]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
Let ssl_get_cipher_by_char yield not-valid ciphers
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 * ECC cipher suite support in OpenSSL originally developed by
13 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
14 */
15 /* ====================================================================
16 * Copyright 2005 Nokia. All rights reserved.
17 *
18 * The portions of the attached software ("Contribution") is developed by
19 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
20 * license.
21 *
22 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
23 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
24 * support (see RFC 4279) to OpenSSL.
25 *
26 * No patent licenses or other rights except those expressly stated in
27 * the OpenSSL open source license shall be deemed granted or received
28 * expressly, by implication, estoppel, or otherwise.
29 *
30 * No assurances are provided by Nokia that the Contribution does not
31 * infringe the patent or other intellectual property rights of any third
32 * party or that the license provides you with all the necessary rights
33 * to make use of the Contribution.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
36 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
37 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
38 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
39 * OTHERWISE.
40 */
41
42 #include <stdio.h>
43 #include <ctype.h>
44 #include <openssl/objects.h>
45 #include <openssl/comp.h>
46 #include <openssl/engine.h>
47 #include <openssl/crypto.h>
48 #include "ssl_locl.h"
49 #include "internal/thread_once.h"
50
51 #define SSL_ENC_DES_IDX 0
52 #define SSL_ENC_3DES_IDX 1
53 #define SSL_ENC_RC4_IDX 2
54 #define SSL_ENC_RC2_IDX 3
55 #define SSL_ENC_IDEA_IDX 4
56 #define SSL_ENC_NULL_IDX 5
57 #define SSL_ENC_AES128_IDX 6
58 #define SSL_ENC_AES256_IDX 7
59 #define SSL_ENC_CAMELLIA128_IDX 8
60 #define SSL_ENC_CAMELLIA256_IDX 9
61 #define SSL_ENC_GOST89_IDX 10
62 #define SSL_ENC_SEED_IDX 11
63 #define SSL_ENC_AES128GCM_IDX 12
64 #define SSL_ENC_AES256GCM_IDX 13
65 #define SSL_ENC_AES128CCM_IDX 14
66 #define SSL_ENC_AES256CCM_IDX 15
67 #define SSL_ENC_AES128CCM8_IDX 16
68 #define SSL_ENC_AES256CCM8_IDX 17
69 #define SSL_ENC_GOST8912_IDX 18
70 #define SSL_ENC_CHACHA_IDX 19
71 #define SSL_ENC_NUM_IDX 20
72
73 /* NB: make sure indices in these tables match values above */
74
75 typedef struct {
76 uint32_t mask;
77 int nid;
78 } ssl_cipher_table;
79
80 /* Table of NIDs for each cipher */
81 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
82 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
83 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
84 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
85 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
86 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
87 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
88 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
89 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
90 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
91 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
92 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
93 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
94 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
95 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
96 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
97 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
98 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
99 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
100 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX */
101 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305},
102 };
103
104 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX];
105
106 #define SSL_COMP_NULL_IDX 0
107 #define SSL_COMP_ZLIB_IDX 1
108 #define SSL_COMP_NUM_IDX 2
109
110 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
111
112 #ifndef OPENSSL_NO_COMP
113 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
114 #endif
115
116 /*
117 * Constant SSL_MAX_DIGEST equal to size of digests array should be defined
118 * in the ssl_locl.h
119 */
120
121 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST
122
123 /* NB: make sure indices in this table matches values above */
124 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
125 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
126 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
127 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
128 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
129 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
130 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
131 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
132 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
133 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
134 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
135 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
136 {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */
137 };
138
139 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
140 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
141 };
142
143 /* *INDENT-OFF* */
144 static const ssl_cipher_table ssl_cipher_table_kx[] = {
145 {SSL_kRSA, NID_kx_rsa},
146 {SSL_kECDHE, NID_kx_ecdhe},
147 {SSL_kDHE, NID_kx_dhe},
148 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
149 {SSL_kDHEPSK, NID_kx_dhe_psk},
150 {SSL_kRSAPSK, NID_kx_rsa_psk},
151 {SSL_kPSK, NID_kx_psk},
152 {SSL_kSRP, NID_kx_srp},
153 {SSL_kGOST, NID_kx_gost},
154 {SSL_kANY, NID_kx_any}
155 };
156
157 static const ssl_cipher_table ssl_cipher_table_auth[] = {
158 {SSL_aRSA, NID_auth_rsa},
159 {SSL_aECDSA, NID_auth_ecdsa},
160 {SSL_aPSK, NID_auth_psk},
161 {SSL_aDSS, NID_auth_dss},
162 {SSL_aGOST01, NID_auth_gost01},
163 {SSL_aGOST12, NID_auth_gost12},
164 {SSL_aSRP, NID_auth_srp},
165 {SSL_aNULL, NID_auth_null},
166 {SSL_aANY, NID_auth_any}
167 };
168 /* *INDENT-ON* */
169
170 /* Utility function for table lookup */
171 static int ssl_cipher_info_find(const ssl_cipher_table * table,
172 size_t table_cnt, uint32_t mask)
173 {
174 size_t i;
175 for (i = 0; i < table_cnt; i++, table++) {
176 if (table->mask == mask)
177 return (int)i;
178 }
179 return -1;
180 }
181
182 #define ssl_cipher_info_lookup(table, x) \
183 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
184
185 /*
186 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
187 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
188 * found
189 */
190 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
191 /* MD5, SHA, GOST94, MAC89 */
192 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
193 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
194 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
195 /* GOST2012_512 */
196 EVP_PKEY_HMAC,
197 };
198
199 static size_t ssl_mac_secret_size[SSL_MD_NUM_IDX];
200
201 #define CIPHER_ADD 1
202 #define CIPHER_KILL 2
203 #define CIPHER_DEL 3
204 #define CIPHER_ORD 4
205 #define CIPHER_SPECIAL 5
206 /*
207 * Bump the ciphers to the top of the list.
208 * This rule isn't currently supported by the public cipherstring API.
209 */
210 #define CIPHER_BUMP 6
211
212 typedef struct cipher_order_st {
213 const SSL_CIPHER *cipher;
214 int active;
215 int dead;
216 struct cipher_order_st *next, *prev;
217 } CIPHER_ORDER;
218
219 static const SSL_CIPHER cipher_aliases[] = {
220 /* "ALL" doesn't include eNULL (must be specifically enabled) */
221 {0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL},
222 /* "COMPLEMENTOFALL" */
223 {0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL},
224
225 /*
226 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
227 * ALL!)
