]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
Rename lots of *_intern or *_internal function to int_*
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115 /* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE.
140 */
141
142 #include <stdio.h>
143 #include <openssl/objects.h>
144 #include <openssl/comp.h>
145 #include <openssl/engine.h>
146 #include "internal/threads.h"
147 #include "ssl_locl.h"
148
149 #define SSL_ENC_DES_IDX 0
150 #define SSL_ENC_3DES_IDX 1
151 #define SSL_ENC_RC4_IDX 2
152 #define SSL_ENC_RC2_IDX 3
153 #define SSL_ENC_IDEA_IDX 4
154 #define SSL_ENC_NULL_IDX 5
155 #define SSL_ENC_AES128_IDX 6
156 #define SSL_ENC_AES256_IDX 7
157 #define SSL_ENC_CAMELLIA128_IDX 8
158 #define SSL_ENC_CAMELLIA256_IDX 9
159 #define SSL_ENC_GOST89_IDX 10
160 #define SSL_ENC_SEED_IDX 11
161 #define SSL_ENC_AES128GCM_IDX 12
162 #define SSL_ENC_AES256GCM_IDX 13
163 #define SSL_ENC_AES128CCM_IDX 14
164 #define SSL_ENC_AES256CCM_IDX 15
165 #define SSL_ENC_AES128CCM8_IDX 16
166 #define SSL_ENC_AES256CCM8_IDX 17
167 #define SSL_ENC_GOST8912_IDX 18
168 #define SSL_ENC_CHACHA_IDX 19
169 #define SSL_ENC_NUM_IDX 20
170
171 /* NB: make sure indices in these tables match values above */
172
173 typedef struct {
174 uint32_t mask;
175 int nid;
176 } ssl_cipher_table;
177
178 /* Table of NIDs for each cipher */
179 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
180 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
181 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
182 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
183 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
184 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
185 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
186 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
187 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
188 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
189 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
190 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
191 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
192 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
193 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
194 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
195 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
196 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
197 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
198 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX */
199 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305},
200 };
201
202 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
203 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
204 NULL, NULL
205 };
206
207 #define SSL_COMP_NULL_IDX 0
208 #define SSL_COMP_ZLIB_IDX 1
209 #define SSL_COMP_NUM_IDX 2
210
211 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
212
213 #ifndef OPENSSL_NO_COMP
214 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
215 #endif
216
217 /*
218 * Constant SSL_MAX_DIGEST equal to size of digests array should be defined
219 * in the ssl_locl.h
220 */
221
222 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST
223
224 /* NB: make sure indices in this table matches values above */
225 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
226 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
227 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
228 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
229 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
230 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
231 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
232 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
233 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
234 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
235 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
236 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
237 {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */
238 };
239
240 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
241 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
242 };
243
244 static const ssl_cipher_table ssl_cipher_table_kx[] = {
245 { SSL_kRSA, NID_kx_rsa },
246 { SSL_kECDHE, NID_kx_ecdhe },
247 { SSL_kDHE, NID_kx_dhe },
248 { SSL_kECDHEPSK, NID_kx_ecdhe_psk },
249 { SSL_kDHEPSK, NID_kx_dhe_psk },
250 { SSL_kRSAPSK, NID_kx_rsa_psk },
251 { SSL_kPSK, NID_kx_psk },
252 { SSL_kSRP, NID_kx_srp },
253 { SSL_kGOST, NID_kx_gost }
254 };
255
256 static const ssl_cipher_table ssl_cipher_table_auth[] = {
257 { SSL_aRSA, NID_auth_rsa },
258 { SSL_aECDSA, NID_auth_ecdsa },
259 { SSL_aPSK, NID_auth_psk },
260 { SSL_aDSS, NID_auth_dss },
261 { SSL_aGOST01, NID_auth_gost01 },
262 { SSL_aGOST12, NID_auth_gost12 },
263 { SSL_aSRP, NID_auth_srp },
264 { SSL_aNULL, NID_auth_null }
265 };
266
267 /* Utility function for table lookup */
268 static int ssl_cipher_info_find(const ssl_cipher_table * table,
269 size_t table_cnt, uint32_t mask)
270 {
271 size_t i;
272 for (i = 0; i < table_cnt; i++, table++) {
273 if (table->mask == mask)
274 return i;
275 }
276 return -1;
277 }
278
279 #define ssl_cipher_info_lookup(table, x) \
280 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
281
282 /*
283 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
284 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
285 * found
286 */
287 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
288 /* MD5, SHA, GOST94, MAC89 */
289 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
290 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
291 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
292 /* GOST2012_512 */
293 EVP_PKEY_HMAC,
294 };
295
296 static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = {
297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
298 };
299
300 #define CIPHER_ADD 1
301 #define CIPHER_KILL 2
302 #define CIPHER_DEL 3
303 #define CIPHER_ORD 4
304 #define CIPHER_SPECIAL 5
305 /*
306 * Bump the ciphers to the top of the list.
307 * This rule isn't currently supported by the public cipherstring API.
308 */
309 #define CIPHER_BUMP 6
310
311 typedef struct cipher_order_st {
312 const SSL_CIPHER *cipher;
313 int active;
314 int dead;
315 struct cipher_order_st *next, *prev;
316 } CIPHER_ORDER;
317
318 static const SSL_CIPHER cipher_aliases[] = {
319 /* "ALL" doesn't include eNULL (must be specifically enabled) */
320 {0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
321 /* "COMPLEMENTOFALL" */
322 {0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
323
324 /*
325 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
326 * ALL!)
