]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Modify libssl to discover supported groups based on available providers
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_local.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/rand_drbg.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/dh.h>
21 #include <openssl/engine.h>
22 #include <openssl/async.h>
23 #include <openssl/ct.h>
24 #include <openssl/trace.h>
25 #include "internal/cryptlib.h"
26 #include "internal/refcount.h"
27 #include "internal/ktls.h"
28
29 DEFINE_STACK_OF(X509)
30 DEFINE_STACK_OF(X509_NAME)
31 DEFINE_STACK_OF_CONST(SSL_CIPHER)
32 DEFINE_STACK_OF(X509_EXTENSION)
33 DEFINE_STACK_OF(OCSP_RESPID)
34 DEFINE_STACK_OF(SRTP_PROTECTION_PROFILE)
35 DEFINE_STACK_OF(SCT)
36
37 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
46 int t)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 return ssl_undefined_function(ssl);
52 }
53
54 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
55 unsigned char *s, size_t t, size_t *u)
56 {
57 (void)r;
58 (void)s;
59 (void)t;
60 (void)u;
61 return ssl_undefined_function(ssl);
62 }
63
64 static int ssl_undefined_function_4(SSL *ssl, int r)
65 {
66 (void)r;
67 return ssl_undefined_function(ssl);
68 }
69
70 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
71 unsigned char *t)
72 {
73 (void)r;
74 (void)s;
75 (void)t;
76 return ssl_undefined_function(ssl);
77 }
78
79 static int ssl_undefined_function_6(int r)
80 {
81 (void)r;
82 return ssl_undefined_function(NULL);
83 }
84
85 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
86 const char *t, size_t u,
87 const unsigned char *v, size_t w, int x)
88 {
89 (void)r;
90 (void)s;
91 (void)t;
92 (void)u;
93 (void)v;
94 (void)w;
95 (void)x;
96 return ssl_undefined_function(ssl);
97 }
98
99 SSL3_ENC_METHOD ssl3_undef_enc_method = {
100 ssl_undefined_function_1,
101 ssl_undefined_function_2,
102 ssl_undefined_function,
103 ssl_undefined_function_3,
104 ssl_undefined_function_4,
105 ssl_undefined_function_5,
106 NULL, /* client_finished_label */
107 0, /* client_finished_label_len */
108 NULL, /* server_finished_label */
109 0, /* server_finished_label_len */
110 ssl_undefined_function_6,
111 ssl_undefined_function_7,
112 };
113
114 struct ssl_async_args {
115 SSL *s;
116 void *buf;
117 size_t num;
118 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
119 union {
120 int (*func_read) (SSL *, void *, size_t, size_t *);
121 int (*func_write) (SSL *, const void *, size_t, size_t *);
122 int (*func_other) (SSL *);
123 } f;
124 };
125
126 static const struct {
127 uint8_t mtype;
128 uint8_t ord;
129 int nid;
130 } dane_mds[] = {
131 {
132 DANETLS_MATCHING_FULL, 0, NID_undef
133 },
134 {
135 DANETLS_MATCHING_2256, 1, NID_sha256
136 },
137 {
138 DANETLS_MATCHING_2512, 2, NID_sha512
139 },
140 };
141
142 static int dane_ctx_enable(struct dane_ctx_st *dctx)
143 {
144 const EVP_MD **mdevp;
145 uint8_t *mdord;
146 uint8_t mdmax = DANETLS_MATCHING_LAST;
147 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
148 size_t i;
149
150 if (dctx->mdevp != NULL)
151 return 1;
152
153 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
154 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
155
156 if (mdord == NULL || mdevp == NULL) {
157 OPENSSL_free(mdord);
158 OPENSSL_free(mdevp);
159 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
160 return 0;
161 }
162
163 /* Install default entries */
164 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
165 const EVP_MD *md;
166
167 if (dane_mds[i].nid == NID_undef ||
168 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
169 continue;
170 mdevp[dane_mds[i].mtype] = md;
171 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
172 }
173
174 dctx->mdevp = mdevp;
175 dctx->mdord = mdord;
176 dctx->mdmax = mdmax;
177
178 return 1;
179 }
180
181 static void dane_ctx_final(struct dane_ctx_st *dctx)
182 {
183 OPENSSL_free(dctx->mdevp);
184 dctx->mdevp = NULL;
185
186 OPENSSL_free(dctx->mdord);
187 dctx->mdord = NULL;
188 dctx->mdmax = 0;
189 }
190
191 static void tlsa_free(danetls_record *t)
192 {
193 if (t == NULL)
194 return;
195 OPENSSL_free(t->data);
196 EVP_PKEY_free(t->spki);
197 OPENSSL_free(t);
198 }
199
200 static void dane_final(SSL_DANE *dane)
201 {
202 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
203 dane->trecs = NULL;
204
205 sk_X509_pop_free(dane->certs, X509_free);
206 dane->certs = NULL;
207
208 X509_free(dane->mcert);
209 dane->mcert = NULL;
210 dane->mtlsa = NULL;
211 dane->mdpth = -1;
212 dane->pdpth = -1;
213 }
214
215 /*
216 * dane_copy - Copy dane configuration, sans verification state.
217 */
218 static int ssl_dane_dup(SSL *to, SSL *from)
219 {
220 int num;
221 int i;
222
223 if (!DANETLS_ENABLED(&from->dane))
224 return 1;
225
226 num = sk_danetls_record_num(from->dane.trecs);
227 dane_final(&to->dane);
228 to->dane.flags = from->dane.flags;
229 to->dane.dctx = &to->ctx->dane;
230 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
231
232 if (to->dane.trecs == NULL) {
233 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
234 return 0;
235 }
236
237 for (i = 0; i < num; ++i) {
238 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
239
240 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
241 t->data, t->dlen) <= 0)
242 return 0;
243 }
244 return 1;
245 }
246
247 static int dane_mtype_set(struct dane_ctx_st *dctx,
248 const EVP_MD *md, uint8_t mtype, uint8_t ord)
249 {
250 int i;
251
252 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
253 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
254 return 0;
255 }
256
257 if (mtype > dctx->mdmax) {
258 const EVP_MD **mdevp;
259 uint8_t *mdord;
260 int n = ((int)mtype) + 1;
261
262 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
263 if (mdevp == NULL) {
264 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
265 return -1;
266 }
267 dctx->mdevp = mdevp;
268
269 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
270 if (mdord == NULL) {
271 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
272 return -1;
273 }
274 dctx->mdord = mdord;
275
276 /* Zero-fill any gaps */
277 for (i = dctx->mdmax + 1; i < mtype; ++i) {
278 mdevp[i] = NULL;
279 mdord[i] = 0;
280 }
281
282 dctx->mdmax = mtype;
283 }
284
285 dctx->mdevp[mtype] = md;
286 /* Coerce ordinal of disabled matching types to 0 */
287 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
288
289 return 1;
290 }
291
292 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
293 {
294 if (mtype > dane->dctx->mdmax)
295 return NULL;
296 return dane->dctx->mdevp[mtype];
297 }
298
299 static int dane_tlsa_add(SSL_DANE *dane,
300 uint8_t usage,
301 uint8_t selector,
302 uint8_t mtype, unsigned const char *data, size_t dlen)
303 {
304 danetls_record *t;
305 const EVP_MD *md = NULL;
306 int ilen = (int)dlen;
307 int i;
308 int num;
309
310 if (dane->trecs == NULL) {
311 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
312 return -1;
313 }
314
315 if (ilen < 0 || dlen != (size_t)ilen) {
316 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
317 return 0;
318 }
319
320 if (usage > DANETLS_USAGE_LAST) {
321 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
322 return 0;
323 }
324
325 if (selector > DANETLS_SELECTOR_LAST) {
326 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
327 return 0;
328 }
329
330 if (mtype != DANETLS_MATCHING_FULL) {
331 md = tlsa_md_get(dane, mtype);
332 if (md == NULL) {
333 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
334 return 0;
335 }
336 }
337
338 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
340 return 0;
341 }
342 if (!data) {
343 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
344 return 0;
345 }
346
347 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
348 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
349 return -1;
350 }
351
352 t->usage = usage;
353 t->selector = selector;
354 t->mtype = mtype;
355 t->data = OPENSSL_malloc(dlen);
356 if (t->data == NULL) {
357 tlsa_free(t);
358 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
359 return -1;
360 }
361 memcpy(t->data, data, dlen);
362 t->dlen = dlen;
363
364 /* Validate and cache full certificate or public key */
365 if (mtype == DANETLS_MATCHING_FULL) {
366 const unsigned char *p = data;
367 X509 *cert = NULL;
368 EVP_PKEY *pkey = NULL;
369
370 switch (selector) {
371 case DANETLS_SELECTOR_CERT:
372 if (!d2i_X509(&cert, &p, ilen) || p < data ||
373 dlen != (size_t)(p - data)) {
374 tlsa_free(t);
375 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
376 return 0;
377 }
378 if (X509_get0_pubkey(cert) == NULL) {
379 tlsa_free(t);
380 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
381 return 0;
382 }
383
384 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
385 X509_free(cert);
386 break;
387 }
388
389 /*
390 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
391 * records that contain full certificates of trust-anchors that are
392 * not present in the wire chain. For usage PKIX-TA(0), we augment
393 * the chain with untrusted Full(0) certificates from DNS, in case
394 * they are missing from the chain.
395 */
396 if ((dane->certs == NULL &&
397 (dane->certs = sk_X509_new_null()) == NULL) ||
398 !sk_X509_push(dane->certs, cert)) {
399 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
400 X509_free(cert);
401 tlsa_free(t);
402 return -1;
403 }
404 break;
405
406 case DANETLS_SELECTOR_SPKI:
407 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
408 dlen != (size_t)(p - data)) {
409 tlsa_free(t);
410 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
411 return 0;
412 }
413
414 /*
415 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
416 * records that contain full bare keys of trust-anchors that are
417 * not present in the wire chain.
418 */
419 if (usage == DANETLS_USAGE_DANE_TA)
420 t->spki = pkey;
421 else
422 EVP_PKEY_free(pkey);
423 break;
424 }
425 }
426
427 /*-
428 * Find the right insertion point for the new record.
429 *
430 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
431 * they can be processed first, as they require no chain building, and no
432 * expiration or hostname checks. Because DANE-EE(3) is numerically
433 * largest, this is accomplished via descending sort by "usage".
434 *
435 * We also sort in descending order by matching ordinal to simplify
436 * the implementation of digest agility in the verification code.
437 *
438 * The choice of order for the selector is not significant, so we
439 * use the same descending order for consistency.
440 */
441 num = sk_danetls_record_num(dane->trecs);
442 for (i = 0; i < num; ++i) {
443 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
444
445 if (rec->usage > usage)
446 continue;
447 if (rec->usage < usage)
448 break;
449 if (rec->selector > selector)
450 continue;
451 if (rec->selector < selector)
452 break;
453 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
454 continue;
455 break;
456 }
457
458 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
459 tlsa_free(t);
460 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
461 return -1;
462 }
463 dane->umask |= DANETLS_USAGE_BIT(usage);
464
465 return 1;
466 }
467
468 /*
469 * Return 0 if there is only one version configured and it was disabled
470 * at configure time. Return 1 otherwise.
471 */
472 static int ssl_check_allowed_versions(int min_version, int max_version)
473 {
474 int minisdtls = 0, maxisdtls = 0;
475
476 /* Figure out if we're doing DTLS versions or TLS versions */
477 if (min_version == DTLS1_BAD_VER
478 || min_version >> 8 == DTLS1_VERSION_MAJOR)
479 minisdtls = 1;
480 if (max_version == DTLS1_BAD_VER
481 || max_version >> 8 == DTLS1_VERSION_MAJOR)
482 maxisdtls = 1;
483 /* A wildcard version of 0 could be DTLS or TLS. */
484 if ((minisdtls && !maxisdtls && max_version != 0)
485 || (maxisdtls && !minisdtls && min_version != 0)) {
486 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
487 return 0;
488 }
489
490 if (minisdtls || maxisdtls) {
491 /* Do DTLS version checks. */
492 if (min_version == 0)
493 /* Ignore DTLS1_BAD_VER */
494 min_version = DTLS1_VERSION;
495 if (max_version == 0)
496 max_version = DTLS1_2_VERSION;
497 #ifdef OPENSSL_NO_DTLS1_2
498 if (max_version == DTLS1_2_VERSION)
499 max_version = DTLS1_VERSION;
500 #endif
501 #ifdef OPENSSL_NO_DTLS1
502 if (min_version == DTLS1_VERSION)
503 min_version = DTLS1_2_VERSION;
504 #endif
505 /* Done massaging versions; do the check. */
506 if (0
507 #ifdef OPENSSL_NO_DTLS1
508 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
509 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
510 #endif
511 #ifdef OPENSSL_NO_DTLS1_2
512 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
513 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
514 #endif
515 )
516 return 0;
517 } else {
518 /* Regular TLS version checks. */
519 if (min_version == 0)
520 min_version = SSL3_VERSION;
521 if (max_version == 0)
522 max_version = TLS1_3_VERSION;
523 #ifdef OPENSSL_NO_TLS1_3
524 if (max_version == TLS1_3_VERSION)
525 max_version = TLS1_2_VERSION;
526 #endif
527 #ifdef OPENSSL_NO_TLS1_2
528 if (max_version == TLS1_2_VERSION)
529 max_version = TLS1_1_VERSION;
530 #endif
531 #ifdef OPENSSL_NO_TLS1_1
532 if (max_version == TLS1_1_VERSION)
533 max_version = TLS1_VERSION;
534 #endif
535 #ifdef OPENSSL_NO_TLS1
536 if (max_version == TLS1_VERSION)
537 max_version = SSL3_VERSION;
538 #endif
539 #ifdef OPENSSL_NO_SSL3
540 if (min_version == SSL3_VERSION)
541 min_version = TLS1_VERSION;
542 #endif
543 #ifdef OPENSSL_NO_TLS1
544 if (min_version == TLS1_VERSION)
545 min_version = TLS1_1_VERSION;
546 #endif
547 #ifdef OPENSSL_NO_TLS1_1
548 if (min_version == TLS1_1_VERSION)
549 min_version = TLS1_2_VERSION;
550 #endif
551 #ifdef OPENSSL_NO_TLS1_2
552 if (min_version == TLS1_2_VERSION)
553 min_version = TLS1_3_VERSION;
554 #endif
555 /* Done massaging versions; do the check. */
556 if (0
557 #ifdef OPENSSL_NO_SSL3
558 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1
561 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
562 #endif
563 #ifdef OPENSSL_NO_TLS1_1
564 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
565 #endif
566 #ifdef OPENSSL_NO_TLS1_2
567 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
568 #endif
569 #ifdef OPENSSL_NO_TLS1_3
570 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
571 #endif
572 )
573 return 0;
574 }
575 return 1;
576 }
577
578 static void clear_ciphers(SSL *s)
579 {
580 /* clear the current cipher */
581 ssl_clear_cipher_ctx(s);
582 ssl_clear_hash_ctx(&s->read_hash);
583 ssl_clear_hash_ctx(&s->write_hash);
584 }
585
586 int SSL_clear(SSL *s)
587 {
588 if (s->method == NULL) {
589 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
590 return 0;
591 }
592
593 if (ssl_clear_bad_session(s)) {
594 SSL_SESSION_free(s->session);
595 s->session = NULL;
596 }
597 SSL_SESSION_free(s->psksession);
598 s->psksession = NULL;
599 OPENSSL_free(s->psksession_id);
600 s->psksession_id = NULL;
601 s->psksession_id_len = 0;
602 s->hello_retry_request = 0;
603 s->sent_tickets = 0;
604
605 s->error = 0;
606 s->hit = 0;
607 s->shutdown = 0;
608
609 if (s->renegotiate) {
610 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
611 return 0;
612 }
613
614 ossl_statem_clear(s);
615
616 s->version = s->method->version;
617 s->client_version = s->version;
618 s->rwstate = SSL_NOTHING;
619
620 BUF_MEM_free(s->init_buf);
621 s->init_buf = NULL;
622 clear_ciphers(s);
623 s->first_packet = 0;
624
625 s->key_update = SSL_KEY_UPDATE_NONE;
626
627 EVP_MD_CTX_free(s->pha_dgst);
628 s->pha_dgst = NULL;
629
630 /* Reset DANE verification result state */
631 s->dane.mdpth = -1;
632 s->dane.pdpth = -1;
633 X509_free(s->dane.mcert);
634 s->dane.mcert = NULL;
635 s->dane.mtlsa = NULL;
636
637 /* Clear the verification result peername */
638 X509_VERIFY_PARAM_move_peername(s->param, NULL);
639
640 /* Clear any shared connection state */
641 OPENSSL_free(s->shared_sigalgs);
642 s->shared_sigalgs = NULL;
643 s->shared_sigalgslen = 0;
644
645 /*
646 * Check to see if we were changed into a different method, if so, revert
647 * back.
648 */
649 if (s->method != s->ctx->method) {
650 s->method->ssl_free(s);
651 s->method = s->ctx->method;
652 if (!s->method->ssl_new(s))
653 return 0;
654 } else {
655 if (!s->method->ssl_clear(s))
656 return 0;
657 }
658
659 RECORD_LAYER_clear(&s->rlayer);
660
661 return 1;
662 }
663
664 /** Used to change an SSL_CTXs default SSL method type */
665 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
666 {
667 STACK_OF(SSL_CIPHER) *sk;
668
669 ctx->method = meth;
670
671 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
672 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
673 return 0;
674 }
675 sk = ssl_create_cipher_list(ctx->method,
676 ctx->tls13_ciphersuites,
677 &(ctx->cipher_list),
678 &(ctx->cipher_list_by_id),
679 OSSL_default_cipher_list(), ctx->cert);
680 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
681 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
682 return 0;
683 }
684 return 1;
685 }
686
687 SSL *SSL_new(SSL_CTX *ctx)
688 {
689 SSL *s;
690
691 if (ctx == NULL) {
692 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
693 return NULL;
694 }
695 if (ctx->method == NULL) {
696 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
697 return NULL;
698 }
699
700 s = OPENSSL_zalloc(sizeof(*s));
701 if (s == NULL)
702 goto err;
703
704 s->references = 1;
705 s->lock = CRYPTO_THREAD_lock_new();
706 if (s->lock == NULL) {
707 OPENSSL_free(s);
708 s = NULL;
709 goto err;
710 }
711
712 RECORD_LAYER_init(&s->rlayer, s);
713
714 s->options = ctx->options;
715 s->dane.flags = ctx->dane.flags;
716 s->min_proto_version = ctx->min_proto_version;
717 s->max_proto_version = ctx->max_proto_version;
718 s->mode = ctx->mode;
719 s->max_cert_list = ctx->max_cert_list;
720 s->max_early_data = ctx->max_early_data;
721 s->recv_max_early_data = ctx->recv_max_early_data;
722 s->num_tickets = ctx->num_tickets;
723 s->pha_enabled = ctx->pha_enabled;
724
725 /* Shallow copy of the ciphersuites stack */
726 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
727 if (s->tls13_ciphersuites == NULL)
728 goto err;
729
730 /*
731 * Earlier library versions used to copy the pointer to the CERT, not
732 * its contents; only when setting new parameters for the per-SSL
733 * copy, ssl_cert_new would be called (and the direct reference to
734 * the per-SSL_CTX settings would be lost, but those still were
735 * indirectly accessed for various purposes, and for that reason they
736 * used to be known as s->ctx->default_cert). Now we don't look at the
737 * SSL_CTX's CERT after having duplicated it once.
