]> git.ipfire.org Git - thirdparty/glibc.git/blob - posix/regex.c
Update.
[thirdparty/glibc.git] / posix / regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
33
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 # define PARAMS(args) args
37 # else
38 # define PARAMS(args) ()
39 # endif /* GCC. */
40 #endif /* Not PARAMS. */
41
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
48
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
50
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58
59 #ifdef _LIBC
60 /* We have to keep the namespace clean. */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
80
81 #define btowc __btowc
82 #endif
83
84 /* This is for other GNU distributions with internationalized messages. */
85 #if HAVE_LIBINTL_H || defined _LIBC
86 # include <libintl.h>
87 #else
88 # define gettext(msgid) (msgid)
89 #endif
90
91 #ifndef gettext_noop
92 /* This define is so xgettext can find the internationalizable
93 strings. */
94 # define gettext_noop(String) String
95 #endif
96
97 /* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
99 #ifdef emacs
100
101 # include "lisp.h"
102 # include "buffer.h"
103 # include "syntax.h"
104
105 #else /* not emacs */
106
107 /* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
110 # undef REL_ALLOC
111
112 # if defined STDC_HEADERS || defined _LIBC
113 # include <stdlib.h>
114 # else
115 char *malloc ();
116 char *realloc ();
117 # endif
118
119 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121 # ifdef INHIBIT_STRING_HEADER
122 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123 # if !defined bzero && !defined bcopy
124 # undef INHIBIT_STRING_HEADER
125 # endif
126 # endif
127 # endif
128
129 /* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132 # ifndef INHIBIT_STRING_HEADER
133 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
134 # include <string.h>
135 # ifndef bzero
136 # ifndef _LIBC
137 # define bzero(s, n) (memset (s, '\0', n), (s))
138 # else
139 # define bzero(s, n) __bzero (s, n)
140 # endif
141 # endif
142 # else
143 # include <strings.h>
144 # ifndef memcmp
145 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
146 # endif
147 # ifndef memcpy
148 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
149 # endif
150 # endif
151 # endif
152
153 /* Define the syntax stuff for \<, \>, etc. */
154
155 /* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
157 # ifndef Sword
158 # define Sword 1
159 # endif
160
161 # ifdef SWITCH_ENUM_BUG
162 # define SWITCH_ENUM_CAST(x) ((int)(x))
163 # else
164 # define SWITCH_ENUM_CAST(x) (x)
165 # endif
166
167 #endif /* not emacs */
168 \f
169 /* Get the interface, including the syntax bits. */
170 #include <regex.h>
171
172 /* isalpha etc. are used for the character classes. */
173 #include <ctype.h>
174
175 /* Jim Meyering writes:
176
177 "... Some ctype macros are valid only for character codes that
178 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
179 using /bin/cc or gcc but without giving an ansi option). So, all
180 ctype uses should be through macros like ISPRINT... If
181 STDC_HEADERS is defined, then autoconf has verified that the ctype
182 macros don't need to be guarded with references to isascii. ...
183 Defining isascii to 1 should let any compiler worth its salt
184 eliminate the && through constant folding."
185 Solaris defines some of these symbols so we must undefine them first. */
186
187 #undef ISASCII
188 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
189 # define ISASCII(c) 1
190 #else
191 # define ISASCII(c) isascii(c)
192 #endif
193
194 #ifdef isblank
195 # define ISBLANK(c) (ISASCII (c) && isblank (c))
196 #else
197 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
198 #endif
199 #ifdef isgraph
200 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
201 #else
202 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
203 #endif
204
205 #undef ISPRINT
206 #define ISPRINT(c) (ISASCII (c) && isprint (c))
207 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
208 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
209 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
210 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
211 #define ISLOWER(c) (ISASCII (c) && islower (c))
212 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
213 #define ISSPACE(c) (ISASCII (c) && isspace (c))
214 #define ISUPPER(c) (ISASCII (c) && isupper (c))
215 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
216
217 #ifdef _tolower
218 # define TOLOWER(c) _tolower(c)
219 #else
220 # define TOLOWER(c) tolower(c)
221 #endif
222
223 #ifndef NULL
224 # define NULL (void *)0
225 #endif
226
227 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
228 since ours (we hope) works properly with all combinations of
229 machines, compilers, `char' and `unsigned char' argument types.
230 (Per Bothner suggested the basic approach.) */
231 #undef SIGN_EXTEND_CHAR
232 #if __STDC__
233 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
234 #else /* not __STDC__ */
235 /* As in Harbison and Steele. */
236 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
237 #endif
238 \f
239 #ifndef emacs
240 /* How many characters in the character set. */
241 # define CHAR_SET_SIZE 256
242
243 # ifdef SYNTAX_TABLE
244
245 extern char *re_syntax_table;
246
247 # else /* not SYNTAX_TABLE */
248
249 static char re_syntax_table[CHAR_SET_SIZE];
250
251 static void
252 init_syntax_once ()
253 {
254 register int c;
255 static int done = 0;
256
257 if (done)
258 return;
259 bzero (re_syntax_table, sizeof re_syntax_table);
260
261 for (c = 0; c < CHAR_SET_SIZE; ++c)
262 if (ISALNUM (c))
263 re_syntax_table[c] = Sword;
264
265 re_syntax_table['_'] = Sword;
266
267 done = 1;
268 }
269
270 # endif /* not SYNTAX_TABLE */
271
272 # define SYNTAX(c) re_syntax_table[((c) & 0xFF)]
273
274 #endif /* emacs */
275 \f
276 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
277 use `alloca' instead of `malloc'. This is because using malloc in
278 re_search* or re_match* could cause memory leaks when C-g is used in
279 Emacs; also, malloc is slower and causes storage fragmentation. On
280 the other hand, malloc is more portable, and easier to debug.
281
282 Because we sometimes use alloca, some routines have to be macros,
283 not functions -- `alloca'-allocated space disappears at the end of the
284 function it is called in. */
285
286 #ifdef REGEX_MALLOC
287
288 # define REGEX_ALLOCATE malloc
289 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
290 # define REGEX_FREE free
291
292 #else /* not REGEX_MALLOC */
293
294 /* Emacs already defines alloca, sometimes. */
295 # ifndef alloca
296
297 /* Make alloca work the best possible way. */
298 # ifdef __GNUC__
299 # define alloca __builtin_alloca
300 # else /* not __GNUC__ */
301 # if HAVE_ALLOCA_H
302 # include <alloca.h>
303 # endif /* HAVE_ALLOCA_H */
304 # endif /* not __GNUC__ */
305
306 # endif /* not alloca */
307
308 # define REGEX_ALLOCATE alloca
309
310 /* Assumes a `char *destination' variable. */
311 # define REGEX_REALLOCATE(source, osize, nsize) \
312 (destination = (char *) alloca (nsize), \
313 memcpy (destination, source, osize))
314
315 /* No need to do anything to free, after alloca. */
316 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
317
318 #endif /* not REGEX_MALLOC */
319
320 /* Define how to allocate the failure stack. */
321
322 #if defined REL_ALLOC && defined REGEX_MALLOC
323
324 # define REGEX_ALLOCATE_STACK(size) \
325 r_alloc (&failure_stack_ptr, (size))
326 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
327 r_re_alloc (&failure_stack_ptr, (nsize))
328 # define REGEX_FREE_STACK(ptr) \
329 r_alloc_free (&failure_stack_ptr)
330
331 #else /* not using relocating allocator */
332
333 # ifdef REGEX_MALLOC
334
335 # define REGEX_ALLOCATE_STACK malloc
336 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
337 # define REGEX_FREE_STACK free
338
339 # else /* not REGEX_MALLOC */
340
341 # define REGEX_ALLOCATE_STACK alloca
342
343 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
344 REGEX_REALLOCATE (source, osize, nsize)
345 /* No need to explicitly free anything. */
346 # define REGEX_FREE_STACK(arg)
347
348 # endif /* not REGEX_MALLOC */
349 #endif /* not using relocating allocator */
350
351
352 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
353 `string1' or just past its end. This works if PTR is NULL, which is
354 a good thing. */
355 #define FIRST_STRING_P(ptr) \
356 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
357
358 /* (Re)Allocate N items of type T using malloc, or fail. */
359 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
360 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
361 #define RETALLOC_IF(addr, n, t) \
362 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
363 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
364
365 #define BYTEWIDTH 8 /* In bits. */
366
367 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
368
369 #undef MAX
370 #undef MIN
371 #define MAX(a, b) ((a) > (b) ? (a) : (b))
372 #define MIN(a, b) ((a) < (b) ? (a) : (b))
373
374 typedef char boolean;
375 #define false 0
376 #define true 1
377
378 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
379 const char *string1, int size1,
380 const char *string2, int size2,
381 int pos,
382 struct re_registers *regs,
383 int stop));
384 \f
385 /* These are the command codes that appear in compiled regular
386 expressions. Some opcodes are followed by argument bytes. A
387 command code can specify any interpretation whatsoever for its
388 arguments. Zero bytes may appear in the compiled regular expression. */
389
390 typedef enum
391 {
392 no_op = 0,
393
394 /* Succeed right away--no more backtracking. */
395 succeed,
396
397 /* Followed by one byte giving n, then by n literal bytes. */
398 exactn,
399
400 /* Matches any (more or less) character. */
401 anychar,
402
403 /* Matches any one char belonging to specified set. First
404 following byte is number of bitmap bytes. Then come bytes
405 for a bitmap saying which chars are in. Bits in each byte
406 are ordered low-bit-first. A character is in the set if its
407 bit is 1. A character too large to have a bit in the map is
408 automatically not in the set. */
409 charset,
410
411 /* Same parameters as charset, but match any character that is
412 not one of those specified. */
413 charset_not,
414
415 /* Start remembering the text that is matched, for storing in a
416 register. Followed by one byte with the register number, in
417 the range 0 to one less than the pattern buffer's re_nsub
418 field. Then followed by one byte with the number of groups
419 inner to this one. (This last has to be part of the
420 start_memory only because we need it in the on_failure_jump
421 of re_match_2.) */
422 start_memory,
423
424 /* Stop remembering the text that is matched and store it in a
425 memory register. Followed by one byte with the register
426 number, in the range 0 to one less than `re_nsub' in the
427 pattern buffer, and one byte with the number of inner groups,
428 just like `start_memory'. (We need the number of inner
429 groups here because we don't have any easy way of finding the
430 corresponding start_memory when we're at a stop_memory.) */
431 stop_memory,
432
433 /* Match a duplicate of something remembered. Followed by one
434 byte containing the register number. */
435 duplicate,
436
437 /* Fail unless at beginning of line. */
438 begline,
439
440 /* Fail unless at end of line. */
441 endline,
442
443 /* Succeeds if at beginning of buffer (if emacs) or at beginning
444 of string to be matched (if not). */
445 begbuf,
446
447 /* Analogously, for end of buffer/string. */
448 endbuf,
449
450 /* Followed by two byte relative address to which to jump. */
451 jump,
452
453 /* Same as jump, but marks the end of an alternative. */
454 jump_past_alt,
455
456 /* Followed by two-byte relative address of place to resume at
457 in case of failure. */
458 on_failure_jump,
459
460 /* Like on_failure_jump, but pushes a placeholder instead of the
461 current string position when executed. */
462 on_failure_keep_string_jump,
463
464 /* Throw away latest failure point and then jump to following
465 two-byte relative address. */
466 pop_failure_jump,
467
468 /* Change to pop_failure_jump if know won't have to backtrack to
469 match; otherwise change to jump. This is used to jump
470 back to the beginning of a repeat. If what follows this jump
471 clearly won't match what the repeat does, such that we can be
472 sure that there is no use backtracking out of repetitions
473 already matched, then we change it to a pop_failure_jump.
474 Followed by two-byte address. */
475 maybe_pop_jump,
476
477 /* Jump to following two-byte address, and push a dummy failure
478 point. This failure point will be thrown away if an attempt
479 is made to use it for a failure. A `+' construct makes this
480 before the first repeat. Also used as an intermediary kind
481 of jump when compiling an alternative. */
482 dummy_failure_jump,
483
484 /* Push a dummy failure point and continue. Used at the end of
485 alternatives. */
486 push_dummy_failure,
487
488 /* Followed by two-byte relative address and two-byte number n.
489 After matching N times, jump to the address upon failure. */
490 succeed_n,
491
492 /* Followed by two-byte relative address, and two-byte number n.
493 Jump to the address N times, then fail. */
494 jump_n,
495
496 /* Set the following two-byte relative address to the
497 subsequent two-byte number. The address *includes* the two
498 bytes of number. */
499 set_number_at,
500
501 wordchar, /* Matches any word-constituent character. */
502 notwordchar, /* Matches any char that is not a word-constituent. */
503
504 wordbeg, /* Succeeds if at word beginning. */
505 wordend, /* Succeeds if at word end. */
506
507 wordbound, /* Succeeds if at a word boundary. */
508 notwordbound /* Succeeds if not at a word boundary. */
509
510 #ifdef emacs
511 ,before_dot, /* Succeeds if before point. */
512 at_dot, /* Succeeds if at point. */
513 after_dot, /* Succeeds if after point. */
514
515 /* Matches any character whose syntax is specified. Followed by
516 a byte which contains a syntax code, e.g., Sword. */
517 syntaxspec,
518
519 /* Matches any character whose syntax is not that specified. */
520 notsyntaxspec
521 #endif /* emacs */
522 } re_opcode_t;
523 \f
524 /* Common operations on the compiled pattern. */
525
526 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
527
528 #define STORE_NUMBER(destination, number) \
529 do { \
530 (destination)[0] = (number) & 0377; \
531 (destination)[1] = (number) >> 8; \
532 } while (0)
533
534 /* Same as STORE_NUMBER, except increment DESTINATION to
535 the byte after where the number is stored. Therefore, DESTINATION
536 must be an lvalue. */
537
538 #define STORE_NUMBER_AND_INCR(destination, number) \
539 do { \
540 STORE_NUMBER (destination, number); \
541 (destination) += 2; \
542 } while (0)
543
544 /* Put into DESTINATION a number stored in two contiguous bytes starting
545 at SOURCE. */
546
547 #define EXTRACT_NUMBER(destination, source) \
548 do { \
549 (destination) = *(source) & 0377; \
550 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
551 } while (0)
552
553 #ifdef DEBUG
554 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
555 static void
556 extract_number (dest, source)
557 int *dest;
558 unsigned char *source;
559 {
560 int temp = SIGN_EXTEND_CHAR (*(source + 1));
561 *dest = *source & 0377;
562 *dest += temp << 8;
563 }
564
565 # ifndef EXTRACT_MACROS /* To debug the macros. */
566 # undef EXTRACT_NUMBER
567 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
568 # endif /* not EXTRACT_MACROS */
569
570 #endif /* DEBUG */
571
572 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
573 SOURCE must be an lvalue. */
574
575 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
576 do { \
577 EXTRACT_NUMBER (destination, source); \
578 (source) += 2; \
579 } while (0)
580
581 #ifdef DEBUG
582 static void extract_number_and_incr _RE_ARGS ((int *destination,
583 unsigned char **source));
584 static void
585 extract_number_and_incr (destination, source)
586 int *destination;
587 unsigned char **source;
588 {
589 extract_number (destination, *source);
590 *source += 2;
591 }
592
593 # ifndef EXTRACT_MACROS
594 # undef EXTRACT_NUMBER_AND_INCR
595 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
596 extract_number_and_incr (&dest, &src)
597 # endif /* not EXTRACT_MACROS */
598
599 #endif /* DEBUG */
600 \f
601 /* If DEBUG is defined, Regex prints many voluminous messages about what
602 it is doing (if the variable `debug' is nonzero). If linked with the
603 main program in `iregex.c', you can enter patterns and strings
604 interactively. And if linked with the main program in `main.c' and
605 the other test files, you can run the already-written tests. */
606
607 #ifdef DEBUG
608
609 /* We use standard I/O for debugging. */
610 # include <stdio.h>
611
612 /* It is useful to test things that ``must'' be true when debugging. */
613 # include <assert.h>
614
615 static int debug;
616
617 # define DEBUG_STATEMENT(e) e
618 # define DEBUG_PRINT1(x) if (debug) printf (x)
619 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
620 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
621 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
622 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
623 if (debug) print_partial_compiled_pattern (s, e)
624 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
625 if (debug) print_double_string (w, s1, sz1, s2, sz2)
626
627
628 /* Print the fastmap in human-readable form. */
629
630 void
631 print_fastmap (fastmap)
632 char *fastmap;
633 {
634 unsigned was_a_range = 0;
635 unsigned i = 0;
636
637 while (i < (1 << BYTEWIDTH))
638 {
639 if (fastmap[i++])
640 {
641 was_a_range = 0;
642 putchar (i - 1);
643 while (i < (1 << BYTEWIDTH) && fastmap[i])
644 {
645 was_a_range = 1;
646 i++;
647 }
648 if (was_a_range)
649 {
650 printf ("-");
651 putchar (i - 1);
652 }
653 }
654 }
655 putchar ('\n');
656 }
657
658
659 /* Print a compiled pattern string in human-readable form, starting at
660 the START pointer into it and ending just before the pointer END. */
661
662 void
663 print_partial_compiled_pattern (start, end)
664 unsigned char *start;
665 unsigned char *end;
666 {
667 int mcnt, mcnt2;
668 unsigned char *p1;
669 unsigned char *p = start;
670 unsigned char *pend = end;
671
672 if (start == NULL)
673 {
674 printf ("(null)\n");
675 return;
676 }
677
678 /* Loop over pattern commands. */
679 while (p < pend)
680 {
681 printf ("%d:\t", p - start);
682
683 switch ((re_opcode_t) *p++)
684 {
685 case no_op:
686 printf ("/no_op");
687 break;
688
689 case exactn:
690 mcnt = *p++;
691 printf ("/exactn/%d", mcnt);
692 do
693 {
694 putchar ('/');
695 putchar (*p++);
696 }
697 while (--mcnt);
698 break;
699
700 case start_memory:
701 mcnt = *p++;
702 printf ("/start_memory/%d/%d", mcnt, *p++);
703 break;
704
705 case stop_memory:
706 mcnt = *p++;
707 printf ("/stop_memory/%d/%d", mcnt, *p++);
708 break;
709
710 case duplicate:
711 printf ("/duplicate/%d", *p++);
712 break;
713
714 case anychar:
715 printf ("/anychar");
716 break;
717
718 case charset:
719 case charset_not:
720 {
721 register int c, last = -100;
722 register int in_range = 0;
723
724 printf ("/charset [%s",
725 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
726
727 assert (p + *p < pend);
728
729 for (c = 0; c < 256; c++)
730 if (c / 8 < *p
731 && (p[1 + (c/8)] & (1 << (c % 8))))
732 {
733 /* Are we starting a range? */
734 if (last + 1 == c && ! in_range)
735 {
736 putchar ('-');
737 in_range = 1;
738 }
739 /* Have we broken a range? */
740 else if (last + 1 != c && in_range)
741 {
742 putchar (last);
743 in_range = 0;
744 }
745
746 if (! in_range)
747 putchar (c);
748
749 last = c;
750 }
751
752 if (in_range)
753 putchar (last);
754
755 putchar (']');
756
757 p += 1 + *p;
758 }
759 break;
760
761 case begline:
762 printf ("/begline");
763 break;
764
765 case endline:
766 printf ("/endline");
767 break;
768
769 case on_failure_jump:
770 extract_number_and_incr (&mcnt, &p);
771 printf ("/on_failure_jump to %d", p + mcnt - start);
772 break;
773
774 case on_failure_keep_string_jump:
775 extract_number_and_incr (&mcnt, &p);
776 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
777 break;
778
779 case dummy_failure_jump:
780 extract_number_and_incr (&mcnt, &p);
781 printf ("/dummy_failure_jump to %d", p + mcnt - start);
782 break;
783
784 case push_dummy_failure:
785 printf ("/push_dummy_failure");
786 break;
787
788 case maybe_pop_jump:
789 extract_number_and_incr (&mcnt, &p);
790 printf ("/maybe_pop_jump to %d", p + mcnt - start);
791 break;
792
793 case pop_failure_jump:
794 extract_number_and_incr (&mcnt, &p);
795 printf ("/pop_failure_jump to %d", p + mcnt - start);
796 break;
797
798 case jump_past_alt:
799 extract_number_and_incr (&mcnt, &p);
800 printf ("/jump_past_alt to %d", p + mcnt - start);
801 break;
802
803 case jump:
804 extract_number_and_incr (&mcnt, &p);
805 printf ("/jump to %d", p + mcnt - start);
806 break;
807
808 case succeed_n:
809 extract_number_and_incr (&mcnt, &p);
810 p1 = p + mcnt;
811 extract_number_and_incr (&mcnt2, &p);
812 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
813 break;
814
815 case jump_n:
816 extract_number_and_incr (&mcnt, &p);
817 p1 = p + mcnt;
818 extract_number_and_incr (&mcnt2, &p);
819 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
820 break;
821
822 case set_number_at:
823 extract_number_and_incr (&mcnt, &p);
824 p1 = p + mcnt;
825 extract_number_and_incr (&mcnt2, &p);
826 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
827 break;
828
829 case wordbound:
830 printf ("/wordbound");
831 break;
832
833 case notwordbound:
834 printf ("/notwordbound");
835 break;
836
837 case wordbeg:
838 printf ("/wordbeg");
839 break;
840
841 case wordend:
842 printf ("/wordend");
843
844 # ifdef emacs
845 case before_dot:
846 printf ("/before_dot");
847 break;
848
849 case at_dot:
850 printf ("/at_dot");
851 break;
852
853 case after_dot:
854 printf ("/after_dot");
855 break;
856
857 case syntaxspec:
858 printf ("/syntaxspec");
859 mcnt = *p++;
860 printf ("/%d", mcnt);
861 break;
862
863 case notsyntaxspec:
864 printf ("/notsyntaxspec");
865 mcnt = *p++;
866 printf ("/%d", mcnt);
867 break;
868 # endif /* emacs */
869
870 case wordchar:
871 printf ("/wordchar");
872 break;
873
874 case notwordchar:
875 printf ("/notwordchar");
876 break;
877
878 case begbuf:
879 printf ("/begbuf");
880 break;
881
882 case endbuf:
883 printf ("/endbuf");
884 break;
885
886 default:
887 printf ("?%d", *(p-1));
888 }
889
890 putchar ('\n');
891 }
892
893 printf ("%d:\tend of pattern.\n", p - start);
894 }
895
896
897 void
898 print_compiled_pattern (bufp)
899 struct re_pattern_buffer *bufp;
900 {
901 unsigned char *buffer = bufp->buffer;
902
903 print_partial_compiled_pattern (buffer, buffer + bufp->used);
904 printf ("%ld bytes used/%ld bytes allocated.\n",
905 bufp->used, bufp->allocated);
906
907 if (bufp->fastmap_accurate && bufp->fastmap)
908 {
909 printf ("fastmap: ");
910 print_fastmap (bufp->fastmap);
911 }
912
913 printf ("re_nsub: %d\t", bufp->re_nsub);
914 printf ("regs_alloc: %d\t", bufp->regs_allocated);
915 printf ("can_be_null: %d\t", bufp->can_be_null);
916 printf ("newline_anchor: %d\n", bufp->newline_anchor);
917 printf ("no_sub: %d\t", bufp->no_sub);
918 printf ("not_bol: %d\t", bufp->not_bol);
919 printf ("not_eol: %d\t", bufp->not_eol);
920 printf ("syntax: %lx\n", bufp->syntax);
921 /* Perhaps we should print the translate table? */
922 }
923
924
925 void
926 print_double_string (where, string1, size1, string2, size2)
927 const char *where;
928 const char *string1;
929 const char *string2;
930 int size1;
931 int size2;
932 {
933 int this_char;
934
935 if (where == NULL)
936 printf ("(null)");
937 else
938 {
939 if (FIRST_STRING_P (where))
940 {
941 for (this_char = where - string1; this_char < size1; this_char++)
942 putchar (string1[this_char]);
943
944 where = string2;
945 }
946
947 for (this_char = where - string2; this_char < size2; this_char++)
948 putchar (string2[this_char]);
949 }
950 }
951
952 void
953 printchar (c)
954 int c;
955 {
956 putc (c, stderr);
957 }
958
959 #else /* not DEBUG */
960
961 # undef assert
962 # define assert(e)
963
964 # define DEBUG_STATEMENT(e)
965 # define DEBUG_PRINT1(x)
966 # define DEBUG_PRINT2(x1, x2)
967 # define DEBUG_PRINT3(x1, x2, x3)
968 # define DEBUG_PRINT4(x1, x2, x3, x4)
969 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
970 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
971
972 #endif /* not DEBUG */
973 \f
974 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
975 also be assigned to arbitrarily: each pattern buffer stores its own
976 syntax, so it can be changed between regex compilations. */
977 /* This has no initializer because initialized variables in Emacs
978 become read-only after dumping. */
979 reg_syntax_t re_syntax_options;
980
981
982 /* Specify the precise syntax of regexps for compilation. This provides
983 for compatibility for various utilities which historically have
984 different, incompatible syntaxes.
