]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
util-lib: move yes_no() and friends to string-util.h
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <fcntl.h>
4 #include <fnmatch.h>
5
6 #include "sd-messages.h"
7
8 #include "alloc-util.h"
9 #include "blockdev-util.h"
10 #include "bpf-devices.h"
11 #include "bpf-firewall.h"
12 #include "btrfs-util.h"
13 #include "bus-error.h"
14 #include "cgroup-util.h"
15 #include "cgroup.h"
16 #include "fd-util.h"
17 #include "fileio.h"
18 #include "fs-util.h"
19 #include "nulstr-util.h"
20 #include "parse-util.h"
21 #include "path-util.h"
22 #include "process-util.h"
23 #include "procfs-util.h"
24 #include "special.h"
25 #include "stat-util.h"
26 #include "stdio-util.h"
27 #include "string-table.h"
28 #include "string-util.h"
29 #include "virt.h"
30
31 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
32
33 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
34 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
35 * out specific attributes from us. */
36 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
37
38 bool manager_owns_host_root_cgroup(Manager *m) {
39 assert(m);
40
41 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
42 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
43 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
44 * we run in any kind of container virtualization. */
45
46 if (MANAGER_IS_USER(m))
47 return false;
48
49 if (detect_container() > 0)
50 return false;
51
52 return empty_or_root(m->cgroup_root);
53 }
54
55 bool unit_has_host_root_cgroup(Unit *u) {
56 assert(u);
57
58 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
59 * the manager manages the root cgroup. */
60
61 if (!manager_owns_host_root_cgroup(u->manager))
62 return false;
63
64 return unit_has_name(u, SPECIAL_ROOT_SLICE);
65 }
66
67 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
68 int r;
69
70 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
71 if (r < 0)
72 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
73 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
74
75 return r;
76 }
77
78 static void cgroup_compat_warn(void) {
79 static bool cgroup_compat_warned = false;
80
81 if (cgroup_compat_warned)
82 return;
83
84 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
85 "See cgroup-compat debug messages for details.");
86
87 cgroup_compat_warned = true;
88 }
89
90 #define log_cgroup_compat(unit, fmt, ...) do { \
91 cgroup_compat_warn(); \
92 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
93 } while (false)
94
95 void cgroup_context_init(CGroupContext *c) {
96 assert(c);
97
98 /* Initialize everything to the kernel defaults. */
99
100 *c = (CGroupContext) {
101 .cpu_weight = CGROUP_WEIGHT_INVALID,
102 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
103 .cpu_quota_per_sec_usec = USEC_INFINITY,
104 .cpu_quota_period_usec = USEC_INFINITY,
105
106 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
107 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
108
109 .memory_high = CGROUP_LIMIT_MAX,
110 .memory_max = CGROUP_LIMIT_MAX,
111 .memory_swap_max = CGROUP_LIMIT_MAX,
112
113 .memory_limit = CGROUP_LIMIT_MAX,
114
115 .io_weight = CGROUP_WEIGHT_INVALID,
116 .startup_io_weight = CGROUP_WEIGHT_INVALID,
117
118 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
119 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
120
121 .tasks_max = CGROUP_LIMIT_MAX,
122 };
123 }
124
125 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
126 assert(c);
127 assert(a);
128
129 LIST_REMOVE(device_allow, c->device_allow, a);
130 free(a->path);
131 free(a);
132 }
133
134 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
135 assert(c);
136 assert(w);
137
138 LIST_REMOVE(device_weights, c->io_device_weights, w);
139 free(w->path);
140 free(w);
141 }
142
143 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
144 assert(c);
145 assert(l);
146
147 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
148 free(l->path);
149 free(l);
150 }
151
152 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
153 assert(c);
154 assert(l);
155
156 LIST_REMOVE(device_limits, c->io_device_limits, l);
157 free(l->path);
158 free(l);
159 }
160
161 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
162 assert(c);
163 assert(w);
164
165 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
166 free(w->path);
167 free(w);
168 }
169
170 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
171 assert(c);
172 assert(b);
173
174 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
175 free(b->path);
176 free(b);
177 }
178
179 void cgroup_context_done(CGroupContext *c) {
180 assert(c);
181
182 while (c->io_device_weights)
183 cgroup_context_free_io_device_weight(c, c->io_device_weights);
184
185 while (c->io_device_latencies)
186 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
187
188 while (c->io_device_limits)
189 cgroup_context_free_io_device_limit(c, c->io_device_limits);
190
191 while (c->blockio_device_weights)
192 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
193
194 while (c->blockio_device_bandwidths)
195 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
196
197 while (c->device_allow)
198 cgroup_context_free_device_allow(c, c->device_allow);
199
200 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
201 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
202
203 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
204 c->ip_filters_egress = strv_free(c->ip_filters_egress);
205 }
206
207 void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
208 _cleanup_free_ char *disable_controllers_str = NULL;
209 CGroupIODeviceLimit *il;
210 CGroupIODeviceWeight *iw;
211 CGroupIODeviceLatency *l;
212 CGroupBlockIODeviceBandwidth *b;
213 CGroupBlockIODeviceWeight *w;
214 CGroupDeviceAllow *a;
215 IPAddressAccessItem *iaai;
216 char **path;
217 char u[FORMAT_TIMESPAN_MAX];
218 char v[FORMAT_TIMESPAN_MAX];
219
220 assert(c);
221 assert(f);
222
223 prefix = strempty(prefix);
224
225 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
226
227 fprintf(f,
228 "%sCPUAccounting=%s\n"
229 "%sIOAccounting=%s\n"
230 "%sBlockIOAccounting=%s\n"
231 "%sMemoryAccounting=%s\n"
232 "%sTasksAccounting=%s\n"
233 "%sIPAccounting=%s\n"
234 "%sCPUWeight=%" PRIu64 "\n"
235 "%sStartupCPUWeight=%" PRIu64 "\n"
236 "%sCPUShares=%" PRIu64 "\n"
237 "%sStartupCPUShares=%" PRIu64 "\n"
238 "%sCPUQuotaPerSecSec=%s\n"
239 "%sCPUQuotaPeriodSec=%s\n"
240 "%sIOWeight=%" PRIu64 "\n"
241 "%sStartupIOWeight=%" PRIu64 "\n"
242 "%sBlockIOWeight=%" PRIu64 "\n"
243 "%sStartupBlockIOWeight=%" PRIu64 "\n"
244 "%sDefaultMemoryMin=%" PRIu64 "\n"
245 "%sDefaultMemoryLow=%" PRIu64 "\n"
246 "%sMemoryMin=%" PRIu64 "\n"
247 "%sMemoryLow=%" PRIu64 "\n"
248 "%sMemoryHigh=%" PRIu64 "\n"
249 "%sMemoryMax=%" PRIu64 "\n"
250 "%sMemorySwapMax=%" PRIu64 "\n"
251 "%sMemoryLimit=%" PRIu64 "\n"
252 "%sTasksMax=%" PRIu64 "\n"
253 "%sDevicePolicy=%s\n"
254 "%sDisableControllers=%s\n"
255 "%sDelegate=%s\n",
256 prefix, yes_no(c->cpu_accounting),
257 prefix, yes_no(c->io_accounting),
258 prefix, yes_no(c->blockio_accounting),
259 prefix, yes_no(c->memory_accounting),
260 prefix, yes_no(c->tasks_accounting),
261 prefix, yes_no(c->ip_accounting),
262 prefix, c->cpu_weight,
263 prefix, c->startup_cpu_weight,
264 prefix, c->cpu_shares,
265 prefix, c->startup_cpu_shares,
266 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
267 prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1),
268 prefix, c->io_weight,
269 prefix, c->startup_io_weight,
270 prefix, c->blockio_weight,
271 prefix, c->startup_blockio_weight,
272 prefix, c->default_memory_min,
273 prefix, c->default_memory_low,
274 prefix, c->memory_min,
275 prefix, c->memory_low,
276 prefix, c->memory_high,
277 prefix, c->memory_max,
278 prefix, c->memory_swap_max,
279 prefix, c->memory_limit,
280 prefix, c->tasks_max,
281 prefix, cgroup_device_policy_to_string(c->device_policy),
282 prefix, strempty(disable_controllers_str),
283 prefix, yes_no(c->delegate));
284
285 if (c->delegate) {
286 _cleanup_free_ char *t = NULL;
287
288 (void) cg_mask_to_string(c->delegate_controllers, &t);
289
290 fprintf(f, "%sDelegateControllers=%s\n",
291 prefix,
292 strempty(t));
293 }
294
295 LIST_FOREACH(device_allow, a, c->device_allow)
296 fprintf(f,
297 "%sDeviceAllow=%s %s%s%s\n",
298 prefix,
299 a->path,
300 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
301
302 LIST_FOREACH(device_weights, iw, c->io_device_weights)
303 fprintf(f,
304 "%sIODeviceWeight=%s %" PRIu64 "\n",
305 prefix,
306 iw->path,
307 iw->weight);
308
309 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
310 fprintf(f,
311 "%sIODeviceLatencyTargetSec=%s %s\n",
312 prefix,
313 l->path,
314 format_timespan(u, sizeof(u), l->target_usec, 1));
315
316 LIST_FOREACH(device_limits, il, c->io_device_limits) {
317 char buf[FORMAT_BYTES_MAX];
318 CGroupIOLimitType type;
319
320 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
321 if (il->limits[type] != cgroup_io_limit_defaults[type])
322 fprintf(f,
323 "%s%s=%s %s\n",
324 prefix,
325 cgroup_io_limit_type_to_string(type),
326 il->path,
327 format_bytes(buf, sizeof(buf), il->limits[type]));
328 }
329
330 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
331 fprintf(f,
332 "%sBlockIODeviceWeight=%s %" PRIu64,
333 prefix,
334 w->path,
335 w->weight);
336
337 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
338 char buf[FORMAT_BYTES_MAX];
339
340 if (b->rbps != CGROUP_LIMIT_MAX)
341 fprintf(f,
342 "%sBlockIOReadBandwidth=%s %s\n",
343 prefix,
344 b->path,
345 format_bytes(buf, sizeof(buf), b->rbps));
346 if (b->wbps != CGROUP_LIMIT_MAX)
347 fprintf(f,
348 "%sBlockIOWriteBandwidth=%s %s\n",
349 prefix,
350 b->path,
351 format_bytes(buf, sizeof(buf), b->wbps));
352 }
353
354 LIST_FOREACH(items, iaai, c->ip_address_allow) {
