]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/s3_cbc.c
ssl/s3_cbc.c: md_state alignment portability fix.
[thirdparty/openssl.git] / ssl / s3_cbc.c
1 /* ssl/s3_cbc.c */
2 /* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56 #include "ssl_locl.h"
57
58 #include <openssl/md5.h>
59 #include <openssl/sha.h>
60
61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63 #define MAX_HASH_BIT_COUNT_BYTES 16
64
65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68 #define MAX_HASH_BLOCK_SIZE 128
69
70 /* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76 #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
80 static unsigned constant_time_ge(unsigned a, unsigned b)
81 {
82 a -= b;
83 return DUPLICATE_MSB_TO_ALL(~a);
84 }
85
86 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
87 static unsigned char constant_time_eq_8(unsigned char a, unsigned char b)
88 {
89 unsigned c = a ^ b;
90 c--;
91 return DUPLICATE_MSB_TO_ALL_8(c);
92 }
93
94 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
95 * record in |rec| by updating |rec->length| in constant time.
96 *
97 * block_size: the block size of the cipher used to encrypt the record.
98 * returns:
99 * 0: (in non-constant time) if the record is publicly invalid.
100 * 1: if the padding was valid
101 * -1: otherwise. */
102 int ssl3_cbc_remove_padding(const SSL* s,
103 SSL3_RECORD *rec,
104 unsigned block_size,
105 unsigned mac_size)
106 {
107 unsigned padding_length, good;
108 const unsigned overhead = 1 /* padding length byte */ + mac_size;
109
110 /* These lengths are all public so we can test them in non-constant
111 * time. */
112 if (overhead > rec->length)
113 return 0;
114
115 padding_length = rec->data[rec->length-1];
116 good = constant_time_ge(rec->length, padding_length+overhead);
117 /* SSLv3 requires that the padding is minimal. */
118 good &= constant_time_ge(block_size, padding_length+1);
119 rec->length -= good & (padding_length+1);
120 return (int)((good & 1) | (~good & -1));
121 }
122
123 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
124 * record in |rec| in constant time and returns 1 if the padding is valid and
125 * -1 otherwise. It also removes any explicit IV from the start of the record
126 * without leaking any timing about whether there was enough space after the
127 * padding was removed.
128 *
129 * block_size: the block size of the cipher used to encrypt the record.
130 * returns:
131 * 0: (in non-constant time) if the record is publicly invalid.
132 * 1: if the padding was valid
133 * -1: otherwise. */
134 int tls1_cbc_remove_padding(const SSL* s,
135 SSL3_RECORD *rec,
136 unsigned block_size,
137 unsigned mac_size)
138 {
139 unsigned padding_length, good, to_check, i;
140 const char has_explicit_iv =
141 s->version >= TLS1_1_VERSION || s->version == DTLS1_VERSION;
142 const unsigned overhead = 1 /* padding length byte */ +
143 mac_size +
144 (has_explicit_iv ? block_size : 0);
145
146 /* These lengths are all public so we can test them in non-constant
147 * time. */
148 if (overhead > rec->length)
149 return 0;
150
151 padding_length = rec->data[rec->length-1];
152
153 /* NB: if compression is in operation the first packet may not be of
154 * even length so the padding bug check cannot be performed. This bug
155 * workaround has been around since SSLeay so hopefully it is either
156 * fixed now or no buggy implementation supports compression [steve]
157 */
158 if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
159 {
160 /* First packet is even in size, so check */
161 if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
162 !(padding_length & 1))
163 {
164 s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
165 }
166 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
167 padding_length > 0)
168 {
169 padding_length--;
170 }
171 }
172
173 good = constant_time_ge(rec->length, overhead+padding_length);
174 /* The padding consists of a length byte at the end of the record and
175 * then that many bytes of padding, all with the same value as the
176 * length byte. Thus, with the length byte included, there are i+1
177 * bytes of padding.
