]> git.ipfire.org Git - thirdparty/glibc.git/blob - posix/regexec.c
Upate.
[thirdparty/glibc.git] / posix / regexec.c
1 /* Extended regular expression matching and search library.
2 Copyright (C) 2002, 2003 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
20
21 static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
22 re_string_t *input, int n);
23 static void match_ctx_clean (re_match_context_t *mctx);
24 static void match_ctx_free (re_match_context_t *cache);
25 static void match_ctx_free_subtops (re_match_context_t *mctx);
26 static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
27 int str_idx, int from, int to);
28 static int search_cur_bkref_entry (re_match_context_t *mctx, int str_idx);
29 static void match_ctx_clear_flag (re_match_context_t *mctx);
30 static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
31 int str_idx);
32 static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
33 int node, int str_idx);
34 static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
35 re_dfastate_t **limited_sts, int last_node,
36 int last_str_idx, int check_subexp);
37 static reg_errcode_t re_search_internal (const regex_t *preg,
38 const char *string, int length,
39 int start, int range, int stop,
40 size_t nmatch, regmatch_t pmatch[],
41 int eflags);
42 static int re_search_2_stub (struct re_pattern_buffer *bufp,
43 const char *string1, int length1,
44 const char *string2, int length2,
45 int start, int range, struct re_registers *regs,
46 int stop, int ret_len);
47 static int re_search_stub (struct re_pattern_buffer *bufp,
48 const char *string, int length, int start,
49 int range, int stop, struct re_registers *regs,
50 int ret_len);
51 static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
52 int nregs, int regs_allocated);
53 static re_dfastate_t *acquire_init_state_context (reg_errcode_t *err,
54 const regex_t *preg,
55 const re_match_context_t *mctx,
56 int idx);
57 static reg_errcode_t prune_impossible_nodes (const regex_t *preg,
58 re_match_context_t *mctx);
59 static int check_matching (const regex_t *preg, re_match_context_t *mctx,
60 int fl_search, int fl_longest_match);
61 static int check_halt_node_context (const re_dfa_t *dfa, int node,
62 unsigned int context);
63 static int check_halt_state_context (const regex_t *preg,
64 const re_dfastate_t *state,
65 const re_match_context_t *mctx, int idx);
66 static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch, int cur_node,
67 int cur_idx, int nmatch);
68 static int proceed_next_node (const regex_t *preg, int nregs, regmatch_t *regs,
69 const re_match_context_t *mctx,
70 int *pidx, int node, re_node_set *eps_via_nodes,
71 struct re_fail_stack_t *fs);
72 static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
73 int str_idx, int *dests, int nregs,
74 regmatch_t *regs,
75 re_node_set *eps_via_nodes);
76 static int pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
77 regmatch_t *regs, re_node_set *eps_via_nodes);
78 static reg_errcode_t set_regs (const regex_t *preg,
79 const re_match_context_t *mctx,
80 size_t nmatch, regmatch_t *pmatch,
81 int fl_backtrack);
82 static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs);
83
84 #ifdef RE_ENABLE_I18N
85 static int sift_states_iter_mb (const regex_t *preg,
86 const re_match_context_t *mctx,
87 re_sift_context_t *sctx,
88 int node_idx, int str_idx, int max_str_idx);
89 #endif /* RE_ENABLE_I18N */
90 static reg_errcode_t sift_states_backward (const regex_t *preg,
91 re_match_context_t *mctx,
92 re_sift_context_t *sctx);
93 static reg_errcode_t update_cur_sifted_state (const regex_t *preg,
94 re_match_context_t *mctx,
95 re_sift_context_t *sctx,
96 int str_idx,
97 re_node_set *dest_nodes);
98 static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa,
99 re_node_set *dest_nodes,
100 const re_node_set *candidates);
101 static reg_errcode_t sub_epsilon_src_nodes (re_dfa_t *dfa, int node,
102 re_node_set *dest_nodes,
103 const re_node_set *and_nodes);
104 static int check_dst_limits (re_dfa_t *dfa, re_node_set *limits,
105 re_match_context_t *mctx, int dst_node,
106 int dst_idx, int src_node, int src_idx);
107 static int check_dst_limits_calc_pos (re_dfa_t *dfa, re_match_context_t *mctx,
108 int limit, re_node_set *eclosures,
109 int subexp_idx, int node, int str_idx);
110 static reg_errcode_t check_subexp_limits (re_dfa_t *dfa,
111 re_node_set *dest_nodes,
112 const re_node_set *candidates,
113 re_node_set *limits,
114 struct re_backref_cache_entry *bkref_ents,
115 int str_idx);
116 static reg_errcode_t sift_states_bkref (const regex_t *preg,
117 re_match_context_t *mctx,
118 re_sift_context_t *sctx,
119 int str_idx, re_node_set *dest_nodes);
120 static reg_errcode_t clean_state_log_if_need (re_match_context_t *mctx,
121 int next_state_log_idx);
122 static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst,
123 re_dfastate_t **src, int num);
124 static re_dfastate_t *transit_state (reg_errcode_t *err, const regex_t *preg,
125 re_match_context_t *mctx,
126 re_dfastate_t *state, int fl_search);
127 static reg_errcode_t check_subexp_matching_top (re_dfa_t *dfa,
128 re_match_context_t *mctx,
129 re_node_set *cur_nodes,
130 int str_idx);
131 static re_dfastate_t *transit_state_sb (reg_errcode_t *err, const regex_t *preg,
132 re_dfastate_t *pstate,
133 int fl_search,
134 re_match_context_t *mctx);
135 #ifdef RE_ENABLE_I18N
136 static reg_errcode_t transit_state_mb (const regex_t *preg,
137 re_dfastate_t *pstate,
138 re_match_context_t *mctx);
139 #endif /* RE_ENABLE_I18N */
140 static reg_errcode_t transit_state_bkref (const regex_t *preg,
141 re_node_set *nodes,
142 re_match_context_t *mctx);
143 static reg_errcode_t get_subexp (const regex_t *preg, re_match_context_t *mctx,
144 int bkref_node, int bkref_str_idx);
145 static reg_errcode_t get_subexp_sub (const regex_t *preg,
146 re_match_context_t *mctx,
147 re_sub_match_top_t *sub_top,
148 re_sub_match_last_t *sub_last,
149 int bkref_node, int bkref_str);
150 static int find_subexp_node (re_dfa_t *dfa, re_node_set *nodes,
151 int subexp_idx, int fl_open);
152 static reg_errcode_t check_arrival (const regex_t *preg,
153 re_match_context_t *mctx,
154 state_array_t *path, int top_node,
155 int top_str, int last_node, int last_str,
156 int fl_open);
157 static reg_errcode_t check_arrival_add_next_nodes (const regex_t *preg,
158 re_dfa_t *dfa,
159 re_match_context_t *mctx,
160 int str_idx,
161 re_node_set *cur_nodes,
162 re_node_set *next_nodes);
163 static reg_errcode_t check_arrival_expand_ecl (re_dfa_t *dfa,
164 re_node_set *cur_nodes,
165 int ex_subexp, int fl_open);
166 static reg_errcode_t check_arrival_expand_ecl_sub (re_dfa_t *dfa,
167 re_node_set *dst_nodes,
168 int target, int ex_subexp,
169 int fl_open);
170 static reg_errcode_t expand_bkref_cache (const regex_t *preg,
171 re_match_context_t *mctx,
172 re_node_set *cur_nodes, int cur_str,
173 int last_str, int subexp_num,
174 int fl_open);
175 static re_dfastate_t **build_trtable (const regex_t *dfa,
176 const re_dfastate_t *state,
177 int fl_search);
178 #ifdef RE_ENABLE_I18N
179 static int check_node_accept_bytes (const regex_t *preg, int node_idx,
180 const re_string_t *input, int idx);
181 # ifdef _LIBC
182 static unsigned int find_collation_sequence_value (const unsigned char *mbs,
183 size_t name_len);
184 # endif /* _LIBC */
185 #endif /* RE_ENABLE_I18N */
186 static int group_nodes_into_DFAstates (const regex_t *dfa,
187 const re_dfastate_t *state,
188 re_node_set *states_node,
189 bitset *states_ch);
190 static int check_node_accept (const regex_t *preg, const re_token_t *node,
191 const re_match_context_t *mctx, int idx);
192 static reg_errcode_t extend_buffers (re_match_context_t *mctx);
193 \f
194 /* Entry point for POSIX code. */
195
196 /* regexec searches for a given pattern, specified by PREG, in the
197 string STRING.
198
199 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
200 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
201 least NMATCH elements, and we set them to the offsets of the
202 corresponding matched substrings.
203
204 EFLAGS specifies `execution flags' which affect matching: if
205 REG_NOTBOL is set, then ^ does not match at the beginning of the
206 string; if REG_NOTEOL is set, then $ does not match at the end.
207
208 We return 0 if we find a match and REG_NOMATCH if not. */
209
210 int
211 regexec (preg, string, nmatch, pmatch, eflags)
212 const regex_t *__restrict preg;
213 const char *__restrict string;
214 size_t nmatch;
215 regmatch_t pmatch[];
216 int eflags;
217 {
218 reg_errcode_t err;
219 int length = strlen (string);
220 if (preg->no_sub)
221 err = re_search_internal (preg, string, length, 0, length, length, 0,
222 NULL, eflags);
223 else
224 err = re_search_internal (preg, string, length, 0, length, length, nmatch,
225 pmatch, eflags);
226 return err != REG_NOERROR;
227 }
228 #ifdef _LIBC
229 weak_alias (__regexec, regexec)
230 #endif
231
232 /* Entry points for GNU code. */
233
234 /* re_match, re_search, re_match_2, re_search_2
235
236 The former two functions operate on STRING with length LENGTH,
237 while the later two operate on concatenation of STRING1 and STRING2
238 with lengths LENGTH1 and LENGTH2, respectively.
239
240 re_match() matches the compiled pattern in BUFP against the string,
241 starting at index START.
242
243 re_search() first tries matching at index START, then it tries to match
244 starting from index START + 1, and so on. The last start position tried
245 is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same
246 way as re_match().)
247
248 The parameter STOP of re_{match,search}_2 specifies that no match exceeding
249 the first STOP characters of the concatenation of the strings should be
250 concerned.
251
252 If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
253 and all groups is stroed in REGS. (For the "_2" variants, the offsets are
254 computed relative to the concatenation, not relative to the individual
255 strings.)
256
257 On success, re_match* functions return the length of the match, re_search*
258 return the position of the start of the match. Return value -1 means no
259 match was found and -2 indicates an internal error. */
260
261 int
262 re_match (bufp, string, length, start, regs)
263 struct re_pattern_buffer *bufp;
264 const char *string;
265 int length, start;
266 struct re_registers *regs;
267 {
268 return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
269 }
270 #ifdef _LIBC
271 weak_alias (__re_match, re_match)
272 #endif
273
274 int
275 re_search (bufp, string, length, start, range, regs)
276 struct re_pattern_buffer *bufp;
277 const char *string;
278 int length, start, range;
279 struct re_registers *regs;
280 {
281 return re_search_stub (bufp, string, length, start, range, length, regs, 0);
282 }
283 #ifdef _LIBC
284 weak_alias (__re_search, re_search)
285 #endif
286
287 int
288 re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
289 struct re_pattern_buffer *bufp;
290 const char *string1, *string2;
291 int length1, length2, start, stop;
292 struct re_registers *regs;
293 {
294 return re_search_2_stub (bufp, string1, length1, string2, length2,
295 start, 0, regs, stop, 1);
296 }
297 #ifdef _LIBC
298 weak_alias (__re_match_2, re_match_2)
299 #endif
300
301 int
302 re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
303 struct re_pattern_buffer *bufp;
304 const char *string1, *string2;
305 int length1, length2, start, range, stop;
306 struct re_registers *regs;
307 {
308 return re_search_2_stub (bufp, string1, length1, string2, length2,
309 start, range, regs, stop, 0);
310 }
311 #ifdef _LIBC
312 weak_alias (__re_search_2, re_search_2)
313 #endif
314
315 static int
316 re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs,
317 stop, ret_len)
318 struct re_pattern_buffer *bufp;
319 const char *string1, *string2;
320 int length1, length2, start, range, stop, ret_len;
321 struct re_registers *regs;
322 {
323 const char *str;
324 int rval;
325 int len = length1 + length2;
326 int free_str = 0;
327
328 if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
329 return -2;
330
331 /* Concatenate the strings. */
332 if (length2 > 0)
333 if (length1 > 0)
334 {
335 char *s = re_malloc (char, len);
336
337 if (BE (s == NULL, 0))
338 return -2;
339 memcpy (s, string1, length1);
340 memcpy (s + length1, string2, length2);
341 str = s;
342 free_str = 1;
343 }
344 else
345 str = string2;
346 else
347 str = string1;
348
349 rval = re_search_stub (bufp, str, len, start, range, stop, regs,
350 ret_len);
351 if (free_str)
352 re_free ((char *) str);
353 return rval;
354 }
355
356 /* The parameters have the same meaning as those of re_search.
357 Additional parameters:
358 If RET_LEN is nonzero the length of the match is returned (re_match style);
359 otherwise the position of the match is returned. */
360
361 static int
362 re_search_stub (bufp, string, length, start, range, stop, regs, ret_len)
363 struct re_pattern_buffer *bufp;
364 const char *string;
365 int length, start, range, stop, ret_len;
366 struct re_registers *regs;
367 {
368 reg_errcode_t result;
369 regmatch_t *pmatch;
370 int nregs, rval;
371 int eflags = 0;
372
373 /* Check for out-of-range. */
374 if (BE (start < 0 || start > length, 0))
375 return -1;
376 if (BE (start + range > length, 0))
377 range = length - start;
378 else if (BE (start + range < 0, 0))
379 range = -start;
380
381 eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
382 eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
383
384 /* Compile fastmap if we haven't yet. */
385 if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
386 re_compile_fastmap (bufp);
387
388 if (BE (bufp->no_sub, 0))
389 regs = NULL;
390
391 /* We need at least 1 register. */
392 if (regs == NULL)
393 nregs = 1;
394 else if (BE (bufp->regs_allocated == REGS_FIXED &&
395 regs->num_regs < bufp->re_nsub + 1, 0))
396 {
397 nregs = regs->num_regs;
398 if (BE (nregs < 1, 0))
399 {
400 /* Nothing can be copied to regs. */
401 regs = NULL;
402 nregs = 1;
403 }
404 }
405 else
406 nregs = bufp->re_nsub + 1;
407 pmatch = re_malloc (regmatch_t, nregs);
408 if (BE (pmatch == NULL, 0))
409 return -2;
410
411 result = re_search_internal (bufp, string, length, start, range, stop,
412 nregs, pmatch, eflags);
413
414 rval = 0;
415
416 /* I hope we needn't fill ther regs with -1's when no match was found. */
417 if (result != REG_NOERROR)
418 rval = -1;
419 else if (regs != NULL)
420 {
421 /* If caller wants register contents data back, copy them. */
422 bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
423 bufp->regs_allocated);
424 if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
425 rval = -2;
426 }
427
428 if (BE (rval == 0, 1))
429 {
430 if (ret_len)
431 {
432 assert (pmatch[0].rm_so == start);
433 rval = pmatch[0].rm_eo - start;
434 }
435 else
436 rval = pmatch[0].rm_so;
437 }
438 re_free (pmatch);
439 return rval;
440 }
441
442 static unsigned
443 re_copy_regs (regs, pmatch, nregs, regs_allocated)
444 struct re_registers *regs;
445 regmatch_t *pmatch;
446 int nregs, regs_allocated;
447 {
448 int rval = REGS_REALLOCATE;
449 int i;
450 int need_regs = nregs + 1;
451 /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
452 uses. */
453
454 /* Have the register data arrays been allocated? */
455 if (regs_allocated == REGS_UNALLOCATED)
456 { /* No. So allocate them with malloc. */
457 regs->start = re_malloc (regoff_t, need_regs);
458 if (BE (regs->start == NULL, 0))
459 return REGS_UNALLOCATED;
460 regs->end = re_malloc (regoff_t, need_regs);
461 if (BE (regs->end == NULL, 0))
462 {
463 re_free (regs->start);
464 return REGS_UNALLOCATED;
465 }
466 regs->num_regs = need_regs;
467 }
468 else if (regs_allocated == REGS_REALLOCATE)
469 { /* Yes. If we need more elements than were already
470 allocated, reallocate them. If we need fewer, just
471 leave it alone. */
472 if (need_regs > regs->num_regs)
473 {
474 regs->start = re_realloc (regs->start, regoff_t, need_regs);
475 if (BE (regs->start == NULL, 0))
476 {
477 if (regs->end != NULL)
478 re_free (regs->end);
479 return REGS_UNALLOCATED;
480 }
481 regs->end = re_realloc (regs->end, regoff_t, need_regs);
482 if (BE (regs->end == NULL, 0))
483 {
484 re_free (regs->start);
485 return REGS_UNALLOCATED;
486 }
487 regs->num_regs = need_regs;
488 }
489 }
490 else
491 {
492 assert (regs_allocated == REGS_FIXED);
493 /* This function may not be called with REGS_FIXED and nregs too big. */
494 assert (regs->num_regs >= nregs);
495 rval = REGS_FIXED;
496 }
497
498 /* Copy the regs. */
499 for (i = 0; i < nregs; ++i)
500 {
501 regs->start[i] = pmatch[i].rm_so;
502 regs->end[i] = pmatch[i].rm_eo;
503 }
504 for ( ; i < regs->num_regs; ++i)
505 regs->start[i] = regs->end[i] = -1;
506
507 return rval;
508 }
509
510 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
511 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
512 this memory for recording register information. STARTS and ENDS
513 must be allocated using the malloc library routine, and must each
514 be at least NUM_REGS * sizeof (regoff_t) bytes long.