985
986 The argument SYNTAX is a bit mask comprised of the various bits
987 defined in regex.h. We return the old syntax. */
988
989 reg_syntax_t
990 re_set_syntax (syntax)
991 reg_syntax_t syntax;
992 {
993 reg_syntax_t ret = re_syntax_options;
994
995 re_syntax_options = syntax;
996 #ifdef DEBUG
997 if (syntax & RE_DEBUG)
998 debug = 1;
999 else if (debug) /* was on but now is not */
1000 debug = 0;
1001 #endif /* DEBUG */
1002 return ret;
1003 }
1004 #ifdef _LIBC
1005 weak_alias (__re_set_syntax, re_set_syntax)
1006 #endif
1007 \f
1008 /* This table gives an error message for each of the error codes listed
1009 in regex.h. Obviously the order here has to be same as there.
1010 POSIX doesn't require that we do anything for REG_NOERROR,
1011 but why not be nice? */
1012
1013 static const char re_error_msgid[] =
1014 {
1015 #define REG_NOERROR_IDX 0
1016 gettext_noop ("Success") /* REG_NOERROR */
1017 "\0"
1018 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1019 gettext_noop ("No match") /* REG_NOMATCH */
1020 "\0"
1021 #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1022 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1023 "\0"
1024 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1025 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1026 "\0"
1027 #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1028 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1029 "\0"
1030 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1031 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1032 "\0"
1033 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1034 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1035 "\0"
1036 #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1037 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1038 "\0"
1039 #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1040 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1041 "\0"
1042 #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1043 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1044 "\0"
1045 #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1046 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1047 "\0"
1048 #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1049 gettext_noop ("Invalid range end") /* REG_ERANGE */
1050 "\0"
1051 #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1052 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1053 "\0"
1054 #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1055 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1056 "\0"
1057 #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1058 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1059 "\0"
1060 #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1061 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1062 "\0"
1063 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1064 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1065 };
1066
1067 static const size_t re_error_msgid_idx[] =
1068 {
1069 REG_NOERROR_IDX,
1070 REG_NOMATCH_IDX,
1071 REG_BADPAT_IDX,
1072 REG_ECOLLATE_IDX,
1073 REG_ECTYPE_IDX,
1074 REG_EESCAPE_IDX,
1075 REG_ESUBREG_IDX,
1076 REG_EBRACK_IDX,
1077 REG_EPAREN_IDX,
1078 REG_EBRACE_IDX,
1079 REG_BADBR_IDX,
1080 REG_ERANGE_IDX,
1081 REG_ESPACE_IDX,
1082 REG_BADRPT_IDX,
1083 REG_EEND_IDX,
1084 REG_ESIZE_IDX,
1085 REG_ERPAREN_IDX
1086 };
1087 \f
1088 /* Avoiding alloca during matching, to placate r_alloc. */
1089
1090 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1091 searching and matching functions should not call alloca. On some
1092 systems, alloca is implemented in terms of malloc, and if we're
1093 using the relocating allocator routines, then malloc could cause a
1094 relocation, which might (if the strings being searched are in the
1095 ralloc heap) shift the data out from underneath the regexp
1096 routines.
1097
1098 Here's another reason to avoid allocation: Emacs
1099 processes input from X in a signal handler; processing X input may
1100 call malloc; if input arrives while a matching routine is calling
1101 malloc, then we're scrod. But Emacs can't just block input while
1102 calling matching routines; then we don't notice interrupts when
1103 they come in. So, Emacs blocks input around all regexp calls
1104 except the matching calls, which it leaves unprotected, in the
1105 faith that they will not malloc. */
1106
1107 /* Normally, this is fine. */
1108 #define MATCH_MAY_ALLOCATE
1109
1110 /* When using GNU C, we are not REALLY using the C alloca, no matter
1111 what config.h may say. So don't take precautions for it. */
1112 #ifdef __GNUC__
1113 # undef C_ALLOCA
1114 #endif
1115
1116 /* The match routines may not allocate if (1) they would do it with malloc
1117 and (2) it's not safe for them to use malloc.
1118 Note that if REL_ALLOC is defined, matching would not use malloc for the
1119 failure stack, but we would still use it for the register vectors;
1120 so REL_ALLOC should not affect this. */
1121 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1122 # undef MATCH_MAY_ALLOCATE
1123 #endif
1124
1125 \f
1126 /* Failure stack declarations and macros; both re_compile_fastmap and
1127 re_match_2 use a failure stack. These have to be macros because of
1128 REGEX_ALLOCATE_STACK. */
1129
1130
1131 /* Number of failure points for which to initially allocate space
1132 when matching. If this number is exceeded, we allocate more
1133 space, so it is not a hard limit. */
1134 #ifndef INIT_FAILURE_ALLOC
1135 # define INIT_FAILURE_ALLOC 5
1136 #endif
1137
1138 /* Roughly the maximum number of failure points on the stack. Would be
1139 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1140 This is a variable only so users of regex can assign to it; we never
1141 change it ourselves. */
1142
1143 #ifdef INT_IS_16BIT
1144
1145 # if defined MATCH_MAY_ALLOCATE
1146 /* 4400 was enough to cause a crash on Alpha OSF/1,
1147 whose default stack limit is 2mb. */
1148 long int re_max_failures = 4000;
1149 # else
1150 long int re_max_failures = 2000;
1151 # endif
1152
1153 union fail_stack_elt
1154 {
1155 unsigned char *pointer;
1156 long int integer;
1157 };
1158
1159 typedef union fail_stack_elt fail_stack_elt_t;
1160
1161 typedef struct
1162 {
1163 fail_stack_elt_t *stack;
1164 unsigned long int size;
1165 unsigned long int avail; /* Offset of next open position. */
1166 } fail_stack_type;
1167
1168 #else /* not INT_IS_16BIT */
1169
1170 # if defined MATCH_MAY_ALLOCATE
1171 /* 4400 was enough to cause a crash on Alpha OSF/1,
1172 whose default stack limit is 2mb. */
1173 int re_max_failures = 20000;
1174 # else
1175 int re_max_failures = 2000;
1176 # endif
1177
1178 union fail_stack_elt
1179 {
1180 unsigned char *pointer;
1181 int integer;
1182 };
1183
1184 typedef union fail_stack_elt fail_stack_elt_t;
1185
1186 typedef struct
1187 {
1188 fail_stack_elt_t *stack;
1189 unsigned size;
1190 unsigned avail; /* Offset of next open position. */
1191 } fail_stack_type;
1192
1193 #endif /* INT_IS_16BIT */
1194
1195 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1196 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1197 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1198
1199
1200 /* Define macros to initialize and free the failure stack.
1201 Do `return -2' if the alloc fails. */
1202
1203 #ifdef MATCH_MAY_ALLOCATE
1204 # define INIT_FAIL_STACK() \
1205 do { \
1206 fail_stack.stack = (fail_stack_elt_t *) \
1207 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1208 \
1209 if (fail_stack.stack == NULL) \
1210 return -2; \
1211 \
1212 fail_stack.size = INIT_FAILURE_ALLOC; \
1213 fail_stack.avail = 0; \
1214 } while (0)
1215
1216 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1217 #else
1218 # define INIT_FAIL_STACK() \
1219 do { \
1220 fail_stack.avail = 0; \
1221 } while (0)
1222
1223 # define RESET_FAIL_STACK()
1224 #endif
1225
1226
1227 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1228
1229 Return 1 if succeeds, and 0 if either ran out of memory
1230 allocating space for it or it was already too large.
1231
1232 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1233
1234 #define DOUBLE_FAIL_STACK(fail_stack) \
1235 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1236 ? 0 \
1237 : ((fail_stack).stack = (fail_stack_elt_t *) \
1238 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1239 (fail_stack).size * sizeof (fail_stack_elt_t), \
1240 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1241 \
1242 (fail_stack).stack == NULL \
1243 ? 0 \
1244 : ((fail_stack).size <<= 1, \
1245 1)))
1246
1247
1248 /* Push pointer POINTER on FAIL_STACK.
1249 Return 1 if was able to do so and 0 if ran out of memory allocating
1250 space to do so. */
1251 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1252 ((FAIL_STACK_FULL () \
1253 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1254 ? 0 \
1255 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1256 1))
1257
1258 /* Push a pointer value onto the failure stack.
1259 Assumes the variable `fail_stack'. Probably should only
1260 be called from within `PUSH_FAILURE_POINT'. */
1261 #define PUSH_FAILURE_POINTER(item) \
1262 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1263
1264 /* This pushes an integer-valued item onto the failure stack.
1265 Assumes the variable `fail_stack'. Probably should only
1266 be called from within `PUSH_FAILURE_POINT'. */
1267 #define PUSH_FAILURE_INT(item) \
1268 fail_stack.stack[fail_stack.avail++].integer = (item)
1269
1270 /* Push a fail_stack_elt_t value onto the failure stack.
1271 Assumes the variable `fail_stack'. Probably should only
1272 be called from within `PUSH_FAILURE_POINT'. */
1273 #define PUSH_FAILURE_ELT(item) \
1274 fail_stack.stack[fail_stack.avail++] = (item)
1275
1276 /* These three POP... operations complement the three PUSH... operations.
1277 All assume that `fail_stack' is nonempty. */
1278 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1279 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1280 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1281
1282 /* Used to omit pushing failure point id's when we're not debugging. */
1283 #ifdef DEBUG
1284 # define DEBUG_PUSH PUSH_FAILURE_INT
1285 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1286 #else
1287 # define DEBUG_PUSH(item)
1288 # define DEBUG_POP(item_addr)
1289 #endif
1290
1291
1292 /* Push the information about the state we will need
1293 if we ever fail back to it.
1294
1295 Requires variables fail_stack, regstart, regend, reg_info, and
1296 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1297 be declared.
1298
1299 Does `return FAILURE_CODE' if runs out of memory. */
1300
1301 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1302 do { \
1303 char *destination; \
1304 /* Must be int, so when we don't save any registers, the arithmetic \
1305 of 0 + -1 isn't done as unsigned. */ \
1306 /* Can't be int, since there is not a shred of a guarantee that int \
1307 is wide enough to hold a value of something to which pointer can \
1308 be assigned */ \
1309 active_reg_t this_reg; \
1310 \
1311 DEBUG_STATEMENT (failure_id++); \
1312 DEBUG_STATEMENT (nfailure_points_pushed++); \
1313 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1314 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1315 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1316 \
1317 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1318 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1319 \
1320 /* Ensure we have enough space allocated for what we will push. */ \
1321 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1322 { \
1323 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1324 return failure_code; \
1325 \
1326 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1327 (fail_stack).size); \
1328 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1329 } \
1330 \
1331 /* Push the info, starting with the registers. */ \
1332 DEBUG_PRINT1 ("\n"); \
1333 \
1334 if (1) \
1335 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1336 this_reg++) \
1337 { \
1338 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1339 DEBUG_STATEMENT (num_regs_pushed++); \
1340 \
1341 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1342 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1343 \
1344 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1345 PUSH_FAILURE_POINTER (regend[this_reg]); \
1346 \
1347 DEBUG_PRINT2 (" info: %p\n ", \
1348 reg_info[this_reg].word.pointer); \
1349 DEBUG_PRINT2 (" match_null=%d", \
1350 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1351 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1352 DEBUG_PRINT2 (" matched_something=%d", \
1353 MATCHED_SOMETHING (reg_info[this_reg])); \
1354 DEBUG_PRINT2 (" ever_matched=%d", \
1355 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1356 DEBUG_PRINT1 ("\n"); \
1357 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1358 } \
1359 \
1360 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1361 PUSH_FAILURE_INT (lowest_active_reg); \
1362 \
1363 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1364 PUSH_FAILURE_INT (highest_active_reg); \
1365 \
1366 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1367 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1368 PUSH_FAILURE_POINTER (pattern_place); \
1369 \
1370 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1371 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1372 size2); \
1373 DEBUG_PRINT1 ("'\n"); \
1374 PUSH_FAILURE_POINTER (string_place); \
1375 \
1376 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1377 DEBUG_PUSH (failure_id); \
1378 } while (0)
1379
1380 /* This is the number of items that are pushed and popped on the stack
1381 for each register. */
1382 #define NUM_REG_ITEMS 3
1383
1384 /* Individual items aside from the registers. */
1385 #ifdef DEBUG
1386 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1387 #else
1388 # define NUM_NONREG_ITEMS 4
1389 #endif
1390
1391 /* We push at most this many items on the stack. */
1392 /* We used to use (num_regs - 1), which is the number of registers
1393 this regexp will save; but that was changed to 5
1394 to avoid stack overflow for a regexp with lots of parens. */
1395 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1396
1397 /* We actually push this many items. */
1398 #define NUM_FAILURE_ITEMS \
1399 (((0 \
1400 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1401 * NUM_REG_ITEMS) \
1402 + NUM_NONREG_ITEMS)
1403
1404 /* How many items can still be added to the stack without overflowing it. */
1405 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1406
1407
1408 /* Pops what PUSH_FAIL_STACK pushes.
1409
1410 We restore into the parameters, all of which should be lvalues:
1411 STR -- the saved data position.
1412 PAT -- the saved pattern position.
1413 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1414 REGSTART, REGEND -- arrays of string positions.
1415 REG_INFO -- array of information about each subexpression.
1416
1417 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1418 `pend', `string1', `size1', `string2', and `size2'. */
1419
1420 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1421 { \
1422 DEBUG_STATEMENT (unsigned failure_id;) \
1423 active_reg_t this_reg; \
1424 const unsigned char *string_temp; \
1425 \
1426 assert (!FAIL_STACK_EMPTY ()); \
1427 \
1428 /* Remove failure points and point to how many regs pushed. */ \
1429 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1430 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1431 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1432 \
1433 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1434 \
1435 DEBUG_POP (&failure_id); \
1436 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1437 \
1438 /* If the saved string location is NULL, it came from an \
1439 on_failure_keep_string_jump opcode, and we want to throw away the \
1440 saved NULL, thus retaining our current position in the string. */ \
1441 string_temp = POP_FAILURE_POINTER (); \
1442 if (string_temp != NULL) \
1443 str = (const char *) string_temp; \
1444 \
1445 DEBUG_PRINT2 (" Popping string %p: `", str); \
1446 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1447 DEBUG_PRINT1 ("'\n"); \
1448 \
1449 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1450 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1451 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1452 \
1453 /* Restore register info. */ \
1454 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1455 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1456 \
1457 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1458 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1459 \
1460 if (1) \
1461 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1462 { \
1463 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1464 \
1465 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1466 DEBUG_PRINT2 (" info: %p\n", \
1467 reg_info[this_reg].word.pointer); \
1468 \
1469 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1470 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1471 \
1472 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1473 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1474 } \
1475 else \
1476 { \
1477 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1478 { \
1479 reg_info[this_reg].word.integer = 0; \
1480 regend[this_reg] = 0; \
1481 regstart[this_reg] = 0; \
1482 } \
1483 highest_active_reg = high_reg; \
1484 } \
1485 \
1486 set_regs_matched_done = 0; \
1487 DEBUG_STATEMENT (nfailure_points_popped++); \
1488 } /* POP_FAILURE_POINT */
1489
1490
1491 \f
1492 /* Structure for per-register (a.k.a. per-group) information.
1493 Other register information, such as the
1494 starting and ending positions (which are addresses), and the list of
1495 inner groups (which is a bits list) are maintained in separate
1496 variables.