738 */
739 s->cert = ssl_cert_dup(ctx->cert);
740 if (s->cert == NULL)
741 goto err;
742
743 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
744 s->msg_callback = ctx->msg_callback;
745 s->msg_callback_arg = ctx->msg_callback_arg;
746 s->verify_mode = ctx->verify_mode;
747 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
748 s->record_padding_cb = ctx->record_padding_cb;
749 s->record_padding_arg = ctx->record_padding_arg;
750 s->block_padding = ctx->block_padding;
751 s->sid_ctx_length = ctx->sid_ctx_length;
752 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
753 goto err;
754 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
755 s->verify_callback = ctx->default_verify_callback;
756 s->generate_session_id = ctx->generate_session_id;
757
758 s->param = X509_VERIFY_PARAM_new();
759 if (s->param == NULL)
760 goto err;
761 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
762 s->quiet_shutdown = ctx->quiet_shutdown;
763
764 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
765 s->max_send_fragment = ctx->max_send_fragment;
766 s->split_send_fragment = ctx->split_send_fragment;
767 s->max_pipelines = ctx->max_pipelines;
768 if (s->max_pipelines > 1)
769 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
770 if (ctx->default_read_buf_len > 0)
771 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
772
773 SSL_CTX_up_ref(ctx);
774 s->ctx = ctx;
775 s->ext.debug_cb = 0;
776 s->ext.debug_arg = NULL;
777 s->ext.ticket_expected = 0;
778 s->ext.status_type = ctx->ext.status_type;
779 s->ext.status_expected = 0;
780 s->ext.ocsp.ids = NULL;
781 s->ext.ocsp.exts = NULL;
782 s->ext.ocsp.resp = NULL;
783 s->ext.ocsp.resp_len = 0;
784 SSL_CTX_up_ref(ctx);
785 s->session_ctx = ctx;
786 #ifndef OPENSSL_NO_EC
787 if (ctx->ext.ecpointformats) {
788 s->ext.ecpointformats =
789 OPENSSL_memdup(ctx->ext.ecpointformats,
790 ctx->ext.ecpointformats_len);
791 if (!s->ext.ecpointformats)
792 goto err;
793 s->ext.ecpointformats_len =
794 ctx->ext.ecpointformats_len;
795 }
796 #endif
797 if (ctx->ext.supportedgroups) {
798 s->ext.supportedgroups =
799 OPENSSL_memdup(ctx->ext.supportedgroups,
800 ctx->ext.supportedgroups_len
801 * sizeof(*ctx->ext.supportedgroups));
802 if (!s->ext.supportedgroups)
803 goto err;
804 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
805 }
806
807 #ifndef OPENSSL_NO_NEXTPROTONEG
808 s->ext.npn = NULL;
809 #endif
810
811 if (s->ctx->ext.alpn) {
812 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
813 if (s->ext.alpn == NULL)
814 goto err;
815 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
816 s->ext.alpn_len = s->ctx->ext.alpn_len;
817 }
818
819 s->verified_chain = NULL;
820 s->verify_result = X509_V_OK;
821
822 s->default_passwd_callback = ctx->default_passwd_callback;
823 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
824
825 s->method = ctx->method;
826
827 s->key_update = SSL_KEY_UPDATE_NONE;
828
829 s->allow_early_data_cb = ctx->allow_early_data_cb;
830 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
831
832 if (!s->method->ssl_new(s))
833 goto err;
834
835 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
836
837 if (!SSL_clear(s))
838 goto err;
839
840 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
841 goto err;
842
843 #ifndef OPENSSL_NO_PSK
844 s->psk_client_callback = ctx->psk_client_callback;
845 s->psk_server_callback = ctx->psk_server_callback;
846 #endif
847 s->psk_find_session_cb = ctx->psk_find_session_cb;
848 s->psk_use_session_cb = ctx->psk_use_session_cb;
849
850 s->async_cb = ctx->async_cb;
851 s->async_cb_arg = ctx->async_cb_arg;
852
853 s->job = NULL;
854
855 #ifndef OPENSSL_NO_CT
856 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
857 ctx->ct_validation_callback_arg))
858 goto err;
859 #endif
860
861 return s;
862 err:
863 SSL_free(s);
864 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
865 return NULL;
866 }
867
868 int SSL_is_dtls(const SSL *s)
869 {
870 return SSL_IS_DTLS(s) ? 1 : 0;
871 }
872
873 int SSL_up_ref(SSL *s)
874 {
875 int i;
876
877 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
878 return 0;
879
880 REF_PRINT_COUNT("SSL", s);
881 REF_ASSERT_ISNT(i < 2);
882 return ((i > 1) ? 1 : 0);
883 }
884
885 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
886 unsigned int sid_ctx_len)
887 {
888 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
889 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
890 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
891 return 0;
892 }
893 ctx->sid_ctx_length = sid_ctx_len;
894 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
895
896 return 1;
897 }
898
899 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
900 unsigned int sid_ctx_len)
901 {
902 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
903 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
904 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
905 return 0;
906 }
907 ssl->sid_ctx_length = sid_ctx_len;
908 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
909
910 return 1;
911 }
912
913 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
914 {
915 CRYPTO_THREAD_write_lock(ctx->lock);
916 ctx->generate_session_id = cb;
917 CRYPTO_THREAD_unlock(ctx->lock);
918 return 1;
919 }
920
921 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
922 {
923 CRYPTO_THREAD_write_lock(ssl->lock);
924 ssl->generate_session_id = cb;
925 CRYPTO_THREAD_unlock(ssl->lock);
926 return 1;
927 }
928
929 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
930 unsigned int id_len)
931 {
932 /*
933 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
934 * we can "construct" a session to give us the desired check - i.e. to
935 * find if there's a session in the hash table that would conflict with
936 * any new session built out of this id/id_len and the ssl_version in use
937 * by this SSL.
938 */
939 SSL_SESSION r, *p;
940
941 if (id_len > sizeof(r.session_id))
942 return 0;
943
944 r.ssl_version = ssl->version;
945 r.session_id_length = id_len;
946 memcpy(r.session_id, id, id_len);
947
948 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
949 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
950 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
951 return (p != NULL);
952 }
953
954 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
955 {
956 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
957 }
958
959 int SSL_set_purpose(SSL *s, int purpose)
960 {
961 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
962 }
963
964 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
965 {
966 return X509_VERIFY_PARAM_set_trust(s->param, trust);
967 }
968
969 int SSL_set_trust(SSL *s, int trust)
970 {
971 return X509_VERIFY_PARAM_set_trust(s->param, trust);
972 }
973
974 int SSL_set1_host(SSL *s, const char *hostname)
975 {
976 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
977 }
978
979 int SSL_add1_host(SSL *s, const char *hostname)
980 {
981 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
982 }
983
984 void SSL_set_hostflags(SSL *s, unsigned int flags)
985 {
986 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
987 }
988
989 const char *SSL_get0_peername(SSL *s)
990 {
991 return X509_VERIFY_PARAM_get0_peername(s->param);
992 }
993
994 int SSL_CTX_dane_enable(SSL_CTX *ctx)
995 {
996 return dane_ctx_enable(&ctx->dane);
997 }
998
999 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
1000 {
1001 unsigned long orig = ctx->dane.flags;
1002
1003 ctx->dane.flags |= flags;
1004 return orig;
1005 }
1006
1007 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1008 {
1009 unsigned long orig = ctx->dane.flags;
1010
1011 ctx->dane.flags &= ~flags;
1012 return orig;
1013 }
1014
1015 int SSL_dane_enable(SSL *s, const char *basedomain)
1016 {
1017 SSL_DANE *dane = &s->dane;
1018
1019 if (s->ctx->dane.mdmax == 0) {
1020 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1021 return 0;
1022 }
1023 if (dane->trecs != NULL) {
1024 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1025 return 0;
1026 }
1027
1028 /*
1029 * Default SNI name. This rejects empty names, while set1_host below
1030 * accepts them and disables host name checks. To avoid side-effects with
1031 * invalid input, set the SNI name first.
1032 */
1033 if (s->ext.hostname == NULL) {
1034 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1035 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1036 return -1;
1037 }
1038 }
1039
1040 /* Primary RFC6125 reference identifier */
1041 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1042 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1043 return -1;
1044 }
1045
1046 dane->mdpth = -1;
1047 dane->pdpth = -1;
1048 dane->dctx = &s->ctx->dane;
1049 dane->trecs = sk_danetls_record_new_null();
1050
1051 if (dane->trecs == NULL) {
1052 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1053 return -1;
1054 }
1055 return 1;
1056 }
1057
1058 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1059 {
1060 unsigned long orig = ssl->dane.flags;
1061
1062 ssl->dane.flags |= flags;
1063 return orig;
1064 }
1065
1066 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1067 {
1068 unsigned long orig = ssl->dane.flags;
1069
1070 ssl->dane.flags &= ~flags;
1071 return orig;
1072 }
1073
1074 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1075 {
1076 SSL_DANE *dane = &s->dane;
1077
1078 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1079 return -1;
1080 if (dane->mtlsa) {
1081 if (mcert)
1082 *mcert = dane->mcert;
1083 if (mspki)
1084 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1085 }
1086 return dane->mdpth;
1087 }
1088
1089 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1090 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1091 {
1092 SSL_DANE *dane = &s->dane;
1093
1094 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1095 return -1;
1096 if (dane->mtlsa) {
1097 if (usage)
1098 *usage = dane->mtlsa->usage;
1099 if (selector)
1100 *selector = dane->mtlsa->selector;
1101 if (mtype)
1102 *mtype = dane->mtlsa->mtype;
1103 if (data)
1104 *data = dane->mtlsa->data;
1105 if (dlen)
1106 *dlen = dane->mtlsa->dlen;
1107 }
1108 return dane->mdpth;
1109 }
1110
1111 SSL_DANE *SSL_get0_dane(SSL *s)
1112 {
1113 return &s->dane;
1114 }
1115
1116 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1117 uint8_t mtype, unsigned const char *data, size_t dlen)
1118 {
1119 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1120 }
1121
1122 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1123 uint8_t ord)
1124 {
1125 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1126 }
1127
1128 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1129 {
1130 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1131 }
1132
1133 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1134 {
1135 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1136 }
1137
1138 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1139 {
1140 return ctx->param;
1141 }
1142
1143 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1144 {
1145 return ssl->param;
1146 }
1147
1148 void SSL_certs_clear(SSL *s)
1149 {
1150 ssl_cert_clear_certs(s->cert);
1151 }
1152
1153 void SSL_free(SSL *s)
1154 {
1155 int i;
1156
1157 if (s == NULL)
1158 return;
1159 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1160 REF_PRINT_COUNT("SSL", s);
1161 if (i > 0)
1162 return;
1163 REF_ASSERT_ISNT(i < 0);
1164
1165 X509_VERIFY_PARAM_free(s->param);
1166 dane_final(&s->dane);
1167 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1168
1169 RECORD_LAYER_release(&s->rlayer);
1170
1171 /* Ignore return value */
1172 ssl_free_wbio_buffer(s);
1173
1174 BIO_free_all(s->wbio);
1175 s->wbio = NULL;
1176 BIO_free_all(s->rbio);
1177 s->rbio = NULL;
1178
1179 BUF_MEM_free(s->init_buf);
1180
1181 /* add extra stuff */
1182 sk_SSL_CIPHER_free(s->cipher_list);
1183 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1184 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1185 sk_SSL_CIPHER_free(s->peer_ciphers);
1186
1187 /* Make the next call work :-) */
1188 if (s->session != NULL) {
1189 ssl_clear_bad_session(s);
1190 SSL_SESSION_free(s->session);
1191 }
1192 SSL_SESSION_free(s->psksession);
1193 OPENSSL_free(s->psksession_id);
1194
1195 clear_ciphers(s);
1196
1197 ssl_cert_free(s->cert);
1198 OPENSSL_free(s->shared_sigalgs);
1199 /* Free up if allocated */
1200
1201 OPENSSL_free(s->ext.hostname);
1202 SSL_CTX_free(s->session_ctx);
1203 #ifndef OPENSSL_NO_EC
1204 OPENSSL_free(s->ext.ecpointformats);
1205 OPENSSL_free(s->ext.peer_ecpointformats);
1206 #endif /* OPENSSL_NO_EC */
1207 OPENSSL_free(s->ext.supportedgroups);
1208 OPENSSL_free(s->ext.peer_supportedgroups);
1209 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1210 #ifndef OPENSSL_NO_OCSP
1211 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1212 #endif
1213 #ifndef OPENSSL_NO_CT
1214 SCT_LIST_free(s->scts);
1215 OPENSSL_free(s->ext.scts);
1216 #endif
1217 OPENSSL_free(s->ext.ocsp.resp);
1218 OPENSSL_free(s->ext.alpn);
1219 OPENSSL_free(s->ext.tls13_cookie);
1220 OPENSSL_free(s->clienthello);
1221 OPENSSL_free(s->pha_context);
1222 EVP_MD_CTX_free(s->pha_dgst);
1223
1224 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1225 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1226
1227 sk_X509_pop_free(s->verified_chain, X509_free);
1228
1229 if (s->method != NULL)
1230 s->method->ssl_free(s);
1231
1232 SSL_CTX_free(s->ctx);
1233
1234 ASYNC_WAIT_CTX_free(s->waitctx);
1235
1236 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1237 OPENSSL_free(s->ext.npn);
1238 #endif
1239
1240 #ifndef OPENSSL_NO_SRTP
1241 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1242 #endif
1243
1244 CRYPTO_THREAD_lock_free(s->lock);
1245
1246 OPENSSL_free(s);
1247 }
1248
1249 void SSL_set0_rbio(SSL *s, BIO *rbio)
1250 {
1251 BIO_free_all(s->rbio);
1252 s->rbio = rbio;
1253 }
1254
1255 void SSL_set0_wbio(SSL *s, BIO *wbio)
1256 {
1257 /*
1258 * If the output buffering BIO is still in place, remove it
1259 */
1260 if (s->bbio != NULL)
1261 s->wbio = BIO_pop(s->wbio);
1262
1263 BIO_free_all(s->wbio);
1264 s->wbio = wbio;
1265
1266 /* Re-attach |bbio| to the new |wbio|. */
1267 if (s->bbio != NULL)
1268 s->wbio = BIO_push(s->bbio, s->wbio);
1269 }
1270
1271 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1272 {
1273 /*
1274 * For historical reasons, this function has many different cases in
1275 * ownership handling.
1276 */
1277
1278 /* If nothing has changed, do nothing */
1279 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1280 return;
1281
1282 /*
1283 * If the two arguments are equal then one fewer reference is granted by the
1284 * caller than we want to take
1285 */
1286 if (rbio != NULL && rbio == wbio)
1287 BIO_up_ref(rbio);
1288
1289 /*
1290 * If only the wbio is changed only adopt one reference.
1291 */
1292 if (rbio == SSL_get_rbio(s)) {
1293 SSL_set0_wbio(s, wbio);
1294 return;
1295 }
1296 /*
1297 * There is an asymmetry here for historical reasons. If only the rbio is
1298 * changed AND the rbio and wbio were originally different, then we only
1299 * adopt one reference.
1300 */
1301 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1302 SSL_set0_rbio(s, rbio);
1303 return;
1304 }
1305
1306 /* Otherwise, adopt both references. */
1307 SSL_set0_rbio(s, rbio);
1308 SSL_set0_wbio(s, wbio);
1309 }
1310
1311 BIO *SSL_get_rbio(const SSL *s)
1312 {
1313 return s->rbio;
1314 }
1315
1316 BIO *SSL_get_wbio(const SSL *s)
1317 {
1318 if (s->bbio != NULL) {
1319 /*
1320 * If |bbio| is active, the true caller-configured BIO is its
1321 * |next_bio|.
1322 */
1323 return BIO_next(s->bbio);
1324 }
1325 return s->wbio;
1326 }
1327
1328 int SSL_get_fd(const SSL *s)
1329 {
1330 return SSL_get_rfd(s);
1331 }
1332
1333 int SSL_get_rfd(const SSL *s)
1334 {
1335 int ret = -1;
1336 BIO *b, *r;
1337
1338 b = SSL_get_rbio(s);
1339 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1340 if (r != NULL)
1341 BIO_get_fd(r, &ret);
1342 return ret;
1343 }
1344
1345 int SSL_get_wfd(const SSL *s)
1346 {
1347 int ret = -1;
1348 BIO *b, *r;
1349
1350 b = SSL_get_wbio(s);
1351 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1352 if (r != NULL)
1353 BIO_get_fd(r, &ret);
1354 return ret;
1355 }
1356
1357 #ifndef OPENSSL_NO_SOCK
1358 int SSL_set_fd(SSL *s, int fd)
1359 {
1360 int ret = 0;
1361 BIO *bio = NULL;
1362
1363 bio = BIO_new(BIO_s_socket());
1364
1365 if (bio == NULL) {
1366 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1367 goto err;
1368 }
1369 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1370 SSL_set_bio(s, bio, bio);
1371 #ifndef OPENSSL_NO_KTLS
1372 /*
1373 * The new socket is created successfully regardless of ktls_enable.
1374 * ktls_enable doesn't change any functionality of the socket, except
1375 * changing the setsockopt to enable the processing of ktls_start.
1376 * Thus, it is not a problem to call it for non-TLS sockets.
1377 */
1378 ktls_enable(fd);
1379 #endif /* OPENSSL_NO_KTLS */
1380 ret = 1;
1381 err:
1382 return ret;
1383 }
1384
1385 int SSL_set_wfd(SSL *s, int fd)
1386 {
1387 BIO *rbio = SSL_get_rbio(s);
1388
1389 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1390 || (int)BIO_get_fd(rbio, NULL) != fd) {
1391 BIO *bio = BIO_new(BIO_s_socket());
1392
1393 if (bio == NULL) {
1394 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1395 return 0;
1396 }
1397 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1398 SSL_set0_wbio(s, bio);
1399 #ifndef OPENSSL_NO_KTLS
1400 /*
1401 * The new socket is created successfully regardless of ktls_enable.
1402 * ktls_enable doesn't change any functionality of the socket, except
1403 * changing the setsockopt to enable the processing of ktls_start.
1404 * Thus, it is not a problem to call it for non-TLS sockets.
1405 */
1406 ktls_enable(fd);
1407 #endif /* OPENSSL_NO_KTLS */
1408 } else {
1409 BIO_up_ref(rbio);
1410 SSL_set0_wbio(s, rbio);
1411 }
1412 return 1;
1413 }
1414
1415 int SSL_set_rfd(SSL *s, int fd)
1416 {
1417 BIO *wbio = SSL_get_wbio(s);
1418
1419 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1420 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1421 BIO *bio = BIO_new(BIO_s_socket());
1422
1423 if (bio == NULL) {
1424 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1425 return 0;
1426 }
1427 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1428 SSL_set0_rbio(s, bio);
1429 } else {
1430 BIO_up_ref(wbio);
1431 SSL_set0_rbio(s, wbio);
1432 }
1433
1434 return 1;
1435 }
1436 #endif
1437
1438 /* return length of latest Finished message we sent, copy to 'buf' */
1439 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1440 {
1441 size_t ret = 0;
1442
1443 ret = s->s3.tmp.finish_md_len;
1444 if (count > ret)
1445 count = ret;
1446 memcpy(buf, s->s3.tmp.finish_md, count);
1447 return ret;
1448 }
1449
1450 /* return length of latest Finished message we expected, copy to 'buf' */
1451 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1452 {
1453 size_t ret = 0;
1454
1455 ret = s->s3.tmp.peer_finish_md_len;
1456 if (count > ret)
1457 count = ret;
1458 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1459 return ret;
1460 }
1461
1462 int SSL_get_verify_mode(const SSL *s)
1463 {
1464 return s->verify_mode;
1465 }
1466
1467 int SSL_get_verify_depth(const SSL *s)
1468 {
1469 return X509_VERIFY_PARAM_get_depth(s->param);
1470 }
1471
1472 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1473 return s->verify_callback;
1474 }
1475
1476 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1477 {
1478 return ctx->verify_mode;
1479 }
1480
1481 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1482 {
1483 return X509_VERIFY_PARAM_get_depth(ctx->param);
1484 }
1485
1486 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1487 return ctx->default_verify_callback;
1488 }
1489
1490 void SSL_set_verify(SSL *s, int mode,
1491 int (*callback) (int ok, X509_STORE_CTX *ctx))
1492 {
1493 s->verify_mode = mode;
1494 if (callback != NULL)
1495 s->verify_callback = callback;
1496 }
1497
1498 void SSL_set_verify_depth(SSL *s, int depth)
1499 {
1500 X509_VERIFY_PARAM_set_depth(s->param, depth);
1501 }
1502
1503 void SSL_set_read_ahead(SSL *s, int yes)
1504 {
1505 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1506 }
1507
1508 int SSL_get_read_ahead(const SSL *s)
1509 {
1510 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1511 }
1512
1513 int SSL_pending(const SSL *s)
1514 {
1515 size_t pending = s->method->ssl_pending(s);
1516
1517 /*
1518 * SSL_pending cannot work properly if read-ahead is enabled
1519 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1520 * impossible to fix since SSL_pending cannot report errors that may be
1521 * observed while scanning the new data. (Note that SSL_pending() is
1522 * often used as a boolean value, so we'd better not return -1.)