228 */
229 {0, SSL_TXT_CMPDEF, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
230
231 /*
232 * key exchange aliases (some of those using only a single bit here
233 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
234 * combines DHE_DSS and DHE_RSA)
235 */
236 {0, SSL_TXT_kRSA, 0, SSL_kRSA},
237
238 {0, SSL_TXT_kEDH, 0, SSL_kDHE},
239 {0, SSL_TXT_kDHE, 0, SSL_kDHE},
240 {0, SSL_TXT_DH, 0, SSL_kDHE},
241
242 {0, SSL_TXT_kEECDH, 0, SSL_kECDHE},
243 {0, SSL_TXT_kECDHE, 0, SSL_kECDHE},
244 {0, SSL_TXT_ECDH, 0, SSL_kECDHE},
245
246 {0, SSL_TXT_kPSK, 0, SSL_kPSK},
247 {0, SSL_TXT_kRSAPSK, 0, SSL_kRSAPSK},
248 {0, SSL_TXT_kECDHEPSK, 0, SSL_kECDHEPSK},
249 {0, SSL_TXT_kDHEPSK, 0, SSL_kDHEPSK},
250 {0, SSL_TXT_kSRP, 0, SSL_kSRP},
251 {0, SSL_TXT_kGOST, 0, SSL_kGOST},
252
253 /* server authentication aliases */
254 {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA},
255 {0, SSL_TXT_aDSS, 0, 0, SSL_aDSS},
256 {0, SSL_TXT_DSS, 0, 0, SSL_aDSS},
257 {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL},
258 {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA},
259 {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA},
260 {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK},
261 {0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01},
262 {0, SSL_TXT_aGOST12, 0, 0, SSL_aGOST12},
263 {0, SSL_TXT_aGOST, 0, 0, SSL_aGOST01 | SSL_aGOST12},
264 {0, SSL_TXT_aSRP, 0, 0, SSL_aSRP},
265
266 /* aliases combining key exchange and server authentication */
267 {0, SSL_TXT_EDH, 0, SSL_kDHE, ~SSL_aNULL},
268 {0, SSL_TXT_DHE, 0, SSL_kDHE, ~SSL_aNULL},
269 {0, SSL_TXT_EECDH, 0, SSL_kECDHE, ~SSL_aNULL},
270 {0, SSL_TXT_ECDHE, 0, SSL_kECDHE, ~SSL_aNULL},
271 {0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL},
272 {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA},
273 {0, SSL_TXT_ADH, 0, SSL_kDHE, SSL_aNULL},
274 {0, SSL_TXT_AECDH, 0, SSL_kECDHE, SSL_aNULL},
275 {0, SSL_TXT_PSK, 0, SSL_PSK},
276 {0, SSL_TXT_SRP, 0, SSL_kSRP},
277
278 /* symmetric encryption aliases */
279 {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES},
280 {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4},
281 {0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2},
282 {0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA},
283 {0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED},
284 {0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL},
285 {0, SSL_TXT_GOST, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12},
286 {0, SSL_TXT_AES128, 0, 0, 0,
287 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
288 {0, SSL_TXT_AES256, 0, 0, 0,
289 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
290 {0, SSL_TXT_AES, 0, 0, 0, SSL_AES},
291 {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
292 {0, SSL_TXT_AES_CCM, 0, 0, 0,
293 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
294 {0, SSL_TXT_AES_CCM_8, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
295 {0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128},
296 {0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256},
297 {0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA},
298 {0, SSL_TXT_CHACHA20, 0, 0, 0, SSL_CHACHA20},
299
300 /* MAC aliases */
301 {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5},
302 {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1},
303 {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1},
304 {0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94},
305 {0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
306 {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256},
307 {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384},
308 {0, SSL_TXT_GOST12, 0, 0, 0, 0, SSL_GOST12_256},
309
310 /* protocol version aliases */
311 {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL3_VERSION},
312 {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, TLS1_VERSION},
313 {0, "TLSv1.0", 0, 0, 0, 0, 0, TLS1_VERSION},
314 {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, TLS1_2_VERSION},
315
316 /* strength classes */
317 {0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
318 {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
319 {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
320 /* FIPS 140-2 approved ciphersuite */
321 {0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
322
323 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
324 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, 0,
325 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
326 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, 0,
327 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
328
329 };
330
331 /*
332 * Search for public key algorithm with given name and return its pkey_id if
333 * it is available. Otherwise return 0
334 */
335 #ifdef OPENSSL_NO_ENGINE
336
337 static int get_optional_pkey_id(const char *pkey_name)
338 {
339 const EVP_PKEY_ASN1_METHOD *ameth;
340 int pkey_id = 0;
341 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
342 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
343 ameth) > 0) {
344 return pkey_id;
345 }
346 return 0;
347 }
348
349 #else
350
351 static int get_optional_pkey_id(const char *pkey_name)
352 {
353 const EVP_PKEY_ASN1_METHOD *ameth;
354 ENGINE *tmpeng = NULL;
355 int pkey_id = 0;
356 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
357 if (ameth) {
358 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
359 ameth) <= 0)
360 pkey_id = 0;
361 }
362 ENGINE_finish(tmpeng);
363 return pkey_id;
364 }
365
366 #endif
367
368 /* masks of disabled algorithms */
369 static uint32_t disabled_enc_mask;
370 static uint32_t disabled_mac_mask;
371 static uint32_t disabled_mkey_mask;
372 static uint32_t disabled_auth_mask;
373
374 void ssl_load_ciphers(void)
375 {
376 size_t i;
377 const ssl_cipher_table *t;
378
379 disabled_enc_mask = 0;
380 ssl_sort_cipher_list();
381 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
382 if (t->nid == NID_undef) {
383 ssl_cipher_methods[i] = NULL;
384 } else {
385 const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid);
386 ssl_cipher_methods[i] = cipher;
387 if (cipher == NULL)
388 disabled_enc_mask |= t->mask;
389 }
390 }
391 #ifdef SSL_FORBID_ENULL
392 disabled_enc_mask |= SSL_eNULL;
393 #endif
394 disabled_mac_mask = 0;
395 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
396 const EVP_MD *md = EVP_get_digestbynid(t->nid);
397 ssl_digest_methods[i] = md;
398 if (md == NULL) {
399 disabled_mac_mask |= t->mask;
400 } else {
401 int tmpsize = EVP_MD_size(md);
402 OPENSSL_assert(tmpsize >= 0);
403 ssl_mac_secret_size[i] = tmpsize;
404 }
405 }
406 /* Make sure we can access MD5 and SHA1 */
407 OPENSSL_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL);
408 OPENSSL_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL);
409
410 disabled_mkey_mask = 0;
411 disabled_auth_mask = 0;
412
413 #ifdef OPENSSL_NO_RSA
414 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
415 disabled_auth_mask |= SSL_aRSA;
416 #endif
417 #ifdef OPENSSL_NO_DSA
418 disabled_auth_mask |= SSL_aDSS;
419 #endif
420 #ifdef OPENSSL_NO_DH
421 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