327 */
328 {0, SSL_TXT_CMPDEF, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT, 0, 0, 0},
329
330 /*
331 * key exchange aliases (some of those using only a single bit here
332 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
333 * combines DHE_DSS and DHE_RSA)
334 */
335 {0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
336
337 {0, SSL_TXT_kEDH, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
338 {0, SSL_TXT_kDHE, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
339 {0, SSL_TXT_DH, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
340
341 {0, SSL_TXT_kEECDH, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
342 {0, SSL_TXT_kECDHE, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
343 {0, SSL_TXT_ECDH, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
344
345 {0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
346 {0, SSL_TXT_kRSAPSK, 0, SSL_kRSAPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
347 {0, SSL_TXT_kECDHEPSK, 0, SSL_kECDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
348 {0, SSL_TXT_kDHEPSK, 0, SSL_kDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
349 {0, SSL_TXT_kSRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
350 {0, SSL_TXT_kGOST, 0, SSL_kGOST, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
351
352 /* server authentication aliases */
353 {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
354 {0, SSL_TXT_aDSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
355 {0, SSL_TXT_DSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
356 {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
357 {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
358 {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
359 {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
360 {0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
361 {0, SSL_TXT_aGOST12, 0, 0, SSL_aGOST12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
362 {0, SSL_TXT_aGOST, 0, 0, SSL_aGOST01 | SSL_aGOST12, 0, 0, 0, 0, 0, 0,
363 0, 0, 0, 0},
364 {0, SSL_TXT_aSRP, 0, 0, SSL_aSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
365
366 /* aliases combining key exchange and server authentication */
367 {0, SSL_TXT_EDH, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
368 {0, SSL_TXT_DHE, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
369 {0, SSL_TXT_EECDH, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
370 {0, SSL_TXT_ECDHE, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
371 {0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
372 {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
373 {0, SSL_TXT_ADH, 0, SSL_kDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
374 {0, SSL_TXT_AECDH, 0, SSL_kECDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
375 {0, SSL_TXT_PSK, 0, SSL_PSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
376 {0, SSL_TXT_SRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
377
378 /* symmetric encryption aliases */
379 {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0, 0, 0, 0},
380 {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0, 0, 0, 0},
381 {0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
382 {0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA, 0, 0, 0, 0, 0, 0, 0, 0, 0},
383 {0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED, 0, 0, 0, 0, 0, 0, 0, 0, 0},
384 {0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
385 {0, SSL_TXT_GOST, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12, 0,
386 0, 0, 0, 0, 0, 0, 0, 0},
387 {0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8, 0,
388 0, 0, 0, 0, 0, 0, 0, 0},
389 {0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8, 0,
390 0, 0, 0, 0, 0, 0, 0, 0},
391 {0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0, 0, 0, 0},
392 {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0,
393 0, 0, 0, 0, 0},
394 {0, SSL_TXT_AES_CCM, 0, 0, 0,
395 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0,
396 0, 0, 0, 0, 0, 0},
397 {0, SSL_TXT_AES_CCM_8, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0, 0,
398 0, 0},
399 {0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128, 0, 0, 0, 0, 0, 0, 0, 0,
400 0},
401 {0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0, 0, 0,
402 0},
403 {0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA, 0, 0, 0, 0, 0, 0, 0, 0, 0},
404 {0, SSL_TXT_CHACHA20, 0, 0, 0, SSL_CHACHA20, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
405
406 /* MAC aliases */
407 {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0, 0, 0, 0},
408 {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0, 0, 0, 0},
409 {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0, 0, 0, 0},
410 {0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94, 0, 0, 0, 0, 0, 0, 0, 0},
411 {0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12, 0, 0,
412 0, 0, 0, 0, 0, 0},
413 {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0, 0, 0, 0},
414 {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0, 0, 0, 0},
415 {0, SSL_TXT_GOST12, 0, 0, 0, 0, SSL_GOST12_256, 0, 0, 0, 0, 0, 0, 0, 0},
416
417 /* protocol version aliases */
418 {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL3_VERSION, 0, 0, 0, 0, 0, 0, 0},
419 {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, TLS1_VERSION, 0, 0, 0, 0, 0, 0, 0},
420 {0, "TLSv1.0", 0, 0, 0, 0, 0, TLS1_VERSION, 0, 0, 0, 0, 0, 0, 0},
421 {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, TLS1_2_VERSION, 0, 0, 0, 0, 0, 0, 0},
422
423 /* strength classes */
424 {0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW, 0, 0, 0},
425 {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0},
426 {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0},
427 /* FIPS 140-2 approved ciphersuite */
428 {0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS, 0, 0, 0},
429
430 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
431 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, 0,
432 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0,
433 SSL_HIGH | SSL_FIPS, 0, 0, 0,},
434 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, 0,
435 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0,
436 SSL_HIGH | SSL_FIPS, 0, 0, 0,},
437
438 };
439
440 /*
441 * Search for public key algorithm with given name and return its pkey_id if
442 * it is available. Otherwise return 0
443 */
444 #ifdef OPENSSL_NO_ENGINE
445
446 static int get_optional_pkey_id(const char *pkey_name)
447 {
448 const EVP_PKEY_ASN1_METHOD *ameth;
449 int pkey_id = 0;
450 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
451 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
452 ameth) > 0) {
453 return pkey_id;
454 }
455 return 0;
456 }
457
458 #else
459
460 static int get_optional_pkey_id(const char *pkey_name)
461 {
462 const EVP_PKEY_ASN1_METHOD *ameth;
463 ENGINE *tmpeng = NULL;
464 int pkey_id = 0;
465 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
466 if (ameth) {
467 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
468 ameth) <= 0)
469 pkey_id = 0;
470 }
471 ENGINE_finish(tmpeng);
472 return pkey_id;
473 }
474
475 #endif
476
477 /* masks of disabled algorithms */
478 static uint32_t disabled_enc_mask;
479 static uint32_t disabled_mac_mask;
480 static uint32_t disabled_mkey_mask;
481 static uint32_t disabled_auth_mask;
482
483 void ssl_load_ciphers(void)
484 {
485 size_t i;
486 const ssl_cipher_table *t;
487
488 disabled_enc_mask = 0;
489 ssl_sort_cipher_list();
490 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
491 if (t->nid == NID_undef) {
492 ssl_cipher_methods[i] = NULL;
493 } else {
494 const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid);
495 ssl_cipher_methods[i] = cipher;
496 if (cipher == NULL)
497 disabled_enc_mask |= t->mask;
498 }
499 }
500 #ifdef SSL_FORBID_ENULL
501 disabled_enc_mask |= SSL_eNULL;
502 #endif
503 disabled_mac_mask = 0;