1523 *
1524 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1525 * we just return INT_MAX.
1526 */
1527 return pending < INT_MAX ? (int)pending : INT_MAX;
1528 }
1529
1530 int SSL_has_pending(const SSL *s)
1531 {
1532 /*
1533 * Similar to SSL_pending() but returns a 1 to indicate that we have
1534 * unprocessed data available or 0 otherwise (as opposed to the number of
1535 * bytes available). Unlike SSL_pending() this will take into account
1536 * read_ahead data. A 1 return simply indicates that we have unprocessed
1537 * data. That data may not result in any application data, or we may fail
1538 * to parse the records for some reason.
1539 */
1540 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1541 return 1;
1542
1543 return RECORD_LAYER_read_pending(&s->rlayer);
1544 }
1545
1546 X509 *SSL_get_peer_certificate(const SSL *s)
1547 {
1548 X509 *r;
1549
1550 if ((s == NULL) || (s->session == NULL))
1551 r = NULL;
1552 else
1553 r = s->session->peer;
1554
1555 if (r == NULL)
1556 return r;
1557
1558 X509_up_ref(r);
1559
1560 return r;
1561 }
1562
1563 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1564 {
1565 STACK_OF(X509) *r;
1566
1567 if ((s == NULL) || (s->session == NULL))
1568 r = NULL;
1569 else
1570 r = s->session->peer_chain;
1571
1572 /*
1573 * If we are a client, cert_chain includes the peer's own certificate; if
1574 * we are a server, it does not.
1575 */
1576
1577 return r;
1578 }
1579
1580 /*
1581 * Now in theory, since the calling process own 't' it should be safe to
1582 * modify. We need to be able to read f without being hassled
1583 */
1584 int SSL_copy_session_id(SSL *t, const SSL *f)
1585 {
1586 int i;
1587 /* Do we need to to SSL locking? */
1588 if (!SSL_set_session(t, SSL_get_session(f))) {
1589 return 0;
1590 }
1591
1592 /*
1593 * what if we are setup for one protocol version but want to talk another
1594 */
1595 if (t->method != f->method) {
1596 t->method->ssl_free(t);
1597 t->method = f->method;
1598 if (t->method->ssl_new(t) == 0)
1599 return 0;
1600 }
1601
1602 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1603 ssl_cert_free(t->cert);
1604 t->cert = f->cert;
1605 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1606 return 0;
1607 }
1608
1609 return 1;
1610 }
1611
1612 /* Fix this so it checks all the valid key/cert options */
1613 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1614 {
1615 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1616 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1617 return 0;
1618 }
1619 if (ctx->cert->key->privatekey == NULL) {
1620 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1621 return 0;
1622 }
1623 return X509_check_private_key
1624 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1625 }
1626
1627 /* Fix this function so that it takes an optional type parameter */
1628 int SSL_check_private_key(const SSL *ssl)
1629 {
1630 if (ssl == NULL) {
1631 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1632 return 0;
1633 }
1634 if (ssl->cert->key->x509 == NULL) {
1635 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1636 return 0;
1637 }
1638 if (ssl->cert->key->privatekey == NULL) {
1639 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1640 return 0;
1641 }
1642 return X509_check_private_key(ssl->cert->key->x509,
1643 ssl->cert->key->privatekey);
1644 }
1645
1646 int SSL_waiting_for_async(SSL *s)
1647 {
1648 if (s->job)
1649 return 1;
1650
1651 return 0;
1652 }
1653
1654 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1655 {
1656 ASYNC_WAIT_CTX *ctx = s->waitctx;
1657
1658 if (ctx == NULL)
1659 return 0;
1660 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1661 }
1662
1663 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1664 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1665 {
1666 ASYNC_WAIT_CTX *ctx = s->waitctx;
1667
1668 if (ctx == NULL)
1669 return 0;
1670 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1671 numdelfds);
1672 }
1673
1674 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1675 {
1676 ctx->async_cb = callback;
1677 return 1;
1678 }
1679
1680 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1681 {
1682 ctx->async_cb_arg = arg;
1683 return 1;
1684 }
1685
1686 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1687 {
1688 s->async_cb = callback;
1689 return 1;
1690 }
1691
1692 int SSL_set_async_callback_arg(SSL *s, void *arg)
1693 {
1694 s->async_cb_arg = arg;
1695 return 1;
1696 }
1697
1698 int SSL_get_async_status(SSL *s, int *status)
1699 {
1700 ASYNC_WAIT_CTX *ctx = s->waitctx;
1701
1702 if (ctx == NULL)
1703 return 0;
1704 *status = ASYNC_WAIT_CTX_get_status(ctx);
1705 return 1;
1706 }
1707
1708 int SSL_accept(SSL *s)
1709 {
1710 if (s->handshake_func == NULL) {
1711 /* Not properly initialized yet */
1712 SSL_set_accept_state(s);
1713 }
1714
1715 return SSL_do_handshake(s);
1716 }
1717
1718 int SSL_connect(SSL *s)
1719 {
1720 if (s->handshake_func == NULL) {
1721 /* Not properly initialized yet */
1722 SSL_set_connect_state(s);
1723 }
1724
1725 return SSL_do_handshake(s);
1726 }
1727
1728 long SSL_get_default_timeout(const SSL *s)
1729 {
1730 return s->method->get_timeout();
1731 }
1732
1733 static int ssl_async_wait_ctx_cb(void *arg)
1734 {
1735 SSL *s = (SSL *)arg;
1736
1737 return s->async_cb(s, s->async_cb_arg);
1738 }
1739
1740 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1741 int (*func) (void *))
1742 {
1743 int ret;
1744 if (s->waitctx == NULL) {
1745 s->waitctx = ASYNC_WAIT_CTX_new();
1746 if (s->waitctx == NULL)
1747 return -1;
1748 if (s->async_cb != NULL
1749 && !ASYNC_WAIT_CTX_set_callback
1750 (s->waitctx, ssl_async_wait_ctx_cb, s))
1751 return -1;
1752 }
1753 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1754 sizeof(struct ssl_async_args))) {
1755 case ASYNC_ERR:
1756 s->rwstate = SSL_NOTHING;
1757 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1758 return -1;
1759 case ASYNC_PAUSE:
1760 s->rwstate = SSL_ASYNC_PAUSED;
1761 return -1;
1762 case ASYNC_NO_JOBS:
1763 s->rwstate = SSL_ASYNC_NO_JOBS;
1764 return -1;
1765 case ASYNC_FINISH:
1766 s->job = NULL;
1767 return ret;
1768 default:
1769 s->rwstate = SSL_NOTHING;
1770 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1771 /* Shouldn't happen */
1772 return -1;
1773 }
1774 }
1775
1776 static int ssl_io_intern(void *vargs)
1777 {
1778 struct ssl_async_args *args;
1779 SSL *s;
1780 void *buf;
1781 size_t num;
1782
1783 args = (struct ssl_async_args *)vargs;
1784 s = args->s;
1785 buf = args->buf;
1786 num = args->num;
1787 switch (args->type) {
1788 case READFUNC:
1789 return args->f.func_read(s, buf, num, &s->asyncrw);
1790 case WRITEFUNC:
1791 return args->f.func_write(s, buf, num, &s->asyncrw);
1792 case OTHERFUNC:
1793 return args->f.func_other(s);
1794 }
1795 return -1;
1796 }
1797
1798 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1799 {
1800 if (s->handshake_func == NULL) {
1801 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1802 return -1;
1803 }
1804
1805 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1806 s->rwstate = SSL_NOTHING;
1807 return 0;
1808 }
1809
1810 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1811 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1812 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1813 return 0;
1814 }
1815 /*
1816 * If we are a client and haven't received the ServerHello etc then we
1817 * better do that
1818 */
1819 ossl_statem_check_finish_init(s, 0);
1820
1821 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1822 struct ssl_async_args args;
1823 int ret;
1824
1825 args.s = s;
1826 args.buf = buf;
1827 args.num = num;
1828 args.type = READFUNC;
1829 args.f.func_read = s->method->ssl_read;
1830
1831 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1832 *readbytes = s->asyncrw;
1833 return ret;
1834 } else {
1835 return s->method->ssl_read(s, buf, num, readbytes);
1836 }
1837 }
1838
1839 int SSL_read(SSL *s, void *buf, int num)
1840 {
1841 int ret;
1842 size_t readbytes;
1843
1844 if (num < 0) {
1845 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1846 return -1;
1847 }
1848
1849 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1850
1851 /*
1852 * The cast is safe here because ret should be <= INT_MAX because num is
1853 * <= INT_MAX
1854 */
1855 if (ret > 0)
1856 ret = (int)readbytes;
1857
1858 return ret;
1859 }
1860
1861 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1862 {
1863 int ret = ssl_read_internal(s, buf, num, readbytes);
1864
1865 if (ret < 0)
1866 ret = 0;
1867 return ret;
1868 }
1869
1870 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1871 {
1872 int ret;
1873
1874 if (!s->server) {
1875 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1876 return SSL_READ_EARLY_DATA_ERROR;
1877 }
1878
1879 switch (s->early_data_state) {
1880 case SSL_EARLY_DATA_NONE:
1881 if (!SSL_in_before(s)) {
1882 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1883 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1884 return SSL_READ_EARLY_DATA_ERROR;
1885 }
1886 /* fall through */
1887
1888 case SSL_EARLY_DATA_ACCEPT_RETRY:
1889 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1890 ret = SSL_accept(s);
1891 if (ret <= 0) {
1892 /* NBIO or error */
1893 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1894 return SSL_READ_EARLY_DATA_ERROR;
1895 }
1896 /* fall through */
1897
1898 case SSL_EARLY_DATA_READ_RETRY:
1899 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1900 s->early_data_state = SSL_EARLY_DATA_READING;
1901 ret = SSL_read_ex(s, buf, num, readbytes);
1902 /*
1903 * State machine will update early_data_state to
1904 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1905 * message
1906 */
1907 if (ret > 0 || (ret <= 0 && s->early_data_state
1908 != SSL_EARLY_DATA_FINISHED_READING)) {
1909 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1910 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1911 : SSL_READ_EARLY_DATA_ERROR;
1912 }
1913 } else {
1914 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1915 }
1916 *readbytes = 0;
1917 return SSL_READ_EARLY_DATA_FINISH;
1918
1919 default:
1920 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1921 return SSL_READ_EARLY_DATA_ERROR;
1922 }
1923 }
1924
1925 int SSL_get_early_data_status(const SSL *s)
1926 {
1927 return s->ext.early_data;
1928 }
1929
1930 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1931 {
1932 if (s->handshake_func == NULL) {
1933 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1934 return -1;
1935 }
1936
1937 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1938 return 0;
1939 }
1940 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1941 struct ssl_async_args args;
1942 int ret;
1943
1944 args.s = s;
1945 args.buf = buf;
1946 args.num = num;
1947 args.type = READFUNC;
1948 args.f.func_read = s->method->ssl_peek;
1949
1950 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1951 *readbytes = s->asyncrw;
1952 return ret;
1953 } else {
1954 return s->method->ssl_peek(s, buf, num, readbytes);
1955 }
1956 }
1957
1958 int SSL_peek(SSL *s, void *buf, int num)
1959 {
1960 int ret;
1961 size_t readbytes;
1962
1963 if (num < 0) {
1964 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1965 return -1;
1966 }
1967
1968 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1969
1970 /*
1971 * The cast is safe here because ret should be <= INT_MAX because num is
1972 * <= INT_MAX
1973 */
1974 if (ret > 0)
1975 ret = (int)readbytes;
1976
1977 return ret;
1978 }
1979
1980
1981 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1982 {
1983 int ret = ssl_peek_internal(s, buf, num, readbytes);
1984
1985 if (ret < 0)
1986 ret = 0;
1987 return ret;
1988 }
1989
1990 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1991 {
1992 if (s->handshake_func == NULL) {
1993 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1994 return -1;
1995 }
1996
1997 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1998 s->rwstate = SSL_NOTHING;
1999 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2000 return -1;
2001 }
2002
2003 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
2004 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
2005 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
2006 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2007 return 0;
2008 }
2009 /* If we are a client and haven't sent the Finished we better do that */
2010 ossl_statem_check_finish_init(s, 1);
2011
2012 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2013 int ret;
2014 struct ssl_async_args args;
2015
2016 args.s = s;
2017 args.buf = (void *)buf;
2018 args.num = num;
2019 args.type = WRITEFUNC;
2020 args.f.func_write = s->method->ssl_write;
2021
2022 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2023 *written = s->asyncrw;
2024 return ret;
2025 } else {
2026 return s->method->ssl_write(s, buf, num, written);
2027 }
2028 }
2029
2030 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2031 {
2032 ossl_ssize_t ret;
2033
2034 if (s->handshake_func == NULL) {
2035 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2036 return -1;
2037 }
2038
2039 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2040 s->rwstate = SSL_NOTHING;
2041 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN);
2042 return -1;
2043 }
2044
2045 if (!BIO_get_ktls_send(s->wbio)) {
2046 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2047 return -1;
2048 }
2049
2050 /* If we have an alert to send, lets send it */
2051 if (s->s3.alert_dispatch) {
2052 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2053 if (ret <= 0) {
2054 /* SSLfatal() already called if appropriate */
2055 return ret;
2056 }
2057 /* if it went, fall through and send more stuff */
2058 }
2059
2060 s->rwstate = SSL_WRITING;
2061 if (BIO_flush(s->wbio) <= 0) {
2062 if (!BIO_should_retry(s->wbio)) {
2063 s->rwstate = SSL_NOTHING;
2064 } else {
2065 #ifdef EAGAIN
2066 set_sys_error(EAGAIN);
2067 #endif
2068 }
2069 return -1;
2070 }
2071
2072 #ifdef OPENSSL_NO_KTLS
2073 ERR_raise_data(ERR_LIB_SYS, ERR_R_INTERNAL_ERROR, "calling sendfile()");
2074 return -1;
2075 #else
2076 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2077 if (ret < 0) {
2078 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2079 if ((get_last_sys_error() == EAGAIN) ||
2080 (get_last_sys_error() == EINTR) ||
2081 (get_last_sys_error() == EBUSY))
2082 BIO_set_retry_write(s->wbio);
2083 else
2084 #endif
2085 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2086 return ret;
2087 }
2088 s->rwstate = SSL_NOTHING;
2089 return ret;
2090 #endif
2091 }
2092
2093 int SSL_write(SSL *s, const void *buf, int num)
2094 {
2095 int ret;
2096 size_t written;
2097
2098 if (num < 0) {
2099 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
2100 return -1;
2101 }
2102
2103 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2104
2105 /*
2106 * The cast is safe here because ret should be <= INT_MAX because num is
2107 * <= INT_MAX
2108 */
2109 if (ret > 0)
2110 ret = (int)written;
2111
2112 return ret;
2113 }
2114
2115 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2116 {
2117 int ret = ssl_write_internal(s, buf, num, written);
2118
2119 if (ret < 0)
2120 ret = 0;
2121 return ret;
2122 }
2123
2124 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2125 {
2126 int ret, early_data_state;
2127 size_t writtmp;
2128 uint32_t partialwrite;
2129
2130 switch (s->early_data_state) {
2131 case SSL_EARLY_DATA_NONE:
2132 if (s->server
2133 || !SSL_in_before(s)
2134 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2135 && (s->psk_use_session_cb == NULL))) {
2136 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
2137 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2138 return 0;
2139 }
2140 /* fall through */
2141
2142 case SSL_EARLY_DATA_CONNECT_RETRY:
2143 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2144 ret = SSL_connect(s);
2145 if (ret <= 0) {
2146 /* NBIO or error */
2147 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2148 return 0;
2149 }
2150 /* fall through */
2151
2152 case SSL_EARLY_DATA_WRITE_RETRY:
2153 s->early_data_state = SSL_EARLY_DATA_WRITING;
2154 /*
2155 * We disable partial write for early data because we don't keep track
2156 * of how many bytes we've written between the SSL_write_ex() call and
2157 * the flush if the flush needs to be retried)
2158 */
2159 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2160 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2161 ret = SSL_write_ex(s, buf, num, &writtmp);
2162 s->mode |= partialwrite;
2163 if (!ret) {
2164 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2165 return ret;
2166 }
2167 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2168 /* fall through */
2169
2170 case SSL_EARLY_DATA_WRITE_FLUSH:
2171 /* The buffering BIO is still in place so we need to flush it */
2172 if (statem_flush(s) != 1)
2173 return 0;
2174 *written = num;
2175 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2176 return 1;
2177
2178 case SSL_EARLY_DATA_FINISHED_READING:
2179 case SSL_EARLY_DATA_READ_RETRY:
2180 early_data_state = s->early_data_state;
2181 /* We are a server writing to an unauthenticated client */
2182 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2183 ret = SSL_write_ex(s, buf, num, written);
2184 /* The buffering BIO is still in place */
2185 if (ret)
2186 (void)BIO_flush(s->wbio);
2187 s->early_data_state = early_data_state;
2188 return ret;
2189
2190 default:
2191 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2192 return 0;
2193 }
2194 }
2195
2196 int SSL_shutdown(SSL *s)
2197 {
2198 /*
2199 * Note that this function behaves differently from what one might
2200 * expect. Return values are 0 for no success (yet), 1 for success; but
2201 * calling it once is usually not enough, even if blocking I/O is used
2202 * (see ssl3_shutdown).
2203 */
2204
2205 if (s->handshake_func == NULL) {
2206 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2207 return -1;
2208 }
2209
2210 if (!SSL_in_init(s)) {
2211 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2212 struct ssl_async_args args;
2213
2214 args.s = s;
2215 args.type = OTHERFUNC;
2216 args.f.func_other = s->method->ssl_shutdown;
2217
2218 return ssl_start_async_job(s, &args, ssl_io_intern);
2219 } else {
2220 return s->method->ssl_shutdown(s);
2221 }
2222 } else {
2223 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2224 return -1;
2225 }
2226 }
2227
2228 int SSL_key_update(SSL *s, int updatetype)
2229 {
2230 /*
2231 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2232 * negotiated, and that it is appropriate to call SSL_key_update() instead
2233 * of SSL_renegotiate().
