]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/s3_cbc.c
TLS: remove legacy code path supporting special CBC mode
[thirdparty/openssl.git] / ssl / s3_cbc.c
1 /*
2 * Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * This file has no dependencies on the rest of libssl because it is shared
12 * with the providers. It contains functions for low level MAC calculations.
13 * Responsibility for this lies with the HMAC implementation in the
14 * providers. However there are legacy code paths in libssl which also need to
15 * do this. In time those legacy code paths can be removed and this file can be
16 * moved out of libssl.
17 */
18
19
20 /*
21 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
22 * internal use.
23 */
24 #include "internal/deprecated.h"
25
26 #include "internal/constant_time.h"
27 #include "internal/cryptlib.h"
28
29 #include <openssl/evp.h>
30 #include <openssl/md5.h>
31 #include <openssl/sha.h>
32
33 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
34 #ifndef OPENSSL_NO_DEPRECATED_3_0
35 int ssl3_cbc_digest_record(const EVP_MD *md,
36 unsigned char *md_out,
37 size_t *md_out_size,
38 const unsigned char header[13],
39 const unsigned char *data,
40 size_t data_size,
41 size_t data_plus_mac_plus_padding_size,
42 const unsigned char *mac_secret,
43 size_t mac_secret_length, char is_sslv3);
44
45 # define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
46 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
47 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
48 *((c)++)=(unsigned char)(((l) )&0xff))
49
50 # define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
51 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
52 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
53 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
54 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
55 *((c)++)=(unsigned char)(((l) )&0xff))
56
57 # define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
58 *((c)++)=(unsigned char)(((l)>>48)&0xff), \
59 *((c)++)=(unsigned char)(((l)>>40)&0xff), \
60 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
61 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
62 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
63 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
64 *((c)++)=(unsigned char)(((l) )&0xff))
65
66 /*
67 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
68 * length field. (SHA-384/512 have 128-bit length.)
69 */
70 #define MAX_HASH_BIT_COUNT_BYTES 16
71
72 /*
73 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
74 * Currently SHA-384/512 has a 128-byte block size and that's the largest
75 * supported by TLS.)
76 */
77 #define MAX_HASH_BLOCK_SIZE 128
78
79 /*
80 * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
81 * little-endian order. The value of p is advanced by four.
82 */
83 #define u32toLE(n, p) \
84 (*((p)++)=(unsigned char)(n), \
85 *((p)++)=(unsigned char)(n>>8), \
86 *((p)++)=(unsigned char)(n>>16), \
87 *((p)++)=(unsigned char)(n>>24))
88
89 /*
90 * These functions serialize the state of a hash and thus perform the
91 * standard "final" operation without adding the padding and length that such
92 * a function typically does.
93 */
94 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
95 {
96 MD5_CTX *md5 = ctx;
97 u32toLE(md5->A, md_out);
98 u32toLE(md5->B, md_out);
99 u32toLE(md5->C, md_out);
100 u32toLE(md5->D, md_out);
101 }
102
103 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
104 {
105 SHA_CTX *sha1 = ctx;
106 l2n(sha1->h0, md_out);
107 l2n(sha1->h1, md_out);
108 l2n(sha1->h2, md_out);
109 l2n(sha1->h3, md_out);
110 l2n(sha1->h4, md_out);
111 }
112
113 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
114 {
115 SHA256_CTX *sha256 = ctx;
116 unsigned i;
117
118 for (i = 0; i < 8; i++) {
119 l2n(sha256->h[i], md_out);
120 }
121 }
122
123 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
124 {
125 SHA512_CTX *sha512 = ctx;
126 unsigned i;
127
128 for (i = 0; i < 8; i++) {
129 l2n8(sha512->h[i], md_out);
130 }
131 }
132 #endif
133
134 #undef LARGEST_DIGEST_CTX
135 #define LARGEST_DIGEST_CTX SHA512_CTX
136
137 /*
138 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
139 * which ssl3_cbc_digest_record supports.