504 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
505 const EVP_MD *md = EVP_get_digestbynid(t->nid);
506 ssl_digest_methods[i] = md;
507 if (md == NULL) {
508 disabled_mac_mask |= t->mask;
509 } else {
510 ssl_mac_secret_size[i] = EVP_MD_size(md);
511 OPENSSL_assert(ssl_mac_secret_size[i] >= 0);
512 }
513 }
514 /* Make sure we can access MD5 and SHA1 */
515 OPENSSL_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL);
516 OPENSSL_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL);
517
518 disabled_mkey_mask = 0;
519 disabled_auth_mask = 0;
520
521 #ifdef OPENSSL_NO_RSA
522 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
523 disabled_auth_mask |= SSL_aRSA;
524 #endif
525 #ifdef OPENSSL_NO_DSA
526 disabled_auth_mask |= SSL_aDSS;
527 #endif
528 #ifdef OPENSSL_NO_DH
529 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
530 #endif
531 #ifdef OPENSSL_NO_EC
532 disabled_mkey_mask |= SSL_kECDHEPSK;
533 disabled_auth_mask |= SSL_aECDSA;
534 #endif
535 #ifdef OPENSSL_NO_PSK
536 disabled_mkey_mask |= SSL_PSK;
537 disabled_auth_mask |= SSL_aPSK;
538 #endif
539 #ifdef OPENSSL_NO_SRP
540 disabled_mkey_mask |= SSL_kSRP;
541 #endif
542
543 /*
544 * Check for presence of GOST 34.10 algorithms, and if they are not
545 * present, disable appropriate auth and key exchange
546 */
547 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
548 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
549 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
550 } else {
551 disabled_mac_mask |= SSL_GOST89MAC;
552 }
553
554 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = get_optional_pkey_id("gost-mac-12");
555 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) {
556 ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
557 } else {
558 disabled_mac_mask |= SSL_GOST89MAC12;
559 }
560
561 if (!get_optional_pkey_id("gost2001"))
562 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
563 if (!get_optional_pkey_id("gost2012_256"))
564 disabled_auth_mask |= SSL_aGOST12;
565 if (!get_optional_pkey_id("gost2012_512"))
566 disabled_auth_mask |= SSL_aGOST12;
567 /*
568 * Disable GOST key exchange if no GOST signature algs are available *
569 */
570 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == (SSL_aGOST01 | SSL_aGOST12))
571 disabled_mkey_mask |= SSL_kGOST;
572 }
573
574 #ifndef OPENSSL_NO_COMP
575
576 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
577 {
578 return ((*a)->id - (*b)->id);
579 }
580
581 static void do_load_builtin_compressions(void)
582 {
583 SSL_COMP *comp = NULL;
584 COMP_METHOD *method = COMP_zlib();
585
586 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
587 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
588
589 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
590 comp = OPENSSL_malloc(sizeof(*comp));
591 if (comp != NULL) {
592 comp->method = method;
593 comp->id = SSL_COMP_ZLIB_IDX;
594 comp->name = COMP_get_name(method);
595 sk_SSL_COMP_push(ssl_comp_methods, comp);
596 sk_SSL_COMP_sort(ssl_comp_methods);
597 }
598 }
599 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
600 }
601
602 static void load_builtin_compressions(void)
603 {
604 CRYPTO_THREAD_run_once(&ssl_load_builtin_comp_once,
605 do_load_builtin_compressions);
606 }
607 #endif
608
609 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
610 const EVP_MD **md, int *mac_pkey_type,
611 int *mac_secret_size, SSL_COMP **comp, int use_etm)
612 {
613 int i;
614 const SSL_CIPHER *c;
615
616 c = s->cipher;
617 if (c == NULL)
618 return (0);
619 if (comp != NULL) {
620 SSL_COMP ctmp;
621 #ifndef OPENSSL_NO_COMP
622 load_builtin_compressions();
623 #endif
624 *comp = NULL;
625 ctmp.id = s->compress_meth;
626 if (ssl_comp_methods != NULL) {
627 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
628 if (i >= 0)
629 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
630 else
631 *comp = NULL;
632 }
633 /* If were only interested in comp then return success */
634 if ((enc == NULL) && (md == NULL))
635 return 1;
636 }
637
638 if ((enc == NULL) || (md == NULL))
639 return 0;
640
641 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
642
643 if (i == -1)
644 *enc = NULL;
645 else {
646 if (i == SSL_ENC_NULL_IDX)
647 *enc = EVP_enc_null();
648 else
649 *enc = ssl_cipher_methods[i];
650 }
651
652 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
653 if (i == -1) {
654 *md = NULL;
655 if (mac_pkey_type != NULL)
656 *mac_pkey_type = NID_undef;
657 if (mac_secret_size != NULL)
658 *mac_secret_size = 0;
659 if (c->algorithm_mac == SSL_AEAD)
660 mac_pkey_type = NULL;
661 } else {
662 *md = ssl_digest_methods[i];
663 if (mac_pkey_type != NULL)
664 *mac_pkey_type = ssl_mac_pkey_id[i];
665 if (mac_secret_size != NULL)
666 *mac_secret_size = ssl_mac_secret_size[i];
667 }
668
669 if ((*enc != NULL) &&
670 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
671 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
672 const EVP_CIPHER *evp;
673
674 if (use_etm)
675 return 1;
676
677 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
678 s->ssl_version < TLS1_VERSION)
679 return 1;
680
681 if (FIPS_mode())
682 return 1;
683
684 if (c->algorithm_enc == SSL_RC4 &&
685 c->algorithm_mac == SSL_MD5 &&
686 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
687 *enc = evp, *md = NULL;
688 else if (c->algorithm_enc == SSL_AES128 &&
689 c->algorithm_mac == SSL_SHA1 &&
690 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
691 *enc = evp, *md = NULL;
692 else if (c->algorithm_enc == SSL_AES256 &&
693 c->algorithm_mac == SSL_SHA1 &&
694 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
695 *enc = evp, *md = NULL;
696 else if (c->algorithm_enc == SSL_AES128 &&
697 c->algorithm_mac == SSL_SHA256 &&
698 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
699 *enc = evp, *md = NULL;
700 else if (c->algorithm_enc == SSL_AES256 &&
701 c->algorithm_mac == SSL_SHA256 &&
702 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
703 *enc = evp, *md = NULL;
704 return (1);
705 } else
706 return (0);
707 }
708
709 const EVP_MD *ssl_md(int idx)
710 {
711 idx &= SSL_HANDSHAKE_MAC_MASK;
712 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
713 return NULL;
714 return ssl_digest_methods[idx];
715 }
716
717 const EVP_MD *ssl_handshake_md(SSL *s)
718 {
719 return ssl_md(ssl_get_algorithm2(s));
720 }
721
722 const EVP_MD *ssl_prf_md(SSL *s)
723 {
724 return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
725 }
726
727 #define ITEM_SEP(a) \
728 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
729
730 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
731 CIPHER_ORDER **tail)
732 {
733 if (curr == *tail)
734 return;
735 if (curr == *head)
736 *head = curr->next;
737 if (curr->prev != NULL)
738 curr->prev->next = curr->next;
739 if (curr->next != NULL)
740 curr->next->prev = curr->prev;
741 (*tail)->next = curr;
742 curr->prev = *tail;
743 curr->next = NULL;
744 *tail = curr;
745 }
746
747 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
748 CIPHER_ORDER **tail)
749 {
750 if (curr == *head)
751 return;
752 if (curr == *tail)
753 *tail = curr->prev;
754 if (curr->next != NULL)
755 curr->next->prev = curr->prev;
756 if (curr->prev != NULL)
757 curr->prev->next = curr->next;
758 (*head)->prev = curr;
759 curr->next = *head;
760 curr->prev = NULL;
761 *head = curr;
762 }
763
764 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
765 int num_of_ciphers,
766 uint32_t disabled_mkey,
767 uint32_t disabled_auth,
768 uint32_t disabled_enc,
769 uint32_t disabled_mac,
770 CIPHER_ORDER *co_list,
771 CIPHER_ORDER **head_p,
772 CIPHER_ORDER **tail_p)
773 {
774 int i, co_list_num;
775 const SSL_CIPHER *c;
776
777 /*
778 * We have num_of_ciphers descriptions compiled in, depending on the
779 * method selected (SSLv3, TLSv1 etc).
780 * These will later be sorted in a linked list with at most num
781 * entries.
