]> git.ipfire.org Git - thirdparty/glibc.git/blob - soft-fp/op-common.h
Update.
[thirdparty/glibc.git] / soft-fp / op-common.h
1 /* Software floating-point emulation. Common operations.
2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Library General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
13
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Library General Public License for more details.
18
19 You should have received a copy of the GNU Library General Public
20 License along with the GNU C Library; see the file COPYING.LIB. If
21 not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #define _FP_DECL(wc, X) \
25 _FP_I_TYPE X##_c, X##_s, X##_e; \
26 _FP_FRAC_DECL_##wc(X)
27
28 /*
29 * Finish truely unpacking a native fp value by classifying the kind
30 * of fp value and normalizing both the exponent and the fraction.
31 */
32
33 #define _FP_UNPACK_CANONICAL(fs, wc, X) \
34 do { \
35 switch (X##_e) \
36 { \
37 default: \
38 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
39 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
40 X##_e -= _FP_EXPBIAS_##fs; \
41 X##_c = FP_CLS_NORMAL; \
42 break; \
43 \
44 case 0: \
45 if (_FP_FRAC_ZEROP_##wc(X)) \
46 X##_c = FP_CLS_ZERO; \
47 else \
48 { \
49 /* a denormalized number */ \
50 _FP_I_TYPE _shift; \
51 _FP_FRAC_CLZ_##wc(_shift, X); \
52 _shift -= _FP_FRACXBITS_##fs; \
53 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
54 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
55 X##_c = FP_CLS_NORMAL; \
56 FP_SET_EXCEPTION(FP_EX_DENORM); \
57 } \
58 break; \
59 \
60 case _FP_EXPMAX_##fs: \
61 if (_FP_FRAC_ZEROP_##wc(X)) \
62 X##_c = FP_CLS_INF; \
63 else \
64 { \
65 X##_c = FP_CLS_NAN; \
66 /* Check for signaling NaN */ \
67 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
68 FP_SET_EXCEPTION(FP_EX_INVALID); \
69 } \
70 break; \
71 } \
72 } while (0)
73
74 /*
75 * Before packing the bits back into the native fp result, take care
76 * of such mundane things as rounding and overflow. Also, for some
77 * kinds of fp values, the original parts may not have been fully
78 * extracted -- but that is ok, we can regenerate them now.
79 */
80
81 #define _FP_PACK_CANONICAL(fs, wc, X) \
82 do { \
83 switch (X##_c) \
84 { \
85 case FP_CLS_NORMAL: \
86 X##_e += _FP_EXPBIAS_##fs; \
87 if (X##_e > 0) \
88 { \
89 _FP_ROUND(wc, X); \
90 if (_FP_FRAC_OVERP_##wc(fs, X)) \
91 { \
92 _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \
93 X##_e++; \
94 } \
95 else \
96 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
97 if (X##_e >= _FP_EXPMAX_##fs) \
98 { \
99 /* overflow */ \
100 switch (FP_ROUNDMODE) \
101 { \
102 case FP_RND_NEAREST: \
103 X##_c = FP_CLS_INF; \
104 break; \
105 case FP_RND_PINF: \
106 if (!X##_s) X##_c = FP_CLS_INF; \
107 break; \
108 case FP_RND_MINF: \
109 if (X##_s) X##_c = FP_CLS_INF; \
110 break; \
111 } \
112 if (X##_c == FP_CLS_INF) \
113 { \
114 /* Overflow to infinity */ \
115 X##_e = _FP_EXPMAX_##fs; \
116 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
117 } \
118 else \
119 { \
120 /* Overflow to maximum normal */ \
121 X##_e = _FP_EXPMAX_##fs - 1; \
122 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
123 } \
124 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
125 FP_SET_EXCEPTION(FP_EX_INEXACT); \
126 } \
127 } \
128 else \
129 { \
130 /* we've got a denormalized number */ \
131 X##_e = -X##_e + 1; \
132 if (X##_e <= _FP_WFRACBITS_##fs) \
133 { \
134 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
135 _FP_ROUND(wc, X); \
136 if (_FP_FRAC_HIGH_##fs(X) \
137 & (_FP_OVERFLOW_##fs >> 1)) \
138 { \
139 X##_e = 1; \
140 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
141 } \
142 else \
143 { \
144 X##_e = 0; \
145 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
146 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
147 } \
148 } \
149 else \
150 { \
151 /* underflow to zero */ \
152 X##_e = 0; \
153 if (!_FP_FRAC_ZEROP_##wc(X)) \
154 { \
155 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
156 _FP_ROUND(wc, X); \
157 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
158 } \
159 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
160 } \
161 } \
162 break; \
163 \
164 case FP_CLS_ZERO: \
165 X##_e = 0; \
166 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
167 break; \
168 \
169 case FP_CLS_INF: \
170 X##_e = _FP_EXPMAX_##fs; \
171 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
172 break; \
173 \
174 case FP_CLS_NAN: \
175 X##_e = _FP_EXPMAX_##fs; \
176 if (!_FP_KEEPNANFRACP) \
177 { \
178 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
179 X##_s = _FP_NANSIGN_##fs; \
180 } \
181 else \
182 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
183 break; \
184 } \
185 } while (0)
186
187 /* This one accepts raw argument and not cooked, returns
188 * 1 if X is a signaling NaN.