1497
1498 We are making a (strictly speaking) nonportable assumption here: that
1499 the compiler will pack our bit fields into something that fits into
1500 the type of `word', i.e., is something that fits into one item on the
1501 failure stack. */
1502
1503
1504 /* Declarations and macros for re_match_2. */
1505
1506 typedef union
1507 {
1508 fail_stack_elt_t word;
1509 struct
1510 {
1511 /* This field is one if this group can match the empty string,
1512 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1513 #define MATCH_NULL_UNSET_VALUE 3
1514 unsigned match_null_string_p : 2;
1515 unsigned is_active : 1;
1516 unsigned matched_something : 1;
1517 unsigned ever_matched_something : 1;
1518 } bits;
1519 } register_info_type;
1520
1521 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1522 #define IS_ACTIVE(R) ((R).bits.is_active)
1523 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1524 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1525
1526
1527 /* Call this when have matched a real character; it sets `matched' flags
1528 for the subexpressions which we are currently inside. Also records
1529 that those subexprs have matched. */
1530 #define SET_REGS_MATCHED() \
1531 do \
1532 { \
1533 if (!set_regs_matched_done) \
1534 { \
1535 active_reg_t r; \
1536 set_regs_matched_done = 1; \
1537 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1538 { \
1539 MATCHED_SOMETHING (reg_info[r]) \
1540 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1541 = 1; \
1542 } \
1543 } \
1544 } \
1545 while (0)
1546
1547 /* Registers are set to a sentinel when they haven't yet matched. */
1548 static char reg_unset_dummy;
1549 #define REG_UNSET_VALUE (&reg_unset_dummy)
1550 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1551 \f
1552 /* Subroutine declarations and macros for regex_compile. */
1553
1554 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1555 reg_syntax_t syntax,
1556 struct re_pattern_buffer *bufp));
1557 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1558 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1559 int arg1, int arg2));
1560 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1561 int arg, unsigned char *end));
1562 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1563 int arg1, int arg2, unsigned char *end));
1564 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1565 reg_syntax_t syntax));
1566 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1567 reg_syntax_t syntax));
1568 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1569 const char *pend,
1570 char *translate,
1571 reg_syntax_t syntax,
1572 unsigned char *b));
1573
1574 /* Fetch the next character in the uncompiled pattern---translating it
1575 if necessary. Also cast from a signed character in the constant
1576 string passed to us by the user to an unsigned char that we can use
1577 as an array index (in, e.g., `translate'). */
1578 #ifndef PATFETCH
1579 # define PATFETCH(c) \
1580 do {if (p == pend) return REG_EEND; \
1581 c = (unsigned char) *p++; \
1582 if (translate) c = (unsigned char) translate[c]; \
1583 } while (0)
1584 #endif
1585
1586 /* Fetch the next character in the uncompiled pattern, with no
1587 translation. */
1588 #define PATFETCH_RAW(c) \
1589 do {if (p == pend) return REG_EEND; \
1590 c = (unsigned char) *p++; \
1591 } while (0)
1592
1593 /* Go backwards one character in the pattern. */
1594 #define PATUNFETCH p--
1595
1596
1597 /* If `translate' is non-null, return translate[D], else just D. We
1598 cast the subscript to translate because some data is declared as
1599 `char *', to avoid warnings when a string constant is passed. But
1600 when we use a character as a subscript we must make it unsigned. */
1601 #ifndef TRANSLATE
1602 # define TRANSLATE(d) \
1603 (translate ? (char) translate[(unsigned char) (d)] : (d))
1604 #endif
1605
1606
1607 /* Macros for outputting the compiled pattern into `buffer'. */
1608
1609 /* If the buffer isn't allocated when it comes in, use this. */
1610 #define INIT_BUF_SIZE 32
1611
1612 /* Make sure we have at least N more bytes of space in buffer. */
1613 #define GET_BUFFER_SPACE(n) \
1614 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1615 EXTEND_BUFFER ()
1616
1617 /* Make sure we have one more byte of buffer space and then add C to it. */
1618 #define BUF_PUSH(c) \
1619 do { \
1620 GET_BUFFER_SPACE (1); \
1621 *b++ = (unsigned char) (c); \
1622 } while (0)
1623
1624
1625 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1626 #define BUF_PUSH_2(c1, c2) \
1627 do { \
1628 GET_BUFFER_SPACE (2); \
1629 *b++ = (unsigned char) (c1); \
1630 *b++ = (unsigned char) (c2); \
1631 } while (0)
1632
1633
1634 /* As with BUF_PUSH_2, except for three bytes. */
1635 #define BUF_PUSH_3(c1, c2, c3) \
1636 do { \
1637 GET_BUFFER_SPACE (3); \
1638 *b++ = (unsigned char) (c1); \
1639 *b++ = (unsigned char) (c2); \
1640 *b++ = (unsigned char) (c3); \
1641 } while (0)
1642
1643
1644 /* Store a jump with opcode OP at LOC to location TO. We store a
1645 relative address offset by the three bytes the jump itself occupies. */
1646 #define STORE_JUMP(op, loc, to) \
1647 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1648
1649 /* Likewise, for a two-argument jump. */
1650 #define STORE_JUMP2(op, loc, to, arg) \
1651 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1652
1653 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1654 #define INSERT_JUMP(op, loc, to) \
1655 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1656
1657 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1658 #define INSERT_JUMP2(op, loc, to, arg) \
1659 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1660
1661
1662 /* This is not an arbitrary limit: the arguments which represent offsets
1663 into the pattern are two bytes long. So if 2^16 bytes turns out to
1664 be too small, many things would have to change. */
1665 /* Any other compiler which, like MSC, has allocation limit below 2^16
1666 bytes will have to use approach similar to what was done below for
1667 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1668 reallocating to 0 bytes. Such thing is not going to work too well.
1669 You have been warned!! */
1670 #if defined _MSC_VER && !defined WIN32
1671 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1672 The REALLOC define eliminates a flurry of conversion warnings,
1673 but is not required. */
1674 # define MAX_BUF_SIZE 65500L
1675 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1676 #else
1677 # define MAX_BUF_SIZE (1L << 16)
1678 # define REALLOC(p,s) realloc ((p), (s))
1679 #endif
1680
1681 /* Extend the buffer by twice its current size via realloc and
1682 reset the pointers that pointed into the old block to point to the
1683 correct places in the new one. If extending the buffer results in it
1684 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1685 #define EXTEND_BUFFER() \
1686 do { \
1687 unsigned char *old_buffer = bufp->buffer; \
1688 if (bufp->allocated == MAX_BUF_SIZE) \
1689 return REG_ESIZE; \
1690 bufp->allocated <<= 1; \
1691 if (bufp->allocated > MAX_BUF_SIZE) \
1692 bufp->allocated = MAX_BUF_SIZE; \
1693 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1694 if (bufp->buffer == NULL) \
1695 return REG_ESPACE; \
1696 /* If the buffer moved, move all the pointers into it. */ \
1697 if (old_buffer != bufp->buffer) \
1698 { \
1699 b = (b - old_buffer) + bufp->buffer; \
1700 begalt = (begalt - old_buffer) + bufp->buffer; \
1701 if (fixup_alt_jump) \
1702 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1703 if (laststart) \
1704 laststart = (laststart - old_buffer) + bufp->buffer; \
1705 if (pending_exact) \
1706 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1707 } \
1708 } while (0)
1709
1710
1711 /* Since we have one byte reserved for the register number argument to
1712 {start,stop}_memory, the maximum number of groups we can report
1713 things about is what fits in that byte. */
1714 #define MAX_REGNUM 255
1715
1716 /* But patterns can have more than `MAX_REGNUM' registers. We just
1717 ignore the excess. */
1718 typedef unsigned regnum_t;
1719
1720
1721 /* Macros for the compile stack. */
1722
1723 /* Since offsets can go either forwards or backwards, this type needs to
1724 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1725 /* int may be not enough when sizeof(int) == 2. */
1726 typedef long pattern_offset_t;
1727
1728 typedef struct
1729 {
1730 pattern_offset_t begalt_offset;
1731 pattern_offset_t fixup_alt_jump;
1732 pattern_offset_t inner_group_offset;
1733 pattern_offset_t laststart_offset;
1734 regnum_t regnum;
1735 } compile_stack_elt_t;
1736
1737
1738 typedef struct
1739 {
1740 compile_stack_elt_t *stack;
1741 unsigned size;
1742 unsigned avail; /* Offset of next open position. */
1743 } compile_stack_type;
1744
1745
1746 #define INIT_COMPILE_STACK_SIZE 32
1747
1748 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1749 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1750
1751 /* The next available element. */
1752 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1753
1754
1755 /* Set the bit for character C in a list. */
1756 #define SET_LIST_BIT(c) \
1757 (b[((unsigned char) (c)) / BYTEWIDTH] \
1758 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1759
1760
1761 /* Get the next unsigned number in the uncompiled pattern. */
1762 #define GET_UNSIGNED_NUMBER(num) \
1763 { if (p != pend) \
1764 { \
1765 PATFETCH (c); \
1766 while (ISDIGIT (c)) \
1767 { \
1768 if (num < 0) \
1769 num = 0; \
1770 num = num * 10 + c - '0'; \
1771 if (p == pend) \
1772 break; \
1773 PATFETCH (c); \
1774 } \
1775 } \
1776 }
1777
1778 #if defined _LIBC || WIDE_CHAR_SUPPORT
1779 /* The GNU C library provides support for user-defined character classes
1780 and the functions from ISO C amendement 1. */
1781 # ifdef CHARCLASS_NAME_MAX
1782 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1783 # else
1784 /* This shouldn't happen but some implementation might still have this
1785 problem. Use a reasonable default value. */
1786 # define CHAR_CLASS_MAX_LENGTH 256
1787 # endif
1788
1789 # ifdef _LIBC
1790 # define IS_CHAR_CLASS(string) __wctype (string)
1791 # else
1792 # define IS_CHAR_CLASS(string) wctype (string)
1793 # endif
1794 #else
1795 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1796
1797 # define IS_CHAR_CLASS(string) \
1798 (STREQ (string, "alpha") || STREQ (string, "upper") \
1799 || STREQ (string, "lower") || STREQ (string, "digit") \
1800 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1801 || STREQ (string, "space") || STREQ (string, "print") \
1802 || STREQ (string, "punct") || STREQ (string, "graph") \
1803 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1804 #endif
1805 \f
1806 #ifndef MATCH_MAY_ALLOCATE
1807
1808 /* If we cannot allocate large objects within re_match_2_internal,
1809 we make the fail stack and register vectors global.
1810 The fail stack, we grow to the maximum size when a regexp
1811 is compiled.
1812 The register vectors, we adjust in size each time we
1813 compile a regexp, according to the number of registers it needs. */
1814
1815 static fail_stack_type fail_stack;
1816
1817 /* Size with which the following vectors are currently allocated.
1818 That is so we can make them bigger as needed,
1819 but never make them smaller. */
1820 static int regs_allocated_size;
1821
1822 static const char ** regstart, ** regend;
1823 static const char ** old_regstart, ** old_regend;
1824 static const char **best_regstart, **best_regend;
1825 static register_info_type *reg_info;
1826 static const char **reg_dummy;
1827 static register_info_type *reg_info_dummy;
1828
1829 /* Make the register vectors big enough for NUM_REGS registers,
1830 but don't make them smaller. */
1831
1832 static
1833 regex_grow_registers (num_regs)
1834 int num_regs;
1835 {
1836 if (num_regs > regs_allocated_size)
1837 {
1838 RETALLOC_IF (regstart, num_regs, const char *);
1839 RETALLOC_IF (regend, num_regs, const char *);
1840 RETALLOC_IF (old_regstart, num_regs, const char *);
1841 RETALLOC_IF (old_regend, num_regs, const char *);
1842 RETALLOC_IF (best_regstart, num_regs, const char *);
1843 RETALLOC_IF (best_regend, num_regs, const char *);
1844 RETALLOC_IF (reg_info, num_regs, register_info_type);
1845 RETALLOC_IF (reg_dummy, num_regs, const char *);
1846 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1847
1848 regs_allocated_size = num_regs;
1849 }
1850 }
1851
1852 #endif /* not MATCH_MAY_ALLOCATE */
1853 \f
1854 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1855 compile_stack,
1856 regnum_t regnum));
1857
1858 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1859 Returns one of error codes defined in `regex.h', or zero for success.
1860
1861 Assumes the `allocated' (and perhaps `buffer') and `translate'
1862 fields are set in BUFP on entry.
1863
1864 If it succeeds, results are put in BUFP (if it returns an error, the
1865 contents of BUFP are undefined):
1866 `buffer' is the compiled pattern;
1867 `syntax' is set to SYNTAX;
1868 `used' is set to the length of the compiled pattern;
1869 `fastmap_accurate' is zero;
1870 `re_nsub' is the number of subexpressions in PATTERN;
1871 `not_bol' and `not_eol' are zero;
1872
1873 The `fastmap' and `newline_anchor' fields are neither
1874 examined nor set. */
1875
1876 /* Return, freeing storage we allocated. */
1877 #define FREE_STACK_RETURN(value) \
1878 return (free (compile_stack.stack), value)
1879
1880 static reg_errcode_t
1881 regex_compile (pattern, size, syntax, bufp)
1882 const char *pattern;
1883 size_t size;
1884 reg_syntax_t syntax;
1885 struct re_pattern_buffer *bufp;
1886 {
1887 /* We fetch characters from PATTERN here. Even though PATTERN is
1888 `char *' (i.e., signed), we declare these variables as unsigned, so
1889 they can be reliably used as array indices. */
1890 register unsigned char c, c1;
1891
1892 /* A random temporary spot in PATTERN. */
1893 const char *p1;
1894
1895 /* Points to the end of the buffer, where we should append. */
1896 register unsigned char *b;
1897
1898 /* Keeps track of unclosed groups. */
1899 compile_stack_type compile_stack;
1900
1901 /* Points to the current (ending) position in the pattern. */
1902 const char *p = pattern;
1903 const char *pend = pattern + size;
1904
1905 /* How to translate the characters in the pattern. */
1906 RE_TRANSLATE_TYPE translate = bufp->translate;
1907
1908 /* Address of the count-byte of the most recently inserted `exactn'
1909 command. This makes it possible to tell if a new exact-match
1910 character can be added to that command or if the character requires
1911 a new `exactn' command. */
1912 unsigned char *pending_exact = 0;
1913
1914 /* Address of start of the most recently finished expression.
1915 This tells, e.g., postfix * where to find the start of its
1916 operand. Reset at the beginning of groups and alternatives. */
1917 unsigned char *laststart = 0;
1918
1919 /* Address of beginning of regexp, or inside of last group. */
1920 unsigned char *begalt;
1921
1922 /* Place in the uncompiled pattern (i.e., the {) to
1923 which to go back if the interval is invalid. */
1924 const char *beg_interval;
1925
1926 /* Address of the place where a forward jump should go to the end of
1927 the containing expression. Each alternative of an `or' -- except the
1928 last -- ends with a forward jump of this sort. */
1929 unsigned char *fixup_alt_jump = 0;
1930
1931 /* Counts open-groups as they are encountered. Remembered for the
1932 matching close-group on the compile stack, so the same register
1933 number is put in the stop_memory as the start_memory. */
1934 regnum_t regnum = 0;
1935
1936 #ifdef DEBUG
1937 DEBUG_PRINT1 ("\nCompiling pattern: ");
1938 if (debug)
1939 {
1940 unsigned debug_count;
1941
1942 for (debug_count = 0; debug_count < size; debug_count++)
1943 putchar (pattern[debug_count]);
1944 putchar ('\n');
1945 }
1946 #endif /* DEBUG */
1947
1948 /* Initialize the compile stack. */
1949 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1950 if (compile_stack.stack == NULL)
1951 return REG_ESPACE;
1952
1953 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1954 compile_stack.avail = 0;
1955
1956 /* Initialize the pattern buffer. */
1957 bufp->syntax = syntax;
1958 bufp->fastmap_accurate = 0;
1959 bufp->not_bol = bufp->not_eol = 0;
1960
1961 /* Set `used' to zero, so that if we return an error, the pattern
1962 printer (for debugging) will think there's no pattern. We reset it
1963 at the end. */
1964 bufp->used = 0;
1965
1966 /* Always count groups, whether or not bufp->no_sub is set. */
1967 bufp->re_nsub = 0;
1968
1969 #if !defined emacs && !defined SYNTAX_TABLE
1970 /* Initialize the syntax table. */
1971 init_syntax_once ();
1972 #endif
1973
1974 if (bufp->allocated == 0)
1975 {
1976 if (bufp->buffer)
1977 { /* If zero allocated, but buffer is non-null, try to realloc
1978 enough space. This loses if buffer's address is bogus, but
1979 that is the user's responsibility. */
1980 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1981 }
1982 else
1983 { /* Caller did not allocate a buffer. Do it for them. */
1984 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1985 }
1986 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1987
1988 bufp->allocated = INIT_BUF_SIZE;
1989 }
1990
1991 begalt = b = bufp->buffer;
1992
1993 /* Loop through the uncompiled pattern until we're at the end. */
1994 while (p != pend)
1995 {
1996 PATFETCH (c);
1997
1998 switch (c)
1999 {
2000 case '^':
2001 {
2002 if ( /* If at start of pattern, it's an operator. */
2003 p == pattern + 1
2004 /* If context independent, it's an operator. */
2005 || syntax & RE_CONTEXT_INDEP_ANCHORS
2006 /* Otherwise, depends on what's come before. */
2007 || at_begline_loc_p (pattern, p, syntax))
2008 BUF_PUSH (begline);
2009 else
2010 goto normal_char;
2011 }
2012 break;
2013
2014
2015 case '$':
2016 {
2017 if ( /* If at end of pattern, it's an operator. */
2018 p == pend
2019 /* If context independent, it's an operator. */
2020 || syntax & RE_CONTEXT_INDEP_ANCHORS
2021 /* Otherwise, depends on what's next. */
2022 || at_endline_loc_p (p, pend, syntax))
2023 BUF_PUSH (endline);
2024 else
2025 goto normal_char;
2026 }
2027 break;
2028
2029
2030 case '+':
2031 case '?':
2032 if ((syntax & RE_BK_PLUS_QM)
2033 || (syntax & RE_LIMITED_OPS))
2034 goto normal_char;
2035 handle_plus:
2036 case '*':
2037 /* If there is no previous pattern... */
2038 if (!laststart)
2039 {
2040 if (syntax & RE_CONTEXT_INVALID_OPS)
2041 FREE_STACK_RETURN (REG_BADRPT);
2042 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2043 goto normal_char;
2044 }
2045
2046 {
2047 /* Are we optimizing this jump? */
2048 boolean keep_string_p = false;
2049
2050 /* 1 means zero (many) matches is allowed. */
2051 char zero_times_ok = 0, many_times_ok = 0;
2052
2053 /* If there is a sequence of repetition chars, collapse it
2054 down to just one (the right one). We can't combine
2055 interval operators with these because of, e.g., `a{2}*',
2056 which should only match an even number of `a's. */
2057
2058 for (;;)
2059 {
2060 zero_times_ok |= c != '+';
2061 many_times_ok |= c != '?';
2062
2063 if (p == pend)
2064 break;
2065
2066 PATFETCH (c);
2067
2068 if (c == '*'
2069 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2070 ;
2071
2072 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2073 {
2074 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2075
2076 PATFETCH (c1);
2077 if (!(c1 == '+' || c1 == '?'))
2078 {
2079 PATUNFETCH;
2080 PATUNFETCH;
2081 break;
2082 }
2083
2084 c = c1;
2085 }
2086 else
2087 {
2088 PATUNFETCH;
2089 break;
2090 }
2091
2092 /* If we get here, we found another repeat character. */
2093 }
2094
2095 /* Star, etc. applied to an empty pattern is equivalent
2096 to an empty pattern. */
2097 if (!laststart)
2098 break;
2099
2100 /* Now we know whether or not zero matches is allowed
2101 and also whether or not two or more matches is allowed. */
2102 if (many_times_ok)
2103 { /* More than one repetition is allowed, so put in at the
2104 end a backward relative jump from `b' to before the next
2105 jump we're going to put in below (which jumps from
2106 laststart to after this jump).
