]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Publish the RAND_DRBG API
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/rand_drbg.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29 {
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34 }
35
36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53 }
54
55 static int ssl_undefined_function_4(SSL *ssl, int r)
56 {
57 (void)r;
58 return ssl_undefined_function(ssl);
59 }
60
61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63 {
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68 }
69
70 static int ssl_undefined_function_6(int r)
71 {
72 (void)r;
73 return ssl_undefined_function(NULL);
74 }
75
76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79 {
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88 }
89
90 SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103 };
104
105 struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115 };
116
117 static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121 } dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131 };
132
133 static int dane_ctx_enable(struct dane_ctx_st *dctx)
134 {
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170 }
171
172 static void dane_ctx_final(struct dane_ctx_st *dctx)
173 {
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180 }
181
182 static void tlsa_free(danetls_record *t)
183 {
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189 }
190
191 static void dane_final(SSL_DANE *dane)
192 {
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204 }
205
206 /*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209 static int ssl_dane_dup(SSL *to, SSL *from)
210 {
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236 }
237
238 static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240 {
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281 }
282
283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284 {
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288 }
289
290 static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned const char *data, size_t dlen)
294 {
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457 }
458
459 /*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463 static int ssl_check_allowed_versions(int min_version, int max_version)
464 {
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488 #ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491 #endif
492 #ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495 #endif
496 /* Done massaging versions; do the check. */
497 if (0
498 #ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501 #endif
502 #ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505 #endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514 #ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517 #endif
518 #ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521 #endif
522 #ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525 #endif
526 #ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529 #endif
530 #ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533 #endif
534 #ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537 #endif
538 #ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541 #endif
542 #ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545 #endif
546 /* Done massaging versions; do the check. */
547 if (0
548 #ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550 #endif
551 #ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553 #endif
554 #ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556 #endif
557 #ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562 #endif
563 )
564 return 0;
565 }
566 return 1;
567 }
568
569 static void clear_ciphers(SSL *s)
570 {
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575 }
576
577 int SSL_clear(SSL *s)
578 {
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593 s->hello_retry_request = 0;
594
595 s->error = 0;
596 s->hit = 0;
597 s->shutdown = 0;
598
599 if (s->renegotiate) {
600 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
601 return 0;
602 }
603
604 ossl_statem_clear(s);
605
606 s->version = s->method->version;
607 s->client_version = s->version;
608 s->rwstate = SSL_NOTHING;
609
610 BUF_MEM_free(s->init_buf);
611 s->init_buf = NULL;
612 clear_ciphers(s);
613 s->first_packet = 0;
614
615 s->key_update = SSL_KEY_UPDATE_NONE;
616
617 EVP_MD_CTX_free(s->pha_dgst);
618 s->pha_dgst = NULL;
619
620 /* Reset DANE verification result state */
621 s->dane.mdpth = -1;
622 s->dane.pdpth = -1;
623 X509_free(s->dane.mcert);
624 s->dane.mcert = NULL;
625 s->dane.mtlsa = NULL;
626
627 /* Clear the verification result peername */
628 X509_VERIFY_PARAM_move_peername(s->param, NULL);
629
630 /*
631 * Check to see if we were changed into a different method, if so, revert
632 * back.
633 */
634 if (s->method != s->ctx->method) {
635 s->method->ssl_free(s);
636 s->method = s->ctx->method;
637 if (!s->method->ssl_new(s))
638 return 0;
639 } else {
640 if (!s->method->ssl_clear(s))
641 return 0;
642 }
643
644 RECORD_LAYER_clear(&s->rlayer);
645
646 return 1;
647 }
648
649 /** Used to change an SSL_CTXs default SSL method type */
650 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
651 {
652 STACK_OF(SSL_CIPHER) *sk;
653
654 ctx->method = meth;
655
656 sk = ssl_create_cipher_list(ctx->method,
657 ctx->tls13_ciphersuites,
658 &(ctx->cipher_list),
659 &(ctx->cipher_list_by_id),
660 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
661 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
662 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
663 return 0;
664 }
665 return 1;
666 }
667
668 SSL *SSL_new(SSL_CTX *ctx)
669 {
670 SSL *s;
671
672 if (ctx == NULL) {
673 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
674 return NULL;
675 }
676 if (ctx->method == NULL) {
677 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
678 return NULL;
679 }
680
681 s = OPENSSL_zalloc(sizeof(*s));
682 if (s == NULL)
683 goto err;
684
685 s->references = 1;
686 s->lock = CRYPTO_THREAD_lock_new();
687 if (s->lock == NULL) {
688 OPENSSL_free(s);
689 s = NULL;
690 goto err;
691 }
692
693 /*
694 * If not using the standard RAND (say for fuzzing), then don't use a
695 * chained DRBG.
696 */
697 if (RAND_get_rand_method() == RAND_OpenSSL()) {
698 s->drbg =
699 RAND_DRBG_new(RAND_DRBG_NID, 0, RAND_DRBG_get0_public());
700 if (s->drbg == NULL
701 || RAND_DRBG_instantiate(s->drbg,
702 (const unsigned char *) SSL_version_str,
703 sizeof(SSL_version_str) - 1) == 0)
704 goto err;
705 }
706
707 RECORD_LAYER_init(&s->rlayer, s);
708
709 s->options = ctx->options;
710 s->dane.flags = ctx->dane.flags;
711 s->min_proto_version = ctx->min_proto_version;
712 s->max_proto_version = ctx->max_proto_version;
713 s->mode = ctx->mode;
714 s->max_cert_list = ctx->max_cert_list;
715 s->max_early_data = ctx->max_early_data;
716
717 /* Shallow copy of the ciphersuites stack */
718 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
719 if (s->tls13_ciphersuites == NULL)
720 goto err;
721
722 /*
723 * Earlier library versions used to copy the pointer to the CERT, not
724 * its contents; only when setting new parameters for the per-SSL
725 * copy, ssl_cert_new would be called (and the direct reference to
726 * the per-SSL_CTX settings would be lost, but those still were
727 * indirectly accessed for various purposes, and for that reason they
728 * used to be known as s->ctx->default_cert). Now we don't look at the
729 * SSL_CTX's CERT after having duplicated it once.