422 #endif
423 #ifdef OPENSSL_NO_EC
424 disabled_mkey_mask |= SSL_kECDHEPSK;
425 disabled_auth_mask |= SSL_aECDSA;
426 #endif
427 #ifdef OPENSSL_NO_PSK
428 disabled_mkey_mask |= SSL_PSK;
429 disabled_auth_mask |= SSL_aPSK;
430 #endif
431 #ifdef OPENSSL_NO_SRP
432 disabled_mkey_mask |= SSL_kSRP;
433 #endif
434
435 /*
436 * Check for presence of GOST 34.10 algorithms, and if they are not
437 * present, disable appropriate auth and key exchange
438 */
439 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
440 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
441 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
442 } else {
443 disabled_mac_mask |= SSL_GOST89MAC;
444 }
445
446 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
447 get_optional_pkey_id("gost-mac-12");
448 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) {
449 ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
450 } else {
451 disabled_mac_mask |= SSL_GOST89MAC12;
452 }
453
454 if (!get_optional_pkey_id("gost2001"))
455 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
456 if (!get_optional_pkey_id("gost2012_256"))
457 disabled_auth_mask |= SSL_aGOST12;
458 if (!get_optional_pkey_id("gost2012_512"))
459 disabled_auth_mask |= SSL_aGOST12;
460 /*
461 * Disable GOST key exchange if no GOST signature algs are available *
462 */
463 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
464 (SSL_aGOST01 | SSL_aGOST12))
465 disabled_mkey_mask |= SSL_kGOST;
466 }
467
468 #ifndef OPENSSL_NO_COMP
469
470 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
471 {
472 return ((*a)->id - (*b)->id);
473 }
474
475 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
476 {
477 SSL_COMP *comp = NULL;
478 COMP_METHOD *method = COMP_zlib();
479
480 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
481 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
482
483 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
484 comp = OPENSSL_malloc(sizeof(*comp));
485 if (comp != NULL) {
486 comp->method = method;
487 comp->id = SSL_COMP_ZLIB_IDX;
488 comp->name = COMP_get_name(method);
489 sk_SSL_COMP_push(ssl_comp_methods, comp);
490 sk_SSL_COMP_sort(ssl_comp_methods);
491 }
492 }
493 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
494 return 1;
495 }
496
497 static int load_builtin_compressions(void)
498 {
499 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
500 }
501 #endif
502
503 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
504 const EVP_MD **md, int *mac_pkey_type,
505 size_t *mac_secret_size, SSL_COMP **comp, int use_etm)
506 {
507 int i;
508 const SSL_CIPHER *c;
509
510 c = s->cipher;
511 if (c == NULL)
512 return (0);
513 if (comp != NULL) {
514 SSL_COMP ctmp;
515 #ifndef OPENSSL_NO_COMP
516 if (!load_builtin_compressions()) {
517 /*
518 * Currently don't care, since a failure only means that
519 * ssl_comp_methods is NULL, which is perfectly OK
520 */
521 }
522 #endif
523 *comp = NULL;
524 ctmp.id = s->compress_meth;
525 if (ssl_comp_methods != NULL) {
526 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
527 if (i >= 0)
528 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
529 else
530 *comp = NULL;
531 }
532 /* If were only interested in comp then return success */
533 if ((enc == NULL) && (md == NULL))
534 return 1;
535 }
536
537 if ((enc == NULL) || (md == NULL))
538 return 0;
539
540 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
541
542 if (i == -1)
543 *enc = NULL;
544 else {
545 if (i == SSL_ENC_NULL_IDX)
546 *enc = EVP_enc_null();
547 else
548 *enc = ssl_cipher_methods[i];
549 }
550
551 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
552 if (i == -1) {
553 *md = NULL;
554 if (mac_pkey_type != NULL)
555 *mac_pkey_type = NID_undef;
556 if (mac_secret_size != NULL)
557 *mac_secret_size = 0;
558 if (c->algorithm_mac == SSL_AEAD)
559 mac_pkey_type = NULL;
560 } else {
561 *md = ssl_digest_methods[i];
562 if (mac_pkey_type != NULL)
563 *mac_pkey_type = ssl_mac_pkey_id[i];
564 if (mac_secret_size != NULL)
565 *mac_secret_size = ssl_mac_secret_size[i];
566 }
567
568 if ((*enc != NULL) &&
569 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
570 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
571 const EVP_CIPHER *evp;
572
573 if (use_etm)
574 return 1;
575
576 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
577 s->ssl_version < TLS1_VERSION)
578 return 1;
579
580 if (FIPS_mode())
581 return 1;
582
583 if (c->algorithm_enc == SSL_RC4 &&
584 c->algorithm_mac == SSL_MD5 &&
585 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
586 *enc = evp, *md = NULL;
587 else if (c->algorithm_enc == SSL_AES128 &&
588 c->algorithm_mac == SSL_SHA1 &&
589 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
590 *enc = evp, *md = NULL;
591 else if (c->algorithm_enc == SSL_AES256 &&
592 c->algorithm_mac == SSL_SHA1 &&
593 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
594 *enc = evp, *md = NULL;
595 else if (c->algorithm_enc == SSL_AES128 &&
596 c->algorithm_mac == SSL_SHA256 &&
597 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
598 *enc = evp, *md = NULL;
599 else if (c->algorithm_enc == SSL_AES256 &&
600 c->algorithm_mac == SSL_SHA256 &&
601 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
602 *enc = evp, *md = NULL;
603 return (1);
604 } else
605 return (0);
606 }
607
608 const EVP_MD *ssl_md(int idx)
609 {
610 idx &= SSL_HANDSHAKE_MAC_MASK;
611 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
612 return NULL;
613 return ssl_digest_methods[idx];
614 }
615
616 const EVP_MD *ssl_handshake_md(SSL *s)
617 {
618 return ssl_md(ssl_get_algorithm2(s));
619 }
620
621 const EVP_MD *ssl_prf_md(SSL *s)
622 {
623 return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
624 }
625
626 #define ITEM_SEP(a) \
627 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
628
629 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
630 CIPHER_ORDER **tail)
631 {
632 if (curr == *tail)
633 return;
634 if (curr == *head)
635 *head = curr->next;
636 if (curr->prev != NULL)
637 curr->prev->next = curr->next;
638 if (curr->next != NULL)
639 curr->next->prev = curr->prev;
640 (*tail)->next = curr;
641 curr->prev = *tail;
642 curr->next = NULL;
643 *tail = curr;
644 }
645
646 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
647 CIPHER_ORDER **tail)
648 {
649 if (curr == *head)
650 return;
651 if (curr == *tail)
652 *tail = curr->prev;
653 if (curr->next != NULL)
654 curr->next->prev = curr->prev;
655 if (curr->prev != NULL)
656 curr->prev->next = curr->next;
657 (*head)->prev = curr;
658 curr->next = *head;
659 curr->prev = NULL;
660 *head = curr;
661 }
662
663 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
664 int num_of_ciphers,
665 uint32_t disabled_mkey,
666 uint32_t disabled_auth,
667 uint32_t disabled_enc,
668 uint32_t disabled_mac,
669 CIPHER_ORDER *co_list,
670 CIPHER_ORDER **head_p,
671 CIPHER_ORDER **tail_p)
672 {
673 int i, co_list_num;
674 const SSL_CIPHER *c;
675
676 /*
677 * We have num_of_ciphers descriptions compiled in, depending on the
678 * method selected (SSLv3, TLSv1 etc).
679 * These will later be sorted in a linked list with at most num
680 * entries.