2234 */
2235 if (!SSL_IS_TLS13(s)) {
2236 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2237 return 0;
2238 }
2239
2240 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2241 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2242 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2243 return 0;
2244 }
2245
2246 if (!SSL_is_init_finished(s)) {
2247 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2248 return 0;
2249 }
2250
2251 ossl_statem_set_in_init(s, 1);
2252 s->key_update = updatetype;
2253 return 1;
2254 }
2255
2256 int SSL_get_key_update_type(const SSL *s)
2257 {
2258 return s->key_update;
2259 }
2260
2261 int SSL_renegotiate(SSL *s)
2262 {
2263 if (SSL_IS_TLS13(s)) {
2264 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2265 return 0;
2266 }
2267
2268 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2269 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2270 return 0;
2271 }
2272
2273 s->renegotiate = 1;
2274 s->new_session = 1;
2275
2276 return s->method->ssl_renegotiate(s);
2277 }
2278
2279 int SSL_renegotiate_abbreviated(SSL *s)
2280 {
2281 if (SSL_IS_TLS13(s)) {
2282 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2283 return 0;
2284 }
2285
2286 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2287 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2288 return 0;
2289 }
2290
2291 s->renegotiate = 1;
2292 s->new_session = 0;
2293
2294 return s->method->ssl_renegotiate(s);
2295 }
2296
2297 int SSL_renegotiate_pending(const SSL *s)
2298 {
2299 /*
2300 * becomes true when negotiation is requested; false again once a
2301 * handshake has finished
2302 */
2303 return (s->renegotiate != 0);
2304 }
2305
2306 int SSL_new_session_ticket(SSL *s)
2307 {
2308 if (SSL_in_init(s) || SSL_IS_FIRST_HANDSHAKE(s) || !s->server
2309 || !SSL_IS_TLS13(s))
2310 return 0;
2311 s->ext.extra_tickets_expected++;
2312 return 1;
2313 }
2314
2315 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2316 {
2317 long l;
2318
2319 switch (cmd) {
2320 case SSL_CTRL_GET_READ_AHEAD:
2321 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2322 case SSL_CTRL_SET_READ_AHEAD:
2323 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2324 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2325 return l;
2326
2327 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2328 s->msg_callback_arg = parg;
2329 return 1;
2330
2331 case SSL_CTRL_MODE:
2332 return (s->mode |= larg);
2333 case SSL_CTRL_CLEAR_MODE:
2334 return (s->mode &= ~larg);
2335 case SSL_CTRL_GET_MAX_CERT_LIST:
2336 return (long)s->max_cert_list;
2337 case SSL_CTRL_SET_MAX_CERT_LIST:
2338 if (larg < 0)
2339 return 0;
2340 l = (long)s->max_cert_list;
2341 s->max_cert_list = (size_t)larg;
2342 return l;
2343 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2344 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2345 return 0;
2346 #ifndef OPENSSL_NO_KTLS
2347 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2348 return 0;
2349 #endif /* OPENSSL_NO_KTLS */
2350 s->max_send_fragment = larg;
2351 if (s->max_send_fragment < s->split_send_fragment)
2352 s->split_send_fragment = s->max_send_fragment;
2353 return 1;
2354 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2355 if ((size_t)larg > s->max_send_fragment || larg == 0)
2356 return 0;
2357 s->split_send_fragment = larg;
2358 return 1;
2359 case SSL_CTRL_SET_MAX_PIPELINES:
2360 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2361 return 0;
2362 s->max_pipelines = larg;
2363 if (larg > 1)
2364 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2365 return 1;
2366 case SSL_CTRL_GET_RI_SUPPORT:
2367 return s->s3.send_connection_binding;
2368 case SSL_CTRL_CERT_FLAGS:
2369 return (s->cert->cert_flags |= larg);
2370 case SSL_CTRL_CLEAR_CERT_FLAGS:
2371 return (s->cert->cert_flags &= ~larg);
2372
2373 case SSL_CTRL_GET_RAW_CIPHERLIST:
2374 if (parg) {
2375 if (s->s3.tmp.ciphers_raw == NULL)
2376 return 0;
2377 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2378 return (int)s->s3.tmp.ciphers_rawlen;
2379 } else {
2380 return TLS_CIPHER_LEN;
2381 }
2382 case SSL_CTRL_GET_EXTMS_SUPPORT:
2383 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2384 return -1;
2385 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2386 return 1;
2387 else
2388 return 0;
2389 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2390 return ssl_check_allowed_versions(larg, s->max_proto_version)
2391 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2392 &s->min_proto_version);
2393 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2394 return s->min_proto_version;
2395 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2396 return ssl_check_allowed_versions(s->min_proto_version, larg)
2397 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2398 &s->max_proto_version);
2399 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2400 return s->max_proto_version;
2401 default:
2402 return s->method->ssl_ctrl(s, cmd, larg, parg);
2403 }
2404 }
2405
2406 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2407 {
2408 switch (cmd) {
2409 case SSL_CTRL_SET_MSG_CALLBACK:
2410 s->msg_callback = (void (*)
2411 (int write_p, int version, int content_type,
2412 const void *buf, size_t len, SSL *ssl,
2413 void *arg))(fp);
2414 return 1;
2415
2416 default:
2417 return s->method->ssl_callback_ctrl(s, cmd, fp);
2418 }
2419 }
2420
2421 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2422 {
2423 return ctx->sessions;
2424 }
2425
2426 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2427 {
2428 long l;
2429 /* For some cases with ctx == NULL perform syntax checks */
2430 if (ctx == NULL) {
2431 switch (cmd) {
2432 #ifndef OPENSSL_NO_EC
2433 case SSL_CTRL_SET_GROUPS_LIST:
2434 return tls1_set_groups_list(NULL, NULL, parg);
2435 #endif
2436 case SSL_CTRL_SET_SIGALGS_LIST:
2437 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2438 return tls1_set_sigalgs_list(NULL, parg, 0);
2439 default:
2440 return 0;
2441 }
2442 }
2443
2444 switch (cmd) {
2445 case SSL_CTRL_GET_READ_AHEAD:
2446 return ctx->read_ahead;
2447 case SSL_CTRL_SET_READ_AHEAD:
2448 l = ctx->read_ahead;
2449 ctx->read_ahead = larg;
2450 return l;
2451
2452 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2453 ctx->msg_callback_arg = parg;
2454 return 1;
2455
2456 case SSL_CTRL_GET_MAX_CERT_LIST:
2457 return (long)ctx->max_cert_list;
2458 case SSL_CTRL_SET_MAX_CERT_LIST:
2459 if (larg < 0)
2460 return 0;
2461 l = (long)ctx->max_cert_list;
2462 ctx->max_cert_list = (size_t)larg;
2463 return l;
2464
2465 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2466 if (larg < 0)
2467 return 0;
2468 l = (long)ctx->session_cache_size;
2469 ctx->session_cache_size = (size_t)larg;
2470 return l;
2471 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2472 return (long)ctx->session_cache_size;
2473 case SSL_CTRL_SET_SESS_CACHE_MODE:
2474 l = ctx->session_cache_mode;
2475 ctx->session_cache_mode = larg;
2476 return l;
2477 case SSL_CTRL_GET_SESS_CACHE_MODE:
2478 return ctx->session_cache_mode;
2479
2480 case SSL_CTRL_SESS_NUMBER:
2481 return lh_SSL_SESSION_num_items(ctx->sessions);
2482 case SSL_CTRL_SESS_CONNECT:
2483 return tsan_load(&ctx->stats.sess_connect);
2484 case SSL_CTRL_SESS_CONNECT_GOOD:
2485 return tsan_load(&ctx->stats.sess_connect_good);
2486 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2487 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2488 case SSL_CTRL_SESS_ACCEPT:
2489 return tsan_load(&ctx->stats.sess_accept);
2490 case SSL_CTRL_SESS_ACCEPT_GOOD:
2491 return tsan_load(&ctx->stats.sess_accept_good);
2492 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2493 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2494 case SSL_CTRL_SESS_HIT:
2495 return tsan_load(&ctx->stats.sess_hit);
2496 case SSL_CTRL_SESS_CB_HIT:
2497 return tsan_load(&ctx->stats.sess_cb_hit);
2498 case SSL_CTRL_SESS_MISSES:
2499 return tsan_load(&ctx->stats.sess_miss);
2500 case SSL_CTRL_SESS_TIMEOUTS:
2501 return tsan_load(&ctx->stats.sess_timeout);
2502 case SSL_CTRL_SESS_CACHE_FULL:
2503 return tsan_load(&ctx->stats.sess_cache_full);
2504 case SSL_CTRL_MODE:
2505 return (ctx->mode |= larg);
2506 case SSL_CTRL_CLEAR_MODE:
2507 return (ctx->mode &= ~larg);
2508 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2509 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2510 return 0;
2511 ctx->max_send_fragment = larg;
2512 if (ctx->max_send_fragment < ctx->split_send_fragment)
2513 ctx->split_send_fragment = ctx->max_send_fragment;
2514 return 1;
2515 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2516 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2517 return 0;
2518 ctx->split_send_fragment = larg;
2519 return 1;
2520 case SSL_CTRL_SET_MAX_PIPELINES:
2521 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2522 return 0;
2523 ctx->max_pipelines = larg;
2524 return 1;
2525 case SSL_CTRL_CERT_FLAGS:
2526 return (ctx->cert->cert_flags |= larg);
2527 case SSL_CTRL_CLEAR_CERT_FLAGS:
2528 return (ctx->cert->cert_flags &= ~larg);
2529 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2530 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2531 && ssl_set_version_bound(ctx->method->version, (int)larg,
2532 &ctx->min_proto_version);
2533 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2534 return ctx->min_proto_version;
2535 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2536 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2537 && ssl_set_version_bound(ctx->method->version, (int)larg,
2538 &ctx->max_proto_version);
2539 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2540 return ctx->max_proto_version;
2541 default:
2542 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2543 }
2544 }
2545
2546 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2547 {
2548 switch (cmd) {
2549 case SSL_CTRL_SET_MSG_CALLBACK:
2550 ctx->msg_callback = (void (*)
2551 (int write_p, int version, int content_type,
2552 const void *buf, size_t len, SSL *ssl,
2553 void *arg))(fp);
2554 return 1;
2555
2556 default:
2557 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2558 }
2559 }
2560
2561 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2562 {
2563 if (a->id > b->id)
2564 return 1;
2565 if (a->id < b->id)
2566 return -1;
2567 return 0;
2568 }
2569
2570 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2571 const SSL_CIPHER *const *bp)
2572 {
2573 if ((*ap)->id > (*bp)->id)
2574 return 1;
2575 if ((*ap)->id < (*bp)->id)
2576 return -1;
2577 return 0;
2578 }
2579
2580 /** return a STACK of the ciphers available for the SSL and in order of
2581 * preference */
2582 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2583 {
2584 if (s != NULL) {
2585 if (s->cipher_list != NULL) {
2586 return s->cipher_list;
2587 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2588 return s->ctx->cipher_list;
2589 }
2590 }
2591 return NULL;
2592 }
2593
2594 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2595 {
2596 if ((s == NULL) || !s->server)
2597 return NULL;
2598 return s->peer_ciphers;
2599 }
2600
2601 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2602 {
2603 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2604 int i;
2605
2606 ciphers = SSL_get_ciphers(s);
2607 if (!ciphers)
2608 return NULL;
2609 if (!ssl_set_client_disabled(s))
2610 return NULL;
2611 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2612 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2613 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2614 if (!sk)
2615 sk = sk_SSL_CIPHER_new_null();
2616 if (!sk)
2617 return NULL;
2618 if (!sk_SSL_CIPHER_push(sk, c)) {
2619 sk_SSL_CIPHER_free(sk);
2620 return NULL;
2621 }
2622 }
2623 }
2624 return sk;
2625 }
2626
2627 /** return a STACK of the ciphers available for the SSL and in order of
2628 * algorithm id */
2629 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2630 {
2631 if (s != NULL) {
2632 if (s->cipher_list_by_id != NULL) {
2633 return s->cipher_list_by_id;
2634 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2635 return s->ctx->cipher_list_by_id;
2636 }
2637 }
2638 return NULL;
2639 }
2640
2641 /** The old interface to get the same thing as SSL_get_ciphers() */
2642 const char *SSL_get_cipher_list(const SSL *s, int n)
2643 {
2644 const SSL_CIPHER *c;
2645 STACK_OF(SSL_CIPHER) *sk;
2646
2647 if (s == NULL)
2648 return NULL;
2649 sk = SSL_get_ciphers(s);
2650 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2651 return NULL;
2652 c = sk_SSL_CIPHER_value(sk, n);
2653 if (c == NULL)
2654 return NULL;
2655 return c->name;
2656 }
2657
2658 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2659 * preference */
2660 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2661 {
2662 if (ctx != NULL)
2663 return ctx->cipher_list;
2664 return NULL;
2665 }
2666
2667 /*
2668 * Distinguish between ciphers controlled by set_ciphersuite() and
2669 * set_cipher_list() when counting.
2670 */
2671 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2672 {
2673 int i, num = 0;
2674 const SSL_CIPHER *c;
2675
2676 if (sk == NULL)
2677 return 0;
2678 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2679 c = sk_SSL_CIPHER_value(sk, i);
2680 if (c->min_tls >= TLS1_3_VERSION)
2681 continue;
2682 num++;
2683 }
2684 return num;
2685 }
2686
2687 /** specify the ciphers to be used by default by the SSL_CTX */
2688 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2689 {
2690 STACK_OF(SSL_CIPHER) *sk;
2691
2692 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2693 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2694 ctx->cert);
2695 /*
2696 * ssl_create_cipher_list may return an empty stack if it was unable to
2697 * find a cipher matching the given rule string (for example if the rule
2698 * string specifies a cipher which has been disabled). This is not an
2699 * error as far as ssl_create_cipher_list is concerned, and hence
2700 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2701 */
2702 if (sk == NULL)
2703 return 0;
2704 else if (cipher_list_tls12_num(sk) == 0) {
2705 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2706 return 0;
2707 }
2708 return 1;
2709 }
2710
2711 /** specify the ciphers to be used by the SSL */
2712 int SSL_set_cipher_list(SSL *s, const char *str)
2713 {
2714 STACK_OF(SSL_CIPHER) *sk;
2715
2716 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2717 &s->cipher_list, &s->cipher_list_by_id, str,
2718 s->cert);
2719 /* see comment in SSL_CTX_set_cipher_list */
2720 if (sk == NULL)
2721 return 0;
2722 else if (cipher_list_tls12_num(sk) == 0) {
2723 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2724 return 0;
2725 }
2726 return 1;
2727 }
2728
2729 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2730 {
2731 char *p;
2732 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2733 const SSL_CIPHER *c;
2734 int i;
2735
2736 if (!s->server
2737 || s->peer_ciphers == NULL
2738 || size < 2)
2739 return NULL;
2740
2741 p = buf;
2742 clntsk = s->peer_ciphers;
2743 srvrsk = SSL_get_ciphers(s);
2744 if (clntsk == NULL || srvrsk == NULL)
2745 return NULL;
2746
2747 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2748 return NULL;
2749
2750 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2751 int n;
2752
2753 c = sk_SSL_CIPHER_value(clntsk, i);
2754 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2755 continue;
2756
2757 n = strlen(c->name);
2758 if (n + 1 > size) {
2759 if (p != buf)
2760 --p;
2761 *p = '\0';
2762 return buf;
2763 }
2764 strcpy(p, c->name);
2765 p += n;
2766 *(p++) = ':';
2767 size -= n + 1;
2768 }
2769 p[-1] = '\0';
2770 return buf;
2771 }
2772
2773 /**
2774 * Return the requested servername (SNI) value. Note that the behaviour varies
2775 * depending on:
2776 * - whether this is called by the client or the server,
2777 * - if we are before or during/after the handshake,
2778 * - if a resumption or normal handshake is being attempted/has occurred
2779 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2780 *
2781 * Note that only the host_name type is defined (RFC 3546).
2782 */
2783 const char *SSL_get_servername(const SSL *s, const int type)
2784 {
2785 /*
2786 * If we don't know if we are the client or the server yet then we assume
2787 * client.
2788 */
2789 int server = s->handshake_func == NULL ? 0 : s->server;
2790 if (type != TLSEXT_NAMETYPE_host_name)
2791 return NULL;
2792
2793 if (server) {
2794 /**
2795 * Server side
2796 * In TLSv1.3 on the server SNI is not associated with the session
2797 * but in TLSv1.2 or below it is.
2798 *
2799 * Before the handshake:
2800 * - return NULL
2801 *
2802 * During/after the handshake (TLSv1.2 or below resumption occurred):
2803 * - If a servername was accepted by the server in the original
2804 * handshake then it will return that servername, or NULL otherwise.
2805 *
2806 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2807 * - The function will return the servername requested by the client in
2808 * this handshake or NULL if none was requested.
2809 */
2810 if (s->hit && !SSL_IS_TLS13(s))
2811 return s->session->ext.hostname;
2812 } else {
2813 /**
2814 * Client side
2815 *
2816 * Before the handshake:
2817 * - If a servername has been set via a call to
2818 * SSL_set_tlsext_host_name() then it will return that servername
2819 * - If one has not been set, but a TLSv1.2 resumption is being
2820 * attempted and the session from the original handshake had a
2821 * servername accepted by the server then it will return that
2822 * servername
2823 * - Otherwise it returns NULL
2824 *
2825 * During/after the handshake (TLSv1.2 or below resumption occurred):
2826 * - If the session from the orignal handshake had a servername accepted
2827 * by the server then it will return that servername.
2828 * - Otherwise it returns the servername set via
2829 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2830 *
2831 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2832 * - It will return the servername set via SSL_set_tlsext_host_name()
2833 * (or NULL if it was not called).
2834 */
2835 if (SSL_in_before(s)) {
2836 if (s->ext.hostname == NULL
2837 && s->session != NULL
2838 && s->session->ssl_version != TLS1_3_VERSION)
2839 return s->session->ext.hostname;
2840 } else {
2841 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2842 return s->session->ext.hostname;
2843 }
2844 }
2845
2846 return s->ext.hostname;
2847 }
2848
2849 int SSL_get_servername_type(const SSL *s)
2850 {
2851 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2852 return TLSEXT_NAMETYPE_host_name;
2853 return -1;
2854 }
2855
2856 /*
2857 * SSL_select_next_proto implements the standard protocol selection. It is
2858 * expected that this function is called from the callback set by
2859 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2860 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2861 * not included in the length. A byte string of length 0 is invalid. No byte
2862 * string may be truncated. The current, but experimental algorithm for
2863 * selecting the protocol is: 1) If the server doesn't support NPN then this
2864 * is indicated to the callback. In this case, the client application has to
2865 * abort the connection or have a default application level protocol. 2) If
2866 * the server supports NPN, but advertises an empty list then the client
2867 * selects the first protocol in its list, but indicates via the API that this
2868 * fallback case was enacted. 3) Otherwise, the client finds the first
2869 * protocol in the server's list that it supports and selects this protocol.
2870 * This is because it's assumed that the server has better information about
2871 * which protocol a client should use. 4) If the client doesn't support any
2872 * of the server's advertised protocols, then this is treated the same as
2873 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2874 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2875 */
2876 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2877 const unsigned char *server,
2878 unsigned int server_len,
2879 const unsigned char *client, unsigned int client_len)
2880 {
2881 unsigned int i, j;
2882 const unsigned char *result;
2883 int status = OPENSSL_NPN_UNSUPPORTED;
2884
2885 /*
2886 * For each protocol in server preference order, see if we support it.
2887 */
2888 for (i = 0; i < server_len;) {
2889 for (j = 0; j < client_len;) {
2890 if (server[i] == client[j] &&
2891 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2892 /* We found a match */
2893 result = &server[i];
2894 status = OPENSSL_NPN_NEGOTIATED;
2895 goto found;
2896 }
2897 j += client[j];
2898 j++;
2899 }
2900 i += server[i];
2901 i++;
2902 }
2903
2904 /* There's no overlap between our protocols and the server's list. */
2905 result = client;
2906 status = OPENSSL_NPN_NO_OVERLAP;
2907
2908 found:
2909 *out = (unsigned char *)result + 1;
2910 *outlen = result[0];
2911 return status;
2912 }
2913
2914 #ifndef OPENSSL_NO_NEXTPROTONEG
2915 /*
2916 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2917 * client's requested protocol for this connection and returns 0. If the
2918 * client didn't request any protocol, then *data is set to NULL. Note that
2919 * the client can request any protocol it chooses. The value returned from
2920 * this function need not be a member of the list of supported protocols
2921 * provided by the callback.
2922 */
2923 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2924 unsigned *len)
2925 {
2926 *data = s->ext.npn;
2927 if (*data == NULL) {
2928 *len = 0;
2929 } else {
2930 *len = (unsigned int)s->ext.npn_len;
2931 }
2932 }
2933
2934 /*
2935 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2936 * a TLS server needs a list of supported protocols for Next Protocol
2937 * Negotiation. The returned list must be in wire format. The list is
2938 * returned by setting |out| to point to it and |outlen| to its length. This
2939 * memory will not be modified, but one should assume that the SSL* keeps a
2940 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2941 * wishes to advertise. Otherwise, no such extension will be included in the
2942 * ServerHello.
2943 */
2944 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2945 SSL_CTX_npn_advertised_cb_func cb,
2946 void *arg)
2947 {
2948 ctx->ext.npn_advertised_cb = cb;
2949 ctx->ext.npn_advertised_cb_arg = arg;
2950 }
2951
2952 /*
2953 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2954 * client needs to select a protocol from the server's provided list. |out|
2955 * must be set to point to the selected protocol (which may be within |in|).