730 */
731 s->cert = ssl_cert_dup(ctx->cert);
732 if (s->cert == NULL)
733 goto err;
734
735 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
736 s->msg_callback = ctx->msg_callback;
737 s->msg_callback_arg = ctx->msg_callback_arg;
738 s->verify_mode = ctx->verify_mode;
739 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
740 s->record_padding_cb = ctx->record_padding_cb;
741 s->record_padding_arg = ctx->record_padding_arg;
742 s->block_padding = ctx->block_padding;
743 s->sid_ctx_length = ctx->sid_ctx_length;
744 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
745 goto err;
746 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
747 s->verify_callback = ctx->default_verify_callback;
748 s->generate_session_id = ctx->generate_session_id;
749
750 s->param = X509_VERIFY_PARAM_new();
751 if (s->param == NULL)
752 goto err;
753 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
754 s->quiet_shutdown = ctx->quiet_shutdown;
755
756 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
757 s->max_send_fragment = ctx->max_send_fragment;
758 s->split_send_fragment = ctx->split_send_fragment;
759 s->max_pipelines = ctx->max_pipelines;
760 if (s->max_pipelines > 1)
761 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
762 if (ctx->default_read_buf_len > 0)
763 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
764
765 SSL_CTX_up_ref(ctx);
766 s->ctx = ctx;
767 s->ext.debug_cb = 0;
768 s->ext.debug_arg = NULL;
769 s->ext.ticket_expected = 0;
770 s->ext.status_type = ctx->ext.status_type;
771 s->ext.status_expected = 0;
772 s->ext.ocsp.ids = NULL;
773 s->ext.ocsp.exts = NULL;
774 s->ext.ocsp.resp = NULL;
775 s->ext.ocsp.resp_len = 0;
776 SSL_CTX_up_ref(ctx);
777 s->session_ctx = ctx;
778 #ifndef OPENSSL_NO_EC
779 if (ctx->ext.ecpointformats) {
780 s->ext.ecpointformats =
781 OPENSSL_memdup(ctx->ext.ecpointformats,
782 ctx->ext.ecpointformats_len);
783 if (!s->ext.ecpointformats)
784 goto err;
785 s->ext.ecpointformats_len =
786 ctx->ext.ecpointformats_len;
787 }
788 if (ctx->ext.supportedgroups) {
789 s->ext.supportedgroups =
790 OPENSSL_memdup(ctx->ext.supportedgroups,
791 ctx->ext.supportedgroups_len
792 * sizeof(*ctx->ext.supportedgroups));
793 if (!s->ext.supportedgroups)
794 goto err;
795 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
796 }
797 #endif
798 #ifndef OPENSSL_NO_NEXTPROTONEG
799 s->ext.npn = NULL;
800 #endif
801
802 if (s->ctx->ext.alpn) {
803 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
804 if (s->ext.alpn == NULL)
805 goto err;
806 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
807 s->ext.alpn_len = s->ctx->ext.alpn_len;
808 }
809
810 s->verified_chain = NULL;
811 s->verify_result = X509_V_OK;
812
813 s->default_passwd_callback = ctx->default_passwd_callback;
814 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
815
816 s->method = ctx->method;
817
818 s->key_update = SSL_KEY_UPDATE_NONE;
819
820 if (!s->method->ssl_new(s))
821 goto err;
822
823 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
824
825 if (!SSL_clear(s))
826 goto err;
827
828 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
829 goto err;
830
831 #ifndef OPENSSL_NO_PSK
832 s->psk_client_callback = ctx->psk_client_callback;
833 s->psk_server_callback = ctx->psk_server_callback;
834 #endif
835 s->psk_find_session_cb = ctx->psk_find_session_cb;
836 s->psk_use_session_cb = ctx->psk_use_session_cb;
837
838 s->job = NULL;
839
840 #ifndef OPENSSL_NO_CT
841 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
842 ctx->ct_validation_callback_arg))
843 goto err;
844 #endif
845
846 return s;
847 err:
848 SSL_free(s);
849 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
850 return NULL;
851 }
852
853 int SSL_is_dtls(const SSL *s)
854 {
855 return SSL_IS_DTLS(s) ? 1 : 0;
856 }
857
858 int SSL_up_ref(SSL *s)
859 {
860 int i;
861
862 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
863 return 0;
864
865 REF_PRINT_COUNT("SSL", s);
866 REF_ASSERT_ISNT(i < 2);
867 return ((i > 1) ? 1 : 0);
868 }
869
870 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
871 unsigned int sid_ctx_len)
872 {
873 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
874 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
875 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
876 return 0;
877 }
878 ctx->sid_ctx_length = sid_ctx_len;
879 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
880
881 return 1;
882 }
883
884 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
885 unsigned int sid_ctx_len)
886 {
887 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
888 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
889 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
890 return 0;
891 }
892 ssl->sid_ctx_length = sid_ctx_len;
893 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
894
895 return 1;
896 }
897
898 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
899 {
900 CRYPTO_THREAD_write_lock(ctx->lock);
901 ctx->generate_session_id = cb;
902 CRYPTO_THREAD_unlock(ctx->lock);
903 return 1;
904 }
905
906 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
907 {
908 CRYPTO_THREAD_write_lock(ssl->lock);
909 ssl->generate_session_id = cb;
910 CRYPTO_THREAD_unlock(ssl->lock);
911 return 1;
912 }
913
914 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
915 unsigned int id_len)
916 {
917 /*
918 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
919 * we can "construct" a session to give us the desired check - i.e. to
920 * find if there's a session in the hash table that would conflict with
921 * any new session built out of this id/id_len and the ssl_version in use
922 * by this SSL.
923 */
924 SSL_SESSION r, *p;
925
926 if (id_len > sizeof(r.session_id))
927 return 0;
928
929 r.ssl_version = ssl->version;
930 r.session_id_length = id_len;
931 memcpy(r.session_id, id, id_len);
932
933 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
934 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
935 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
936 return (p != NULL);
937 }
938
939 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
940 {
941 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
942 }
943
944 int SSL_set_purpose(SSL *s, int purpose)
945 {
946 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
947 }
948
949 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
950 {
951 return X509_VERIFY_PARAM_set_trust(s->param, trust);
952 }
953
954 int SSL_set_trust(SSL *s, int trust)
955 {
956 return X509_VERIFY_PARAM_set_trust(s->param, trust);
957 }
958
959 int SSL_set1_host(SSL *s, const char *hostname)
960 {
961 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
962 }
963
964 int SSL_add1_host(SSL *s, const char *hostname)
965 {
966 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
967 }
968
969 void SSL_set_hostflags(SSL *s, unsigned int flags)
970 {
971 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
972 }
973
974 const char *SSL_get0_peername(SSL *s)
975 {
976 return X509_VERIFY_PARAM_get0_peername(s->param);
977 }
978
979 int SSL_CTX_dane_enable(SSL_CTX *ctx)
980 {
981 return dane_ctx_enable(&ctx->dane);
982 }
983
984 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
985 {
986 unsigned long orig = ctx->dane.flags;
987
988 ctx->dane.flags |= flags;
989 return orig;
990 }
991
992 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
993 {
994 unsigned long orig = ctx->dane.flags;
995
996 ctx->dane.flags &= ~flags;
997 return orig;
998 }
999
1000 int SSL_dane_enable(SSL *s, const char *basedomain)
1001 {
1002 SSL_DANE *dane = &s->dane;
1003
1004 if (s->ctx->dane.mdmax == 0) {
1005 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1006 return 0;
1007 }
1008 if (dane->trecs != NULL) {
1009 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1010 return 0;
1011 }
1012
1013 /*
1014 * Default SNI name. This rejects empty names, while set1_host below
1015 * accepts them and disables host name checks. To avoid side-effects with
1016 * invalid input, set the SNI name first.