515
516 If NUM_REGS == 0, then subsequent matches should allocate their own
517 register data.
518
519 Unless this function is called, the first search or match using
520 PATTERN_BUFFER will allocate its own register data, without
521 freeing the old data. */
522
523 void
524 re_set_registers (bufp, regs, num_regs, starts, ends)
525 struct re_pattern_buffer *bufp;
526 struct re_registers *regs;
527 unsigned num_regs;
528 regoff_t *starts, *ends;
529 {
530 if (num_regs)
531 {
532 bufp->regs_allocated = REGS_REALLOCATE;
533 regs->num_regs = num_regs;
534 regs->start = starts;
535 regs->end = ends;
536 }
537 else
538 {
539 bufp->regs_allocated = REGS_UNALLOCATED;
540 regs->num_regs = 0;
541 regs->start = regs->end = (regoff_t *) 0;
542 }
543 }
544 #ifdef _LIBC
545 weak_alias (__re_set_registers, re_set_registers)
546 #endif
547 \f
548 /* Entry points compatible with 4.2 BSD regex library. We don't define
549 them unless specifically requested. */
550
551 #if defined _REGEX_RE_COMP || defined _LIBC
552 int
553 # ifdef _LIBC
554 weak_function
555 # endif
556 re_exec (s)
557 const char *s;
558 {
559 return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
560 }
561 #endif /* _REGEX_RE_COMP */
562 \f
563 static re_node_set empty_set;
564
565 /* Internal entry point. */
566
567 /* Searches for a compiled pattern PREG in the string STRING, whose
568 length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same
569 mingings with regexec. START, and RANGE have the same meanings
570 with re_search.
571 Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
572 otherwise return the error code.
573 Note: We assume front end functions already check ranges.
574 (START + RANGE >= 0 && START + RANGE <= LENGTH) */
575
576 static reg_errcode_t
577 re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch,
578 eflags)
579 const regex_t *preg;
580 const char *string;
581 int length, start, range, stop, eflags;
582 size_t nmatch;
583 regmatch_t pmatch[];
584 {
585 reg_errcode_t err;
586 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
587 re_string_t input;
588 int left_lim, right_lim, incr;
589 int fl_longest_match, match_first, match_last = -1;
590 int fast_translate, sb;
591 re_match_context_t mctx;
592 char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate
593 && range && !preg->can_be_null) ? preg->fastmap : NULL);
594
595 /* Check if the DFA haven't been compiled. */
596 if (BE (preg->used == 0 || dfa->init_state == NULL
597 || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
598 || dfa->init_state_begbuf == NULL, 0))
599 return REG_NOMATCH;
600
601 re_node_set_init_empty (&empty_set);
602 memset (&mctx, '\0', sizeof (re_match_context_t));
603
604 /* We must check the longest matching, if nmatch > 0. */
605 fl_longest_match = (nmatch != 0 || dfa->nbackref);
606
607 err = re_string_allocate (&input, string, length, dfa->nodes_len + 1,
608 preg->translate, preg->syntax & RE_ICASE);
609 if (BE (err != REG_NOERROR, 0))
610 goto free_return;
611 input.stop = stop;
612
613 err = match_ctx_init (&mctx, eflags, &input, dfa->nbackref * 2);
614 if (BE (err != REG_NOERROR, 0))
615 goto free_return;
616
617 /* We will log all the DFA states through which the dfa pass,
618 if nmatch > 1, or this dfa has "multibyte node", which is a
619 back-reference or a node which can accept multibyte character or
620 multi character collating element. */
621 if (nmatch > 1 || dfa->has_mb_node)
622 {
623 mctx.state_log = re_malloc (re_dfastate_t *, dfa->nodes_len + 1);
624 if (BE (mctx.state_log == NULL, 0))
625 {
626 err = REG_ESPACE;
627 goto free_return;
628 }
629 }
630 else
631 mctx.state_log = NULL;
632
633 #ifdef DEBUG
634 /* We assume front-end functions already check them. */
635 assert (start + range >= 0 && start + range <= length);
636 #endif
637
638 match_first = start;
639 input.tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
640 : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
641
642 /* Check incrementally whether of not the input string match. */
643 incr = (range < 0) ? -1 : 1;
644 left_lim = (range < 0) ? start + range : start;
645 right_lim = (range < 0) ? start : start + range;
646 sb = MB_CUR_MAX == 1;
647 fast_translate = sb || !(preg->syntax & RE_ICASE || preg->translate);
648
649 for (;;)
650 {
651 /* At first get the current byte from input string. */
652 if (fastmap)
653 {
654 if (BE (fast_translate, 1))
655 {
656 unsigned RE_TRANSLATE_TYPE t
657 = (unsigned RE_TRANSLATE_TYPE) preg->translate;
658 if (BE (range >= 0, 1))
659 {
660 if (BE (t != NULL, 0))
661 {
662 while (BE (match_first < right_lim, 1)
663 && !fastmap[t[(unsigned char) string[match_first]]])
664 ++match_first;
665 }
666 else
667 {
668 while (BE (match_first < right_lim, 1)
669 && !fastmap[(unsigned char) string[match_first]])
670 ++match_first;
671 }
672 if (BE (match_first == right_lim, 0))
673 {
674 int ch = match_first >= length
675 ? 0 : (unsigned char) string[match_first];
676 if (!fastmap[t ? t[ch] : ch])
677 break;
678 }
679 }
680 else
681 {
682 while (match_first >= left_lim)
683 {
684 int ch = match_first >= length
685 ? 0 : (unsigned char) string[match_first];
686 if (fastmap[t ? t[ch] : ch])
687 break;
688 --match_first;
689 }
690 if (match_first < left_lim)
691 break;
692 }
693 }
694 else
695 {
696 int ch;
697
698 do
699 {
700 /* In this case, we can't determine easily the current byte,
701 since it might be a component byte of a multibyte
702 character. Then we use the constructed buffer
703 instead. */
704 /* If MATCH_FIRST is out of the valid range, reconstruct the
705 buffers. */
706 if (input.raw_mbs_idx + input.valid_len <= match_first
707 || match_first < input.raw_mbs_idx)
708 {
709 err = re_string_reconstruct (&input, match_first, eflags,
710 preg->newline_anchor);
711 if (BE (err != REG_NOERROR, 0))
712 goto free_return;
713 }
714 /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
715 Note that MATCH_FIRST must not be smaller than 0. */
716 ch = ((match_first >= length) ? 0
717 : re_string_byte_at (&input,
718 match_first - input.raw_mbs_idx));
719 if (fastmap[ch])
720 break;
721 match_first += incr;
722 }
723 while (match_first >= left_lim && match_first <= right_lim);
724 if (! fastmap[ch])
725 break;
726 }
727 }
728
729 /* Reconstruct the buffers so that the matcher can assume that
730 the matching starts from the begining of the buffer. */
731 err = re_string_reconstruct (&input, match_first, eflags,
732 preg->newline_anchor);
733 if (BE (err != REG_NOERROR, 0))
734 goto free_return;
735 #ifdef RE_ENABLE_I18N
736 /* Eliminate it when it is a component of a multibyte character
737 and isn't the head of a multibyte character. */
738 if (sb || re_string_first_byte (&input, 0))
739 #endif
740 {
741 /* It seems to be appropriate one, then use the matcher. */
742 /* We assume that the matching starts from 0. */
743 mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
744 match_last = check_matching (preg, &mctx, 0, fl_longest_match);
745 if (match_last != -1)
746 {
747 if (BE (match_last == -2, 0))
748 {
749 err = REG_ESPACE;
750 goto free_return;
751 }
752 else
753 {
754 mctx.match_last = match_last;
755 if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
756 {
757 re_dfastate_t *pstate = mctx.state_log[match_last];
758 mctx.last_node = check_halt_state_context (preg, pstate,
759 &mctx, match_last);
760 }
761 if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
762 || dfa->nbackref)
763 {
764 err = prune_impossible_nodes (preg, &mctx);
765 if (err == REG_NOERROR)
766 break;
767 if (BE (err != REG_NOMATCH, 0))
768 goto free_return;
769 }
770 else
771 break; /* We found a matching. */
772 }
773 }
774 match_ctx_clean (&mctx);
775 }
776 /* Update counter. */
777 match_first += incr;
778 if (match_first < left_lim || right_lim < match_first)
779 break;
780 }
781
782 /* Set pmatch[] if we need. */
783 if (match_last != -1 && nmatch > 0)
784 {
785 int reg_idx;
786
787 /* Initialize registers. */
788 for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
789 pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
790
791 /* Set the points where matching start/end. */
792 pmatch[0].rm_so = 0;
793 pmatch[0].rm_eo = mctx.match_last;
794
795 if (!preg->no_sub && nmatch > 1)
796 {
797 err = set_regs (preg, &mctx, nmatch, pmatch,
798 dfa->has_plural_match && dfa->nbackref > 0);
799 if (BE (err != REG_NOERROR, 0))
800 goto free_return;
801 }
802
803 /* At last, add the offset to the each registers, since we slided
804 the buffers so that We can assume that the matching starts from 0. */
805 for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
806 if (pmatch[reg_idx].rm_so != -1)
807 {
808 pmatch[reg_idx].rm_so += match_first;
809 pmatch[reg_idx].rm_eo += match_first;
810 }
811 }
812 err = (match_last == -1) ? REG_NOMATCH : REG_NOERROR;
813 free_return:
814 re_free (mctx.state_log);
815 if (dfa->nbackref)
816 match_ctx_free (&mctx);
817 re_string_destruct (&input);
818 return err;
819 }
820
821 static reg_errcode_t
822 prune_impossible_nodes (preg, mctx)
823 const regex_t *preg;
824 re_match_context_t *mctx;
825 {
826 int halt_node, match_last;
827 reg_errcode_t ret;
828 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
829 re_dfastate_t **sifted_states;
830 re_dfastate_t **lim_states = NULL;
831 re_sift_context_t sctx;
832 #ifdef DEBUG
833 assert (mctx->state_log != NULL);
834 #endif
835 match_last = mctx->match_last;
836 halt_node = mctx->last_node;
837 sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
838 if (BE (sifted_states == NULL, 0))
839 {
840 ret = REG_ESPACE;
841 goto free_return;
842 }
843 if (dfa->nbackref)
844 {
845 lim_states = re_malloc (re_dfastate_t *, match_last + 1);
846 if (BE (lim_states == NULL, 0))
847 {
848 ret = REG_ESPACE;
849 goto free_return;
850 }
851 while (1)
852 {
853 memset (lim_states, '\0',
854 sizeof (re_dfastate_t *) * (match_last + 1));
855 match_ctx_clear_flag (mctx);
856 sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
857 match_last, 0);
858 ret = sift_states_backward (preg, mctx, &sctx);
859 re_node_set_free (&sctx.limits);
860 if (BE (ret != REG_NOERROR, 0))
861 goto free_return;
862 if (sifted_states[0] != NULL || lim_states[0] != NULL)
863 break;
864 do
865 {
866 --match_last;
867 if (match_last < 0)
868 {
869 ret = REG_NOMATCH;
870 goto free_return;
871 }
872 } while (!mctx->state_log[match_last]->halt);
873 halt_node = check_halt_state_context (preg,
874 mctx->state_log[match_last],
875 mctx, match_last);
876 }
877 ret = merge_state_array (dfa, sifted_states, lim_states,
878 match_last + 1);
879 re_free (lim_states);
880 lim_states = NULL;
881 if (BE (ret != REG_NOERROR, 0))
882 goto free_return;
883 }
884 else
885 {
886 sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
887 match_last, 0);
888 ret = sift_states_backward (preg, mctx, &sctx);
889 re_node_set_free (&sctx.limits);
890 if (BE (ret != REG_NOERROR, 0))
891 goto free_return;
892 }
893 re_free (mctx->state_log);
894 mctx->state_log = sifted_states;
895 sifted_states = NULL;
896 mctx->last_node = halt_node;
897 mctx->match_last = match_last;
898 ret = REG_NOERROR;
899 free_return:
900 re_free (sifted_states);
901 re_free (lim_states);
902 return ret;
903 }
904
905 /* Acquire an initial state and return it.
906 We must select appropriate initial state depending on the context,
907 since initial states may have constraints like "\<", "^", etc.. */
908
909 static re_dfastate_t *
910 acquire_init_state_context (err, preg, mctx, idx)
911 reg_errcode_t *err;
912 const regex_t *preg;
913 const re_match_context_t *mctx;
914 int idx;
915 {
916 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
917
918 *err = REG_NOERROR;
919 if (dfa->init_state->has_constraint)
920 {
921 unsigned int context;
922 context = re_string_context_at (mctx->input, idx - 1, mctx->eflags,
923 preg->newline_anchor);
924 if (IS_WORD_CONTEXT (context))
925 return dfa->init_state_word;
926 else if (IS_ORDINARY_CONTEXT (context))
927 return dfa->init_state;
928 else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
929 return dfa->init_state_begbuf;
930 else if (IS_NEWLINE_CONTEXT (context))
931 return dfa->init_state_nl;
932 else if (IS_BEGBUF_CONTEXT (context))
933 {
934 /* It is relatively rare case, then calculate on demand. */
935 return re_acquire_state_context (err, dfa,
936 dfa->init_state->entrance_nodes,
937 context);
938 }
939 else
940 /* Must not happen? */
941 return dfa->init_state;
942 }
943 else
944 return dfa->init_state;
945 }
946
947 /* Check whether the regular expression match input string INPUT or not,
948 and return the index where the matching end, return -1 if not match,
949 or return -2 in case of an error.
950 FL_SEARCH means we must search where the matching starts,
951 FL_LONGEST_MATCH means we want the POSIX longest matching.
952 Note that the matcher assume that the maching starts from the current
953 index of the buffer. */
954
955 static int
956 check_matching (preg, mctx, fl_search, fl_longest_match)
957 const regex_t *preg;
958 re_match_context_t *mctx;
959 int fl_search, fl_longest_match;
960 {
961 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
962 reg_errcode_t err;
963 int match = 0;
964 int match_last = -1;
965 int cur_str_idx = re_string_cur_idx (mctx->input);
966 re_dfastate_t *cur_state;
967
968 cur_state = acquire_init_state_context (&err, preg, mctx, cur_str_idx);
969 /* An initial state must not be NULL(invalid state). */
970 if (BE (cur_state == NULL, 0))
971 return -2;
972 if (mctx->state_log != NULL)
973 mctx->state_log[cur_str_idx] = cur_state;
974
975 /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
976 later. E.g. Processing back references. */
977 if (dfa->nbackref)
978 {
979 err = check_subexp_matching_top (dfa, mctx, &cur_state->nodes, 0);
980 if (BE (err != REG_NOERROR, 0))
981 return err;
982 }
983
984 if (cur_state->has_backref)
985 {
986 err = transit_state_bkref (preg, &cur_state->nodes, mctx);
987 if (BE (err != REG_NOERROR, 0))
988 return err;
989 }
990
991 /* If the RE accepts NULL string. */
992 if (cur_state->halt)
993 {
994 if (!cur_state->has_constraint
995 || check_halt_state_context (preg, cur_state, mctx, cur_str_idx))
996 {
997 if (!fl_longest_match)
998 return cur_str_idx;
999 else
1000 {
1001 match_last = cur_str_idx;
1002 match = 1;
1003 }
1004 }
1005 }
1006
1007 while (!re_string_eoi (mctx->input))
1008 {
1009 cur_state = transit_state (&err, preg, mctx, cur_state,
1010 fl_search && !match);
1011 if (cur_state == NULL) /* Reached at the invalid state or an error. */
1012 {
1013 cur_str_idx = re_string_cur_idx (mctx->input);
1014 if (BE (err != REG_NOERROR, 0))
1015 return -2;
1016 if (fl_search && !match)
1017 {
1018 /* Restart from initial state, since we are searching
1019 the point from where matching start. */
1020 #ifdef RE_ENABLE_I18N
1021 if (MB_CUR_MAX == 1
1022 || re_string_first_byte (mctx->input, cur_str_idx))
1023 #endif /* RE_ENABLE_I18N */
1024 cur_state = acquire_init_state_context (&err, preg, mctx,
1025 cur_str_idx);
1026 if (BE (cur_state == NULL && err != REG_NOERROR, 0))
1027 return -2;
1028 if (mctx->state_log != NULL)
1029 mctx->state_log[cur_str_idx] = cur_state;
1030 }
1031 else if (!fl_longest_match && match)
1032 break;
1033 else /* (fl_longest_match && match) || (!fl_search && !match) */
1034 {
1035 if (mctx->state_log == NULL)
1036 break;
1037 else
1038 {
1039 int max = mctx->state_log_top;
1040 for (; cur_str_idx <= max; ++cur_str_idx)
1041 if (mctx->state_log[cur_str_idx] != NULL)
1042 break;
1043 if (cur_str_idx > max)
1044 break;
1045 }
1046 }
1047 }
1048
1049 if (cur_state != NULL && cur_state->halt)
1050 {
1051 /* Reached at a halt state.