681 */
682
683 /* Get the initial list of ciphers */
684 co_list_num = 0; /* actual count of ciphers */
685 for (i = 0; i < num_of_ciphers; i++) {
686 c = ssl_method->get_cipher(i);
687 /* drop those that use any of that is not available */
688 if (c == NULL || !c->valid)
689 continue;
690 if (FIPS_mode() && (c->algo_strength & SSL_FIPS))
691 continue;
692 if ((c->algorithm_mkey & disabled_mkey) ||
693 (c->algorithm_auth & disabled_auth) ||
694 (c->algorithm_enc & disabled_enc) ||
695 (c->algorithm_mac & disabled_mac))
696 continue;
697 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
698 c->min_tls == 0)
699 continue;
700 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
701 c->min_dtls == 0)
702 continue;
703
704 co_list[co_list_num].cipher = c;
705 co_list[co_list_num].next = NULL;
706 co_list[co_list_num].prev = NULL;
707 co_list[co_list_num].active = 0;
708 co_list_num++;
709 /*
710 * if (!sk_push(ca_list,(char *)c)) goto err;
711 */
712 }
713
714 /*
715 * Prepare linked list from list entries
716 */
717 if (co_list_num > 0) {
718 co_list[0].prev = NULL;
719
720 if (co_list_num > 1) {
721 co_list[0].next = &co_list[1];
722
723 for (i = 1; i < co_list_num - 1; i++) {
724 co_list[i].prev = &co_list[i - 1];
725 co_list[i].next = &co_list[i + 1];
726 }
727
728 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
729 }
730
731 co_list[co_list_num - 1].next = NULL;
732
733 *head_p = &co_list[0];
734 *tail_p = &co_list[co_list_num - 1];
735 }
736 }
737
738 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
739 int num_of_group_aliases,
740 uint32_t disabled_mkey,
741 uint32_t disabled_auth,
742 uint32_t disabled_enc,
743 uint32_t disabled_mac,
744 CIPHER_ORDER *head)
745 {
746 CIPHER_ORDER *ciph_curr;
747 const SSL_CIPHER **ca_curr;
748 int i;
749 uint32_t mask_mkey = ~disabled_mkey;
750 uint32_t mask_auth = ~disabled_auth;
751 uint32_t mask_enc = ~disabled_enc;
752 uint32_t mask_mac = ~disabled_mac;
753
754 /*
755 * First, add the real ciphers as already collected
756 */
757 ciph_curr = head;
758 ca_curr = ca_list;
759 while (ciph_curr != NULL) {
760 *ca_curr = ciph_curr->cipher;
761 ca_curr++;
762 ciph_curr = ciph_curr->next;
763 }
764
765 /*
766 * Now we add the available ones from the cipher_aliases[] table.
767 * They represent either one or more algorithms, some of which
768 * in any affected category must be supported (set in enabled_mask),
769 * or represent a cipher strength value (will be added in any case because algorithms=0).
770 */
771 for (i = 0; i < num_of_group_aliases; i++) {
772 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
773 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
774 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
775 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
776
777 if (algorithm_mkey)
778 if ((algorithm_mkey & mask_mkey) == 0)
779 continue;
780
781 if (algorithm_auth)
782 if ((algorithm_auth & mask_auth) == 0)
783 continue;
784
785 if (algorithm_enc)
786 if ((algorithm_enc & mask_enc) == 0)
787 continue;
788
789 if (algorithm_mac)
790 if ((algorithm_mac & mask_mac) == 0)
791 continue;
792
793 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
794 ca_curr++;
795 }
796
797 *ca_curr = NULL; /* end of list */
798 }
799
800 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
801 uint32_t alg_auth, uint32_t alg_enc,
802 uint32_t alg_mac, int min_tls,
803 uint32_t algo_strength, int rule,
804 int32_t strength_bits, CIPHER_ORDER **head_p,
805 CIPHER_ORDER **tail_p)
806 {
807 CIPHER_ORDER *head, *tail, *curr, *next, *last;
808 const SSL_CIPHER *cp;
809 int reverse = 0;
810
811 #ifdef CIPHER_DEBUG
812 fprintf(stderr,
813 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
814 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
815 algo_strength, strength_bits);
816 #endif
817
818 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
819 reverse = 1; /* needed to maintain sorting between currently
820 * deleted ciphers */
821
822 head = *head_p;
823 tail = *tail_p;
824
825 if (reverse) {
826 next = tail;
827 last = head;
828 } else {
829 next = head;
830 last = tail;
831 }
832
833 curr = NULL;
834 for (;;) {
835 if (curr == last)
836 break;
837
838 curr = next;
839
840 if (curr == NULL)
841 break;
842
843 next = reverse ? curr->prev : curr->next;
844
845 cp = curr->cipher;
846
847 /*
848 * Selection criteria is either the value of strength_bits
849 * or the algorithms used.
850 */
851 if (strength_bits >= 0) {
852 if (strength_bits != cp->strength_bits)
853 continue;
854 } else {
855 #ifdef CIPHER_DEBUG
856 fprintf(stderr,
857 "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
858 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
859 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
860 cp->algo_strength);
861 #endif
862 if (cipher_id != 0 && (cipher_id != cp->id))
863 continue;
864 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
865 continue;
866 if (alg_auth && !(alg_auth & cp->algorithm_auth))
867 continue;
868 if (alg_enc && !(alg_enc & cp->algorithm_enc))
869 continue;
870 if (alg_mac && !(alg_mac & cp->algorithm_mac))
871 continue;
872 if (min_tls && (min_tls != cp->min_tls))
873 continue;
874 if ((algo_strength & SSL_STRONG_MASK)
875 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
876 continue;
877 if ((algo_strength & SSL_DEFAULT_MASK)
878 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
879 continue;
880 }
881
882 #ifdef CIPHER_DEBUG
883 fprintf(stderr, "Action = %d\n", rule);
884 #endif
885
886 /* add the cipher if it has not been added yet. */
887 if (rule == CIPHER_ADD) {
888 /* reverse == 0 */
889 if (!curr->active) {
890 ll_append_tail(&head, curr, &tail);
891 curr->active = 1;
892 }
893 }
894 /* Move the added cipher to this location */
895 else if (rule == CIPHER_ORD) {
896 /* reverse == 0 */
897 if (curr->active) {
898 ll_append_tail(&head, curr, &tail);
899 }
900 } else if (rule == CIPHER_DEL) {
901 /* reverse == 1 */
902 if (curr->active) {
903 /*
904 * most recently deleted ciphersuites get best positions for
905 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
906 * in reverse to maintain the order)
907 */
908 ll_append_head(&head, curr, &tail);
909 curr->active = 0;
910 }
911 } else if (rule == CIPHER_BUMP) {
912 if (curr->active)
913 ll_append_head(&head, curr, &tail);
914 } else if (rule == CIPHER_KILL) {
915 /* reverse == 0 */
916 if (head == curr)
917 head = curr->next;
918 else
919 curr->prev->next = curr->next;
920 if (tail == curr)
921 tail = curr->prev;
922 curr->active = 0;
923 if (curr->next != NULL)
924 curr->next->prev = curr->prev;
925 if (curr->prev != NULL)
926 curr->prev->next = curr->next;
927 curr->next = NULL;
928 curr->prev = NULL;
929 }
930 }
931
932 *head_p = head;
933 *tail_p = tail;
934 }
935
936 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
937 CIPHER_ORDER **tail_p)
938 {
939 int32_t max_strength_bits;
940 int i, *number_uses;
941 CIPHER_ORDER *curr;
942
943 /*
944 * This routine sorts the ciphers with descending strength. The sorting
945 * must keep the pre-sorted sequence, so we apply the normal sorting
946 * routine as '+' movement to the end of the list.