1017 */
1018 if (s->ext.hostname == NULL) {
1019 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1020 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1021 return -1;
1022 }
1023 }
1024
1025 /* Primary RFC6125 reference identifier */
1026 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1027 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1028 return -1;
1029 }
1030
1031 dane->mdpth = -1;
1032 dane->pdpth = -1;
1033 dane->dctx = &s->ctx->dane;
1034 dane->trecs = sk_danetls_record_new_null();
1035
1036 if (dane->trecs == NULL) {
1037 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1038 return -1;
1039 }
1040 return 1;
1041 }
1042
1043 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1044 {
1045 unsigned long orig = ssl->dane.flags;
1046
1047 ssl->dane.flags |= flags;
1048 return orig;
1049 }
1050
1051 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1052 {
1053 unsigned long orig = ssl->dane.flags;
1054
1055 ssl->dane.flags &= ~flags;
1056 return orig;
1057 }
1058
1059 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1060 {
1061 SSL_DANE *dane = &s->dane;
1062
1063 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1064 return -1;
1065 if (dane->mtlsa) {
1066 if (mcert)
1067 *mcert = dane->mcert;
1068 if (mspki)
1069 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1070 }
1071 return dane->mdpth;
1072 }
1073
1074 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1075 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1076 {
1077 SSL_DANE *dane = &s->dane;
1078
1079 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1080 return -1;
1081 if (dane->mtlsa) {
1082 if (usage)
1083 *usage = dane->mtlsa->usage;
1084 if (selector)
1085 *selector = dane->mtlsa->selector;
1086 if (mtype)
1087 *mtype = dane->mtlsa->mtype;
1088 if (data)
1089 *data = dane->mtlsa->data;
1090 if (dlen)
1091 *dlen = dane->mtlsa->dlen;
1092 }
1093 return dane->mdpth;
1094 }
1095
1096 SSL_DANE *SSL_get0_dane(SSL *s)
1097 {
1098 return &s->dane;
1099 }
1100
1101 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1102 uint8_t mtype, unsigned const char *data, size_t dlen)
1103 {
1104 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1105 }
1106
1107 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1108 uint8_t ord)
1109 {
1110 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1111 }
1112
1113 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1114 {
1115 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1116 }
1117
1118 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1119 {
1120 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1121 }
1122
1123 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1124 {
1125 return ctx->param;
1126 }
1127
1128 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1129 {
1130 return ssl->param;
1131 }
1132
1133 void SSL_certs_clear(SSL *s)
1134 {
1135 ssl_cert_clear_certs(s->cert);
1136 }
1137
1138 void SSL_free(SSL *s)
1139 {
1140 int i;
1141
1142 if (s == NULL)
1143 return;
1144
1145 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1146 REF_PRINT_COUNT("SSL", s);
1147 if (i > 0)
1148 return;
1149 REF_ASSERT_ISNT(i < 0);
1150
1151 X509_VERIFY_PARAM_free(s->param);
1152 dane_final(&s->dane);
1153 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1154
1155 /* Ignore return value */
1156 ssl_free_wbio_buffer(s);
1157
1158 BIO_free_all(s->wbio);
1159 BIO_free_all(s->rbio);
1160
1161 BUF_MEM_free(s->init_buf);
1162
1163 /* add extra stuff */
1164 sk_SSL_CIPHER_free(s->cipher_list);
1165 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1166 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1167
1168 /* Make the next call work :-) */
1169 if (s->session != NULL) {
1170 ssl_clear_bad_session(s);
1171 SSL_SESSION_free(s->session);
1172 }
1173 SSL_SESSION_free(s->psksession);
1174 OPENSSL_free(s->psksession_id);
1175
1176 clear_ciphers(s);
1177
1178 ssl_cert_free(s->cert);
1179 /* Free up if allocated */
1180
1181 OPENSSL_free(s->ext.hostname);
1182 SSL_CTX_free(s->session_ctx);
1183 #ifndef OPENSSL_NO_EC
1184 OPENSSL_free(s->ext.ecpointformats);
1185 OPENSSL_free(s->ext.supportedgroups);
1186 #endif /* OPENSSL_NO_EC */
1187 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1188 #ifndef OPENSSL_NO_OCSP
1189 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1190 #endif
1191 #ifndef OPENSSL_NO_CT
1192 SCT_LIST_free(s->scts);
1193 OPENSSL_free(s->ext.scts);
1194 #endif
1195 OPENSSL_free(s->ext.ocsp.resp);
1196 OPENSSL_free(s->ext.alpn);
1197 OPENSSL_free(s->ext.tls13_cookie);
1198 OPENSSL_free(s->clienthello);
1199 OPENSSL_free(s->pha_context);
1200 EVP_MD_CTX_free(s->pha_dgst);
1201
1202 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1203
1204 sk_X509_pop_free(s->verified_chain, X509_free);
1205
1206 if (s->method != NULL)
1207 s->method->ssl_free(s);
1208
1209 RECORD_LAYER_release(&s->rlayer);
1210
1211 SSL_CTX_free(s->ctx);
1212
1213 ASYNC_WAIT_CTX_free(s->waitctx);
1214
1215 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1216 OPENSSL_free(s->ext.npn);
1217 #endif
1218
1219 #ifndef OPENSSL_NO_SRTP
1220 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1221 #endif
1222
1223 RAND_DRBG_free(s->drbg);
1224 CRYPTO_THREAD_lock_free(s->lock);
1225
1226 OPENSSL_free(s);
1227 }
1228
1229 void SSL_set0_rbio(SSL *s, BIO *rbio)
1230 {
1231 BIO_free_all(s->rbio);
1232 s->rbio = rbio;
1233 }
1234
1235 void SSL_set0_wbio(SSL *s, BIO *wbio)
1236 {
1237 /*
1238 * If the output buffering BIO is still in place, remove it
1239 */
1240 if (s->bbio != NULL)
1241 s->wbio = BIO_pop(s->wbio);
1242
1243 BIO_free_all(s->wbio);
1244 s->wbio = wbio;
1245
1246 /* Re-attach |bbio| to the new |wbio|. */
1247 if (s->bbio != NULL)
1248 s->wbio = BIO_push(s->bbio, s->wbio);
1249 }
1250
1251 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1252 {
1253 /*
1254 * For historical reasons, this function has many different cases in
1255 * ownership handling.
1256 */
1257
1258 /* If nothing has changed, do nothing */
1259 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1260 return;
1261
1262 /*
1263 * If the two arguments are equal then one fewer reference is granted by the
1264 * caller than we want to take
1265 */
1266 if (rbio != NULL && rbio == wbio)
1267 BIO_up_ref(rbio);
1268
1269 /*
1270 * If only the wbio is changed only adopt one reference.
1271 */
1272 if (rbio == SSL_get_rbio(s)) {
1273 SSL_set0_wbio(s, wbio);
1274 return;
1275 }
1276 /*
1277 * There is an asymmetry here for historical reasons. If only the rbio is
1278 * changed AND the rbio and wbio were originally different, then we only
1279 * adopt one reference.
1280 */
1281 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1282 SSL_set0_rbio(s, rbio);
1283 return;
1284 }
1285
1286 /* Otherwise, adopt both references. */
1287 SSL_set0_rbio(s, rbio);
1288 SSL_set0_wbio(s, wbio);
1289 }
1290
1291 BIO *SSL_get_rbio(const SSL *s)
1292 {
1293 return s->rbio;
1294 }
1295
1296 BIO *SSL_get_wbio(const SSL *s)
1297 {
1298 if (s->bbio != NULL) {
1299 /*
1300 * If |bbio| is active, the true caller-configured BIO is its
1301 * |next_bio|.