1052 Check the halt state can satisfy the current context. */
1053 if (!cur_state->has_constraint
1054 || check_halt_state_context (preg, cur_state, mctx,
1055 re_string_cur_idx (mctx->input)))
1056 {
1057 /* We found an appropriate halt state. */
1058 match_last = re_string_cur_idx (mctx->input);
1059 match = 1;
1060 if (!fl_longest_match)
1061 break;
1062 }
1063 }
1064 }
1065 return match_last;
1066 }
1067
1068 /* Check NODE match the current context. */
1069
1070 static int check_halt_node_context (dfa, node, context)
1071 const re_dfa_t *dfa;
1072 int node;
1073 unsigned int context;
1074 {
1075 re_token_type_t type = dfa->nodes[node].type;
1076 unsigned int constraint = dfa->nodes[node].constraint;
1077 if (type != END_OF_RE)
1078 return 0;
1079 if (!constraint)
1080 return 1;
1081 if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
1082 return 0;
1083 return 1;
1084 }
1085
1086 /* Check the halt state STATE match the current context.
1087 Return 0 if not match, if the node, STATE has, is a halt node and
1088 match the context, return the node. */
1089
1090 static int
1091 check_halt_state_context (preg, state, mctx, idx)
1092 const regex_t *preg;
1093 const re_dfastate_t *state;
1094 const re_match_context_t *mctx;
1095 int idx;
1096 {
1097 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
1098 int i;
1099 unsigned int context;
1100 #ifdef DEBUG
1101 assert (state->halt);
1102 #endif
1103 context = re_string_context_at (mctx->input, idx, mctx->eflags,
1104 preg->newline_anchor);
1105 for (i = 0; i < state->nodes.nelem; ++i)
1106 if (check_halt_node_context (dfa, state->nodes.elems[i], context))
1107 return state->nodes.elems[i];
1108 return 0;
1109 }
1110
1111 /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
1112 corresponding to the DFA).
1113 Return the destination node, and update EPS_VIA_NODES, return -1 in case
1114 of errors. */
1115
1116 static int
1117 proceed_next_node (preg, nregs, regs, mctx, pidx, node, eps_via_nodes, fs)
1118 const regex_t *preg;
1119 regmatch_t *regs;
1120 const re_match_context_t *mctx;
1121 int nregs, *pidx, node;
1122 re_node_set *eps_via_nodes;
1123 struct re_fail_stack_t *fs;
1124 {
1125 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
1126 int i, err, dest_node;
1127 dest_node = -1;
1128 if (IS_EPSILON_NODE (dfa->nodes[node].type))
1129 {
1130 re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
1131 int ndest, dest_nodes[2];
1132 err = re_node_set_insert (eps_via_nodes, node);
1133 if (BE (err < 0, 0))
1134 return -1;
1135 /* Pick up valid destinations. */
1136 for (ndest = 0, i = 0; i < dfa->edests[node].nelem; ++i)
1137 {
1138 int candidate = dfa->edests[node].elems[i];
1139 if (!re_node_set_contains (cur_nodes, candidate))
1140 continue;
1141 dest_nodes[0] = (ndest == 0) ? candidate : dest_nodes[0];
1142 dest_nodes[1] = (ndest == 1) ? candidate : dest_nodes[1];
1143 ++ndest;
1144 }
1145 if (ndest <= 1)
1146 return ndest == 0 ? -1 : (ndest == 1 ? dest_nodes[0] : 0);
1147 /* In order to avoid infinite loop like "(a*)*". */
1148 if (re_node_set_contains (eps_via_nodes, dest_nodes[0]))
1149 return dest_nodes[1];
1150 if (fs != NULL)
1151 push_fail_stack (fs, *pidx, dest_nodes, nregs, regs, eps_via_nodes);
1152 return dest_nodes[0];
1153 }
1154 else
1155 {
1156 int naccepted = 0;
1157 re_token_type_t type = dfa->nodes[node].type;
1158
1159 #ifdef RE_ENABLE_I18N
1160 if (ACCEPT_MB_NODE (type))
1161 naccepted = check_node_accept_bytes (preg, node, mctx->input, *pidx);
1162 else
1163 #endif /* RE_ENABLE_I18N */
1164 if (type == OP_BACK_REF)
1165 {
1166 int subexp_idx = dfa->nodes[node].opr.idx;
1167 naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
1168 if (fs != NULL)
1169 {
1170 if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
1171 return -1;
1172 else if (naccepted)
1173 {
1174 char *buf = (char *) re_string_get_buffer (mctx->input);
1175 if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
1176 naccepted) != 0)
1177 return -1;
1178 }
1179 }
1180
1181 if (naccepted == 0)
1182 {
1183 err = re_node_set_insert (eps_via_nodes, node);
1184 if (BE (err < 0, 0))
1185 return -2;
1186 dest_node = dfa->edests[node].elems[0];
1187 if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
1188 dest_node))
1189 return dest_node;
1190 }
1191 }
1192
1193 if (naccepted != 0
1194 || check_node_accept (preg, dfa->nodes + node, mctx, *pidx))
1195 {
1196 dest_node = dfa->nexts[node];
1197 *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
1198 if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
1199 || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
1200 dest_node)))
1201 return -1;
1202 re_node_set_empty (eps_via_nodes);
1203 return dest_node;
1204 }
1205 }
1206 return -1;
1207 }
1208
1209 static reg_errcode_t
1210 push_fail_stack (fs, str_idx, dests, nregs, regs, eps_via_nodes)
1211 struct re_fail_stack_t *fs;
1212 int str_idx, *dests, nregs;
1213 regmatch_t *regs;
1214 re_node_set *eps_via_nodes;
1215 {
1216 reg_errcode_t err;
1217 int num = fs->num++;
1218 if (fs->num == fs->alloc)
1219 {
1220 struct re_fail_stack_ent_t *new_array;
1221 fs->alloc *= 2;
1222 new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
1223 * fs->alloc));
1224 if (new_array == NULL)
1225 return REG_ESPACE;
1226 fs->stack = new_array;
1227 }
1228 fs->stack[num].idx = str_idx;
1229 fs->stack[num].node = dests[1];
1230 fs->stack[num].regs = re_malloc (regmatch_t, nregs);
1231 memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
1232 err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
1233 return err;
1234 }
1235
1236 static int
1237 pop_fail_stack (fs, pidx, nregs, regs, eps_via_nodes)
1238 struct re_fail_stack_t *fs;
1239 int *pidx, nregs;
1240 regmatch_t *regs;
1241 re_node_set *eps_via_nodes;
1242 {
1243 int num = --fs->num;
1244 assert (num >= 0);
1245 *pidx = fs->stack[num].idx;
1246 memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
1247 re_node_set_free (eps_via_nodes);
1248 re_free (fs->stack[num].regs);
1249 *eps_via_nodes = fs->stack[num].eps_via_nodes;
1250 return fs->stack[num].node;
1251 }
1252
1253 /* Set the positions where the subexpressions are starts/ends to registers
1254 PMATCH.
1255 Note: We assume that pmatch[0] is already set, and
1256 pmatch[i].rm_so == pmatch[i].rm_eo == -1 (i > 1). */
1257
1258 static reg_errcode_t
1259 set_regs (preg, mctx, nmatch, pmatch, fl_backtrack)
1260 const regex_t *preg;
1261 const re_match_context_t *mctx;
1262 size_t nmatch;
1263 regmatch_t *pmatch;
1264 int fl_backtrack;
1265 {
1266 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
1267 int idx, cur_node, real_nmatch;
1268 re_node_set eps_via_nodes;
1269 struct re_fail_stack_t *fs;
1270 struct re_fail_stack_t fs_body = {0, 2, NULL};
1271 #ifdef DEBUG
1272 assert (nmatch > 1);
1273 assert (mctx->state_log != NULL);
1274 #endif
1275 if (fl_backtrack)
1276 {
1277 fs = &fs_body;
1278 fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
1279 }
1280 else
1281 fs = NULL;
1282 cur_node = dfa->init_node;
1283 real_nmatch = (nmatch <= preg->re_nsub) ? nmatch : preg->re_nsub + 1;
1284 re_node_set_init_empty (&eps_via_nodes);
1285 for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
1286 {
1287 update_regs (dfa, pmatch, cur_node, idx, real_nmatch);
1288 if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
1289 {
1290 int reg_idx;
1291 if (fs)
1292 {
1293 for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
1294 if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
1295 break;
1296 if (reg_idx == nmatch)
1297 {
1298 re_node_set_free (&eps_via_nodes);
1299 return free_fail_stack_return (fs);
1300 }
1301 cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
1302 &eps_via_nodes);
1303 }
1304 else
1305 {
1306 re_node_set_free (&eps_via_nodes);
1307 return REG_NOERROR;
1308 }
1309 }
1310
1311 /* Proceed to next node. */
1312 cur_node = proceed_next_node (preg, nmatch, pmatch, mctx, &idx, cur_node,
1313 &eps_via_nodes, fs);
1314
1315 if (BE (cur_node < 0, 0))
1316 {
1317 if (cur_node == -2)
1318 return REG_ESPACE;
1319 if (fs)
1320 cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
1321 &eps_via_nodes);
1322 else
1323 {
1324 re_node_set_free (&eps_via_nodes);
1325 return REG_NOMATCH;
1326 }
1327 }
1328 }
1329 re_node_set_free (&eps_via_nodes);
1330 return free_fail_stack_return (fs);
1331 }
1332
1333 static reg_errcode_t
1334 free_fail_stack_return (fs)
1335 struct re_fail_stack_t *fs;
1336 {
1337 if (fs)
1338 {
1339 int fs_idx;
1340 for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
1341 {
1342 re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
1343 re_free (fs->stack[fs_idx].regs);
1344 }
1345 re_free (fs->stack);
1346 }
1347 return REG_NOERROR;
1348 }
1349
1350 static void
1351 update_regs (dfa, pmatch, cur_node, cur_idx, nmatch)
1352 re_dfa_t *dfa;
1353 regmatch_t *pmatch;
1354 int cur_node, cur_idx, nmatch;
1355 {
1356 int type = dfa->nodes[cur_node].type;
1357 int reg_num;
1358 if (type != OP_OPEN_SUBEXP && type != OP_CLOSE_SUBEXP)
1359 return;
1360 reg_num = dfa->nodes[cur_node].opr.idx + 1;
1361 if (reg_num >= nmatch)
1362 return;
1363 if (type == OP_OPEN_SUBEXP)
1364 {
1365 /* We are at the first node of this sub expression. */
1366 pmatch[reg_num].rm_so = cur_idx;
1367 pmatch[reg_num].rm_eo = -1;
1368 }
1369 else if (type == OP_CLOSE_SUBEXP)
1370 /* We are at the first node of this sub expression. */
1371 pmatch[reg_num].rm_eo = cur_idx;
1372 }
1373
1374 #define NUMBER_OF_STATE 1
1375
1376 /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
1377 and sift the nodes in each states according to the following rules.
1378 Updated state_log will be wrote to STATE_LOG.
1379
1380 Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
1381 1. When STR_IDX == MATCH_LAST(the last index in the state_log):
1382 If `a' isn't the LAST_NODE and `a' can't epsilon transit to
1383 the LAST_NODE, we throw away the node `a'.
1384 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
1385 string `s' and transit to `b':
1386 i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
1387 away the node `a'.
1388 ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
1389 throwed away, we throw away the node `a'.
1390 3. When 0 <= STR_IDX < n and 'a' epsilon transit to 'b':
1391 i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
1392 node `a'.
1393 ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is throwed away,
1394 we throw away the node `a'. */
1395
1396 #define STATE_NODE_CONTAINS(state,node) \
1397 ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
1398
1399 static reg_errcode_t
1400 sift_states_backward (preg, mctx, sctx)
1401 const regex_t *preg;
1402 re_match_context_t *mctx;
1403 re_sift_context_t *sctx;
1404 {
1405 reg_errcode_t err;
1406 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
1407 int null_cnt = 0;
1408 int str_idx = sctx->last_str_idx;
1409 re_node_set cur_dest;
1410 re_node_set *cur_src; /* Points the state_log[str_idx]->nodes */
1411
1412 #ifdef DEBUG
1413 assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
1414 #endif
1415 cur_src = &mctx->state_log[str_idx]->nodes;
1416
1417 /* Build sifted state_log[str_idx]. It has the nodes which can epsilon
1418 transit to the last_node and the last_node itself. */
1419 err = re_node_set_init_1 (&cur_dest, sctx->last_node);
1420 if (BE (err != REG_NOERROR, 0))
1421 return err;
1422 err = update_cur_sifted_state (preg, mctx, sctx, str_idx, &cur_dest);
1423 if (BE (err != REG_NOERROR, 0))
1424 goto free_return;
1425
1426 /* Then check each states in the state_log. */
1427 while (str_idx > 0)
1428 {
1429 int i, ret;
1430 /* Update counters. */
1431 null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
1432 if (null_cnt > mctx->max_mb_elem_len)
1433 {
1434 memset (sctx->sifted_states, '\0',
1435 sizeof (re_dfastate_t *) * str_idx);
1436 re_node_set_free (&cur_dest);
1437 return REG_NOERROR;
1438 }
1439 re_node_set_empty (&cur_dest);
1440 --str_idx;
1441 cur_src = ((mctx->state_log[str_idx] == NULL) ? &empty_set
1442 : &mctx->state_log[str_idx]->nodes);
1443
1444 /* Then build the next sifted state.
1445 We build the next sifted state on `cur_dest', and update
1446 `sifted_states[str_idx]' with `cur_dest'.
1447 Note:
1448 `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
1449 `cur_src' points the node_set of the old `state_log[str_idx]'. */
1450 for (i = 0; i < cur_src->nelem; i++)
1451 {
1452 int prev_node = cur_src->elems[i];
1453 int naccepted = 0;
1454 re_token_type_t type = dfa->nodes[prev_node].type;
1455
1456 if (IS_EPSILON_NODE(type))
1457 continue;
1458 #ifdef RE_ENABLE_I18N
1459 /* If the node may accept `multi byte'. */
1460 if (ACCEPT_MB_NODE (type))
1461 naccepted = sift_states_iter_mb (preg, mctx, sctx, prev_node,
1462 str_idx, sctx->last_str_idx);
1463
1464 #endif /* RE_ENABLE_I18N */
1465 /* We don't check backreferences here.
1466 See update_cur_sifted_state(). */
1467
1468 if (!naccepted
1469 && check_node_accept (preg, dfa->nodes + prev_node, mctx,
1470 str_idx)
1471 && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
1472 dfa->nexts[prev_node]))
1473 naccepted = 1;
1474
1475 if (naccepted == 0)
1476 continue;
1477
1478 if (sctx->limits.nelem)
1479 {
1480 int to_idx = str_idx + naccepted;
1481 if (check_dst_limits (dfa, &sctx->limits, mctx,
1482 dfa->nexts[prev_node], to_idx,
1483 prev_node, str_idx))
1484 continue;
1485 }
1486 ret = re_node_set_insert (&cur_dest, prev_node);
1487 if (BE (ret == -1, 0))
1488 {
1489 err = REG_ESPACE;
1490 goto free_return;
1491 }
1492 }
1493
1494 /* Add all the nodes which satisfy the following conditions:
1495 - It can epsilon transit to a node in CUR_DEST.
1496 - It is in CUR_SRC.