178 *
179 * We can't check just |padding_length+1| bytes because that leaks
180 * decrypted information. Therefore we always have to check the maximum
181 * amount of padding possible. (Again, the length of the record is
182 * public information so we can use it.) */
183 to_check = 255; /* maximum amount of padding. */
184 if (to_check > rec->length-1)
185 to_check = rec->length-1;
186
187 for (i = 0; i < to_check; i++)
188 {
189 unsigned char mask = constant_time_ge(padding_length, i);
190 unsigned char b = rec->data[rec->length-1-i];
191 /* The final |padding_length+1| bytes should all have the value
192 * |padding_length|. Therefore the XOR should be zero. */
193 good &= ~(mask&(padding_length ^ b));
194 }
195
196 /* If any of the final |padding_length+1| bytes had the wrong value,
197 * one or more of the lower eight bits of |good| will be cleared. We
198 * AND the bottom 8 bits together and duplicate the result to all the
199 * bits. */
200 good &= good >> 4;
201 good &= good >> 2;
202 good &= good >> 1;
203 good <<= sizeof(good)*8-1;
204 good = DUPLICATE_MSB_TO_ALL(good);
205
206 rec->length -= good & (padding_length+1);
207
208 /* We can always safely skip the explicit IV. We check at the beginning
209 * of this function that the record has at least enough space for the
210 * IV, MAC and padding length byte. (These can be checked in
211 * non-constant time because it's all public information.) So, if the
212 * padding was invalid, then we didn't change |rec->length| and this is
213 * safe. If the padding was valid then we know that we have at least
214 * overhead+padding_length bytes of space and so this is still safe
215 * because overhead accounts for the explicit IV. */
216 if (has_explicit_iv)
217 {
218 rec->data += block_size;
219 rec->input += block_size;
220 rec->length -= block_size;
221 rec->orig_len -= block_size;
222 }
223
224 return (int)((good & 1) | (~good & -1));
225 }
226
227 #if defined(_M_AMD64) || defined(__x86_64__)
228 #define CBC_MAC_ROTATE_IN_PLACE
229 #endif
230
231 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
232 * constant time (independent of the concrete value of rec->length, which may
233 * vary within a 256-byte window).
234 *
235 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
236 * this function.
237 *
238 * On entry:
239 * rec->orig_len >= md_size
240 * md_size <= EVP_MAX_MD_SIZE
241 *
242 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
243 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
244 * a single cache-line, then the variable memory accesses don't actually affect
245 * the timing. This has been tested to be true on Intel amd64 chips.
246 */
247 void ssl3_cbc_copy_mac(unsigned char* out,
248 const SSL3_RECORD *rec,
249 unsigned md_size)
250 {
251 #if defined(CBC_MAC_ROTATE_IN_PLACE)
252 unsigned char rotated_mac_buf[EVP_MAX_MD_SIZE*2];
253 unsigned char *rotated_mac;
254 #else
255 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
256 #endif
257
258 /* mac_end is the index of |rec->data| just after the end of the MAC. */
259 unsigned mac_end = rec->length;
260 unsigned mac_start = mac_end - md_size;
261 /* scan_start contains the number of bytes that we can ignore because
262 * the MAC's position can only vary by 255 bytes. */
263 unsigned scan_start = 0;
264 unsigned i, j;
265 unsigned div_spoiler;
266 unsigned rotate_offset;
267
268 OPENSSL_assert(rec->orig_len >= md_size);
269 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
270
271 #if defined(CBC_MAC_ROTATE_IN_PLACE)
272 rotated_mac = (unsigned char*) (((intptr_t)(rotated_mac_buf + 64)) & ~63);
273 #endif
274
275 /* This information is public so it's safe to branch based on it. */
276 if (rec->orig_len > md_size + 255 + 1)
277 scan_start = rec->orig_len - (md_size + 255 + 1);
278 /* div_spoiler contains a multiple of md_size that is used to cause the
279 * modulo operation to be constant time. Without this, the time varies
280 * based on the amount of padding when running on Intel chips at least.