782 */
783
784 /* Get the initial list of ciphers */
785 co_list_num = 0; /* actual count of ciphers */
786 for (i = 0; i < num_of_ciphers; i++) {
787 c = ssl_method->get_cipher(i);
788 /* drop those that use any of that is not available */
789 if (c == NULL || !c->valid)
790 continue;
791 if (FIPS_mode() && (c->algo_strength & SSL_FIPS))
792 continue;
793 if ((c->algorithm_mkey & disabled_mkey) ||
794 (c->algorithm_auth & disabled_auth) ||
795 (c->algorithm_enc & disabled_enc) ||
796 (c->algorithm_mac & disabled_mac))
797 continue;
798 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
799 c->min_tls == 0)
800 continue;
801 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
802 c->min_dtls == 0)
803 continue;
804
805 co_list[co_list_num].cipher = c;
806 co_list[co_list_num].next = NULL;
807 co_list[co_list_num].prev = NULL;
808 co_list[co_list_num].active = 0;
809 co_list_num++;
810 /*
811 * if (!sk_push(ca_list,(char *)c)) goto err;
812 */
813 }
814
815 /*
816 * Prepare linked list from list entries
817 */
818 if (co_list_num > 0) {
819 co_list[0].prev = NULL;
820
821 if (co_list_num > 1) {
822 co_list[0].next = &co_list[1];
823
824 for (i = 1; i < co_list_num - 1; i++) {
825 co_list[i].prev = &co_list[i - 1];
826 co_list[i].next = &co_list[i + 1];
827 }
828
829 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
830 }
831
832 co_list[co_list_num - 1].next = NULL;
833
834 *head_p = &co_list[0];
835 *tail_p = &co_list[co_list_num - 1];
836 }
837 }
838
839 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
840 int num_of_group_aliases,
841 uint32_t disabled_mkey,
842 uint32_t disabled_auth,
843 uint32_t disabled_enc,
844 uint32_t disabled_mac,
845 CIPHER_ORDER *head)
846 {
847 CIPHER_ORDER *ciph_curr;
848 const SSL_CIPHER **ca_curr;
849 int i;
850 uint32_t mask_mkey = ~disabled_mkey;
851 uint32_t mask_auth = ~disabled_auth;
852 uint32_t mask_enc = ~disabled_enc;
853 uint32_t mask_mac = ~disabled_mac;
854
855 /*
856 * First, add the real ciphers as already collected
857 */
858 ciph_curr = head;
859 ca_curr = ca_list;
860 while (ciph_curr != NULL) {
861 *ca_curr = ciph_curr->cipher;
862 ca_curr++;
863 ciph_curr = ciph_curr->next;
864 }
865
866 /*
867 * Now we add the available ones from the cipher_aliases[] table.
868 * They represent either one or more algorithms, some of which
869 * in any affected category must be supported (set in enabled_mask),
870 * or represent a cipher strength value (will be added in any case because algorithms=0).
871 */
872 for (i = 0; i < num_of_group_aliases; i++) {
873 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
874 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
875 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
876 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
877
878 if (algorithm_mkey)
879 if ((algorithm_mkey & mask_mkey) == 0)
880 continue;
881
882 if (algorithm_auth)
883 if ((algorithm_auth & mask_auth) == 0)
884 continue;
885
886 if (algorithm_enc)
887 if ((algorithm_enc & mask_enc) == 0)
888 continue;
889
890 if (algorithm_mac)
891 if ((algorithm_mac & mask_mac) == 0)
892 continue;
893
894 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
895 ca_curr++;
896 }
897
898 *ca_curr = NULL; /* end of list */
899 }
900
901 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
902 uint32_t alg_auth, uint32_t alg_enc,
903 uint32_t alg_mac, int min_tls,
904 uint32_t algo_strength, int rule,
905 int32_t strength_bits, CIPHER_ORDER **head_p,
906 CIPHER_ORDER **tail_p)
907 {
908 CIPHER_ORDER *head, *tail, *curr, *next, *last;
909 const SSL_CIPHER *cp;
910 int reverse = 0;
911
912 #ifdef CIPHER_DEBUG
913 fprintf(stderr,
914 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
915 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
916 algo_strength, strength_bits);
917 #endif
918
919 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
920 reverse = 1; /* needed to maintain sorting between
921 * currently deleted ciphers */
922
923 head = *head_p;
924 tail = *tail_p;
925
926 if (reverse) {
927 next = tail;
928 last = head;
929 } else {
930 next = head;
931 last = tail;
932 }
933
934 curr = NULL;
935 for (;;) {
936 if (curr == last)
937 break;
938
939 curr = next;
940
941 if (curr == NULL)
942 break;
943
944 next = reverse ? curr->prev : curr->next;
945
946 cp = curr->cipher;
947
948 /*
949 * Selection criteria is either the value of strength_bits
950 * or the algorithms used.
951 */
952 if (strength_bits >= 0) {
953 if (strength_bits != cp->strength_bits)
954 continue;
955 } else {
956 #ifdef CIPHER_DEBUG
957 fprintf(stderr,
958 "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
959 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
960 cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl,
961 cp->algo_strength);
962 #endif
963 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
964 continue;
965 if (alg_auth && !(alg_auth & cp->algorithm_auth))
966 continue;
967 if (alg_enc && !(alg_enc & cp->algorithm_enc))
968 continue;
969 if (alg_mac && !(alg_mac & cp->algorithm_mac))
970 continue;
971 if (min_tls && (min_tls != cp->min_tls))
972 continue;
973 if ((algo_strength & SSL_STRONG_MASK)
974 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
975 continue;
976 if ((algo_strength & SSL_DEFAULT_MASK)
977 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
978 continue;
979 }
980
981 #ifdef CIPHER_DEBUG
982 fprintf(stderr, "Action = %d\n", rule);
983 #endif
984
985 /* add the cipher if it has not been added yet. */
986 if (rule == CIPHER_ADD) {
987 /* reverse == 0 */
988 if (!curr->active) {
989 ll_append_tail(&head, curr, &tail);
990 curr->active = 1;
991 }
992 }
993 /* Move the added cipher to this location */
994 else if (rule == CIPHER_ORD) {
995 /* reverse == 0 */
996 if (curr->active) {
997 ll_append_tail(&head, curr, &tail);
998 }
999 } else if (rule == CIPHER_DEL) {
1000 /* reverse == 1 */
1001 if (curr->active) {
1002 /*
1003 * most recently deleted ciphersuites get best positions for
1004 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
1005 * in reverse to maintain the order)
1006 */
1007 ll_append_head(&head, curr, &tail);
1008 curr->active = 0;
1009 }
1010 } else if (rule == CIPHER_BUMP) {
1011 if (curr->active)
1012 ll_append_head(&head, curr, &tail);
1013 } else if (rule == CIPHER_KILL) {
1014 /* reverse == 0 */
1015 if (head == curr)
1016 head = curr->next;
1017 else
1018 curr->prev->next = curr->next;
1019 if (tail == curr)
1020 tail = curr->prev;
1021 curr->active = 0;
1022 if (curr->next != NULL)
1023 curr->next->prev = curr->prev;
1024 if (curr->prev != NULL)
1025 curr->prev->next = curr->next;
1026 curr->next = NULL;
1027 curr->prev = NULL;
1028 }
1029 }
1030
1031 *head_p = head;
1032 *tail_p = tail;
1033 }
1034
1035 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
1036 CIPHER_ORDER **tail_p)
1037 {
1038 int32_t max_strength_bits;
1039 int i, *number_uses;
1040 CIPHER_ORDER *curr;
1041
1042 /*
1043 * This routine sorts the ciphers with descending strength. The sorting
1044 * must keep the pre-sorted sequence, so we apply the normal sorting
1045 * routine as '+' movement to the end of the list.