140 */
141 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
142 {
143 switch (EVP_MD_CTX_type(ctx)) {
144 case NID_md5:
145 case NID_sha1:
146 case NID_sha224:
147 case NID_sha256:
148 case NID_sha384:
149 case NID_sha512:
150 return 1;
151 default:
152 return 0;
153 }
154 }
155
156 #ifndef OPENSSL_NO_DEPRECATED_3_0
157 /*-
158 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
159 * record.
160 *
161 * ctx: the EVP_MD_CTX from which we take the hash function.
162 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
163 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
164 * md_out_size: if non-NULL, the number of output bytes is written here.
165 * header: the 13-byte, TLS record header.
166 * data: the record data itself, less any preceding explicit IV.
167 * data_size: the secret, reported length of the data once the MAC and padding
168 * has been removed.
169 * data_plus_mac_plus_padding_size: the public length of the whole
170 * record, including MAC and padding.
171 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
172 *
173 * On entry: we know that data is data_plus_mac_plus_padding_size in length
174 * Returns 1 on success or 0 on error
175 */
176 int ssl3_cbc_digest_record(const EVP_MD *md,
177 unsigned char *md_out,
178 size_t *md_out_size,
179 const unsigned char header[13],
180 const unsigned char *data,
181 size_t data_size,
182 size_t data_plus_mac_plus_padding_size,
183 const unsigned char *mac_secret,
184 size_t mac_secret_length, char is_sslv3)
185 {
186 union {
187 OSSL_UNION_ALIGN;
188 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
189 } md_state;
190 void (*md_final_raw) (void *ctx, unsigned char *md_out);
191 void (*md_transform) (void *ctx, const unsigned char *block);
192 size_t md_size, md_block_size = 64;
193 size_t sslv3_pad_length = 40, header_length, variance_blocks,
194 len, max_mac_bytes, num_blocks,
195 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
196 size_t bits; /* at most 18 bits */
197 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
198 /* hmac_pad is the masked HMAC key. */
199 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
200 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
201 unsigned char mac_out[EVP_MAX_MD_SIZE];
202 size_t i, j;
203 unsigned md_out_size_u;
204 EVP_MD_CTX *md_ctx = NULL;
205 /*
206 * mdLengthSize is the number of bytes in the length field that
207 * terminates * the hash.
208 */
209 size_t md_length_size = 8;
210 char length_is_big_endian = 1;
211 int ret = 0;
212
213 /*
214 * This is a, hopefully redundant, check that allows us to forget about
215 * many possible overflows later in this function.
216 */
217 if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
218 return 0;
219
220 if (EVP_MD_is_a(md, "MD5")) {
221 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
222 return 0;
223 md_final_raw = tls1_md5_final_raw;
224 md_transform =
225 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
226 md_size = 16;
227 sslv3_pad_length = 48;
228 length_is_big_endian = 0;
229 } else if (EVP_MD_is_a(md, "SHA1")) {
230 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
231 return 0;
232 md_final_raw = tls1_sha1_final_raw;
233 md_transform =
234 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
235 md_size = 20;
236 } else if (EVP_MD_is_a(md, "SHA2-224")) {
237 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
238 return 0;
239 md_final_raw = tls1_sha256_final_raw;
240 md_transform =
241 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
242 md_size = 224 / 8;
243 } else if (EVP_MD_is_a(md, "SHA2-256")) {
244 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
245 return 0;
246 md_final_raw = tls1_sha256_final_raw;
247 md_transform =
248 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
249 md_size = 32;
250 } else if (EVP_MD_is_a(md, "SHA2-384")) {
251 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
252 return 0;
253 md_final_raw = tls1_sha512_final_raw;
254 md_transform =
255 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
256 md_size = 384 / 8;
257 md_block_size = 128;
258 md_length_size = 16;
259 } else if (EVP_MD_is_a(md, "SHA2-512")) {
260 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
261 return 0;
262 md_final_raw = tls1_sha512_final_raw;
263 md_transform =
264 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
265 md_size = 64;
266 md_block_size = 128;
267 md_length_size = 16;
268 } else {
269 /*
270 * ssl3_cbc_record_digest_supported should have been called first to
271 * check that the hash function is supported.