2956 * The length of the protocol name must be written into |outlen|. The
2957 * server's advertised protocols are provided in |in| and |inlen|. The
2958 * callback can assume that |in| is syntactically valid. The client must
2959 * select a protocol. It is fatal to the connection if this callback returns
2960 * a value other than SSL_TLSEXT_ERR_OK.
2961 */
2962 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2963 SSL_CTX_npn_select_cb_func cb,
2964 void *arg)
2965 {
2966 ctx->ext.npn_select_cb = cb;
2967 ctx->ext.npn_select_cb_arg = arg;
2968 }
2969 #endif
2970
2971 /*
2972 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2973 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2974 * length-prefixed strings). Returns 0 on success.
2975 */
2976 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2977 unsigned int protos_len)
2978 {
2979 OPENSSL_free(ctx->ext.alpn);
2980 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2981 if (ctx->ext.alpn == NULL) {
2982 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2983 return 1;
2984 }
2985 ctx->ext.alpn_len = protos_len;
2986
2987 return 0;
2988 }
2989
2990 /*
2991 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2992 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2993 * length-prefixed strings). Returns 0 on success.
2994 */
2995 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2996 unsigned int protos_len)
2997 {
2998 OPENSSL_free(ssl->ext.alpn);
2999 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
3000 if (ssl->ext.alpn == NULL) {
3001 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
3002 return 1;
3003 }
3004 ssl->ext.alpn_len = protos_len;
3005
3006 return 0;
3007 }
3008
3009 /*
3010 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
3011 * called during ClientHello processing in order to select an ALPN protocol
3012 * from the client's list of offered protocols.
3013 */
3014 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
3015 SSL_CTX_alpn_select_cb_func cb,
3016 void *arg)
3017 {
3018 ctx->ext.alpn_select_cb = cb;
3019 ctx->ext.alpn_select_cb_arg = arg;
3020 }
3021
3022 /*
3023 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
3024 * On return it sets |*data| to point to |*len| bytes of protocol name
3025 * (not including the leading length-prefix byte). If the server didn't
3026 * respond with a negotiated protocol then |*len| will be zero.
3027 */
3028 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
3029 unsigned int *len)
3030 {
3031 *data = ssl->s3.alpn_selected;
3032 if (*data == NULL)
3033 *len = 0;
3034 else
3035 *len = (unsigned int)ssl->s3.alpn_selected_len;
3036 }
3037
3038 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
3039 const char *label, size_t llen,
3040 const unsigned char *context, size_t contextlen,
3041 int use_context)
3042 {
3043 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
3044 return -1;
3045
3046 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
3047 llen, context,
3048 contextlen, use_context);
3049 }
3050
3051 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
3052 const char *label, size_t llen,
3053 const unsigned char *context,
3054 size_t contextlen)
3055 {
3056 if (s->version != TLS1_3_VERSION)
3057 return 0;
3058
3059 return tls13_export_keying_material_early(s, out, olen, label, llen,
3060 context, contextlen);
3061 }
3062
3063 static unsigned long ssl_session_hash(const SSL_SESSION *a)
3064 {
3065 const unsigned char *session_id = a->session_id;
3066 unsigned long l;
3067 unsigned char tmp_storage[4];
3068
3069 if (a->session_id_length < sizeof(tmp_storage)) {
3070 memset(tmp_storage, 0, sizeof(tmp_storage));
3071 memcpy(tmp_storage, a->session_id, a->session_id_length);
3072 session_id = tmp_storage;
3073 }
3074
3075 l = (unsigned long)
3076 ((unsigned long)session_id[0]) |
3077 ((unsigned long)session_id[1] << 8L) |
3078 ((unsigned long)session_id[2] << 16L) |
3079 ((unsigned long)session_id[3] << 24L);
3080 return l;
3081 }
3082
3083 /*
3084 * NB: If this function (or indeed the hash function which uses a sort of
3085 * coarser function than this one) is changed, ensure
3086 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3087 * being able to construct an SSL_SESSION that will collide with any existing
3088 * session with a matching session ID.
3089 */
3090 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3091 {
3092 if (a->ssl_version != b->ssl_version)
3093 return 1;
3094 if (a->session_id_length != b->session_id_length)
3095 return 1;
3096 return memcmp(a->session_id, b->session_id, a->session_id_length);
3097 }
3098
3099 /*
3100 * These wrapper functions should remain rather than redeclaring
3101 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3102 * variable. The reason is that the functions aren't static, they're exposed
3103 * via ssl.h.
3104 */
3105
3106 SSL_CTX *SSL_CTX_new_with_libctx(OPENSSL_CTX *libctx, const char *propq,
3107 const SSL_METHOD *meth)
3108 {
3109 SSL_CTX *ret = NULL;
3110
3111 if (meth == NULL) {
3112 SSLerr(0, SSL_R_NULL_SSL_METHOD_PASSED);
3113 return NULL;
3114 }
3115
3116 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3117 return NULL;
3118
3119 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3120 SSLerr(0, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3121 goto err;
3122 }
3123 ret = OPENSSL_zalloc(sizeof(*ret));
3124 if (ret == NULL)
3125 goto err;
3126
3127 ret->libctx = libctx;
3128 if (propq != NULL) {
3129 ret->propq = OPENSSL_strdup(propq);
3130 if (ret->propq == NULL)
3131 goto err;
3132 }
3133
3134 ret->method = meth;
3135 ret->min_proto_version = 0;
3136 ret->max_proto_version = 0;
3137 ret->mode = SSL_MODE_AUTO_RETRY;
3138 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3139 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3140 /* We take the system default. */
3141 ret->session_timeout = meth->get_timeout();
3142 ret->references = 1;
3143 ret->lock = CRYPTO_THREAD_lock_new();
3144 if (ret->lock == NULL) {
3145 SSLerr(0, ERR_R_MALLOC_FAILURE);
3146 OPENSSL_free(ret);
3147 return NULL;
3148 }
3149 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3150 ret->verify_mode = SSL_VERIFY_NONE;
3151 if ((ret->cert = ssl_cert_new()) == NULL)
3152 goto err;
3153
3154 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3155 if (ret->sessions == NULL)
3156 goto err;
3157 ret->cert_store = X509_STORE_new();
3158 if (ret->cert_store == NULL)
3159 goto err;
3160 #ifndef OPENSSL_NO_CT
3161 ret->ctlog_store = CTLOG_STORE_new_with_libctx(libctx, propq);
3162 if (ret->ctlog_store == NULL)
3163 goto err;
3164 #endif
3165
3166 /* initialize cipher/digest methods table */
3167 if (!ssl_load_ciphers(ret))
3168 goto err2;
3169 /* initialise sig algs */
3170 if (!ssl_setup_sig_algs(ret))
3171 goto err2;
3172
3173
3174 if (!ssl_load_groups(ret))
3175 goto err2;
3176
3177 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3178 goto err;
3179
3180 if (!ssl_create_cipher_list(ret->method,
3181 ret->tls13_ciphersuites,
3182 &ret->cipher_list, &ret->cipher_list_by_id,
3183 OSSL_default_cipher_list(), ret->cert)
3184 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3185 SSLerr(0, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3186 goto err2;
3187 }
3188
3189 ret->param = X509_VERIFY_PARAM_new();
3190 if (ret->param == NULL)
3191 goto err;
3192
3193 /*
3194 * If these aren't available from the provider we'll get NULL returns.
3195 * That's fine but will cause errors later if SSLv3 is negotiated
3196 */
3197 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq);
3198 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq);
3199
3200 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3201 goto err;
3202
3203 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3204 goto err;
3205
3206 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3207 goto err;
3208
3209 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3210 goto err;
3211
3212 /* No compression for DTLS */
3213 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3214 ret->comp_methods = SSL_COMP_get_compression_methods();
3215
3216 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3217 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3218
3219 /* Setup RFC5077 ticket keys */
3220 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name,
3221 sizeof(ret->ext.tick_key_name)) <= 0)
3222 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key,
3223 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
3224 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key,
3225 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
3226 ret->options |= SSL_OP_NO_TICKET;
3227
3228 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key,
3229 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3230 goto err;
3231
3232 #ifndef OPENSSL_NO_SRP
3233 if (!SSL_CTX_SRP_CTX_init(ret))
3234 goto err;
3235 #endif
3236 #ifndef OPENSSL_NO_ENGINE
3237 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3238 # define eng_strx(x) #x
3239 # define eng_str(x) eng_strx(x)
3240 /* Use specific client engine automatically... ignore errors */
3241 {
3242 ENGINE *eng;
3243 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3244 if (!eng) {
3245 ERR_clear_error();
3246 ENGINE_load_builtin_engines();
3247 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3248 }
3249 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3250 ERR_clear_error();
3251 }
3252 # endif
3253 #endif
3254 /*
3255 * Default is to connect to non-RI servers. When RI is more widely
3256 * deployed might change this.
3257 */
3258 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3259 /*
3260 * Disable compression by default to prevent CRIME. Applications can
3261 * re-enable compression by configuring
3262 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3263 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3264 * middlebox compatibility by default. This may be disabled by default in
3265 * a later OpenSSL version.
3266 */
3267 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3268
3269 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3270
3271 /*
3272 * We cannot usefully set a default max_early_data here (which gets
3273 * propagated in SSL_new(), for the following reason: setting the
3274 * SSL field causes tls_construct_stoc_early_data() to tell the
3275 * client that early data will be accepted when constructing a TLS 1.3
3276 * session ticket, and the client will accordingly send us early data
3277 * when using that ticket (if the client has early data to send).
3278 * However, in order for the early data to actually be consumed by
3279 * the application, the application must also have calls to
3280 * SSL_read_early_data(); otherwise we'll just skip past the early data
3281 * and ignore it. So, since the application must add calls to
3282 * SSL_read_early_data(), we also require them to add
3283 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3284 * eliminating the bandwidth-wasting early data in the case described
3285 * above.
3286 */
3287 ret->max_early_data = 0;
3288
3289 /*
3290 * Default recv_max_early_data is a fully loaded single record. Could be
3291 * split across multiple records in practice. We set this differently to
3292 * max_early_data so that, in the default case, we do not advertise any
3293 * support for early_data, but if a client were to send us some (e.g.
3294 * because of an old, stale ticket) then we will tolerate it and skip over
3295 * it.
3296 */
3297 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3298
3299 /* By default we send two session tickets automatically in TLSv1.3 */
3300 ret->num_tickets = 2;
3301
3302 ssl_ctx_system_config(ret);
3303
3304 return ret;
3305 err:
3306 SSLerr(0, ERR_R_MALLOC_FAILURE);
3307 err2:
3308 SSL_CTX_free(ret);
3309 return NULL;
3310 }
3311
3312 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3313 {
3314 return SSL_CTX_new_with_libctx(NULL, NULL, meth);
3315 }
3316
3317 int SSL_CTX_up_ref(SSL_CTX *ctx)
3318 {
3319 int i;
3320
3321 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3322 return 0;
3323
3324 REF_PRINT_COUNT("SSL_CTX", ctx);
3325 REF_ASSERT_ISNT(i < 2);
3326 return ((i > 1) ? 1 : 0);
3327 }
3328
3329 void SSL_CTX_free(SSL_CTX *a)
3330 {
3331 int i;
3332 size_t j;
3333
3334 if (a == NULL)
3335 return;
3336
3337 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3338 REF_PRINT_COUNT("SSL_CTX", a);
3339 if (i > 0)
3340 return;
3341 REF_ASSERT_ISNT(i < 0);
3342
3343 X509_VERIFY_PARAM_free(a->param);
3344 dane_ctx_final(&a->dane);
3345
3346 /*
3347 * Free internal session cache. However: the remove_cb() may reference
3348 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3349 * after the sessions were flushed.
3350 * As the ex_data handling routines might also touch the session cache,
3351 * the most secure solution seems to be: empty (flush) the cache, then
3352 * free ex_data, then finally free the cache.
3353 * (See ticket [openssl.org #212].)
3354 */
3355 if (a->sessions != NULL)
3356 SSL_CTX_flush_sessions(a, 0);
3357
3358 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3359 lh_SSL_SESSION_free(a->sessions);
3360 X509_STORE_free(a->cert_store);
3361 #ifndef OPENSSL_NO_CT
3362 CTLOG_STORE_free(a->ctlog_store);
3363 #endif
3364 sk_SSL_CIPHER_free(a->cipher_list);
3365 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3366 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3367 ssl_cert_free(a->cert);
3368 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3369 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3370 sk_X509_pop_free(a->extra_certs, X509_free);
3371 a->comp_methods = NULL;
3372 #ifndef OPENSSL_NO_SRTP
3373 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3374 #endif
3375 #ifndef OPENSSL_NO_SRP
3376 SSL_CTX_SRP_CTX_free(a);
3377 #endif
3378 #ifndef OPENSSL_NO_ENGINE
3379 ENGINE_finish(a->client_cert_engine);
3380 #endif
3381
3382 #ifndef OPENSSL_NO_EC
3383 OPENSSL_free(a->ext.ecpointformats);
3384 #endif
3385 OPENSSL_free(a->ext.supportedgroups);
3386 OPENSSL_free(a->ext.alpn);
3387 OPENSSL_secure_free(a->ext.secure);
3388
3389 ssl_evp_md_free(a->md5);
3390 ssl_evp_md_free(a->sha1);
3391
3392 for (j = 0; j < SSL_ENC_NUM_IDX; j++)
3393 ssl_evp_cipher_free(a->ssl_cipher_methods[j]);
3394 for (j = 0; j < SSL_MD_NUM_IDX; j++)
3395 ssl_evp_md_free(a->ssl_digest_methods[j]);
3396 for (j = 0; j < a->group_list_len; j++) {
3397 OPENSSL_free(a->group_list[j].tlsname);
3398 OPENSSL_free(a->group_list[j].realname);
3399 OPENSSL_free(a->group_list[j].algorithm);
3400 }
3401 OPENSSL_free(a->group_list);
3402
3403 OPENSSL_free(a->sigalg_lookup_cache);
3404
3405 CRYPTO_THREAD_lock_free(a->lock);
3406
3407 OPENSSL_free(a->propq);
3408
3409 OPENSSL_free(a);
3410 }
3411
3412 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3413 {
3414 ctx->default_passwd_callback = cb;
3415 }
3416
3417 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3418 {
3419 ctx->default_passwd_callback_userdata = u;
3420 }
3421
3422 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3423 {
3424 return ctx->default_passwd_callback;
3425 }
3426
3427 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3428 {
3429 return ctx->default_passwd_callback_userdata;
3430 }
3431
3432 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3433 {
3434 s->default_passwd_callback = cb;
3435 }
3436
3437 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3438 {
3439 s->default_passwd_callback_userdata = u;
3440 }
3441
3442 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3443 {
3444 return s->default_passwd_callback;
3445 }
3446
3447 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3448 {
3449 return s->default_passwd_callback_userdata;
3450 }
3451
3452 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3453 int (*cb) (X509_STORE_CTX *, void *),
3454 void *arg)
3455 {
3456 ctx->app_verify_callback = cb;
3457 ctx->app_verify_arg = arg;
3458 }
3459
3460 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3461 int (*cb) (int, X509_STORE_CTX *))
3462 {
3463 ctx->verify_mode = mode;
3464 ctx->default_verify_callback = cb;
3465 }
3466
3467 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3468 {
3469 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3470 }
3471
3472 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3473 {
3474 ssl_cert_set_cert_cb(c->cert, cb, arg);
3475 }
3476
3477 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3478 {
3479 ssl_cert_set_cert_cb(s->cert, cb, arg);
3480 }
3481
3482 void ssl_set_masks(SSL *s)
3483 {
3484 CERT *c = s->cert;
3485 uint32_t *pvalid = s->s3.tmp.valid_flags;
3486 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3487 unsigned long mask_k, mask_a;
3488 #ifndef OPENSSL_NO_EC
3489 int have_ecc_cert, ecdsa_ok;
3490 #endif
3491 if (c == NULL)
3492 return;
3493
3494 #ifndef OPENSSL_NO_DH
3495 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3496 #else
3497 dh_tmp = 0;
3498 #endif
3499
3500 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3501 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3502 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3503 #ifndef OPENSSL_NO_EC
3504 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3505 #endif
3506 mask_k = 0;
3507 mask_a = 0;
3508
3509 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3510 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3511
3512 #ifndef OPENSSL_NO_GOST
3513 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3514 mask_k |= SSL_kGOST | SSL_kGOST18;
3515 mask_a |= SSL_aGOST12;
3516 }
3517 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3518 mask_k |= SSL_kGOST | SSL_kGOST18;
3519 mask_a |= SSL_aGOST12;
3520 }
3521 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3522 mask_k |= SSL_kGOST;
3523 mask_a |= SSL_aGOST01;
3524 }
3525 #endif
3526
3527 if (rsa_enc)
3528 mask_k |= SSL_kRSA;
3529
3530 if (dh_tmp)
3531 mask_k |= SSL_kDHE;
3532
3533 /*
3534 * If we only have an RSA-PSS certificate allow RSA authentication
3535 * if TLS 1.2 and peer supports it.
3536 */
3537
3538 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3539 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3540 && TLS1_get_version(s) == TLS1_2_VERSION))
3541 mask_a |= SSL_aRSA;
3542
3543 if (dsa_sign) {
3544 mask_a |= SSL_aDSS;
3545 }
3546
3547 mask_a |= SSL_aNULL;
3548
3549 /*
3550 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3551 * depending on the key usage extension.
3552 */
3553 #ifndef OPENSSL_NO_EC
3554 if (have_ecc_cert) {
3555 uint32_t ex_kusage;
3556 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3557 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3558 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3559 ecdsa_ok = 0;
3560 if (ecdsa_ok)
3561 mask_a |= SSL_aECDSA;
3562 }
3563 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3564 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3565 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3566 && TLS1_get_version(s) == TLS1_2_VERSION)
3567 mask_a |= SSL_aECDSA;
3568
3569 /* Allow Ed448 for TLS 1.2 if peer supports it */
3570 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3571 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3572 && TLS1_get_version(s) == TLS1_2_VERSION)
3573 mask_a |= SSL_aECDSA;
3574 #endif
3575
3576 #ifndef OPENSSL_NO_EC
3577 mask_k |= SSL_kECDHE;
3578 #endif
3579
3580 #ifndef OPENSSL_NO_PSK
3581 mask_k |= SSL_kPSK;
3582 mask_a |= SSL_aPSK;
3583 if (mask_k & SSL_kRSA)
3584 mask_k |= SSL_kRSAPSK;
3585 if (mask_k & SSL_kDHE)
3586 mask_k |= SSL_kDHEPSK;
3587 if (mask_k & SSL_kECDHE)
3588 mask_k |= SSL_kECDHEPSK;
3589 #endif
3590
3591 s->s3.tmp.mask_k = mask_k;
3592 s->s3.tmp.mask_a = mask_a;
3593 }
3594
3595 #ifndef OPENSSL_NO_EC
3596
3597 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3598 {
3599 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3600 /* key usage, if present, must allow signing */
3601 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3602 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3603 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3604 return 0;
3605 }
3606 }
3607 return 1; /* all checks are ok */
3608 }
3609
3610 #endif
3611
3612 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3613 size_t *serverinfo_length)
3614 {
3615 CERT_PKEY *cpk = s->s3.tmp.cert;
3616 *serverinfo_length = 0;
3617
3618 if (cpk == NULL || cpk->serverinfo == NULL)
3619 return 0;
3620
3621 *serverinfo = cpk->serverinfo;
3622 *serverinfo_length = cpk->serverinfo_length;
3623 return 1;
3624 }
3625
3626 void ssl_update_cache(SSL *s, int mode)
3627 {
3628 int i;
3629
3630 /*
3631 * If the session_id_length is 0, we are not supposed to cache it, and it
3632 * would be rather hard to do anyway :-)
3633 */
3634 if (s->session->session_id_length == 0)
3635 return;
3636
3637 /*
3638 * If sid_ctx_length is 0 there is no specific application context
3639 * associated with this session, so when we try to resume it and
3640 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3641 * indication that this is actually a session for the proper application
3642 * context, and the *handshake* will fail, not just the resumption attempt.