1497 And update state_log. */
1498 err = update_cur_sifted_state (preg, mctx, sctx, str_idx, &cur_dest);
1499 if (BE (err != REG_NOERROR, 0))
1500 goto free_return;
1501 }
1502 err = REG_NOERROR;
1503 free_return:
1504 re_node_set_free (&cur_dest);
1505 return err;
1506 }
1507
1508 /* Helper functions. */
1509
1510 static reg_errcode_t
1511 clean_state_log_if_need (mctx, next_state_log_idx)
1512 re_match_context_t *mctx;
1513 int next_state_log_idx;
1514 {
1515 int top = mctx->state_log_top;
1516
1517 if (next_state_log_idx >= mctx->input->bufs_len
1518 || (next_state_log_idx >= mctx->input->valid_len
1519 && mctx->input->valid_len < mctx->input->len))
1520 {
1521 reg_errcode_t err;
1522 err = extend_buffers (mctx);
1523 if (BE (err != REG_NOERROR, 0))
1524 return err;
1525 }
1526
1527 if (top < next_state_log_idx)
1528 {
1529 memset (mctx->state_log + top + 1, '\0',
1530 sizeof (re_dfastate_t *) * (next_state_log_idx - top));
1531 mctx->state_log_top = next_state_log_idx;
1532 }
1533 return REG_NOERROR;
1534 }
1535
1536 static reg_errcode_t
1537 merge_state_array (dfa, dst, src, num)
1538 re_dfa_t *dfa;
1539 re_dfastate_t **dst;
1540 re_dfastate_t **src;
1541 int num;
1542 {
1543 int st_idx;
1544 reg_errcode_t err;
1545 for (st_idx = 0; st_idx < num; ++st_idx)
1546 {
1547 if (dst[st_idx] == NULL)
1548 dst[st_idx] = src[st_idx];
1549 else if (src[st_idx] != NULL)
1550 {
1551 re_node_set merged_set;
1552 err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
1553 &src[st_idx]->nodes);
1554 if (BE (err != REG_NOERROR, 0))
1555 return err;
1556 dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
1557 re_node_set_free (&merged_set);
1558 if (BE (err != REG_NOERROR, 0))
1559 return err;
1560 }
1561 }
1562 return REG_NOERROR;
1563 }
1564
1565 static reg_errcode_t
1566 update_cur_sifted_state (preg, mctx, sctx, str_idx, dest_nodes)
1567 const regex_t *preg;
1568 re_match_context_t *mctx;
1569 re_sift_context_t *sctx;
1570 int str_idx;
1571 re_node_set *dest_nodes;
1572 {
1573 reg_errcode_t err;
1574 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
1575 const re_node_set *candidates;
1576 candidates = ((mctx->state_log[str_idx] == NULL) ? &empty_set
1577 : &mctx->state_log[str_idx]->nodes);
1578
1579 /* At first, add the nodes which can epsilon transit to a node in
1580 DEST_NODE. */
1581 if (dest_nodes->nelem)
1582 {
1583 err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
1584 if (BE (err != REG_NOERROR, 0))
1585 return err;
1586 }
1587
1588 /* Then, check the limitations in the current sift_context. */
1589 if (dest_nodes->nelem && sctx->limits.nelem)
1590 {
1591 err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
1592 mctx->bkref_ents, str_idx);
1593 if (BE (err != REG_NOERROR, 0))
1594 return err;
1595 }
1596
1597 /* Update state_log. */
1598 sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
1599 if (BE (sctx->sifted_states[str_idx] == NULL && err != REG_NOERROR, 0))
1600 return err;
1601
1602 if ((mctx->state_log[str_idx] != NULL
1603 && mctx->state_log[str_idx]->has_backref))
1604 {
1605 err = sift_states_bkref (preg, mctx, sctx, str_idx, dest_nodes);
1606 if (BE (err != REG_NOERROR, 0))
1607 return err;
1608 }
1609 return REG_NOERROR;
1610 }
1611
1612 static reg_errcode_t
1613 add_epsilon_src_nodes (dfa, dest_nodes, candidates)
1614 re_dfa_t *dfa;
1615 re_node_set *dest_nodes;
1616 const re_node_set *candidates;
1617 {
1618 reg_errcode_t err;
1619 int src_idx;
1620 re_node_set src_copy;
1621
1622 err = re_node_set_init_copy (&src_copy, dest_nodes);
1623 if (BE (err != REG_NOERROR, 0))
1624 return err;
1625 for (src_idx = 0; src_idx < src_copy.nelem; ++src_idx)
1626 {
1627 err = re_node_set_add_intersect (dest_nodes, candidates,
1628 dfa->inveclosures
1629 + src_copy.elems[src_idx]);
1630 if (BE (err != REG_NOERROR, 0))
1631 {
1632 re_node_set_free (&src_copy);
1633 return err;
1634 }
1635 }
1636 re_node_set_free (&src_copy);
1637 return REG_NOERROR;
1638 }
1639
1640 static reg_errcode_t
1641 sub_epsilon_src_nodes (dfa, node, dest_nodes, candidates)
1642 re_dfa_t *dfa;
1643 int node;
1644 re_node_set *dest_nodes;
1645 const re_node_set *candidates;
1646 {
1647 int ecl_idx;
1648 reg_errcode_t err;
1649 re_node_set *inv_eclosure = dfa->inveclosures + node;
1650 re_node_set except_nodes;
1651 re_node_set_init_empty (&except_nodes);
1652 for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
1653 {
1654 int cur_node = inv_eclosure->elems[ecl_idx];
1655 if (cur_node == node)
1656 continue;
1657 if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
1658 {
1659 int edst1 = dfa->edests[cur_node].elems[0];
1660 int edst2 = ((dfa->edests[cur_node].nelem > 1)
1661 ? dfa->edests[cur_node].elems[1] : -1);
1662 if ((!re_node_set_contains (inv_eclosure, edst1)
1663 && re_node_set_contains (dest_nodes, edst1))
1664 || (edst2 > 0
1665 && !re_node_set_contains (inv_eclosure, edst2)
1666 && re_node_set_contains (dest_nodes, edst2)))
1667 {
1668 err = re_node_set_add_intersect (&except_nodes, candidates,
1669 dfa->inveclosures + cur_node);
1670 if (BE (err != REG_NOERROR, 0))
1671 {
1672 re_node_set_free (&except_nodes);
1673 return err;
1674 }
1675 }
1676 }
1677 }
1678 for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
1679 {
1680 int cur_node = inv_eclosure->elems[ecl_idx];
1681 if (!re_node_set_contains (&except_nodes, cur_node))
1682 {
1683 int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
1684 re_node_set_remove_at (dest_nodes, idx);
1685 }
1686 }
1687 re_node_set_free (&except_nodes);
1688 return REG_NOERROR;
1689 }
1690
1691 static int
1692 check_dst_limits (dfa, limits, mctx, dst_node, dst_idx, src_node, src_idx)
1693 re_dfa_t *dfa;
1694 re_node_set *limits;
1695 re_match_context_t *mctx;
1696 int dst_node, dst_idx, src_node, src_idx;
1697 {
1698 int lim_idx, src_pos, dst_pos;
1699
1700 for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
1701 {
1702 int subexp_idx;
1703 struct re_backref_cache_entry *ent;
1704 ent = mctx->bkref_ents + limits->elems[lim_idx];
1705 subexp_idx = dfa->nodes[ent->node].opr.idx - 1;
1706
1707 dst_pos = check_dst_limits_calc_pos (dfa, mctx, limits->elems[lim_idx],
1708 dfa->eclosures + dst_node,
1709 subexp_idx, dst_node, dst_idx);
1710 src_pos = check_dst_limits_calc_pos (dfa, mctx, limits->elems[lim_idx],
1711 dfa->eclosures + src_node,
1712 subexp_idx, src_node, src_idx);
1713
1714 /* In case of:
1715 <src> <dst> ( <subexp> )
1716 ( <subexp> ) <src> <dst>
1717 ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */
1718 if (src_pos == dst_pos)
1719 continue; /* This is unrelated limitation. */
1720 else
1721 return 1;
1722 }
1723 return 0;
1724 }
1725
1726 static int
1727 check_dst_limits_calc_pos (dfa, mctx, limit, eclosures, subexp_idx, node,
1728 str_idx)
1729 re_dfa_t *dfa;
1730 re_match_context_t *mctx;
1731 re_node_set *eclosures;
1732 int limit, subexp_idx, node, str_idx;
1733 {
1734 struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
1735 int pos = (str_idx < lim->subexp_from ? -1
1736 : (lim->subexp_to < str_idx ? 1 : 0));
1737 if (pos == 0
1738 && (str_idx == lim->subexp_from || str_idx == lim->subexp_to))
1739 {
1740 int node_idx;
1741 for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
1742 {
1743 int node = eclosures->elems[node_idx];
1744 re_token_type_t type= dfa->nodes[node].type;
1745 if (type == OP_BACK_REF)
1746 {
1747 int bi = search_cur_bkref_entry (mctx, str_idx);
1748 for (; bi < mctx->nbkref_ents; ++bi)
1749 {
1750 struct re_backref_cache_entry *ent = mctx->bkref_ents + bi;
1751 if (ent->str_idx > str_idx)
1752 break;
1753 if (ent->node == node && ent->subexp_from == ent->subexp_to)
1754 {
1755 int cpos, dst;
1756 dst = dfa->edests[node].elems[0];
1757 cpos = check_dst_limits_calc_pos (dfa, mctx, limit,
1758 dfa->eclosures + dst,
1759 subexp_idx, dst,
1760 str_idx);
1761 if ((str_idx == lim->subexp_from && cpos == -1)
1762 || (str_idx == lim->subexp_to && cpos == 0))
1763 return cpos;
1764 }
1765 }
1766 }
1767 if (type == OP_OPEN_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx
1768 && str_idx == lim->subexp_from)
1769 {
1770 pos = -1;
1771 break;
1772 }
1773 if (type == OP_CLOSE_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx
1774 && str_idx == lim->subexp_to)
1775 break;
1776 }
1777 if (node_idx == eclosures->nelem && str_idx == lim->subexp_to)
1778 pos = 1;
1779 }
1780 return pos;
1781 }
1782
1783 /* Check the limitations of sub expressions LIMITS, and remove the nodes
1784 which are against limitations from DEST_NODES. */
1785
1786 static reg_errcode_t
1787 check_subexp_limits (dfa, dest_nodes, candidates, limits, bkref_ents, str_idx)
1788 re_dfa_t *dfa;
1789 re_node_set *dest_nodes;
1790 const re_node_set *candidates;
1791 re_node_set *limits;
1792 struct re_backref_cache_entry *bkref_ents;
1793 int str_idx;
1794 {
1795 reg_errcode_t err;
1796 int node_idx, lim_idx;
1797
1798 for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
1799 {
1800 int subexp_idx;
1801 struct re_backref_cache_entry *ent;
1802 ent = bkref_ents + limits->elems[lim_idx];
1803
1804 if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
1805 continue; /* This is unrelated limitation. */
1806
1807 subexp_idx = dfa->nodes[ent->node].opr.idx - 1;
1808 if (ent->subexp_to == str_idx)
1809 {
1810 int ops_node = -1;
1811 int cls_node = -1;
1812 for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
1813 {
1814 int node = dest_nodes->elems[node_idx];
1815 re_token_type_t type= dfa->nodes[node].type;
1816 if (type == OP_OPEN_SUBEXP
1817 && subexp_idx == dfa->nodes[node].opr.idx)
1818 ops_node = node;
1819 else if (type == OP_CLOSE_SUBEXP
1820 && subexp_idx == dfa->nodes[node].opr.idx)
1821 cls_node = node;
1822 }
1823
1824 /* Check the limitation of the open subexpression. */
1825 /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */
1826 if (ops_node >= 0)
1827 {
1828 err = sub_epsilon_src_nodes(dfa, ops_node, dest_nodes,
1829 candidates);
1830 if (BE (err != REG_NOERROR, 0))
1831 return err;
1832 }
1833 /* Check the limitation of the close subexpression. */
1834 for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
1835 {
1836 int node = dest_nodes->elems[node_idx];
1837 if (!re_node_set_contains (dfa->inveclosures + node, cls_node)
1838 && !re_node_set_contains (dfa->eclosures + node, cls_node))
1839 {
1840 /* It is against this limitation.
1841 Remove it form the current sifted state. */
1842 err = sub_epsilon_src_nodes(dfa, node, dest_nodes,
1843 candidates);
1844 if (BE (err != REG_NOERROR, 0))
1845 return err;
1846 --node_idx;
1847 }
1848 }
1849 }
1850 else /* (ent->subexp_to != str_idx) */
1851 {
1852 for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
1853 {
1854 int node = dest_nodes->elems[node_idx];
1855 re_token_type_t type= dfa->nodes[node].type;
1856 if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
1857 {
1858 if (subexp_idx != dfa->nodes[node].opr.idx)
1859 continue;
1860 if ((type == OP_CLOSE_SUBEXP && ent->subexp_to != str_idx)
1861 || (type == OP_OPEN_SUBEXP))
1862 {
1863 /* It is against this limitation.
1864 Remove it form the current sifted state. */
1865 err = sub_epsilon_src_nodes(dfa, node, dest_nodes,
1866 candidates);
1867 if (BE (err != REG_NOERROR, 0))
1868 return err;
1869 }
1870 }
1871 }
1872 }
1873 }
1874 return REG_NOERROR;
1875 }
1876
1877 static reg_errcode_t
1878 sift_states_bkref (preg, mctx, sctx, str_idx, dest_nodes)
1879 const regex_t *preg;
1880 re_match_context_t *mctx;
1881 re_sift_context_t *sctx;
1882 int str_idx;
1883 re_node_set *dest_nodes;
1884 {
1885 reg_errcode_t err;
1886 re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
1887 int node_idx, node;
1888 re_sift_context_t local_sctx;
1889 const re_node_set *candidates;
1890 candidates = ((mctx->state_log[str_idx] == NULL) ? &empty_set
1891 : &mctx->state_log[str_idx]->nodes);
1892 local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */
1893
1894 for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
1895 {
1896 int cur_bkref_idx = re_string_cur_idx (mctx->input);
1897 re_token_type_t type;
1898 node = candidates->elems[node_idx];
1899 type = dfa->nodes[node].type;
1900 if (node == sctx->cur_bkref && str_idx == cur_bkref_idx)
1901 continue;
1902 /* Avoid infinite loop for the REs like "()\1+". */
1903 if (node == sctx->last_node && str_idx == sctx->last_str_idx)
1904 continue;
1905 if (type == OP_BACK_REF)
1906 {
1907 int enabled_idx = search_cur_bkref_entry (mctx, str_idx);
1908 for (; enabled_idx < mctx->nbkref_ents; ++enabled_idx)
1909 {
1910 int disabled_idx, subexp_len, to_idx, dst_node;
1911 struct re_backref_cache_entry *entry;
1912 entry = mctx->bkref_ents + enabled_idx;
1913 if (entry->str_idx > str_idx)
1914 break;
1915 if (entry->node != node)
1916 continue;
1917 subexp_len = entry->subexp_to - entry->subexp_from;
1918 to_idx = str_idx + subexp_len;
1919 dst_node = (subexp_len ? dfa->nexts[node]
1920 : dfa->edests[node].elems[0]);
1921
1922 if (to_idx > sctx->last_str_idx
1923 || sctx->sifted_states[to_idx] == NULL
1924 || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx],
1925 dst_node)
1926 || check_dst_limits (dfa, &sctx->limits, mctx, node,
1927 str_idx, dst_node, to_idx))
1928 continue;
1929 {
1930 re_dfastate_t *cur_state;
1931 entry->flag = 0;
1932 for (disabled_idx = enabled_idx + 1;
1933 disabled_idx < mctx->nbkref_ents; ++disabled_idx)
1934 {
1935 struct re_backref_cache_entry *entry2;
1936 entry2 = mctx->bkref_ents + disabled_idx;
1937 if (entry2->str_idx > str_idx)
1938 break;
1939 entry2->flag = (entry2->node == node) ? 1 : entry2->flag;
1940 }
1941
1942 if (local_sctx.sifted_states == NULL)
1943 {
1944 local_sctx = *sctx;
1945 err = re_node_set_init_copy (&local_sctx.limits,
1946 &sctx->limits);
1947 if (BE (err != REG_NOERROR, 0))
1948 goto free_return;
1949 }
1950 local_sctx.last_node = node;
1951 local_sctx.last_str_idx = str_idx;
1952 err = re_node_set_insert (&local_sctx.limits, enabled_idx);
1953 if (BE (err < 0, 0))
1954 {
1955 err = REG_ESPACE;
1956 goto free_return;
1957 }
1958 cur_state = local_sctx.sifted_states[str_idx];
1959 err = sift_states_backward (preg, mctx, &local_sctx);
1960 if (BE (err != REG_NOERROR, 0))
1961 goto free_return;
1962 if (sctx->limited_states != NULL)
1963 {
1964 err = merge_state_array (dfa, sctx->limited_states,
1965 local_sctx.sifted_states,
1966 str_idx + 1);
1967 if (BE (err != REG_NOERROR, 0))
1968 goto free_return;
1969 }
1970 local_sctx.sifted_states[str_idx] = cur_state;
1971 re_node_set_remove (&local_sctx.limits, enabled_idx);
1972 /* We must not use the variable entry here, since
1973 mctx->bkref_ents might be realloced. */
1974 mctx->bkref_ents[enabled_idx].flag = 1;
1975 }
1976 }
1977 enabled_idx = search_cur_bkref_entry (mctx, str_idx);
1978 for (; enabled_idx < mctx->nbkref_ents; ++enabled_idx)
1979 {
1980 struct re_backref_cache_entry *entry;
1981 entry = mctx->bkref_ents + enabled_idx;
1982 if (entry->str_idx > str_idx)
1983 break;
1984 if (entry->node == node)
1985 entry->flag = 0;
1986 }
1987 }
1988 }
1989 err = REG_NOERROR;
1990 free_return:
1991 if (local_sctx.sifted_states != NULL)
1992 {
1993 re_node_set_free (&local_sctx.limits);
1994 }
1995
1996 return err;
1997 }
1998
1999
2000 #ifdef RE_ENABLE_I18N
2001 static int
2002 sift_states_iter_mb (preg, mctx, sctx, node_idx, str_idx, max_str_idx)
2003 const regex_t *preg;
2004 const re_match_context_t *mctx;
2005 re_sift_context_t *sctx;
2006 int node_idx, str_idx, max_str_idx;
2007 {
2008 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2009 int naccepted;
2010 /* Check the node can accept `multi byte'. */
2011 naccepted = check_node_accept_bytes (preg, node_idx, mctx->input, str_idx);
2012 if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
2013 !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
2014 dfa->nexts[node_idx]))
2015 /* The node can't accept the `multi byte', or the
2016 destination was already throwed away, then the node
2017 could't accept the current input `multi byte'. */
2018 naccepted = 0;
2019 /* Otherwise, it is sure that the node could accept
2020 `naccepted' bytes input. */
2021 return naccepted;
2022 }
2023 #endif /* RE_ENABLE_I18N */
2024
2025 \f
2026 /* Functions for state transition. */
2027
2028 /* Return the next state to which the current state STATE will transit by
2029 accepting the current input byte, and update STATE_LOG if necessary.
