5504 `re_nsub' to the number of subexpressions in PATTERN.
5505
5506 PATTERN is the address of the pattern string.
5507
5508 CFLAGS is a series of bits which affect compilation.
5509
5510 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5511 use POSIX basic syntax.
5512
5513 If REG_NEWLINE is set, then . and [^...] don't match newline.
5514 Also, regexec will try a match beginning after every newline.
5515
5516 If REG_ICASE is set, then we considers upper- and lowercase
5517 versions of letters to be equivalent when matching.
5518
5519 If REG_NOSUB is set, then when PREG is passed to regexec, that
5520 routine will report only success or failure, and nothing about the
5521 registers.
5522
5523 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5524 the return codes and their meanings.) */
5525
5526 int
5527 regcomp (preg, pattern, cflags)
5528 regex_t *preg;
5529 const char *pattern;
5530 int cflags;
5531 {
5532 reg_errcode_t ret;
5533 reg_syntax_t syntax
5534 = (cflags & REG_EXTENDED) ?
5535 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5536
5537 /* regex_compile will allocate the space for the compiled pattern. */
5538 preg->buffer = 0;
5539 preg->allocated = 0;
5540 preg->used = 0;
5541
5542 /* Don't bother to use a fastmap when searching. This simplifies the
5543 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5544 characters after newlines into the fastmap. This way, we just try
5545 every character. */
5546 preg->fastmap = 0;
5547
5548 if (cflags & REG_ICASE)
5549 {
5550 unsigned i;
5551
5552 preg->translate
5553 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5554 * sizeof (*(RE_TRANSLATE_TYPE)0));
5555 if (preg->translate == NULL)
5556 return (int) REG_ESPACE;
5557
5558 /* Map uppercase characters to corresponding lowercase ones. */
5559 for (i = 0; i < CHAR_SET_SIZE; i++)
5560 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5561 }
5562 else
5563 preg->translate = NULL;
5564
5565 /* If REG_NEWLINE is set, newlines are treated differently. */
5566 if (cflags & REG_NEWLINE)
5567 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5568 syntax &= ~RE_DOT_NEWLINE;
5569 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5570 /* It also changes the matching behavior. */
5571 preg->newline_anchor = 1;
5572 }
5573 else
5574 preg->newline_anchor = 0;
5575
5576 preg->no_sub = !!(cflags & REG_NOSUB);
5577
5578 /* POSIX says a null character in the pattern terminates it, so we
5579 can use strlen here in compiling the pattern. */
5580 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5581
5582 /* POSIX doesn't distinguish between an unmatched open-group and an
5583 unmatched close-group: both are REG_EPAREN. */
5584 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5585
5586 return (int) ret;
5587 }
5588
5589
5590 /* regexec searches for a given pattern, specified by PREG, in the
5591 string STRING.
5592
5593 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5594 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5595 least NMATCH elements, and we set them to the offsets of the
5596 corresponding matched substrings.
5597
5598 EFLAGS specifies `execution flags' which affect matching: if
5599 REG_NOTBOL is set, then ^ does not match at the beginning of the
5600 string; if REG_NOTEOL is set, then $ does not match at the end.
5601
5602 We return 0 if we find a match and REG_NOMATCH if not. */
5603
5604 int
5605 regexec (preg, string, nmatch, pmatch, eflags)
5606 const regex_t *preg;
5607 const char *string;
5608 size_t nmatch;
5609 regmatch_t pmatch[];
5610 int eflags;
5611 {
5612 int ret;
5613 struct re_registers regs;
5614 regex_t private_preg;
5615 int len = strlen (string);
5616 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5617
5618 private_preg = *preg;
5619
5620 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5621 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5622
5623 /* The user has told us exactly how many registers to return
5624 information about, via `nmatch'. We have to pass that on to the
5625 matching routines. */
5626 private_preg.regs_allocated = REGS_FIXED;
5627
5628 if (want_reg_info)
5629 {
5630 regs.num_regs = nmatch;
5631 regs.start = TALLOC (nmatch, regoff_t);
5632 regs.end = TALLOC (nmatch, regoff_t);
5633 if (regs.start == NULL || regs.end == NULL)
5634 return (int) REG_NOMATCH;
5635 }
5636
5637 /* Perform the searching operation. */
5638 ret = re_search (&private_preg, string, len,
5639 /* start: */ 0, /* range: */ len,
5640 want_reg_info ? &regs : (struct re_registers *) 0);
5641
5642 /* Copy the register information to the POSIX structure. */
5643 if (want_reg_info)
5644 {
5645 if (ret >= 0)
5646 {
5647 unsigned r;
5648
5649 for (r = 0; r < nmatch; r++)
5650 {
5651 pmatch[r].rm_so = regs.start[r];
5652 pmatch[r].rm_eo = regs.end[r];
5653 }
5654 }
5655
5656 /* If we needed the temporary register info, free the space now. */
5657 free (regs.start);
5658 free (regs.end);
5659 }
5660
5661 /* We want zero return to mean success, unlike `re_search'. */
5662 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5663 }
5664
5665
5666 /* Returns a message corresponding to an error code, ERRCODE, returned
5667 from either regcomp or regexec. We don't use PREG here. */
5668
5669 size_t
5670 regerror (errcode, preg, errbuf, errbuf_size)
5671 int errcode;
5672 const regex_t *preg;
5673 char *errbuf;
5674 size_t errbuf_size;
5675 {
5676 const char *msg;
5677 size_t msg_size;
5678
5679 if (errcode < 0
5680 || errcode >= (int) (sizeof (re_error_msgid)
5681 / sizeof (re_error_msgid[0])))
5682 /* Only error codes returned by the rest of the code should be passed
5683 to this routine. If we are given anything else, or if other regex
5684 code generates an invalid error code, then the program has a bug.
5685 Dump core so we can fix it. */
5686 abort ();
5687
5688 msg = gettext (re_error_msgid[errcode]);
5689
5690 msg_size = strlen (msg) + 1; /* Includes the null. */
5691
5692 if (errbuf_size != 0)
5693 {
5694 if (msg_size > errbuf_size)
5695 {
5696 #if defined HAVE_MEMPCPY || defined _LIBC
5697 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5698 #else
5699 memcpy (errbuf, msg, errbuf_size - 1);
5700 errbuf[errbuf_size - 1] = 0;
5701 #endif
5702 }
5703 else
5704 memcpy (errbuf, msg, msg_size);
5705 }
5706
5707 return msg_size;
5708 }
5709
5710
5711 /* Free dynamically allocated space used by PREG. */
5712
5713 void
5714 regfree (preg)
5715 regex_t *preg;
5716 {
5717 if (preg->buffer != NULL)
5718 free (preg->buffer);
5719 preg->buffer = NULL;
5720
5721 preg->allocated = 0;
5722 preg->used = 0;
5723
5724 if (preg->fastmap != NULL)
5725 free (preg->fastmap);
5726 preg->fastmap = NULL;
5727 preg->fastmap_accurate = 0;
5728
5729 if (preg->translate != NULL)
5730 free (preg->translate);
5731 preg->translate = NULL;
5732 }
5733
5734 #endif /* not emacs */