3643 * Do not cache (on the server) these sessions that are not resumable
3644 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3645 */
3646 if (s->server && s->session->sid_ctx_length == 0
3647 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3648 return;
3649
3650 i = s->session_ctx->session_cache_mode;
3651 if ((i & mode) != 0
3652 && (!s->hit || SSL_IS_TLS13(s))) {
3653 /*
3654 * Add the session to the internal cache. In server side TLSv1.3 we
3655 * normally don't do this because by default it's a full stateless ticket
3656 * with only a dummy session id so there is no reason to cache it,
3657 * unless:
3658 * - we are doing early_data, in which case we cache so that we can
3659 * detect replays
3660 * - the application has set a remove_session_cb so needs to know about
3661 * session timeout events
3662 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3663 */
3664 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3665 && (!SSL_IS_TLS13(s)
3666 || !s->server
3667 || (s->max_early_data > 0
3668 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3669 || s->session_ctx->remove_session_cb != NULL
3670 || (s->options & SSL_OP_NO_TICKET) != 0))
3671 SSL_CTX_add_session(s->session_ctx, s->session);
3672
3673 /*
3674 * Add the session to the external cache. We do this even in server side
3675 * TLSv1.3 without early data because some applications just want to
3676 * know about the creation of a session and aren't doing a full cache.
3677 */
3678 if (s->session_ctx->new_session_cb != NULL) {
3679 SSL_SESSION_up_ref(s->session);
3680 if (!s->session_ctx->new_session_cb(s, s->session))
3681 SSL_SESSION_free(s->session);
3682 }
3683 }
3684
3685 /* auto flush every 255 connections */
3686 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3687 TSAN_QUALIFIER int *stat;
3688 if (mode & SSL_SESS_CACHE_CLIENT)
3689 stat = &s->session_ctx->stats.sess_connect_good;
3690 else
3691 stat = &s->session_ctx->stats.sess_accept_good;
3692 if ((tsan_load(stat) & 0xff) == 0xff)
3693 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3694 }
3695 }
3696
3697 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3698 {
3699 return ctx->method;
3700 }
3701
3702 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3703 {
3704 return s->method;
3705 }
3706
3707 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3708 {
3709 int ret = 1;
3710
3711 if (s->method != meth) {
3712 const SSL_METHOD *sm = s->method;
3713 int (*hf) (SSL *) = s->handshake_func;
3714
3715 if (sm->version == meth->version)
3716 s->method = meth;
3717 else {
3718 sm->ssl_free(s);
3719 s->method = meth;
3720 ret = s->method->ssl_new(s);
3721 }
3722
3723 if (hf == sm->ssl_connect)
3724 s->handshake_func = meth->ssl_connect;
3725 else if (hf == sm->ssl_accept)
3726 s->handshake_func = meth->ssl_accept;
3727 }
3728 return ret;
3729 }
3730
3731 int SSL_get_error(const SSL *s, int i)
3732 {
3733 int reason;
3734 unsigned long l;
3735 BIO *bio;
3736
3737 if (i > 0)
3738 return SSL_ERROR_NONE;
3739
3740 /*
3741 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3742 * where we do encode the error
3743 */
3744 if ((l = ERR_peek_error()) != 0) {
3745 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3746 return SSL_ERROR_SYSCALL;
3747 else
3748 return SSL_ERROR_SSL;
3749 }
3750
3751 if (SSL_want_read(s)) {
3752 bio = SSL_get_rbio(s);
3753 if (BIO_should_read(bio))
3754 return SSL_ERROR_WANT_READ;
3755 else if (BIO_should_write(bio))
3756 /*
3757 * This one doesn't make too much sense ... We never try to write
3758 * to the rbio, and an application program where rbio and wbio
3759 * are separate couldn't even know what it should wait for.
3760 * However if we ever set s->rwstate incorrectly (so that we have
3761 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3762 * wbio *are* the same, this test works around that bug; so it
3763 * might be safer to keep it.
3764 */
3765 return SSL_ERROR_WANT_WRITE;
3766 else if (BIO_should_io_special(bio)) {
3767 reason = BIO_get_retry_reason(bio);
3768 if (reason == BIO_RR_CONNECT)
3769 return SSL_ERROR_WANT_CONNECT;
3770 else if (reason == BIO_RR_ACCEPT)
3771 return SSL_ERROR_WANT_ACCEPT;
3772 else
3773 return SSL_ERROR_SYSCALL; /* unknown */
3774 }
3775 }
3776
3777 if (SSL_want_write(s)) {
3778 /* Access wbio directly - in order to use the buffered bio if present */
3779 bio = s->wbio;
3780 if (BIO_should_write(bio))
3781 return SSL_ERROR_WANT_WRITE;
3782 else if (BIO_should_read(bio))
3783 /*
3784 * See above (SSL_want_read(s) with BIO_should_write(bio))
3785 */
3786 return SSL_ERROR_WANT_READ;
3787 else if (BIO_should_io_special(bio)) {
3788 reason = BIO_get_retry_reason(bio);
3789 if (reason == BIO_RR_CONNECT)
3790 return SSL_ERROR_WANT_CONNECT;
3791 else if (reason == BIO_RR_ACCEPT)
3792 return SSL_ERROR_WANT_ACCEPT;
3793 else
3794 return SSL_ERROR_SYSCALL;
3795 }
3796 }
3797 if (SSL_want_x509_lookup(s))
3798 return SSL_ERROR_WANT_X509_LOOKUP;
3799 if (SSL_want_async(s))
3800 return SSL_ERROR_WANT_ASYNC;
3801 if (SSL_want_async_job(s))
3802 return SSL_ERROR_WANT_ASYNC_JOB;
3803 if (SSL_want_client_hello_cb(s))
3804 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3805
3806 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3807 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3808 return SSL_ERROR_ZERO_RETURN;
3809
3810 return SSL_ERROR_SYSCALL;
3811 }
3812
3813 static int ssl_do_handshake_intern(void *vargs)
3814 {
3815 struct ssl_async_args *args;
3816 SSL *s;
3817
3818 args = (struct ssl_async_args *)vargs;
3819 s = args->s;
3820
3821 return s->handshake_func(s);
3822 }
3823
3824 int SSL_do_handshake(SSL *s)
3825 {
3826 int ret = 1;
3827
3828 if (s->handshake_func == NULL) {
3829 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3830 return -1;
3831 }
3832
3833 ossl_statem_check_finish_init(s, -1);
3834
3835 s->method->ssl_renegotiate_check(s, 0);
3836
3837 if (SSL_in_init(s) || SSL_in_before(s)) {
3838 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3839 struct ssl_async_args args;
3840
3841 args.s = s;
3842
3843 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3844 } else {
3845 ret = s->handshake_func(s);
3846 }
3847 }
3848 return ret;
3849 }
3850
3851 void SSL_set_accept_state(SSL *s)
3852 {
3853 s->server = 1;
3854 s->shutdown = 0;
3855 ossl_statem_clear(s);
3856 s->handshake_func = s->method->ssl_accept;
3857 clear_ciphers(s);
3858 }
3859
3860 void SSL_set_connect_state(SSL *s)
3861 {
3862 s->server = 0;
3863 s->shutdown = 0;
3864 ossl_statem_clear(s);
3865 s->handshake_func = s->method->ssl_connect;
3866 clear_ciphers(s);
3867 }
3868
3869 int ssl_undefined_function(SSL *s)
3870 {
3871 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3872 return 0;
3873 }
3874
3875 int ssl_undefined_void_function(void)
3876 {
3877 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3878 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3879 return 0;
3880 }
3881
3882 int ssl_undefined_const_function(const SSL *s)
3883 {
3884 return 0;
3885 }
3886
3887 const SSL_METHOD *ssl_bad_method(int ver)
3888 {
3889 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3890 return NULL;
3891 }
3892
3893 const char *ssl_protocol_to_string(int version)
3894 {
3895 switch(version)
3896 {
3897 case TLS1_3_VERSION:
3898 return "TLSv1.3";
3899
3900 case TLS1_2_VERSION:
3901 return "TLSv1.2";
3902
3903 case TLS1_1_VERSION:
3904 return "TLSv1.1";
3905
3906 case TLS1_VERSION:
3907 return "TLSv1";
3908
3909 case SSL3_VERSION:
3910 return "SSLv3";
3911
3912 case DTLS1_BAD_VER:
3913 return "DTLSv0.9";
3914
3915 case DTLS1_VERSION:
3916 return "DTLSv1";
3917
3918 case DTLS1_2_VERSION:
3919 return "DTLSv1.2";
3920
3921 default:
3922 return "unknown";
3923 }
3924 }
3925
3926 const char *SSL_get_version(const SSL *s)
3927 {
3928 return ssl_protocol_to_string(s->version);
3929 }
3930
3931 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3932 {
3933 STACK_OF(X509_NAME) *sk;
3934 X509_NAME *xn;
3935 int i;
3936
3937 if (src == NULL) {
3938 *dst = NULL;
3939 return 1;
3940 }
3941
3942 if ((sk = sk_X509_NAME_new_null()) == NULL)
3943 return 0;
3944 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3945 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3946 if (xn == NULL) {
3947 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3948 return 0;
3949 }
3950 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3951 X509_NAME_free(xn);
3952 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3953 return 0;
3954 }
3955 }
3956 *dst = sk;
3957
3958 return 1;
3959 }
3960
3961 SSL *SSL_dup(SSL *s)
3962 {
3963 SSL *ret;
3964 int i;
3965
3966 /* If we're not quiescent, just up_ref! */
3967 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3968 CRYPTO_UP_REF(&s->references, &i, s->lock);
3969 return s;
3970 }
3971
3972 /*
3973 * Otherwise, copy configuration state, and session if set.
3974 */
3975 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3976 return NULL;
3977
3978 if (s->session != NULL) {
3979 /*
3980 * Arranges to share the same session via up_ref. This "copies"
3981 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3982 */
3983 if (!SSL_copy_session_id(ret, s))
3984 goto err;
3985 } else {
3986 /*
3987 * No session has been established yet, so we have to expect that
3988 * s->cert or ret->cert will be changed later -- they should not both
3989 * point to the same object, and thus we can't use
3990 * SSL_copy_session_id.
3991 */
3992 if (!SSL_set_ssl_method(ret, s->method))
3993 goto err;
3994
3995 if (s->cert != NULL) {
3996 ssl_cert_free(ret->cert);
3997 ret->cert = ssl_cert_dup(s->cert);
3998 if (ret->cert == NULL)
3999 goto err;
4000 }
4001
4002 if (!SSL_set_session_id_context(ret, s->sid_ctx,
4003 (int)s->sid_ctx_length))
4004 goto err;
4005 }
4006
4007 if (!ssl_dane_dup(ret, s))
4008 goto err;
4009 ret->version = s->version;
4010 ret->options = s->options;
4011 ret->mode = s->mode;
4012 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
4013 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
4014 ret->msg_callback = s->msg_callback;
4015 ret->msg_callback_arg = s->msg_callback_arg;
4016 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
4017 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
4018 ret->generate_session_id = s->generate_session_id;
4019
4020 SSL_set_info_callback(ret, SSL_get_info_callback(s));
4021
4022 /* copy app data, a little dangerous perhaps */
4023 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
4024 goto err;
4025
4026 /* setup rbio, and wbio */
4027 if (s->rbio != NULL) {
4028 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
4029 goto err;
4030 }
4031 if (s->wbio != NULL) {
4032 if (s->wbio != s->rbio) {
4033 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
4034 goto err;
4035 } else {
4036 BIO_up_ref(ret->rbio);
4037 ret->wbio = ret->rbio;
4038 }
4039 }
4040
4041 ret->server = s->server;
4042 if (s->handshake_func) {
4043 if (s->server)
4044 SSL_set_accept_state(ret);
4045 else
4046 SSL_set_connect_state(ret);
4047 }
4048 ret->shutdown = s->shutdown;
4049 ret->hit = s->hit;
4050
4051 ret->default_passwd_callback = s->default_passwd_callback;
4052 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
4053
4054 X509_VERIFY_PARAM_inherit(ret->param, s->param);
4055
4056 /* dup the cipher_list and cipher_list_by_id stacks */
4057 if (s->cipher_list != NULL) {
4058 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
4059 goto err;
4060 }
4061 if (s->cipher_list_by_id != NULL)
4062 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
4063 == NULL)
4064 goto err;
4065
4066 /* Dup the client_CA list */
4067 if (!dup_ca_names(&ret->ca_names, s->ca_names)
4068 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
4069 goto err;
4070
4071 return ret;
4072
4073 err:
4074 SSL_free(ret);
4075 return NULL;
4076 }
4077
4078 void ssl_clear_cipher_ctx(SSL *s)
4079 {
4080 if (s->enc_read_ctx != NULL) {
4081 EVP_CIPHER_CTX_free(s->enc_read_ctx);
4082 s->enc_read_ctx = NULL;
4083 }
4084 if (s->enc_write_ctx != NULL) {
4085 EVP_CIPHER_CTX_free(s->enc_write_ctx);
4086 s->enc_write_ctx = NULL;
4087 }
4088 #ifndef OPENSSL_NO_COMP
4089 COMP_CTX_free(s->expand);
4090 s->expand = NULL;
4091 COMP_CTX_free(s->compress);
4092 s->compress = NULL;
4093 #endif
4094 }
4095
4096 X509 *SSL_get_certificate(const SSL *s)
4097 {
4098 if (s->cert != NULL)
4099 return s->cert->key->x509;
4100 else
4101 return NULL;
4102 }
4103
4104 EVP_PKEY *SSL_get_privatekey(const SSL *s)
4105 {
4106 if (s->cert != NULL)
4107 return s->cert->key->privatekey;
4108 else
4109 return NULL;
4110 }
4111
4112 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4113 {
4114 if (ctx->cert != NULL)
4115 return ctx->cert->key->x509;
4116 else
4117 return NULL;
4118 }
4119
4120 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4121 {
4122 if (ctx->cert != NULL)
4123 return ctx->cert->key->privatekey;
4124 else
4125 return NULL;
4126 }
4127
4128 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4129 {
4130 if ((s->session != NULL) && (s->session->cipher != NULL))
4131 return s->session->cipher;
4132 return NULL;
4133 }
4134
4135 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4136 {
4137 return s->s3.tmp.new_cipher;
4138 }
4139
4140 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4141 {
4142 #ifndef OPENSSL_NO_COMP
4143 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4144 #else
4145 return NULL;
4146 #endif
4147 }
4148
4149 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4150 {
4151 #ifndef OPENSSL_NO_COMP
4152 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4153 #else
4154 return NULL;
4155 #endif
4156 }
4157
4158 int ssl_init_wbio_buffer(SSL *s)
4159 {
4160 BIO *bbio;
4161
4162 if (s->bbio != NULL) {
4163 /* Already buffered. */
4164 return 1;
4165 }
4166
4167 bbio = BIO_new(BIO_f_buffer());
4168 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4169 BIO_free(bbio);
4170 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
4171 return 0;
4172 }
4173 s->bbio = bbio;
4174 s->wbio = BIO_push(bbio, s->wbio);
4175
4176 return 1;
4177 }
4178
4179 int ssl_free_wbio_buffer(SSL *s)
4180 {
4181 /* callers ensure s is never null */
4182 if (s->bbio == NULL)
4183 return 1;
4184
4185 s->wbio = BIO_pop(s->wbio);
4186 BIO_free(s->bbio);
4187 s->bbio = NULL;
4188
4189 return 1;
4190 }
4191
4192 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4193 {
4194 ctx->quiet_shutdown = mode;
4195 }
4196
4197 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4198 {
4199 return ctx->quiet_shutdown;
4200 }
4201
4202 void SSL_set_quiet_shutdown(SSL *s, int mode)
4203 {
4204 s->quiet_shutdown = mode;
4205 }
4206
4207 int SSL_get_quiet_shutdown(const SSL *s)
4208 {
4209 return s->quiet_shutdown;
4210 }
4211
4212 void SSL_set_shutdown(SSL *s, int mode)
4213 {
4214 s->shutdown = mode;
4215 }
4216
4217 int SSL_get_shutdown(const SSL *s)
4218 {
4219 return s->shutdown;
4220 }
4221
4222 int SSL_version(const SSL *s)
4223 {
4224 return s->version;
4225 }
4226
4227 int SSL_client_version(const SSL *s)
4228 {
4229 return s->client_version;
4230 }
4231
4232 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4233 {
4234 return ssl->ctx;
4235 }
4236
4237 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4238 {
4239 CERT *new_cert;
4240 if (ssl->ctx == ctx)
4241 return ssl->ctx;
4242 if (ctx == NULL)
4243 ctx = ssl->session_ctx;
4244 new_cert = ssl_cert_dup(ctx->cert);
4245 if (new_cert == NULL) {
4246 return NULL;
4247 }
4248
4249 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4250 ssl_cert_free(new_cert);
4251 return NULL;
4252 }
4253
4254 ssl_cert_free(ssl->cert);
4255 ssl->cert = new_cert;
4256
4257 /*
4258 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4259 * so setter APIs must prevent invalid lengths from entering the system.
4260 */
4261 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4262 return NULL;
4263
4264 /*
4265 * If the session ID context matches that of the parent SSL_CTX,
4266 * inherit it from the new SSL_CTX as well. If however the context does
4267 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4268 * leave it unchanged.
4269 */
4270 if ((ssl->ctx != NULL) &&
4271 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4272 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4273 ssl->sid_ctx_length = ctx->sid_ctx_length;
4274 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4275 }
4276
4277 SSL_CTX_up_ref(ctx);
4278 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4279 ssl->ctx = ctx;
4280
4281 return ssl->ctx;
4282 }
4283
4284 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4285 {
4286 return X509_STORE_set_default_paths(ctx->cert_store);
4287 }
4288
4289 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4290 {
4291 X509_LOOKUP *lookup;
4292
4293 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4294 if (lookup == NULL)
4295 return 0;
4296
4297 /* We ignore errors, in case the directory doesn't exist */
4298 ERR_set_mark();
4299
4300 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4301
4302 ERR_pop_to_mark();
4303
4304 return 1;
4305 }
4306
4307 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4308 {
4309 X509_LOOKUP *lookup;
4310
4311 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4312 if (lookup == NULL)
4313 return 0;
4314
4315 /* We ignore errors, in case the directory doesn't exist */
4316 ERR_set_mark();
4317
4318 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4319
4320 ERR_pop_to_mark();
4321
4322 return 1;
4323 }
4324
4325 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx)
4326 {
4327 X509_LOOKUP *lookup;
4328
4329 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store());
4330 if (lookup == NULL)
4331 return 0;
4332
4333 /* We ignore errors, in case the directory doesn't exist */
4334 ERR_set_mark();
4335
4336 X509_LOOKUP_add_store(lookup, NULL);
4337
4338 ERR_pop_to_mark();
4339
4340 return 1;
4341 }
4342
4343 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile)
4344 {
4345 return X509_STORE_load_file(ctx->cert_store, CAfile);
4346 }
4347
4348 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath)
4349 {
4350 return X509_STORE_load_path(ctx->cert_store, CApath);
4351 }
4352
4353 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore)
4354 {
4355 return X509_STORE_load_store(ctx->cert_store, CAstore);
4356 }
4357
4358 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4359 const char *CApath)
4360 {
4361 if (CAfile == NULL && CApath == NULL)
4362 return 0;
4363 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile))
4364 return 0;
4365 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath))
4366 return 0;
4367 return 1;
4368 }
4369
4370 void SSL_set_info_callback(SSL *ssl,
4371 void (*cb) (const SSL *ssl, int type, int val))
4372 {
4373 ssl->info_callback = cb;
4374 }
4375
4376 /*
4377 * One compiler (Diab DCC) doesn't like argument names in returned function
4378 * pointer.