272 */
273 if (md_out_size != NULL)
274 *md_out_size = 0;
275 return ossl_assert(0);
276 }
277
278 if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
279 || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
280 || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
281 return 0;
282
283 header_length = 13;
284 if (is_sslv3) {
285 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
286 * number */ +
287 1 /* record type */ +
288 2 /* record length */ ;
289 }
290
291 /*
292 * variance_blocks is the number of blocks of the hash that we have to
293 * calculate in constant time because they could be altered by the
294 * padding value. In SSLv3, the padding must be minimal so the end of
295 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
296 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
297 * of hash termination (0x80 + 64-bit length) don't fit in the final
298 * block, we say that the final two blocks can vary based on the padding.
299 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
300 * required to be minimal. Therefore we say that the final |variance_blocks|
301 * blocks can
302 * vary based on the padding. Later in the function, if the message is
303 * short and there obviously cannot be this many blocks then
304 * variance_blocks can be reduced.
305 */
306 variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
307 /*
308 * From now on we're dealing with the MAC, which conceptually has 13
309 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
310 * (SSLv3)
311 */
312 len = data_plus_mac_plus_padding_size + header_length;
313 /*
314 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
315 * including * |header|, assuming that there's no padding.
316 */
317 max_mac_bytes = len - md_size - 1;
318 /* num_blocks is the maximum number of hash blocks. */
319 num_blocks =
320 (max_mac_bytes + 1 + md_length_size + md_block_size -
321 1) / md_block_size;
322 /*
323 * In order to calculate the MAC in constant time we have to handle the
324 * final blocks specially because the padding value could cause the end
325 * to appear somewhere in the final |variance_blocks| blocks and we can't
326 * leak where. However, |num_starting_blocks| worth of data can be hashed
327 * right away because no padding value can affect whether they are
328 * plaintext.
329 */
330 num_starting_blocks = 0;
331 /*
332 * k is the starting byte offset into the conceptual header||data where
333 * we start processing.
334 */
335 k = 0;
336 /*
337 * mac_end_offset is the index just past the end of the data to be MACed.
338 */
339 mac_end_offset = data_size + header_length;
340 /*
341 * c is the index of the 0x80 byte in the final hash block that contains
342 * application data.
343 */
344 c = mac_end_offset % md_block_size;
345 /*
346 * index_a is the hash block number that contains the 0x80 terminating
347 * value.
348 */
349 index_a = mac_end_offset / md_block_size;
350 /*
351 * index_b is the hash block number that contains the 64-bit hash length,
352 * in bits.
353 */
354 index_b = (mac_end_offset + md_length_size) / md_block_size;
355 /*
356 * bits is the hash-length in bits. It includes the additional hash block
357 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
358 */
359
360 /*
361 * For SSLv3, if we're going to have any starting blocks then we need at
362 * least two because the header is larger than a single block.
363 */
364 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
365 num_starting_blocks = num_blocks - variance_blocks;
366 k = md_block_size * num_starting_blocks;
367 }
368
369 bits = 8 * mac_end_offset;
370 if (!is_sslv3) {
371 /*
372 * Compute the initial HMAC block. For SSLv3, the padding and secret
373 * bytes are included in |header| because they take more than a
374 * single block.