189 */
190 #define _FP_ISSIGNAN(fs, wc, X) \
191 ({ \
192 int __ret = 0; \
193 if (X##_e == _FP_EXPMAX_##fs) \
194 { \
195 if (!_FP_FRAC_ZEROP_##wc(X) \
196 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
197 __ret = 1; \
198 } \
199 __ret; \
200 })
201
202
203
204
205
206 /*
207 * Main addition routine. The input values should be cooked.
208 */
209
210 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
211 do { \
212 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
213 { \
214 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
215 { \
216 /* shift the smaller number so that its exponent matches the larger */ \
217 _FP_I_TYPE diff = X##_e - Y##_e; \
218 \
219 if (diff < 0) \
220 { \
221 diff = -diff; \
222 if (diff <= _FP_WFRACBITS_##fs) \
223 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
224 else if (!_FP_FRAC_ZEROP_##wc(X)) \
225 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
226 R##_e = Y##_e; \
227 } \
228 else \
229 { \
230 if (diff > 0) \
231 { \
232 if (diff <= _FP_WFRACBITS_##fs) \
233 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
234 else if (!_FP_FRAC_ZEROP_##wc(Y)) \
235 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
236 } \
237 R##_e = X##_e; \
238 } \
239 \
240 R##_c = FP_CLS_NORMAL; \
241 \
242 if (X##_s == Y##_s) \
243 { \
244 R##_s = X##_s; \
245 _FP_FRAC_ADD_##wc(R, X, Y); \
246 if (_FP_FRAC_OVERP_##wc(fs, R)) \
247 { \
248 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
249 R##_e++; \
250 } \
251 } \
252 else \
253 { \
254 R##_s = X##_s; \
255 _FP_FRAC_SUB_##wc(R, X, Y); \
256 if (_FP_FRAC_ZEROP_##wc(R)) \
257 { \
258 /* return an exact zero */ \
259 if (FP_ROUNDMODE == FP_RND_MINF) \
260 R##_s |= Y##_s; \
261 else \
262 R##_s &= Y##_s; \
263 R##_c = FP_CLS_ZERO; \
264 } \
265 else \
266 { \
267 if (_FP_FRAC_NEGP_##wc(R)) \
268 { \
269 _FP_FRAC_SUB_##wc(R, Y, X); \
270 R##_s = Y##_s; \
271 } \
272 \
273 /* renormalize after subtraction */ \
274 _FP_FRAC_CLZ_##wc(diff, R); \
275 diff -= _FP_WFRACXBITS_##fs; \
276 if (diff) \
277 { \
278 R##_e -= diff; \
279 _FP_FRAC_SLL_##wc(R, diff); \
280 } \
281 } \
282 } \
283 break; \
284 } \
285 \
286 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
287 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
288 break; \
289 \
290 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
291 R##_e = X##_e; \
292 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
293 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
294 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
295 _FP_FRAC_COPY_##wc(R, X); \
296 R##_s = X##_s; \
297 R##_c = X##_c; \
298 break; \
299 \
300 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
301 R##_e = Y##_e; \
302 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
303 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
304 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
305 _FP_FRAC_COPY_##wc(R, Y); \
306 R##_s = Y##_s; \
307 R##_c = Y##_c; \
308 break; \
309 \
310 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
311 if (X##_s != Y##_s) \
312 { \
313 /* +INF + -INF => NAN */ \
314 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
315 R##_s = _FP_NANSIGN_##fs; \
316 R##_c = FP_CLS_NAN; \
317 FP_SET_EXCEPTION(FP_EX_INVALID); \
318 break; \
319 } \
320 /* FALLTHRU */ \
321 \
322 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
323 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
324 R##_s = X##_s; \
325 R##_c = FP_CLS_INF; \
326 break; \
327 \
328 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
329 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
330 R##_s = Y##_s; \
331 R##_c = FP_CLS_INF; \
332 break; \
333 \
334 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
335 /* make sure the sign is correct */ \
336 if (FP_ROUNDMODE == FP_RND_MINF) \
337 R##_s = X##_s | Y##_s; \
338 else \
339 R##_s = X##_s & Y##_s; \
340 R##_c = FP_CLS_ZERO; \
341 break; \
342 \
343 default: \
344 abort(); \
345 } \
346 } while (0)
347
348 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
349 #define _FP_SUB(fs, wc, R, X, Y) \
350 do { \
351 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
352 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
353 } while (0)
354
355
356 /*
357 * Main negation routine. FIXME -- when we care about setting exception
358 * bits reliably, this will not do. We should examine all of the fp classes.