947 */
948 max_strength_bits = 0;
949 curr = *head_p;
950 while (curr != NULL) {
951 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
952 max_strength_bits = curr->cipher->strength_bits;
953 curr = curr->next;
954 }
955
956 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
957 if (number_uses == NULL) {
958 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
959 return (0);
960 }
961
962 /*
963 * Now find the strength_bits values actually used
964 */
965 curr = *head_p;
966 while (curr != NULL) {
967 if (curr->active)
968 number_uses[curr->cipher->strength_bits]++;
969 curr = curr->next;
970 }
971 /*
972 * Go through the list of used strength_bits values in descending
973 * order.
974 */
975 for (i = max_strength_bits; i >= 0; i--)
976 if (number_uses[i] > 0)
977 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
978 tail_p);
979
980 OPENSSL_free(number_uses);
981 return (1);
982 }
983
984 static int ssl_cipher_process_rulestr(const char *rule_str,
985 CIPHER_ORDER **head_p,
986 CIPHER_ORDER **tail_p,
987 const SSL_CIPHER **ca_list, CERT *c)
988 {
989 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
990 int min_tls;
991 const char *l, *buf;
992 int j, multi, found, rule, retval, ok, buflen;
993 uint32_t cipher_id = 0;
994 char ch;
995
996 retval = 1;
997 l = rule_str;
998 for (;;) {
999 ch = *l;
1000
1001 if (ch == '\0')
1002 break; /* done */
1003 if (ch == '-') {
1004 rule = CIPHER_DEL;
1005 l++;
1006 } else if (ch == '+') {
1007 rule = CIPHER_ORD;
1008 l++;
1009 } else if (ch == '!') {
1010 rule = CIPHER_KILL;
1011 l++;
1012 } else if (ch == '@') {
1013 rule = CIPHER_SPECIAL;
1014 l++;
1015 } else {
1016 rule = CIPHER_ADD;
1017 }
1018
1019 if (ITEM_SEP(ch)) {
1020 l++;
1021 continue;
1022 }
1023
1024 alg_mkey = 0;
1025 alg_auth = 0;
1026 alg_enc = 0;
1027 alg_mac = 0;
1028 min_tls = 0;
1029 algo_strength = 0;
1030
1031 for (;;) {
1032 ch = *l;
1033 buf = l;
1034 buflen = 0;
1035 #ifndef CHARSET_EBCDIC
1036 while (((ch >= 'A') && (ch <= 'Z')) ||
1037 ((ch >= '0') && (ch <= '9')) ||
1038 ((ch >= 'a') && (ch <= 'z')) ||
1039 (ch == '-') || (ch == '.') || (ch == '='))
1040 #else
1041 while (isalnum(ch) || (ch == '-') || (ch == '.') || (ch == '='))
1042 #endif
1043 {
1044 ch = *(++l);
1045 buflen++;
1046 }
1047
1048 if (buflen == 0) {
1049 /*
1050 * We hit something we cannot deal with,
1051 * it is no command or separator nor
1052 * alphanumeric, so we call this an error.
1053 */
1054 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1055 retval = found = 0;
1056 l++;
1057 break;
1058 }
1059
1060 if (rule == CIPHER_SPECIAL) {
1061 found = 0; /* unused -- avoid compiler warning */
1062 break; /* special treatment */
1063 }
1064
1065 /* check for multi-part specification */
1066 if (ch == '+') {
1067 multi = 1;
1068 l++;
1069 } else
1070 multi = 0;
1071
1072 /*
1073 * Now search for the cipher alias in the ca_list. Be careful
1074 * with the strncmp, because the "buflen" limitation
1075 * will make the rule "ADH:SOME" and the cipher
1076 * "ADH-MY-CIPHER" look like a match for buflen=3.
1077 * So additionally check whether the cipher name found
1078 * has the correct length. We can save a strlen() call:
1079 * just checking for the '\0' at the right place is
1080 * sufficient, we have to strncmp() anyway. (We cannot
1081 * use strcmp(), because buf is not '\0' terminated.)
1082 */
1083 j = found = 0;
1084 cipher_id = 0;
1085 while (ca_list[j]) {
1086 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1087 && (ca_list[j]->name[buflen] == '\0')) {
1088 found = 1;
1089 break;
1090 } else
1091 j++;
1092 }
1093
1094 if (!found)
1095 break; /* ignore this entry */
1096
1097 if (ca_list[j]->algorithm_mkey) {
1098 if (alg_mkey) {
1099 alg_mkey &= ca_list[j]->algorithm_mkey;
1100 if (!alg_mkey) {
1101 found = 0;
1102 break;
1103 }
1104 } else
1105 alg_mkey = ca_list[j]->algorithm_mkey;
1106 }
1107
1108 if (ca_list[j]->algorithm_auth) {
1109 if (alg_auth) {
1110 alg_auth &= ca_list[j]->algorithm_auth;
1111 if (!alg_auth) {
1112 found = 0;
1113 break;
1114 }
1115 } else
1116 alg_auth = ca_list[j]->algorithm_auth;
1117 }
1118
1119 if (ca_list[j]->algorithm_enc) {
1120 if (alg_enc) {
1121 alg_enc &= ca_list[j]->algorithm_enc;
1122 if (!alg_enc) {
1123 found = 0;
1124 break;
1125 }
1126 } else
1127 alg_enc = ca_list[j]->algorithm_enc;
1128 }
1129
1130 if (ca_list[j]->algorithm_mac) {
1131 if (alg_mac) {
1132 alg_mac &= ca_list[j]->algorithm_mac;
1133 if (!alg_mac) {
1134 found = 0;
1135 break;
1136 }
1137 } else
1138 alg_mac = ca_list[j]->algorithm_mac;
1139 }
1140
1141 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1142 if (algo_strength & SSL_STRONG_MASK) {
1143 algo_strength &=
1144 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1145 ~SSL_STRONG_MASK;
1146 if (!(algo_strength & SSL_STRONG_MASK)) {
1147 found = 0;
1148 break;
1149 }
1150 } else
1151 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1152 }
1153
1154 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1155 if (algo_strength & SSL_DEFAULT_MASK) {
1156 algo_strength &=
1157 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1158 ~SSL_DEFAULT_MASK;
1159 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1160 found = 0;
1161 break;
1162 }
1163 } else
1164 algo_strength |=
1165 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1166 }
1167
1168 if (ca_list[j]->valid) {
1169 /*
1170 * explicit ciphersuite found; its protocol version does not
1171 * become part of the search pattern!
1172 */
1173
1174 cipher_id = ca_list[j]->id;
1175 } else {
1176 /*
1177 * not an explicit ciphersuite; only in this case, the
1178 * protocol version is considered part of the search pattern
1179 */
1180
1181 if (ca_list[j]->min_tls) {
1182 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1183 found = 0;
1184 break;
1185 } else {
1186 min_tls = ca_list[j]->min_tls;
1187 }
1188 }
1189 }
1190
1191 if (!multi)
1192 break;
1193 }
1194
1195 /*
1196 * Ok, we have the rule, now apply it
1197 */
1198 if (rule == CIPHER_SPECIAL) { /* special command */
1199 ok = 0;
1200 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0)
1201 ok = ssl_cipher_strength_sort(head_p, tail_p);
1202 else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1203 int level = buf[9] - '0';
1204 if (level < 0 || level > 5) {
1205 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1206 SSL_R_INVALID_COMMAND);
1207 } else {
1208 c->sec_level = level;
1209 ok = 1;
1210 }
1211 } else
1212 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND);
1213 if (ok == 0)
1214 retval = 0;
1215 /*
1216 * We do not support any "multi" options
1217 * together with "@", so throw away the
1218 * rest of the command, if any left, until
1219 * end or ':' is found.