1302 */
1303 return BIO_next(s->bbio);
1304 }
1305 return s->wbio;
1306 }
1307
1308 int SSL_get_fd(const SSL *s)
1309 {
1310 return SSL_get_rfd(s);
1311 }
1312
1313 int SSL_get_rfd(const SSL *s)
1314 {
1315 int ret = -1;
1316 BIO *b, *r;
1317
1318 b = SSL_get_rbio(s);
1319 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1320 if (r != NULL)
1321 BIO_get_fd(r, &ret);
1322 return ret;
1323 }
1324
1325 int SSL_get_wfd(const SSL *s)
1326 {
1327 int ret = -1;
1328 BIO *b, *r;
1329
1330 b = SSL_get_wbio(s);
1331 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1332 if (r != NULL)
1333 BIO_get_fd(r, &ret);
1334 return ret;
1335 }
1336
1337 #ifndef OPENSSL_NO_SOCK
1338 int SSL_set_fd(SSL *s, int fd)
1339 {
1340 int ret = 0;
1341 BIO *bio = NULL;
1342
1343 bio = BIO_new(BIO_s_socket());
1344
1345 if (bio == NULL) {
1346 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1347 goto err;
1348 }
1349 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1350 SSL_set_bio(s, bio, bio);
1351 ret = 1;
1352 err:
1353 return ret;
1354 }
1355
1356 int SSL_set_wfd(SSL *s, int fd)
1357 {
1358 BIO *rbio = SSL_get_rbio(s);
1359
1360 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1361 || (int)BIO_get_fd(rbio, NULL) != fd) {
1362 BIO *bio = BIO_new(BIO_s_socket());
1363
1364 if (bio == NULL) {
1365 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1366 return 0;
1367 }
1368 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1369 SSL_set0_wbio(s, bio);
1370 } else {
1371 BIO_up_ref(rbio);
1372 SSL_set0_wbio(s, rbio);
1373 }
1374 return 1;
1375 }
1376
1377 int SSL_set_rfd(SSL *s, int fd)
1378 {
1379 BIO *wbio = SSL_get_wbio(s);
1380
1381 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1382 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1383 BIO *bio = BIO_new(BIO_s_socket());
1384
1385 if (bio == NULL) {
1386 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1387 return 0;
1388 }
1389 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1390 SSL_set0_rbio(s, bio);
1391 } else {
1392 BIO_up_ref(wbio);
1393 SSL_set0_rbio(s, wbio);
1394 }
1395
1396 return 1;
1397 }
1398 #endif
1399
1400 /* return length of latest Finished message we sent, copy to 'buf' */
1401 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1402 {
1403 size_t ret = 0;
1404
1405 if (s->s3 != NULL) {
1406 ret = s->s3->tmp.finish_md_len;
1407 if (count > ret)
1408 count = ret;
1409 memcpy(buf, s->s3->tmp.finish_md, count);
1410 }
1411 return ret;
1412 }
1413
1414 /* return length of latest Finished message we expected, copy to 'buf' */
1415 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1416 {
1417 size_t ret = 0;
1418
1419 if (s->s3 != NULL) {
1420 ret = s->s3->tmp.peer_finish_md_len;
1421 if (count > ret)
1422 count = ret;
1423 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1424 }
1425 return ret;
1426 }
1427
1428 int SSL_get_verify_mode(const SSL *s)
1429 {
1430 return s->verify_mode;
1431 }
1432
1433 int SSL_get_verify_depth(const SSL *s)
1434 {
1435 return X509_VERIFY_PARAM_get_depth(s->param);
1436 }
1437
1438 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1439 return s->verify_callback;
1440 }
1441
1442 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1443 {
1444 return ctx->verify_mode;
1445 }
1446
1447 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1448 {
1449 return X509_VERIFY_PARAM_get_depth(ctx->param);
1450 }
1451
1452 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1453 return ctx->default_verify_callback;
1454 }
1455
1456 void SSL_set_verify(SSL *s, int mode,
1457 int (*callback) (int ok, X509_STORE_CTX *ctx))
1458 {
1459 s->verify_mode = mode;
1460 if (callback != NULL)
1461 s->verify_callback = callback;
1462 }
1463
1464 void SSL_set_verify_depth(SSL *s, int depth)
1465 {
1466 X509_VERIFY_PARAM_set_depth(s->param, depth);
1467 }
1468
1469 void SSL_set_read_ahead(SSL *s, int yes)
1470 {
1471 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1472 }
1473
1474 int SSL_get_read_ahead(const SSL *s)
1475 {
1476 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1477 }
1478
1479 int SSL_pending(const SSL *s)
1480 {
1481 size_t pending = s->method->ssl_pending(s);
1482
1483 /*
1484 * SSL_pending cannot work properly if read-ahead is enabled
1485 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1486 * impossible to fix since SSL_pending cannot report errors that may be
1487 * observed while scanning the new data. (Note that SSL_pending() is
1488 * often used as a boolean value, so we'd better not return -1.)
1489 *
1490 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1491 * we just return INT_MAX.
1492 */
1493 return pending < INT_MAX ? (int)pending : INT_MAX;
1494 }
1495
1496 int SSL_has_pending(const SSL *s)
1497 {
1498 /*
1499 * Similar to SSL_pending() but returns a 1 to indicate that we have
1500 * unprocessed data available or 0 otherwise (as opposed to the number of
1501 * bytes available). Unlike SSL_pending() this will take into account
1502 * read_ahead data. A 1 return simply indicates that we have unprocessed
1503 * data. That data may not result in any application data, or we may fail
1504 * to parse the records for some reason.
1505 */
1506 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1507 return 1;
1508
1509 return RECORD_LAYER_read_pending(&s->rlayer);
1510 }
1511
1512 X509 *SSL_get_peer_certificate(const SSL *s)
1513 {
1514 X509 *r;
1515
1516 if ((s == NULL) || (s->session == NULL))
1517 r = NULL;
1518 else
1519 r = s->session->peer;
1520
1521 if (r == NULL)
1522 return r;
1523
1524 X509_up_ref(r);
1525
1526 return r;
1527 }
1528
1529 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1530 {
1531 STACK_OF(X509) *r;
1532
1533 if ((s == NULL) || (s->session == NULL))
1534 r = NULL;
1535 else
1536 r = s->session->peer_chain;
1537
1538 /*
1539 * If we are a client, cert_chain includes the peer's own certificate; if
1540 * we are a server, it does not.