355 _cleanup_free_ char *k = NULL;
356
357 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
358 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
359 }
360
361 LIST_FOREACH(items, iaai, c->ip_address_deny) {
362 _cleanup_free_ char *k = NULL;
363
364 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
365 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
366 }
367
368 STRV_FOREACH(path, c->ip_filters_ingress)
369 fprintf(f, "%sIPIngressFilterPath=%s\n", prefix, *path);
370
371 STRV_FOREACH(path, c->ip_filters_egress)
372 fprintf(f, "%sIPEgressFilterPath=%s\n", prefix, *path);
373 }
374
375 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
376 _cleanup_free_ CGroupDeviceAllow *a = NULL;
377 _cleanup_free_ char *d = NULL;
378
379 assert(c);
380 assert(dev);
381 assert(isempty(mode) || in_charset(mode, "rwm"));
382
383 a = new(CGroupDeviceAllow, 1);
384 if (!a)
385 return -ENOMEM;
386
387 d = strdup(dev);
388 if (!d)
389 return -ENOMEM;
390
391 *a = (CGroupDeviceAllow) {
392 .path = TAKE_PTR(d),
393 .r = isempty(mode) || strchr(mode, 'r'),
394 .w = isempty(mode) || strchr(mode, 'w'),
395 .m = isempty(mode) || strchr(mode, 'm'),
396 };
397
398 LIST_PREPEND(device_allow, c->device_allow, a);
399 TAKE_PTR(a);
400
401 return 0;
402 }
403
404 #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
405 uint64_t unit_get_ancestor_##entry(Unit *u) { \
406 CGroupContext *c; \
407 \
408 /* 1. Is entry set in this unit? If so, use that. \
409 * 2. Is the default for this entry set in any \
410 * ancestor? If so, use that. \
411 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
412 \
413 assert(u); \
414 \
415 c = unit_get_cgroup_context(u); \
416 if (c && c->entry##_set) \
417 return c->entry; \
418 \
419 while ((u = UNIT_DEREF(u->slice))) { \
420 c = unit_get_cgroup_context(u); \
421 if (c && c->default_##entry##_set) \
422 return c->default_##entry; \
423 } \
424 \
425 /* We've reached the root, but nobody had default for \
426 * this entry set, so set it to the kernel default. */ \
427 return CGROUP_LIMIT_MIN; \
428 }
429
430 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
431 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
432
433 static void cgroup_xattr_apply(Unit *u) {
434 char ids[SD_ID128_STRING_MAX];
435 int r;
436
437 assert(u);
438
439 if (!MANAGER_IS_SYSTEM(u->manager))
440 return;
441
442 if (sd_id128_is_null(u->invocation_id))
443 return;
444
445 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
446 "trusted.invocation_id",
447 sd_id128_to_string(u->invocation_id, ids), 32,
448 0);
449 if (r < 0)
450 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
451 }
452
453 static int lookup_block_device(const char *p, dev_t *ret) {
454 dev_t rdev, dev = 0;
455 mode_t mode;
456 int r;
457
458 assert(p);
459 assert(ret);
460
461 r = device_path_parse_major_minor(p, &mode, &rdev);
462 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
463 struct stat st;
464 if (stat(p, &st) < 0)
465 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
466 rdev = (dev_t)st.st_rdev;
467 dev = (dev_t)st.st_dev;
468 mode = st.st_mode;
469 } else if (r < 0)
470 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
471
472 if (S_ISCHR(mode)) {
473 log_warning("Device node '%s' is a character device, but block device needed.", p);
474 return -ENOTBLK;
475 } else if (S_ISBLK(mode))
476 *ret = rdev;
477 else if (major(dev) != 0)
478 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
479 else {
480 /* If this is btrfs, getting the backing block device is a bit harder */
481 r = btrfs_get_block_device(p, ret);
482 if (r < 0 && r != -ENOTTY)
483 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
484 if (r == -ENOTTY) {
485 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
486 return -ENODEV;
487 }
488 }
489
490 /* If this is a LUKS device, try to get the originating block device */
491 (void) block_get_originating(*ret, ret);
492
493 /* If this is a partition, try to get the originating block device */
494 (void) block_get_whole_disk(*ret, ret);
495 return 0;
496 }
497
498 static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
499 dev_t rdev;
500 mode_t mode;
501 int r;
502
503 assert(path);
504 assert(acc);
505
506 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
507 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
508 * means clients can use these path without the device node actually around */
509 r = device_path_parse_major_minor(node, &mode, &rdev);
510 if (r < 0) {
511 if (r != -ENODEV)
512 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
513
514 struct stat st;
515 if (stat(node, &st) < 0)
516 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
517
518 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
519 log_warning("%s is not a device.", node);
520 return -ENODEV;
521 }
522 rdev = (dev_t) st.st_rdev;
523 mode = st.st_mode;
524 }
525
526 if (cg_all_unified() > 0) {
527 if (!prog)
528 return 0;
529
530 return cgroup_bpf_whitelist_device(prog, S_ISCHR(mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
531 major(rdev), minor(rdev), acc);
532
533 } else {
534 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
535
536 sprintf(buf,
537 "%c %u:%u %s",
538 S_ISCHR(mode) ? 'c' : 'b',
539 major(rdev), minor(rdev),
540 acc);
541
542 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
543
544 r = cg_set_attribute("devices", path, "devices.allow", buf);
545 if (r < 0)
546 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
547 r, "Failed to set devices.allow on %s: %m", path);
548
549 return 0;
550 }
551 }
552
553 static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
554 _cleanup_fclose_ FILE *f = NULL;
555 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
556 bool good = false;
557 unsigned maj;
558 int r;
559
560 assert(path);
561 assert(acc);
562 assert(IN_SET(type, 'b', 'c'));
563
564 if (streq(name, "*")) {
565 /* If the name is a wildcard, then apply this list to all devices of this type */
566
567 if (cg_all_unified() > 0) {
568 if (!prog)
569 return 0;
570
571 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
572 } else {
573 xsprintf(buf, "%c *:* %s", type, acc);
574
575 r = cg_set_attribute("devices", path, "devices.allow", buf);
576 if (r < 0)
577 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
578 "Failed to set devices.allow on %s: %m", path);
579 return 0;
580 }
581 }
582
583 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
584 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
585 * directly */
586
587 if (cg_all_unified() > 0) {
588 if (!prog)
589 return 0;
590
591 (void) cgroup_bpf_whitelist_major(prog,
592 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
593 maj, acc);
594 } else {
595 xsprintf(buf, "%c %u:* %s", type, maj, acc);
596
597 r = cg_set_attribute("devices", path, "devices.allow", buf);
598 if (r < 0)
599 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
600 "Failed to set devices.allow on %s: %m", path);
601 }
602
603 return 0;
604 }
605
606 f = fopen("/proc/devices", "re");
607 if (!f)
608 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
609
610 for (;;) {
611 _cleanup_free_ char *line = NULL;
612 char *w, *p;
613
614 r = read_line(f, LONG_LINE_MAX, &line);
615 if (r < 0)
616 return log_warning_errno(r, "Failed to read /proc/devices: %m");
617 if (r == 0)
618 break;
619
620 if (type == 'c' && streq(line, "Character devices:")) {
621 good = true;
622 continue;
623 }
624
625 if (type == 'b' && streq(line, "Block devices:")) {
626 good = true;
627 continue;
628 }
629
630 if (isempty(line)) {
631 good = false;
632 continue;
633 }
634
635 if (!good)
636 continue;
637
638 p = strstrip(line);
639
640 w = strpbrk(p, WHITESPACE);
641 if (!w)
642 continue;
643 *w = 0;
644
645 r = safe_atou(p, &maj);
646 if (r < 0)
647 continue;
648 if (maj <= 0)
649 continue;
650
651 w++;
652 w += strspn(w, WHITESPACE);
653
654 if (fnmatch(name, w, 0) != 0)
655 continue;
656
657 if (cg_all_unified() > 0) {
658 if (!prog)
659 continue;
660
661 (void) cgroup_bpf_whitelist_major(prog,
662 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
663 maj, acc);
664 } else {
665 sprintf(buf,
666 "%c %u:* %s",
667 type,
668 maj,
669 acc);
670
671 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
672 * here. */
673
674 r = cg_set_attribute("devices", path, "devices.allow", buf);
675 if (r < 0)
676 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
677 r, "Failed to set devices.allow on %s: %m", path);
678 }
679 }
680
681 return 0;
682 }
683
684 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
685 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
686 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
687 }
688
689 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
690 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
691 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
692 }
693
694 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
695 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
696 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
697 return c->startup_cpu_weight;
698 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
699 return c->cpu_weight;
700 else
701 return CGROUP_WEIGHT_DEFAULT;
702 }
703
704 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
705 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
706 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
707 return c->startup_cpu_shares;
708 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
709 return c->cpu_shares;
710 else
711 return CGROUP_CPU_SHARES_DEFAULT;
712 }
713
714 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
715 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
716 * need to be higher than that boundary. quota is specified in USecPerSec.