2030 If STATE can accept a multibyte char/collating element/back reference
2031 update the destination of STATE_LOG. */
2032
2033 static re_dfastate_t *
2034 transit_state (err, preg, mctx, state, fl_search)
2035 reg_errcode_t *err;
2036 const regex_t *preg;
2037 re_match_context_t *mctx;
2038 re_dfastate_t *state;
2039 int fl_search;
2040 {
2041 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2042 re_dfastate_t **trtable, *next_state;
2043 unsigned char ch;
2044 int cur_idx;
2045
2046 if (re_string_cur_idx (mctx->input) + 1 >= mctx->input->bufs_len
2047 || (re_string_cur_idx (mctx->input) + 1 >= mctx->input->valid_len
2048 && mctx->input->valid_len < mctx->input->len))
2049 {
2050 *err = extend_buffers (mctx);
2051 if (BE (*err != REG_NOERROR, 0))
2052 return NULL;
2053 }
2054
2055 *err = REG_NOERROR;
2056 if (state == NULL)
2057 {
2058 next_state = state;
2059 re_string_skip_bytes (mctx->input, 1);
2060 }
2061 else
2062 {
2063 #ifdef RE_ENABLE_I18N
2064 /* If the current state can accept multibyte. */
2065 if (state->accept_mb)
2066 {
2067 *err = transit_state_mb (preg, state, mctx);
2068 if (BE (*err != REG_NOERROR, 0))
2069 return NULL;
2070 }
2071 #endif /* RE_ENABLE_I18N */
2072
2073 /* Then decide the next state with the single byte. */
2074 if (1)
2075 {
2076 /* Use transition table */
2077 ch = re_string_fetch_byte (mctx->input);
2078 trtable = fl_search ? state->trtable_search : state->trtable;
2079 if (trtable == NULL)
2080 {
2081 trtable = build_trtable (preg, state, fl_search);
2082 if (fl_search)
2083 state->trtable_search = trtable;
2084 else
2085 state->trtable = trtable;
2086 }
2087 next_state = trtable[ch];
2088 }
2089 else
2090 {
2091 /* don't use transition table */
2092 next_state = transit_state_sb (err, preg, state, fl_search, mctx);
2093 if (BE (next_state == NULL && err != REG_NOERROR, 0))
2094 return NULL;
2095 }
2096 }
2097
2098 cur_idx = re_string_cur_idx (mctx->input);
2099 /* Update the state_log if we need. */
2100 if (mctx->state_log != NULL)
2101 {
2102 if (cur_idx > mctx->state_log_top)
2103 {
2104 mctx->state_log[cur_idx] = next_state;
2105 mctx->state_log_top = cur_idx;
2106 }
2107 else if (mctx->state_log[cur_idx] == 0)
2108 {
2109 mctx->state_log[cur_idx] = next_state;
2110 }
2111 else
2112 {
2113 re_dfastate_t *pstate;
2114 unsigned int context;
2115 re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
2116 /* If (state_log[cur_idx] != 0), it implies that cur_idx is
2117 the destination of a multibyte char/collating element/
2118 back reference. Then the next state is the union set of
2119 these destinations and the results of the transition table. */
2120 pstate = mctx->state_log[cur_idx];
2121 log_nodes = pstate->entrance_nodes;
2122 if (next_state != NULL)
2123 {
2124 table_nodes = next_state->entrance_nodes;
2125 *err = re_node_set_init_union (&next_nodes, table_nodes,
2126 log_nodes);
2127 if (BE (*err != REG_NOERROR, 0))
2128 return NULL;
2129 }
2130 else
2131 next_nodes = *log_nodes;
2132 /* Note: We already add the nodes of the initial state,
2133 then we don't need to add them here. */
2134
2135 context = re_string_context_at (mctx->input,
2136 re_string_cur_idx (mctx->input) - 1,
2137 mctx->eflags, preg->newline_anchor);
2138 next_state = mctx->state_log[cur_idx]
2139 = re_acquire_state_context (err, dfa, &next_nodes, context);
2140 /* We don't need to check errors here, since the return value of
2141 this function is next_state and ERR is already set. */
2142
2143 if (table_nodes != NULL)
2144 re_node_set_free (&next_nodes);
2145 }
2146 }
2147
2148 /* Check OP_OPEN_SUBEXP in the current state in case that we use them
2149 later. We must check them here, since the back references in the
2150 next state might use them. */
2151 if (dfa->nbackref && next_state/* && fl_process_bkref */)
2152 {
2153 *err = check_subexp_matching_top (dfa, mctx, &next_state->nodes,
2154 cur_idx);
2155 if (BE (*err != REG_NOERROR, 0))
2156 return NULL;
2157 }
2158
2159 /* If the next state has back references. */
2160 if (next_state != NULL && next_state->has_backref)
2161 {
2162 *err = transit_state_bkref (preg, &next_state->nodes, mctx);
2163 if (BE (*err != REG_NOERROR, 0))
2164 return NULL;
2165 next_state = mctx->state_log[cur_idx];
2166 }
2167 return next_state;
2168 }
2169
2170 /* Helper functions for transit_state. */
2171
2172 /* From the node set CUR_NODES, pick up the nodes whose types are
2173 OP_OPEN_SUBEXP and which have corresponding back references in the regular
2174 expression. And register them to use them later for evaluating the
2175 correspoding back references. */
2176
2177 static reg_errcode_t
2178 check_subexp_matching_top (dfa, mctx, cur_nodes, str_idx)
2179 re_dfa_t *dfa;
2180 re_match_context_t *mctx;
2181 re_node_set *cur_nodes;
2182 int str_idx;
2183 {
2184 int node_idx;
2185 reg_errcode_t err;
2186
2187 /* TODO: This isn't efficient.
2188 Because there might be more than one nodes whose types are
2189 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
2190 nodes.
2191 E.g. RE: (a){2} */
2192 for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
2193 {
2194 int node = cur_nodes->elems[node_idx];
2195 if (dfa->nodes[node].type == OP_OPEN_SUBEXP
2196 && dfa->nodes[node].opr.idx < (8 * sizeof (dfa->used_bkref_map))
2197 && dfa->used_bkref_map & (1 << dfa->nodes[node].opr.idx))
2198 {
2199 err = match_ctx_add_subtop (mctx, node, str_idx);
2200 if (BE (err != REG_NOERROR, 0))
2201 return err;
2202 }
2203 }
2204 return REG_NOERROR;
2205 }
2206
2207 /* Return the next state to which the current state STATE will transit by
2208 accepting the current input byte. */
2209
2210 static re_dfastate_t *
2211 transit_state_sb (err, preg, state, fl_search, mctx)
2212 reg_errcode_t *err;
2213 const regex_t *preg;
2214 re_dfastate_t *state;
2215 int fl_search;
2216 re_match_context_t *mctx;
2217 {
2218 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2219 re_node_set next_nodes;
2220 re_dfastate_t *next_state;
2221 int node_cnt, cur_str_idx = re_string_cur_idx (mctx->input);
2222 unsigned int context;
2223
2224 *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
2225 if (BE (*err != REG_NOERROR, 0))
2226 return NULL;
2227 for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
2228 {
2229 int cur_node = state->nodes.elems[node_cnt];
2230 if (check_node_accept (preg, dfa->nodes + cur_node, mctx, cur_str_idx))
2231 {
2232 *err = re_node_set_merge (&next_nodes,
2233 dfa->eclosures + dfa->nexts[cur_node]);
2234 if (BE (*err != REG_NOERROR, 0))
2235 {
2236 re_node_set_free (&next_nodes);
2237 return NULL;
2238 }
2239 }
2240 }
2241 if (fl_search)
2242 {
2243 #ifdef RE_ENABLE_I18N
2244 int not_initial = 0;
2245 if (MB_CUR_MAX > 1)
2246 for (node_cnt = 0; node_cnt < next_nodes.nelem; ++node_cnt)
2247 if (dfa->nodes[next_nodes.elems[node_cnt]].type == CHARACTER)
2248 {
2249 not_initial = dfa->nodes[next_nodes.elems[node_cnt]].mb_partial;
2250 break;
2251 }
2252 if (!not_initial)
2253 #endif
2254 {
2255 *err = re_node_set_merge (&next_nodes,
2256 dfa->init_state->entrance_nodes);
2257 if (BE (*err != REG_NOERROR, 0))
2258 {
2259 re_node_set_free (&next_nodes);
2260 return NULL;
2261 }
2262 }
2263 }
2264 context = re_string_context_at (mctx->input, cur_str_idx, mctx->eflags,
2265 preg->newline_anchor);
2266 next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
2267 /* We don't need to check errors here, since the return value of
2268 this function is next_state and ERR is already set. */
2269
2270 re_node_set_free (&next_nodes);
2271 re_string_skip_bytes (mctx->input, 1);
2272 return next_state;
2273 }
2274
2275 #ifdef RE_ENABLE_I18N
2276 static reg_errcode_t
2277 transit_state_mb (preg, pstate, mctx)
2278 const regex_t *preg;
2279 re_dfastate_t *pstate;
2280 re_match_context_t *mctx;
2281 {
2282 reg_errcode_t err;
2283 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2284 int i;
2285
2286 for (i = 0; i < pstate->nodes.nelem; ++i)
2287 {
2288 re_node_set dest_nodes, *new_nodes;
2289 int cur_node_idx = pstate->nodes.elems[i];
2290 int naccepted = 0, dest_idx;
2291 unsigned int context;
2292 re_dfastate_t *dest_state;
2293
2294 if (dfa->nodes[cur_node_idx].constraint)
2295 {
2296 context = re_string_context_at (mctx->input,
2297 re_string_cur_idx (mctx->input),
2298 mctx->eflags, preg->newline_anchor);
2299 if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
2300 context))
2301 continue;
2302 }
2303
2304 /* How many bytes the node can accepts? */
2305 if (ACCEPT_MB_NODE (dfa->nodes[cur_node_idx].type))
2306 naccepted = check_node_accept_bytes (preg, cur_node_idx, mctx->input,
2307 re_string_cur_idx (mctx->input));
2308 if (naccepted == 0)
2309 continue;
2310
2311 /* The node can accepts `naccepted' bytes. */
2312 dest_idx = re_string_cur_idx (mctx->input) + naccepted;
2313 mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
2314 : mctx->max_mb_elem_len);
2315 err = clean_state_log_if_need (mctx, dest_idx);
2316 if (BE (err != REG_NOERROR, 0))
2317 return err;
2318 #ifdef DEBUG
2319 assert (dfa->nexts[cur_node_idx] != -1);
2320 #endif
2321 /* `cur_node_idx' may point the entity of the OP_CONTEXT_NODE,
2322 then we use pstate->nodes.elems[i] instead. */
2323 new_nodes = dfa->eclosures + dfa->nexts[pstate->nodes.elems[i]];
2324
2325 dest_state = mctx->state_log[dest_idx];
2326 if (dest_state == NULL)
2327 dest_nodes = *new_nodes;
2328 else
2329 {
2330 err = re_node_set_init_union (&dest_nodes,
2331 dest_state->entrance_nodes, new_nodes);
2332 if (BE (err != REG_NOERROR, 0))
2333 return err;
2334 }
2335 context = re_string_context_at (mctx->input, dest_idx - 1, mctx->eflags,
2336 preg->newline_anchor);
2337 mctx->state_log[dest_idx]
2338 = re_acquire_state_context (&err, dfa, &dest_nodes, context);
2339 if (dest_state != NULL)
2340 re_node_set_free (&dest_nodes);
2341 if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
2342 return err;
2343 }
2344 return REG_NOERROR;
2345 }
2346 #endif /* RE_ENABLE_I18N */
2347
2348 static reg_errcode_t
2349 transit_state_bkref (preg, nodes, mctx)
2350 const regex_t *preg;
2351 re_node_set *nodes;
2352 re_match_context_t *mctx;
2353 {
2354 reg_errcode_t err;
2355 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2356 int i;
2357 int cur_str_idx = re_string_cur_idx (mctx->input);
2358
2359 for (i = 0; i < nodes->nelem; ++i)
2360 {
2361 int dest_str_idx, prev_nelem, bkc_idx;
2362 int node_idx = nodes->elems[i];
2363 unsigned int context;
2364 re_token_t *node = dfa->nodes + node_idx;
2365 re_node_set *new_dest_nodes;
2366
2367 /* Check whether `node' is a backreference or not. */
2368 if (node->type != OP_BACK_REF)
2369 continue;
2370
2371 if (node->constraint)
2372 {
2373 context = re_string_context_at (mctx->input, cur_str_idx,
2374 mctx->eflags, preg->newline_anchor);
2375 if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
2376 continue;
2377 }
2378
2379 /* `node' is a backreference.
2380 Check the substring which the substring matched. */
2381 bkc_idx = mctx->nbkref_ents;
2382 err = get_subexp (preg, mctx, node_idx, cur_str_idx);
2383 if (BE (err != REG_NOERROR, 0))
2384 goto free_return;
2385
2386 /* And add the epsilon closures (which is `new_dest_nodes') of
2387 the backreference to appropriate state_log. */
2388 #ifdef DEBUG
2389 assert (dfa->nexts[node_idx] != -1);
2390 #endif
2391 for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
2392 {
2393 int subexp_len;
2394 re_dfastate_t *dest_state;
2395 struct re_backref_cache_entry *bkref_ent;
2396 bkref_ent = mctx->bkref_ents + bkc_idx;
2397 if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
2398 continue;
2399 subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
2400 new_dest_nodes = (subexp_len == 0
2401 ? dfa->eclosures + dfa->edests[node_idx].elems[0]
2402 : dfa->eclosures + dfa->nexts[node_idx]);
2403 dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
2404 - bkref_ent->subexp_from);
2405 context = re_string_context_at (mctx->input, dest_str_idx - 1,
2406 mctx->eflags, preg->newline_anchor);
2407 dest_state = mctx->state_log[dest_str_idx];
2408 prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
2409 : mctx->state_log[cur_str_idx]->nodes.nelem);
2410 /* Add `new_dest_node' to state_log. */
2411 if (dest_state == NULL)
2412 {
2413 mctx->state_log[dest_str_idx]
2414 = re_acquire_state_context (&err, dfa, new_dest_nodes,
2415 context);
2416 if (BE (mctx->state_log[dest_str_idx] == NULL
2417 && err != REG_NOERROR, 0))
2418 goto free_return;
2419 }
2420 else
2421 {
2422 re_node_set dest_nodes;
2423 err = re_node_set_init_union (&dest_nodes,
2424 dest_state->entrance_nodes,
2425 new_dest_nodes);
2426 if (BE (err != REG_NOERROR, 0))
2427 {
2428 re_node_set_free (&dest_nodes);
2429 goto free_return;
2430 }
2431 mctx->state_log[dest_str_idx]
2432 = re_acquire_state_context (&err, dfa, &dest_nodes, context);
2433 re_node_set_free (&dest_nodes);
2434 if (BE (mctx->state_log[dest_str_idx] == NULL
2435 && err != REG_NOERROR, 0))
2436 goto free_return;
2437 }
2438 /* We need to check recursively if the backreference can epsilon
2439 transit. */
2440 if (subexp_len == 0
2441 && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
2442 {
2443 err = check_subexp_matching_top (dfa, mctx, new_dest_nodes,
2444 cur_str_idx);
2445 if (BE (err != REG_NOERROR, 0))
2446 goto free_return;
2447 err = transit_state_bkref (preg, new_dest_nodes, mctx);
2448 if (BE (err != REG_NOERROR, 0))
2449 goto free_return;
2450 }
2451 }
2452 }
2453 err = REG_NOERROR;
2454 free_return:
2455 return err;
2456 }
2457
2458 /* Enumerate all the candidates which the backreference BKREF_NODE can match
2459 at BKREF_STR_IDX, and register them by match_ctx_add_entry().