2107
2108 But if we are at the `*' in the exact sequence `.*\n',
2109 insert an unconditional jump backwards to the .,
2110 instead of the beginning of the loop. This way we only
2111 push a failure point once, instead of every time
2112 through the loop. */
2113 assert (p - 1 > pattern);
2114
2115 /* Allocate the space for the jump. */
2116 GET_BUFFER_SPACE (3);
2117
2118 /* We know we are not at the first character of the pattern,
2119 because laststart was nonzero. And we've already
2120 incremented `p', by the way, to be the character after
2121 the `*'. Do we have to do something analogous here
2122 for null bytes, because of RE_DOT_NOT_NULL? */
2123 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2124 && zero_times_ok
2125 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2126 && !(syntax & RE_DOT_NEWLINE))
2127 { /* We have .*\n. */
2128 STORE_JUMP (jump, b, laststart);
2129 keep_string_p = true;
2130 }
2131 else
2132 /* Anything else. */
2133 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2134
2135 /* We've added more stuff to the buffer. */
2136 b += 3;
2137 }
2138
2139 /* On failure, jump from laststart to b + 3, which will be the
2140 end of the buffer after this jump is inserted. */
2141 GET_BUFFER_SPACE (3);
2142 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2143 : on_failure_jump,
2144 laststart, b + 3);
2145 pending_exact = 0;
2146 b += 3;
2147
2148 if (!zero_times_ok)
2149 {
2150 /* At least one repetition is required, so insert a
2151 `dummy_failure_jump' before the initial
2152 `on_failure_jump' instruction of the loop. This
2153 effects a skip over that instruction the first time
2154 we hit that loop. */
2155 GET_BUFFER_SPACE (3);
2156 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2157 b += 3;
2158 }
2159 }
2160 break;
2161
2162
2163 case '.':
2164 laststart = b;
2165 BUF_PUSH (anychar);
2166 break;
2167
2168
2169 case '[':
2170 {
2171 boolean had_char_class = false;
2172
2173 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2174
2175 /* Ensure that we have enough space to push a charset: the
2176 opcode, the length count, and the bitset; 34 bytes in all. */
2177 GET_BUFFER_SPACE (34);
2178
2179 laststart = b;
2180
2181 /* We test `*p == '^' twice, instead of using an if
2182 statement, so we only need one BUF_PUSH. */
2183 BUF_PUSH (*p == '^' ? charset_not : charset);
2184 if (*p == '^')
2185 p++;
2186
2187 /* Remember the first position in the bracket expression. */
2188 p1 = p;
2189
2190 /* Push the number of bytes in the bitmap. */
2191 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2192
2193 /* Clear the whole map. */
2194 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2195
2196 /* charset_not matches newline according to a syntax bit. */
2197 if ((re_opcode_t) b[-2] == charset_not
2198 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2199 SET_LIST_BIT ('\n');
2200
2201 /* Read in characters and ranges, setting map bits. */
2202 for (;;)
2203 {
2204 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2205
2206 PATFETCH (c);
2207
2208 /* \ might escape characters inside [...] and [^...]. */
2209 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2210 {
2211 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2212
2213 PATFETCH (c1);
2214 SET_LIST_BIT (c1);
2215 continue;
2216 }
2217
2218 /* Could be the end of the bracket expression. If it's
2219 not (i.e., when the bracket expression is `[]' so
2220 far), the ']' character bit gets set way below. */
2221 if (c == ']' && p != p1 + 1)
2222 break;
2223
2224 /* Look ahead to see if it's a range when the last thing
2225 was a character class. */
2226 if (had_char_class && c == '-' && *p != ']')
2227 FREE_STACK_RETURN (REG_ERANGE);
2228
2229 /* Look ahead to see if it's a range when the last thing
2230 was a character: if this is a hyphen not at the
2231 beginning or the end of a list, then it's the range
2232 operator. */
2233 if (c == '-'
2234 && !(p - 2 >= pattern && p[-2] == '[')
2235 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2236 && *p != ']')
2237 {
2238 reg_errcode_t ret
2239 = compile_range (&p, pend, translate, syntax, b);
2240 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2241 }
2242
2243 else if (p[0] == '-' && p[1] != ']')
2244 { /* This handles ranges made up of characters only. */
2245 reg_errcode_t ret;
2246
2247 /* Move past the `-'. */
2248 PATFETCH (c1);
2249
2250 ret = compile_range (&p, pend, translate, syntax, b);
2251 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2252 }
2253
2254 /* See if we're at the beginning of a possible character
2255 class. */
2256
2257 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2258 { /* Leave room for the null. */
2259 char str[CHAR_CLASS_MAX_LENGTH + 1];
2260
2261 PATFETCH (c);
2262 c1 = 0;
2263
2264 /* If pattern is `[[:'. */
2265 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2266
2267 for (;;)
2268 {
2269 PATFETCH (c);
2270 if ((c == ':' && *p == ']') || p == pend)
2271 break;
2272 if (c1 < CHAR_CLASS_MAX_LENGTH)
2273 str[c1++] = c;
2274 else
2275 /* This is in any case an invalid class name. */
2276 str[0] = '\0';
2277 }
2278 str[c1] = '\0';
2279
2280 /* If isn't a word bracketed by `[:' and `:]':
2281 undo the ending character, the letters, and leave
2282 the leading `:' and `[' (but set bits for them). */
2283 if (c == ':' && *p == ']')
2284 {
2285 #if defined _LIBC || WIDE_CHAR_SUPPORT
2286 boolean is_lower = STREQ (str, "lower");
2287 boolean is_upper = STREQ (str, "upper");
2288 wctype_t wt;
2289 int ch;
2290
2291 wt = IS_CHAR_CLASS (str);
2292 if (wt == 0)
2293 FREE_STACK_RETURN (REG_ECTYPE);
2294
2295 /* Throw away the ] at the end of the character
2296 class. */
2297 PATFETCH (c);
2298
2299 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2300
2301 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2302 {
2303 # ifdef _LIBC
2304 if (__iswctype (__btowc (ch), wt))
2305 SET_LIST_BIT (ch);
2306 # else
2307 if (iswctype (btowc (ch), wt))
2308 SET_LIST_BIT (ch);
2309 # endif
2310
2311 if (translate && (is_upper || is_lower)
2312 && (ISUPPER (ch) || ISLOWER (ch)))
2313 SET_LIST_BIT (ch);
2314 }
2315
2316 had_char_class = true;
2317 #else
2318 int ch;
2319 boolean is_alnum = STREQ (str, "alnum");
2320 boolean is_alpha = STREQ (str, "alpha");
2321 boolean is_blank = STREQ (str, "blank");
2322 boolean is_cntrl = STREQ (str, "cntrl");
2323 boolean is_digit = STREQ (str, "digit");
2324 boolean is_graph = STREQ (str, "graph");
2325 boolean is_lower = STREQ (str, "lower");
2326 boolean is_print = STREQ (str, "print");
2327 boolean is_punct = STREQ (str, "punct");
2328 boolean is_space = STREQ (str, "space");
2329 boolean is_upper = STREQ (str, "upper");
2330 boolean is_xdigit = STREQ (str, "xdigit");
2331
2332 if (!IS_CHAR_CLASS (str))
2333 FREE_STACK_RETURN (REG_ECTYPE);
2334
2335 /* Throw away the ] at the end of the character
2336 class. */
2337 PATFETCH (c);
2338
2339 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2340
2341 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2342 {
2343 /* This was split into 3 if's to
2344 avoid an arbitrary limit in some compiler. */
2345 if ( (is_alnum && ISALNUM (ch))
2346 || (is_alpha && ISALPHA (ch))
2347 || (is_blank && ISBLANK (ch))
2348 || (is_cntrl && ISCNTRL (ch)))
2349 SET_LIST_BIT (ch);
2350 if ( (is_digit && ISDIGIT (ch))
2351 || (is_graph && ISGRAPH (ch))
2352 || (is_lower && ISLOWER (ch))
2353 || (is_print && ISPRINT (ch)))
2354 SET_LIST_BIT (ch);
2355 if ( (is_punct && ISPUNCT (ch))
2356 || (is_space && ISSPACE (ch))
2357 || (is_upper && ISUPPER (ch))
2358 || (is_xdigit && ISXDIGIT (ch)))
2359 SET_LIST_BIT (ch);
2360 if ( translate && (is_upper || is_lower)
2361 && (ISUPPER (ch) || ISLOWER (ch)))
2362 SET_LIST_BIT (ch);
2363 }
2364 had_char_class = true;
2365 #endif /* libc || wctype.h */
2366 }
2367 else
2368 {
2369 c1++;
2370 while (c1--)
2371 PATUNFETCH;
2372 SET_LIST_BIT ('[');
2373 SET_LIST_BIT (':');
2374 had_char_class = false;
2375 }
2376 }
2377 else
2378 {
2379 had_char_class = false;
2380 SET_LIST_BIT (c);
2381 }
2382 }
2383
2384 /* Discard any (non)matching list bytes that are all 0 at the
2385 end of the map. Decrease the map-length byte too. */
2386 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2387 b[-1]--;
2388 b += b[-1];
2389 }
2390 break;
2391
2392
2393 case '(':
2394 if (syntax & RE_NO_BK_PARENS)
2395 goto handle_open;
2396 else
2397 goto normal_char;
2398
2399
2400 case ')':
2401 if (syntax & RE_NO_BK_PARENS)
2402 goto handle_close;
2403 else
2404 goto normal_char;
2405
2406
2407 case '\n':
2408 if (syntax & RE_NEWLINE_ALT)
2409 goto handle_alt;
2410 else
2411 goto normal_char;
2412
2413
2414 case '|':
2415 if (syntax & RE_NO_BK_VBAR)
2416 goto handle_alt;
2417 else
2418 goto normal_char;
2419
2420
2421 case '{':
2422 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2423 goto handle_interval;
2424 else
2425 goto normal_char;
2426
2427
2428 case '\\':
2429 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2430
2431 /* Do not translate the character after the \, so that we can
2432 distinguish, e.g., \B from \b, even if we normally would
2433 translate, e.g., B to b. */
2434 PATFETCH_RAW (c);
2435
2436 switch (c)
2437 {
2438 case '(':
2439 if (syntax & RE_NO_BK_PARENS)
2440 goto normal_backslash;
2441
2442 handle_open:
2443 bufp->re_nsub++;
2444 regnum++;
2445
2446 if (COMPILE_STACK_FULL)
2447 {
2448 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2449 compile_stack_elt_t);
2450 if (compile_stack.stack == NULL) return REG_ESPACE;
2451
2452 compile_stack.size <<= 1;
2453 }
2454
2455 /* These are the values to restore when we hit end of this
2456 group. They are all relative offsets, so that if the
2457 whole pattern moves because of realloc, they will still
2458 be valid. */
2459 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2460 COMPILE_STACK_TOP.fixup_alt_jump
2461 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2462 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2463 COMPILE_STACK_TOP.regnum = regnum;
2464
2465 /* We will eventually replace the 0 with the number of
2466 groups inner to this one. But do not push a
2467 start_memory for groups beyond the last one we can
2468 represent in the compiled pattern. */
2469 if (regnum <= MAX_REGNUM)
2470 {
2471 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2472 BUF_PUSH_3 (start_memory, regnum, 0);
2473 }
2474
2475 compile_stack.avail++;
2476
2477 fixup_alt_jump = 0;
2478 laststart = 0;
2479 begalt = b;
2480 /* If we've reached MAX_REGNUM groups, then this open
2481 won't actually generate any code, so we'll have to
2482 clear pending_exact explicitly. */
2483 pending_exact = 0;
2484 break;
2485
2486
2487 case ')':
2488 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2489
2490 if (COMPILE_STACK_EMPTY)
2491 {
2492 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2493 goto normal_backslash;
2494 else
2495 FREE_STACK_RETURN (REG_ERPAREN);
2496 }
2497
2498 handle_close:
2499 if (fixup_alt_jump)
2500 { /* Push a dummy failure point at the end of the
2501 alternative for a possible future
2502 `pop_failure_jump' to pop. See comments at
2503 `push_dummy_failure' in `re_match_2'. */
2504 BUF_PUSH (push_dummy_failure);
2505
2506 /* We allocated space for this jump when we assigned
2507 to `fixup_alt_jump', in the `handle_alt' case below. */
2508 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2509 }
2510
2511 /* See similar code for backslashed left paren above. */
2512 if (COMPILE_STACK_EMPTY)
2513 {
2514 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2515 goto normal_char;
2516 else
2517 FREE_STACK_RETURN (REG_ERPAREN);
2518 }
2519
2520 /* Since we just checked for an empty stack above, this
2521 ``can't happen''. */
2522 assert (compile_stack.avail != 0);
2523 {
2524 /* We don't just want to restore into `regnum', because
2525 later groups should continue to be numbered higher,
2526 as in `(ab)c(de)' -- the second group is #2. */
2527 regnum_t this_group_regnum;
2528
2529 compile_stack.avail--;
2530 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2531 fixup_alt_jump
2532 = COMPILE_STACK_TOP.fixup_alt_jump
2533 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2534 : 0;
2535 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2536 this_group_regnum = COMPILE_STACK_TOP.regnum;
2537 /* If we've reached MAX_REGNUM groups, then this open
2538 won't actually generate any code, so we'll have to
2539 clear pending_exact explicitly. */
2540 pending_exact = 0;
2541
2542 /* We're at the end of the group, so now we know how many
2543 groups were inside this one. */
2544 if (this_group_regnum <= MAX_REGNUM)
2545 {
2546 unsigned char *inner_group_loc
2547 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2548
2549 *inner_group_loc = regnum - this_group_regnum;
2550 BUF_PUSH_3 (stop_memory, this_group_regnum,
2551 regnum - this_group_regnum);
2552 }
2553 }
2554 break;
2555
2556
2557 case '|': /* `\|'. */
2558 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2559 goto normal_backslash;
2560 handle_alt:
2561 if (syntax & RE_LIMITED_OPS)
2562 goto normal_char;
2563
2564 /* Insert before the previous alternative a jump which
2565 jumps to this alternative if the former fails. */
2566 GET_BUFFER_SPACE (3);
2567 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2568 pending_exact = 0;
2569 b += 3;
2570
2571 /* The alternative before this one has a jump after it
2572 which gets executed if it gets matched. Adjust that
2573 jump so it will jump to this alternative's analogous
2574 jump (put in below, which in turn will jump to the next
2575 (if any) alternative's such jump, etc.). The last such
2576 jump jumps to the correct final destination. A picture:
2577 _____ _____
2578 | | | |
2579 | v | v
2580 a | b | c
2581
2582 If we are at `b', then fixup_alt_jump right now points to a
2583 three-byte space after `a'. We'll put in the jump, set
2584 fixup_alt_jump to right after `b', and leave behind three
2585 bytes which we'll fill in when we get to after `c'. */
2586
2587 if (fixup_alt_jump)
2588 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2589
2590 /* Mark and leave space for a jump after this alternative,
2591 to be filled in later either by next alternative or
2592 when know we're at the end of a series of alternatives. */
2593 fixup_alt_jump = b;
2594 GET_BUFFER_SPACE (3);
2595 b += 3;
2596
2597 laststart = 0;
2598 begalt = b;
2599 break;
2600
2601
2602 case '{':
2603 /* If \{ is a literal. */
2604 if (!(syntax & RE_INTERVALS)
2605 /* If we're at `\{' and it's not the open-interval
2606 operator. */
2607 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2608 || (p - 2 == pattern && p == pend))
2609 goto normal_backslash;
2610
2611 handle_interval:
2612 {
2613 /* If got here, then the syntax allows intervals. */
2614
2615 /* At least (most) this many matches must be made. */
2616 int lower_bound = -1, upper_bound = -1;
2617
2618 beg_interval = p - 1;
2619
2620 if (p == pend)
2621 {
2622 if (syntax & RE_NO_BK_BRACES)
2623 goto unfetch_interval;
2624 else
2625 FREE_STACK_RETURN (REG_EBRACE);
2626 }
2627
2628 GET_UNSIGNED_NUMBER (lower_bound);
2629
2630 if (c == ',')
2631 {
2632 GET_UNSIGNED_NUMBER (upper_bound);
2633 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2634 }
2635 else
2636 /* Interval such as `{1}' => match exactly once. */
2637 upper_bound = lower_bound;
2638
2639 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2640 || lower_bound > upper_bound)
2641 {
2642 if (syntax & RE_NO_BK_BRACES)
2643 goto unfetch_interval;
2644 else
2645 FREE_STACK_RETURN (REG_BADBR);
2646 }
2647
2648 if (!(syntax & RE_NO_BK_BRACES))
2649 {
2650 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2651
2652 PATFETCH (c);
2653 }
2654
2655 if (c != '}')
2656 {
2657 if (syntax & RE_NO_BK_BRACES)
2658 goto unfetch_interval;
2659 else
2660 FREE_STACK_RETURN (REG_BADBR);
2661 }
2662
2663 /* We just parsed a valid interval. */
2664
2665 /* If it's invalid to have no preceding re. */
2666 if (!laststart)
2667 {
2668 if (syntax & RE_CONTEXT_INVALID_OPS)
2669 FREE_STACK_RETURN (REG_BADRPT);
2670 else if (syntax & RE_CONTEXT_INDEP_OPS)
2671 laststart = b;
2672 else
2673 goto unfetch_interval;
2674 }
2675
2676 /* If the upper bound is zero, don't want to succeed at
2677 all; jump from `laststart' to `b + 3', which will be
2678 the end of the buffer after we insert the jump. */
2679 if (upper_bound == 0)
2680 {
2681 GET_BUFFER_SPACE (3);
2682 INSERT_JUMP (jump, laststart, b + 3);
2683 b += 3;
2684 }
2685
2686 /* Otherwise, we have a nontrivial interval. When
2687 we're all done, the pattern will look like:
2688 set_number_at <jump count> <upper bound>
2689 set_number_at <succeed_n count> <lower bound>
2690 succeed_n <after jump addr> <succeed_n count>
2691 <body of loop>
2692 jump_n <succeed_n addr> <jump count>
2693 (The upper bound and `jump_n' are omitted if
2694 `upper_bound' is 1, though.) */
2695 else
2696 { /* If the upper bound is > 1, we need to insert
2697 more at the end of the loop. */
2698 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2699
2700 GET_BUFFER_SPACE (nbytes);
2701
2702 /* Initialize lower bound of the `succeed_n', even
2703 though it will be set during matching by its
2704 attendant `set_number_at' (inserted next),
2705 because `re_compile_fastmap' needs to know.
2706 Jump to the `jump_n' we might insert below. */
2707 INSERT_JUMP2 (succeed_n, laststart,
2708 b + 5 + (upper_bound > 1) * 5,
2709 lower_bound);
2710 b += 5;
2711
2712 /* Code to initialize the lower bound. Insert
2713 before the `succeed_n'. The `5' is the last two
2714 bytes of this `set_number_at', plus 3 bytes of
2715 the following `succeed_n'. */
2716 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2717 b += 5;
2718
2719 if (upper_bound > 1)
2720 { /* More than one repetition is allowed, so
2721 append a backward jump to the `succeed_n'
2722 that starts this interval.
2723
2724 When we've reached this during matching,
2725 we'll have matched the interval once, so
2726 jump back only `upper_bound - 1' times. */
2727 STORE_JUMP2 (jump_n, b, laststart + 5,
2728 upper_bound - 1);
2729 b += 5;
2730
2731 /* The location we want to set is the second
2732 parameter of the `jump_n'; that is `b-2' as
2733 an absolute address. `laststart' will be
2734 the `set_number_at' we're about to insert;
2735 `laststart+3' the number to set, the source
2736 for the relative address. But we are
2737 inserting into the middle of the pattern --
2738 so everything is getting moved up by 5.
2739 Conclusion: (b - 2) - (laststart + 3) + 5,
2740 i.e., b - laststart.
2741
2742 We insert this at the beginning of the loop
2743 so that if we fail during matching, we'll
2744 reinitialize the bounds. */
2745 insert_op2 (set_number_at, laststart, b - laststart,
2746 upper_bound - 1, b);
2747 b += 5;
2748 }
2749 }
2750 pending_exact = 0;
2751 beg_interval = NULL;
2752 }
2753 break;
2754
2755 unfetch_interval:
2756 /* If an invalid interval, match the characters as literals. */
2757 assert (beg_interval);
2758 p = beg_interval;
2759 beg_interval = NULL;
2760
2761 /* normal_char and normal_backslash need `c'. */
2762 PATFETCH (c);
2763
2764 if (!(syntax & RE_NO_BK_BRACES))
2765 {
2766 if (p > pattern && p[-1] == '\\')
2767 goto normal_backslash;
2768 }
2769 goto normal_char;
2770
2771 #ifdef emacs
2772 /* There is no way to specify the before_dot and after_dot
2773 operators. rms says this is ok. --karl */
2774 case '=':
2775 BUF_PUSH (at_dot);
2776 break;
2777
2778 case 's':
2779 laststart = b;
2780 PATFETCH (c);
2781 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2782 break;
2783
2784 case 'S':
2785 laststart = b;
2786 PATFETCH (c);
2787 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2788 break;
2789 #endif /* emacs */
2790
2791
2792 case 'w':
2793 if (syntax & RE_NO_GNU_OPS)
2794 goto normal_char;
2795 laststart = b;
2796 BUF_PUSH (wordchar);
2797 break;
2798
2799
2800 case 'W':
2801 if (syntax & RE_NO_GNU_OPS)
2802 goto normal_char;
2803 laststart = b;
2804 BUF_PUSH (notwordchar);
2805 break;
2806
2807
2808 case '<':
2809 if (syntax & RE_NO_GNU_OPS)
2810 goto normal_char;
2811 BUF_PUSH (wordbeg);
2812 break;
2813
2814 case '>':
2815 if (syntax & RE_NO_GNU_OPS)
2816 goto normal_char;
2817 BUF_PUSH (wordend);
2818 break;
2819
2820 case 'b':
2821 if (syntax & RE_NO_GNU_OPS)
2822 goto normal_char;
2823 BUF_PUSH (wordbound);
2824 break;
2825
2826 case 'B':
2827 if (syntax & RE_NO_GNU_OPS)
2828 goto normal_char;
2829 BUF_PUSH (notwordbound);
2830 break;
2831
2832 case '`':
2833 if (syntax & RE_NO_GNU_OPS)
2834 goto normal_char;
2835 BUF_PUSH (begbuf);
2836 break;
2837
2838 case '\'':
2839 if (syntax & RE_NO_GNU_OPS)
2840 goto normal_char;
2841 BUF_PUSH (endbuf);
2842 break;
2843
2844 case '1': case '2': case '3': case '4': case '5':
2845 case '6': case '7': case '8': case '9':
2846 if (syntax & RE_NO_BK_REFS)
2847 goto normal_char;
2848
2849 c1 = c - '0';
2850
2851 if (c1 > regnum)
2852 FREE_STACK_RETURN (REG_ESUBREG);
2853
2854 /* Can't back reference to a subexpression if inside of it. */
2855 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2856 goto normal_char;
2857
2858 laststart = b;
2859 BUF_PUSH_2 (duplicate, c1);
2860 break;
2861
2862
2863 case '+':
2864 case '?':
2865 if (syntax & RE_BK_PLUS_QM)
2866 goto handle_plus;
2867 else
2868 goto normal_backslash;
2869
2870 default:
2871 normal_backslash:
2872 /* You might think it would be useful for \ to mean
2873 not to translate; but if we don't translate it
2874 it will never match anything. */
2875 c = TRANSLATE (c);
2876 goto normal_char;
2877 }
2878 break;
2879
2880
2881 default:
2882 /* Expects the character in `c'. */
2883 normal_char:
2884 /* If no exactn currently being built. */
2885 if (!pending_exact
2886
2887 /* If last exactn not at current position. */
2888 || pending_exact + *pending_exact + 1 != b
2889
2890 /* We have only one byte following the exactn for the count. */
2891 || *pending_exact == (1 << BYTEWIDTH) - 1
2892
2893 /* If followed by a repetition operator. */
2894 || *p == '*' || *p == '^'
2895 || ((syntax & RE_BK_PLUS_QM)
2896 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2897 : (*p == '+' || *p == '?'))