717 * Additionally, period must be at most max_period. */
718 assert(quota > 0);
719
720 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
721 }
722
723 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
724 usec_t new_period;
725
726 if (quota == USEC_INFINITY)
727 /* Always use default period for infinity quota. */
728 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
729
730 if (period == USEC_INFINITY)
731 /* Default period was requested. */
732 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
733
734 /* Clamp to interval [1ms, 1s] */
735 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
736
737 if (new_period != period) {
738 char v[FORMAT_TIMESPAN_MAX];
739 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0,
740 "Clamping CPU interval for cpu.max: period is now %s",
741 format_timespan(v, sizeof(v), new_period, 1));
742 u->warned_clamping_cpu_quota_period = true;
743 }
744
745 return new_period;
746 }
747
748 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
749 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
750
751 xsprintf(buf, "%" PRIu64 "\n", weight);
752 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
753 }
754
755 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
756 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
757
758 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
759 if (quota != USEC_INFINITY)
760 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
761 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
762 else
763 xsprintf(buf, "max " USEC_FMT "\n", period);
764 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
765 }
766
767 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
768 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
769
770 xsprintf(buf, "%" PRIu64 "\n", shares);
771 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
772 }
773
774 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
775 char buf[DECIMAL_STR_MAX(usec_t) + 2];
776
777 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
778
779 xsprintf(buf, USEC_FMT "\n", period);
780 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
781
782 if (quota != USEC_INFINITY) {
783 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
784 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
785 } else
786 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
787 }
788
789 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
790 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
791 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
792 }
793
794 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
795 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
796 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
797 }
798
799 static bool cgroup_context_has_io_config(CGroupContext *c) {
800 return c->io_accounting ||
801 c->io_weight != CGROUP_WEIGHT_INVALID ||
802 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
803 c->io_device_weights ||
804 c->io_device_latencies ||
805 c->io_device_limits;
806 }
807
808 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
809 return c->blockio_accounting ||
810 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
811 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
812 c->blockio_device_weights ||
813 c->blockio_device_bandwidths;
814 }
815
816 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
817 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
818 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
819 return c->startup_io_weight;
820 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
821 return c->io_weight;
822 else
823 return CGROUP_WEIGHT_DEFAULT;
824 }
825
826 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
827 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
828 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
829 return c->startup_blockio_weight;
830 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
831 return c->blockio_weight;
832 else
833 return CGROUP_BLKIO_WEIGHT_DEFAULT;
834 }
835
836 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
837 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
838 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
839 }
840
841 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
842 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
843 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
844 }
845
846 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
847 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
848 dev_t dev;
849 int r;
850
851 r = lookup_block_device(dev_path, &dev);
852 if (r < 0)
853 return;
854
855 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
856 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
857 }
858
859 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
860 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
861 dev_t dev;
862 int r;
863
864 r = lookup_block_device(dev_path, &dev);
865 if (r < 0)
866 return;
867
868 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
869 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
870 }
871
872 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
873 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
874 dev_t dev;
875 int r;
876
877 r = lookup_block_device(dev_path, &dev);
878 if (r < 0)
879 return;
880
881 if (target != USEC_INFINITY)
882 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
883 else
884 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
885
886 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
887 }
888
889 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
890 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
891 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
892 CGroupIOLimitType type;
893 dev_t dev;
894 int r;
895
896 r = lookup_block_device(dev_path, &dev);
897 if (r < 0)
898 return;
899
900 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
901 if (limits[type] != cgroup_io_limit_defaults[type])
902 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
903 else
904 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
905
906 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
907 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
908 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
909 (void) set_attribute_and_warn(u, "io", "io.max", buf);
910 }
911
912 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
913 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
914 dev_t dev;
915 int r;
916
917 r = lookup_block_device(dev_path, &dev);
918 if (r < 0)
919 return;
920
921 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
922 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
923
924 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
925 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
926 }
927
928 static bool unit_has_unified_memory_config(Unit *u) {
929 CGroupContext *c;
930
931 assert(u);
932
933 c = unit_get_cgroup_context(u);
934 assert(c);
935
936 return c->memory_min > 0 || unit_get_ancestor_memory_low(u) > 0 ||
937 c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
938 c->memory_swap_max != CGROUP_LIMIT_MAX;
939 }
940
941 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
942 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
943
944 if (v != CGROUP_LIMIT_MAX)
945 xsprintf(buf, "%" PRIu64 "\n", v);
946
947 (void) set_attribute_and_warn(u, "memory", file, buf);
948 }
949
950 static void cgroup_apply_firewall(Unit *u) {
951 assert(u);
952
953 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
954
955 if (bpf_firewall_compile(u) < 0)
956 return;
957
958 (void) bpf_firewall_load_custom(u);
959 (void) bpf_firewall_install(u);
960 }
961
962 static void cgroup_context_apply(
963 Unit *u,
964 CGroupMask apply_mask,
965 ManagerState state) {
966
967 const char *path;
968 CGroupContext *c;
969 bool is_host_root, is_local_root;
970 int r;
971
972 assert(u);
973
974 /* Nothing to do? Exit early! */
975 if (apply_mask == 0)
976 return;
977
978 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
979 * attributes should only be managed for cgroups further down the tree. */
980 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
981 is_host_root = unit_has_host_root_cgroup(u);
982
983 assert_se(c = unit_get_cgroup_context(u));
984 assert_se(path = u->cgroup_path);
985
986 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
987 path = "/";
988
989 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
990 * then), and missing cgroups, i.e. EROFS and ENOENT. */
991
992 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
993 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
994 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
995 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
996 * we couldn't even write to them if we wanted to). */
997 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
998
999 if (cg_all_unified() > 0) {
1000 uint64_t weight;
1001
1002 if (cgroup_context_has_cpu_weight(c))
1003 weight = cgroup_context_cpu_weight(c, state);
1004 else if (cgroup_context_has_cpu_shares(c)) {
1005 uint64_t shares;
1006
1007 shares = cgroup_context_cpu_shares(c, state);
1008 weight = cgroup_cpu_shares_to_weight(shares);
1009
1010 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1011 shares, weight, path);
1012 } else
1013 weight = CGROUP_WEIGHT_DEFAULT;
1014
1015 cgroup_apply_unified_cpu_weight(u, weight);
1016 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1017
1018 } else {
1019 uint64_t shares;
1020
1021 if (cgroup_context_has_cpu_weight(c)) {
1022 uint64_t weight;
1023
1024 weight = cgroup_context_cpu_weight(c, state);
1025 shares = cgroup_cpu_weight_to_shares(weight);
1026
1027 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1028 weight, shares, path);
1029 } else if (cgroup_context_has_cpu_shares(c))
1030 shares = cgroup_context_cpu_shares(c, state);
1031 else
1032 shares = CGROUP_CPU_SHARES_DEFAULT;
1033
1034 cgroup_apply_legacy_cpu_shares(u, shares);
1035 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1036 }
1037 }
1038
1039 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
1040 * controller), and in case of containers we want to leave control of these attributes to the container manager
1041 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1042 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
1043 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
1044 bool has_io, has_blockio;
1045 uint64_t weight;
1046
1047 has_io = cgroup_context_has_io_config(c);
1048 has_blockio = cgroup_context_has_blockio_config(c);
1049
1050 if (has_io)
1051 weight = cgroup_context_io_weight(c, state);
1052 else if (has_blockio) {
1053 uint64_t blkio_weight;
1054
1055 blkio_weight = cgroup_context_blkio_weight(c, state);
1056 weight = cgroup_weight_blkio_to_io(blkio_weight);
1057
1058 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
1059 blkio_weight, weight);
1060 } else
1061 weight = CGROUP_WEIGHT_DEFAULT;
1062
1063 xsprintf(buf, "default %" PRIu64 "\n", weight);
1064 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1065
1066 /* FIXME: drop this when distro kernels properly support BFQ through "io.weight"
1067 * See also: https://github.com/systemd/systemd/pull/13335 */
1068 xsprintf(buf, "%" PRIu64 "\n", weight);
1069 (void) set_attribute_and_warn(u, "io", "io.bfq.weight", buf);
1070
1071 if (has_io) {
1072 CGroupIODeviceLatency *latency;
1073 CGroupIODeviceLimit *limit;
1074 CGroupIODeviceWeight *w;
1075
1076 LIST_FOREACH(device_weights, w, c->io_device_weights)
1077 cgroup_apply_io_device_weight(u, w->path, w->weight);
1078
1079 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1080 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
1081
1082 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1083 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
1084
1085 } else if (has_blockio) {
1086 CGroupBlockIODeviceWeight *w;
1087 CGroupBlockIODeviceBandwidth *b;
1088
1089 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1090 weight = cgroup_weight_blkio_to_io(w->weight);
1091
1092 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
1093 w->weight, weight, w->path);
1094
1095 cgroup_apply_io_device_weight(u, w->path, weight);
1096 }
1097
1098 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
1099 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1100 CGroupIOLimitType type;
1101
1102 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1103 limits[type] = cgroup_io_limit_defaults[type];
1104
1105 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1106 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1107
1108 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
1109 b->rbps, b->wbps, b->path);
1110
1111 cgroup_apply_io_device_limit(u, b->path, limits);
1112 }
1113 }
1114 }
1115
1116 if (apply_mask & CGROUP_MASK_BLKIO) {
1117 bool has_io, has_blockio;
1118
1119 has_io = cgroup_context_has_io_config(c);
1120 has_blockio = cgroup_context_has_blockio_config(c);
1121
1122 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1123 * left to our container manager, too. */
1124 if (!is_local_root) {
1125 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1126 uint64_t weight;
1127
1128 if (has_io) {
1129 uint64_t io_weight;
1130
1131 io_weight = cgroup_context_io_weight(c, state);
1132 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1133
1134 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1135 io_weight, weight);
1136 } else if (has_blockio)
1137 weight = cgroup_context_blkio_weight(c, state);
1138 else
1139 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1140
1141 xsprintf(buf, "%" PRIu64 "\n", weight);
1142 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1143
1144 if (has_io) {
1145 CGroupIODeviceWeight *w;
1146
1147 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1148 weight = cgroup_weight_io_to_blkio(w->weight);
1149
1150 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1151 w->weight, weight, w->path);
1152
1153 cgroup_apply_blkio_device_weight(u, w->path, weight);
1154 }
1155 } else if (has_blockio) {
1156 CGroupBlockIODeviceWeight *w;
1157
1158 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1159 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1160 }
1161 }
1162
1163 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
1164 * roots, as there we want the container manager to handle it */
1165 if (is_host_root || !is_local_root) {
1166 if (has_io) {
1167 CGroupIODeviceLimit *l;
1168
1169 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1170 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1171 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1172
1173 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1174 }