1541 */
1542
1543 return r;
1544 }
1545
1546 /*
1547 * Now in theory, since the calling process own 't' it should be safe to
1548 * modify. We need to be able to read f without being hassled
1549 */
1550 int SSL_copy_session_id(SSL *t, const SSL *f)
1551 {
1552 int i;
1553 /* Do we need to to SSL locking? */
1554 if (!SSL_set_session(t, SSL_get_session(f))) {
1555 return 0;
1556 }
1557
1558 /*
1559 * what if we are setup for one protocol version but want to talk another
1560 */
1561 if (t->method != f->method) {
1562 t->method->ssl_free(t);
1563 t->method = f->method;
1564 if (t->method->ssl_new(t) == 0)
1565 return 0;
1566 }
1567
1568 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1569 ssl_cert_free(t->cert);
1570 t->cert = f->cert;
1571 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1572 return 0;
1573 }
1574
1575 return 1;
1576 }
1577
1578 /* Fix this so it checks all the valid key/cert options */
1579 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1580 {
1581 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1582 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1583 return 0;
1584 }
1585 if (ctx->cert->key->privatekey == NULL) {
1586 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1587 return 0;
1588 }
1589 return X509_check_private_key
1590 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1591 }
1592
1593 /* Fix this function so that it takes an optional type parameter */
1594 int SSL_check_private_key(const SSL *ssl)
1595 {
1596 if (ssl == NULL) {
1597 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1598 return 0;
1599 }
1600 if (ssl->cert->key->x509 == NULL) {
1601 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1602 return 0;
1603 }
1604 if (ssl->cert->key->privatekey == NULL) {
1605 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1606 return 0;
1607 }
1608 return X509_check_private_key(ssl->cert->key->x509,
1609 ssl->cert->key->privatekey);
1610 }
1611
1612 int SSL_waiting_for_async(SSL *s)
1613 {
1614 if (s->job)
1615 return 1;
1616
1617 return 0;
1618 }
1619
1620 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1621 {
1622 ASYNC_WAIT_CTX *ctx = s->waitctx;
1623
1624 if (ctx == NULL)
1625 return 0;
1626 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1627 }
1628
1629 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1630 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1631 {
1632 ASYNC_WAIT_CTX *ctx = s->waitctx;
1633
1634 if (ctx == NULL)
1635 return 0;
1636 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1637 numdelfds);
1638 }
1639
1640 int SSL_accept(SSL *s)
1641 {
1642 if (s->handshake_func == NULL) {
1643 /* Not properly initialized yet */
1644 SSL_set_accept_state(s);
1645 }
1646
1647 return SSL_do_handshake(s);
1648 }
1649
1650 int SSL_connect(SSL *s)
1651 {
1652 if (s->handshake_func == NULL) {
1653 /* Not properly initialized yet */
1654 SSL_set_connect_state(s);
1655 }
1656
1657 return SSL_do_handshake(s);
1658 }
1659
1660 long SSL_get_default_timeout(const SSL *s)
1661 {
1662 return s->method->get_timeout();
1663 }
1664
1665 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1666 int (*func) (void *))
1667 {
1668 int ret;
1669 if (s->waitctx == NULL) {
1670 s->waitctx = ASYNC_WAIT_CTX_new();
1671 if (s->waitctx == NULL)
1672 return -1;
1673 }
1674 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1675 sizeof(struct ssl_async_args))) {
1676 case ASYNC_ERR:
1677 s->rwstate = SSL_NOTHING;
1678 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1679 return -1;
1680 case ASYNC_PAUSE:
1681 s->rwstate = SSL_ASYNC_PAUSED;
1682 return -1;
1683 case ASYNC_NO_JOBS:
1684 s->rwstate = SSL_ASYNC_NO_JOBS;
1685 return -1;
1686 case ASYNC_FINISH:
1687 s->job = NULL;
1688 return ret;
1689 default:
1690 s->rwstate = SSL_NOTHING;
1691 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1692 /* Shouldn't happen */
1693 return -1;
1694 }
1695 }
1696
1697 static int ssl_io_intern(void *vargs)
1698 {
1699 struct ssl_async_args *args;
1700 SSL *s;
1701 void *buf;
1702 size_t num;
1703
1704 args = (struct ssl_async_args *)vargs;
1705 s = args->s;
1706 buf = args->buf;
1707 num = args->num;
1708 switch (args->type) {
1709 case READFUNC:
1710 return args->f.func_read(s, buf, num, &s->asyncrw);
1711 case WRITEFUNC:
1712 return args->f.func_write(s, buf, num, &s->asyncrw);
1713 case OTHERFUNC:
1714 return args->f.func_other(s);
1715 }
1716 return -1;
1717 }
1718
1719 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1720 {
1721 if (s->handshake_func == NULL) {
1722 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1723 return -1;
1724 }
1725
1726 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1727 s->rwstate = SSL_NOTHING;
1728 return 0;
1729 }
1730
1731 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1732 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1733 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1734 return 0;
1735 }
1736 /*
1737 * If we are a client and haven't received the ServerHello etc then we
1738 * better do that
1739 */
1740 ossl_statem_check_finish_init(s, 0);
1741
1742 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1743 struct ssl_async_args args;
1744 int ret;
1745
1746 args.s = s;
1747 args.buf = buf;
1748 args.num = num;
1749 args.type = READFUNC;
1750 args.f.func_read = s->method->ssl_read;
1751
1752 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1753 *readbytes = s->asyncrw;
1754 return ret;
1755 } else {
1756 return s->method->ssl_read(s, buf, num, readbytes);
1757 }
1758 }
1759
1760 int SSL_read(SSL *s, void *buf, int num)
1761 {
1762 int ret;
1763 size_t readbytes;
1764
1765 if (num < 0) {
1766 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1767 return -1;
1768 }
1769
1770 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1771
1772 /*
1773 * The cast is safe here because ret should be <= INT_MAX because num is
1774 * <= INT_MAX
1775 */
1776 if (ret > 0)
1777 ret = (int)readbytes;
1778
1779 return ret;
1780 }
1781
1782 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1783 {
1784 int ret = ssl_read_internal(s, buf, num, readbytes);
1785
1786 if (ret < 0)
1787 ret = 0;
1788 return ret;
1789 }
1790
1791 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1792 {
1793 int ret;
1794
1795 if (!s->server) {
1796 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1797 return SSL_READ_EARLY_DATA_ERROR;
1798 }
1799
1800 switch (s->early_data_state) {
1801 case SSL_EARLY_DATA_NONE:
1802 if (!SSL_in_before(s)) {
1803 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1804 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1805 return SSL_READ_EARLY_DATA_ERROR;
1806 }
1807 /* fall through */
1808
1809 case SSL_EARLY_DATA_ACCEPT_RETRY:
1810 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1811 ret = SSL_accept(s);
1812 if (ret <= 0) {
1813 /* NBIO or error */
1814 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1815 return SSL_READ_EARLY_DATA_ERROR;
1816 }
1817 /* fall through */
1818
1819 case SSL_EARLY_DATA_READ_RETRY:
1820 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1821 s->early_data_state = SSL_EARLY_DATA_READING;
1822 ret = SSL_read_ex(s, buf, num, readbytes);
1823 /*
1824 * State machine will update early_data_state to