1220 */
1221 while ((*l != '\0') && !ITEM_SEP(*l))
1222 l++;
1223 } else if (found) {
1224 ssl_cipher_apply_rule(cipher_id,
1225 alg_mkey, alg_auth, alg_enc, alg_mac,
1226 min_tls, algo_strength, rule, -1, head_p,
1227 tail_p);
1228 } else {
1229 while ((*l != '\0') && !ITEM_SEP(*l))
1230 l++;
1231 }
1232 if (*l == '\0')
1233 break; /* done */
1234 }
1235
1236 return (retval);
1237 }
1238
1239 #ifndef OPENSSL_NO_EC
1240 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1241 const char **prule_str)
1242 {
1243 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1244 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1245 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1246 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1247 suiteb_comb2 = 1;
1248 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1249 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1250 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1251 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1252 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1253 }
1254
1255 if (suiteb_flags) {
1256 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1257 c->cert_flags |= suiteb_flags;
1258 } else
1259 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1260
1261 if (!suiteb_flags)
1262 return 1;
1263 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1264
1265 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1266 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1267 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1268 return 0;
1269 }
1270 # ifndef OPENSSL_NO_EC
1271 switch (suiteb_flags) {
1272 case SSL_CERT_FLAG_SUITEB_128_LOS:
1273 if (suiteb_comb2)
1274 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1275 else
1276 *prule_str =
1277 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1278 break;
1279 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1280 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1281 break;
1282 case SSL_CERT_FLAG_SUITEB_192_LOS:
1283 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1284 break;
1285 }
1286 return 1;
1287 # else
1288 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1289 return 0;
1290 # endif
1291 }
1292 #endif
1293
1294 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
1295 **cipher_list, STACK_OF(SSL_CIPHER)
1296 **cipher_list_by_id,
1297 const char *rule_str, CERT *c)
1298 {
1299 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1300 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1301 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
1302 const char *rule_p;
1303 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1304 const SSL_CIPHER **ca_list = NULL;
1305
1306 /*
1307 * Return with error if nothing to do.
1308 */
1309 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1310 return NULL;
1311 #ifndef OPENSSL_NO_EC
1312 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1313 return NULL;
1314 #endif
1315
1316 /*
1317 * To reduce the work to do we only want to process the compiled
1318 * in algorithms, so we first get the mask of disabled ciphers.
1319 */
1320
1321 disabled_mkey = disabled_mkey_mask;
1322 disabled_auth = disabled_auth_mask;
1323 disabled_enc = disabled_enc_mask;
1324 disabled_mac = disabled_mac_mask;
1325
1326 /*
1327 * Now we have to collect the available ciphers from the compiled
1328 * in ciphers. We cannot get more than the number compiled in, so
1329 * it is used for allocation.
1330 */
1331 num_of_ciphers = ssl_method->num_ciphers();
1332
1333 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1334 if (co_list == NULL) {
1335 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1336 return (NULL); /* Failure */
1337 }
1338
1339 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1340 disabled_mkey, disabled_auth, disabled_enc,
1341 disabled_mac, co_list, &head, &tail);
1342
1343 /* Now arrange all ciphers by preference. */
1344
1345 /*
1346 * Everything else being equal, prefer ephemeral ECDH over other key
1347 * exchange mechanisms.
1348 * For consistency, prefer ECDSA over RSA (though this only matters if the
1349 * server has both certificates, and is using the DEFAULT, or a client
1350 * preference).
1351 */
1352 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1353 -1, &head, &tail);
1354 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1355 &tail);
1356 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1357 &tail);
1358
1359 /* Within each strength group, we prefer GCM over CHACHA... */
1360 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1361 &head, &tail);
1362 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1363 &head, &tail);
1364
1365 /*
1366 * ...and generally, our preferred cipher is AES.
1367 * Note that AEADs will be bumped to take preference after sorting by
1368 * strength.
1369 */
1370 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1371 -1, &head, &tail);
1372
1373 /* Temporarily enable everything else for sorting */
1374 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1375
1376 /* Low priority for MD5 */
1377 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1378 &tail);
1379
1380 /*
1381 * Move anonymous ciphers to the end. Usually, these will remain
1382 * disabled. (For applications that allow them, they aren't too bad, but
1383 * we prefer authenticated ciphers.)
1384 */
1385 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1386 &tail);
1387
1388 /*
1389 * ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1,
1390 * &head, &tail);
1391 */
1392 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1393 &tail);
1394 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1395 &tail);
1396
1397 /* RC4 is sort-of broken -- move the the end */
1398 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1399 &tail);
1400
1401 /*
1402 * Now sort by symmetric encryption strength. The above ordering remains
1403 * in force within each class
1404 */
1405 if (!ssl_cipher_strength_sort(&head, &tail)) {
1406 OPENSSL_free(co_list);
1407 return NULL;
1408 }
1409
1410 /*
1411 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1412 * TODO(openssl-team): is there an easier way to accomplish all this?
1413 */
1414 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1415 &head, &tail);
1416
1417 /*
1418 * Irrespective of strength, enforce the following order:
1419 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1420 * Within each group, ciphers remain sorted by strength and previous
1421 * preference, i.e.,
1422 * 1) ECDHE > DHE
1423 * 2) GCM > CHACHA
1424 * 3) AES > rest
1425 * 4) TLS 1.2 > legacy
1426 *
1427 * Because we now bump ciphers to the top of the list, we proceed in
1428 * reverse order of preference.
1429 */
1430 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1431 &head, &tail);
1432 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1433 CIPHER_BUMP, -1, &head, &tail);
1434 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1435 CIPHER_BUMP, -1, &head, &tail);
1436
1437 /* Now disable everything (maintaining the ordering!) */
1438 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1439
1440 /*
1441 * We also need cipher aliases for selecting based on the rule_str.
1442 * There might be two types of entries in the rule_str: 1) names
1443 * of ciphers themselves 2) aliases for groups of ciphers.
1444 * For 1) we need the available ciphers and for 2) the cipher
1445 * groups of cipher_aliases added together in one list (otherwise
1446 * we would be happy with just the cipher_aliases table).
1447 */
1448 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1449 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1450 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1451 if (ca_list == NULL) {
1452 OPENSSL_free(co_list);
1453 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1454 return (NULL); /* Failure */
1455 }
1456 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1457 disabled_mkey, disabled_auth, disabled_enc,
1458 disabled_mac, head);
1459
1460 /*
1461 * If the rule_string begins with DEFAULT, apply the default rule
1462 * before using the (possibly available) additional rules.