359 */
360
361 #define _FP_NEG(fs, wc, R, X) \
362 do { \
363 _FP_FRAC_COPY_##wc(R, X); \
364 R##_c = X##_c; \
365 R##_e = X##_e; \
366 R##_s = 1 ^ X##_s; \
367 } while (0)
368
369
370 /*
371 * Main multiplication routine. The input values should be cooked.
372 */
373
374 #define _FP_MUL(fs, wc, R, X, Y) \
375 do { \
376 R##_s = X##_s ^ Y##_s; \
377 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
378 { \
379 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
380 R##_c = FP_CLS_NORMAL; \
381 R##_e = X##_e + Y##_e + 1; \
382 \
383 _FP_MUL_MEAT_##fs(R,X,Y); \
384 \
385 if (_FP_FRAC_OVERP_##wc(fs, R)) \
386 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
387 else \
388 R##_e--; \
389 break; \
390 \
391 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
392 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
393 break; \
394 \
395 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
396 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
397 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
398 R##_s = X##_s; \
399 \
400 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
401 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
402 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
403 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
404 _FP_FRAC_COPY_##wc(R, X); \
405 R##_c = X##_c; \
406 break; \
407 \
408 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
409 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
410 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
411 R##_s = Y##_s; \
412 \
413 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
414 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
415 _FP_FRAC_COPY_##wc(R, Y); \
416 R##_c = Y##_c; \
417 break; \
418 \
419 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
420 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
421 R##_s = _FP_NANSIGN_##fs; \
422 R##_c = FP_CLS_NAN; \
423 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
424 FP_SET_EXCEPTION(FP_EX_INVALID); \
425 break; \
426 \
427 default: \
428 abort(); \
429 } \
430 } while (0)
431
432
433 /*
434 * Main division routine. The input values should be cooked.
435 */
436
437 #define _FP_DIV(fs, wc, R, X, Y) \
438 do { \
439 R##_s = X##_s ^ Y##_s; \
440 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
441 { \
442 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
443 R##_c = FP_CLS_NORMAL; \
444 R##_e = X##_e - Y##_e; \
445 \
446 _FP_DIV_MEAT_##fs(R,X,Y); \
447 break; \
448 \
449 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
450 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
451 break; \
452 \
453 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
454 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
455 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
456 R##_s = X##_s; \
457 _FP_FRAC_COPY_##wc(R, X); \
458 R##_c = X##_c; \
459 break; \
460 \
461 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
462 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
463 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
464 R##_s = Y##_s; \
465 _FP_FRAC_COPY_##wc(R, Y); \
466 R##_c = Y##_c; \
467 break; \
468 \
469 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
470 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
471 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
472 R##_c = FP_CLS_ZERO; \
473 break; \
474 \
475 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
476 FP_SET_EXCEPTION(FP_EX_DIVZERO); \
477 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
478 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
479 R##_c = FP_CLS_INF; \
480 break; \
481 \
482 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
483 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
484 R##_s = _FP_NANSIGN_##fs; \
485 R##_c = FP_CLS_NAN; \
486 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
487 FP_SET_EXCEPTION(FP_EX_INVALID); \
488 break; \
489 \
490 default: \
491 abort(); \
492 } \
493 } while (0)
494
495
496 /*
497 * Main differential comparison routine. The inputs should be raw not
498 * cooked. The return is -1,0,1 for normal values, 2 otherwise.