281 *
282 * The aim of right-shifting md_size is so that the compiler doesn't
283 * figure out that it can remove div_spoiler as that would require it
284 * to prove that md_size is always even, which I hope is beyond it. */
285 div_spoiler = md_size >> 1;
286 div_spoiler <<= (sizeof(div_spoiler)-1)*8;
287 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
288
289 memset(rotated_mac, 0, md_size);
290 for (i = scan_start; i < rec->orig_len;)
291 {
292 for (j = 0; j < md_size && i < rec->orig_len; i++, j++)
293 {
294 unsigned char mac_started = constant_time_ge(i, mac_start);
295 unsigned char mac_ended = constant_time_ge(i, mac_end);
296 unsigned char b = 0;
297 b = rec->data[i];
298 rotated_mac[j] |= b & mac_started & ~mac_ended;
299 }
300 }
301
302 /* Now rotate the MAC */
303 #if defined(CBC_MAC_ROTATE_IN_PLACE)
304 j = 0;
305 for (i = 0; i < md_size; i++)
306 {
307 unsigned char offset = (div_spoiler + rotate_offset + i) % md_size;
308 out[j++] = rotated_mac[offset];
309 }
310 #else
311 memset(out, 0, md_size);
312 for (i = 0; i < md_size; i++)
313 {
314 unsigned char offset = (div_spoiler + md_size - rotate_offset + i) % md_size;
315 for (j = 0; j < md_size; j++)
316 out[j] |= rotated_mac[i] & constant_time_eq_8(j, offset);
317 }
318 #endif
319 }
320
321 /* These functions serialize the state of a hash and thus perform the standard
322 * "final" operation without adding the padding and length that such a function
323 * typically does. */
324 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
325 {
326 MD5_CTX *md5 = ctx;
327 l2n(md5->A, md_out);
328 l2n(md5->B, md_out);
329 l2n(md5->C, md_out);
330 l2n(md5->D, md_out);
331 }
332
333 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
334 {
335 SHA_CTX *sha1 = ctx;
336 l2n(sha1->h0, md_out);
337 l2n(sha1->h1, md_out);
338 l2n(sha1->h2, md_out);
339 l2n(sha1->h3, md_out);
340 l2n(sha1->h4, md_out);
341 }
342
343 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
344 {
345 SHA256_CTX *sha256 = ctx;
346 unsigned i;
347
348 for (i = 0; i < 8; i++)
349 {
350 l2n(sha256->h[i], md_out);
351 }
352 }
353
354 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
355 {
356 SHA512_CTX *sha512 = ctx;
357 unsigned i;
358
359 for (i = 0; i < 8; i++)
360 {
361 l2n8(sha512->h[i], md_out);
362 }
363 }
364
365 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
366 * which ssl3_cbc_digest_record supports. */
367 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
368 {
369 #ifdef OPENSSL_FIPS
370 if (FIPS_mode())
371 return 0;
372 #endif
373 switch (ctx->digest->type)
374 {
375 case NID_md5:
376 case NID_sha1:
377 case NID_sha224:
378 case NID_sha256:
379 case NID_sha384:
380 case NID_sha512:
381 return 1;
382 default:
383 return 0;
384 }
385 }
386
387 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
388 * record.
389 *
390 * ctx: the EVP_MD_CTX from which we take the hash function.
391 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
392 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
393 * md_out_size: if non-NULL, the number of output bytes is written here.
394 * header: the 13-byte, TLS record header.
395 * data: the record data itself, less any preceeding explicit IV.
396 * data_plus_mac_size: the secret, reported length of the data and MAC
397 * once the padding has been removed.
398 * data_plus_mac_plus_padding_size: the public length of the whole
399 * record, including padding.