1463 */
1464 ok = 1;
1465 rule_p = rule_str;
1466 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1467 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1468 &head, &tail, ca_list, c);
1469 rule_p += 7;
1470 if (*rule_p == ':')
1471 rule_p++;
1472 }
1473
1474 if (ok && (strlen(rule_p) > 0))
1475 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1476
1477 OPENSSL_free(ca_list); /* Not needed anymore */
1478
1479 if (!ok) { /* Rule processing failure */
1480 OPENSSL_free(co_list);
1481 return (NULL);
1482 }
1483
1484 /*
1485 * Allocate new "cipherstack" for the result, return with error
1486 * if we cannot get one.
1487 */
1488 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1489 OPENSSL_free(co_list);
1490 return (NULL);
1491 }
1492
1493 /*
1494 * The cipher selection for the list is done. The ciphers are added
1495 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1496 */
1497 for (curr = head; curr != NULL; curr = curr->next) {
1498 if (curr->active
1499 && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) {
1500 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1501 OPENSSL_free(co_list);
1502 sk_SSL_CIPHER_free(cipherstack);
1503 return NULL;
1504 }
1505 #ifdef CIPHER_DEBUG
1506 fprintf(stderr, "<%s>\n", curr->cipher->name);
1507 #endif
1508 }
1509 }
1510 OPENSSL_free(co_list); /* Not needed any longer */
1511
1512 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1513 if (tmp_cipher_list == NULL) {
1514 sk_SSL_CIPHER_free(cipherstack);
1515 return NULL;
1516 }
1517 sk_SSL_CIPHER_free(*cipher_list);
1518 *cipher_list = cipherstack;
1519 if (*cipher_list_by_id != NULL)
1520 sk_SSL_CIPHER_free(*cipher_list_by_id);
1521 *cipher_list_by_id = tmp_cipher_list;
1522 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1523
1524 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1525 return (cipherstack);
1526 }
1527
1528 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1529 {
1530 const char *ver;
1531 const char *kx, *au, *enc, *mac;
1532 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1533 static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
1534
1535 if (buf == NULL) {
1536 len = 128;
1537 buf = OPENSSL_malloc(len);
1538 if (buf == NULL)
1539 return NULL;
1540 } else if (len < 128)
1541 return NULL;
1542
1543 alg_mkey = cipher->algorithm_mkey;
1544 alg_auth = cipher->algorithm_auth;
1545 alg_enc = cipher->algorithm_enc;
1546 alg_mac = cipher->algorithm_mac;
1547
1548 ver = ssl_protocol_to_string(cipher->min_tls);
1549
1550 switch (alg_mkey) {
1551 case SSL_kRSA:
1552 kx = "RSA";
1553 break;
1554 case SSL_kDHE:
1555 kx = "DH";
1556 break;
1557 case SSL_kECDHE:
1558 kx = "ECDH";
1559 break;
1560 case SSL_kPSK:
1561 kx = "PSK";
1562 break;
1563 case SSL_kRSAPSK:
1564 kx = "RSAPSK";
1565 break;
1566 case SSL_kECDHEPSK:
1567 kx = "ECDHEPSK";
1568 break;
1569 case SSL_kDHEPSK:
1570 kx = "DHEPSK";
1571 break;
1572 case SSL_kSRP:
1573 kx = "SRP";
1574 break;
1575 case SSL_kGOST:
1576 kx = "GOST";
1577 break;
1578 case SSL_kANY:
1579 kx = "any";
1580 break;
1581 default:
1582 kx = "unknown";
1583 }
1584
1585 switch (alg_auth) {
1586 case SSL_aRSA:
1587 au = "RSA";
1588 break;
1589 case SSL_aDSS:
1590 au = "DSS";
1591 break;
1592 case SSL_aNULL:
1593 au = "None";
1594 break;
1595 case SSL_aECDSA:
1596 au = "ECDSA";
1597 break;
1598 case SSL_aPSK:
1599 au = "PSK";
1600 break;
1601 case SSL_aSRP:
1602 au = "SRP";
1603 break;
1604 case SSL_aGOST01:
1605 au = "GOST01";
1606 break;
1607 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1608 case (SSL_aGOST12 | SSL_aGOST01):
1609 au = "GOST12";
1610 break;
1611 case SSL_aANY:
1612 au = "any";
1613 break;
1614 default:
1615 au = "unknown";
1616 break;
1617 }
1618
1619 switch (alg_enc) {
1620 case SSL_DES:
1621 enc = "DES(56)";
1622 break;
1623 case SSL_3DES:
1624 enc = "3DES(168)";
1625 break;
1626 case SSL_RC4:
1627 enc = "RC4(128)";
1628 break;
1629 case SSL_RC2:
1630 enc = "RC2(128)";
1631 break;
1632 case SSL_IDEA:
1633 enc = "IDEA(128)";
1634 break;
1635 case SSL_eNULL:
1636 enc = "None";
1637 break;
1638 case SSL_AES128:
1639 enc = "AES(128)";
1640 break;
1641 case SSL_AES256:
1642 enc = "AES(256)";
1643 break;
1644 case SSL_AES128GCM:
1645 enc = "AESGCM(128)";
1646 break;
1647 case SSL_AES256GCM:
1648 enc = "AESGCM(256)";
1649 break;
1650 case SSL_AES128CCM:
1651 enc = "AESCCM(128)";
1652 break;
1653 case SSL_AES256CCM:
1654 enc = "AESCCM(256)";
1655 break;
1656 case SSL_AES128CCM8:
1657 enc = "AESCCM8(128)";
1658 break;
1659 case SSL_AES256CCM8:
1660 enc = "AESCCM8(256)";
1661 break;
1662 case SSL_CAMELLIA128:
1663 enc = "Camellia(128)";
1664 break;
1665 case SSL_CAMELLIA256:
1666 enc = "Camellia(256)";
1667 break;
1668 case SSL_SEED:
1669 enc = "SEED(128)";
1670 break;
1671 case SSL_eGOST2814789CNT:
1672 case SSL_eGOST2814789CNT12:
1673 enc = "GOST89(256)";
1674 break;
1675 case SSL_CHACHA20POLY1305:
1676 enc = "CHACHA20/POLY1305(256)";
1677 break;
1678 default:
1679 enc = "unknown";
1680 break;
1681 }
1682
1683 switch (alg_mac) {
1684 case SSL_MD5:
1685 mac = "MD5";
1686 break;
1687 case SSL_SHA1:
1688 mac = "SHA1";
1689 break;
1690 case SSL_SHA256:
1691 mac = "SHA256";
1692 break;
1693 case SSL_SHA384:
1694 mac = "SHA384";
1695 break;
1696 case SSL_AEAD:
1697 mac = "AEAD";
1698 break;
1699 case SSL_GOST89MAC:
1700 case SSL_GOST89MAC12:
1701 mac = "GOST89";
1702 break;
1703 case SSL_GOST94:
1704 mac = "GOST94";
1705 break;
1706 case SSL_GOST12_256:
1707 case SSL_GOST12_512:
1708 mac = "GOST2012";
1709 break;
1710 default:
1711 mac = "unknown";
1712 break;
1713 }
1714
1715 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1716
1717 return (buf);
1718 }
1719
1720 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1721 {
1722 if (c == NULL)
1723 return "(NONE)";
1724
1725 /*
1726 * Backwards-compatibility crutch. In almost all contexts we report TLS
1727 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1728 */
1729 if (c->min_tls == TLS1_VERSION)
1730 return "TLSv1.0";
1731 return ssl_protocol_to_string(c->min_tls);
1732 }
1733
1734 /* return the actual cipher being used */
1735 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1736 {
1737 if (c != NULL)
1738 return (c->name);
1739 return ("(NONE)");
1740 }
1741
1742 /* number of bits for symmetric cipher */
1743 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1744 {
1745 int ret = 0;
1746
1747 if (c != NULL) {
1748 if (alg_bits != NULL)
1749 *alg_bits = (int)c->alg_bits;
1750 ret = (int)c->strength_bits;
1751 }
1752 return ret;
1753 }
1754
1755 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1756 {
1757 return c->id;
1758 }
1759
1760 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1761 {
1762 SSL_COMP *ctmp;
1763 int i, nn;
1764
1765 if ((n == 0) || (sk == NULL))
1766 return (NULL);
1767 nn = sk_SSL_COMP_num(sk);
1768 for (i = 0; i < nn; i++) {
1769 ctmp = sk_SSL_COMP_value(sk, i);