4379 */
4380 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4381 int /* type */ ,
4382 int /* val */ ) {
4383 return ssl->info_callback;
4384 }
4385
4386 void SSL_set_verify_result(SSL *ssl, long arg)
4387 {
4388 ssl->verify_result = arg;
4389 }
4390
4391 long SSL_get_verify_result(const SSL *ssl)
4392 {
4393 return ssl->verify_result;
4394 }
4395
4396 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4397 {
4398 if (outlen == 0)
4399 return sizeof(ssl->s3.client_random);
4400 if (outlen > sizeof(ssl->s3.client_random))
4401 outlen = sizeof(ssl->s3.client_random);
4402 memcpy(out, ssl->s3.client_random, outlen);
4403 return outlen;
4404 }
4405
4406 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4407 {
4408 if (outlen == 0)
4409 return sizeof(ssl->s3.server_random);
4410 if (outlen > sizeof(ssl->s3.server_random))
4411 outlen = sizeof(ssl->s3.server_random);
4412 memcpy(out, ssl->s3.server_random, outlen);
4413 return outlen;
4414 }
4415
4416 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4417 unsigned char *out, size_t outlen)
4418 {
4419 if (outlen == 0)
4420 return session->master_key_length;
4421 if (outlen > session->master_key_length)
4422 outlen = session->master_key_length;
4423 memcpy(out, session->master_key, outlen);
4424 return outlen;
4425 }
4426
4427 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4428 size_t len)
4429 {
4430 if (len > sizeof(sess->master_key))
4431 return 0;
4432
4433 memcpy(sess->master_key, in, len);
4434 sess->master_key_length = len;
4435 return 1;
4436 }
4437
4438
4439 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4440 {
4441 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4442 }
4443
4444 void *SSL_get_ex_data(const SSL *s, int idx)
4445 {
4446 return CRYPTO_get_ex_data(&s->ex_data, idx);
4447 }
4448
4449 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4450 {
4451 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4452 }
4453
4454 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4455 {
4456 return CRYPTO_get_ex_data(&s->ex_data, idx);
4457 }
4458
4459 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4460 {
4461 return ctx->cert_store;
4462 }
4463
4464 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4465 {
4466 X509_STORE_free(ctx->cert_store);
4467 ctx->cert_store = store;
4468 }
4469
4470 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4471 {
4472 if (store != NULL)
4473 X509_STORE_up_ref(store);
4474 SSL_CTX_set_cert_store(ctx, store);
4475 }
4476
4477 int SSL_want(const SSL *s)
4478 {
4479 return s->rwstate;
4480 }
4481
4482 /**
4483 * \brief Set the callback for generating temporary DH keys.
4484 * \param ctx the SSL context.
4485 * \param dh the callback
4486 */
4487
4488 #ifndef OPENSSL_NO_DH
4489 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4490 DH *(*dh) (SSL *ssl, int is_export,
4491 int keylength))
4492 {
4493 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4494 }
4495
4496 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4497 int keylength))
4498 {
4499 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4500 }
4501 #endif
4502
4503 #ifndef OPENSSL_NO_PSK
4504 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4505 {
4506 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4507 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4508 return 0;
4509 }
4510 OPENSSL_free(ctx->cert->psk_identity_hint);
4511 if (identity_hint != NULL) {
4512 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4513 if (ctx->cert->psk_identity_hint == NULL)
4514 return 0;
4515 } else
4516 ctx->cert->psk_identity_hint = NULL;
4517 return 1;
4518 }
4519
4520 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4521 {
4522 if (s == NULL)
4523 return 0;
4524
4525 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4526 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4527 return 0;
4528 }
4529 OPENSSL_free(s->cert->psk_identity_hint);
4530 if (identity_hint != NULL) {
4531 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4532 if (s->cert->psk_identity_hint == NULL)
4533 return 0;
4534 } else
4535 s->cert->psk_identity_hint = NULL;
4536 return 1;
4537 }
4538
4539 const char *SSL_get_psk_identity_hint(const SSL *s)
4540 {
4541 if (s == NULL || s->session == NULL)
4542 return NULL;
4543 return s->session->psk_identity_hint;
4544 }
4545
4546 const char *SSL_get_psk_identity(const SSL *s)
4547 {
4548 if (s == NULL || s->session == NULL)
4549 return NULL;
4550 return s->session->psk_identity;
4551 }
4552
4553 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4554 {
4555 s->psk_client_callback = cb;
4556 }
4557
4558 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4559 {
4560 ctx->psk_client_callback = cb;
4561 }
4562
4563 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4564 {
4565 s->psk_server_callback = cb;
4566 }
4567
4568 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4569 {
4570 ctx->psk_server_callback = cb;
4571 }
4572 #endif
4573
4574 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4575 {
4576 s->psk_find_session_cb = cb;
4577 }
4578
4579 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4580 SSL_psk_find_session_cb_func cb)
4581 {
4582 ctx->psk_find_session_cb = cb;
4583 }
4584
4585 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4586 {
4587 s->psk_use_session_cb = cb;
4588 }
4589
4590 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4591 SSL_psk_use_session_cb_func cb)
4592 {
4593 ctx->psk_use_session_cb = cb;
4594 }
4595
4596 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4597 void (*cb) (int write_p, int version,
4598 int content_type, const void *buf,
4599 size_t len, SSL *ssl, void *arg))
4600 {
4601 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4602 }
4603
4604 void SSL_set_msg_callback(SSL *ssl,
4605 void (*cb) (int write_p, int version,
4606 int content_type, const void *buf,
4607 size_t len, SSL *ssl, void *arg))
4608 {
4609 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4610 }
4611
4612 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4613 int (*cb) (SSL *ssl,
4614 int
4615 is_forward_secure))
4616 {
4617 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4618 (void (*)(void))cb);
4619 }
4620
4621 void SSL_set_not_resumable_session_callback(SSL *ssl,
4622 int (*cb) (SSL *ssl,
4623 int is_forward_secure))
4624 {
4625 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4626 (void (*)(void))cb);
4627 }
4628
4629 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4630 size_t (*cb) (SSL *ssl, int type,
4631 size_t len, void *arg))
4632 {
4633 ctx->record_padding_cb = cb;
4634 }
4635
4636 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4637 {
4638 ctx->record_padding_arg = arg;
4639 }
4640
4641 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4642 {
4643 return ctx->record_padding_arg;
4644 }
4645
4646 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4647 {
4648 /* block size of 0 or 1 is basically no padding */
4649 if (block_size == 1)
4650 ctx->block_padding = 0;
4651 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4652 ctx->block_padding = block_size;
4653 else
4654 return 0;
4655 return 1;
4656 }
4657
4658 int SSL_set_record_padding_callback(SSL *ssl,
4659 size_t (*cb) (SSL *ssl, int type,
4660 size_t len, void *arg))
4661 {
4662 BIO *b;
4663
4664 b = SSL_get_wbio(ssl);
4665 if (b == NULL || !BIO_get_ktls_send(b)) {
4666 ssl->record_padding_cb = cb;
4667 return 1;
4668 }
4669 return 0;
4670 }
4671
4672 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4673 {
4674 ssl->record_padding_arg = arg;
4675 }
4676
4677 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4678 {
4679 return ssl->record_padding_arg;
4680 }
4681
4682 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4683 {
4684 /* block size of 0 or 1 is basically no padding */
4685 if (block_size == 1)
4686 ssl->block_padding = 0;
4687 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4688 ssl->block_padding = block_size;
4689 else
4690 return 0;
4691 return 1;
4692 }
4693
4694 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4695 {
4696 s->num_tickets = num_tickets;
4697
4698 return 1;
4699 }
4700
4701 size_t SSL_get_num_tickets(const SSL *s)
4702 {
4703 return s->num_tickets;
4704 }
4705
4706 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4707 {
4708 ctx->num_tickets = num_tickets;
4709
4710 return 1;
4711 }
4712
4713 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4714 {
4715 return ctx->num_tickets;
4716 }
4717
4718 /*
4719 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4720 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4721 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4722 * Returns the newly allocated ctx;
4723 */
4724
4725 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4726 {
4727 ssl_clear_hash_ctx(hash);
4728 *hash = EVP_MD_CTX_new();
4729 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4730 EVP_MD_CTX_free(*hash);
4731 *hash = NULL;
4732 return NULL;
4733 }
4734 return *hash;
4735 }
4736
4737 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4738 {
4739
4740 EVP_MD_CTX_free(*hash);
4741 *hash = NULL;
4742 }
4743
4744 /* Retrieve handshake hashes */
4745 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4746 size_t *hashlen)
4747 {
4748 EVP_MD_CTX *ctx = NULL;
4749 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4750 int hashleni = EVP_MD_CTX_size(hdgst);
4751 int ret = 0;
4752
4753 if (hashleni < 0 || (size_t)hashleni > outlen) {
4754 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4755 ERR_R_INTERNAL_ERROR);
4756 goto err;
4757 }
4758
4759 ctx = EVP_MD_CTX_new();
4760 if (ctx == NULL)
4761 goto err;
4762
4763 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4764 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4765 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4766 ERR_R_INTERNAL_ERROR);
4767 goto err;
4768 }
4769
4770 *hashlen = hashleni;
4771
4772 ret = 1;
4773 err:
4774 EVP_MD_CTX_free(ctx);
4775 return ret;
4776 }
4777
4778 int SSL_session_reused(const SSL *s)
4779 {
4780 return s->hit;
4781 }
4782
4783 int SSL_is_server(const SSL *s)
4784 {
4785 return s->server;
4786 }
4787
4788 #ifndef OPENSSL_NO_DEPRECATED_1_1_0
4789 void SSL_set_debug(SSL *s, int debug)
4790 {
4791 /* Old function was do-nothing anyway... */
4792 (void)s;
4793 (void)debug;
4794 }
4795 #endif
4796
4797 void SSL_set_security_level(SSL *s, int level)
4798 {
4799 s->cert->sec_level = level;
4800 }
4801
4802 int SSL_get_security_level(const SSL *s)
4803 {
4804 return s->cert->sec_level;
4805 }
4806
4807 void SSL_set_security_callback(SSL *s,
4808 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4809 int op, int bits, int nid,
4810 void *other, void *ex))
4811 {
4812 s->cert->sec_cb = cb;
4813 }
4814
4815 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4816 const SSL_CTX *ctx, int op,
4817 int bits, int nid, void *other,
4818 void *ex) {
4819 return s->cert->sec_cb;
4820 }
4821
4822 void SSL_set0_security_ex_data(SSL *s, void *ex)
4823 {
4824 s->cert->sec_ex = ex;
4825 }
4826
4827 void *SSL_get0_security_ex_data(const SSL *s)
4828 {
4829 return s->cert->sec_ex;
4830 }
4831
4832 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4833 {
4834 ctx->cert->sec_level = level;
4835 }
4836
4837 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4838 {
4839 return ctx->cert->sec_level;
4840 }
4841
4842 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4843 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4844 int op, int bits, int nid,
4845 void *other, void *ex))
4846 {
4847 ctx->cert->sec_cb = cb;
4848 }
4849
4850 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4851 const SSL_CTX *ctx,
4852 int op, int bits,
4853 int nid,
4854 void *other,
4855 void *ex) {
4856 return ctx->cert->sec_cb;
4857 }
4858
4859 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4860 {
4861 ctx->cert->sec_ex = ex;
4862 }
4863
4864 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4865 {
4866 return ctx->cert->sec_ex;
4867 }
4868
4869 /*
4870 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4871 * can return unsigned long, instead of the generic long return value from the
4872 * control interface.
4873 */
4874 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4875 {
4876 return ctx->options;
4877 }
4878
4879 unsigned long SSL_get_options(const SSL *s)
4880 {
4881 return s->options;
4882 }
4883
4884 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4885 {
4886 return ctx->options |= op;
4887 }
4888
4889 unsigned long SSL_set_options(SSL *s, unsigned long op)
4890 {
4891 return s->options |= op;
4892 }
4893
4894 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4895 {
4896 return ctx->options &= ~op;
4897 }
4898
4899 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4900 {
4901 return s->options &= ~op;
4902 }
4903
4904 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4905 {
4906 return s->verified_chain;
4907 }
4908
4909 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4910
4911 #ifndef OPENSSL_NO_CT
4912
4913 /*
4914 * Moves SCTs from the |src| stack to the |dst| stack.
4915 * The source of each SCT will be set to |origin|.
4916 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4917 * the caller.
4918 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4919 */
4920 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4921 sct_source_t origin)
4922 {
4923 int scts_moved = 0;
4924 SCT *sct = NULL;
4925
4926 if (*dst == NULL) {
4927 *dst = sk_SCT_new_null();
4928 if (*dst == NULL) {
4929 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4930 goto err;
4931 }
4932 }
4933
4934 while ((sct = sk_SCT_pop(src)) != NULL) {
4935 if (SCT_set_source(sct, origin) != 1)
4936 goto err;
4937
4938 if (sk_SCT_push(*dst, sct) <= 0)
4939 goto err;
4940 scts_moved += 1;
4941 }
4942
4943 return scts_moved;
4944 err:
4945 if (sct != NULL)
4946 sk_SCT_push(src, sct); /* Put the SCT back */
4947 return -1;
4948 }
4949
4950 /*
4951 * Look for data collected during ServerHello and parse if found.
4952 * Returns the number of SCTs extracted.
4953 */
4954 static int ct_extract_tls_extension_scts(SSL *s)
4955 {
4956 int scts_extracted = 0;
4957
4958 if (s->ext.scts != NULL) {
4959 const unsigned char *p = s->ext.scts;
4960 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4961
4962 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4963
4964 SCT_LIST_free(scts);
4965 }
4966
4967 return scts_extracted;
4968 }
4969
4970 /*
4971 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4972 * contains an SCT X509 extension. They will be stored in |s->scts|.
4973 * Returns:
4974 * - The number of SCTs extracted, assuming an OCSP response exists.
4975 * - 0 if no OCSP response exists or it contains no SCTs.
4976 * - A negative integer if an error occurs.
4977 */
4978 static int ct_extract_ocsp_response_scts(SSL *s)
4979 {
4980 # ifndef OPENSSL_NO_OCSP
4981 int scts_extracted = 0;
4982 const unsigned char *p;
4983 OCSP_BASICRESP *br = NULL;
4984 OCSP_RESPONSE *rsp = NULL;
4985 STACK_OF(SCT) *scts = NULL;
4986 int i;
4987
4988 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4989 goto err;
4990
4991 p = s->ext.ocsp.resp;
4992 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4993 if (rsp == NULL)
4994 goto err;
4995
4996 br = OCSP_response_get1_basic(rsp);
4997 if (br == NULL)
4998 goto err;
4999
5000 for (i = 0; i < OCSP_resp_count(br); ++i) {
5001 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
5002
5003 if (single == NULL)
5004 continue;
5005
5006 scts =
5007 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
5008 scts_extracted =
5009 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
5010 if (scts_extracted < 0)
5011 goto err;
5012 }
5013 err:
5014 SCT_LIST_free(scts);
5015 OCSP_BASICRESP_free(br);
5016 OCSP_RESPONSE_free(rsp);
5017 return scts_extracted;
5018 # else
5019 /* Behave as if no OCSP response exists */
5020 return 0;
5021 # endif
5022 }
5023
5024 /*
5025 * Attempts to extract SCTs from the peer certificate.
5026 * Return the number of SCTs extracted, or a negative integer if an error
5027 * occurs.
5028 */
5029 static int ct_extract_x509v3_extension_scts(SSL *s)
5030 {
5031 int scts_extracted = 0;
5032 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5033
5034 if (cert != NULL) {
5035 STACK_OF(SCT) *scts =
5036 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
5037
5038 scts_extracted =
5039 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
5040
5041 SCT_LIST_free(scts);
5042 }
5043
5044 return scts_extracted;
5045 }
5046
5047 /*
5048 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
5049 * response (if it exists) and X509v3 extensions in the certificate.
5050 * Returns NULL if an error occurs.
5051 */
5052 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
5053 {
5054 if (!s->scts_parsed) {
5055 if (ct_extract_tls_extension_scts(s) < 0 ||
5056 ct_extract_ocsp_response_scts(s) < 0 ||
5057 ct_extract_x509v3_extension_scts(s) < 0)
5058 goto err;
5059
5060 s->scts_parsed = 1;
5061 }
5062 return s->scts;
5063 err:
5064 return NULL;
5065 }
5066
5067 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
5068 const STACK_OF(SCT) *scts, void *unused_arg)
5069 {
5070 return 1;
5071 }
5072
5073 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
5074 const STACK_OF(SCT) *scts, void *unused_arg)
5075 {
5076 int count = scts != NULL ? sk_SCT_num(scts) : 0;
5077 int i;
5078
5079 for (i = 0; i < count; ++i) {
5080 SCT *sct = sk_SCT_value(scts, i);
5081 int status = SCT_get_validation_status(sct);
5082
5083 if (status == SCT_VALIDATION_STATUS_VALID)
5084 return 1;
5085 }
5086 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
5087 return 0;
5088 }
5089
5090 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
5091 void *arg)
5092 {
5093 /*
5094 * Since code exists that uses the custom extension handler for CT, look
5095 * for this and throw an error if they have already registered to use CT.
5096 */
5097 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
5098 TLSEXT_TYPE_signed_certificate_timestamp))
5099 {
5100 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
5101 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5102 return 0;
5103 }
5104
5105 if (callback != NULL) {
5106 /*
5107 * If we are validating CT, then we MUST accept SCTs served via OCSP
5108 */
5109 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
5110 return 0;
5111 }
5112
5113 s->ct_validation_callback = callback;
5114 s->ct_validation_callback_arg = arg;
5115
5116 return 1;
5117 }
5118
5119 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
5120 ssl_ct_validation_cb callback, void *arg)
5121 {
5122 /*
5123 * Since code exists that uses the custom extension handler for CT, look for
5124 * this and throw an error if they have already registered to use CT.
5125 */
5126 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
5127 TLSEXT_TYPE_signed_certificate_timestamp))
5128 {
5129 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
5130 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5131 return 0;
5132 }
5133
5134 ctx->ct_validation_callback = callback;
5135 ctx->ct_validation_callback_arg = arg;
5136 return 1;
5137 }
5138
5139 int SSL_ct_is_enabled(const SSL *s)
5140 {
5141 return s->ct_validation_callback != NULL;
5142 }
5143
5144 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
5145 {
5146 return ctx->ct_validation_callback != NULL;
5147 }
5148
5149 int ssl_validate_ct(SSL *s)
5150 {
5151 int ret = 0;
5152 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5153 X509 *issuer;
5154 SSL_DANE *dane = &s->dane;
5155 CT_POLICY_EVAL_CTX *ctx = NULL;
5156 const STACK_OF(SCT) *scts;
5157
5158 /*
5159 * If no callback is set, the peer is anonymous, or its chain is invalid,
5160 * skip SCT validation - just return success. Applications that continue
5161 * handshakes without certificates, with unverified chains, or pinned leaf
5162 * certificates are outside the scope of the WebPKI and CT.
5163 *
5164 * The above exclusions notwithstanding the vast majority of peers will
5165 * have rather ordinary certificate chains validated by typical
5166 * applications that perform certificate verification and therefore will
5167 * process SCTs when enabled.
5168 */
5169 if (s->ct_validation_callback == NULL || cert == NULL ||
5170 s->verify_result != X509_V_OK ||
5171 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5172 return 1;
5173
5174 /*
5175 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5176 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5177 */
5178 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5179 switch (dane->mtlsa->usage) {
5180 case DANETLS_USAGE_DANE_TA:
5181 case DANETLS_USAGE_DANE_EE:
5182 return 1;
5183 }
5184 }
5185
5186 ctx = CT_POLICY_EVAL_CTX_new_with_libctx(s->ctx->libctx, s->ctx->propq);
5187 if (ctx == NULL) {
5188 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
5189 ERR_R_MALLOC_FAILURE);
5190 goto end;
5191 }
5192
5193 issuer = sk_X509_value(s->verified_chain, 1);
5194 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5195 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5196 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5197 CT_POLICY_EVAL_CTX_set_time(
5198 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5199
5200 scts = SSL_get0_peer_scts(s);
5201
5202 /*
5203 * This function returns success (> 0) only when all the SCTs are valid, 0
5204 * when some are invalid, and < 0 on various internal errors (out of
5205 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5206 * reason to abort the handshake, that decision is up to the callback.
5207 * Therefore, we error out only in the unexpected case that the return
5208 * value is negative.
5209 *
5210 * XXX: One might well argue that the return value of this function is an
5211 * unfortunate design choice. Its job is only to determine the validation
5212 * status of each of the provided SCTs. So long as it correctly separates
5213 * the wheat from the chaff it should return success. Failure in this case
5214 * ought to correspond to an inability to carry out its duties.