499 */
500
501 #define _FP_CMP(fs, wc, ret, X, Y, un) \
502 do { \
503 /* NANs are unordered */ \
504 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
505 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
506 { \
507 ret = un; \
508 } \
509 else \
510 { \
511 int __is_zero_x; \
512 int __is_zero_y; \
513 \
514 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
515 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
516 \
517 if (__is_zero_x && __is_zero_y) \
518 ret = 0; \
519 else if (__is_zero_x) \
520 ret = Y##_s ? 1 : -1; \
521 else if (__is_zero_y) \
522 ret = X##_s ? -1 : 1; \
523 else if (X##_s != Y##_s) \
524 ret = X##_s ? -1 : 1; \
525 else if (X##_e > Y##_e) \
526 ret = X##_s ? -1 : 1; \
527 else if (X##_e < Y##_e) \
528 ret = X##_s ? 1 : -1; \
529 else if (_FP_FRAC_GT_##wc(X, Y)) \
530 ret = X##_s ? -1 : 1; \
531 else if (_FP_FRAC_GT_##wc(Y, X)) \
532 ret = X##_s ? 1 : -1; \
533 else \
534 ret = 0; \
535 } \
536 } while (0)
537
538
539 /* Simplification for strict equality. */
540
541 #define _FP_CMP_EQ(fs, wc, ret, X, Y) \
542 do { \
543 /* NANs are unordered */ \
544 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
545 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
546 { \
547 ret = 1; \
548 } \
549 else \
550 { \
551 ret = !(X##_e == Y##_e \
552 && _FP_FRAC_EQ_##wc(X, Y) \
553 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
554 } \
555 } while (0)
556
557 /*
558 * Main square root routine. The input value should be cooked.
559 */
560
561 #define _FP_SQRT(fs, wc, R, X) \
562 do { \
563 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
564 _FP_W_TYPE q; \
565 switch (X##_c) \
566 { \
567 case FP_CLS_NAN: \
568 _FP_FRAC_COPY_##wc(R, X); \
569 R##_s = X##_s; \
570 R##_c = FP_CLS_NAN; \
571 break; \
572 case FP_CLS_INF: \
573 if (X##_s) \
574 { \
575 R##_s = _FP_NANSIGN_##fs; \
576 R##_c = FP_CLS_NAN; /* NAN */ \
577 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
578 FP_SET_EXCEPTION(FP_EX_INVALID); \
579 } \
580 else \
581 { \
582 R##_s = 0; \
583 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
584 } \
585 break; \
586 case FP_CLS_ZERO: \
587 R##_s = X##_s; \
588 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
589 break; \
590 case FP_CLS_NORMAL: \
591 R##_s = 0; \
592 if (X##_s) \
593 { \
594 R##_c = FP_CLS_NAN; /* sNAN */ \
595 R##_s = _FP_NANSIGN_##fs; \
596 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
597 FP_SET_EXCEPTION(FP_EX_INVALID); \
598 break; \
599 } \
600 R##_c = FP_CLS_NORMAL; \
601 if (X##_e & 1) \
602 _FP_FRAC_SLL_##wc(X, 1); \
603 R##_e = X##_e >> 1; \
604 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
605 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
606 q = _FP_OVERFLOW_##fs >> 1; \
607 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
608 } \
609 } while (0)
610
611 /*
612 * Convert from FP to integer
613 */
614
615 /* RSIGNED can have following values:
616 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
617 * the result is either 0 or (2^rsize)-1 depending on the sign in such case.
618 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
619 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
620 * on the sign in such case.
621 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
622 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
623 * on the sign in such case.