2460 Note that we might collect inappropriate candidates here.
2461 However, the cost of checking them strictly here is too high, then we
2462 delay these checking for prune_impossible_nodes(). */
2463
2464 static reg_errcode_t
2465 get_subexp (preg, mctx, bkref_node, bkref_str_idx)
2466 const regex_t *preg;
2467 re_match_context_t *mctx;
2468 int bkref_node, bkref_str_idx;
2469 {
2470 int subexp_num, sub_top_idx;
2471 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2472 char *buf = (char *) re_string_get_buffer (mctx->input);
2473 /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */
2474 int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
2475 for (; cache_idx < mctx->nbkref_ents; ++cache_idx)
2476 {
2477 struct re_backref_cache_entry *entry = mctx->bkref_ents + cache_idx;
2478 if (entry->str_idx > bkref_str_idx)
2479 break;
2480 if (entry->node == bkref_node)
2481 return REG_NOERROR; /* We already checked it. */
2482 }
2483 subexp_num = dfa->nodes[bkref_node].opr.idx - 1;
2484
2485 /* For each sub expression */
2486 for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
2487 {
2488 reg_errcode_t err;
2489 re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
2490 re_sub_match_last_t *sub_last;
2491 int sub_last_idx, sl_str;
2492 char *bkref_str;
2493
2494 if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
2495 continue; /* It isn't related. */
2496
2497 sl_str = sub_top->str_idx;
2498 bkref_str = buf + bkref_str_idx;
2499 /* At first, check the last node of sub expressions we already
2500 evaluated. */
2501 for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
2502 {
2503 int sl_str_diff;
2504 sub_last = sub_top->lasts[sub_last_idx];
2505 sl_str_diff = sub_last->str_idx - sl_str;
2506 /* The matched string by the sub expression match with the substring
2507 at the back reference? */
2508 if (sl_str_diff > 0
2509 && memcmp (bkref_str, buf + sl_str, sl_str_diff) != 0)
2510 break; /* We don't need to search this sub expression any more. */
2511 bkref_str += sl_str_diff;
2512 sl_str += sl_str_diff;
2513 err = get_subexp_sub (preg, mctx, sub_top, sub_last, bkref_node,
2514 bkref_str_idx);
2515 if (err == REG_NOMATCH)
2516 continue;
2517 if (BE (err != REG_NOERROR, 0))
2518 return err;
2519 }
2520 if (sub_last_idx < sub_top->nlasts)
2521 continue;
2522 if (sub_last_idx > 0)
2523 ++sl_str;
2524 /* Then, search for the other last nodes of the sub expression. */
2525 for (; sl_str <= bkref_str_idx; ++sl_str)
2526 {
2527 int cls_node, sl_str_off;
2528 re_node_set *nodes;
2529 sl_str_off = sl_str - sub_top->str_idx;
2530 /* The matched string by the sub expression match with the substring
2531 at the back reference? */
2532 if (sl_str_off > 0
2533 && memcmp (bkref_str++, buf + sl_str - 1, 1) != 0)
2534 break; /* We don't need to search this sub expression any more. */
2535 if (mctx->state_log[sl_str] == NULL)
2536 continue;
2537 /* Does this state have a ')' of the sub expression? */
2538 nodes = &mctx->state_log[sl_str]->nodes;
2539 cls_node = find_subexp_node (dfa, nodes, subexp_num, 0);
2540 if (cls_node == -1)
2541 continue; /* No. */
2542 if (sub_top->path == NULL)
2543 {
2544 sub_top->path = calloc (sizeof (state_array_t),
2545 sl_str - sub_top->str_idx + 1);
2546 if (sub_top->path == NULL)
2547 return REG_ESPACE;
2548 }
2549 /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
2550 in the current context? */
2551 err = check_arrival (preg, mctx, sub_top->path, sub_top->node,
2552 sub_top->str_idx, cls_node, sl_str, 0);
2553 if (err == REG_NOMATCH)
2554 continue;
2555 if (BE (err != REG_NOERROR, 0))
2556 return err;
2557 sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
2558 if (BE (sub_last == NULL, 0))
2559 return REG_ESPACE;
2560 err = get_subexp_sub (preg, mctx, sub_top, sub_last, bkref_node,
2561 bkref_str_idx);
2562 if (err == REG_NOMATCH)
2563 continue;
2564 }
2565 }
2566 return REG_NOERROR;
2567 }
2568
2569 /* Helper functions for get_subexp(). */
2570
2571 /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
2572 If it can arrive, register the sub expression expressed with SUB_TOP
2573 and SUB_LAST. */
2574
2575 static reg_errcode_t
2576 get_subexp_sub (preg, mctx, sub_top, sub_last, bkref_node, bkref_str)
2577 const regex_t *preg;
2578 re_match_context_t *mctx;
2579 re_sub_match_top_t *sub_top;
2580 re_sub_match_last_t *sub_last;
2581 int bkref_node, bkref_str;
2582 {
2583 reg_errcode_t err;
2584 int to_idx;
2585 /* Can the subexpression arrive the back reference? */
2586 err = check_arrival (preg, mctx, &sub_last->path, sub_last->node,
2587 sub_last->str_idx, bkref_node, bkref_str, 1);
2588 if (err != REG_NOERROR)
2589 return err;
2590 err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
2591 sub_last->str_idx);
2592 if (BE (err != REG_NOERROR, 0))
2593 return err;
2594 to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
2595 clean_state_log_if_need (mctx, to_idx);
2596 return REG_NOERROR;
2597 }
2598
2599 /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
2600 Search '(' if FL_OPEN, or search ')' otherwise.
2601 TODO: This function isn't efficient...
2602 Because there might be more than one nodes whose types are
2603 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
2604 nodes.
2605 E.g. RE: (a){2} */
2606
2607 static int
2608 find_subexp_node (dfa, nodes, subexp_idx, fl_open)
2609 re_dfa_t *dfa;
2610 re_node_set *nodes;
2611 int subexp_idx, fl_open;
2612 {
2613 int cls_idx;
2614 for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
2615 {
2616 int cls_node = nodes->elems[cls_idx];
2617 re_token_t *node = dfa->nodes + cls_node;
2618 if (((fl_open && node->type == OP_OPEN_SUBEXP)
2619 || (!fl_open && node->type == OP_CLOSE_SUBEXP))
2620 && node->opr.idx == subexp_idx)
2621 return cls_node;
2622 }
2623 return -1;
2624 }
2625
2626 /* Check whether the node TOP_NODE at TOP_STR can arrive to the node
2627 LAST_NODE at LAST_STR. We record the path onto PATH since it will be
2628 heavily reused.
2629 Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */
2630
2631 static reg_errcode_t
2632 check_arrival (preg, mctx, path, top_node, top_str, last_node, last_str,
2633 fl_open)
2634 const regex_t *preg;
2635 re_match_context_t *mctx;
2636 state_array_t *path;
2637 int top_node, top_str, last_node, last_str, fl_open;
2638 {
2639 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2640 reg_errcode_t err;
2641 int subexp_num, backup_cur_idx, str_idx, null_cnt;
2642 re_dfastate_t *cur_state = NULL;
2643 re_node_set *cur_nodes, next_nodes;
2644 re_dfastate_t **backup_state_log;
2645 unsigned int context;
2646
2647 subexp_num = dfa->nodes[top_node].opr.idx;
2648 /* Extend the buffer if we need. */
2649 if (path->alloc < last_str + mctx->max_mb_elem_len + 1)
2650 {
2651 re_dfastate_t **new_array;
2652 int old_alloc = path->alloc;
2653 path->alloc += last_str + mctx->max_mb_elem_len + 1;
2654 new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
2655 if (new_array == NULL)
2656 return REG_ESPACE;
2657 path->array = new_array;
2658 memset (new_array + old_alloc, '\0',
2659 sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
2660 }
2661
2662 str_idx = path->next_idx == 0 ? top_str : path->next_idx;
2663
2664 /* Temporary modify MCTX. */
2665 backup_state_log = mctx->state_log;
2666 backup_cur_idx = mctx->input->cur_idx;
2667 mctx->state_log = path->array;
2668 mctx->input->cur_idx = str_idx;
2669
2670 /* Setup initial node set. */
2671 context = re_string_context_at (mctx->input, str_idx - 1, mctx->eflags,
2672 preg->newline_anchor);
2673 if (str_idx == top_str)
2674 {
2675 err = re_node_set_init_1 (&next_nodes, top_node);
2676 if (BE (err != REG_NOERROR, 0))
2677 return err;
2678 err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, fl_open);
2679 if (BE (err != REG_NOERROR, 0))
2680 {
2681 re_node_set_free (&next_nodes);
2682 return err;
2683 }
2684 }
2685 else
2686 {
2687 cur_state = mctx->state_log[str_idx];
2688 if (cur_state && cur_state->has_backref)
2689 {
2690 err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
2691 if (BE ( err != REG_NOERROR, 0))
2692 return err;
2693 }
2694 else
2695 re_node_set_init_empty (&next_nodes);
2696 }
2697 if (str_idx == top_str || (cur_state && cur_state->has_backref))
2698 {
2699 if (next_nodes.nelem)
2700 {
2701 err = expand_bkref_cache (preg, mctx, &next_nodes, str_idx, last_str,
2702 subexp_num, fl_open);
2703 if (BE ( err != REG_NOERROR, 0))
2704 {
2705 re_node_set_free (&next_nodes);
2706 return err;
2707 }
2708 }
2709 cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
2710 if (BE (cur_state == NULL && err != REG_NOERROR, 0))
2711 {
2712 re_node_set_free (&next_nodes);
2713 return err;
2714 }
2715 mctx->state_log[str_idx] = cur_state;
2716 }
2717
2718 for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
2719 {
2720 re_node_set_empty (&next_nodes);
2721 if (mctx->state_log[str_idx + 1])
2722 {
2723 err = re_node_set_merge (&next_nodes,
2724 &mctx->state_log[str_idx + 1]->nodes);
2725 if (BE (err != REG_NOERROR, 0))
2726 {
2727 re_node_set_free (&next_nodes);
2728 return err;
2729 }
2730 }
2731 if (cur_state)
2732 {
2733 err = check_arrival_add_next_nodes(preg, dfa, mctx, str_idx,
2734 &cur_state->nodes, &next_nodes);
2735 if (BE (err != REG_NOERROR, 0))
2736 {
2737 re_node_set_free (&next_nodes);
2738 return err;
2739 }
2740 }
2741 ++str_idx;
2742 if (next_nodes.nelem)
2743 {
2744 err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num,
2745 fl_open);
2746 if (BE (err != REG_NOERROR, 0))
2747 {
2748 re_node_set_free (&next_nodes);
2749 return err;
2750 }
2751 err = expand_bkref_cache (preg, mctx, &next_nodes, str_idx, last_str,
2752 subexp_num, fl_open);
2753 if (BE ( err != REG_NOERROR, 0))
2754 {
2755 re_node_set_free (&next_nodes);
2756 return err;
2757 }
2758 }
2759 context = re_string_context_at (mctx->input, str_idx - 1, mctx->eflags,
2760 preg->newline_anchor);
2761 cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
2762 if (BE (cur_state == NULL && err != REG_NOERROR, 0))
2763 {
2764 re_node_set_free (&next_nodes);
2765 return err;
2766 }
2767 mctx->state_log[str_idx] = cur_state;
2768 null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
2769 }
2770 re_node_set_free (&next_nodes);
2771 cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
2772 : &mctx->state_log[last_str]->nodes);
2773 path->next_idx = str_idx;
2774
2775 /* Fix MCTX. */
2776 mctx->state_log = backup_state_log;
2777 mctx->input->cur_idx = backup_cur_idx;
2778
2779 if (cur_nodes == NULL)
2780 return REG_NOMATCH;
2781 /* Then check the current node set has the node LAST_NODE. */
2782 return (re_node_set_contains (cur_nodes, last_node)
2783 || re_node_set_contains (cur_nodes, last_node) ? REG_NOERROR
2784 : REG_NOMATCH);
2785 }
2786
2787 /* Helper functions for check_arrival. */
2788
2789 /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
2790 to NEXT_NODES.
2791 TODO: This function is similar to the functions transit_state*(),
2792 however this function has many additional works.
2793 Can't we unify them? */
2794
2795 static reg_errcode_t
2796 check_arrival_add_next_nodes (preg, dfa, mctx, str_idx, cur_nodes, next_nodes)
2797 const regex_t *preg;
2798 re_dfa_t *dfa;
2799 re_match_context_t *mctx;
2800 int str_idx;
2801 re_node_set *cur_nodes, *next_nodes;
2802 {
2803 int cur_idx;
2804 reg_errcode_t err;
2805 re_node_set union_set;
2806 re_node_set_init_empty (&union_set);
2807 for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
2808 {
2809 int naccepted = 0;
2810 int cur_node = cur_nodes->elems[cur_idx];
2811 re_token_type_t type = dfa->nodes[cur_node].type;
2812 if (IS_EPSILON_NODE(type))
2813 continue;
2814 #ifdef RE_ENABLE_I18N
2815 /* If the node may accept `multi byte'. */
2816 if (ACCEPT_MB_NODE (type))
2817 {
2818 naccepted = check_node_accept_bytes (preg, cur_node, mctx->input,
2819 str_idx);
2820 if (naccepted > 1)
2821 {
2822 re_dfastate_t *dest_state;
2823 int next_node = dfa->nexts[cur_node];
2824 int next_idx = str_idx + naccepted;
2825 dest_state = mctx->state_log[next_idx];
2826 re_node_set_empty (&union_set);
2827 if (dest_state)
2828 {
2829 err = re_node_set_merge (&union_set, &dest_state->nodes);
2830 if (BE (err != REG_NOERROR, 0))
2831 {
2832 re_node_set_free (&union_set);
2833 return err;
2834 }
2835 err = re_node_set_insert (&union_set, next_node);
2836 if (BE (err < 0, 0))
2837 {
2838 re_node_set_free (&union_set);
2839 return REG_ESPACE;
2840 }
2841 }
2842 else
2843 {
2844 err = re_node_set_insert (&union_set, next_node);
2845 if (BE (err < 0, 0))
2846 {
2847 re_node_set_free (&union_set);
2848 return REG_ESPACE;
2849 }
2850 }
2851 mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
2852 &union_set);
2853 if (BE (mctx->state_log[next_idx] == NULL
2854 && err != REG_NOERROR, 0))
2855 {
2856 re_node_set_free (&union_set);
2857 return err;
2858 }
2859 }
2860 }
2861 #endif /* RE_ENABLE_I18N */
2862 if (naccepted
2863 || check_node_accept (preg, dfa->nodes + cur_node, mctx,
2864 str_idx))
2865 {
2866 err = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
2867 if (BE (err < 0, 0))
2868 {
2869 re_node_set_free (&union_set);
2870 return REG_ESPACE;
2871 }
2872 }
2873 }
2874 re_node_set_free (&union_set);
2875 return REG_NOERROR;
2876 }
2877
2878 /* For all the nodes in CUR_NODES, add the epsilon closures of them to
2879 CUR_NODES, however exclude the nodes which are:
2880 - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
2881 - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
2882 */
2883
2884 static reg_errcode_t
2885 check_arrival_expand_ecl (dfa, cur_nodes, ex_subexp, fl_open)
2886 re_dfa_t *dfa;
2887 re_node_set *cur_nodes;
2888 int ex_subexp, fl_open;
2889 {
2890 reg_errcode_t err;
2891 int idx, outside_node;
2892 re_node_set new_nodes;
2893 #ifdef DEBUG
2894 assert (cur_nodes->nelem);
2895 #endif
2896 err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
2897 if (BE (err != REG_NOERROR, 0))
2898 return err;
2899 /* Create a new node set NEW_NODES with the nodes which are epsilon
2900 closures of the node in CUR_NODES. */
2901
2902 for (idx = 0; idx < cur_nodes->nelem; ++idx)
2903 {
2904 int cur_node = cur_nodes->elems[idx];
2905 re_node_set *eclosure = dfa->eclosures + cur_node;
2906 outside_node = find_subexp_node (dfa, eclosure, ex_subexp, fl_open);
2907 if (outside_node == -1)
2908 {
2909 /* There are no problematic nodes, just merge them. */
2910 err = re_node_set_merge (&new_nodes, eclosure);
2911 if (BE (err != REG_NOERROR, 0))
2912 {
2913 re_node_set_free (&new_nodes);
2914 return err;
2915 }
2916 }
2917 else
2918 {
2919 /* There are problematic nodes, re-calculate incrementally. */
2920 err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
2921 ex_subexp, fl_open);
2922 if (BE (err != REG_NOERROR, 0))
2923 {
2924 re_node_set_free (&new_nodes);
2925 return err;
2926 }
2927 }
2928 }
2929 re_node_set_free (cur_nodes);
2930 *cur_nodes = new_nodes;
2931 return REG_NOERROR;
2932 }
2933
2934 /* Helper function for check_arrival_expand_ecl.