400 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
401 *
402 * On entry: by virtue of having been through one of the remove_padding
403 * functions, above, we know that data_plus_mac_size is large enough to contain
404 * a padding byte and MAC. (If the padding was invalid, it might contain the
405 * padding too. ) */
406 void ssl3_cbc_digest_record(
407 const EVP_MD_CTX *ctx,
408 unsigned char* md_out,
409 size_t* md_out_size,
410 const unsigned char header[13],
411 const unsigned char *data,
412 size_t data_plus_mac_size,
413 size_t data_plus_mac_plus_padding_size,
414 const unsigned char *mac_secret,
415 unsigned mac_secret_length,
416 char is_sslv3)
417 {
418 union { double align;
419 unsigned char c[sizeof(SHA512_CTX)]; } md_state;
420 void (*md_final_raw)(void *ctx, unsigned char *md_out);
421 void (*md_transform)(void *ctx, const unsigned char *block);
422 unsigned md_size, md_block_size = 64;
423 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
424 len, max_mac_bytes, num_blocks,
425 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
426 unsigned int bits; /* at most 18 bits */
427 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
428 /* hmac_pad is the masked HMAC key. */
429 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
430 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
431 unsigned char mac_out[EVP_MAX_MD_SIZE];
432 unsigned i, j, md_out_size_u;
433 EVP_MD_CTX md_ctx;
434 /* mdLengthSize is the number of bytes in the length field that terminates
435 * the hash. */
436 unsigned md_length_size = 8;
437
438 /* This is a, hopefully redundant, check that allows us to forget about
439 * many possible overflows later in this function. */
440 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
441
442 switch (ctx->digest->type)
443 {
444 case NID_md5:
445 MD5_Init((MD5_CTX*)md_state.c);
446 md_final_raw = tls1_md5_final_raw;
447 md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
448 md_size = 16;
449 sslv3_pad_length = 48;
450 break;
451 case NID_sha1:
452 SHA1_Init((SHA_CTX*)md_state.c);
453 md_final_raw = tls1_sha1_final_raw;
454 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
455 md_size = 20;
456 break;
457 case NID_sha224:
458 SHA224_Init((SHA256_CTX*)md_state.c);
459 md_final_raw = tls1_sha256_final_raw;
460 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
461 md_size = 224/8;
462 break;
463 case NID_sha256:
464 SHA256_Init((SHA256_CTX*)md_state.c);
465 md_final_raw = tls1_sha256_final_raw;
466 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
467 md_size = 32;
468 break;
469 case NID_sha384:
470 SHA384_Init((SHA512_CTX*)md_state.c);
471 md_final_raw = tls1_sha512_final_raw;
472 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
473 md_size = 384/8;
474 md_block_size = 128;
475 md_length_size = 16;
476 break;
477 case NID_sha512:
478 SHA512_Init((SHA512_CTX*)md_state.c);
479 md_final_raw = tls1_sha512_final_raw;
480 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
481 md_size = 64;
482 md_block_size = 128;
483 md_length_size = 16;
484 break;
485 default:
486 /* ssl3_cbc_record_digest_supported should have been
487 * called first to check that the hash function is
488 * supported. */
489 OPENSSL_assert(0);
490 if (md_out_size)
491 *md_out_size = -1;
492 return;
493 }
494
495 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
496 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
497 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
498
499 header_length = 13;
500 if (is_sslv3)
501 {
502 header_length =
503 mac_secret_length +
504 sslv3_pad_length +
505 8 /* sequence number */ +
506 1 /* record type */ +
507 2 /* record length */;
508 }
509
510 /* variance_blocks is the number of blocks of the hash that we have to
511 * calculate in constant time because they could be altered by the
512 * padding value.
513 *
514 * In SSLv3, the padding must be minimal so the end of the plaintext
515 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
516 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
517 * termination (0x80 + 64-bit length) don't fit in the final block, we
518 * say that the final two blocks can vary based on the padding.
519 *
520 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
521 * required to be minimal. Therefore we say that the final six blocks
522 * can vary based on the padding.