1175 } else if (has_blockio) {
1176 CGroupBlockIODeviceBandwidth *b;
1177
1178 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1179 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1180 }
1181 }
1182 }
1183
1184 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1185 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1186 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
1187 * write to this if we wanted to.) */
1188 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1189
1190 if (cg_all_unified() > 0) {
1191 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1192
1193 if (unit_has_unified_memory_config(u)) {
1194 max = c->memory_max;
1195 swap_max = c->memory_swap_max;
1196 } else {
1197 max = c->memory_limit;
1198
1199 if (max != CGROUP_LIMIT_MAX)
1200 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1201 }
1202
1203 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
1204 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
1205 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1206 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1207 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1208
1209 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1210
1211 } else {
1212 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1213 uint64_t val;
1214
1215 if (unit_has_unified_memory_config(u)) {
1216 val = c->memory_max;
1217 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1218 } else
1219 val = c->memory_limit;
1220
1221 if (val == CGROUP_LIMIT_MAX)
1222 strncpy(buf, "-1\n", sizeof(buf));
1223 else
1224 xsprintf(buf, "%" PRIu64 "\n", val);
1225
1226 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1227 }
1228 }
1229
1230 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
1231 * containers, where we leave this to the manager */
1232 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1233 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
1234 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
1235 CGroupDeviceAllow *a;
1236
1237 if (cg_all_unified() > 0) {
1238 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1239 if (r < 0)
1240 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1241 } else {
1242 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
1243 * here. */
1244
1245 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1246 r = cg_set_attribute("devices", path, "devices.deny", "a");
1247 else
1248 r = cg_set_attribute("devices", path, "devices.allow", "a");
1249 if (r < 0)
1250 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1251 "Failed to reset devices.allow/devices.deny: %m");
1252 }
1253
1254 if (c->device_policy == CGROUP_CLOSED ||
1255 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1256 static const char auto_devices[] =
1257 "/dev/null\0" "rwm\0"
1258 "/dev/zero\0" "rwm\0"
1259 "/dev/full\0" "rwm\0"
1260 "/dev/random\0" "rwm\0"
1261 "/dev/urandom\0" "rwm\0"
1262 "/dev/tty\0" "rwm\0"
1263 "/dev/ptmx\0" "rwm\0"
1264 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
1265 "/run/systemd/inaccessible/chr\0" "rwm\0"
1266 "/run/systemd/inaccessible/blk\0" "rwm\0";
1267
1268 const char *x, *y;
1269
1270 NULSTR_FOREACH_PAIR(x, y, auto_devices)
1271 (void) whitelist_device(prog, path, x, y);
1272
1273 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
1274 (void) whitelist_major(prog, path, "pts", 'c', "rw");
1275 }
1276
1277 LIST_FOREACH(device_allow, a, c->device_allow) {
1278 char acc[4], *val;
1279 unsigned k = 0;
1280
1281 if (a->r)
1282 acc[k++] = 'r';
1283 if (a->w)
1284 acc[k++] = 'w';
1285 if (a->m)
1286 acc[k++] = 'm';
1287
1288 if (k == 0)
1289 continue;
1290
1291 acc[k++] = 0;
1292
1293 if (path_startswith(a->path, "/dev/"))
1294 (void) whitelist_device(prog, path, a->path, acc);
1295 else if ((val = startswith(a->path, "block-")))
1296 (void) whitelist_major(prog, path, val, 'b', acc);
1297 else if ((val = startswith(a->path, "char-")))
1298 (void) whitelist_major(prog, path, val, 'c', acc);
1299 else
1300 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1301 }
1302
1303 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1304 if (r < 0) {
1305 static bool warned = false;
1306
1307 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1308 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1309 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1310 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1311
1312 warned = true;
1313 }
1314 }
1315
1316 if (apply_mask & CGROUP_MASK_PIDS) {
1317
1318 if (is_host_root) {
1319 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1320 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1321 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1322 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1323 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1324 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1325 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1326 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1327 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1328 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1329 * which is desirable so that there's an official way to release control of the sysctl from
1330 * systemd: set the limit to unbounded and reload. */
1331
1332 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1333 u->manager->sysctl_pid_max_changed = true;
1334 r = procfs_tasks_set_limit(c->tasks_max);
1335 } else if (u->manager->sysctl_pid_max_changed)
1336 r = procfs_tasks_set_limit(TASKS_MAX);
1337 else
1338 r = 0;
1339 if (r < 0)
1340 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1341 "Failed to write to tasks limit sysctls: %m");
1342 }
1343
1344 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1345 * leave it for the container manager. */
1346 if (!is_local_root) {
1347 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1348 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
1349
1350 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
1351 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1352 } else
1353 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1354 }
1355 }
1356
1357 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1358 cgroup_apply_firewall(u);
1359 }
1360
1361 static bool unit_get_needs_bpf_firewall(Unit *u) {
1362 CGroupContext *c;
1363 Unit *p;
1364 assert(u);
1365
1366 c = unit_get_cgroup_context(u);
1367 if (!c)
1368 return false;
1369
1370 if (c->ip_accounting ||
1371 c->ip_address_allow ||
1372 c->ip_address_deny ||
1373 c->ip_filters_ingress ||
1374 c->ip_filters_egress)
1375 return true;
1376
1377 /* If any parent slice has an IP access list defined, it applies too */
1378 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1379 c = unit_get_cgroup_context(p);
1380 if (!c)
1381 return false;
1382
1383 if (c->ip_address_allow ||
1384 c->ip_address_deny)
1385 return true;
1386 }
1387
1388 return false;
1389 }
1390
1391 static CGroupMask unit_get_cgroup_mask(Unit *u) {
1392 CGroupMask mask = 0;
1393 CGroupContext *c;
1394
1395 assert(u);
1396
1397 c = unit_get_cgroup_context(u);
1398
1399 assert(c);
1400
1401 /* Figure out which controllers we need, based on the cgroup context object */
1402
1403 if (c->cpu_accounting)
1404 mask |= get_cpu_accounting_mask();
1405
1406 if (cgroup_context_has_cpu_weight(c) ||
1407 cgroup_context_has_cpu_shares(c) ||
1408 c->cpu_quota_per_sec_usec != USEC_INFINITY)
1409 mask |= CGROUP_MASK_CPU;
1410
1411 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1412 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1413
1414 if (c->memory_accounting ||
1415 c->memory_limit != CGROUP_LIMIT_MAX ||
1416 unit_has_unified_memory_config(u))
1417 mask |= CGROUP_MASK_MEMORY;
1418
1419 if (c->device_allow ||
1420 c->device_policy != CGROUP_AUTO)
1421 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1422
1423 if (c->tasks_accounting ||
1424 c->tasks_max != CGROUP_LIMIT_MAX)
1425 mask |= CGROUP_MASK_PIDS;
1426
1427 return CGROUP_MASK_EXTEND_JOINED(mask);
1428 }
1429
1430 static CGroupMask unit_get_bpf_mask(Unit *u) {
1431 CGroupMask mask = 0;
1432
1433 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1434 * too. */
1435
1436 if (unit_get_needs_bpf_firewall(u))
1437 mask |= CGROUP_MASK_BPF_FIREWALL;
1438
1439 return mask;
1440 }
1441
1442 CGroupMask unit_get_own_mask(Unit *u) {
1443 CGroupContext *c;
1444
1445 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1446 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1447
1448 if (u->load_state != UNIT_LOADED)
1449 return 0;
1450
1451 c = unit_get_cgroup_context(u);
1452 if (!c)
1453 return 0;
1454
1455 return (unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
1456 }
1457
1458 CGroupMask unit_get_delegate_mask(Unit *u) {
1459 CGroupContext *c;
1460
1461 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1462 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1463 *
1464 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1465
1466 if (!unit_cgroup_delegate(u))
1467 return 0;
1468
1469 if (cg_all_unified() <= 0) {
1470 ExecContext *e;
1471
1472 e = unit_get_exec_context(u);
1473 if (e && !exec_context_maintains_privileges(e))
1474 return 0;
1475 }
1476
1477 assert_se(c = unit_get_cgroup_context(u));
1478 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1479 }
1480
1481 CGroupMask unit_get_members_mask(Unit *u) {
1482 assert(u);
1483
1484 /* Returns the mask of controllers all of the unit's children require, merged */
1485
1486 if (u->cgroup_members_mask_valid)
1487 return u->cgroup_members_mask; /* Use cached value if possible */
1488
1489 u->cgroup_members_mask = 0;
1490
1491 if (u->type == UNIT_SLICE) {
1492 void *v;
1493 Unit *member;
1494 Iterator i;
1495
1496 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
1497 if (UNIT_DEREF(member->slice) == u)
1498 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1499 }
1500 }
1501
1502 u->cgroup_members_mask_valid = true;
1503 return u->cgroup_members_mask;
1504 }
1505
1506 CGroupMask unit_get_siblings_mask(Unit *u) {
1507 assert(u);
1508
1509 /* Returns the mask of controllers all of the unit's siblings
1510 * require, i.e. the members mask of the unit's parent slice
1511 * if there is one. */
1512
1513 if (UNIT_ISSET(u->slice))
1514 return unit_get_members_mask(UNIT_DEREF(u->slice));
1515
1516 return unit_get_subtree_mask(u); /* we are the top-level slice */
1517 }
1518
1519 CGroupMask unit_get_disable_mask(Unit *u) {
1520 CGroupContext *c;
1521
1522 c = unit_get_cgroup_context(u);
1523 if (!c)
1524 return 0;
1525
1526 return c->disable_controllers;
1527 }
1528
1529 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1530 CGroupMask mask;
1531
1532 assert(u);
1533 mask = unit_get_disable_mask(u);
1534
1535 /* Returns the mask of controllers which are marked as forcibly
1536 * disabled in any ancestor unit or the unit in question. */
1537
1538 if (UNIT_ISSET(u->slice))
1539 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1540
1541 return mask;
1542 }
1543
1544 CGroupMask unit_get_subtree_mask(Unit *u) {
1545
1546 /* Returns the mask of this subtree, meaning of the group
1547 * itself and its children. */
1548
1549 return unit_get_own_mask(u) | unit_get_members_mask(u);
1550 }
1551
1552 CGroupMask unit_get_target_mask(Unit *u) {
1553 CGroupMask mask;
1554
1555 /* This returns the cgroup mask of all controllers to enable
1556 * for a specific cgroup, i.e. everything it needs itself,
1557 * plus all that its children need, plus all that its siblings
1558 * need. This is primarily useful on the legacy cgroup
1559 * hierarchy, where we need to duplicate each cgroup in each
1560 * hierarchy that shall be enabled for it. */
1561
1562 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1563
1564 if (mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
1565 emit_bpf_firewall_warning(u);
1566
1567 mask &= u->manager->cgroup_supported;
1568 mask &= ~unit_get_ancestor_disable_mask(u);
1569
1570 return mask;
1571 }
1572
1573 CGroupMask unit_get_enable_mask(Unit *u) {
1574 CGroupMask mask;
1575
1576 /* This returns the cgroup mask of all controllers to enable
1577 * for the children of a specific cgroup. This is primarily
1578 * useful for the unified cgroup hierarchy, where each cgroup
1579 * controls which controllers are enabled for its children. */
1580
1581 mask = unit_get_members_mask(u);
1582 mask &= u->manager->cgroup_supported;
1583 mask &= ~unit_get_ancestor_disable_mask(u);
1584
1585 return mask;
1586 }
1587
1588 void unit_invalidate_cgroup_members_masks(Unit *u) {
1589 assert(u);
1590
1591 /* Recurse invalidate the member masks cache all the way up the tree */
1592 u->cgroup_members_mask_valid = false;
1593
1594 if (UNIT_ISSET(u->slice))
1595 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
1596 }
1597
1598 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1599
1600 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1601
1602 while (u) {
1603
1604 if (u->cgroup_path &&
1605 u->cgroup_realized &&
1606 FLAGS_SET(u->cgroup_realized_mask, mask))
1607 return u->cgroup_path;
1608
1609 u = UNIT_DEREF(u->slice);
1610 }
1611
1612 return NULL;
1613 }
1614
1615 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1616 return unit_get_realized_cgroup_path(userdata, mask);
1617 }
1618
1619 char *unit_default_cgroup_path(const Unit *u) {
1620 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1621 int r;
1622
1623 assert(u);
1624
1625 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1626 return strdup(u->manager->cgroup_root);
1627
1628 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1629 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1630 if (r < 0)
1631 return NULL;
1632 }
1633
1634 escaped = cg_escape(u->id);
1635 if (!escaped)
1636 return NULL;
1637
1638 return path_join(empty_to_root(u->manager->cgroup_root), slice, escaped);
1639 }
1640
1641 int unit_set_cgroup_path(Unit *u, const char *path) {
1642 _cleanup_free_ char *p = NULL;
1643 int r;
1644
1645 assert(u);
1646
1647 if (streq_ptr(u->cgroup_path, path))
1648 return 0;
1649
1650 if (path) {
1651 p = strdup(path);
1652 if (!p)
1653 return -ENOMEM;
1654 }
1655
1656 if (p) {
1657 r = hashmap_put(u->manager->cgroup_unit, p, u);
1658 if (r < 0)
1659 return r;
1660 }
1661
1662 unit_release_cgroup(u);
1663 u->cgroup_path = TAKE_PTR(p);
1664
1665 return 1;
1666 }
1667
1668 int unit_watch_cgroup(Unit *u) {
1669 _cleanup_free_ char *events = NULL;
1670 int r;
1671
1672 assert(u);
1673
1674 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
1675 * cgroupv2 is available. */
1676
1677 if (!u->cgroup_path)
1678 return 0;
1679
1680 if (u->cgroup_control_inotify_wd >= 0)
1681 return 0;
1682
1683 /* Only applies to the unified hierarchy */