1046 */
1047 max_strength_bits = 0;
1048 curr = *head_p;
1049 while (curr != NULL) {
1050 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
1051 max_strength_bits = curr->cipher->strength_bits;
1052 curr = curr->next;
1053 }
1054
1055 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
1056 if (number_uses == NULL) {
1057 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
1058 return (0);
1059 }
1060
1061 /*
1062 * Now find the strength_bits values actually used
1063 */
1064 curr = *head_p;
1065 while (curr != NULL) {
1066 if (curr->active)
1067 number_uses[curr->cipher->strength_bits]++;
1068 curr = curr->next;
1069 }
1070 /*
1071 * Go through the list of used strength_bits values in descending
1072 * order.
1073 */
1074 for (i = max_strength_bits; i >= 0; i--)
1075 if (number_uses[i] > 0)
1076 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
1077 tail_p);
1078
1079 OPENSSL_free(number_uses);
1080 return (1);
1081 }
1082
1083 static int ssl_cipher_process_rulestr(const char *rule_str,
1084 CIPHER_ORDER **head_p,
1085 CIPHER_ORDER **tail_p,
1086 const SSL_CIPHER **ca_list, CERT *c)
1087 {
1088 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1089 int min_tls;
1090 const char *l, *buf;
1091 int j, multi, found, rule, retval, ok, buflen;
1092 uint32_t cipher_id = 0;
1093 char ch;
1094
1095 retval = 1;
1096 l = rule_str;
1097 for (;;) {
1098 ch = *l;
1099
1100 if (ch == '\0')
1101 break; /* done */
1102 if (ch == '-') {
1103 rule = CIPHER_DEL;
1104 l++;
1105 } else if (ch == '+') {
1106 rule = CIPHER_ORD;
1107 l++;
1108 } else if (ch == '!') {
1109 rule = CIPHER_KILL;
1110 l++;
1111 } else if (ch == '@') {
1112 rule = CIPHER_SPECIAL;
1113 l++;
1114 } else {
1115 rule = CIPHER_ADD;
1116 }
1117
1118 if (ITEM_SEP(ch)) {
1119 l++;
1120 continue;
1121 }
1122
1123 alg_mkey = 0;
1124 alg_auth = 0;
1125 alg_enc = 0;
1126 alg_mac = 0;
1127 min_tls = 0;
1128 algo_strength = 0;
1129
1130 for (;;) {
1131 ch = *l;
1132 buf = l;
1133 buflen = 0;
1134 #ifndef CHARSET_EBCDIC
1135 while (((ch >= 'A') && (ch <= 'Z')) ||
1136 ((ch >= '0') && (ch <= '9')) ||
1137 ((ch >= 'a') && (ch <= 'z')) ||
1138 (ch == '-') || (ch == '.') || (ch == '='))
1139 #else
1140 while (isalnum(ch) || (ch == '-') || (ch == '.') || (ch == '='))
1141 #endif
1142 {
1143 ch = *(++l);
1144 buflen++;
1145 }
1146
1147 if (buflen == 0) {
1148 /*
1149 * We hit something we cannot deal with,
1150 * it is no command or separator nor
1151 * alphanumeric, so we call this an error.
1152 */
1153 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1154 SSL_R_INVALID_COMMAND);
1155 retval = found = 0;
1156 l++;
1157 break;
1158 }
1159
1160 if (rule == CIPHER_SPECIAL) {
1161 found = 0; /* unused -- avoid compiler warning */
1162 break; /* special treatment */
1163 }
1164
1165 /* check for multi-part specification */
1166 if (ch == '+') {
1167 multi = 1;
1168 l++;
1169 } else
1170 multi = 0;
1171
1172 /*
1173 * Now search for the cipher alias in the ca_list. Be careful
1174 * with the strncmp, because the "buflen" limitation
1175 * will make the rule "ADH:SOME" and the cipher
1176 * "ADH-MY-CIPHER" look like a match for buflen=3.
1177 * So additionally check whether the cipher name found
1178 * has the correct length. We can save a strlen() call:
1179 * just checking for the '\0' at the right place is
1180 * sufficient, we have to strncmp() anyway. (We cannot
1181 * use strcmp(), because buf is not '\0' terminated.)
1182 */
1183 j = found = 0;
1184 cipher_id = 0;
1185 while (ca_list[j]) {
1186 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1187 && (ca_list[j]->name[buflen] == '\0')) {
1188 found = 1;
1189 break;
1190 } else
1191 j++;
1192 }
1193
1194 if (!found)
1195 break; /* ignore this entry */
1196
1197 if (ca_list[j]->algorithm_mkey) {
1198 if (alg_mkey) {
1199 alg_mkey &= ca_list[j]->algorithm_mkey;
1200 if (!alg_mkey) {
1201 found = 0;
1202 break;
1203 }
1204 } else
1205 alg_mkey = ca_list[j]->algorithm_mkey;
1206 }
1207
1208 if (ca_list[j]->algorithm_auth) {
1209 if (alg_auth) {
1210 alg_auth &= ca_list[j]->algorithm_auth;
1211 if (!alg_auth) {
1212 found = 0;
1213 break;
1214 }
1215 } else
1216 alg_auth = ca_list[j]->algorithm_auth;
1217 }
1218
1219 if (ca_list[j]->algorithm_enc) {
1220 if (alg_enc) {
1221 alg_enc &= ca_list[j]->algorithm_enc;
1222 if (!alg_enc) {
1223 found = 0;
1224 break;
1225 }
1226 } else
1227 alg_enc = ca_list[j]->algorithm_enc;
1228 }
1229
1230 if (ca_list[j]->algorithm_mac) {
1231 if (alg_mac) {
1232 alg_mac &= ca_list[j]->algorithm_mac;
1233 if (!alg_mac) {
1234 found = 0;
1235 break;
1236 }
1237 } else
1238 alg_mac = ca_list[j]->algorithm_mac;
1239 }
1240
1241 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1242 if (algo_strength & SSL_STRONG_MASK) {
1243 algo_strength &=
1244 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1245 ~SSL_STRONG_MASK;
1246 if (!(algo_strength & SSL_STRONG_MASK)) {
1247 found = 0;
1248 break;
1249 }
1250 } else
1251 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1252 }
1253
1254 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1255 if (algo_strength & SSL_DEFAULT_MASK) {
1256 algo_strength &=
1257 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1258 ~SSL_DEFAULT_MASK;
1259 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1260 found = 0;
1261 break;
1262 }
1263 } else
1264 algo_strength |=
1265 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1266 }
1267
1268 if (ca_list[j]->valid) {
1269 /*
1270 * explicit ciphersuite found; its protocol version does not
1271 * become part of the search pattern!