1825 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1826 * message
1827 */
1828 if (ret > 0 || (ret <= 0 && s->early_data_state
1829 != SSL_EARLY_DATA_FINISHED_READING)) {
1830 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1831 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1832 : SSL_READ_EARLY_DATA_ERROR;
1833 }
1834 } else {
1835 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1836 }
1837 *readbytes = 0;
1838 return SSL_READ_EARLY_DATA_FINISH;
1839
1840 default:
1841 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1842 return SSL_READ_EARLY_DATA_ERROR;
1843 }
1844 }
1845
1846 int SSL_get_early_data_status(const SSL *s)
1847 {
1848 return s->ext.early_data;
1849 }
1850
1851 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1852 {
1853 if (s->handshake_func == NULL) {
1854 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1855 return -1;
1856 }
1857
1858 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1859 return 0;
1860 }
1861 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1862 struct ssl_async_args args;
1863 int ret;
1864
1865 args.s = s;
1866 args.buf = buf;
1867 args.num = num;
1868 args.type = READFUNC;
1869 args.f.func_read = s->method->ssl_peek;
1870
1871 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1872 *readbytes = s->asyncrw;
1873 return ret;
1874 } else {
1875 return s->method->ssl_peek(s, buf, num, readbytes);
1876 }
1877 }
1878
1879 int SSL_peek(SSL *s, void *buf, int num)
1880 {
1881 int ret;
1882 size_t readbytes;
1883
1884 if (num < 0) {
1885 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1886 return -1;
1887 }
1888
1889 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1890
1891 /*
1892 * The cast is safe here because ret should be <= INT_MAX because num is
1893 * <= INT_MAX
1894 */
1895 if (ret > 0)
1896 ret = (int)readbytes;
1897
1898 return ret;
1899 }
1900
1901
1902 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1903 {
1904 int ret = ssl_peek_internal(s, buf, num, readbytes);
1905
1906 if (ret < 0)
1907 ret = 0;
1908 return ret;
1909 }
1910
1911 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1912 {
1913 if (s->handshake_func == NULL) {
1914 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1915 return -1;
1916 }
1917
1918 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1919 s->rwstate = SSL_NOTHING;
1920 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1921 return -1;
1922 }
1923
1924 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1925 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1926 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1927 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1928 return 0;
1929 }
1930 /* If we are a client and haven't sent the Finished we better do that */
1931 ossl_statem_check_finish_init(s, 1);
1932
1933 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1934 int ret;
1935 struct ssl_async_args args;
1936
1937 args.s = s;
1938 args.buf = (void *)buf;
1939 args.num = num;
1940 args.type = WRITEFUNC;
1941 args.f.func_write = s->method->ssl_write;
1942
1943 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1944 *written = s->asyncrw;
1945 return ret;
1946 } else {
1947 return s->method->ssl_write(s, buf, num, written);
1948 }
1949 }
1950
1951 int SSL_write(SSL *s, const void *buf, int num)
1952 {
1953 int ret;
1954 size_t written;
1955
1956 if (num < 0) {
1957 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1958 return -1;
1959 }
1960
1961 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1962
1963 /*
1964 * The cast is safe here because ret should be <= INT_MAX because num is
1965 * <= INT_MAX
1966 */
1967 if (ret > 0)
1968 ret = (int)written;
1969
1970 return ret;
1971 }
1972
1973 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1974 {
1975 int ret = ssl_write_internal(s, buf, num, written);
1976
1977 if (ret < 0)
1978 ret = 0;
1979 return ret;
1980 }
1981
1982 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1983 {
1984 int ret, early_data_state;
1985 size_t writtmp;
1986 uint32_t partialwrite;
1987
1988 switch (s->early_data_state) {
1989 case SSL_EARLY_DATA_NONE:
1990 if (s->server
1991 || !SSL_in_before(s)
1992 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1993 && (s->psk_use_session_cb == NULL))) {
1994 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1995 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1996 return 0;
1997 }
1998 /* fall through */
1999
2000 case SSL_EARLY_DATA_CONNECT_RETRY:
2001 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2002 ret = SSL_connect(s);
2003 if (ret <= 0) {
2004 /* NBIO or error */
2005 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2006 return 0;
2007 }
2008 /* fall through */
2009
2010 case SSL_EARLY_DATA_WRITE_RETRY:
2011 s->early_data_state = SSL_EARLY_DATA_WRITING;
2012 /*
2013 * We disable partial write for early data because we don't keep track
2014 * of how many bytes we've written between the SSL_write_ex() call and
2015 * the flush if the flush needs to be retried)
2016 */
2017 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2018 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2019 ret = SSL_write_ex(s, buf, num, &writtmp);
2020 s->mode |= partialwrite;
2021 if (!ret) {
2022 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2023 return ret;
2024 }
2025 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2026 /* fall through */
2027
2028 case SSL_EARLY_DATA_WRITE_FLUSH:
2029 /* The buffering BIO is still in place so we need to flush it */
2030 if (statem_flush(s) != 1)
2031 return 0;
2032 *written = num;
2033 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2034 return 1;
2035
2036 case SSL_EARLY_DATA_FINISHED_READING:
2037 case SSL_EARLY_DATA_READ_RETRY:
2038 early_data_state = s->early_data_state;
2039 /* We are a server writing to an unauthenticated client */
2040 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2041 ret = SSL_write_ex(s, buf, num, written);
2042 s->early_data_state = early_data_state;
2043 return ret;
2044
2045 default:
2046 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2047 return 0;
2048 }
2049 }
2050
2051 int SSL_shutdown(SSL *s)
2052 {
2053 /*
2054 * Note that this function behaves differently from what one might
2055 * expect. Return values are 0 for no success (yet), 1 for success; but
2056 * calling it once is usually not enough, even if blocking I/O is used
2057 * (see ssl3_shutdown).
2058 */
2059
2060 if (s->handshake_func == NULL) {
2061 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2062 return -1;
2063 }
2064
2065 if (!SSL_in_init(s)) {
2066 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2067 struct ssl_async_args args;
2068
2069 args.s = s;
2070 args.type = OTHERFUNC;
2071 args.f.func_other = s->method->ssl_shutdown;
2072
2073 return ssl_start_async_job(s, &args, ssl_io_intern);
2074 } else {
2075 return s->method->ssl_shutdown(s);
2076 }
2077 } else {
2078 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2079 return -1;
2080 }
2081 }
2082
2083 int SSL_key_update(SSL *s, int updatetype)
2084 {
2085 /*
2086 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2087 * negotiated, and that it is appropriate to call SSL_key_update() instead
2088 * of SSL_renegotiate().