375 */
376 bits += 8 * md_block_size;
377 memset(hmac_pad, 0, md_block_size);
378 if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
379 return 0;
380 memcpy(hmac_pad, mac_secret, mac_secret_length);
381 for (i = 0; i < md_block_size; i++)
382 hmac_pad[i] ^= 0x36;
383
384 md_transform(md_state.c, hmac_pad);
385 }
386
387 if (length_is_big_endian) {
388 memset(length_bytes, 0, md_length_size - 4);
389 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
390 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
391 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
392 length_bytes[md_length_size - 1] = (unsigned char)bits;
393 } else {
394 memset(length_bytes, 0, md_length_size);
395 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
396 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
397 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
398 length_bytes[md_length_size - 8] = (unsigned char)bits;
399 }
400
401 if (k > 0) {
402 if (is_sslv3) {
403 size_t overhang;
404
405 /*
406 * The SSLv3 header is larger than a single block. overhang is
407 * the number of bytes beyond a single block that the header
408 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
409 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
410 * therefore we can be confident that the header_length will be
411 * greater than |md_block_size|. However we add a sanity check just
412 * in case
413 */
414 if (header_length <= md_block_size) {
415 /* Should never happen */
416 return 0;
417 }
418 overhang = header_length - md_block_size;
419 md_transform(md_state.c, header);
420 memcpy(first_block, header + md_block_size, overhang);
421 memcpy(first_block + overhang, data, md_block_size - overhang);
422 md_transform(md_state.c, first_block);
423 for (i = 1; i < k / md_block_size - 1; i++)
424 md_transform(md_state.c, data + md_block_size * i - overhang);
425 } else {
426 /* k is a multiple of md_block_size. */
427 memcpy(first_block, header, 13);
428 memcpy(first_block + 13, data, md_block_size - 13);
429 md_transform(md_state.c, first_block);
430 for (i = 1; i < k / md_block_size; i++)
431 md_transform(md_state.c, data + md_block_size * i - 13);
432 }
433 }
434
435 memset(mac_out, 0, sizeof(mac_out));
436
437 /*
438 * We now process the final hash blocks. For each block, we construct it
439 * in constant time. If the |i==index_a| then we'll include the 0x80
440 * bytes and zero pad etc. For each block we selectively copy it, in
441 * constant time, to |mac_out|.
442 */
443 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
444 i++) {
445 unsigned char block[MAX_HASH_BLOCK_SIZE];
446 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
447 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
448 for (j = 0; j < md_block_size; j++) {
449 unsigned char b = 0, is_past_c, is_past_cp1;
450 if (k < header_length)
451 b = header[k];
452 else if (k < data_plus_mac_plus_padding_size + header_length)
453 b = data[k - header_length];
454 k++;
455
456 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
457 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
458 /*
459 * If this is the block containing the end of the application
460 * data, and we are at the offset for the 0x80 value, then
461 * overwrite b with 0x80.
462 */
463 b = constant_time_select_8(is_past_c, 0x80, b);
464 /*
465 * If this block contains the end of the application data
466 * and we're past the 0x80 value then just write zero.
467 */
468 b = b & ~is_past_cp1;
469 /*
470 * If this is index_b (the final block), but not index_a (the end
471 * of the data), then the 64-bit length didn't fit into index_a
472 * and we're having to add an extra block of zeros.
473 */
474 b &= ~is_block_b | is_block_a;
475
476 /*
477 * The final bytes of one of the blocks contains the length.
478 */
479 if (j >= md_block_size - md_length_size) {
480 /* If this is index_b, write a length byte. */
481 b = constant_time_select_8(is_block_b,
482 length_bytes[j -
483 (md_block_size -
484 md_length_size)], b);
485 }
486 block[j] = b;
487 }
488
489 md_transform(md_state.c, block);
490 md_final_raw(md_state.c, block);
491 /* If this is index_b, copy the hash value to |mac_out|. */
492 for (j = 0; j < md_size; j++)
493 mac_out[j] |= block[j] & is_block_b;
494 }
495
496 md_ctx = EVP_MD_CTX_new();
497 if (md_ctx == NULL)
498 goto err;
499
500 if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
501 goto err;
502 if (is_sslv3) {
503 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
504 memset(hmac_pad, 0x5c, sslv3_pad_length);
505
506 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
507 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
508 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
509 goto err;
510 } else {
511 /* Complete the HMAC in the standard manner. */
512 for (i = 0; i < md_block_size; i++)
513 hmac_pad[i] ^= 0x6a;
514
515 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
516 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
517 goto err;
518 }
519 /* TODO(size_t): Convert me */
520 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
521 if (ret && md_out_size)
522 *md_out_size = md_out_size_u;
523
524 ret = 1;
525 err:
526 EVP_MD_CTX_free(md_ctx);
527 return ret;
528 }
529 #endif