2898 || ((syntax & RE_INTERVALS)
2899 && ((syntax & RE_NO_BK_BRACES)
2900 ? *p == '{'
2901 : (p[0] == '\\' && p[1] == '{'))))
2902 {
2903 /* Start building a new exactn. */
2904
2905 laststart = b;
2906
2907 BUF_PUSH_2 (exactn, 0);
2908 pending_exact = b - 1;
2909 }
2910
2911 BUF_PUSH (c);
2912 (*pending_exact)++;
2913 break;
2914 } /* switch (c) */
2915 } /* while p != pend */
2916
2917
2918 /* Through the pattern now. */
2919
2920 if (fixup_alt_jump)
2921 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2922
2923 if (!COMPILE_STACK_EMPTY)
2924 FREE_STACK_RETURN (REG_EPAREN);
2925
2926 /* If we don't want backtracking, force success
2927 the first time we reach the end of the compiled pattern. */
2928 if (syntax & RE_NO_POSIX_BACKTRACKING)
2929 BUF_PUSH (succeed);
2930
2931 free (compile_stack.stack);
2932
2933 /* We have succeeded; set the length of the buffer. */
2934 bufp->used = b - bufp->buffer;
2935
2936 #ifdef DEBUG
2937 if (debug)
2938 {
2939 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2940 print_compiled_pattern (bufp);
2941 }
2942 #endif /* DEBUG */
2943
2944 #ifndef MATCH_MAY_ALLOCATE
2945 /* Initialize the failure stack to the largest possible stack. This
2946 isn't necessary unless we're trying to avoid calling alloca in
2947 the search and match routines. */
2948 {
2949 int num_regs = bufp->re_nsub + 1;
2950
2951 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2952 is strictly greater than re_max_failures, the largest possible stack
2953 is 2 * re_max_failures failure points. */
2954 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2955 {
2956 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2957
2958 # ifdef emacs
2959 if (! fail_stack.stack)
2960 fail_stack.stack
2961 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2962 * sizeof (fail_stack_elt_t));
2963 else
2964 fail_stack.stack
2965 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2966 (fail_stack.size
2967 * sizeof (fail_stack_elt_t)));
2968 # else /* not emacs */
2969 if (! fail_stack.stack)
2970 fail_stack.stack
2971 = (fail_stack_elt_t *) malloc (fail_stack.size
2972 * sizeof (fail_stack_elt_t));
2973 else
2974 fail_stack.stack
2975 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2976 (fail_stack.size
2977 * sizeof (fail_stack_elt_t)));
2978 # endif /* not emacs */
2979 }
2980
2981 regex_grow_registers (num_regs);
2982 }
2983 #endif /* not MATCH_MAY_ALLOCATE */
2984
2985 return REG_NOERROR;
2986 } /* regex_compile */
2987 \f
2988 /* Subroutines for `regex_compile'. */
2989
2990 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2991
2992 static void
2993 store_op1 (op, loc, arg)
2994 re_opcode_t op;
2995 unsigned char *loc;
2996 int arg;
2997 {
2998 *loc = (unsigned char) op;
2999 STORE_NUMBER (loc + 1, arg);
3000 }
3001
3002
3003 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3004
3005 static void
3006 store_op2 (op, loc, arg1, arg2)
3007 re_opcode_t op;
3008 unsigned char *loc;
3009 int arg1, arg2;
3010 {
3011 *loc = (unsigned char) op;
3012 STORE_NUMBER (loc + 1, arg1);
3013 STORE_NUMBER (loc + 3, arg2);
3014 }
3015
3016
3017 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3018 for OP followed by two-byte integer parameter ARG. */
3019
3020 static void
3021 insert_op1 (op, loc, arg, end)
3022 re_opcode_t op;
3023 unsigned char *loc;
3024 int arg;
3025 unsigned char *end;
3026 {
3027 register unsigned char *pfrom = end;
3028 register unsigned char *pto = end + 3;
3029
3030 while (pfrom != loc)
3031 *--pto = *--pfrom;
3032
3033 store_op1 (op, loc, arg);
3034 }
3035
3036
3037 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3038
3039 static void
3040 insert_op2 (op, loc, arg1, arg2, end)
3041 re_opcode_t op;
3042 unsigned char *loc;
3043 int arg1, arg2;
3044 unsigned char *end;
3045 {
3046 register unsigned char *pfrom = end;
3047 register unsigned char *pto = end + 5;
3048
3049 while (pfrom != loc)
3050 *--pto = *--pfrom;
3051
3052 store_op2 (op, loc, arg1, arg2);
3053 }
3054
3055
3056 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3057 after an alternative or a begin-subexpression. We assume there is at
3058 least one character before the ^. */
3059
3060 static boolean
3061 at_begline_loc_p (pattern, p, syntax)
3062 const char *pattern, *p;
3063 reg_syntax_t syntax;
3064 {
3065 const char *prev = p - 2;
3066 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3067
3068 return
3069 /* After a subexpression? */
3070 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3071 /* After an alternative? */
3072 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3073 }
3074
3075
3076 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3077 at least one character after the $, i.e., `P < PEND'. */
3078
3079 static boolean
3080 at_endline_loc_p (p, pend, syntax)
3081 const char *p, *pend;
3082 reg_syntax_t syntax;
3083 {
3084 const char *next = p;
3085 boolean next_backslash = *next == '\\';
3086 const char *next_next = p + 1 < pend ? p + 1 : 0;
3087
3088 return
3089 /* Before a subexpression? */
3090 (syntax & RE_NO_BK_PARENS ? *next == ')'
3091 : next_backslash && next_next && *next_next == ')')
3092 /* Before an alternative? */
3093 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3094 : next_backslash && next_next && *next_next == '|');
3095 }
3096
3097
3098 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3099 false if it's not. */
3100
3101 static boolean
3102 group_in_compile_stack (compile_stack, regnum)
3103 compile_stack_type compile_stack;
3104 regnum_t regnum;
3105 {
3106 int this_element;
3107
3108 for (this_element = compile_stack.avail - 1;
3109 this_element >= 0;
3110 this_element--)
3111 if (compile_stack.stack[this_element].regnum == regnum)
3112 return true;
3113
3114 return false;
3115 }
3116
3117
3118 /* Read the ending character of a range (in a bracket expression) from the
3119 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3120 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3121 Then we set the translation of all bits between the starting and
3122 ending characters (inclusive) in the compiled pattern B.
3123
3124 Return an error code.
3125
3126 We use these short variable names so we can use the same macros as
3127 `regex_compile' itself. */
3128
3129 static reg_errcode_t
3130 compile_range (p_ptr, pend, translate, syntax, b)
3131 const char **p_ptr, *pend;
3132 RE_TRANSLATE_TYPE translate;
3133 reg_syntax_t syntax;
3134 unsigned char *b;
3135 {
3136 unsigned this_char;
3137
3138 const char *p = *p_ptr;
3139 unsigned int range_start, range_end;
3140
3141 if (p == pend)
3142 return REG_ERANGE;
3143
3144 /* Even though the pattern is a signed `char *', we need to fetch
3145 with unsigned char *'s; if the high bit of the pattern character
3146 is set, the range endpoints will be negative if we fetch using a
3147 signed char *.
3148
3149 We also want to fetch the endpoints without translating them; the
3150 appropriate translation is done in the bit-setting loop below. */
3151 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3152 range_start = ((const unsigned char *) p)[-2];
3153 range_end = ((const unsigned char *) p)[0];
3154
3155 /* Have to increment the pointer into the pattern string, so the
3156 caller isn't still at the ending character. */
3157 (*p_ptr)++;
3158
3159 /* If the start is after the end, the range is empty. */
3160 if (range_start > range_end)
3161 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3162
3163 /* Here we see why `this_char' has to be larger than an `unsigned
3164 char' -- the range is inclusive, so if `range_end' == 0xff
3165 (assuming 8-bit characters), we would otherwise go into an infinite
3166 loop, since all characters <= 0xff. */
3167 for (this_char = range_start; this_char <= range_end; this_char++)
3168 {
3169 SET_LIST_BIT (TRANSLATE (this_char));
3170 }
3171
3172 return REG_NOERROR;
3173 }
3174 \f
3175 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3176 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3177 characters can start a string that matches the pattern. This fastmap
3178 is used by re_search to skip quickly over impossible starting points.
3179
3180 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3181 area as BUFP->fastmap.
3182
3183 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3184 the pattern buffer.
3185
3186 Returns 0 if we succeed, -2 if an internal error. */
3187
3188 int
3189 re_compile_fastmap (bufp)
3190 struct re_pattern_buffer *bufp;
3191 {
3192 int j, k;
3193 #ifdef MATCH_MAY_ALLOCATE
3194 fail_stack_type fail_stack;
3195 #endif
3196 #ifndef REGEX_MALLOC
3197 char *destination;
3198 #endif
3199
3200 register char *fastmap = bufp->fastmap;
3201 unsigned char *pattern = bufp->buffer;
3202 unsigned char *p = pattern;
3203 register unsigned char *pend = pattern + bufp->used;
3204
3205 #ifdef REL_ALLOC
3206 /* This holds the pointer to the failure stack, when
3207 it is allocated relocatably. */
3208 fail_stack_elt_t *failure_stack_ptr;
3209 #endif
3210
3211 /* Assume that each path through the pattern can be null until
3212 proven otherwise. We set this false at the bottom of switch
3213 statement, to which we get only if a particular path doesn't
3214 match the empty string. */
3215 boolean path_can_be_null = true;
3216
3217 /* We aren't doing a `succeed_n' to begin with. */
3218 boolean succeed_n_p = false;
3219
3220 assert (fastmap != NULL && p != NULL);
3221
3222 INIT_FAIL_STACK ();
3223 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3224 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3225 bufp->can_be_null = 0;
3226
3227 while (1)
3228 {
3229 if (p == pend || *p == succeed)
3230 {
3231 /* We have reached the (effective) end of pattern. */
3232 if (!FAIL_STACK_EMPTY ())
3233 {
3234 bufp->can_be_null |= path_can_be_null;
3235
3236 /* Reset for next path. */
3237 path_can_be_null = true;
3238
3239 p = fail_stack.stack[--fail_stack.avail].pointer;
3240
3241 continue;
3242 }
3243 else
3244 break;
3245 }
3246
3247 /* We should never be about to go beyond the end of the pattern. */
3248 assert (p < pend);
3249
3250 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3251 {
3252
3253 /* I guess the idea here is to simply not bother with a fastmap
3254 if a backreference is used, since it's too hard to figure out
3255 the fastmap for the corresponding group. Setting
3256 `can_be_null' stops `re_search_2' from using the fastmap, so
3257 that is all we do. */
3258 case duplicate:
3259 bufp->can_be_null = 1;
3260 goto done;
3261
3262
3263 /* Following are the cases which match a character. These end
3264 with `break'. */
3265
3266 case exactn:
3267 fastmap[p[1]] = 1;
3268 break;
3269
3270
3271 case charset:
3272 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3273 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3274 fastmap[j] = 1;
3275 break;
3276
3277
3278 case charset_not:
3279 /* Chars beyond end of map must be allowed. */
3280 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3281 fastmap[j] = 1;
3282
3283 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3284 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3285 fastmap[j] = 1;
3286 break;
3287
3288
3289 case wordchar:
3290 for (j = 0; j < (1 << BYTEWIDTH); j++)
3291 if (SYNTAX (j) == Sword)
3292 fastmap[j] = 1;
3293 break;
3294
3295
3296 case notwordchar:
3297 for (j = 0; j < (1 << BYTEWIDTH); j++)
3298 if (SYNTAX (j) != Sword)
3299 fastmap[j] = 1;
3300 break;
3301
3302
3303 case anychar:
3304 {
3305 int fastmap_newline = fastmap['\n'];
3306
3307 /* `.' matches anything ... */
3308 for (j = 0; j < (1 << BYTEWIDTH); j++)
3309 fastmap[j] = 1;
3310
3311 /* ... except perhaps newline. */
3312 if (!(bufp->syntax & RE_DOT_NEWLINE))
3313 fastmap['\n'] = fastmap_newline;
3314
3315 /* Return if we have already set `can_be_null'; if we have,
3316 then the fastmap is irrelevant. Something's wrong here. */
3317 else if (bufp->can_be_null)
3318 goto done;
3319
3320 /* Otherwise, have to check alternative paths. */
3321 break;
3322 }
3323
3324 #ifdef emacs
3325 case syntaxspec:
3326 k = *p++;
3327 for (j = 0; j < (1 << BYTEWIDTH); j++)
3328 if (SYNTAX (j) == (enum syntaxcode) k)
3329 fastmap[j] = 1;
3330 break;
3331
3332
3333 case notsyntaxspec:
3334 k = *p++;
3335 for (j = 0; j < (1 << BYTEWIDTH); j++)
3336 if (SYNTAX (j) != (enum syntaxcode) k)
3337 fastmap[j] = 1;
3338 break;
3339
3340
3341 /* All cases after this match the empty string. These end with
3342 `continue'. */
3343
3344
3345 case before_dot:
3346 case at_dot:
3347 case after_dot:
3348 continue;
3349 #endif /* emacs */
3350
3351
3352 case no_op:
3353 case begline:
3354 case endline:
3355 case begbuf:
3356 case endbuf:
3357 case wordbound:
3358 case notwordbound:
3359 case wordbeg:
3360 case wordend:
3361 case push_dummy_failure:
3362 continue;
3363
3364
3365 case jump_n:
3366 case pop_failure_jump:
3367 case maybe_pop_jump:
3368 case jump:
3369 case jump_past_alt:
3370 case dummy_failure_jump:
3371 EXTRACT_NUMBER_AND_INCR (j, p);
3372 p += j;
3373 if (j > 0)
3374 continue;
3375
3376 /* Jump backward implies we just went through the body of a
3377 loop and matched nothing. Opcode jumped to should be
3378 `on_failure_jump' or `succeed_n'. Just treat it like an
3379 ordinary jump. For a * loop, it has pushed its failure
3380 point already; if so, discard that as redundant. */
3381 if ((re_opcode_t) *p != on_failure_jump
3382 && (re_opcode_t) *p != succeed_n)
3383 continue;
3384
3385 p++;
3386 EXTRACT_NUMBER_AND_INCR (j, p);
3387 p += j;
3388
3389 /* If what's on the stack is where we are now, pop it. */
3390 if (!FAIL_STACK_EMPTY ()
3391 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3392 fail_stack.avail--;
3393
3394 continue;
3395
3396
3397 case on_failure_jump:
3398 case on_failure_keep_string_jump:
3399 handle_on_failure_jump:
3400 EXTRACT_NUMBER_AND_INCR (j, p);
3401
3402 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3403 end of the pattern. We don't want to push such a point,
3404 since when we restore it above, entering the switch will
3405 increment `p' past the end of the pattern. We don't need
3406 to push such a point since we obviously won't find any more
3407 fastmap entries beyond `pend'. Such a pattern can match
3408 the null string, though. */
3409 if (p + j < pend)
3410 {
3411 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3412 {
3413 RESET_FAIL_STACK ();
3414 return -2;
3415 }
3416 }
3417 else
3418 bufp->can_be_null = 1;
3419
3420 if (succeed_n_p)
3421 {
3422 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3423 succeed_n_p = false;
3424 }
3425
3426 continue;
3427
3428
3429 case succeed_n:
3430 /* Get to the number of times to succeed. */
3431 p += 2;
3432
3433 /* Increment p past the n for when k != 0. */
3434 EXTRACT_NUMBER_AND_INCR (k, p);
3435 if (k == 0)
3436 {
3437 p -= 4;
3438 succeed_n_p = true; /* Spaghetti code alert. */
3439 goto handle_on_failure_jump;
3440 }
3441 continue;
3442
3443
3444 case set_number_at:
3445 p += 4;
3446 continue;
3447
3448
3449 case start_memory:
3450 case stop_memory:
3451 p += 2;
3452 continue;
3453
3454
3455 default:
3456 abort (); /* We have listed all the cases. */
3457 } /* switch *p++ */
3458
3459 /* Getting here means we have found the possible starting
3460 characters for one path of the pattern -- and that the empty
3461 string does not match. We need not follow this path further.
3462 Instead, look at the next alternative (remembered on the
3463 stack), or quit if no more. The test at the top of the loop
3464 does these things. */
3465 path_can_be_null = false;
3466 p = pend;
3467 } /* while p */
3468
3469 /* Set `can_be_null' for the last path (also the first path, if the
3470 pattern is empty). */
3471 bufp->can_be_null |= path_can_be_null;
3472
3473 done:
3474 RESET_FAIL_STACK ();
3475 return 0;
3476 } /* re_compile_fastmap */
3477 #ifdef _LIBC
3478 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3479 #endif
3480 \f
3481 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3482 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3483 this memory for recording register information. STARTS and ENDS
3484 must be allocated using the malloc library routine, and must each
3485 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3486
3487 If NUM_REGS == 0, then subsequent matches should allocate their own
3488 register data.
3489
3490 Unless this function is called, the first search or match using
3491 PATTERN_BUFFER will allocate its own register data, without
3492 freeing the old data. */
3493
3494 void
3495 re_set_registers (bufp, regs, num_regs, starts, ends)
3496 struct re_pattern_buffer *bufp;
3497 struct re_registers *regs;
3498 unsigned num_regs;
3499 regoff_t *starts, *ends;
3500 {
3501 if (num_regs)
3502 {
3503 bufp->regs_allocated = REGS_REALLOCATE;
3504 regs->num_regs = num_regs;
3505 regs->start = starts;
3506 regs->end = ends;
3507 }
3508 else
3509 {
3510 bufp->regs_allocated = REGS_UNALLOCATED;
3511 regs->num_regs = 0;
3512 regs->start = regs->end = (regoff_t *) 0;
3513 }
3514 }
3515 #ifdef _LIBC
3516 weak_alias (__re_set_registers, re_set_registers)
3517 #endif
3518 \f
3519 /* Searching routines. */
3520
3521 /* Like re_search_2, below, but only one string is specified, and
3522 doesn't let you say where to stop matching. */
3523
3524 int
3525 re_search (bufp, string, size, startpos, range, regs)
3526 struct re_pattern_buffer *bufp;
3527 const char *string;
3528 int size, startpos, range;
3529 struct re_registers *regs;
3530 {
3531 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3532 regs, size);
3533 }
3534 #ifdef _LIBC
3535 weak_alias (__re_search, re_search)
3536 #endif
3537
3538
3539 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3540 virtual concatenation of STRING1 and STRING2, starting first at index
3541 STARTPOS, then at STARTPOS + 1, and so on.
3542
3543 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3544
3545 RANGE is how far to scan while trying to match. RANGE = 0 means try
3546 only at STARTPOS; in general, the last start tried is STARTPOS +
3547 RANGE.
3548
3549 In REGS, return the indices of the virtual concatenation of STRING1
3550 and STRING2 that matched the entire BUFP->buffer and its contained
3551 subexpressions.
3552
3553 Do not consider matching one past the index STOP in the virtual
3554 concatenation of STRING1 and STRING2.
3555
3556 We return either the position in the strings at which the match was
3557 found, -1 if no match, or -2 if error (such as failure
3558 stack overflow). */
3559
3560 int
3561 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3562 struct re_pattern_buffer *bufp;
3563 const char *string1, *string2;
3564 int size1, size2;
3565 int startpos;
3566 int range;
3567 struct re_registers *regs;
3568 int stop;
3569 {
3570 int val;
3571 register char *fastmap = bufp->fastmap;
3572 register RE_TRANSLATE_TYPE translate = bufp->translate;
3573 int total_size = size1 + size2;
3574 int endpos = startpos + range;
3575
3576 /* Check for out-of-range STARTPOS. */
3577 if (startpos < 0 || startpos > total_size)
3578 return -1;
3579
3580 /* Fix up RANGE if it might eventually take us outside
3581 the virtual concatenation of STRING1 and STRING2.
3582 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3583 if (endpos < 0)
3584 range = 0 - startpos;
3585 else if (endpos > total_size)
3586 range = total_size - startpos;
3587
3588 /* If the search isn't to be a backwards one, don't waste time in a
3589 search for a pattern that must be anchored. */
3590 if (bufp->used > 0 && range > 0
3591 && ((re_opcode_t) bufp->buffer[0] == begbuf
3592 /* `begline' is like `begbuf' if it cannot match at newlines. */
3593 || ((re_opcode_t) bufp->buffer[0] == begline
3594 && !bufp->newline_anchor)))
3595 {
3596 if (startpos > 0)
3597 return -1;
3598 else
3599 range = 1;
3600 }
3601
3602 #ifdef emacs
3603 /* In a forward search for something that starts with \=.