5215 */
5216 if (SCT_LIST_validate(scts, ctx) < 0) {
5217 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5218 SSL_R_SCT_VERIFICATION_FAILED);
5219 goto end;
5220 }
5221
5222 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5223 if (ret < 0)
5224 ret = 0; /* This function returns 0 on failure */
5225 if (!ret)
5226 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5227 SSL_R_CALLBACK_FAILED);
5228
5229 end:
5230 CT_POLICY_EVAL_CTX_free(ctx);
5231 /*
5232 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5233 * failure return code here. Also the application may wish the complete
5234 * the handshake, and then disconnect cleanly at a higher layer, after
5235 * checking the verification status of the completed connection.
5236 *
5237 * We therefore force a certificate verification failure which will be
5238 * visible via SSL_get_verify_result() and cached as part of any resumed
5239 * session.
5240 *
5241 * Note: the permissive callback is for information gathering only, always
5242 * returns success, and does not affect verification status. Only the
5243 * strict callback or a custom application-specified callback can trigger
5244 * connection failure or record a verification error.
5245 */
5246 if (ret <= 0)
5247 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5248 return ret;
5249 }
5250
5251 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5252 {
5253 switch (validation_mode) {
5254 default:
5255 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5256 return 0;
5257 case SSL_CT_VALIDATION_PERMISSIVE:
5258 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5259 case SSL_CT_VALIDATION_STRICT:
5260 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5261 }
5262 }
5263
5264 int SSL_enable_ct(SSL *s, int validation_mode)
5265 {
5266 switch (validation_mode) {
5267 default:
5268 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5269 return 0;
5270 case SSL_CT_VALIDATION_PERMISSIVE:
5271 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5272 case SSL_CT_VALIDATION_STRICT:
5273 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5274 }
5275 }
5276
5277 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5278 {
5279 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5280 }
5281
5282 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5283 {
5284 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5285 }
5286
5287 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5288 {
5289 CTLOG_STORE_free(ctx->ctlog_store);
5290 ctx->ctlog_store = logs;
5291 }
5292
5293 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5294 {
5295 return ctx->ctlog_store;
5296 }
5297
5298 #endif /* OPENSSL_NO_CT */
5299
5300 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5301 void *arg)
5302 {
5303 c->client_hello_cb = cb;
5304 c->client_hello_cb_arg = arg;
5305 }
5306
5307 int SSL_client_hello_isv2(SSL *s)
5308 {
5309 if (s->clienthello == NULL)
5310 return 0;
5311 return s->clienthello->isv2;
5312 }
5313
5314 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5315 {
5316 if (s->clienthello == NULL)
5317 return 0;
5318 return s->clienthello->legacy_version;
5319 }
5320
5321 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5322 {
5323 if (s->clienthello == NULL)
5324 return 0;
5325 if (out != NULL)
5326 *out = s->clienthello->random;
5327 return SSL3_RANDOM_SIZE;
5328 }
5329
5330 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5331 {
5332 if (s->clienthello == NULL)
5333 return 0;
5334 if (out != NULL)
5335 *out = s->clienthello->session_id;
5336 return s->clienthello->session_id_len;
5337 }
5338
5339 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5340 {
5341 if (s->clienthello == NULL)
5342 return 0;
5343 if (out != NULL)
5344 *out = PACKET_data(&s->clienthello->ciphersuites);
5345 return PACKET_remaining(&s->clienthello->ciphersuites);
5346 }
5347
5348 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5349 {
5350 if (s->clienthello == NULL)
5351 return 0;
5352 if (out != NULL)
5353 *out = s->clienthello->compressions;
5354 return s->clienthello->compressions_len;
5355 }
5356
5357 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5358 {
5359 RAW_EXTENSION *ext;
5360 int *present;
5361 size_t num = 0, i;
5362
5363 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5364 return 0;
5365 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5366 ext = s->clienthello->pre_proc_exts + i;
5367 if (ext->present)
5368 num++;
5369 }
5370 if (num == 0) {
5371 *out = NULL;
5372 *outlen = 0;
5373 return 1;
5374 }
5375 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5376 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5377 ERR_R_MALLOC_FAILURE);
5378 return 0;
5379 }
5380 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5381 ext = s->clienthello->pre_proc_exts + i;
5382 if (ext->present) {
5383 if (ext->received_order >= num)
5384 goto err;
5385 present[ext->received_order] = ext->type;
5386 }
5387 }
5388 *out = present;
5389 *outlen = num;
5390 return 1;
5391 err:
5392 OPENSSL_free(present);
5393 return 0;
5394 }
5395
5396 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5397 size_t *outlen)
5398 {
5399 size_t i;
5400 RAW_EXTENSION *r;
5401
5402 if (s->clienthello == NULL)
5403 return 0;
5404 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5405 r = s->clienthello->pre_proc_exts + i;
5406 if (r->present && r->type == type) {
5407 if (out != NULL)
5408 *out = PACKET_data(&r->data);
5409 if (outlen != NULL)
5410 *outlen = PACKET_remaining(&r->data);
5411 return 1;
5412 }
5413 }
5414 return 0;
5415 }
5416
5417 int SSL_free_buffers(SSL *ssl)
5418 {
5419 RECORD_LAYER *rl = &ssl->rlayer;
5420
5421 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5422 return 0;
5423
5424 RECORD_LAYER_release(rl);
5425 return 1;
5426 }
5427
5428 int SSL_alloc_buffers(SSL *ssl)
5429 {
5430 return ssl3_setup_buffers(ssl);
5431 }
5432
5433 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5434 {
5435 ctx->keylog_callback = cb;
5436 }
5437
5438 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5439 {
5440 return ctx->keylog_callback;
5441 }
5442
5443 static int nss_keylog_int(const char *prefix,
5444 SSL *ssl,
5445 const uint8_t *parameter_1,
5446 size_t parameter_1_len,
5447 const uint8_t *parameter_2,
5448 size_t parameter_2_len)
5449 {
5450 char *out = NULL;
5451 char *cursor = NULL;
5452 size_t out_len = 0;
5453 size_t i;
5454 size_t prefix_len;
5455
5456 if (ssl->ctx->keylog_callback == NULL)
5457 return 1;
5458
5459 /*
5460 * Our output buffer will contain the following strings, rendered with
5461 * space characters in between, terminated by a NULL character: first the
5462 * prefix, then the first parameter, then the second parameter. The
5463 * meaning of each parameter depends on the specific key material being
5464 * logged. Note that the first and second parameters are encoded in
5465 * hexadecimal, so we need a buffer that is twice their lengths.
5466 */
5467 prefix_len = strlen(prefix);
5468 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5469 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5470 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5471 ERR_R_MALLOC_FAILURE);
5472 return 0;
5473 }
5474
5475 strcpy(cursor, prefix);
5476 cursor += prefix_len;
5477 *cursor++ = ' ';
5478
5479 for (i = 0; i < parameter_1_len; i++) {
5480 sprintf(cursor, "%02x", parameter_1[i]);
5481 cursor += 2;
5482 }
5483 *cursor++ = ' ';
5484
5485 for (i = 0; i < parameter_2_len; i++) {
5486 sprintf(cursor, "%02x", parameter_2[i]);
5487 cursor += 2;
5488 }
5489 *cursor = '\0';
5490
5491 ssl->ctx->keylog_callback(ssl, (const char *)out);
5492 OPENSSL_clear_free(out, out_len);
5493 return 1;
5494
5495 }
5496
5497 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5498 const uint8_t *encrypted_premaster,
5499 size_t encrypted_premaster_len,
5500 const uint8_t *premaster,
5501 size_t premaster_len)
5502 {
5503 if (encrypted_premaster_len < 8) {
5504 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5505 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5506 return 0;
5507 }
5508
5509 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5510 return nss_keylog_int("RSA",
5511 ssl,
5512 encrypted_premaster,
5513 8,
5514 premaster,
5515 premaster_len);
5516 }
5517
5518 int ssl_log_secret(SSL *ssl,
5519 const char *label,
5520 const uint8_t *secret,
5521 size_t secret_len)
5522 {
5523 return nss_keylog_int(label,
5524 ssl,
5525 ssl->s3.client_random,
5526 SSL3_RANDOM_SIZE,
5527 secret,
5528 secret_len);
5529 }
5530
5531 #define SSLV2_CIPHER_LEN 3
5532
5533 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5534 {
5535 int n;
5536
5537 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5538
5539 if (PACKET_remaining(cipher_suites) == 0) {
5540 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5541 SSL_R_NO_CIPHERS_SPECIFIED);
5542 return 0;
5543 }
5544
5545 if (PACKET_remaining(cipher_suites) % n != 0) {
5546 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5547 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5548 return 0;
5549 }
5550
5551 OPENSSL_free(s->s3.tmp.ciphers_raw);
5552 s->s3.tmp.ciphers_raw = NULL;
5553 s->s3.tmp.ciphers_rawlen = 0;
5554
5555 if (sslv2format) {
5556 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5557 PACKET sslv2ciphers = *cipher_suites;
5558 unsigned int leadbyte;
5559 unsigned char *raw;
5560
5561 /*
5562 * We store the raw ciphers list in SSLv3+ format so we need to do some
5563 * preprocessing to convert the list first. If there are any SSLv2 only
5564 * ciphersuites with a non-zero leading byte then we are going to
5565 * slightly over allocate because we won't store those. But that isn't a
5566 * problem.
5567 */
5568 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5569 s->s3.tmp.ciphers_raw = raw;
5570 if (raw == NULL) {
5571 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5572 ERR_R_MALLOC_FAILURE);
5573 return 0;
5574 }
5575 for (s->s3.tmp.ciphers_rawlen = 0;
5576 PACKET_remaining(&sslv2ciphers) > 0;
5577 raw += TLS_CIPHER_LEN) {
5578 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5579 || (leadbyte == 0
5580 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5581 TLS_CIPHER_LEN))
5582 || (leadbyte != 0
5583 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5584 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5585 SSL_R_BAD_PACKET);
5586 OPENSSL_free(s->s3.tmp.ciphers_raw);
5587 s->s3.tmp.ciphers_raw = NULL;
5588 s->s3.tmp.ciphers_rawlen = 0;
5589 return 0;
5590 }
5591 if (leadbyte == 0)
5592 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5593 }
5594 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5595 &s->s3.tmp.ciphers_rawlen)) {
5596 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5597 ERR_R_INTERNAL_ERROR);
5598 return 0;
5599 }
5600 return 1;
5601 }
5602
5603 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5604 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5605 STACK_OF(SSL_CIPHER) **scsvs)
5606 {
5607 PACKET pkt;
5608
5609 if (!PACKET_buf_init(&pkt, bytes, len))
5610 return 0;
5611 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5612 }
5613
5614 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5615 STACK_OF(SSL_CIPHER) **skp,
5616 STACK_OF(SSL_CIPHER) **scsvs_out,
5617 int sslv2format, int fatal)
5618 {
5619 const SSL_CIPHER *c;
5620 STACK_OF(SSL_CIPHER) *sk = NULL;
5621 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5622 int n;
5623 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5624 unsigned char cipher[SSLV2_CIPHER_LEN];
5625
5626 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5627
5628 if (PACKET_remaining(cipher_suites) == 0) {
5629 if (fatal)
5630 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5631 SSL_R_NO_CIPHERS_SPECIFIED);
5632 else
5633 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5634 return 0;
5635 }
5636
5637 if (PACKET_remaining(cipher_suites) % n != 0) {
5638 if (fatal)
5639 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5640 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5641 else
5642 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5643 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5644 return 0;
5645 }
5646
5647 sk = sk_SSL_CIPHER_new_null();
5648 scsvs = sk_SSL_CIPHER_new_null();
5649 if (sk == NULL || scsvs == NULL) {
5650 if (fatal)
5651 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5652 ERR_R_MALLOC_FAILURE);
5653 else
5654 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5655 goto err;
5656 }
5657
5658 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5659 /*
5660 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5661 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5662 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5663 */
5664 if (sslv2format && cipher[0] != '\0')
5665 continue;
5666
5667 /* For SSLv2-compat, ignore leading 0-byte. */
5668 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5669 if (c != NULL) {
5670 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5671 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5672 if (fatal)
5673 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5674 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5675 else
5676 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5677 goto err;
5678 }
5679 }
5680 }
5681 if (PACKET_remaining(cipher_suites) > 0) {
5682 if (fatal)
5683 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5684 SSL_R_BAD_LENGTH);
5685 else
5686 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5687 goto err;
5688 }
5689
5690 if (skp != NULL)
5691 *skp = sk;
5692 else
5693 sk_SSL_CIPHER_free(sk);
5694 if (scsvs_out != NULL)
5695 *scsvs_out = scsvs;
5696 else
5697 sk_SSL_CIPHER_free(scsvs);
5698 return 1;
5699 err:
5700 sk_SSL_CIPHER_free(sk);
5701 sk_SSL_CIPHER_free(scsvs);
5702 return 0;
5703 }
5704
5705 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5706 {
5707 ctx->max_early_data = max_early_data;
5708
5709 return 1;
5710 }
5711
5712 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5713 {
5714 return ctx->max_early_data;
5715 }
5716
5717 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5718 {
5719 s->max_early_data = max_early_data;
5720
5721 return 1;
5722 }
5723
5724 uint32_t SSL_get_max_early_data(const SSL *s)
5725 {
5726 return s->max_early_data;
5727 }
5728
5729 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5730 {
5731 ctx->recv_max_early_data = recv_max_early_data;
5732
5733 return 1;
5734 }
5735
5736 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5737 {
5738 return ctx->recv_max_early_data;
5739 }
5740
5741 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5742 {
5743 s->recv_max_early_data = recv_max_early_data;
5744
5745 return 1;
5746 }
5747
5748 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5749 {
5750 return s->recv_max_early_data;
5751 }
5752
5753 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5754 {
5755 /* Return any active Max Fragment Len extension */
5756 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5757 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5758
5759 /* return current SSL connection setting */
5760 return ssl->max_send_fragment;
5761 }
5762
5763 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5764 {
5765 /* Return a value regarding an active Max Fragment Len extension */
5766 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5767 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5768 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5769
5770 /* else limit |split_send_fragment| to current |max_send_fragment| */
5771 if (ssl->split_send_fragment > ssl->max_send_fragment)
5772 return ssl->max_send_fragment;
5773
5774 /* return current SSL connection setting */
5775 return ssl->split_send_fragment;
5776 }
5777
5778 int SSL_stateless(SSL *s)
5779 {
5780 int ret;
5781
5782 /* Ensure there is no state left over from a previous invocation */
5783 if (!SSL_clear(s))
5784 return 0;
5785
5786 ERR_clear_error();
5787
5788 s->s3.flags |= TLS1_FLAGS_STATELESS;
5789 ret = SSL_accept(s);
5790 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5791
5792 if (ret > 0 && s->ext.cookieok)
5793 return 1;
5794
5795 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5796 return 0;
5797
5798 return -1;
5799 }
5800
5801 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5802 {
5803 ctx->pha_enabled = val;
5804 }
5805
5806 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5807 {
5808 ssl->pha_enabled = val;
5809 }
5810
5811 int SSL_verify_client_post_handshake(SSL *ssl)
5812 {
5813 if (!SSL_IS_TLS13(ssl)) {
5814 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5815 return 0;
5816 }
5817 if (!ssl->server) {
5818 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5819 return 0;
5820 }
5821
5822 if (!SSL_is_init_finished(ssl)) {
5823 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5824 return 0;
5825 }
5826
5827 switch (ssl->post_handshake_auth) {
5828 case SSL_PHA_NONE:
5829 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5830 return 0;
5831 default:
5832 case SSL_PHA_EXT_SENT:
5833 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5834 return 0;
5835 case SSL_PHA_EXT_RECEIVED:
5836 break;
5837 case SSL_PHA_REQUEST_PENDING:
5838 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5839 return 0;
5840 case SSL_PHA_REQUESTED:
5841 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5842 return 0;
5843 }
5844
5845 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5846
5847 /* checks verify_mode and algorithm_auth */
5848 if (!send_certificate_request(ssl)) {
5849 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5850 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5851 return 0;
5852 }
5853
5854 ossl_statem_set_in_init(ssl, 1);
5855 return 1;
5856 }
5857
5858 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5859 SSL_CTX_generate_session_ticket_fn gen_cb,
5860 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5861 void *arg)
5862 {
5863 ctx->generate_ticket_cb = gen_cb;
5864 ctx->decrypt_ticket_cb = dec_cb;
5865 ctx->ticket_cb_data = arg;
5866 return 1;
5867 }
5868
5869 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5870 SSL_allow_early_data_cb_fn cb,
5871 void *arg)
5872 {
5873 ctx->allow_early_data_cb = cb;
5874 ctx->allow_early_data_cb_data = arg;
5875 }
5876
5877 void SSL_set_allow_early_data_cb(SSL *s,
5878 SSL_allow_early_data_cb_fn cb,
5879 void *arg)
5880 {
5881 s->allow_early_data_cb = cb;
5882 s->allow_early_data_cb_data = arg;
5883 }
5884
5885 const EVP_CIPHER *ssl_evp_cipher_fetch(OPENSSL_CTX *libctx,
5886 int nid,
5887 const char *properties)
5888 {
5889 EVP_CIPHER *ciph;
5890
5891 #ifndef OPENSSL_NO_ENGINE
5892 ENGINE *eng;
5893
5894 /*
5895 * If there is an Engine available for this cipher we use the "implicit"
5896 * form to ensure we use that engine later.
5897 */
5898 eng = ENGINE_get_cipher_engine(nid);
5899 if (eng != NULL) {
5900 ENGINE_finish(eng);
5901 return EVP_get_cipherbynid(nid);
5902 }
5903 #endif
5904
5905 /* Otherwise we do an explicit fetch. This may fail and that could be ok */
5906 ERR_set_mark();
5907 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties);
5908 ERR_pop_to_mark();
5909 return ciph;
5910 }
5911
5912
5913 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher)
5914 {
5915 /* Don't up-ref an implicit EVP_CIPHER */
5916 if (EVP_CIPHER_provider(cipher) == NULL)
5917 return 1;
5918
5919 /*
5920 * The cipher was explicitly fetched and therefore it is safe to cast
5921 * away the const
5922 */
5923 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher);
5924 }
5925
5926 void ssl_evp_cipher_free(const EVP_CIPHER *cipher)
5927 {
5928 if (cipher == NULL)
5929 return;
5930
5931 if (EVP_CIPHER_provider(cipher) != NULL) {
5932 /*
5933 * The cipher was explicitly fetched and therefore it is safe to cast
5934 * away the const
5935 */
5936 EVP_CIPHER_free((EVP_CIPHER *)cipher);
5937 }
5938 }
5939
5940 const EVP_MD *ssl_evp_md_fetch(OPENSSL_CTX *libctx,
5941 int nid,
5942 const char *properties)
5943 {
5944 EVP_MD *md;
5945
5946 #ifndef OPENSSL_NO_ENGINE
5947 ENGINE *eng;
5948
5949 /*
5950 * If there is an Engine available for this digest we use the "implicit"
5951 * form to ensure we use that engine later.
5952 */
5953 eng = ENGINE_get_digest_engine(nid);
5954 if (eng != NULL) {
5955 ENGINE_finish(eng);
5956 return EVP_get_digestbynid(nid);
5957 }
5958 #endif
5959
5960 /* Otherwise we do an explicit fetch */
5961 ERR_set_mark();
5962 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties);
5963 ERR_pop_to_mark();
5964 return md;
5965 }
5966
5967 int ssl_evp_md_up_ref(const EVP_MD *md)
5968 {
5969 /* Don't up-ref an implicit EVP_MD */
5970 if (EVP_MD_provider(md) == NULL)
5971 return 1;
5972
5973 /*
5974 * The digest was explicitly fetched and therefore it is safe to cast
5975 * away the const
5976 */
5977 return EVP_MD_up_ref((EVP_MD *)md);
5978 }
5979
5980 void ssl_evp_md_free(const EVP_MD *md)
5981 {
5982 if (md == NULL)
5983 return;
5984
5985 if (EVP_MD_provider(md) != NULL) {
5986 /*
5987 * The digest was explicitly fetched and therefore it is safe to cast
5988 * away the const
5989 */
5990 EVP_MD_free((EVP_MD *)md);
5991 }
5992 }