1684 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1685 if (r < 0)
1686 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1687 if (r == 0)
1688 return 0;
1689
1690 /* No point in watch the top-level slice, it's never going to run empty. */
1691 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1692 return 0;
1693
1694 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
1695 if (r < 0)
1696 return log_oom();
1697
1698 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
1699 if (r < 0)
1700 return log_oom();
1701
1702 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1703 if (u->cgroup_control_inotify_wd < 0) {
1704
1705 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1706 * is not an error */
1707 return 0;
1708
1709 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", u->cgroup_path);
1710 }
1711
1712 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
1713 if (r < 0)
1714 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor to hash map: %m");
1715
1716 return 0;
1717 }
1718
1719 int unit_watch_cgroup_memory(Unit *u) {
1720 _cleanup_free_ char *events = NULL;
1721 CGroupContext *c;
1722 int r;
1723
1724 assert(u);
1725
1726 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
1727 * cgroupv2 is available. */
1728
1729 if (!u->cgroup_path)
1730 return 0;
1731
1732 c = unit_get_cgroup_context(u);
1733 if (!c)
1734 return 0;
1735
1736 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
1737 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
1738 * all. */
1739 if (!c->memory_accounting)
1740 return 0;
1741
1742 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
1743 * we also don't want to generate a log message for each parent cgroup of a process. */
1744 if (u->type == UNIT_SLICE)
1745 return 0;
1746
1747 if (u->cgroup_memory_inotify_wd >= 0)
1748 return 0;
1749
1750 /* Only applies to the unified hierarchy */
1751 r = cg_all_unified();
1752 if (r < 0)
1753 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
1754 if (r == 0)
1755 return 0;
1756
1757 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
1758 if (r < 0)
1759 return log_oom();
1760
1761 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
1762 if (r < 0)
1763 return log_oom();
1764
1765 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1766 if (u->cgroup_memory_inotify_wd < 0) {
1767
1768 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1769 * is not an error */
1770 return 0;
1771
1772 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", u->cgroup_path);
1773 }
1774
1775 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
1776 if (r < 0)
1777 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor to hash map: %m");
1778
1779 return 0;
1780 }
1781
1782 int unit_pick_cgroup_path(Unit *u) {
1783 _cleanup_free_ char *path = NULL;
1784 int r;
1785
1786 assert(u);
1787
1788 if (u->cgroup_path)
1789 return 0;
1790
1791 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1792 return -EINVAL;
1793
1794 path = unit_default_cgroup_path(u);
1795 if (!path)
1796 return log_oom();
1797
1798 r = unit_set_cgroup_path(u, path);
1799 if (r == -EEXIST)
1800 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1801 if (r < 0)
1802 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1803
1804 return 0;
1805 }
1806
1807 static int unit_create_cgroup(
1808 Unit *u,
1809 CGroupMask target_mask,
1810 CGroupMask enable_mask,
1811 ManagerState state) {
1812
1813 bool created;
1814 int r;
1815
1816 assert(u);
1817
1818 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1819 return 0;
1820
1821 /* Figure out our cgroup path */
1822 r = unit_pick_cgroup_path(u);
1823 if (r < 0)
1824 return r;
1825
1826 /* First, create our own group */
1827 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
1828 if (r < 0)
1829 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
1830 created = r;
1831
1832 /* Start watching it */
1833 (void) unit_watch_cgroup(u);
1834 (void) unit_watch_cgroup_memory(u);
1835
1836 /* Preserve enabled controllers in delegated units, adjust others. */
1837 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
1838 CGroupMask result_mask = 0;
1839
1840 /* Enable all controllers we need */
1841 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
1842 if (r < 0)
1843 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
1844
1845 /* If we just turned off a controller, this might release the controller for our parent too, let's
1846 * enqueue the parent for re-realization in that case again. */
1847 if (UNIT_ISSET(u->slice)) {
1848 CGroupMask turned_off;
1849
1850 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
1851 if (turned_off != 0) {
1852 Unit *parent;
1853
1854 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
1855 * the controller we just turned off. */
1856
1857 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
1858 unit_invalidate_cgroup(parent, turned_off);
1859 }
1860 }
1861
1862 /* Remember what's actually enabled now */
1863 u->cgroup_enabled_mask = result_mask;
1864 }
1865
1866 /* Keep track that this is now realized */
1867 u->cgroup_realized = true;
1868 u->cgroup_realized_mask = target_mask;
1869
1870 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
1871
1872 /* Then, possibly move things over, but not if
1873 * subgroups may contain processes, which is the case
1874 * for slice and delegation units. */
1875 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1876 if (r < 0)
1877 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
1878 }
1879
1880 /* Set attributes */
1881 cgroup_context_apply(u, target_mask, state);
1882 cgroup_xattr_apply(u);
1883
1884 return 0;
1885 }
1886
1887 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1888 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1889 char *pp;
1890 int r;
1891
1892 assert(u);
1893
1894 if (MANAGER_IS_SYSTEM(u->manager))
1895 return -EINVAL;
1896
1897 if (!u->manager->system_bus)
1898 return -EIO;
1899
1900 if (!u->cgroup_path)
1901 return -EINVAL;
1902
1903 /* Determine this unit's cgroup path relative to our cgroup root */
1904 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1905 if (!pp)
1906 return -EINVAL;
1907
1908 pp = strjoina("/", pp, suffix_path);
1909 path_simplify(pp, false);
1910
1911 r = sd_bus_call_method(u->manager->system_bus,
1912 "org.freedesktop.systemd1",
1913 "/org/freedesktop/systemd1",
1914 "org.freedesktop.systemd1.Manager",
1915 "AttachProcessesToUnit",
1916 &error, NULL,
1917 "ssau",
1918 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
1919 if (r < 0)
1920 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1921
1922 return 0;
1923 }
1924
1925 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1926 CGroupMask delegated_mask;
1927 const char *p;
1928 Iterator i;
1929 void *pidp;
1930 int r, q;
1931
1932 assert(u);
1933
1934 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1935 return -EINVAL;
1936
1937 if (set_isempty(pids))
1938 return 0;
1939
1940 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
1941 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
1942 r = bpf_firewall_load_custom(u);
1943 if (r < 0)
1944 return r;
1945
1946 r = unit_realize_cgroup(u);
1947 if (r < 0)
1948 return r;
1949
1950 if (isempty(suffix_path))
1951 p = u->cgroup_path;
1952 else
1953 p = prefix_roota(u->cgroup_path, suffix_path);
1954
1955 delegated_mask = unit_get_delegate_mask(u);
1956
1957 r = 0;
1958 SET_FOREACH(pidp, pids, i) {
1959 pid_t pid = PTR_TO_PID(pidp);
1960 CGroupController c;
1961
1962 /* First, attach the PID to the main cgroup hierarchy */
1963 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1964 if (q < 0) {
1965 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1966
1967 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1968 int z;
1969
1970 /* If we are in a user instance, and we can't move the process ourselves due to
1971 * permission problems, let's ask the system instance about it instead. Since it's more
1972 * privileged it might be able to move the process across the leaves of a subtree who's
1973 * top node is not owned by us. */
1974
1975 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1976 if (z < 0)
1977 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1978 else
1979 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1980 }
1981
1982 if (r >= 0)
1983 r = q; /* Remember first error */
1984
1985 continue;
1986 }
1987
1988 q = cg_all_unified();
1989 if (q < 0)
1990 return q;
1991 if (q > 0)
1992 continue;
1993
1994 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1995 * innermost realized one */
1996
1997 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1998 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1999 const char *realized;
2000
2001 if (!(u->manager->cgroup_supported & bit))
2002 continue;
2003
2004 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2005 if (delegated_mask & u->cgroup_realized_mask & bit) {
2006 q = cg_attach(cgroup_controller_to_string(c), p, pid);
2007 if (q >= 0)
2008 continue; /* Success! */
2009
2010 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
2011 pid, p, cgroup_controller_to_string(c));
2012 }
2013
2014 /* So this controller is either not delegate or realized, or something else weird happened. In
2015 * that case let's attach the PID at least to the closest cgroup up the tree that is
2016 * realized. */
2017 realized = unit_get_realized_cgroup_path(u, bit);
2018 if (!realized)
2019 continue; /* Not even realized in the root slice? Then let's not bother */
2020
2021 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
2022 if (q < 0)
2023 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
2024 pid, realized, cgroup_controller_to_string(c));
2025 }
2026 }
2027
2028 return r;
2029 }
2030
2031 static bool unit_has_mask_realized(
2032 Unit *u,
2033 CGroupMask target_mask,
2034 CGroupMask enable_mask) {
2035
2036 assert(u);
2037
2038 /* Returns true if this unit is fully realized. We check four things:
2039 *
2040 * 1. Whether the cgroup was created at all
2041 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2042 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
2043 * 4. Whether the invalidation mask is currently zero
2044 *
2045 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
2046 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2047 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2048 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
2049 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2050 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2051 * simply don't matter. */
2052
2053 return u->cgroup_realized &&
2054 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2055 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
2056 u->cgroup_invalidated_mask == 0;
2057 }
2058
2059 static bool unit_has_mask_disables_realized(
2060 Unit *u,
2061 CGroupMask target_mask,
2062 CGroupMask enable_mask) {
2063
2064 assert(u);
2065
2066 /* Returns true if all controllers which should be disabled are indeed disabled.
2067 *
2068 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2069 * already removed. */
2070
2071 return !u->cgroup_realized ||
2072 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2073 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2074 }
2075
2076 static bool unit_has_mask_enables_realized(
2077 Unit *u,
2078 CGroupMask target_mask,
2079 CGroupMask enable_mask) {
2080
2081 assert(u);
2082
2083 /* Returns true if all controllers which should be enabled are indeed enabled.
2084 *
2085 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2086 * we want to add is already added. */
2087
2088 return u->cgroup_realized &&
2089 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2090 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
2091 }
2092
2093 void unit_add_to_cgroup_realize_queue(Unit *u) {
2094 assert(u);
2095
2096 if (u->in_cgroup_realize_queue)
2097 return;
2098
2099 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2100 u->in_cgroup_realize_queue = true;
2101 }
2102
2103 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2104 assert(u);
2105
2106 if (!u->in_cgroup_realize_queue)
2107 return;
2108
2109 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2110 u->in_cgroup_realize_queue = false;
2111 }
2112
2113 /* Controllers can only be enabled breadth-first, from the root of the
2114 * hierarchy downwards to the unit in question. */
2115 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2116 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2117 int r;
2118
2119 assert(u);
2120
2121 /* First go deal with this unit's parent, or we won't be able to enable
2122 * any new controllers at this layer. */
2123 if (UNIT_ISSET(u->slice)) {
2124 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2125 if (r < 0)
2126 return r;
2127 }
2128
2129 target_mask = unit_get_target_mask(u);
2130 enable_mask = unit_get_enable_mask(u);
2131
2132 /* We can only enable in this direction, don't try to disable anything.
2133 */
2134 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2135 return 0;
2136
2137 new_target_mask = u->cgroup_realized_mask | target_mask;
2138 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2139
2140 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
2141 }
2142
2143 /* Controllers can only be disabled depth-first, from the leaves of the
2144 * hierarchy upwards to the unit in question. */
2145 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2146 Iterator i;
2147 Unit *m;
2148 void *v;
2149
2150 assert(u);
2151
2152 if (u->type != UNIT_SLICE)
2153 return 0;
2154
2155 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2156 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2157 int r;
2158
2159 if (UNIT_DEREF(m->slice) != u)
2160 continue;
2161
2162 /* The cgroup for this unit might not actually be fully
2163 * realised yet, in which case it isn't holding any controllers
2164 * open anyway. */
2165 if (!m->cgroup_path)
2166 continue;
2167
2168 /* We must disable those below us first in order to release the
2169 * controller. */
2170 if (m->type == UNIT_SLICE)
2171 (void) unit_realize_cgroup_now_disable(m, state);
2172
2173 target_mask = unit_get_target_mask(m);
2174 enable_mask = unit_get_enable_mask(m);
2175
2176 /* We can only disable in this direction, don't try to enable
2177 * anything. */
2178 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2179 continue;
2180
2181 new_target_mask = m->cgroup_realized_mask & target_mask;
2182 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2183
2184 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
2185 if (r < 0)
2186 return r;
2187 }
2188
2189 return 0;
2190 }
2191
2192 /* Check if necessary controllers and attributes for a unit are in place.