2089 */
2090 if (!SSL_IS_TLS13(s)) {
2091 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2092 return 0;
2093 }
2094
2095 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2096 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2097 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2098 return 0;
2099 }
2100
2101 if (!SSL_is_init_finished(s)) {
2102 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2103 return 0;
2104 }
2105
2106 ossl_statem_set_in_init(s, 1);
2107 s->key_update = updatetype;
2108 return 1;
2109 }
2110
2111 int SSL_get_key_update_type(SSL *s)
2112 {
2113 return s->key_update;
2114 }
2115
2116 int SSL_renegotiate(SSL *s)
2117 {
2118 if (SSL_IS_TLS13(s)) {
2119 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2120 return 0;
2121 }
2122
2123 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2124 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2125 return 0;
2126 }
2127
2128 s->renegotiate = 1;
2129 s->new_session = 1;
2130
2131 return s->method->ssl_renegotiate(s);
2132 }
2133
2134 int SSL_renegotiate_abbreviated(SSL *s)
2135 {
2136 if (SSL_IS_TLS13(s)) {
2137 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2138 return 0;
2139 }
2140
2141 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2142 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2143 return 0;
2144 }
2145
2146 s->renegotiate = 1;
2147 s->new_session = 0;
2148
2149 return s->method->ssl_renegotiate(s);
2150 }
2151
2152 int SSL_renegotiate_pending(SSL *s)
2153 {
2154 /*
2155 * becomes true when negotiation is requested; false again once a
2156 * handshake has finished
2157 */
2158 return (s->renegotiate != 0);
2159 }
2160
2161 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2162 {
2163 long l;
2164
2165 switch (cmd) {
2166 case SSL_CTRL_GET_READ_AHEAD:
2167 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2168 case SSL_CTRL_SET_READ_AHEAD:
2169 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2170 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2171 return l;
2172
2173 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2174 s->msg_callback_arg = parg;
2175 return 1;
2176
2177 case SSL_CTRL_MODE:
2178 return (s->mode |= larg);
2179 case SSL_CTRL_CLEAR_MODE:
2180 return (s->mode &= ~larg);
2181 case SSL_CTRL_GET_MAX_CERT_LIST:
2182 return (long)s->max_cert_list;
2183 case SSL_CTRL_SET_MAX_CERT_LIST:
2184 if (larg < 0)
2185 return 0;
2186 l = (long)s->max_cert_list;
2187 s->max_cert_list = (size_t)larg;
2188 return l;
2189 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2190 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2191 return 0;
2192 s->max_send_fragment = larg;
2193 if (s->max_send_fragment < s->split_send_fragment)
2194 s->split_send_fragment = s->max_send_fragment;
2195 return 1;
2196 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2197 if ((size_t)larg > s->max_send_fragment || larg == 0)
2198 return 0;
2199 s->split_send_fragment = larg;
2200 return 1;
2201 case SSL_CTRL_SET_MAX_PIPELINES:
2202 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2203 return 0;
2204 s->max_pipelines = larg;
2205 if (larg > 1)
2206 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2207 return 1;
2208 case SSL_CTRL_GET_RI_SUPPORT:
2209 if (s->s3)
2210 return s->s3->send_connection_binding;
2211 else
2212 return 0;
2213 case SSL_CTRL_CERT_FLAGS:
2214 return (s->cert->cert_flags |= larg);
2215 case SSL_CTRL_CLEAR_CERT_FLAGS:
2216 return (s->cert->cert_flags &= ~larg);
2217
2218 case SSL_CTRL_GET_RAW_CIPHERLIST:
2219 if (parg) {
2220 if (s->s3->tmp.ciphers_raw == NULL)
2221 return 0;
2222 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2223 return (int)s->s3->tmp.ciphers_rawlen;
2224 } else {
2225 return TLS_CIPHER_LEN;
2226 }
2227 case SSL_CTRL_GET_EXTMS_SUPPORT:
2228 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2229 return -1;
2230 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2231 return 1;
2232 else
2233 return 0;
2234 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2235 return ssl_check_allowed_versions(larg, s->max_proto_version)
2236 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2237 &s->min_proto_version);
2238 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2239 return s->min_proto_version;
2240 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2241 return ssl_check_allowed_versions(s->min_proto_version, larg)
2242 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2243 &s->max_proto_version);
2244 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2245 return s->max_proto_version;
2246 default:
2247 return s->method->ssl_ctrl(s, cmd, larg, parg);
2248 }
2249 }
2250
2251 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2252 {
2253 switch (cmd) {
2254 case SSL_CTRL_SET_MSG_CALLBACK:
2255 s->msg_callback = (void (*)
2256 (int write_p, int version, int content_type,
2257 const void *buf, size_t len, SSL *ssl,
2258 void *arg))(fp);
2259 return 1;
2260
2261 default:
2262 return s->method->ssl_callback_ctrl(s, cmd, fp);
2263 }
2264 }
2265
2266 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2267 {
2268 return ctx->sessions;
2269 }
2270
2271 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2272 {
2273 long l;
2274 int i;
2275 /* For some cases with ctx == NULL perform syntax checks */
2276 if (ctx == NULL) {
2277 switch (cmd) {
2278 #ifndef OPENSSL_NO_EC
2279 case SSL_CTRL_SET_GROUPS_LIST:
2280 return tls1_set_groups_list(NULL, NULL, parg);
2281 #endif
2282 case SSL_CTRL_SET_SIGALGS_LIST:
2283 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2284 return tls1_set_sigalgs_list(NULL, parg, 0);
2285 default:
2286 return 0;
2287 }
2288 }
2289
2290 switch (cmd) {
2291 case SSL_CTRL_GET_READ_AHEAD:
2292 return ctx->read_ahead;
2293 case SSL_CTRL_SET_READ_AHEAD:
2294 l = ctx->read_ahead;
2295 ctx->read_ahead = larg;
2296 return l;
2297
2298 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2299 ctx->msg_callback_arg = parg;
2300 return 1;
2301
2302 case SSL_CTRL_GET_MAX_CERT_LIST:
2303 return (long)ctx->max_cert_list;
2304 case SSL_CTRL_SET_MAX_CERT_LIST:
2305 if (larg < 0)
2306 return 0;
2307 l = (long)ctx->max_cert_list;
2308 ctx->max_cert_list = (size_t)larg;
2309 return l;
2310
2311 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2312 if (larg < 0)
2313 return 0;
2314 l = (long)ctx->session_cache_size;
2315 ctx->session_cache_size = (size_t)larg;
2316 return l;
2317 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2318 return (long)ctx->session_cache_size;
2319 case SSL_CTRL_SET_SESS_CACHE_MODE:
2320 l = ctx->session_cache_mode;
2321 ctx->session_cache_mode = larg;
2322 return l;
2323 case SSL_CTRL_GET_SESS_CACHE_MODE:
2324 return ctx->session_cache_mode;
2325
2326 case SSL_CTRL_SESS_NUMBER:
2327 return lh_SSL_SESSION_num_items(ctx->sessions);
2328 case SSL_CTRL_SESS_CONNECT:
2329 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2330 ? i : 0;
2331 case SSL_CTRL_SESS_CONNECT_GOOD:
2332 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2333 ? i : 0;
2334 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2335 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2336 ctx->lock)
2337 ? i : 0;
2338 case SSL_CTRL_SESS_ACCEPT:
2339 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2340 ? i : 0;
2341 case SSL_CTRL_SESS_ACCEPT_GOOD:
2342 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2343 ? i : 0;
2344 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2345 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2346 ctx->lock)
2347 ? i : 0;
2348 case SSL_CTRL_SESS_HIT:
2349 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2350 ? i : 0;
2351 case SSL_CTRL_SESS_CB_HIT:
2352 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2353 ? i : 0;
2354 case SSL_CTRL_SESS_MISSES:
2355 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2356 ? i : 0;
2357 case SSL_CTRL_SESS_TIMEOUTS:
2358 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2359 ? i : 0;
2360 case SSL_CTRL_SESS_CACHE_FULL:
2361 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2362 ? i : 0;
2363 case SSL_CTRL_MODE:
2364 return (ctx->mode |= larg);
2365 case SSL_CTRL_CLEAR_MODE:
2366 return (ctx->mode &= ~larg);
2367 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2368 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2369 return 0;
2370 ctx->max_send_fragment = larg;
2371 if (ctx->max_send_fragment < ctx->split_send_fragment)
2372 ctx->split_send_fragment = ctx->max_send_fragment;
2373 return 1;