523 *
524 * Later in the function, if the message is short and there obviously
525 * cannot be this many blocks then variance_blocks can be reduced. */
526 variance_blocks = is_sslv3 ? 2 : 6;
527 /* From now on we're dealing with the MAC, which conceptually has 13
528 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
529 * (SSLv3) */
530 len = data_plus_mac_plus_padding_size + header_length;
531 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
532 * |header|, assuming that there's no padding. */
533 max_mac_bytes = len - md_size - 1;
534 /* num_blocks is the maximum number of hash blocks. */
535 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
536 /* In order to calculate the MAC in constant time we have to handle
537 * the final blocks specially because the padding value could cause the
538 * end to appear somewhere in the final |variance_blocks| blocks and we
539 * can't leak where. However, |num_starting_blocks| worth of data can
540 * be hashed right away because no padding value can affect whether
541 * they are plaintext. */
542 num_starting_blocks = 0;
543 /* k is the starting byte offset into the conceptual header||data where
544 * we start processing. */
545 k = 0;
546 /* mac_end_offset is the index just past the end of the data to be
547 * MACed. */
548 mac_end_offset = data_plus_mac_size + header_length - md_size;
549 /* c is the index of the 0x80 byte in the final hash block that
550 * contains application data. */
551 c = mac_end_offset % md_block_size;
552 /* index_a is the hash block number that contains the 0x80 terminating
553 * value. */
554 index_a = mac_end_offset / md_block_size;
555 /* index_b is the hash block number that contains the 64-bit hash
556 * length, in bits. */
557 index_b = (mac_end_offset + md_length_size) / md_block_size;
558 /* bits is the hash-length in bits. It includes the additional hash
559 * block for the masked HMAC key, or whole of |header| in the case of
560 * SSLv3. */
561
562 /* For SSLv3, if we're going to have any starting blocks then we need
563 * at least two because the header is larger than a single block. */
564 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
565 {
566 num_starting_blocks = num_blocks - variance_blocks;
567 k = md_block_size*num_starting_blocks;
568 }
569
570 bits = 8*mac_end_offset;
571 if (!is_sslv3)
572 {
573 /* Compute the initial HMAC block. For SSLv3, the padding and
574 * secret bytes are included in |header| because they take more
575 * than a single block. */
576 bits += 8*md_block_size;
577 memset(hmac_pad, 0, md_block_size);
578 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
579 memcpy(hmac_pad, mac_secret, mac_secret_length);
580 for (i = 0; i < md_block_size; i++)
581 hmac_pad[i] ^= 0x36;
582
583 md_transform(md_state.c, hmac_pad);
584 }
585
586 memset(length_bytes,0,md_length_size-4);
587 length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
588 length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
589 length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
590 length_bytes[md_length_size-1] = (unsigned char)bits;
591
592 if (k > 0)
593 {
594 if (is_sslv3)
595 {
596 /* The SSLv3 header is larger than a single block.
597 * overhang is the number of bytes beyond a single
598 * block that the header consumes: either 7 bytes
599 * (SHA1) or 11 bytes (MD5). */
600 unsigned overhang = header_length-md_block_size;
601 md_transform(md_state.c, header);
602 memcpy(first_block, header + md_block_size, overhang);
603 memcpy(first_block + overhang, data, md_block_size-overhang);
604 md_transform(md_state.c, first_block);
605 for (i = 1; i < k/md_block_size - 1; i++)
606 md_transform(md_state.c, data + md_block_size*i - overhang);
607 }
608 else
609 {
610 /* k is a multiple of md_block_size. */
611 memcpy(first_block, header, 13);
612 memcpy(first_block+13, data, md_block_size-13);
613 md_transform(md_state.c, first_block);
614 for (i = 1; i < k/md_block_size; i++)
615 md_transform(md_state.c, data + md_block_size*i - 13);
616 }
617 }
618
619 memset(mac_out, 0, sizeof(mac_out));
620
621 /* We now process the final hash blocks. For each block, we construct
622 * it in constant time. If the |i==index_a| then we'll include the 0x80
623 * bytes and zero pad etc. For each block we selectively copy it, in
624 * constant time, to |mac_out|. */
625 for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