1272 */
1273
1274 cipher_id = ca_list[j]->id;
1275 } else {
1276 /*
1277 * not an explicit ciphersuite; only in this case, the
1278 * protocol version is considered part of the search pattern
1279 */
1280
1281 if (ca_list[j]->min_tls) {
1282 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1283 found = 0;
1284 break;
1285 } else {
1286 min_tls = ca_list[j]->min_tls;
1287 }
1288 }
1289 }
1290
1291 if (!multi)
1292 break;
1293 }
1294
1295 /*
1296 * Ok, we have the rule, now apply it
1297 */
1298 if (rule == CIPHER_SPECIAL) { /* special command */
1299 ok = 0;
1300 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0)
1301 ok = ssl_cipher_strength_sort(head_p, tail_p);
1302 else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1303 int level = buf[9] - '0';
1304 if (level < 0 || level > 5) {
1305 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1306 SSL_R_INVALID_COMMAND);
1307 } else {
1308 c->sec_level = level;
1309 ok = 1;
1310 }
1311 } else
1312 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1313 SSL_R_INVALID_COMMAND);
1314 if (ok == 0)
1315 retval = 0;
1316 /*
1317 * We do not support any "multi" options
1318 * together with "@", so throw away the
1319 * rest of the command, if any left, until
1320 * end or ':' is found.
1321 */
1322 while ((*l != '\0') && !ITEM_SEP(*l))
1323 l++;
1324 } else if (found) {
1325 ssl_cipher_apply_rule(cipher_id,
1326 alg_mkey, alg_auth, alg_enc, alg_mac,
1327 min_tls, algo_strength, rule, -1, head_p,
1328 tail_p);
1329 } else {
1330 while ((*l != '\0') && !ITEM_SEP(*l))
1331 l++;
1332 }
1333 if (*l == '\0')
1334 break; /* done */
1335 }
1336
1337 return (retval);
1338 }
1339
1340 #ifndef OPENSSL_NO_EC
1341 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1342 const char **prule_str)
1343 {
1344 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1345 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1346 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1347 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1348 suiteb_comb2 = 1;
1349 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1350 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1351 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1352 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1353 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1354 }
1355
1356 if (suiteb_flags) {
1357 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1358 c->cert_flags |= suiteb_flags;
1359 } else
1360 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1361
1362 if (!suiteb_flags)
1363 return 1;
1364 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1365
1366 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1367 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1368 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1369 return 0;
1370 }
1371 # ifndef OPENSSL_NO_EC
1372 switch (suiteb_flags) {
1373 case SSL_CERT_FLAG_SUITEB_128_LOS:
1374 if (suiteb_comb2)
1375 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1376 else
1377 *prule_str =
1378 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1379 break;
1380 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1381 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1382 break;
1383 case SSL_CERT_FLAG_SUITEB_192_LOS:
1384 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1385 break;
1386 }
1387 return 1;
1388 # else
1389 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1390 SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1391 return 0;
1392 # endif
1393 }
1394 #endif
1395
1396 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
1397 **cipher_list, STACK_OF(SSL_CIPHER)
1398 **cipher_list_by_id,
1399 const char *rule_str, CERT *c)
1400 {
1401 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1402 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1403 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
1404 const char *rule_p;
1405 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1406 const SSL_CIPHER **ca_list = NULL;
1407
1408 /*
1409 * Return with error if nothing to do.
1410 */
1411 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1412 return NULL;
1413 #ifndef OPENSSL_NO_EC
1414 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1415 return NULL;
1416 #endif
1417
1418 /*
1419 * To reduce the work to do we only want to process the compiled
1420 * in algorithms, so we first get the mask of disabled ciphers.
1421 */
1422
1423 disabled_mkey = disabled_mkey_mask;
1424 disabled_auth = disabled_auth_mask;
1425 disabled_enc = disabled_enc_mask;
1426 disabled_mac = disabled_mac_mask;
1427
1428 /*
1429 * Now we have to collect the available ciphers from the compiled
1430 * in ciphers. We cannot get more than the number compiled in, so
1431 * it is used for allocation.
1432 */
1433 num_of_ciphers = ssl_method->num_ciphers();
1434
1435 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1436 if (co_list == NULL) {
1437 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1438 return (NULL); /* Failure */
1439 }
1440
1441 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1442 disabled_mkey, disabled_auth, disabled_enc,
1443 disabled_mac, co_list, &head,
1444 &tail);
1445
1446 /* Now arrange all ciphers by preference. */
1447
1448 /*
1449 * Everything else being equal, prefer ephemeral ECDH over other key
1450 * exchange mechanisms.
1451 * For consistency, prefer ECDSA over RSA (though this only matters if the
1452 * server has both certificates, and is using the DEFAULT, or a client
1453 * preference).
1454 */
1455 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1456 -1, &head, &tail);
1457 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1458 &tail);
1459 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1460 &tail);
1461
1462
1463 /* Within each strength group, we prefer GCM over CHACHA... */
1464 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1465 &head, &tail);
1466 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1467 &head, &tail);
1468
1469 /*
1470 * ...and generally, our preferred cipher is AES.
1471 * Note that AEADs will be bumped to take preference after sorting by
1472 * strength.
1473 */
1474 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1475 -1, &head, &tail);
1476
1477 /* Temporarily enable everything else for sorting */
1478 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1479
1480 /* Low priority for MD5 */
1481 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1482 &tail);
1483
1484 /*
1485 * Move anonymous ciphers to the end. Usually, these will remain
1486 * disabled. (For applications that allow them, they aren't too bad, but
1487 * we prefer authenticated ciphers.)
1488 */
1489 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1490 &tail);
1491
1492 /*
1493 * ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1,
1494 * &head, &tail);
1495 */
1496 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1497 &tail);
1498 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1499 &tail);
1500
1501 /* RC4 is sort-of broken -- move the the end */
1502 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1503 &tail);
1504
1505 /*
1506 * Now sort by symmetric encryption strength. The above ordering remains
1507 * in force within each class
1508 */
1509 if (!ssl_cipher_strength_sort(&head, &tail)) {
1510 OPENSSL_free(co_list);
1511 return NULL;
1512 }
1513
1514 /*
1515 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1516 * TODO(openssl-team): is there an easier way to accomplish all this?
1517 */
1518 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1519 &head, &tail);
1520
1521 /*
1522 * Irrespective of strength, enforce the following order:
1523 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1524 * Within each group, ciphers remain sorted by strength and previous
1525 * preference, i.e.,
1526 * 1) ECDHE > DHE
1527 * 2) GCM > CHACHA
1528 * 3) AES > rest
1529 * 4) TLS 1.2 > legacy
1530 *
1531 * Because we now bump ciphers to the top of the list, we proceed in
1532 * reverse order of preference.