3604 don't keep searching past point. */
3605 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3606 {
3607 range = PT - startpos;
3608 if (range <= 0)
3609 return -1;
3610 }
3611 #endif /* emacs */
3612
3613 /* Update the fastmap now if not correct already. */
3614 if (fastmap && !bufp->fastmap_accurate)
3615 if (re_compile_fastmap (bufp) == -2)
3616 return -2;
3617
3618 /* Loop through the string, looking for a place to start matching. */
3619 for (;;)
3620 {
3621 /* If a fastmap is supplied, skip quickly over characters that
3622 cannot be the start of a match. If the pattern can match the
3623 null string, however, we don't need to skip characters; we want
3624 the first null string. */
3625 if (fastmap && startpos < total_size && !bufp->can_be_null)
3626 {
3627 if (range > 0) /* Searching forwards. */
3628 {
3629 register const char *d;
3630 register int lim = 0;
3631 int irange = range;
3632
3633 if (startpos < size1 && startpos + range >= size1)
3634 lim = range - (size1 - startpos);
3635
3636 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3637
3638 /* Written out as an if-else to avoid testing `translate'
3639 inside the loop. */
3640 if (translate)
3641 while (range > lim
3642 && !fastmap[(unsigned char)
3643 translate[(unsigned char) *d++]])
3644 range--;
3645 else
3646 while (range > lim && !fastmap[(unsigned char) *d++])
3647 range--;
3648
3649 startpos += irange - range;
3650 }
3651 else /* Searching backwards. */
3652 {
3653 register char c = (size1 == 0 || startpos >= size1
3654 ? string2[startpos - size1]
3655 : string1[startpos]);
3656
3657 if (!fastmap[(unsigned char) TRANSLATE (c)])
3658 goto advance;
3659 }
3660 }
3661
3662 /* If can't match the null string, and that's all we have left, fail. */
3663 if (range >= 0 && startpos == total_size && fastmap
3664 && !bufp->can_be_null)
3665 return -1;
3666
3667 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3668 startpos, regs, stop);
3669 #ifndef REGEX_MALLOC
3670 # ifdef C_ALLOCA
3671 alloca (0);
3672 # endif
3673 #endif
3674
3675 if (val >= 0)
3676 return startpos;
3677
3678 if (val == -2)
3679 return -2;
3680
3681 advance:
3682 if (!range)
3683 break;
3684 else if (range > 0)
3685 {
3686 range--;
3687 startpos++;
3688 }
3689 else
3690 {
3691 range++;
3692 startpos--;
3693 }
3694 }
3695 return -1;
3696 } /* re_search_2 */
3697 #ifdef _LIBC
3698 weak_alias (__re_search_2, re_search_2)
3699 #endif
3700 \f
3701 /* This converts PTR, a pointer into one of the search strings `string1'
3702 and `string2' into an offset from the beginning of that string. */
3703 #define POINTER_TO_OFFSET(ptr) \
3704 (FIRST_STRING_P (ptr) \
3705 ? ((regoff_t) ((ptr) - string1)) \
3706 : ((regoff_t) ((ptr) - string2 + size1)))
3707
3708 /* Macros for dealing with the split strings in re_match_2. */
3709
3710 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3711
3712 /* Call before fetching a character with *d. This switches over to
3713 string2 if necessary. */
3714 #define PREFETCH() \
3715 while (d == dend) \
3716 { \
3717 /* End of string2 => fail. */ \
3718 if (dend == end_match_2) \
3719 goto fail; \
3720 /* End of string1 => advance to string2. */ \
3721 d = string2; \
3722 dend = end_match_2; \
3723 }
3724
3725
3726 /* Test if at very beginning or at very end of the virtual concatenation
3727 of `string1' and `string2'. If only one string, it's `string2'. */
3728 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3729 #define AT_STRINGS_END(d) ((d) == end2)
3730
3731
3732 /* Test if D points to a character which is word-constituent. We have
3733 two special cases to check for: if past the end of string1, look at
3734 the first character in string2; and if before the beginning of
3735 string2, look at the last character in string1. */
3736 #define WORDCHAR_P(d) \
3737 (SYNTAX ((d) == end1 ? *string2 \
3738 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3739 == Sword)
3740
3741 /* Disabled due to a compiler bug -- see comment at case wordbound */
3742 #if 0
3743 /* Test if the character before D and the one at D differ with respect
3744 to being word-constituent. */
3745 #define AT_WORD_BOUNDARY(d) \
3746 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3747 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3748 #endif
3749
3750 /* Free everything we malloc. */
3751 #ifdef MATCH_MAY_ALLOCATE
3752 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3753 # define FREE_VARIABLES() \
3754 do { \
3755 REGEX_FREE_STACK (fail_stack.stack); \
3756 FREE_VAR (regstart); \
3757 FREE_VAR (regend); \
3758 FREE_VAR (old_regstart); \
3759 FREE_VAR (old_regend); \
3760 FREE_VAR (best_regstart); \
3761 FREE_VAR (best_regend); \
3762 FREE_VAR (reg_info); \
3763 FREE_VAR (reg_dummy); \
3764 FREE_VAR (reg_info_dummy); \
3765 } while (0)
3766 #else
3767 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3768 #endif /* not MATCH_MAY_ALLOCATE */
3769
3770 /* These values must meet several constraints. They must not be valid
3771 register values; since we have a limit of 255 registers (because
3772 we use only one byte in the pattern for the register number), we can
3773 use numbers larger than 255. They must differ by 1, because of
3774 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3775 be larger than the value for the highest register, so we do not try
3776 to actually save any registers when none are active. */
3777 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3778 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3779 \f
3780 /* Matching routines. */
3781
3782 #ifndef emacs /* Emacs never uses this. */
3783 /* re_match is like re_match_2 except it takes only a single string. */
3784
3785 int
3786 re_match (bufp, string, size, pos, regs)
3787 struct re_pattern_buffer *bufp;
3788 const char *string;
3789 int size, pos;
3790 struct re_registers *regs;
3791 {
3792 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3793 pos, regs, size);
3794 # ifndef REGEX_MALLOC
3795 # ifdef C_ALLOCA
3796 alloca (0);
3797 # endif
3798 # endif
3799 return result;
3800 }
3801 # ifdef _LIBC
3802 weak_alias (__re_match, re_match)
3803 # endif
3804 #endif /* not emacs */
3805
3806 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3807 unsigned char *end,
3808 register_info_type *reg_info));
3809 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3810 unsigned char *end,
3811 register_info_type *reg_info));
3812 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3813 unsigned char *end,
3814 register_info_type *reg_info));
3815 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3816 int len, char *translate));
3817
3818 /* re_match_2 matches the compiled pattern in BUFP against the
3819 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3820 and SIZE2, respectively). We start matching at POS, and stop
3821 matching at STOP.
3822
3823 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3824 store offsets for the substring each group matched in REGS. See the
3825 documentation for exactly how many groups we fill.
3826
3827 We return -1 if no match, -2 if an internal error (such as the
3828 failure stack overflowing). Otherwise, we return the length of the
3829 matched substring. */
3830
3831 int
3832 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3833 struct re_pattern_buffer *bufp;
3834 const char *string1, *string2;
3835 int size1, size2;
3836 int pos;
3837 struct re_registers *regs;
3838 int stop;
3839 {
3840 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3841 pos, regs, stop);
3842 #ifndef REGEX_MALLOC
3843 # ifdef C_ALLOCA
3844 alloca (0);
3845 # endif
3846 #endif
3847 return result;
3848 }
3849 #ifdef _LIBC
3850 weak_alias (__re_match_2, re_match_2)
3851 #endif
3852
3853 /* This is a separate function so that we can force an alloca cleanup
3854 afterwards. */
3855 static int
3856 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3857 struct re_pattern_buffer *bufp;
3858 const char *string1, *string2;
3859 int size1, size2;
3860 int pos;
3861 struct re_registers *regs;
3862 int stop;
3863 {
3864 /* General temporaries. */
3865 int mcnt;
3866 unsigned char *p1;
3867
3868 /* Just past the end of the corresponding string. */
3869 const char *end1, *end2;
3870
3871 /* Pointers into string1 and string2, just past the last characters in
3872 each to consider matching. */
3873 const char *end_match_1, *end_match_2;
3874
3875 /* Where we are in the data, and the end of the current string. */
3876 const char *d, *dend;
3877
3878 /* Where we are in the pattern, and the end of the pattern. */
3879 unsigned char *p = bufp->buffer;
3880 register unsigned char *pend = p + bufp->used;
3881
3882 /* Mark the opcode just after a start_memory, so we can test for an
3883 empty subpattern when we get to the stop_memory. */
3884 unsigned char *just_past_start_mem = 0;
3885
3886 /* We use this to map every character in the string. */
3887 RE_TRANSLATE_TYPE translate = bufp->translate;
3888
3889 /* Failure point stack. Each place that can handle a failure further
3890 down the line pushes a failure point on this stack. It consists of
3891 restart, regend, and reg_info for all registers corresponding to
3892 the subexpressions we're currently inside, plus the number of such
3893 registers, and, finally, two char *'s. The first char * is where
3894 to resume scanning the pattern; the second one is where to resume
3895 scanning the strings. If the latter is zero, the failure point is
3896 a ``dummy''; if a failure happens and the failure point is a dummy,
3897 it gets discarded and the next next one is tried. */
3898 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3899 fail_stack_type fail_stack;
3900 #endif
3901 #ifdef DEBUG
3902 static unsigned failure_id;
3903 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3904 #endif
3905
3906 #ifdef REL_ALLOC
3907 /* This holds the pointer to the failure stack, when
3908 it is allocated relocatably. */
3909 fail_stack_elt_t *failure_stack_ptr;
3910 #endif
3911
3912 /* We fill all the registers internally, independent of what we
3913 return, for use in backreferences. The number here includes
3914 an element for register zero. */
3915 size_t num_regs = bufp->re_nsub + 1;
3916
3917 /* The currently active registers. */
3918 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3919 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3920
3921 /* Information on the contents of registers. These are pointers into
3922 the input strings; they record just what was matched (on this
3923 attempt) by a subexpression part of the pattern, that is, the
3924 regnum-th regstart pointer points to where in the pattern we began
3925 matching and the regnum-th regend points to right after where we
3926 stopped matching the regnum-th subexpression. (The zeroth register
3927 keeps track of what the whole pattern matches.) */
3928 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3929 const char **regstart, **regend;
3930 #endif
3931
3932 /* If a group that's operated upon by a repetition operator fails to
3933 match anything, then the register for its start will need to be
3934 restored because it will have been set to wherever in the string we
3935 are when we last see its open-group operator. Similarly for a
3936 register's end. */
3937 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3938 const char **old_regstart, **old_regend;
3939 #endif
3940
3941 /* The is_active field of reg_info helps us keep track of which (possibly
3942 nested) subexpressions we are currently in. The matched_something
3943 field of reg_info[reg_num] helps us tell whether or not we have
3944 matched any of the pattern so far this time through the reg_num-th
3945 subexpression. These two fields get reset each time through any
3946 loop their register is in. */
3947 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3948 register_info_type *reg_info;
3949 #endif
3950
3951 /* The following record the register info as found in the above
3952 variables when we find a match better than any we've seen before.
3953 This happens as we backtrack through the failure points, which in
3954 turn happens only if we have not yet matched the entire string. */
3955 unsigned best_regs_set = false;
3956 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3957 const char **best_regstart, **best_regend;
3958 #endif
3959
3960 /* Logically, this is `best_regend[0]'. But we don't want to have to
3961 allocate space for that if we're not allocating space for anything
3962 else (see below). Also, we never need info about register 0 for
3963 any of the other register vectors, and it seems rather a kludge to
3964 treat `best_regend' differently than the rest. So we keep track of
3965 the end of the best match so far in a separate variable. We
3966 initialize this to NULL so that when we backtrack the first time
3967 and need to test it, it's not garbage. */
3968 const char *match_end = NULL;
3969
3970 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3971 int set_regs_matched_done = 0;
3972
3973 /* Used when we pop values we don't care about. */
3974 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3975 const char **reg_dummy;
3976 register_info_type *reg_info_dummy;
3977 #endif
3978
3979 #ifdef DEBUG
3980 /* Counts the total number of registers pushed. */
3981 unsigned num_regs_pushed = 0;
3982 #endif
3983
3984 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3985
3986 INIT_FAIL_STACK ();
3987
3988 #ifdef MATCH_MAY_ALLOCATE
3989 /* Do not bother to initialize all the register variables if there are
3990 no groups in the pattern, as it takes a fair amount of time. If
3991 there are groups, we include space for register 0 (the whole
3992 pattern), even though we never use it, since it simplifies the
3993 array indexing. We should fix this. */
3994 if (bufp->re_nsub)
3995 {
3996 regstart = REGEX_TALLOC (num_regs, const char *);
3997 regend = REGEX_TALLOC (num_regs, const char *);
3998 old_regstart = REGEX_TALLOC (num_regs, const char *);
3999 old_regend = REGEX_TALLOC (num_regs, const char *);
4000 best_regstart = REGEX_TALLOC (num_regs, const char *);
4001 best_regend = REGEX_TALLOC (num_regs, const char *);
4002 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4003 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4004 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4005
4006 if (!(regstart && regend && old_regstart && old_regend && reg_info
4007 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4008 {
4009 FREE_VARIABLES ();
4010 return -2;
4011 }
4012 }
4013 else
4014 {
4015 /* We must initialize all our variables to NULL, so that
4016 `FREE_VARIABLES' doesn't try to free them. */
4017 regstart = regend = old_regstart = old_regend = best_regstart
4018 = best_regend = reg_dummy = NULL;
4019 reg_info = reg_info_dummy = (register_info_type *) NULL;
4020 }
4021 #endif /* MATCH_MAY_ALLOCATE */
4022
4023 /* The starting position is bogus. */
4024 if (pos < 0 || pos > size1 + size2)
4025 {
4026 FREE_VARIABLES ();
4027 return -1;
4028 }
4029
4030 /* Initialize subexpression text positions to -1 to mark ones that no
4031 start_memory/stop_memory has been seen for. Also initialize the
4032 register information struct. */
4033 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4034 {
4035 regstart[mcnt] = regend[mcnt]
4036 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4037
4038 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4039 IS_ACTIVE (reg_info[mcnt]) = 0;
4040 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4041 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4042 }
4043
4044 /* We move `string1' into `string2' if the latter's empty -- but not if
4045 `string1' is null. */
4046 if (size2 == 0 && string1 != NULL)
4047 {
4048 string2 = string1;
4049 size2 = size1;
4050 string1 = 0;
4051 size1 = 0;
4052 }
4053 end1 = string1 + size1;
4054 end2 = string2 + size2;
4055
4056 /* Compute where to stop matching, within the two strings. */
4057 if (stop <= size1)
4058 {
4059 end_match_1 = string1 + stop;
4060 end_match_2 = string2;
4061 }
4062 else
4063 {
4064 end_match_1 = end1;
4065 end_match_2 = string2 + stop - size1;
4066 }
4067
4068 /* `p' scans through the pattern as `d' scans through the data.
4069 `dend' is the end of the input string that `d' points within. `d'
4070 is advanced into the following input string whenever necessary, but
4071 this happens before fetching; therefore, at the beginning of the
4072 loop, `d' can be pointing at the end of a string, but it cannot
4073 equal `string2'. */
4074 if (size1 > 0 && pos <= size1)
4075 {
4076 d = string1 + pos;
4077 dend = end_match_1;
4078 }
4079 else
4080 {
4081 d = string2 + pos - size1;
4082 dend = end_match_2;
4083 }
4084
4085 DEBUG_PRINT1 ("The compiled pattern is:\n");
4086 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4087 DEBUG_PRINT1 ("The string to match is: `");
4088 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4089 DEBUG_PRINT1 ("'\n");
4090
4091 /* This loops over pattern commands. It exits by returning from the
4092 function if the match is complete, or it drops through if the match
4093 fails at this starting point in the input data. */
4094 for (;;)
4095 {
4096 #ifdef _LIBC
4097 DEBUG_PRINT2 ("\n%p: ", p);
4098 #else
4099 DEBUG_PRINT2 ("\n0x%x: ", p);
4100 #endif
4101
4102 if (p == pend)
4103 { /* End of pattern means we might have succeeded. */
4104 DEBUG_PRINT1 ("end of pattern ... ");
4105
4106 /* If we haven't matched the entire string, and we want the
4107 longest match, try backtracking. */
4108 if (d != end_match_2)
4109 {
4110 /* 1 if this match ends in the same string (string1 or string2)
4111 as the best previous match. */
4112 boolean same_str_p = (FIRST_STRING_P (match_end)
4113 == MATCHING_IN_FIRST_STRING);
4114 /* 1 if this match is the best seen so far. */
4115 boolean best_match_p;
4116
4117 /* AIX compiler got confused when this was combined
4118 with the previous declaration. */
4119 if (same_str_p)
4120 best_match_p = d > match_end;
4121 else
4122 best_match_p = !MATCHING_IN_FIRST_STRING;
4123
4124 DEBUG_PRINT1 ("backtracking.\n");
4125
4126 if (!FAIL_STACK_EMPTY ())
4127 { /* More failure points to try. */
4128
4129 /* If exceeds best match so far, save it. */
4130 if (!best_regs_set || best_match_p)
4131 {
4132 best_regs_set = true;
4133 match_end = d;
4134
4135 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4136
4137 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4138 {
4139 best_regstart[mcnt] = regstart[mcnt];
4140 best_regend[mcnt] = regend[mcnt];
4141 }
4142 }
4143 goto fail;
4144 }
4145
4146 /* If no failure points, don't restore garbage. And if
4147 last match is real best match, don't restore second
4148 best one. */
4149 else if (best_regs_set && !best_match_p)
4150 {
4151 restore_best_regs:
4152 /* Restore best match. It may happen that `dend ==
4153 end_match_1' while the restored d is in string2.
4154 For example, the pattern `x.*y.*z' against the
4155 strings `x-' and `y-z-', if the two strings are
4156 not consecutive in memory. */
4157 DEBUG_PRINT1 ("Restoring best registers.\n");
4158
4159 d = match_end;
4160 dend = ((d >= string1 && d <= end1)
4161 ? end_match_1 : end_match_2);
4162
4163 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4164 {
4165 regstart[mcnt] = best_regstart[mcnt];
4166 regend[mcnt] = best_regend[mcnt];
4167 }
4168 }
4169 } /* d != end_match_2 */
4170
4171 succeed_label:
4172 DEBUG_PRINT1 ("Accepting match.\n");
4173
4174 /* If caller wants register contents data back, do it. */
4175 if (regs && !bufp->no_sub)
4176 {
4177 /* Have the register data arrays been allocated? */
4178 if (bufp->regs_allocated == REGS_UNALLOCATED)
4179 { /* No. So allocate them with malloc. We need one
4180 extra element beyond `num_regs' for the `-1' marker
4181 GNU code uses. */
4182 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4183 regs->start = TALLOC (regs->num_regs, regoff_t);
4184 regs->end = TALLOC (regs->num_regs, regoff_t);
4185 if (regs->start == NULL || regs->end == NULL)
4186 {
4187 FREE_VARIABLES ();
4188 return -2;
4189 }
4190 bufp->regs_allocated = REGS_REALLOCATE;
4191 }
4192 else if (bufp->regs_allocated == REGS_REALLOCATE)
4193 { /* Yes. If we need more elements than were already
4194 allocated, reallocate them. If we need fewer, just
4195 leave it alone. */
4196 if (regs->num_regs < num_regs + 1)
4197 {
4198 regs->num_regs = num_regs + 1;
4199 RETALLOC (regs->start, regs->num_regs, regoff_t);
4200 RETALLOC (regs->end, regs->num_regs, regoff_t);
4201 if (regs->start == NULL || regs->end == NULL)
4202 {
4203 FREE_VARIABLES ();
4204 return -2;
4205 }
4206 }
4207 }
4208 else
4209 {
4210 /* These braces fend off a "empty body in an else-statement"
4211 warning under GCC when assert expands to nothing. */
4212 assert (bufp->regs_allocated == REGS_FIXED);
4213 }
4214
4215 /* Convert the pointer data in `regstart' and `regend' to
4216 indices. Register zero has to be set differently,
4217 since we haven't kept track of any info for it. */
4218 if (regs->num_regs > 0)
4219 {
4220 regs->start[0] = pos;
4221 regs->end[0] = (MATCHING_IN_FIRST_STRING
4222 ? ((regoff_t) (d - string1))
4223 : ((regoff_t) (d - string2 + size1)));
4224 }
4225
4226 /* Go through the first `min (num_regs, regs->num_regs)'
4227 registers, since that is all we initialized. */
4228 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4229 mcnt++)
4230 {
4231 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4232 regs->start[mcnt] = regs->end[mcnt] = -1;
4233 else
4234 {
4235 regs->start[mcnt]
4236 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4237 regs->end[mcnt]
4238 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4239 }
4240 }
4241
4242 /* If the regs structure we return has more elements than
4243 were in the pattern, set the extra elements to -1. If
4244 we (re)allocated the registers, this is the case,
4245 because we always allocate enough to have at least one
4246 -1 at the end. */
4247 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4248 regs->start[mcnt] = regs->end[mcnt] = -1;
4249 } /* regs && !bufp->no_sub */
4250
4251 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4252 nfailure_points_pushed, nfailure_points_popped,
4253 nfailure_points_pushed - nfailure_points_popped);
4254 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4255
4256 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4257 ? string1
4258 : string2 - size1);
4259
4260 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4261
4262 FREE_VARIABLES ();
4263 return mcnt;
4264 }
4265
4266 /* Otherwise match next pattern command. */
4267 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4268 {
4269 /* Ignore these. Used to ignore the n of succeed_n's which
4270 currently have n == 0. */
4271 case no_op:
4272 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4273 break;
4274
4275 case succeed:
4276 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4277 goto succeed_label;
4278
4279 /* Match the next n pattern characters exactly. The following
4280 byte in the pattern defines n, and the n bytes after that
4281 are the characters to match. */
4282 case exactn:
4283 mcnt = *p++;
4284 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4285
4286 /* This is written out as an if-else so we don't waste time
4287 testing `translate' inside the loop. */
4288 if (translate)
4289 {
4290 do
4291 {
4292 PREFETCH ();
4293 if ((unsigned char) translate[(unsigned char) *d++]
4294 != (unsigned char) *p++)
4295 goto fail;
4296 }
4297 while (--mcnt);
4298 }
4299 else
4300 {
4301 do
4302 {
4303 PREFETCH ();
4304 if (*d++ != (char) *p++) goto fail;
4305 }
4306 while (--mcnt);
4307 }
4308 SET_REGS_MATCHED ();
4309 break;
4310
4311
4312 /* Match any character except possibly a newline or a null. */
4313 case anychar:
4314 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4315
4316 PREFETCH ();
4317
4318 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4319 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4320 goto fail;
4321
4322 SET_REGS_MATCHED ();
4323 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4324 d++;
4325 break;
4326
4327
4328 case charset:
4329 case charset_not:
4330 {
4331 register unsigned char c;
4332 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4333
4334 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4335
4336 PREFETCH ();
4337 c = TRANSLATE (*d); /* The character to match. */
4338
4339 /* Cast to `unsigned' instead of `unsigned char' in case the
4340 bit list is a full 32 bytes long. */
4341 if (c < (unsigned) (*p * BYTEWIDTH)
4342 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4343 not = !not;
4344
4345 p += 1 + *p;
4346
4347 if (!not) goto fail;
4348
4349 SET_REGS_MATCHED ();
4350 d++;
4351 break;
4352 }
4353
4354
4355 /* The beginning of a group is represented by start_memory.