1770 if (ctmp->id == n)
1771 return (ctmp);
1772 }
1773 return (NULL);
1774 }
1775
1776 #ifdef OPENSSL_NO_COMP
1777 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1778 {
1779 return NULL;
1780 }
1781
1782 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1783 *meths)
1784 {
1785 return meths;
1786 }
1787
1788 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1789 {
1790 return 1;
1791 }
1792
1793 #else
1794 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1795 {
1796 load_builtin_compressions();
1797 return (ssl_comp_methods);
1798 }
1799
1800 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1801 *meths)
1802 {
1803 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1804 ssl_comp_methods = meths;
1805 return old_meths;
1806 }
1807
1808 static void cmeth_free(SSL_COMP *cm)
1809 {
1810 OPENSSL_free(cm);
1811 }
1812
1813 void ssl_comp_free_compression_methods_int(void)
1814 {
1815 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1816 ssl_comp_methods = NULL;
1817 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
1818 }
1819
1820 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1821 {
1822 SSL_COMP *comp;
1823
1824 if (cm == NULL || COMP_get_type(cm) == NID_undef)
1825 return 1;
1826
1827 /*-
1828 * According to draft-ietf-tls-compression-04.txt, the
1829 * compression number ranges should be the following:
1830 *
1831 * 0 to 63: methods defined by the IETF
1832 * 64 to 192: external party methods assigned by IANA
1833 * 193 to 255: reserved for private use
1834 */
1835 if (id < 193 || id > 255) {
1836 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1837 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
1838 return 1;
1839 }
1840
1841 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
1842 comp = OPENSSL_malloc(sizeof(*comp));
1843 if (comp == NULL) {
1844 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1845 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1846 return (1);
1847 }
1848
1849 comp->id = id;
1850 comp->method = cm;
1851 load_builtin_compressions();
1852 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
1853 OPENSSL_free(comp);
1854 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1855 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1856 SSL_R_DUPLICATE_COMPRESSION_ID);
1857 return (1);
1858 }
1859 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
1860 OPENSSL_free(comp);
1861 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1862 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1863 return (1);
1864 }
1865 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1866 return (0);
1867 }
1868 #endif
1869
1870 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
1871 {
1872 #ifndef OPENSSL_NO_COMP
1873 return comp ? COMP_get_name(comp) : NULL;
1874 #else
1875 return NULL;
1876 #endif
1877 }
1878
1879 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
1880 {
1881 #ifndef OPENSSL_NO_COMP
1882 return comp->name;
1883 #else
1884 return NULL;
1885 #endif
1886 }
1887
1888 int SSL_COMP_get_id(const SSL_COMP *comp)
1889 {
1890 #ifndef OPENSSL_NO_COMP
1891 return comp->id;
1892 #else
1893 return -1;
1894 #endif
1895 }
1896
1897 /* For a cipher return the index corresponding to the certificate type */
1898 int ssl_cipher_get_cert_index(const SSL_CIPHER *c)
1899 {
1900 uint32_t alg_a;
1901
1902 alg_a = c->algorithm_auth;
1903
1904 if (alg_a & SSL_aECDSA)
1905 return SSL_PKEY_ECC;
1906 else if (alg_a & SSL_aDSS)
1907 return SSL_PKEY_DSA_SIGN;
1908 else if (alg_a & SSL_aRSA)
1909 return SSL_PKEY_RSA;
1910 else if (alg_a & SSL_aGOST12)
1911 return SSL_PKEY_GOST_EC;
1912 else if (alg_a & SSL_aGOST01)
1913 return SSL_PKEY_GOST01;
1914
1915 return -1;
1916 }
1917
1918 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
1919 int all)
1920 {
1921 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
1922
1923 if (c == NULL || (!all && c->valid == 0))
1924 return NULL;
1925 return c;
1926 }
1927
1928 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
1929 {
1930 return ssl->method->get_cipher_by_char(ptr);
1931 }
1932
1933 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
1934 {
1935 int i;
1936 if (c == NULL)
1937 return NID_undef;
1938 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
1939 if (i == -1)
1940 return NID_undef;
1941 return ssl_cipher_table_cipher[i].nid;
1942 }
1943
1944 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
1945 {
1946 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
1947
1948 if (i == -1)
1949 return NID_undef;
1950 return ssl_cipher_table_mac[i].nid;
1951 }
1952
1953 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
1954 {
1955 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
1956
1957 if (i == -1)
1958 return NID_undef;
1959 return ssl_cipher_table_kx[i].nid;
1960 }
1961
1962 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
1963 {
1964 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
1965
1966 if (i == -1)
1967 return NID_undef;
1968 return ssl_cipher_table_auth[i].nid;
1969 }
1970
1971 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
1972 {
1973 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
1974 }
1975
1976 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
1977 size_t *int_overhead, size_t *blocksize,
1978 size_t *ext_overhead)
1979 {
1980 size_t mac = 0, in = 0, blk = 0, out = 0;
1981
1982 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
1983 * because there are no handy #defines for those. */
1984 if (c->algorithm_enc & SSL_AESGCM) {
1985 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
1986 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
1987 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
1988 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
1989 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
1990 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
1991 out = 16;
1992 } else if (c->algorithm_mac & SSL_AEAD) {
1993 /* We're supposed to have handled all the AEAD modes above */
1994 return 0;
1995 } else {
1996 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
1997 int digest_nid = SSL_CIPHER_get_digest_nid(c);
1998 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
1999
2000 if (e_md == NULL)
2001 return 0;
2002
2003 mac = EVP_MD_size(e_md);
2004 if (c->algorithm_enc != SSL_eNULL) {
2005 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2006 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2007
2008 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2009 known CBC cipher. */
2010 if (e_ciph == NULL ||
2011 EVP_CIPHER_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2012 return 0;
2013
2014 in = 1; /* padding length byte */
2015 out = EVP_CIPHER_iv_length(e_ciph);
2016 blk = EVP_CIPHER_block_size(e_ciph);
2017 }
2018 }
2019
2020 *mac_overhead = mac;
2021 *int_overhead = in;
2022 *blocksize = blk;
2023 *ext_overhead = out;
2024
2025 return 1;
2026 }