1533 */
1534 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1535 &head, &tail);
1536 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1537 CIPHER_BUMP, -1, &head, &tail);
1538 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1539 CIPHER_BUMP, -1, &head, &tail);
1540
1541 /* Now disable everything (maintaining the ordering!) */
1542 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1543
1544 /*
1545 * We also need cipher aliases for selecting based on the rule_str.
1546 * There might be two types of entries in the rule_str: 1) names
1547 * of ciphers themselves 2) aliases for groups of ciphers.
1548 * For 1) we need the available ciphers and for 2) the cipher
1549 * groups of cipher_aliases added together in one list (otherwise
1550 * we would be happy with just the cipher_aliases table).
1551 */
1552 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1553 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1554 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1555 if (ca_list == NULL) {
1556 OPENSSL_free(co_list);
1557 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1558 return (NULL); /* Failure */
1559 }
1560 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1561 disabled_mkey, disabled_auth, disabled_enc,
1562 disabled_mac, head);
1563
1564 /*
1565 * If the rule_string begins with DEFAULT, apply the default rule
1566 * before using the (possibly available) additional rules.
1567 */
1568 ok = 1;
1569 rule_p = rule_str;
1570 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1571 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1572 &head, &tail, ca_list, c);
1573 rule_p += 7;
1574 if (*rule_p == ':')
1575 rule_p++;
1576 }
1577
1578 if (ok && (strlen(rule_p) > 0))
1579 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1580
1581 OPENSSL_free(ca_list); /* Not needed anymore */
1582
1583 if (!ok) { /* Rule processing failure */
1584 OPENSSL_free(co_list);
1585 return (NULL);
1586 }
1587
1588 /*
1589 * Allocate new "cipherstack" for the result, return with error
1590 * if we cannot get one.
1591 */
1592 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1593 OPENSSL_free(co_list);
1594 return (NULL);
1595 }
1596
1597 /*
1598 * The cipher selection for the list is done. The ciphers are added
1599 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1600 */
1601 for (curr = head; curr != NULL; curr = curr->next) {
1602 if (curr->active
1603 && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) {
1604 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1605 OPENSSL_free(co_list);
1606 sk_SSL_CIPHER_free(cipherstack);
1607 return NULL;
1608 }
1609 #ifdef CIPHER_DEBUG
1610 fprintf(stderr, "<%s>\n", curr->cipher->name);
1611 #endif
1612 }
1613 }
1614 OPENSSL_free(co_list); /* Not needed any longer */
1615
1616 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1617 if (tmp_cipher_list == NULL) {
1618 sk_SSL_CIPHER_free(cipherstack);
1619 return NULL;
1620 }
1621 sk_SSL_CIPHER_free(*cipher_list);
1622 *cipher_list = cipherstack;
1623 if (*cipher_list_by_id != NULL)
1624 sk_SSL_CIPHER_free(*cipher_list_by_id);
1625 *cipher_list_by_id = tmp_cipher_list;
1626 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
1627 ssl_cipher_ptr_id_cmp);
1628
1629 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1630 return (cipherstack);
1631 }
1632
1633 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1634 {
1635 const char *ver;
1636 const char *kx, *au, *enc, *mac;
1637 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1638 static const char *format =
1639 "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
1640
1641 if (buf == NULL) {
1642 len = 128;
1643 buf = OPENSSL_malloc(len);
1644 if (buf == NULL)
1645 return NULL;
1646 } else if (len < 128)
1647 return NULL;
1648
1649 alg_mkey = cipher->algorithm_mkey;
1650 alg_auth = cipher->algorithm_auth;
1651 alg_enc = cipher->algorithm_enc;
1652 alg_mac = cipher->algorithm_mac;
1653
1654 ver = ssl_protocol_to_string(cipher->min_tls);
1655
1656 switch (alg_mkey) {
1657 case SSL_kRSA:
1658 kx = "RSA";
1659 break;
1660 case SSL_kDHE:
1661 kx = "DH";
1662 break;
1663 case SSL_kECDHE:
1664 kx = "ECDH";
1665 break;
1666 case SSL_kPSK:
1667 kx = "PSK";
1668 break;
1669 case SSL_kRSAPSK:
1670 kx = "RSAPSK";
1671 break;
1672 case SSL_kECDHEPSK:
1673 kx = "ECDHEPSK";
1674 break;
1675 case SSL_kDHEPSK:
1676 kx = "DHEPSK";
1677 break;
1678 case SSL_kSRP:
1679 kx = "SRP";
1680 break;
1681 case SSL_kGOST:
1682 kx = "GOST";
1683 break;
1684 default:
1685 kx = "unknown";
1686 }
1687
1688 switch (alg_auth) {
1689 case SSL_aRSA:
1690 au = "RSA";
1691 break;
1692 case SSL_aDSS:
1693 au = "DSS";
1694 break;
1695 case SSL_aNULL:
1696 au = "None";
1697 break;
1698 case SSL_aECDSA:
1699 au = "ECDSA";
1700 break;
1701 case SSL_aPSK:
1702 au = "PSK";
1703 break;
1704 case SSL_aSRP:
1705 au = "SRP";
1706 break;
1707 case SSL_aGOST01:
1708 au = "GOST01";
1709 break;
1710 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1711 case (SSL_aGOST12 | SSL_aGOST01):
1712 au = "GOST12";
1713 break;
1714 default:
1715 au = "unknown";
1716 break;
1717 }
1718
1719 switch (alg_enc) {
1720 case SSL_DES:
1721 enc = "DES(56)";
1722 break;
1723 case SSL_3DES:
1724 enc = "3DES(168)";
1725 break;
1726 case SSL_RC4:
1727 enc = "RC4(128)";
1728 break;
1729 case SSL_RC2:
1730 enc = "RC2(128)";
1731 break;
1732 case SSL_IDEA:
1733 enc = "IDEA(128)";
1734 break;
1735 case SSL_eNULL:
1736 enc = "None";
1737 break;
1738 case SSL_AES128:
1739 enc = "AES(128)";
1740 break;
1741 case SSL_AES256:
1742 enc = "AES(256)";
1743 break;
1744 case SSL_AES128GCM:
1745 enc = "AESGCM(128)";
1746 break;
1747 case SSL_AES256GCM:
1748 enc = "AESGCM(256)";
1749 break;
1750 case SSL_AES128CCM:
1751 enc = "AESCCM(128)";
1752 break;
1753 case SSL_AES256CCM:
1754 enc = "AESCCM(256)";
1755 break;
1756 case SSL_AES128CCM8:
1757 enc = "AESCCM8(128)";
1758 break;
1759 case SSL_AES256CCM8:
1760 enc = "AESCCM8(256)";
1761 break;
1762 case SSL_CAMELLIA128:
1763 enc = "Camellia(128)";
1764 break;
1765 case SSL_CAMELLIA256:
1766 enc = "Camellia(256)";
1767 break;
1768 case SSL_SEED:
1769 enc = "SEED(128)";
1770 break;
1771 case SSL_eGOST2814789CNT:
1772 case SSL_eGOST2814789CNT12:
1773 enc = "GOST89(256)";
1774 break;
1775 case SSL_CHACHA20POLY1305:
1776 enc = "CHACHA20/POLY1305(256)";
1777 break;
1778 default:
1779 enc = "unknown";
1780 break;
1781 }
1782
1783 switch (alg_mac) {
1784 case SSL_MD5:
1785 mac = "MD5";
1786 break;
1787 case SSL_SHA1:
1788 mac = "SHA1";
1789 break;
1790 case SSL_SHA256:
1791 mac = "SHA256";