2935 Check incrementally the epsilon closure of TARGET, and if it isn't
2936 problematic append it to DST_NODES. */
2937
2938 static reg_errcode_t
2939 check_arrival_expand_ecl_sub (dfa, dst_nodes, target, ex_subexp, fl_open)
2940 re_dfa_t *dfa;
2941 int target, ex_subexp, fl_open;
2942 re_node_set *dst_nodes;
2943 {
2944 int cur_node, type;
2945 for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
2946 {
2947 int err;
2948 type = dfa->nodes[cur_node].type;
2949
2950 if (((type == OP_OPEN_SUBEXP && fl_open)
2951 || (type == OP_CLOSE_SUBEXP && !fl_open))
2952 && dfa->nodes[cur_node].opr.idx == ex_subexp)
2953 {
2954 if (!fl_open)
2955 {
2956 err = re_node_set_insert (dst_nodes, cur_node);
2957 if (BE (err == -1, 0))
2958 return REG_ESPACE;
2959 }
2960 break;
2961 }
2962 err = re_node_set_insert (dst_nodes, cur_node);
2963 if (BE (err == -1, 0))
2964 return REG_ESPACE;
2965 if (dfa->edests[cur_node].nelem == 0)
2966 break;
2967 if (dfa->edests[cur_node].nelem == 2)
2968 {
2969 err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
2970 dfa->edests[cur_node].elems[1],
2971 ex_subexp, fl_open);
2972 if (BE (err != REG_NOERROR, 0))
2973 return err;
2974 }
2975 cur_node = dfa->edests[cur_node].elems[0];
2976 }
2977 return REG_NOERROR;
2978 }
2979
2980
2981 /* For all the back references in the current state, calculate the
2982 destination of the back references by the appropriate entry
2983 in MCTX->BKREF_ENTS. */
2984
2985 static reg_errcode_t
2986 expand_bkref_cache (preg, mctx, cur_nodes, cur_str, last_str, subexp_num,
2987 fl_open)
2988 const regex_t *preg;
2989 re_match_context_t *mctx;
2990 int cur_str, last_str, subexp_num, fl_open;
2991 re_node_set *cur_nodes;
2992 {
2993 reg_errcode_t err;
2994 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
2995 int cache_idx, cache_idx_start;
2996 /* The current state. */
2997
2998 cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
2999 for (cache_idx = cache_idx_start; cache_idx < mctx->nbkref_ents; ++cache_idx)
3000 {
3001 int to_idx, next_node;
3002 struct re_backref_cache_entry *ent = mctx->bkref_ents + cache_idx;
3003 if (ent->str_idx > cur_str)
3004 break;
3005 /* Is this entry ENT is appropriate? */
3006 if (!re_node_set_contains (cur_nodes, ent->node))
3007 continue; /* No. */
3008
3009 to_idx = cur_str + ent->subexp_to - ent->subexp_from;
3010 /* Calculate the destination of the back reference, and append it
3011 to MCTX->STATE_LOG. */
3012 if (to_idx == cur_str)
3013 {
3014 /* The backreference did epsilon transit, we must re-check all the
3015 node in the current state. */
3016 re_node_set new_dests;
3017 reg_errcode_t err2, err3;
3018 next_node = dfa->edests[ent->node].elems[0];
3019 if (re_node_set_contains (cur_nodes, next_node))
3020 continue;
3021 err = re_node_set_init_1 (&new_dests, next_node);
3022 err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num,
3023 fl_open);
3024 err3 = re_node_set_merge (cur_nodes, &new_dests);
3025 re_node_set_free (&new_dests);
3026 if (BE (err != REG_NOERROR || err2 != REG_NOERROR
3027 || err3 != REG_NOERROR, 0))
3028 {
3029 err = (err != REG_NOERROR ? err
3030 : (err2 != REG_NOERROR ? err2 : err3));
3031 return err;
3032 }
3033 /* TODO: It is still inefficient... */
3034 cache_idx = cache_idx_start - 1;
3035 continue;
3036 }
3037 else
3038 {
3039 re_node_set union_set;
3040 next_node = dfa->nexts[ent->node];
3041 if (mctx->state_log[to_idx])
3042 {
3043 int ret;
3044 if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
3045 next_node))
3046 continue;
3047 err = re_node_set_init_copy (&union_set,
3048 &mctx->state_log[to_idx]->nodes);
3049 ret = re_node_set_insert (&union_set, next_node);
3050 if (BE (err != REG_NOERROR || ret < 0, 0))
3051 {
3052 re_node_set_free (&union_set);
3053 err = err != REG_NOERROR ? err : REG_ESPACE;
3054 return err;
3055 }
3056 }
3057 else
3058 {
3059 err = re_node_set_init_1 (&union_set, next_node);
3060 if (BE (err != REG_NOERROR, 0))
3061 return err;
3062 }
3063 mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
3064 re_node_set_free (&union_set);
3065 if (BE (mctx->state_log[to_idx] == NULL
3066 && err != REG_NOERROR, 0))
3067 return err;
3068 }
3069 }
3070 return REG_NOERROR;
3071 }
3072
3073 /* Build transition table for the state.
3074 Return the new table if succeeded, otherwise return NULL. */
3075
3076 static re_dfastate_t **
3077 build_trtable (preg, state, fl_search)
3078 const regex_t *preg;
3079 const re_dfastate_t *state;
3080 int fl_search;
3081 {
3082 reg_errcode_t err;
3083 re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
3084 int i, j, k, ch;
3085 int dests_node_malloced = 0, dest_states_malloced = 0;
3086 int ndests; /* Number of the destination states from `state'. */
3087 re_dfastate_t **trtable;
3088 re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
3089 re_node_set follows, *dests_node;
3090 bitset *dests_ch;
3091 bitset acceptable;
3092
3093 /* We build DFA states which corresponds to the destination nodes
3094 from `state'. `dests_node[i]' represents the nodes which i-th
3095 destination state contains, and `dests_ch[i]' represents the
3096 characters which i-th destination state accepts. */
3097 #ifdef _LIBC
3098 if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX))
3099 dests_node = (re_node_set *)
3100 alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
3101 else
3102 #endif
3103 {
3104 dests_node = (re_node_set *)
3105 malloc ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
3106 if (BE (dests_node == NULL, 0))
3107 return NULL;
3108 dests_node_malloced = 1;
3109 }
3110 dests_ch = (bitset *) (dests_node + SBC_MAX);
3111
3112 /* Initialize transiton table. */
3113 trtable = (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
3114 if (BE (trtable == NULL, 0))
3115 {
3116 if (dests_node_malloced)
3117 free (dests_node);
3118 return NULL;
3119 }
3120
3121 /* At first, group all nodes belonging to `state' into several
3122 destinations. */
3123 ndests = group_nodes_into_DFAstates (preg, state, dests_node, dests_ch);
3124 if (BE (ndests <= 0, 0))
3125 {
3126 if (dests_node_malloced)
3127 free (dests_node);
3128 /* Return NULL in case of an error, trtable otherwise. */
3129 if (ndests == 0)
3130 return trtable;
3131 free (trtable);
3132 return NULL;
3133 }
3134
3135 err = re_node_set_alloc (&follows, ndests + 1);
3136 if (BE (err != REG_NOERROR, 0))
3137 goto out_free;
3138
3139 #ifdef _LIBC
3140 if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX
3141 + ndests * 3 * sizeof (re_dfastate_t *)))
3142 dest_states = (re_dfastate_t **)
3143 alloca (ndests * 3 * sizeof (re_dfastate_t *));
3144 else
3145 #endif
3146 {
3147 dest_states = (re_dfastate_t **)
3148 malloc (ndests * 3 * sizeof (re_dfastate_t *));
3149 if (BE (dest_states == NULL, 0))
3150 {
3151 out_free:
3152 if (dest_states_malloced)
3153 free (dest_states);
3154 re_node_set_free (&follows);
3155 for (i = 0; i < ndests; ++i)
3156 re_node_set_free (dests_node + i);
3157 free (trtable);
3158 if (dests_node_malloced)
3159 free (dests_node);
3160 return NULL;
3161 }
3162 dest_states_malloced = 1;
3163 }
3164 dest_states_word = dest_states + ndests;
3165 dest_states_nl = dest_states_word + ndests;
3166 bitset_empty (acceptable);
3167
3168 /* Then build the states for all destinations. */
3169 for (i = 0; i < ndests; ++i)
3170 {
3171 int next_node;
3172 re_node_set_empty (&follows);
3173 /* Merge the follows of this destination states. */
3174 for (j = 0; j < dests_node[i].nelem; ++j)
3175 {
3176 next_node = dfa->nexts[dests_node[i].elems[j]];
3177 if (next_node != -1)
3178 {
3179 err = re_node_set_merge (&follows, dfa->eclosures + next_node);
3180 if (BE (err != REG_NOERROR, 0))
3181 goto out_free;
3182 }
3183 }
3184 /* If search flag is set, merge the initial state. */
3185 if (fl_search)
3186 {
3187 #ifdef RE_ENABLE_I18N
3188 int not_initial = 0;
3189 for (j = 0; j < follows.nelem; ++j)
3190 if (dfa->nodes[follows.elems[j]].type == CHARACTER)
3191 {
3192 not_initial = dfa->nodes[follows.elems[j]].mb_partial;
3193 break;
3194 }
3195 if (!not_initial)
3196 #endif
3197 {
3198 err = re_node_set_merge (&follows,
3199 dfa->init_state->entrance_nodes);
3200 if (BE (err != REG_NOERROR, 0))
3201 goto out_free;
3202 }
3203 }
3204 dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
3205 if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
3206 goto out_free;
3207 /* If the new state has context constraint,
3208 build appropriate states for these contexts. */
3209 if (dest_states[i]->has_constraint)
3210 {
3211 dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
3212 CONTEXT_WORD);
3213 if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
3214 goto out_free;
3215 dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
3216 CONTEXT_NEWLINE);
3217 if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
3218 goto out_free;
3219 }
3220 else
3221 {
3222 dest_states_word[i] = dest_states[i];
3223 dest_states_nl[i] = dest_states[i];
3224 }
3225 bitset_merge (acceptable, dests_ch[i]);
3226 }
3227
3228 /* Update the transition table. */
3229 /* For all characters ch...: */
3230 for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
3231 for (j = 0; j < UINT_BITS; ++j, ++ch)
3232 if ((acceptable[i] >> j) & 1)
3233 {
3234 /* The current state accepts the character ch. */
3235 if (IS_WORD_CHAR (ch))
3236 {
3237 for (k = 0; k < ndests; ++k)
3238 if ((dests_ch[k][i] >> j) & 1)
3239 {
3240 /* k-th destination accepts the word character ch. */
3241 trtable[ch] = dest_states_word[k];
3242 /* There must be only one destination which accepts
3243 character ch. See group_nodes_into_DFAstates. */
3244 break;
3245 }
3246 }
3247 else /* not WORD_CHAR */
3248 {
3249 for (k = 0; k < ndests; ++k)
3250 if ((dests_ch[k][i] >> j) & 1)
3251 {
3252 /* k-th destination accepts the non-word character ch. */
3253 trtable[ch] = dest_states[k];
3254 /* There must be only one destination which accepts
3255 character ch. See group_nodes_into_DFAstates. */
3256 break;
3257 }
3258 }
3259 }
3260 /* new line */
3261 if (bitset_contain (acceptable, NEWLINE_CHAR))
3262 {
3263 /* The current state accepts newline character. */
3264 for (k = 0; k < ndests; ++k)
3265 if (bitset_contain (dests_ch[k], NEWLINE_CHAR))
3266 {
3267 /* k-th destination accepts newline character. */
3268 trtable[NEWLINE_CHAR] = dest_states_nl[k];
3269 /* There must be only one destination which accepts
3270 newline. See group_nodes_into_DFAstates. */
3271 break;
3272 }
3273 }
3274
3275 if (dest_states_malloced)
3276 free (dest_states);
3277
3278 re_node_set_free (&follows);
3279 for (i = 0; i < ndests; ++i)
3280 re_node_set_free (dests_node + i);
3281
3282 if (dests_node_malloced)
3283 free (dests_node);
3284
3285 return trtable;
3286 }
3287
3288 /* Group all nodes belonging to STATE into several destinations.
3289 Then for all destinations, set the nodes belonging to the destination
3290 to DESTS_NODE[i] and set the characters accepted by the destination
3291 to DEST_CH[i]. This function return the number of destinations. */
3292
3293 static int
3294 group_nodes_into_DFAstates (preg, state, dests_node, dests_ch)
3295 const regex_t *preg;
3296 const re_dfastate_t *state;
3297 re_node_set *dests_node;
3298 bitset *dests_ch;
3299 {
3300 reg_errcode_t err;
3301 const re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
3302 int i, j, k;
3303 int ndests; /* Number of the destinations from `state'. */
3304 bitset accepts; /* Characters a node can accept. */
3305 const re_node_set *cur_nodes = &state->nodes;
3306 bitset_empty (accepts);
3307 ndests = 0;
3308
3309 /* For all the nodes belonging to `state', */
3310 for (i = 0; i < cur_nodes->nelem; ++i)
3311 {
3312 re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
3313 re_token_type_t type = node->type;
3314 unsigned int constraint = node->constraint;
3315
3316 /* Enumerate all single byte character this node can accept. */
3317 if (type == CHARACTER)
3318 bitset_set (accepts, node->opr.c);
3319 else if (type == SIMPLE_BRACKET)
3320 {
3321 bitset_merge (accepts, node->opr.sbcset);
3322 }
3323 else if (type == OP_PERIOD)
3324 {
3325 bitset_set_all (accepts);
3326 if (!(preg->syntax & RE_DOT_NEWLINE))
3327 bitset_clear (accepts, '\n');
3328 if (preg->syntax & RE_DOT_NOT_NULL)
3329 bitset_clear (accepts, '\0');
3330 }
3331 else
3332 continue;
3333
3334 /* Check the `accepts' and sift the characters which are not
3335 match it the context. */
3336 if (constraint)
3337 {
3338 if (constraint & NEXT_NEWLINE_CONSTRAINT)
3339 {
3340 int accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
3341 bitset_empty (accepts);
3342 if (accepts_newline)
3343 bitset_set (accepts, NEWLINE_CHAR);
3344 else
3345 continue;
3346 }
3347 if (constraint & NEXT_ENDBUF_CONSTRAINT)
3348 {
3349 bitset_empty (accepts);
3350 continue;
3351 }
3352 if (constraint & NEXT_WORD_CONSTRAINT)
3353 for (j = 0; j < BITSET_UINTS; ++j)
3354 accepts[j] &= dfa->word_char[j];
3355 if (constraint & NEXT_NOTWORD_CONSTRAINT)
3356 for (j = 0; j < BITSET_UINTS; ++j)
3357 accepts[j] &= ~dfa->word_char[j];
3358 }
3359
3360 /* Then divide `accepts' into DFA states, or create a new
3361 state. */
3362 for (j = 0; j < ndests; ++j)
3363 {
3364 bitset intersec; /* Intersection sets, see below. */
3365 bitset remains;
3366 /* Flags, see below. */
3367 int has_intersec, not_subset, not_consumed;
3368
3369 /* Optimization, skip if this state doesn't accept the character. */
3370 if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
3371 continue;
3372
3373 /* Enumerate the intersection set of this state and `accepts'. */
3374 has_intersec = 0;
3375 for (k = 0; k < BITSET_UINTS; ++k)
3376 has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
3377 /* And skip if the intersection set is empty. */
3378 if (!has_intersec)
3379 continue;
3380
3381 /* Then check if this state is a subset of `accepts'. */
3382 not_subset = not_consumed = 0;
3383 for (k = 0; k < BITSET_UINTS; ++k)
3384 {
3385 not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
3386 not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
3387 }
3388
3389 /* If this state isn't a subset of `accepts', create a
3390 new group state, which has the `remains'. */
3391 if (not_subset)
3392 {
3393 bitset_copy (dests_ch[ndests], remains);
3394 bitset_copy (dests_ch[j], intersec);
3395 err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
3396 if (BE (err != REG_NOERROR, 0))
3397 goto error_return;
3398 ++ndests;
3399 }
3400
3401 /* Put the position in the current group. */
3402 err = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
3403 if (BE (err < 0, 0))
3404 goto error_return;
3405
3406 /* If all characters are consumed, go to next node. */
3407 if (!not_consumed)
3408 break;
3409 }
3410 /* Some characters remain, create a new group. */
3411 if (j == ndests)
3412 {
3413 bitset_copy (dests_ch[ndests], accepts);
3414 err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
3415 if (BE (err != REG_NOERROR, 0))
3416 goto error_return;
3417 ++ndests;
3418 bitset_empty (accepts);
3419 }
3420 }
3421 return ndests;
3422 error_return:
3423 for (j = 0; j < ndests; ++j)
3424 re_node_set_free (dests_node + j);
3425 return -1;