4356 The arguments are the register number in the next byte, and the
4357 number of groups inner to this one in the next. The text
4358 matched within the group is recorded (in the internal
4359 registers data structure) under the register number. */
4360 case start_memory:
4361 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4362
4363 /* Find out if this group can match the empty string. */
4364 p1 = p; /* To send to group_match_null_string_p. */
4365
4366 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4367 REG_MATCH_NULL_STRING_P (reg_info[*p])
4368 = group_match_null_string_p (&p1, pend, reg_info);
4369
4370 /* Save the position in the string where we were the last time
4371 we were at this open-group operator in case the group is
4372 operated upon by a repetition operator, e.g., with `(a*)*b'
4373 against `ab'; then we want to ignore where we are now in
4374 the string in case this attempt to match fails. */
4375 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4376 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4377 : regstart[*p];
4378 DEBUG_PRINT2 (" old_regstart: %d\n",
4379 POINTER_TO_OFFSET (old_regstart[*p]));
4380
4381 regstart[*p] = d;
4382 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4383
4384 IS_ACTIVE (reg_info[*p]) = 1;
4385 MATCHED_SOMETHING (reg_info[*p]) = 0;
4386
4387 /* Clear this whenever we change the register activity status. */
4388 set_regs_matched_done = 0;
4389
4390 /* This is the new highest active register. */
4391 highest_active_reg = *p;
4392
4393 /* If nothing was active before, this is the new lowest active
4394 register. */
4395 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4396 lowest_active_reg = *p;
4397
4398 /* Move past the register number and inner group count. */
4399 p += 2;
4400 just_past_start_mem = p;
4401
4402 break;
4403
4404
4405 /* The stop_memory opcode represents the end of a group. Its
4406 arguments are the same as start_memory's: the register
4407 number, and the number of inner groups. */
4408 case stop_memory:
4409 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4410
4411 /* We need to save the string position the last time we were at
4412 this close-group operator in case the group is operated
4413 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4414 against `aba'; then we want to ignore where we are now in
4415 the string in case this attempt to match fails. */
4416 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4417 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4418 : regend[*p];
4419 DEBUG_PRINT2 (" old_regend: %d\n",
4420 POINTER_TO_OFFSET (old_regend[*p]));
4421
4422 regend[*p] = d;
4423 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4424
4425 /* This register isn't active anymore. */
4426 IS_ACTIVE (reg_info[*p]) = 0;
4427
4428 /* Clear this whenever we change the register activity status. */
4429 set_regs_matched_done = 0;
4430
4431 /* If this was the only register active, nothing is active
4432 anymore. */
4433 if (lowest_active_reg == highest_active_reg)
4434 {
4435 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4436 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4437 }
4438 else
4439 { /* We must scan for the new highest active register, since
4440 it isn't necessarily one less than now: consider
4441 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4442 new highest active register is 1. */
4443 unsigned char r = *p - 1;
4444 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4445 r--;
4446
4447 /* If we end up at register zero, that means that we saved
4448 the registers as the result of an `on_failure_jump', not
4449 a `start_memory', and we jumped to past the innermost
4450 `stop_memory'. For example, in ((.)*) we save
4451 registers 1 and 2 as a result of the *, but when we pop
4452 back to the second ), we are at the stop_memory 1.
4453 Thus, nothing is active. */
4454 if (r == 0)
4455 {
4456 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4457 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4458 }
4459 else
4460 highest_active_reg = r;
4461 }
4462
4463 /* If just failed to match something this time around with a
4464 group that's operated on by a repetition operator, try to
4465 force exit from the ``loop'', and restore the register
4466 information for this group that we had before trying this
4467 last match. */
4468 if ((!MATCHED_SOMETHING (reg_info[*p])
4469 || just_past_start_mem == p - 1)
4470 && (p + 2) < pend)
4471 {
4472 boolean is_a_jump_n = false;
4473
4474 p1 = p + 2;
4475 mcnt = 0;
4476 switch ((re_opcode_t) *p1++)
4477 {
4478 case jump_n:
4479 is_a_jump_n = true;
4480 case pop_failure_jump:
4481 case maybe_pop_jump:
4482 case jump:
4483 case dummy_failure_jump:
4484 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4485 if (is_a_jump_n)
4486 p1 += 2;
4487 break;
4488
4489 default:
4490 /* do nothing */ ;
4491 }
4492 p1 += mcnt;
4493
4494 /* If the next operation is a jump backwards in the pattern
4495 to an on_failure_jump right before the start_memory
4496 corresponding to this stop_memory, exit from the loop
4497 by forcing a failure after pushing on the stack the
4498 on_failure_jump's jump in the pattern, and d. */
4499 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4500 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4501 {
4502 /* If this group ever matched anything, then restore
4503 what its registers were before trying this last
4504 failed match, e.g., with `(a*)*b' against `ab' for
4505 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4506 against `aba' for regend[3].
4507
4508 Also restore the registers for inner groups for,
4509 e.g., `((a*)(b*))*' against `aba' (register 3 would
4510 otherwise get trashed). */
4511
4512 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4513 {
4514 unsigned r;
4515
4516 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4517
4518 /* Restore this and inner groups' (if any) registers. */
4519 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4520 r++)
4521 {
4522 regstart[r] = old_regstart[r];
4523
4524 /* xx why this test? */
4525 if (old_regend[r] >= regstart[r])
4526 regend[r] = old_regend[r];
4527 }
4528 }
4529 p1++;
4530 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4531 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4532
4533 goto fail;
4534 }
4535 }
4536
4537 /* Move past the register number and the inner group count. */
4538 p += 2;
4539 break;
4540
4541
4542 /* \<digit> has been turned into a `duplicate' command which is
4543 followed by the numeric value of <digit> as the register number. */
4544 case duplicate:
4545 {
4546 register const char *d2, *dend2;
4547 int regno = *p++; /* Get which register to match against. */
4548 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4549
4550 /* Can't back reference a group which we've never matched. */
4551 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4552 goto fail;
4553
4554 /* Where in input to try to start matching. */
4555 d2 = regstart[regno];
4556
4557 /* Where to stop matching; if both the place to start and
4558 the place to stop matching are in the same string, then
4559 set to the place to stop, otherwise, for now have to use
4560 the end of the first string. */
4561
4562 dend2 = ((FIRST_STRING_P (regstart[regno])
4563 == FIRST_STRING_P (regend[regno]))
4564 ? regend[regno] : end_match_1);
4565 for (;;)
4566 {
4567 /* If necessary, advance to next segment in register
4568 contents. */
4569 while (d2 == dend2)
4570 {
4571 if (dend2 == end_match_2) break;
4572 if (dend2 == regend[regno]) break;
4573
4574 /* End of string1 => advance to string2. */
4575 d2 = string2;
4576 dend2 = regend[regno];
4577 }
4578 /* At end of register contents => success */
4579 if (d2 == dend2) break;
4580
4581 /* If necessary, advance to next segment in data. */
4582 PREFETCH ();
4583
4584 /* How many characters left in this segment to match. */
4585 mcnt = dend - d;
4586
4587 /* Want how many consecutive characters we can match in
4588 one shot, so, if necessary, adjust the count. */
4589 if (mcnt > dend2 - d2)
4590 mcnt = dend2 - d2;
4591
4592 /* Compare that many; failure if mismatch, else move
4593 past them. */
4594 if (translate
4595 ? bcmp_translate (d, d2, mcnt, translate)
4596 : memcmp (d, d2, mcnt))
4597 goto fail;
4598 d += mcnt, d2 += mcnt;
4599
4600 /* Do this because we've match some characters. */
4601 SET_REGS_MATCHED ();
4602 }
4603 }
4604 break;
4605
4606
4607 /* begline matches the empty string at the beginning of the string
4608 (unless `not_bol' is set in `bufp'), and, if
4609 `newline_anchor' is set, after newlines. */
4610 case begline:
4611 DEBUG_PRINT1 ("EXECUTING begline.\n");
4612
4613 if (AT_STRINGS_BEG (d))
4614 {
4615 if (!bufp->not_bol) break;
4616 }
4617 else if (d[-1] == '\n' && bufp->newline_anchor)
4618 {
4619 break;
4620 }
4621 /* In all other cases, we fail. */
4622 goto fail;
4623
4624
4625 /* endline is the dual of begline. */
4626 case endline:
4627 DEBUG_PRINT1 ("EXECUTING endline.\n");
4628
4629 if (AT_STRINGS_END (d))
4630 {
4631 if (!bufp->not_eol) break;
4632 }
4633
4634 /* We have to ``prefetch'' the next character. */
4635 else if ((d == end1 ? *string2 : *d) == '\n'
4636 && bufp->newline_anchor)
4637 {
4638 break;
4639 }
4640 goto fail;
4641
4642
4643 /* Match at the very beginning of the data. */
4644 case begbuf:
4645 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4646 if (AT_STRINGS_BEG (d))
4647 break;
4648 goto fail;
4649
4650
4651 /* Match at the very end of the data. */
4652 case endbuf:
4653 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4654 if (AT_STRINGS_END (d))
4655 break;
4656 goto fail;
4657
4658
4659 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4660 pushes NULL as the value for the string on the stack. Then
4661 `pop_failure_point' will keep the current value for the
4662 string, instead of restoring it. To see why, consider
4663 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4664 then the . fails against the \n. But the next thing we want
4665 to do is match the \n against the \n; if we restored the
4666 string value, we would be back at the foo.
4667
4668 Because this is used only in specific cases, we don't need to
4669 check all the things that `on_failure_jump' does, to make
4670 sure the right things get saved on the stack. Hence we don't
4671 share its code. The only reason to push anything on the
4672 stack at all is that otherwise we would have to change
4673 `anychar's code to do something besides goto fail in this
4674 case; that seems worse than this. */
4675 case on_failure_keep_string_jump:
4676 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4677
4678 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4679 #ifdef _LIBC
4680 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4681 #else
4682 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4683 #endif
4684
4685 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4686 break;
4687
4688
4689 /* Uses of on_failure_jump:
4690
4691 Each alternative starts with an on_failure_jump that points
4692 to the beginning of the next alternative. Each alternative
4693 except the last ends with a jump that in effect jumps past
4694 the rest of the alternatives. (They really jump to the
4695 ending jump of the following alternative, because tensioning
4696 these jumps is a hassle.)
4697
4698 Repeats start with an on_failure_jump that points past both
4699 the repetition text and either the following jump or
4700 pop_failure_jump back to this on_failure_jump. */
4701 case on_failure_jump:
4702 on_failure:
4703 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4704
4705 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4706 #ifdef _LIBC
4707 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4708 #else
4709 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4710 #endif
4711
4712 /* If this on_failure_jump comes right before a group (i.e.,
4713 the original * applied to a group), save the information
4714 for that group and all inner ones, so that if we fail back
4715 to this point, the group's information will be correct.
4716 For example, in \(a*\)*\1, we need the preceding group,
4717 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4718
4719 /* We can't use `p' to check ahead because we push
4720 a failure point to `p + mcnt' after we do this. */
4721 p1 = p;
4722
4723 /* We need to skip no_op's before we look for the
4724 start_memory in case this on_failure_jump is happening as
4725 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4726 against aba. */
4727 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4728 p1++;
4729
4730 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4731 {
4732 /* We have a new highest active register now. This will
4733 get reset at the start_memory we are about to get to,
4734 but we will have saved all the registers relevant to
4735 this repetition op, as described above. */
4736 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4737 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4738 lowest_active_reg = *(p1 + 1);
4739 }
4740
4741 DEBUG_PRINT1 (":\n");
4742 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4743 break;
4744
4745
4746 /* A smart repeat ends with `maybe_pop_jump'.
4747 We change it to either `pop_failure_jump' or `jump'. */
4748 case maybe_pop_jump:
4749 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4750 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4751 {
4752 register unsigned char *p2 = p;
4753
4754 /* Compare the beginning of the repeat with what in the
4755 pattern follows its end. If we can establish that there
4756 is nothing that they would both match, i.e., that we
4757 would have to backtrack because of (as in, e.g., `a*a')
4758 then we can change to pop_failure_jump, because we'll
4759 never have to backtrack.
4760
4761 This is not true in the case of alternatives: in
4762 `(a|ab)*' we do need to backtrack to the `ab' alternative
4763 (e.g., if the string was `ab'). But instead of trying to
4764 detect that here, the alternative has put on a dummy
4765 failure point which is what we will end up popping. */
4766
4767 /* Skip over open/close-group commands.
4768 If what follows this loop is a ...+ construct,
4769 look at what begins its body, since we will have to
4770 match at least one of that. */
4771 while (1)
4772 {
4773 if (p2 + 2 < pend
4774 && ((re_opcode_t) *p2 == stop_memory
4775 || (re_opcode_t) *p2 == start_memory))
4776 p2 += 3;
4777 else if (p2 + 6 < pend
4778 && (re_opcode_t) *p2 == dummy_failure_jump)
4779 p2 += 6;
4780 else
4781 break;
4782 }
4783
4784 p1 = p + mcnt;
4785 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4786 to the `maybe_finalize_jump' of this case. Examine what
4787 follows. */
4788
4789 /* If we're at the end of the pattern, we can change. */
4790 if (p2 == pend)
4791 {
4792 /* Consider what happens when matching ":\(.*\)"
4793 against ":/". I don't really understand this code
4794 yet. */
4795 p[-3] = (unsigned char) pop_failure_jump;
4796 DEBUG_PRINT1
4797 (" End of pattern: change to `pop_failure_jump'.\n");
4798 }
4799
4800 else if ((re_opcode_t) *p2 == exactn
4801 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4802 {
4803 register unsigned char c
4804 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4805
4806 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4807 {
4808 p[-3] = (unsigned char) pop_failure_jump;
4809 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4810 c, p1[5]);
4811 }
4812
4813 else if ((re_opcode_t) p1[3] == charset
4814 || (re_opcode_t) p1[3] == charset_not)
4815 {
4816 int not = (re_opcode_t) p1[3] == charset_not;
4817
4818 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4819 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4820 not = !not;
4821
4822 /* `not' is equal to 1 if c would match, which means
4823 that we can't change to pop_failure_jump. */
4824 if (!not)
4825 {
4826 p[-3] = (unsigned char) pop_failure_jump;
4827 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4828 }
4829 }
4830 }
4831 else if ((re_opcode_t) *p2 == charset)
4832 {
4833 /* We win if the first character of the loop is not part
4834 of the charset. */
4835 if ((re_opcode_t) p1[3] == exactn
4836 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4837 && (p2[2 + p1[5] / BYTEWIDTH]
4838 & (1 << (p1[5] % BYTEWIDTH)))))
4839 {
4840 p[-3] = (unsigned char) pop_failure_jump;
4841 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4842 }
4843
4844 else if ((re_opcode_t) p1[3] == charset_not)
4845 {
4846 int idx;
4847 /* We win if the charset_not inside the loop
4848 lists every character listed in the charset after. */
4849 for (idx = 0; idx < (int) p2[1]; idx++)
4850 if (! (p2[2 + idx] == 0
4851 || (idx < (int) p1[4]
4852 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4853 break;
4854
4855 if (idx == p2[1])
4856 {
4857 p[-3] = (unsigned char) pop_failure_jump;
4858 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4859 }
4860 }
4861 else if ((re_opcode_t) p1[3] == charset)
4862 {
4863 int idx;
4864 /* We win if the charset inside the loop
4865 has no overlap with the one after the loop. */
4866 for (idx = 0;
4867 idx < (int) p2[1] && idx < (int) p1[4];
4868 idx++)
4869 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4870 break;
4871
4872 if (idx == p2[1] || idx == p1[4])
4873 {
4874 p[-3] = (unsigned char) pop_failure_jump;
4875 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4876 }
4877 }
4878 }
4879 }
4880 p -= 2; /* Point at relative address again. */
4881 if ((re_opcode_t) p[-1] != pop_failure_jump)
4882 {
4883 p[-1] = (unsigned char) jump;
4884 DEBUG_PRINT1 (" Match => jump.\n");
4885 goto unconditional_jump;
4886 }
4887 /* Note fall through. */
4888
4889
4890 /* The end of a simple repeat has a pop_failure_jump back to
4891 its matching on_failure_jump, where the latter will push a
4892 failure point. The pop_failure_jump takes off failure
4893 points put on by this pop_failure_jump's matching
4894 on_failure_jump; we got through the pattern to here from the
4895 matching on_failure_jump, so didn't fail. */
4896 case pop_failure_jump:
4897 {
4898 /* We need to pass separate storage for the lowest and
4899 highest registers, even though we don't care about the
4900 actual values. Otherwise, we will restore only one
4901 register from the stack, since lowest will == highest in
4902 `pop_failure_point'. */
4903 active_reg_t dummy_low_reg, dummy_high_reg;
4904 unsigned char *pdummy;
4905 const char *sdummy;
4906
4907 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4908 POP_FAILURE_POINT (sdummy, pdummy,
4909 dummy_low_reg, dummy_high_reg,
4910 reg_dummy, reg_dummy, reg_info_dummy);
4911 }
4912 /* Note fall through. */
4913
4914 unconditional_jump:
4915 #ifdef _LIBC
4916 DEBUG_PRINT2 ("\n%p: ", p);
4917 #else
4918 DEBUG_PRINT2 ("\n0x%x: ", p);
4919 #endif
4920 /* Note fall through. */
4921
4922 /* Unconditionally jump (without popping any failure points). */
4923 case jump:
4924 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4925 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4926 p += mcnt; /* Do the jump. */
4927 #ifdef _LIBC
4928 DEBUG_PRINT2 ("(to %p).\n", p);
4929 #else
4930 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4931 #endif
4932 break;
4933
4934
4935 /* We need this opcode so we can detect where alternatives end
4936 in `group_match_null_string_p' et al. */
4937 case jump_past_alt:
4938 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4939 goto unconditional_jump;
4940
4941
4942 /* Normally, the on_failure_jump pushes a failure point, which
4943 then gets popped at pop_failure_jump. We will end up at
4944 pop_failure_jump, also, and with a pattern of, say, `a+', we
4945 are skipping over the on_failure_jump, so we have to push
4946 something meaningless for pop_failure_jump to pop. */
4947 case dummy_failure_jump:
4948 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4949 /* It doesn't matter what we push for the string here. What
4950 the code at `fail' tests is the value for the pattern. */
4951 PUSH_FAILURE_POINT (NULL, NULL, -2);
4952 goto unconditional_jump;
4953
4954
4955 /* At the end of an alternative, we need to push a dummy failure
4956 point in case we are followed by a `pop_failure_jump', because
4957 we don't want the failure point for the alternative to be
4958 popped. For example, matching `(a|ab)*' against `aab'
4959 requires that we match the `ab' alternative. */
4960 case push_dummy_failure:
4961 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4962 /* See comments just above at `dummy_failure_jump' about the
4963 two zeroes. */
4964 PUSH_FAILURE_POINT (NULL, NULL, -2);
4965 break;
4966
4967 /* Have to succeed matching what follows at least n times.