1792 break;
1793 case SSL_SHA384:
1794 mac = "SHA384";
1795 break;
1796 case SSL_AEAD:
1797 mac = "AEAD";
1798 break;
1799 case SSL_GOST89MAC:
1800 case SSL_GOST89MAC12:
1801 mac = "GOST89";
1802 break;
1803 case SSL_GOST94:
1804 mac = "GOST94";
1805 break;
1806 case SSL_GOST12_256:
1807 case SSL_GOST12_512:
1808 mac = "GOST2012";
1809 break;
1810 default:
1811 mac = "unknown";
1812 break;
1813 }
1814
1815 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1816
1817 return (buf);
1818 }
1819
1820 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1821 {
1822 if (c == NULL)
1823 return "(NONE)";
1824
1825 /*
1826 * Backwards-compatibility crutch. In almost all contexts we report TLS
1827 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1828 */
1829 if (c->min_tls == TLS1_VERSION)
1830 return "TLSv1.0";
1831 return ssl_protocol_to_string(c->min_tls);
1832 }
1833
1834 /* return the actual cipher being used */
1835 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1836 {
1837 if (c != NULL)
1838 return (c->name);
1839 return ("(NONE)");
1840 }
1841
1842 /* number of bits for symmetric cipher */
1843 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1844 {
1845 int ret = 0;
1846
1847 if (c != NULL) {
1848 if (alg_bits != NULL)
1849 *alg_bits = (int) c->alg_bits;
1850 ret = (int) c->strength_bits;
1851 }
1852 return ret;
1853 }
1854
1855 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1856 {
1857 return c->id;
1858 }
1859
1860 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1861 {
1862 SSL_COMP *ctmp;
1863 int i, nn;
1864
1865 if ((n == 0) || (sk == NULL))
1866 return (NULL);
1867 nn = sk_SSL_COMP_num(sk);
1868 for (i = 0; i < nn; i++) {
1869 ctmp = sk_SSL_COMP_value(sk, i);
1870 if (ctmp->id == n)
1871 return (ctmp);
1872 }
1873 return (NULL);
1874 }
1875
1876 #ifdef OPENSSL_NO_COMP
1877 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1878 {
1879 return NULL;
1880 }
1881 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1882 *meths)
1883 {
1884 return meths;
1885 }
1886 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1887 {
1888 return 1;
1889 }
1890
1891 #else
1892 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1893 {
1894 load_builtin_compressions();
1895 return (ssl_comp_methods);
1896 }
1897
1898 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1899 *meths)
1900 {
1901 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1902 ssl_comp_methods = meths;
1903 return old_meths;
1904 }
1905
1906 static void cmeth_free(SSL_COMP *cm)
1907 {
1908 OPENSSL_free(cm);
1909 }
1910
1911 void int_ssl_comp_free_compression_methods(void)
1912 {
1913 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1914 ssl_comp_methods = NULL;
1915 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
1916 }
1917
1918 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1919 {
1920 SSL_COMP *comp;
1921
1922 if (cm == NULL || COMP_get_type(cm) == NID_undef)
1923 return 1;
1924
1925 /*-
1926 * According to draft-ietf-tls-compression-04.txt, the
1927 * compression number ranges should be the following:
1928 *
1929 * 0 to 63: methods defined by the IETF
1930 * 64 to 192: external party methods assigned by IANA
1931 * 193 to 255: reserved for private use
1932 */
1933 if (id < 193 || id > 255) {
1934 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1935 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
1936 return 0;
1937 }
1938
1939 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
1940 comp = OPENSSL_malloc(sizeof(*comp));
1941 if (comp == NULL) {
1942 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1943 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1944 return (1);
1945 }
1946
1947 comp->id = id;
1948 comp->method = cm;
1949 load_builtin_compressions();
1950 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
1951 OPENSSL_free(comp);
1952 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1953 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1954 SSL_R_DUPLICATE_COMPRESSION_ID);
1955 return (1);
1956 }
1957 if ((ssl_comp_methods == NULL)
1958 || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
1959 OPENSSL_free(comp);
1960 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1961 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1962 return (1);
1963 }
1964 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1965 return (0);
1966 }
1967 #endif
1968
1969 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
1970 {
1971 #ifndef OPENSSL_NO_COMP
1972 return comp ? COMP_get_name(comp) : NULL;
1973 #else
1974 return NULL;
1975 #endif
1976 }
1977
1978 /* For a cipher return the index corresponding to the certificate type */
1979 int ssl_cipher_get_cert_index(const SSL_CIPHER *c)
1980 {
1981 uint32_t alg_a;
1982
1983 alg_a = c->algorithm_auth;
1984
1985 if (alg_a & SSL_aECDSA)
1986 return SSL_PKEY_ECC;
1987 else if (alg_a & SSL_aDSS)
1988 return SSL_PKEY_DSA_SIGN;
1989 else if (alg_a & SSL_aRSA)
1990 return SSL_PKEY_RSA_ENC;
1991 else if (alg_a & SSL_aGOST12)
1992 return SSL_PKEY_GOST_EC;
1993 else if (alg_a & SSL_aGOST01)
1994 return SSL_PKEY_GOST01;
1995
1996 return -1;
1997 }
1998
1999 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr)
2000 {
2001 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2002
2003 if (c == NULL || c->valid == 0)
2004 return NULL;
2005 return c;
2006 }
2007
2008 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2009 {
2010 return ssl->method->get_cipher_by_char(ptr);
2011 }
2012
2013 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2014 {
2015 int i;
2016 if (c == NULL)
2017 return NID_undef;
2018 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2019 if (i == -1)
2020 return NID_undef;
2021 return ssl_cipher_table_cipher[i].nid;
2022 }
2023
2024 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2025 {
2026 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2027
2028 if (i == -1)
2029 return NID_undef;
2030 return ssl_cipher_table_mac[i].nid;
2031 }
2032
2033 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2034 {
2035 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2036
2037 if (i == -1)
2038 return NID_undef;
2039 return ssl_cipher_table_kx[i].nid;
2040 }
2041
2042 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2043 {
2044 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2045
2046 if (i == -1)
2047 return NID_undef;
2048 return ssl_cipher_table_auth[i].nid;
2049 }
2050
2051 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2052 {
2053 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2054 }