3426 }
3427
3428 #ifdef RE_ENABLE_I18N
3429 /* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
3430 Return the number of the bytes the node accepts.
3431 STR_IDX is the current index of the input string.
3432
3433 This function handles the nodes which can accept one character, or
3434 one collating element like '.', '[a-z]', opposite to the other nodes
3435 can only accept one byte. */
3436
3437 static int
3438 check_node_accept_bytes (preg, node_idx, input, str_idx)
3439 const regex_t *preg;
3440 int node_idx, str_idx;
3441 const re_string_t *input;
3442 {
3443 const re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
3444 const re_token_t *node = dfa->nodes + node_idx;
3445 int elem_len = re_string_elem_size_at (input, str_idx);
3446 int char_len = re_string_char_size_at (input, str_idx);
3447 int i;
3448 # ifdef _LIBC
3449 int j;
3450 uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3451 # endif /* _LIBC */
3452 if (elem_len <= 1 && char_len <= 1)
3453 return 0;
3454 if (node->type == OP_PERIOD)
3455 {
3456 /* '.' accepts any one character except the following two cases. */
3457 if ((!(preg->syntax & RE_DOT_NEWLINE) &&
3458 re_string_byte_at (input, str_idx) == '\n') ||
3459 ((preg->syntax & RE_DOT_NOT_NULL) &&
3460 re_string_byte_at (input, str_idx) == '\0'))
3461 return 0;
3462 return char_len;
3463 }
3464 else if (node->type == COMPLEX_BRACKET)
3465 {
3466 const re_charset_t *cset = node->opr.mbcset;
3467 # ifdef _LIBC
3468 const unsigned char *pin = ((char *) re_string_get_buffer (input)
3469 + str_idx);
3470 # endif /* _LIBC */
3471 int match_len = 0;
3472 wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
3473 ? re_string_wchar_at (input, str_idx) : 0);
3474
3475 /* match with multibyte character? */
3476 for (i = 0; i < cset->nmbchars; ++i)
3477 if (wc == cset->mbchars[i])
3478 {
3479 match_len = char_len;
3480 goto check_node_accept_bytes_match;
3481 }
3482 /* match with character_class? */
3483 for (i = 0; i < cset->nchar_classes; ++i)
3484 {
3485 wctype_t wt = cset->char_classes[i];
3486 if (__iswctype (wc, wt))
3487 {
3488 match_len = char_len;
3489 goto check_node_accept_bytes_match;
3490 }
3491 }
3492
3493 # ifdef _LIBC
3494 if (nrules != 0)
3495 {
3496 unsigned int in_collseq = 0;
3497 const int32_t *table, *indirect;
3498 const unsigned char *weights, *extra;
3499 const char *collseqwc;
3500 int32_t idx;
3501 /* This #include defines a local function! */
3502 # include <locale/weight.h>
3503
3504 /* match with collating_symbol? */
3505 if (cset->ncoll_syms)
3506 extra = (const unsigned char *)
3507 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
3508 for (i = 0; i < cset->ncoll_syms; ++i)
3509 {
3510 const unsigned char *coll_sym = extra + cset->coll_syms[i];
3511 /* Compare the length of input collating element and
3512 the length of current collating element. */
3513 if (*coll_sym != elem_len)
3514 continue;
3515 /* Compare each bytes. */
3516 for (j = 0; j < *coll_sym; j++)
3517 if (pin[j] != coll_sym[1 + j])
3518 break;
3519 if (j == *coll_sym)
3520 {
3521 /* Match if every bytes is equal. */
3522 match_len = j;
3523 goto check_node_accept_bytes_match;
3524 }
3525 }
3526
3527 if (cset->nranges)
3528 {
3529 if (elem_len <= char_len)
3530 {
3531 collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
3532 in_collseq = __collseq_table_lookup (collseqwc, wc);
3533 }
3534 else
3535 in_collseq = find_collation_sequence_value (pin, elem_len);
3536 }
3537 /* match with range expression? */
3538 for (i = 0; i < cset->nranges; ++i)
3539 if (cset->range_starts[i] <= in_collseq
3540 && in_collseq <= cset->range_ends[i])
3541 {
3542 match_len = elem_len;
3543 goto check_node_accept_bytes_match;
3544 }
3545
3546 /* match with equivalence_class? */
3547 if (cset->nequiv_classes)
3548 {
3549 const unsigned char *cp = pin;
3550 table = (const int32_t *)
3551 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3552 weights = (const unsigned char *)
3553 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3554 extra = (const unsigned char *)
3555 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3556 indirect = (const int32_t *)
3557 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3558 idx = findidx (&cp);
3559 if (idx > 0)
3560 for (i = 0; i < cset->nequiv_classes; ++i)
3561 {
3562 int32_t equiv_class_idx = cset->equiv_classes[i];
3563 size_t weight_len = weights[idx];
3564 if (weight_len == weights[equiv_class_idx])
3565 {
3566 int cnt = 0;
3567 while (cnt <= weight_len
3568 && (weights[equiv_class_idx + 1 + cnt]
3569 == weights[idx + 1 + cnt]))
3570 ++cnt;
3571 if (cnt > weight_len)
3572 {
3573 match_len = elem_len;
3574 goto check_node_accept_bytes_match;
3575 }
3576 }
3577 }
3578 }
3579 }
3580 else
3581 # endif /* _LIBC */
3582 {
3583 /* match with range expression? */
3584 #if __GNUC__ >= 2
3585 wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
3586 #else
3587 wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
3588 cmp_buf[2] = wc;
3589 #endif
3590 for (i = 0; i < cset->nranges; ++i)
3591 {
3592 cmp_buf[0] = cset->range_starts[i];
3593 cmp_buf[4] = cset->range_ends[i];
3594 if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
3595 && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
3596 {
3597 match_len = char_len;
3598 goto check_node_accept_bytes_match;
3599 }
3600 }
3601 }
3602 check_node_accept_bytes_match:
3603 if (!cset->non_match)
3604 return match_len;
3605 else
3606 {
3607 if (match_len > 0)
3608 return 0;
3609 else
3610 return (elem_len > char_len) ? elem_len : char_len;
3611 }
3612 }
3613 return 0;
3614 }
3615
3616 # ifdef _LIBC
3617 static unsigned int
3618 find_collation_sequence_value (mbs, mbs_len)
3619 const unsigned char *mbs;
3620 size_t mbs_len;
3621 {
3622 uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3623 if (nrules == 0)
3624 {
3625 if (mbs_len == 1)
3626 {
3627 /* No valid character. Match it as a single byte character. */
3628 const unsigned char *collseq = (const unsigned char *)
3629 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
3630 return collseq[mbs[0]];
3631 }
3632 return UINT_MAX;
3633 }
3634 else
3635 {
3636 int32_t idx;
3637 const unsigned char *extra = (const unsigned char *)
3638 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
3639
3640 for (idx = 0; ;)
3641 {
3642 int mbs_cnt, found = 0;
3643 int32_t elem_mbs_len;
3644 /* Skip the name of collating element name. */
3645 idx = idx + extra[idx] + 1;
3646 elem_mbs_len = extra[idx++];
3647 if (mbs_len == elem_mbs_len)
3648 {
3649 for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
3650 if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
3651 break;
3652 if (mbs_cnt == elem_mbs_len)
3653 /* Found the entry. */
3654 found = 1;
3655 }
3656 /* Skip the byte sequence of the collating element. */
3657 idx += elem_mbs_len;
3658 /* Adjust for the alignment. */
3659 idx = (idx + 3) & ~3;
3660 /* Skip the collation sequence value. */
3661 idx += sizeof (uint32_t);
3662 /* Skip the wide char sequence of the collating element. */
3663 idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
3664 /* If we found the entry, return the sequence value. */
3665 if (found)
3666 return *(uint32_t *) (extra + idx);
3667 /* Skip the collation sequence value. */
3668 idx += sizeof (uint32_t);
3669 }
3670 }
3671 }
3672 # endif /* _LIBC */
3673 #endif /* RE_ENABLE_I18N */
3674
3675 /* Check whether the node accepts the byte which is IDX-th
3676 byte of the INPUT. */
3677
3678 static int
3679 check_node_accept (preg, node, mctx, idx)
3680 const regex_t *preg;
3681 const re_token_t *node;
3682 const re_match_context_t *mctx;
3683 int idx;
3684 {
3685 unsigned char ch;
3686 if (node->constraint)
3687 {
3688 /* The node has constraints. Check whether the current context
3689 satisfies the constraints. */
3690 unsigned int context = re_string_context_at (mctx->input, idx,
3691 mctx->eflags,
3692 preg->newline_anchor);
3693 if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
3694 return 0;
3695 }
3696 ch = re_string_byte_at (mctx->input, idx);
3697 if (node->type == CHARACTER)
3698 return node->opr.c == ch;
3699 else if (node->type == SIMPLE_BRACKET)
3700 return bitset_contain (node->opr.sbcset, ch);
3701 else if (node->type == OP_PERIOD)
3702 return !((ch == '\n' && !(preg->syntax & RE_DOT_NEWLINE))
3703 || (ch == '\0' && (preg->syntax & RE_DOT_NOT_NULL)));
3704 else
3705 return 0;
3706 }
3707
3708 /* Extend the buffers, if the buffers have run out. */
3709
3710 static reg_errcode_t
3711 extend_buffers (mctx)
3712 re_match_context_t *mctx;
3713 {
3714 reg_errcode_t ret;
3715 re_string_t *pstr = mctx->input;
3716
3717 /* Double the lengthes of the buffers. */
3718 ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
3719 if (BE (ret != REG_NOERROR, 0))
3720 return ret;
3721
3722 if (mctx->state_log != NULL)
3723 {
3724 /* And double the length of state_log. */
3725 re_dfastate_t **new_array;
3726 new_array = re_realloc (mctx->state_log, re_dfastate_t *,
3727 pstr->bufs_len * 2);
3728 if (BE (new_array == NULL, 0))
3729 return REG_ESPACE;
3730 mctx->state_log = new_array;
3731 }
3732
3733 /* Then reconstruct the buffers. */
3734 if (pstr->icase)
3735 {
3736 #ifdef RE_ENABLE_I18N
3737 if (MB_CUR_MAX > 1)
3738 build_wcs_upper_buffer (pstr);
3739 else
3740 #endif /* RE_ENABLE_I18N */
3741 build_upper_buffer (pstr);
3742 }
3743 else
3744 {
3745 #ifdef RE_ENABLE_I18N
3746 if (MB_CUR_MAX > 1)
3747 build_wcs_buffer (pstr);
3748 else
3749 #endif /* RE_ENABLE_I18N */
3750 {
3751 if (pstr->trans != NULL)
3752 re_string_translate_buffer (pstr);
3753 else
3754 pstr->valid_len = pstr->bufs_len;
3755 }
3756 }
3757 return REG_NOERROR;
3758 }
3759
3760 \f
3761 /* Functions for matching context. */
3762
3763 /* Initialize MCTX. */
3764
3765 static reg_errcode_t
3766 match_ctx_init (mctx, eflags, input, n)
3767 re_match_context_t *mctx;
3768 int eflags, n;
3769 re_string_t *input;
3770 {
3771 mctx->eflags = eflags;
3772 mctx->input = input;
3773 mctx->match_last = -1;
3774 if (n > 0)
3775 {
3776 mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
3777 mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
3778 if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
3779 return REG_ESPACE;
3780 }
3781 else
3782 mctx->bkref_ents = NULL;
3783 mctx->nbkref_ents = 0;
3784 mctx->abkref_ents = n;
3785 mctx->max_mb_elem_len = 1;
3786 mctx->nsub_tops = 0;
3787 mctx->asub_tops = n;
3788 return REG_NOERROR;
3789 }
3790
3791 /* Clean the entries which depend on the current input in MCTX.
3792 This function must be invoked when the matcher changes the start index
3793 of the input, or changes the input string. */
3794
3795 static void
3796 match_ctx_clean (mctx)
3797 re_match_context_t *mctx;
3798 {
3799 match_ctx_free_subtops (mctx);
3800 mctx->nsub_tops = 0;
3801 mctx->nbkref_ents = 0;
3802 }
3803
3804 /* Free all the memory associated with MCTX. */
3805
3806 static void
3807 match_ctx_free (mctx)
3808 re_match_context_t *mctx;
3809 {
3810 match_ctx_free_subtops (mctx);
3811 re_free (mctx->sub_tops);
3812 re_free (mctx->bkref_ents);
3813 }
3814
3815 /* Free all the memory associated with MCTX->SUB_TOPS. */
3816
3817 static void
3818 match_ctx_free_subtops (mctx)
3819 re_match_context_t *mctx;
3820 {
3821 int st_idx;
3822 for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
3823 {
3824 int sl_idx;
3825 re_sub_match_top_t *top = mctx->sub_tops[st_idx];
3826 for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
3827 {
3828 re_sub_match_last_t *last = top->lasts[sl_idx];
3829 re_free (last->path.array);
3830 re_free (last);
3831 }
3832 re_free (top->lasts);
3833 if (top->path)
3834 {
3835 re_free (top->path->array);
3836 re_free (top->path);
3837 }
3838 free (top);
3839 }
3840 }
3841
3842 /* Add a new backreference entry to MCTX.
3843 Note that we assume that caller never call this function with duplicate
3844 entry, and call with STR_IDX which isn't smaller than any existing entry.
3845 */
3846
3847 static reg_errcode_t
3848 match_ctx_add_entry (mctx, node, str_idx, from, to)
3849 re_match_context_t *mctx;
3850 int node, str_idx, from, to;
3851 {
3852 if (mctx->nbkref_ents >= mctx->abkref_ents)
3853 {
3854 struct re_backref_cache_entry* new_entry;
3855 new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
3856 mctx->abkref_ents * 2);
3857 if (BE (new_entry == NULL, 0))
3858 {
3859 re_free (mctx->bkref_ents);
3860 return REG_ESPACE;
3861 }
3862 mctx->bkref_ents = new_entry;
3863 memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
3864 sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
3865 mctx->abkref_ents *= 2;
3866 }
3867 mctx->bkref_ents[mctx->nbkref_ents].node = node;
3868 mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
3869 mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
3870 mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
3871 mctx->bkref_ents[mctx->nbkref_ents++].flag = 0;
3872 if (mctx->max_mb_elem_len < to - from)
3873 mctx->max_mb_elem_len = to - from;
3874 return REG_NOERROR;
3875 }
3876
3877 /* Search for the first entry which has the same str_idx.
3878 Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */
3879
3880 static int
3881 search_cur_bkref_entry (mctx, str_idx)
3882 re_match_context_t *mctx;
3883 int str_idx;
3884 {
3885 int left, right, mid;
3886 right = mctx->nbkref_ents;
3887 for (left = 0; left < right;)
3888 {
3889 mid = (left + right) / 2;
3890 if (mctx->bkref_ents[mid].str_idx < str_idx)
3891 left = mid + 1;
3892 else
3893 right = mid;
3894 }
3895 return left;
3896 }
3897
3898 static void
3899 match_ctx_clear_flag (mctx)
3900 re_match_context_t *mctx;
3901 {
3902 int i;
3903 for (i = 0; i < mctx->nbkref_ents; ++i)
3904 {
3905 mctx->bkref_ents[i].flag = 0;
3906 }
3907 }
3908
3909 /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
3910 at STR_IDX. */
3911
3912 static reg_errcode_t
3913 match_ctx_add_subtop (mctx, node, str_idx)
3914 re_match_context_t *mctx;
3915 int node, str_idx;
3916 {
3917 #ifdef DEBUG
3918 assert (mctx->sub_tops != NULL);
3919 assert (mctx->asub_tops > 0);
3920 #endif
3921 if (mctx->nsub_tops == mctx->asub_tops)
3922 {
3923 re_sub_match_top_t **new_array;
3924 mctx->asub_tops *= 2;
3925 new_array = re_realloc (mctx->sub_tops, re_sub_match_top_t *,
3926 mctx->asub_tops);
3927 if (BE (new_array == NULL, 0))
3928 return REG_ESPACE;
3929 mctx->sub_tops = new_array;
3930 }
3931 mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
3932 if (mctx->sub_tops[mctx->nsub_tops] == NULL)
3933 return REG_ESPACE;
3934 mctx->sub_tops[mctx->nsub_tops]->node = node;
3935 mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
3936 return REG_NOERROR;
3937 }
3938
3939 /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
3940 at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */
3941
3942 static re_sub_match_last_t *
3943 match_ctx_add_sublast (subtop, node, str_idx)
3944 re_sub_match_top_t *subtop;
3945 int node, str_idx;
3946 {
3947 re_sub_match_last_t *new_entry;
3948 if (subtop->nlasts == subtop->alasts)
3949 {
3950 re_sub_match_last_t **new_array;
3951 subtop->alasts = 2 * subtop->alasts + 1;
3952 new_array = re_realloc (subtop->lasts, re_sub_match_last_t *,
3953 subtop->alasts);
3954 if (BE (new_array == NULL, 0))
3955 return NULL;
3956 subtop->lasts = new_array;
3957 }
3958 new_entry = calloc (1, sizeof (re_sub_match_last_t));
3959 if (BE (new_entry == NULL, 0))
3960 return NULL;
3961 subtop->lasts[subtop->nlasts] = new_entry;
3962 new_entry->node = node;
3963 new_entry->str_idx = str_idx;
3964 ++subtop->nlasts;
3965 return new_entry;
3966 }
3967
3968 static void
3969 sift_ctx_init (sctx, sifted_sts, limited_sts, last_node, last_str_idx,
3970 check_subexp)
3971 re_sift_context_t *sctx;
3972 re_dfastate_t **sifted_sts, **limited_sts;
3973 int last_node, last_str_idx, check_subexp;
3974 {
3975 sctx->sifted_states = sifted_sts;
3976 sctx->limited_states = limited_sts;
3977 sctx->last_node = last_node;
3978 sctx->last_str_idx = last_str_idx;
3979 sctx->check_subexp = check_subexp;
3980 sctx->cur_bkref = -1;
3981 sctx->cls_subexp_idx = -1;
3982 re_node_set_init_empty (&sctx->limits);
3983 }