4968 After that, handle like `on_failure_jump'. */
4969 case succeed_n:
4970 EXTRACT_NUMBER (mcnt, p + 2);
4971 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4972
4973 assert (mcnt >= 0);
4974 /* Originally, this is how many times we HAVE to succeed. */
4975 if (mcnt > 0)
4976 {
4977 mcnt--;
4978 p += 2;
4979 STORE_NUMBER_AND_INCR (p, mcnt);
4980 #ifdef _LIBC
4981 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4982 #else
4983 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4984 #endif
4985 }
4986 else if (mcnt == 0)
4987 {
4988 #ifdef _LIBC
4989 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4990 #else
4991 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4992 #endif
4993 p[2] = (unsigned char) no_op;
4994 p[3] = (unsigned char) no_op;
4995 goto on_failure;
4996 }
4997 break;
4998
4999 case jump_n:
5000 EXTRACT_NUMBER (mcnt, p + 2);
5001 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5002
5003 /* Originally, this is how many times we CAN jump. */
5004 if (mcnt)
5005 {
5006 mcnt--;
5007 STORE_NUMBER (p + 2, mcnt);
5008 #ifdef _LIBC
5009 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
5010 #else
5011 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
5012 #endif
5013 goto unconditional_jump;
5014 }
5015 /* If don't have to jump any more, skip over the rest of command. */
5016 else
5017 p += 4;
5018 break;
5019
5020 case set_number_at:
5021 {
5022 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5023
5024 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5025 p1 = p + mcnt;
5026 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5027 #ifdef _LIBC
5028 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
5029 #else
5030 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5031 #endif
5032 STORE_NUMBER (p1, mcnt);
5033 break;
5034 }
5035
5036 #if 0
5037 /* The DEC Alpha C compiler 3.x generates incorrect code for the
5038 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
5039 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5040 macro and introducing temporary variables works around the bug. */
5041
5042 case wordbound:
5043 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5044 if (AT_WORD_BOUNDARY (d))
5045 break;
5046 goto fail;
5047
5048 case notwordbound:
5049 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5050 if (AT_WORD_BOUNDARY (d))
5051 goto fail;
5052 break;
5053 #else
5054 case wordbound:
5055 {
5056 boolean prevchar, thischar;
5057
5058 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5059 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5060 break;
5061
5062 prevchar = WORDCHAR_P (d - 1);
5063 thischar = WORDCHAR_P (d);
5064 if (prevchar != thischar)
5065 break;
5066 goto fail;
5067 }
5068
5069 case notwordbound:
5070 {
5071 boolean prevchar, thischar;
5072
5073 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5074 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5075 goto fail;
5076
5077 prevchar = WORDCHAR_P (d - 1);
5078 thischar = WORDCHAR_P (d);
5079 if (prevchar != thischar)
5080 goto fail;
5081 break;
5082 }
5083 #endif
5084
5085 case wordbeg:
5086 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5087 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5088 break;
5089 goto fail;
5090
5091 case wordend:
5092 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5093 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5094 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5095 break;
5096 goto fail;
5097
5098 #ifdef emacs
5099 case before_dot:
5100 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5101 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5102 goto fail;
5103 break;
5104
5105 case at_dot:
5106 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5107 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5108 goto fail;
5109 break;
5110
5111 case after_dot:
5112 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5113 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5114 goto fail;
5115 break;
5116
5117 case syntaxspec:
5118 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5119 mcnt = *p++;
5120 goto matchsyntax;
5121
5122 case wordchar:
5123 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5124 mcnt = (int) Sword;
5125 matchsyntax:
5126 PREFETCH ();
5127 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5128 d++;
5129 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5130 goto fail;
5131 SET_REGS_MATCHED ();
5132 break;
5133
5134 case notsyntaxspec:
5135 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5136 mcnt = *p++;
5137 goto matchnotsyntax;
5138
5139 case notwordchar:
5140 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5141 mcnt = (int) Sword;
5142 matchnotsyntax:
5143 PREFETCH ();
5144 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5145 d++;
5146 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5147 goto fail;
5148 SET_REGS_MATCHED ();
5149 break;
5150
5151 #else /* not emacs */
5152 case wordchar:
5153 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5154 PREFETCH ();
5155 if (!WORDCHAR_P (d))
5156 goto fail;
5157 SET_REGS_MATCHED ();
5158 d++;
5159 break;
5160
5161 case notwordchar:
5162 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5163 PREFETCH ();
5164 if (WORDCHAR_P (d))
5165 goto fail;
5166 SET_REGS_MATCHED ();
5167 d++;
5168 break;
5169 #endif /* not emacs */
5170
5171 default:
5172 abort ();
5173 }
5174 continue; /* Successfully executed one pattern command; keep going. */
5175
5176
5177 /* We goto here if a matching operation fails. */
5178 fail:
5179 if (!FAIL_STACK_EMPTY ())
5180 { /* A restart point is known. Restore to that state. */
5181 DEBUG_PRINT1 ("\nFAIL:\n");
5182 POP_FAILURE_POINT (d, p,
5183 lowest_active_reg, highest_active_reg,
5184 regstart, regend, reg_info);
5185
5186 /* If this failure point is a dummy, try the next one. */
5187 if (!p)
5188 goto fail;
5189
5190 /* If we failed to the end of the pattern, don't examine *p. */
5191 assert (p <= pend);
5192 if (p < pend)
5193 {
5194 boolean is_a_jump_n = false;
5195
5196 /* If failed to a backwards jump that's part of a repetition
5197 loop, need to pop this failure point and use the next one. */
5198 switch ((re_opcode_t) *p)
5199 {
5200 case jump_n:
5201 is_a_jump_n = true;
5202 case maybe_pop_jump:
5203 case pop_failure_jump:
5204 case jump:
5205 p1 = p + 1;
5206 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5207 p1 += mcnt;
5208
5209 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5210 || (!is_a_jump_n
5211 && (re_opcode_t) *p1 == on_failure_jump))
5212 goto fail;
5213 break;
5214 default:
5215 /* do nothing */ ;
5216 }
5217 }
5218
5219 if (d >= string1 && d <= end1)
5220 dend = end_match_1;
5221 }
5222 else
5223 break; /* Matching at this starting point really fails. */
5224 } /* for (;;) */
5225
5226 if (best_regs_set)
5227 goto restore_best_regs;
5228
5229 FREE_VARIABLES ();
5230
5231 return -1; /* Failure to match. */
5232 } /* re_match_2 */
5233 \f
5234 /* Subroutine definitions for re_match_2. */
5235
5236
5237 /* We are passed P pointing to a register number after a start_memory.
5238
5239 Return true if the pattern up to the corresponding stop_memory can
5240 match the empty string, and false otherwise.
5241
5242 If we find the matching stop_memory, sets P to point to one past its number.
5243 Otherwise, sets P to an undefined byte less than or equal to END.
5244
5245 We don't handle duplicates properly (yet). */
5246
5247 static boolean
5248 group_match_null_string_p (p, end, reg_info)
5249 unsigned char **p, *end;
5250 register_info_type *reg_info;
5251 {
5252 int mcnt;
5253 /* Point to after the args to the start_memory. */
5254 unsigned char *p1 = *p + 2;
5255
5256 while (p1 < end)
5257 {
5258 /* Skip over opcodes that can match nothing, and return true or
5259 false, as appropriate, when we get to one that can't, or to the
5260 matching stop_memory. */
5261
5262 switch ((re_opcode_t) *p1)
5263 {
5264 /* Could be either a loop or a series of alternatives. */
5265 case on_failure_jump:
5266 p1++;
5267 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5268
5269 /* If the next operation is not a jump backwards in the
5270 pattern. */
5271
5272 if (mcnt >= 0)
5273 {
5274 /* Go through the on_failure_jumps of the alternatives,
5275 seeing if any of the alternatives cannot match nothing.
5276 The last alternative starts with only a jump,
5277 whereas the rest start with on_failure_jump and end
5278 with a jump, e.g., here is the pattern for `a|b|c':
5279
5280 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5281 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5282 /exactn/1/c
5283
5284 So, we have to first go through the first (n-1)
5285 alternatives and then deal with the last one separately. */
5286
5287
5288 /* Deal with the first (n-1) alternatives, which start
5289 with an on_failure_jump (see above) that jumps to right
5290 past a jump_past_alt. */
5291
5292 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5293 {
5294 /* `mcnt' holds how many bytes long the alternative
5295 is, including the ending `jump_past_alt' and
5296 its number. */
5297
5298 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5299 reg_info))
5300 return false;
5301
5302 /* Move to right after this alternative, including the
5303 jump_past_alt. */
5304 p1 += mcnt;
5305
5306 /* Break if it's the beginning of an n-th alternative
5307 that doesn't begin with an on_failure_jump. */
5308 if ((re_opcode_t) *p1 != on_failure_jump)
5309 break;
5310
5311 /* Still have to check that it's not an n-th
5312 alternative that starts with an on_failure_jump. */
5313 p1++;
5314 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5315 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5316 {
5317 /* Get to the beginning of the n-th alternative. */
5318 p1 -= 3;
5319 break;
5320 }
5321 }
5322
5323 /* Deal with the last alternative: go back and get number
5324 of the `jump_past_alt' just before it. `mcnt' contains
5325 the length of the alternative. */
5326 EXTRACT_NUMBER (mcnt, p1 - 2);
5327
5328 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5329 return false;
5330
5331 p1 += mcnt; /* Get past the n-th alternative. */
5332 } /* if mcnt > 0 */
5333 break;
5334
5335
5336 case stop_memory:
5337 assert (p1[1] == **p);
5338 *p = p1 + 2;
5339 return true;
5340
5341
5342 default:
5343 if (!common_op_match_null_string_p (&p1, end, reg_info))
5344 return false;
5345 }
5346 } /* while p1 < end */
5347
5348 return false;
5349 } /* group_match_null_string_p */
5350
5351
5352 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5353 It expects P to be the first byte of a single alternative and END one
5354 byte past the last. The alternative can contain groups. */
5355
5356 static boolean
5357 alt_match_null_string_p (p, end, reg_info)
5358 unsigned char *p, *end;
5359 register_info_type *reg_info;
5360 {
5361 int mcnt;
5362 unsigned char *p1 = p;
5363
5364 while (p1 < end)
5365 {
5366 /* Skip over opcodes that can match nothing, and break when we get
5367 to one that can't. */
5368
5369 switch ((re_opcode_t) *p1)
5370 {
5371 /* It's a loop. */
5372 case on_failure_jump:
5373 p1++;
5374 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5375 p1 += mcnt;
5376 break;
5377
5378 default:
5379 if (!common_op_match_null_string_p (&p1, end, reg_info))
5380 return false;
5381 }
5382 } /* while p1 < end */
5383
5384 return true;
5385 } /* alt_match_null_string_p */
5386
5387
5388 /* Deals with the ops common to group_match_null_string_p and
5389 alt_match_null_string_p.
5390
5391 Sets P to one after the op and its arguments, if any. */
5392
5393 static boolean
5394 common_op_match_null_string_p (p, end, reg_info)
5395 unsigned char **p, *end;
5396 register_info_type *reg_info;
5397 {
5398 int mcnt;
5399 boolean ret;
5400 int reg_no;
5401 unsigned char *p1 = *p;
5402
5403 switch ((re_opcode_t) *p1++)
5404 {
5405 case no_op:
5406 case begline:
5407 case endline:
5408 case begbuf:
5409 case endbuf:
5410 case wordbeg:
5411 case wordend:
5412 case wordbound:
5413 case notwordbound:
5414 #ifdef emacs
5415 case before_dot:
5416 case at_dot:
5417 case after_dot:
5418 #endif
5419 break;
5420
5421 case start_memory:
5422 reg_no = *p1;
5423 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5424 ret = group_match_null_string_p (&p1, end, reg_info);
5425
5426 /* Have to set this here in case we're checking a group which
5427 contains a group and a back reference to it. */
5428
5429 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5430 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5431
5432 if (!ret)
5433 return false;
5434 break;
5435
5436 /* If this is an optimized succeed_n for zero times, make the jump. */
5437 case jump:
5438 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5439 if (mcnt >= 0)
5440 p1 += mcnt;
5441 else
5442 return false;
5443 break;
5444
5445 case succeed_n:
5446 /* Get to the number of times to succeed. */
5447 p1 += 2;
5448 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5449
5450 if (mcnt == 0)
5451 {
5452 p1 -= 4;
5453 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5454 p1 += mcnt;
5455 }
5456 else
5457 return false;
5458 break;
5459
5460 case duplicate:
5461 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5462 return false;
5463 break;
5464
5465 case set_number_at:
5466 p1 += 4;
5467
5468 default:
5469 /* All other opcodes mean we cannot match the empty string. */
5470 return false;
5471 }
5472
5473 *p = p1;
5474 return true;
5475 } /* common_op_match_null_string_p */
5476
5477
5478 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5479 bytes; nonzero otherwise. */
5480
5481 static int
5482 bcmp_translate (s1, s2, len, translate)
5483 const char *s1, *s2;
5484 register int len;
5485 RE_TRANSLATE_TYPE translate;
5486 {
5487 register const unsigned char *p1 = (const unsigned char *) s1;
5488 register const unsigned char *p2 = (const unsigned char *) s2;
5489 while (len)
5490 {
5491 if (translate[*p1++] != translate[*p2++]) return 1;
5492 len--;
5493 }
5494 return 0;
5495 }
5496 \f
5497 /* Entry points for GNU code. */
5498
5499 /* re_compile_pattern is the GNU regular expression compiler: it
5500 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5501 Returns 0 if the pattern was valid, otherwise an error string.
5502
5503 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5504 are set in BUFP on entry.
5505
5506 We call regex_compile to do the actual compilation. */
5507
5508 const char *
5509 re_compile_pattern (pattern, length, bufp)
5510 const char *pattern;
5511 size_t length;
5512 struct re_pattern_buffer *bufp;
5513 {
5514 reg_errcode_t ret;
5515
5516 /* GNU code is written to assume at least RE_NREGS registers will be set
5517 (and at least one extra will be -1). */
5518 bufp->regs_allocated = REGS_UNALLOCATED;
5519
5520 /* And GNU code determines whether or not to get register information
5521 by passing null for the REGS argument to re_match, etc., not by
5522 setting no_sub. */
5523 bufp->no_sub = 0;
5524
5525 /* Match anchors at newline. */
5526 bufp->newline_anchor = 1;
5527
5528 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5529
5530 if (!ret)
5531 return NULL;
5532 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5533 }
5534 #ifdef _LIBC
5535 weak_alias (__re_compile_pattern, re_compile_pattern)
5536 #endif
5537 \f
5538 /* Entry points compatible with 4.2 BSD regex library. We don't define
5539 them unless specifically requested. */
5540
5541 #if defined _REGEX_RE_COMP || defined _LIBC
5542
5543 /* BSD has one and only one pattern buffer. */
5544 static struct re_pattern_buffer re_comp_buf;
5545
5546 char *
5547 #ifdef _LIBC
5548 /* Make these definitions weak in libc, so POSIX programs can redefine
5549 these names if they don't use our functions, and still use
5550 regcomp/regexec below without link errors. */
5551 weak_function
5552 #endif
5553 re_comp (s)
5554 const char *s;
5555 {
5556 reg_errcode_t ret;
5557
5558 if (!s)
5559 {
5560 if (!re_comp_buf.buffer)
5561 return gettext ("No previous regular expression");
5562 return 0;
5563 }
5564
5565 if (!re_comp_buf.buffer)
5566 {
5567 re_comp_buf.buffer = (unsigned char *) malloc (200);
5568 if (re_comp_buf.buffer == NULL)
5569 return (char *) gettext (re_error_msgid
5570 + re_error_msgid_idx[(int) REG_ESPACE]);
5571 re_comp_buf.allocated = 200;
5572
5573 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5574 if (re_comp_buf.fastmap == NULL)
5575 return (char *) gettext (re_error_msgid
5576 + re_error_msgid_idx[(int) REG_ESPACE]);
5577 }
5578
5579 /* Since `re_exec' always passes NULL for the `regs' argument, we
5580 don't need to initialize the pattern buffer fields which affect it. */
5581
5582 /* Match anchors at newlines. */
5583 re_comp_buf.newline_anchor = 1;
5584
5585 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5586
5587 if (!ret)
5588 return NULL;
5589
5590 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5591 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5592 }
5593
5594
5595 int
5596 #ifdef _LIBC
5597 weak_function
5598 #endif
5599 re_exec (s)
5600 const char *s;
5601 {
5602 const int len = strlen (s);
5603 return
5604 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5605 }
5606
5607 #endif /* _REGEX_RE_COMP */
5608 \f
5609 /* POSIX.2 functions. Don't define these for Emacs. */
5610
5611 #ifndef emacs
5612
5613 /* regcomp takes a regular expression as a string and compiles it.
5614
5615 PREG is a regex_t *. We do not expect any fields to be initialized,
5616 since POSIX says we shouldn't. Thus, we set
5617
5618 `buffer' to the compiled pattern;
5619 `used' to the length of the compiled pattern;
5620 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5621 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5622 RE_SYNTAX_POSIX_BASIC;
5623 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5624 `fastmap' to an allocated space for the fastmap;
5625 `fastmap_accurate' to zero;
5626 `re_nsub' to the number of subexpressions in PATTERN.
5627
5628 PATTERN is the address of the pattern string.
5629
5630 CFLAGS is a series of bits which affect compilation.
5631
5632 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5633 use POSIX basic syntax.
5634
5635 If REG_NEWLINE is set, then . and [^...] don't match newline.
5636 Also, regexec will try a match beginning after every newline.
5637
5638 If REG_ICASE is set, then we considers upper- and lowercase
5639 versions of letters to be equivalent when matching.
5640
5641 If REG_NOSUB is set, then when PREG is passed to regexec, that
5642 routine will report only success or failure, and nothing about the
5643 registers.
5644
5645 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5646 the return codes and their meanings.) */
5647
5648 int
5649 regcomp (preg, pattern, cflags)
5650 regex_t *preg;
5651 const char *pattern;
5652 int cflags;
5653 {
5654 reg_errcode_t ret;
5655 reg_syntax_t syntax
5656 = (cflags & REG_EXTENDED) ?
5657 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5658
5659 /* regex_compile will allocate the space for the compiled pattern. */
5660 preg->buffer = 0;
5661 preg->allocated = 0;
5662 preg->used = 0;
5663
5664 /* Try to allocate space for the fastmap. */
5665 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5666
5667 if (cflags & REG_ICASE)
5668 {
5669 unsigned i;
5670
5671 preg->translate
5672 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5673 * sizeof (*(RE_TRANSLATE_TYPE)0));
5674 if (preg->translate == NULL)
5675 return (int) REG_ESPACE;
5676
5677 /* Map uppercase characters to corresponding lowercase ones. */
5678 for (i = 0; i < CHAR_SET_SIZE; i++)
5679 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5680 }
5681 else
5682 preg->translate = NULL;
5683
5684 /* If REG_NEWLINE is set, newlines are treated differently. */
5685 if (cflags & REG_NEWLINE)
5686 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5687 syntax &= ~RE_DOT_NEWLINE;
5688 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5689 /* It also changes the matching behavior. */
5690 preg->newline_anchor = 1;
5691 }
5692 else
5693 preg->newline_anchor = 0;
5694
5695 preg->no_sub = !!(cflags & REG_NOSUB);
5696
5697 /* POSIX says a null character in the pattern terminates it, so we
5698 can use strlen here in compiling the pattern. */
5699 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5700
5701 /* POSIX doesn't distinguish between an unmatched open-group and an
5702 unmatched close-group: both are REG_EPAREN. */
5703 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5704
5705 if (ret == REG_NOERROR && preg->fastmap)
5706 {
5707 /* Compute the fastmap now, since regexec cannot modify the pattern
5708 buffer. */
5709 if (re_compile_fastmap (preg) == -2)
5710 {
5711 /* Some error occured while computing the fastmap, just forget
5712 about it. */
5713 free (preg->fastmap);
5714 preg->fastmap = NULL;
5715 }
5716 }
5717
5718 return (int) ret;
5719 }
5720 #ifdef _LIBC
5721 weak_alias (__regcomp, regcomp)
5722 #endif
5723
5724
5725 /* regexec searches for a given pattern, specified by PREG, in the
5726 string STRING.
5727
5728 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5729 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5730 least NMATCH elements, and we set them to the offsets of the
5731 corresponding matched substrings.
5732
5733 EFLAGS specifies `execution flags' which affect matching: if
5734 REG_NOTBOL is set, then ^ does not match at the beginning of the
5735 string; if REG_NOTEOL is set, then $ does not match at the end.
5736
5737 We return 0 if we find a match and REG_NOMATCH if not. */
5738
5739 int
5740 regexec (preg, string, nmatch, pmatch, eflags)
5741 const regex_t *preg;
5742 const char *string;
5743 size_t nmatch;
5744 regmatch_t pmatch[];
5745 int eflags;
5746 {
5747 int ret;
5748 struct re_registers regs;
5749 regex_t private_preg;
5750 int len = strlen (string);
5751 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5752
5753 private_preg = *preg;
5754
5755 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5756 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5757
5758 /* The user has told us exactly how many registers to return
5759 information about, via `nmatch'. We have to pass that on to the
5760 matching routines. */
5761 private_preg.regs_allocated = REGS_FIXED;
5762
5763 if (want_reg_info)
5764 {
5765 regs.num_regs = nmatch;
5766 regs.start = TALLOC (nmatch * 2, regoff_t);
5767 if (regs.start == NULL)
5768 return (int) REG_NOMATCH;
5769 regs.end = regs.start + nmatch;
5770 }
5771
5772 /* Perform the searching operation. */
5773 ret = re_search (&private_preg, string, len,
5774 /* start: */ 0, /* range: */ len,
5775 want_reg_info ? &regs : (struct re_registers *) 0);
5776
5777 /* Copy the register information to the POSIX structure. */
5778 if (want_reg_info)
5779 {
5780 if (ret >= 0)
5781 {
5782 unsigned r;
5783
5784 for (r = 0; r < nmatch; r++)
5785 {
5786 pmatch[r].rm_so = regs.start[r];
5787 pmatch[r].rm_eo = regs.end[r];
5788 }
5789 }
5790
5791 /* If we needed the temporary register info, free the space now. */
5792 free (regs.start);
5793 }
5794
5795 /* We want zero return to mean success, unlike `re_search'. */
5796 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5797 }
5798 #ifdef _LIBC
5799 weak_alias (__regexec, regexec)
5800 #endif
5801
5802
5803 /* Returns a message corresponding to an error code, ERRCODE, returned
5804 from either regcomp or regexec. We don't use PREG here. */
5805
5806 size_t
5807 regerror (errcode, preg, errbuf, errbuf_size)
5808 int errcode;
5809 const regex_t *preg;
5810 char *errbuf;
5811 size_t errbuf_size;
5812 {
5813 const char *msg;
5814 size_t msg_size;
5815
5816 if (errcode < 0
5817 || errcode >= (int) (sizeof (re_error_msgid_idx)
5818 / sizeof (re_error_msgid_idx[0])))
5819 /* Only error codes returned by the rest of the code should be passed
5820 to this routine. If we are given anything else, or if other regex
5821 code generates an invalid error code, then the program has a bug.
5822 Dump core so we can fix it. */
5823 abort ();
5824
5825 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
5826
5827 msg_size = strlen (msg) + 1; /* Includes the null. */
5828
5829 if (errbuf_size != 0)
5830 {
5831 if (msg_size > errbuf_size)
5832 {
5833 #if defined HAVE_MEMPCPY || defined _LIBC
5834 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5835 #else
5836 memcpy (errbuf, msg, errbuf_size - 1);
5837 errbuf[errbuf_size - 1] = 0;
5838 #endif
5839 }
5840 else
5841 memcpy (errbuf, msg, msg_size);
5842 }
5843
5844 return msg_size;
5845 }
5846 #ifdef _LIBC
5847 weak_alias (__regerror, regerror)
5848 #endif
5849
5850
5851 /* Free dynamically allocated space used by PREG. */
5852
5853 void
5854 regfree (preg)
5855 regex_t *preg;
5856 {
5857 if (preg->buffer != NULL)
5858 free (preg->buffer);
5859 preg->buffer = NULL;
5860
5861 preg->allocated = 0;
5862 preg->used = 0;
5863
5864 if (preg->fastmap != NULL)
5865 free (preg->fastmap);
5866 preg->fastmap = NULL;
5867 preg->fastmap_accurate = 0;
5868
5869 if (preg->translate != NULL)
5870 free (preg->translate);
5871 preg->translate = NULL;
5872 }
5873 #ifdef _LIBC
5874 weak_alias (__regfree, regfree)
5875 #endif
5876
5877 #endif /* not emacs */