2193 *
2194 * - If so, do nothing.
2195 * - If not, create paths, move processes over, and set attributes.
2196 *
2197 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2198 * a depth-first way. As such the process looks like this:
2199 *
2200 * Suppose we have a cgroup hierarchy which looks like this:
2201 *
2202 * root
2203 * / \
2204 * / \
2205 * / \
2206 * a b
2207 * / \ / \
2208 * / \ / \
2209 * c d e f
2210 * / \ / \ / \ / \
2211 * h i j k l m n o
2212 *
2213 * 1. We want to realise cgroup "d" now.
2214 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2215 * 3. cgroup "k" just started requesting the memory controller.
2216 *
2217 * To make this work we must do the following in order:
2218 *
2219 * 1. Disable CPU controller in k, j
2220 * 2. Disable CPU controller in d
2221 * 3. Enable memory controller in root
2222 * 4. Enable memory controller in a
2223 * 5. Enable memory controller in d
2224 * 6. Enable memory controller in k
2225 *
2226 * Notice that we need to touch j in one direction, but not the other. We also
2227 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2228 * wants to disable further. The basic rules are therefore:
2229 *
2230 * - If you're disabling something, you need to realise all of the cgroups from
2231 * your recursive descendants to the root. This starts from the leaves.
2232 * - If you're enabling something, you need to realise from the root cgroup
2233 * downwards, but you don't need to iterate your recursive descendants.
2234 *
2235 * Returns 0 on success and < 0 on failure. */
2236 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2237 CGroupMask target_mask, enable_mask;
2238 int r;
2239
2240 assert(u);
2241
2242 unit_remove_from_cgroup_realize_queue(u);
2243
2244 target_mask = unit_get_target_mask(u);
2245 enable_mask = unit_get_enable_mask(u);
2246
2247 if (unit_has_mask_realized(u, target_mask, enable_mask))
2248 return 0;
2249
2250 /* Disable controllers below us, if there are any */
2251 r = unit_realize_cgroup_now_disable(u, state);
2252 if (r < 0)
2253 return r;
2254
2255 /* Enable controllers above us, if there are any */
2256 if (UNIT_ISSET(u->slice)) {
2257 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2258 if (r < 0)
2259 return r;
2260 }
2261
2262 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2263 r = unit_create_cgroup(u, target_mask, enable_mask, state);
2264 if (r < 0)
2265 return r;
2266
2267 /* Now, reset the invalidation mask */
2268 u->cgroup_invalidated_mask = 0;
2269 return 0;
2270 }
2271
2272 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2273 ManagerState state;
2274 unsigned n = 0;
2275 Unit *i;
2276 int r;
2277
2278 assert(m);
2279
2280 state = manager_state(m);
2281
2282 while ((i = m->cgroup_realize_queue)) {
2283 assert(i->in_cgroup_realize_queue);
2284
2285 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2286 /* Maybe things changed, and the unit is not actually active anymore? */
2287 unit_remove_from_cgroup_realize_queue(i);
2288 continue;
2289 }
2290
2291 r = unit_realize_cgroup_now(i, state);
2292 if (r < 0)
2293 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2294
2295 n++;
2296 }
2297
2298 return n;
2299 }
2300
2301 static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
2302 Unit *slice;
2303
2304 /* This adds the siblings of the specified unit and the
2305 * siblings of all parent units to the cgroup queue. (But
2306 * neither the specified unit itself nor the parents.) */
2307
2308 while ((slice = UNIT_DEREF(u->slice))) {
2309 Iterator i;
2310 Unit *m;
2311 void *v;
2312
2313 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2314 /* Skip units that have a dependency on the slice
2315 * but aren't actually in it. */
2316 if (UNIT_DEREF(m->slice) != slice)
2317 continue;
2318
2319 /* No point in doing cgroup application for units
2320 * without active processes. */
2321 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2322 continue;
2323
2324 /* If the unit doesn't need any new controllers
2325 * and has current ones realized, it doesn't need
2326 * any changes. */
2327 if (unit_has_mask_realized(m,
2328 unit_get_target_mask(m),
2329 unit_get_enable_mask(m)))
2330 continue;
2331
2332 unit_add_to_cgroup_realize_queue(m);
2333 }
2334
2335 u = slice;
2336 }
2337 }
2338
2339 int unit_realize_cgroup(Unit *u) {
2340 assert(u);
2341
2342 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2343 return 0;
2344
2345 /* So, here's the deal: when realizing the cgroups for this
2346 * unit, we need to first create all parents, but there's more
2347 * actually: for the weight-based controllers we also need to
2348 * make sure that all our siblings (i.e. units that are in the
2349 * same slice as we are) have cgroups, too. Otherwise, things
2350 * would become very uneven as each of their processes would
2351 * get as much resources as all our group together. This call
2352 * will synchronously create the parent cgroups, but will
2353 * defer work on the siblings to the next event loop
2354 * iteration. */
2355
2356 /* Add all sibling slices to the cgroup queue. */
2357 unit_add_siblings_to_cgroup_realize_queue(u);
2358
2359 /* And realize this one now (and apply the values) */
2360 return unit_realize_cgroup_now(u, manager_state(u->manager));
2361 }
2362
2363 void unit_release_cgroup(Unit *u) {
2364 assert(u);
2365
2366 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2367 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2368
2369 if (u->cgroup_path) {
2370 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2371 u->cgroup_path = mfree(u->cgroup_path);
2372 }
2373
2374 if (u->cgroup_control_inotify_wd >= 0) {
2375 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2376 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
2377
2378 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2379 u->cgroup_control_inotify_wd = -1;
2380 }
2381
2382 if (u->cgroup_memory_inotify_wd >= 0) {
2383 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2384 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2385
2386 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2387 u->cgroup_memory_inotify_wd = -1;
2388 }
2389 }
2390
2391 void unit_prune_cgroup(Unit *u) {
2392 int r;
2393 bool is_root_slice;
2394
2395 assert(u);
2396
2397 /* Removes the cgroup, if empty and possible, and stops watching it. */
2398
2399 if (!u->cgroup_path)
2400 return;
2401
2402 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2403
2404 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2405
2406 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2407 if (r < 0)
2408 /* One reason we could have failed here is, that the cgroup still contains a process.
2409 * However, if the cgroup becomes removable at a later time, it might be removed when
2410 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2411 * that the cgroup is still realized the next time it is started. Do not return early
2412 * on error, continue cleanup. */
2413 log_unit_full(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
2414
2415 if (is_root_slice)
2416 return;
2417
2418 unit_release_cgroup(u);
2419
2420 u->cgroup_realized = false;
2421 u->cgroup_realized_mask = 0;
2422 u->cgroup_enabled_mask = 0;
2423
2424 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
2425 }
2426
2427 int unit_search_main_pid(Unit *u, pid_t *ret) {
2428 _cleanup_fclose_ FILE *f = NULL;
2429 pid_t pid = 0, npid;
2430 int r;
2431
2432 assert(u);
2433 assert(ret);
2434
2435 if (!u->cgroup_path)
2436 return -ENXIO;
2437
2438 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2439 if (r < 0)
2440 return r;
2441
2442 while (cg_read_pid(f, &npid) > 0) {
2443
2444 if (npid == pid)
2445 continue;
2446
2447 if (pid_is_my_child(npid) == 0)
2448 continue;
2449
2450 if (pid != 0)
2451 /* Dang, there's more than one daemonized PID
2452 in this group, so we don't know what process
2453 is the main process. */
2454
2455 return -ENODATA;
2456
2457 pid = npid;
2458 }
2459
2460 *ret = pid;
2461 return 0;
2462 }
2463
2464 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2465 _cleanup_closedir_ DIR *d = NULL;
2466 _cleanup_fclose_ FILE *f = NULL;
2467 int ret = 0, r;
2468
2469 assert(u);
2470 assert(path);
2471
2472 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2473 if (r < 0)
2474 ret = r;
2475 else {
2476 pid_t pid;
2477
2478 while ((r = cg_read_pid(f, &pid)) > 0) {
2479 r = unit_watch_pid(u, pid, false);
2480 if (r < 0 && ret >= 0)
2481 ret = r;
2482 }
2483
2484 if (r < 0 && ret >= 0)
2485 ret = r;
2486 }
2487
2488 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2489 if (r < 0) {
2490 if (ret >= 0)
2491 ret = r;
2492 } else {
2493 char *fn;
2494
2495 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2496 _cleanup_free_ char *p = NULL;
2497
2498 p = path_join(empty_to_root(path), fn);
2499 free(fn);
2500
2501 if (!p)
2502 return -ENOMEM;
2503
2504 r = unit_watch_pids_in_path(u, p);
2505 if (r < 0 && ret >= 0)
2506 ret = r;
2507 }
2508
2509 if (r < 0 && ret >= 0)
2510 ret = r;
2511 }
2512
2513 return ret;
2514 }
2515
2516 int unit_synthesize_cgroup_empty_event(Unit *u) {
2517 int r;
2518
2519 assert(u);
2520
2521 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2522 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2523 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2524
2525 if (!u->cgroup_path)
2526 return -ENOENT;
2527
2528 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2529 if (r < 0)
2530 return r;
2531 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2532 return 0;
2533
2534 if (!set_isempty(u->pids))
2535 return 0;
2536
2537 unit_add_to_cgroup_empty_queue(u);
2538 return 0;
2539 }
2540
2541 int unit_watch_all_pids(Unit *u) {
2542 int r;
2543
2544 assert(u);
2545
2546 /* Adds all PIDs from our cgroup to the set of PIDs we
2547 * watch. This is a fallback logic for cases where we do not
2548 * get reliable cgroup empty notifications: we try to use
2549 * SIGCHLD as replacement. */
2550
2551 if (!u->cgroup_path)
2552 return -ENOENT;
2553
2554 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2555 if (r < 0)
2556 return r;
2557 if (r > 0) /* On unified we can use proper notifications */
2558 return 0;
2559
2560 return unit_watch_pids_in_path(u, u->cgroup_path);
2561 }
2562
2563 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2564 Manager *m = userdata;
2565 Unit *u;
2566 int r;
2567
2568 assert(s);
2569 assert(m);
2570
2571 u = m->cgroup_empty_queue;
2572 if (!u)
2573 return 0;
2574
2575 assert(u->in_cgroup_empty_queue);
2576 u->in_cgroup_empty_queue = false;
2577 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2578
2579 if (m->cgroup_empty_queue) {
2580 /* More stuff queued, let's make sure we remain enabled */
2581 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2582 if (r < 0)
2583 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2584 }
2585
2586 unit_add_to_gc_queue(u);
2587
2588 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2589 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2590
2591 return 0;
2592 }
2593
2594 void unit_add_to_cgroup_empty_queue(Unit *u) {
2595 int r;
2596
2597 assert(u);
2598
2599 /* Note that there are four different ways how cgroup empty events reach us:
2600 *
2601 * 1. On the unified hierarchy we get an inotify event on the cgroup
2602 *
2603 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2604 *
2605 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2606 *
2607 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2608 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2609 *
2610 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2611 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2612 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2613 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2614 * case for scope units). */
2615
2616 if (u->in_cgroup_empty_queue)
2617 return;
2618
2619 /* Let's verify that the cgroup is really empty */
2620 if (!u->cgroup_path)
2621 return;
2622 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2623 if (r < 0) {
2624 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2625 return;
2626 }
2627 if (r == 0)
2628 return;
2629
2630 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2631 u->in_cgroup_empty_queue = true;
2632
2633 /* Trigger the defer event */
2634 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2635 if (r < 0)