624 */
625 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
626 do { \
627 switch (X##_c) \
628 { \
629 case FP_CLS_NORMAL: \
630 if (X##_e < 0) \
631 { \
632 FP_SET_EXCEPTION(FP_EX_INEXACT); \
633 case FP_CLS_ZERO: \
634 r = 0; \
635 } \
636 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
637 || (!rsigned && X##_s)) \
638 { /* overflow */ \
639 case FP_CLS_NAN: \
640 case FP_CLS_INF: \
641 if (rsigned) \
642 { \
643 r = 1; \
644 r <<= rsize - 1; \
645 r -= 1 - X##_s; \
646 } else { \
647 r = 0; \
648 if (X##_s) \
649 r = ~r; \
650 } \
651 FP_SET_EXCEPTION(FP_EX_INVALID); \
652 } \
653 else \
654 { \
655 if (_FP_W_TYPE_SIZE*wc < rsize) \
656 { \
657 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
658 r <<= X##_e - _FP_WFRACBITS_##fs; \
659 } \
660 else \
661 { \
662 if (X##_e >= _FP_WFRACBITS_##fs) \
663 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
664 else if (X##_e < _FP_WFRACBITS_##fs - 1) \
665 { \
666 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
667 _FP_WFRACBITS_##fs); \
668 if (_FP_FRAC_LOW_##wc(X) & 1) \
669 FP_SET_EXCEPTION(FP_EX_INEXACT); \
670 _FP_FRAC_SRL_##wc(X, 1); \
671 } \
672 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
673 } \
674 if (rsigned && X##_s) \
675 r = -r; \
676 } \
677 break; \
678 } \
679 } while (0)
680
681 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
682 do { \
683 if (r) \
684 { \
685 X##_c = FP_CLS_NORMAL; \
686 \
687 if ((X##_s = (r < 0))) \
688 r = -r; \
689 \
690 if (rsize <= _FP_W_TYPE_SIZE) \
691 __FP_CLZ(X##_e, r); \
692 else \
693 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \
694 (_FP_W_TYPE)r); \
695 if (rsize < _FP_W_TYPE_SIZE) \
696 X##_e -= (_FP_W_TYPE_SIZE - rsize); \
697 X##_e = rsize - X##_e - 1; \
698 \
699 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
700 __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \
701 r &= ~((rtype)1 << X##_e); \
702 _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \
703 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
704 } \
705 else \
706 { \
707 X##_c = FP_CLS_ZERO, X##_s = 0; \
708 } \
709 } while (0)
710
711
712 #define FP_CONV(dfs,sfs,dwc,swc,D,S) \
713 do { \
714 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
715 D##_e = S##_e; \
716 D##_c = S##_c; \
717 D##_s = S##_s; \
718 } while (0)
719
720 /*
721 * Helper primitives.
722 */
723
724 /* Count leading zeros in a word. */
725
726 #ifndef __FP_CLZ
727 #if _FP_W_TYPE_SIZE < 64
728 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
729 #define __FP_CLZ(r, x) \
730 do { \
731 _FP_W_TYPE _t = (x); \
732 r = _FP_W_TYPE_SIZE - 1; \
733 if (_t > 0xffff) r -= 16; \
734 if (_t > 0xffff) _t >>= 16; \
735 if (_t > 0xff) r -= 8; \
736 if (_t > 0xff) _t >>= 8; \
737 if (_t & 0xf0) r -= 4; \
738 if (_t & 0xf0) _t >>= 4; \
739 if (_t & 0xc) r -= 2; \
740 if (_t & 0xc) _t >>= 2; \
741 if (_t & 0x2) r -= 1; \
742 } while (0)
743 #else /* not _FP_W_TYPE_SIZE < 64 */
744 #define __FP_CLZ(r, x) \
745 do { \
746 _FP_W_TYPE _t = (x); \
747 r = _FP_W_TYPE_SIZE - 1; \
748 if (_t > 0xffffffff) r -= 32; \
749 if (_t > 0xffffffff) _t >>= 32; \
750 if (_t > 0xffff) r -= 16; \
751 if (_t > 0xffff) _t >>= 16; \
752 if (_t > 0xff) r -= 8; \
753 if (_t > 0xff) _t >>= 8; \
754 if (_t & 0xf0) r -= 4; \
755 if (_t & 0xf0) _t >>= 4; \
756 if (_t & 0xc) r -= 2; \
757 if (_t & 0xc) _t >>= 2; \
758 if (_t & 0x2) r -= 1; \
759 } while (0)
760 #endif /* not _FP_W_TYPE_SIZE < 64 */
761 #endif /* ndef __FP_CLZ */
762
763 #define _FP_DIV_HELP_imm(q, r, n, d) \
764 do { \
765 q = n / d, r = n % d; \
766 } while (0)
767