626 {
627 unsigned char block[MAX_HASH_BLOCK_SIZE];
628 unsigned char is_block_a = constant_time_eq_8(i, index_a);
629 unsigned char is_block_b = constant_time_eq_8(i, index_b);
630 for (j = 0; j < md_block_size; j++)
631 {
632 unsigned char b = 0, is_past_c, is_past_cp1;
633 if (k < header_length)
634 b = header[k];
635 else if (k < data_plus_mac_plus_padding_size + header_length)
636 b = data[k-header_length];
637 k++;
638
639 is_past_c = is_block_a & constant_time_ge(j, c);
640 is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
641 /* If this is the block containing the end of the
642 * application data, and we are at the offset for the
643 * 0x80 value, then overwrite b with 0x80. */
644 b = (b&~is_past_c) | (0x80&is_past_c);
645 /* If this the the block containing the end of the
646 * application data and we're past the 0x80 value then
647 * just write zero. */
648 b = b&~is_past_cp1;
649 /* If this is index_b (the final block), but not
650 * index_a (the end of the data), then the 64-bit
651 * length didn't fit into index_a and we're having to
652 * add an extra block of zeros. */
653 b &= ~is_block_b | is_block_a;
654
655 /* The final bytes of one of the blocks contains the
656 * length. */
657 if (j >= md_block_size - md_length_size)
658 {
659 /* If this is index_b, write a length byte. */
660 b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
661 }
662 block[j] = b;
663 }
664
665 md_transform(md_state.c, block);
666 md_final_raw(md_state.c, block);
667 /* If this is index_b, copy the hash value to |mac_out|. */
668 for (j = 0; j < md_size; j++)
669 mac_out[j] |= block[j]&is_block_b;
670 }
671
672 EVP_MD_CTX_init(&md_ctx);
673 EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
674 if (is_sslv3)
675 {
676 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
677 memset(hmac_pad, 0x5c, sslv3_pad_length);
678
679 EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
680 EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
681 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
682 }
683 else
684 {
685 /* Complete the HMAC in the standard manner. */
686 for (i = 0; i < md_block_size; i++)
687 hmac_pad[i] ^= 0x6a;
688
689 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
690 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
691 }
692 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
693 if (md_out_size)
694 *md_out_size = md_out_size_u;
695 EVP_MD_CTX_cleanup(&md_ctx);
696 }
697
698 #ifdef OPENSSL_FIPS
699
700 /* Due to the need to use EVP in FIPS mode we can't reimplement digests but
701 * we can ensure the number of blocks processed is equal for all cases
702 * by digesting additional data.
703 */
704
705 void tls_fips_digest_extra(
706 const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
707 const unsigned char *data, size_t data_len, size_t orig_len)
708 {
709 size_t block_size, digest_pad, blocks_data, blocks_orig;
710 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
711 return;
712 block_size = EVP_MD_CTX_block_size(mac_ctx);
713 /* We are in FIPS mode if we get this far so we know we have only SHA*
714 * digests and TLS to deal with.
715 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
716 * otherwise.
717 * Additional header is 13 bytes. To get the number of digest blocks
718 * processed round up the amount of data plus padding to the nearest
719 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
720 * So we have:
721 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
722 * equivalently:
723 * blocks = (payload_len + digest_pad + 12)/block_size + 1
724 * HMAC adds a constant overhead.
725 * We're ultimately only interested in differences so this becomes
726 * blocks = (payload_len + 29)/128
727 * for SHA384/SHA512 and
728 * blocks = (payload_len + 21)/64
729 * otherwise.
730 */
731 digest_pad = block_size == 64 ? 21 : 29;
732 blocks_orig = (orig_len + digest_pad)/block_size;
733 blocks_data = (data_len + digest_pad)/block_size;
734 /* MAC enough blocks to make up the difference between the original
735 * and actual lengths plus one extra block to ensure this is never a
736 * no op. The "data" pointer should always have enough space to
737 * perform this operation as it is large enough for a maximum
738 * length TLS buffer.
739 */
740 EVP_DigestSignUpdate(mac_ctx, data,
741 (blocks_orig - blocks_data + 1) * block_size);
742 }
743 #endif