2636 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2637 }
2638
2639 int unit_check_oom(Unit *u) {
2640 _cleanup_free_ char *oom_kill = NULL;
2641 bool increased;
2642 uint64_t c;
2643 int r;
2644
2645 if (!u->cgroup_path)
2646 return 0;
2647
2648 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
2649 if (r < 0)
2650 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
2651
2652 r = safe_atou64(oom_kill, &c);
2653 if (r < 0)
2654 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
2655
2656 increased = c > u->oom_kill_last;
2657 u->oom_kill_last = c;
2658
2659 if (!increased)
2660 return 0;
2661
2662 log_struct(LOG_NOTICE,
2663 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
2664 LOG_UNIT_ID(u),
2665 LOG_UNIT_INVOCATION_ID(u),
2666 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
2667
2668 if (UNIT_VTABLE(u)->notify_cgroup_oom)
2669 UNIT_VTABLE(u)->notify_cgroup_oom(u);
2670
2671 return 1;
2672 }
2673
2674 static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
2675 Manager *m = userdata;
2676 Unit *u;
2677 int r;
2678
2679 assert(s);
2680 assert(m);
2681
2682 u = m->cgroup_oom_queue;
2683 if (!u)
2684 return 0;
2685
2686 assert(u->in_cgroup_oom_queue);
2687 u->in_cgroup_oom_queue = false;
2688 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
2689
2690 if (m->cgroup_oom_queue) {
2691 /* More stuff queued, let's make sure we remain enabled */
2692 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2693 if (r < 0)
2694 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
2695 }
2696
2697 (void) unit_check_oom(u);
2698 return 0;
2699 }
2700
2701 static void unit_add_to_cgroup_oom_queue(Unit *u) {
2702 int r;
2703
2704 assert(u);
2705
2706 if (u->in_cgroup_oom_queue)
2707 return;
2708 if (!u->cgroup_path)
2709 return;
2710
2711 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
2712 u->in_cgroup_oom_queue = true;
2713
2714 /* Trigger the defer event */
2715 if (!u->manager->cgroup_oom_event_source) {
2716 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2717
2718 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
2719 if (r < 0) {
2720 log_error_errno(r, "Failed to create cgroup oom event source: %m");
2721 return;
2722 }
2723
2724 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
2725 if (r < 0) {
2726 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
2727 return;
2728 }
2729
2730 (void) sd_event_source_set_description(s, "cgroup-oom");
2731 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
2732 }
2733
2734 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
2735 if (r < 0)
2736 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
2737 }
2738
2739 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2740 Manager *m = userdata;
2741
2742 assert(s);
2743 assert(fd >= 0);
2744 assert(m);
2745
2746 for (;;) {
2747 union inotify_event_buffer buffer;
2748 struct inotify_event *e;
2749 ssize_t l;
2750
2751 l = read(fd, &buffer, sizeof(buffer));
2752 if (l < 0) {
2753 if (IN_SET(errno, EINTR, EAGAIN))
2754 return 0;
2755
2756 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2757 }
2758
2759 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2760 Unit *u;
2761
2762 if (e->wd < 0)
2763 /* Queue overflow has no watch descriptor */
2764 continue;
2765
2766 if (e->mask & IN_IGNORED)
2767 /* The watch was just removed */
2768 continue;
2769
2770 /* Note that inotify might deliver events for a watch even after it was removed,
2771 * because it was queued before the removal. Let's ignore this here safely. */
2772
2773 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
2774 if (u)
2775 unit_add_to_cgroup_empty_queue(u);
2776
2777 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
2778 if (u)
2779 unit_add_to_cgroup_oom_queue(u);
2780 }
2781 }
2782 }
2783
2784 static int cg_bpf_mask_supported(CGroupMask *ret) {
2785 CGroupMask mask = 0;
2786 int r;
2787
2788 /* BPF-based firewall */
2789 r = bpf_firewall_supported();
2790 if (r > 0)
2791 mask |= CGROUP_MASK_BPF_FIREWALL;
2792
2793 /* BPF-based device access control */
2794 r = bpf_devices_supported();
2795 if (r > 0)
2796 mask |= CGROUP_MASK_BPF_DEVICES;
2797
2798 *ret = mask;
2799 return 0;
2800 }
2801
2802 int manager_setup_cgroup(Manager *m) {
2803 _cleanup_free_ char *path = NULL;
2804 const char *scope_path;
2805 CGroupController c;
2806 int r, all_unified;
2807 CGroupMask mask;
2808 char *e;
2809
2810 assert(m);
2811
2812 /* 1. Determine hierarchy */
2813 m->cgroup_root = mfree(m->cgroup_root);
2814 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
2815 if (r < 0)
2816 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
2817
2818 /* Chop off the init scope, if we are already located in it */
2819 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2820
2821 /* LEGACY: Also chop off the system slice if we are in
2822 * it. This is to support live upgrades from older systemd
2823 * versions where PID 1 was moved there. Also see
2824 * cg_get_root_path(). */
2825 if (!e && MANAGER_IS_SYSTEM(m)) {
2826 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
2827 if (!e)
2828 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
2829 }
2830 if (e)
2831 *e = 0;
2832
2833 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2834 * easily prepend it everywhere. */
2835 delete_trailing_chars(m->cgroup_root, "/");
2836
2837 /* 2. Show data */
2838 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
2839 if (r < 0)
2840 return log_error_errno(r, "Cannot find cgroup mount point: %m");
2841
2842 r = cg_unified();
2843 if (r < 0)
2844 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
2845
2846 all_unified = cg_all_unified();
2847 if (all_unified < 0)
2848 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2849 if (all_unified > 0)
2850 log_debug("Unified cgroup hierarchy is located at %s.", path);
2851 else {
2852 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2853 if (r < 0)
2854 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2855 if (r > 0)
2856 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2857 else
2858 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2859 }
2860
2861 /* 3. Allocate cgroup empty defer event source */
2862 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2863 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2864 if (r < 0)
2865 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2866
2867 /* Schedule cgroup empty checks early, but after having processed service notification messages or
2868 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
2869 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
2870 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2871 if (r < 0)
2872 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2873
2874 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2875 if (r < 0)
2876 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2877
2878 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2879
2880 /* 4. Install notifier inotify object, or agent */
2881 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2882
2883 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
2884
2885 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2886 safe_close(m->cgroup_inotify_fd);
2887
2888 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2889 if (m->cgroup_inotify_fd < 0)
2890 return log_error_errno(errno, "Failed to create control group inotify object: %m");
2891
2892 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2893 if (r < 0)
2894 return log_error_errno(r, "Failed to watch control group inotify object: %m");
2895
2896 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
2897 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
2898 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
2899 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
2900 if (r < 0)
2901 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
2902
2903 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
2904
2905 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
2906
2907 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2908 * since it does not generate events when control groups with children run empty. */
2909
2910 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
2911 if (r < 0)
2912 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2913 else if (r > 0)
2914 log_debug("Installed release agent.");
2915 else if (r == 0)
2916 log_debug("Release agent already installed.");
2917 }
2918
2919 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
2920 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2921 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2922 if (r >= 0) {
2923 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2924 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2925 if (r < 0)
2926 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
2927
2928 /* 6. And pin it, so that it cannot be unmounted */
2929 safe_close(m->pin_cgroupfs_fd);
2930 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2931 if (m->pin_cgroupfs_fd < 0)
2932 return log_error_errno(errno, "Failed to open pin file: %m");
2933
2934 } else if (!MANAGER_IS_TEST_RUN(m))
2935 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
2936
2937 /* 7. Always enable hierarchical support if it exists... */
2938 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
2939 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
2940
2941 /* 8. Figure out which controllers are supported */
2942 r = cg_mask_supported(&m->cgroup_supported);
2943 if (r < 0)
2944 return log_error_errno(r, "Failed to determine supported controllers: %m");
2945
2946 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2947 r = cg_bpf_mask_supported(&mask);
2948 if (r < 0)
2949 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2950 m->cgroup_supported |= mask;
2951
2952 /* 10. Log which controllers are supported */
2953 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
2954 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
2955
2956 return 0;
2957 }
2958
2959 void manager_shutdown_cgroup(Manager *m, bool delete) {
2960 assert(m);
2961
2962 /* We can't really delete the group, since we are in it. But
2963 * let's trim it. */
2964 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
2965 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2966
2967 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2968
2969 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
2970 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
2971
2972 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2973 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
2974
2975 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
2976
2977 m->cgroup_root = mfree(m->cgroup_root);
2978 }
2979
2980 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
2981 char *p;
2982 Unit *u;
2983
2984 assert(m);
2985 assert(cgroup);
2986
2987 u = hashmap_get(m->cgroup_unit, cgroup);
2988 if (u)
2989 return u;
2990
2991 p = strdupa(cgroup);
2992 for (;;) {
2993 char *e;
2994
2995 e = strrchr(p, '/');
2996 if (!e || e == p)
2997 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
2998
2999 *e = 0;
3000
3001 u = hashmap_get(m->cgroup_unit, p);
3002 if (u)
3003 return u;
3004 }
3005 }
3006
3007 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
3008 _cleanup_free_ char *cgroup = NULL;
3009
3010 assert(m);
3011
3012 if (!pid_is_valid(pid))
3013 return NULL;
3014
3015 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
3016 return NULL;
3017
3018 return manager_get_unit_by_cgroup(m, cgroup);
3019 }
3020
3021 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
3022 Unit *u, **array;
3023
3024 assert(m);
3025
3026 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3027 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3028 * relevant one as children of the process will be assigned to that one, too, before all else. */
3029
3030 if (!pid_is_valid(pid))
3031 return NULL;
3032
3033 if (pid == getpid_cached())
3034 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3035
3036 u = manager_get_unit_by_pid_cgroup(m, pid);
3037 if (u)
3038 return u;
3039
3040 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
3041 if (u)
3042 return u;
3043
3044 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3045 if (array)
3046 return array[0];
3047
3048 return NULL;
3049 }
3050
3051 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3052 Unit *u;
3053
3054 assert(m);
3055 assert(cgroup);
3056
3057 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3058 * or from the --system instance */
3059
3060 log_debug("Got cgroup empty notification for: %s", cgroup);
3061
3062 u = manager_get_unit_by_cgroup(m, cgroup);
3063 if (!u)
3064 return 0;
3065
3066 unit_add_to_cgroup_empty_queue(u);
3067 return 1;
3068 }
3069
3070 int unit_get_memory_current(Unit *u, uint64_t *ret) {
3071 _cleanup_free_ char *v = NULL;
3072 int r;
3073
3074 assert(u);
3075 assert(ret);
3076
3077 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3078 return -ENODATA;
3079
3080 if (!u->cgroup_path)
3081 return -ENODATA;
3082
3083 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3084 if (unit_has_host_root_cgroup(u))
3085 return procfs_memory_get_used(ret);
3086
3087 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3088 return -ENODATA;
3089
3090 r = cg_all_unified();
3091 if (r < 0)
3092 return r;
3093 if (r > 0)
3094 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
3095 else
3096 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
3097 if (r == -ENOENT)
3098 return -ENODATA;
3099 if (r < 0)
3100 return r;
3101
3102 return safe_atou64(v, ret);
3103 }
3104
3105 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
3106 _cleanup_free_ char *v = NULL;
3107 int r;
3108
3109 assert(u);
3110 assert(ret);
3111
3112 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
3113 return -ENODATA;
3114
3115 if (!u->cgroup_path)
3116 return -ENODATA;
3117
3118 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3119 if (unit_has_host_root_cgroup(u))
3120 return procfs_tasks_get_current(ret);
3121
3122 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3123 return -ENODATA;
3124
3125 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
3126 if (r == -ENOENT)
3127 return -ENODATA;
3128 if (r < 0)
3129 return r;
3130
3131 return safe_atou64(v, ret);
3132 }
3133
3134 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
3135 _cleanup_free_ char *v = NULL;
3136 uint64_t ns;
3137 int r;
3138
3139 assert(u);
3140 assert(ret);
3141
3142 if (!u->cgroup_path)
3143 return -ENODATA;
3144
3145 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3146 if (unit_has_host_root_cgroup(u))
3147 return procfs_cpu_get_usage(ret);
3148
3149 /* Requisite controllers for CPU accounting are not enabled */
3150 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3151 return -ENODATA;
3152
3153 r = cg_all_unified();
3154 if (r < 0)
3155 return r;
3156 if (r > 0) {
3157 _cleanup_free_ char *val = NULL;
3158 uint64_t us;
3159
3160 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
3161 if (IN_SET(r, -ENOENT, -ENXIO))
3162 return -ENODATA;
3163 if (r < 0)
3164 return r;
3165
3166 r = safe_atou64(val, &us);
3167 if (r < 0)
3168 return r;
3169
3170 ns = us * NSEC_PER_USEC;
3171 } else {
3172 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
3173 if (r == -ENOENT)
3174 return -ENODATA;
3175 if (r < 0)
3176 return r;
3177
3178 r = safe_atou64(v, &ns);
3179 if (r < 0)
3180 return r;
3181 }
3182
3183 *ret = ns;
3184 return 0;
3185 }
3186
3187 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3188 nsec_t ns;
3189 int r;
3190
3191 assert(u);
3192
3193 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3194 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3195 * call this function with a NULL return value. */
3196
3197 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
3198 return -ENODATA;
3199
3200 r = unit_get_cpu_usage_raw(u, &ns);
3201 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3202 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3203 * cached value. */
3204
3205 if (ret)
3206 *ret = u->cpu_usage_last;
3207 return 0;
3208 }
3209 if (r < 0)
3210 return r;
3211
3212 if (ns > u->cpu_usage_base)
3213 ns -= u->cpu_usage_base;
3214 else
3215 ns = 0;
3216
3217 u->cpu_usage_last = ns;
3218 if (ret)
3219 *ret = ns;
3220
3221 return 0;
3222 }
3223
3224 int unit_get_ip_accounting(
3225 Unit *u,
3226 CGroupIPAccountingMetric metric,
3227 uint64_t *ret) {
3228
3229 uint64_t value;
3230 int fd, r;
3231
3232 assert(u);
3233 assert(metric >= 0);
3234 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3235 assert(ret);
3236
3237 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
3238 return -ENODATA;
3239
3240 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3241 u->ip_accounting_ingress_map_fd :
3242 u->ip_accounting_egress_map_fd;
3243 if (fd < 0)
3244 return -ENODATA;
3245
3246 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
3247 r = bpf_firewall_read_accounting(fd, &value, NULL);
3248 else
3249 r = bpf_firewall_read_accounting(fd, NULL, &value);
3250 if (r < 0)
3251 return r;
3252
3253 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3254 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3255 * ip_accounting_extra[] field, and add them in here transparently. */
3256
3257 *ret = value + u->ip_accounting_extra[metric];
3258
3259 return r;
3260 }
3261
3262 static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3263 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3264 [CGROUP_IO_READ_BYTES] = "rbytes=",
3265 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
3266 [CGROUP_IO_READ_OPERATIONS] = "rios=",
3267 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3268 };
3269 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3270 _cleanup_free_ char *path = NULL;
3271 _cleanup_fclose_ FILE *f = NULL;
3272 int r;
3273
3274 assert(u);
3275
3276 if (!u->cgroup_path)
3277 return -ENODATA;
3278
3279 if (unit_has_host_root_cgroup(u))
3280 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3281
3282 r = cg_all_unified();
3283 if (r < 0)
3284 return r;
3285 if (r == 0) /* TODO: support cgroupv1 */
3286 return -ENODATA;
3287
3288 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3289 return -ENODATA;
3290
3291 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3292 if (r < 0)
3293 return r;
3294
3295 f = fopen(path, "re");
3296 if (!f)
3297 return -errno;
3298
3299 for (;;) {
3300 _cleanup_free_ char *line = NULL;
3301 const char *p;
3302
3303 r = read_line(f, LONG_LINE_MAX, &line);
3304 if (r < 0)
3305 return r;
3306 if (r == 0)
3307 break;
3308
3309 p = line;
3310 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3311 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
3312
3313 for (;;) {
3314 _cleanup_free_ char *word = NULL;
3315
3316 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3317 if (r < 0)
3318 return r;
3319 if (r == 0)
3320 break;
3321
3322 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3323 const char *x;
3324
3325 x = startswith(word, field_names[i]);
3326 if (x) {
3327 uint64_t w;
3328
3329 r = safe_atou64(x, &w);
3330 if (r < 0)
3331 return r;
3332
3333 /* Sum up the stats of all devices */
3334 acc[i] += w;
3335 break;
3336 }
3337 }
3338 }
3339 }
3340
3341 memcpy(ret, acc, sizeof(acc));
3342 return 0;
3343 }
3344
3345 int unit_get_io_accounting(
3346 Unit *u,
3347 CGroupIOAccountingMetric metric,
3348 bool allow_cache,
3349 uint64_t *ret) {
3350
3351 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3352 int r;
3353
3354 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3355
3356 if (!UNIT_CGROUP_BOOL(u, io_accounting))
3357 return -ENODATA;
3358
3359 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3360 goto done;
3361
3362 r = unit_get_io_accounting_raw(u, raw);
3363 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3364 goto done;
3365 if (r < 0)
3366 return r;
3367
3368 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3369 /* Saturated subtraction */
3370 if (raw[i] > u->io_accounting_base[i])
3371 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3372 else
3373 u->io_accounting_last[i] = 0;
3374 }
3375
3376 done:
3377 if (ret)
3378 *ret = u->io_accounting_last[metric];
3379
3380 return 0;
3381 }
3382
3383 int unit_reset_cpu_accounting(Unit *u) {
3384 int r;
3385
3386 assert(u);
3387
3388 u->cpu_usage_last = NSEC_INFINITY;
3389
3390 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
3391 if (r < 0) {
3392 u->cpu_usage_base = 0;
3393 return r;
3394 }
3395
3396 return 0;
3397 }
3398
3399 int unit_reset_ip_accounting(Unit *u) {
3400 int r = 0, q = 0;
3401
3402 assert(u);
3403
3404 if (u->ip_accounting_ingress_map_fd >= 0)
3405 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3406
3407 if (u->ip_accounting_egress_map_fd >= 0)
3408 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3409
3410 zero(u->ip_accounting_extra);
3411
3412 return r < 0 ? r : q;
3413 }
3414
3415 int unit_reset_io_accounting(Unit *u) {
3416 int r;
3417
3418 assert(u);
3419
3420 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
3421 u->io_accounting_last[i] = UINT64_MAX;
3422
3423 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
3424 if (r < 0) {
3425 zero(u->io_accounting_base);
3426 return r;
3427 }
3428
3429 return 0;
3430 }
3431
3432 int unit_reset_accounting(Unit *u) {
3433 int r, q, v;
3434
3435 assert(u);
3436
3437 r = unit_reset_cpu_accounting(u);
3438 q = unit_reset_io_accounting(u);
3439 v = unit_reset_ip_accounting(u);
3440
3441 return r < 0 ? r : q < 0 ? q : v;
3442 }
3443
3444 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
3445 assert(u);
3446
3447 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3448 return;
3449
3450 if (m == 0)
3451 return;
3452
3453 /* always invalidate compat pairs together */
3454 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
3455 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
3456
3457 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
3458 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3459
3460 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
3461 return;
3462
3463 u->cgroup_invalidated_mask |= m;
3464 unit_add_to_cgroup_realize_queue(u);
3465 }
3466
3467 void unit_invalidate_cgroup_bpf(Unit *u) {
3468 assert(u);
3469
3470 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3471 return;
3472
3473 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
3474 return;
3475
3476 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
3477 unit_add_to_cgroup_realize_queue(u);
3478
3479 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3480 * list of our children includes our own. */
3481 if (u->type == UNIT_SLICE) {
3482 Unit *member;
3483 Iterator i;
3484 void *v;
3485
3486 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
3487 if (UNIT_DEREF(member->slice) == u)
3488 unit_invalidate_cgroup_bpf(member);
3489 }
3490 }
3491 }
3492
3493 bool unit_cgroup_delegate(Unit *u) {
3494 CGroupContext *c;
3495
3496 assert(u);
3497
3498 if (!UNIT_VTABLE(u)->can_delegate)
3499 return false;
3500
3501 c = unit_get_cgroup_context(u);
3502 if (!c)
3503 return false;
3504
3505 return c->delegate;
3506 }
3507
3508 void manager_invalidate_startup_units(Manager *m) {
3509 Iterator i;
3510 Unit *u;
3511
3512 assert(m);
3513
3514 SET_FOREACH(u, m->startup_units, i)
3515 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
3516 }
3517
3518 static int unit_get_nice(Unit *u) {
3519 ExecContext *ec;
3520
3521 ec = unit_get_exec_context(u);
3522 return ec ? ec->nice : 0;
3523 }
3524
3525 static uint64_t unit_get_cpu_weight(Unit *u) {
3526 ManagerState state = manager_state(u->manager);
3527 CGroupContext *cc;
3528
3529 cc = unit_get_cgroup_context(u);
3530 return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
3531 }
3532
3533 int compare_job_priority(const void *a, const void *b) {
3534 const Job *x = a, *y = b;
3535 int nice_x, nice_y;
3536 uint64_t weight_x, weight_y;
3537 int ret;
3538
3539 if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
3540 return -ret;
3541
3542 weight_x = unit_get_cpu_weight(x->unit);
3543 weight_y = unit_get_cpu_weight(y->unit);
3544
3545 if ((ret = CMP(weight_x, weight_y)) != 0)
3546 return -ret;
3547
3548 nice_x = unit_get_nice(x->unit);
3549 nice_y = unit_get_nice(y->unit);
3550
3551 if ((ret = CMP(nice_x, nice_y)) != 0)
3552 return ret;
3553
3554 return strcmp(x->unit->id, y->unit->id);
3555 }
3556
3557 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3558 [CGROUP_AUTO] = "auto",
3559 [CGROUP_CLOSED] = "closed",
3560 [CGROUP_STRICT] = "strict",
3561 };
3562
3563 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);