2374 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2375 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2376 return 0;
2377 ctx->split_send_fragment = larg;
2378 return 1;
2379 case SSL_CTRL_SET_MAX_PIPELINES:
2380 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2381 return 0;
2382 ctx->max_pipelines = larg;
2383 return 1;
2384 case SSL_CTRL_CERT_FLAGS:
2385 return (ctx->cert->cert_flags |= larg);
2386 case SSL_CTRL_CLEAR_CERT_FLAGS:
2387 return (ctx->cert->cert_flags &= ~larg);
2388 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2389 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2390 && ssl_set_version_bound(ctx->method->version, (int)larg,
2391 &ctx->min_proto_version);
2392 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2393 return ctx->min_proto_version;
2394 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2395 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2396 && ssl_set_version_bound(ctx->method->version, (int)larg,
2397 &ctx->max_proto_version);
2398 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2399 return ctx->max_proto_version;
2400 default:
2401 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2402 }
2403 }
2404
2405 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2406 {
2407 switch (cmd) {
2408 case SSL_CTRL_SET_MSG_CALLBACK:
2409 ctx->msg_callback = (void (*)
2410 (int write_p, int version, int content_type,
2411 const void *buf, size_t len, SSL *ssl,
2412 void *arg))(fp);
2413 return 1;
2414
2415 default:
2416 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2417 }
2418 }
2419
2420 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2421 {
2422 if (a->id > b->id)
2423 return 1;
2424 if (a->id < b->id)
2425 return -1;
2426 return 0;
2427 }
2428
2429 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2430 const SSL_CIPHER *const *bp)
2431 {
2432 if ((*ap)->id > (*bp)->id)
2433 return 1;
2434 if ((*ap)->id < (*bp)->id)
2435 return -1;
2436 return 0;
2437 }
2438
2439 /** return a STACK of the ciphers available for the SSL and in order of
2440 * preference */
2441 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2442 {
2443 if (s != NULL) {
2444 if (s->cipher_list != NULL) {
2445 return s->cipher_list;
2446 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2447 return s->ctx->cipher_list;
2448 }
2449 }
2450 return NULL;
2451 }
2452
2453 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2454 {
2455 if ((s == NULL) || (s->session == NULL) || !s->server)
2456 return NULL;
2457 return s->session->ciphers;
2458 }
2459
2460 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2461 {
2462 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2463 int i;
2464
2465 ciphers = SSL_get_ciphers(s);
2466 if (!ciphers)
2467 return NULL;
2468 if (!ssl_set_client_disabled(s))
2469 return NULL;
2470 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2471 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2472 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2473 if (!sk)
2474 sk = sk_SSL_CIPHER_new_null();
2475 if (!sk)
2476 return NULL;
2477 if (!sk_SSL_CIPHER_push(sk, c)) {
2478 sk_SSL_CIPHER_free(sk);
2479 return NULL;
2480 }
2481 }
2482 }
2483 return sk;
2484 }
2485
2486 /** return a STACK of the ciphers available for the SSL and in order of
2487 * algorithm id */
2488 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2489 {
2490 if (s != NULL) {
2491 if (s->cipher_list_by_id != NULL) {
2492 return s->cipher_list_by_id;
2493 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2494 return s->ctx->cipher_list_by_id;
2495 }
2496 }
2497 return NULL;
2498 }
2499
2500 /** The old interface to get the same thing as SSL_get_ciphers() */
2501 const char *SSL_get_cipher_list(const SSL *s, int n)
2502 {
2503 const SSL_CIPHER *c;
2504 STACK_OF(SSL_CIPHER) *sk;
2505
2506 if (s == NULL)
2507 return NULL;
2508 sk = SSL_get_ciphers(s);
2509 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2510 return NULL;
2511 c = sk_SSL_CIPHER_value(sk, n);
2512 if (c == NULL)
2513 return NULL;
2514 return c->name;
2515 }
2516
2517 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2518 * preference */
2519 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2520 {
2521 if (ctx != NULL)
2522 return ctx->cipher_list;
2523 return NULL;
2524 }
2525
2526 /** specify the ciphers to be used by default by the SSL_CTX */
2527 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2528 {
2529 STACK_OF(SSL_CIPHER) *sk;
2530
2531 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2532 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2533 ctx->cert);
2534 /*
2535 * ssl_create_cipher_list may return an empty stack if it was unable to
2536 * find a cipher matching the given rule string (for example if the rule
2537 * string specifies a cipher which has been disabled). This is not an
2538 * error as far as ssl_create_cipher_list is concerned, and hence
2539 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2540 */
2541 if (sk == NULL)
2542 return 0;
2543 else if (sk_SSL_CIPHER_num(sk) == 0) {
2544 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2545 return 0;
2546 }
2547 return 1;
2548 }
2549
2550 /** specify the ciphers to be used by the SSL */
2551 int SSL_set_cipher_list(SSL *s, const char *str)
2552 {
2553 STACK_OF(SSL_CIPHER) *sk;
2554
2555 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2556 &s->cipher_list, &s->cipher_list_by_id, str,
2557 s->cert);
2558 /* see comment in SSL_CTX_set_cipher_list */
2559 if (sk == NULL)
2560 return 0;
2561 else if (sk_SSL_CIPHER_num(sk) == 0) {
2562 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2563 return 0;
2564 }
2565 return 1;
2566 }
2567
2568 static int ciphersuite_cb(const char *elem, int len, void *arg)
2569 {
2570 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
2571 const SSL_CIPHER *cipher;
2572 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
2573 char name[80];
2574
2575 if (len > (int)(sizeof(name) - 1)) {
2576 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
2577 return 0;
2578 }
2579
2580 memcpy(name, elem, len);
2581 name[len] = '\0';
2582
2583 cipher = ssl3_get_cipher_by_std_name(name);
2584 if (cipher == NULL) {
2585 SSLerr(SSL_F_CIPHERSUITE_CB, SSL_R_NO_CIPHER_MATCH);
2586 return 0;
2587 }
2588
2589 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
2590 SSLerr(SSL_F_CIPHERSUITE_CB, ERR_R_INTERNAL_ERROR);
2591 return 0;
2592 }
2593
2594 return 1;
2595 }
2596
2597 static int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
2598 {
2599 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
2600
2601 if (newciphers == NULL)
2602 return 0;
2603
2604 /* Parse the list. We explicitly allow an empty list */
2605 if (*str != '\0'
2606 && !CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers)) {
2607 sk_SSL_CIPHER_free(newciphers);
2608 return 0;
2609 }
2610 sk_SSL_CIPHER_free(*currciphers);
2611 *currciphers = newciphers;
2612
2613 return 1;
2614 }
2615
2616 static int update_cipher_list(STACK_OF(SSL_CIPHER) *cipher_list,
2617 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
2618 {
2619 int i;
2620
2621 /*
2622 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
2623 * list.
2624 */
2625 while (sk_SSL_CIPHER_num(cipher_list) > 0
2626 && sk_SSL_CIPHER_value(cipher_list, 0)->min_tls == TLS1_3_VERSION)
2627 sk_SSL_CIPHER_delete(cipher_list, 0);
2628
2629 /* Insert the new TLSv1.3 ciphersuites */
2630 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++)
2631 sk_SSL_CIPHER_insert(cipher_list,
2632 sk_SSL_CIPHER_value(tls13_ciphersuites, i), i);
2633
2634 return 1;
2635 }
2636
2637 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
2638 {
2639 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
2640
2641 if (ret && ctx->cipher_list != NULL) {
2642 /* We already have a cipher_list, so we need to update it */
2643 return update_cipher_list(ctx->cipher_list, ctx->tls13_ciphersuites);
2644 }
2645
2646 return ret;
2647 }
2648
2649 int SSL_set_ciphersuites(SSL *s, const char *str)
2650 {
2651 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
2652
2653 if (ret && s->cipher_list != NULL) {
2654 /* We already have a cipher_list, so we need to update it */
2655 return update_cipher_list(s->cipher_list, s->tls13_ciphersuites);
2656 }
2657
2658 return ret;
2659 }
2660
2661 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2662 {
2663 char *p;
2664 STACK_OF(SSL_CIPHER) *sk;
2665 const SSL_CIPHER *c;
2666 int i;
2667
2668 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2669 return NULL;
2670
2671 p = buf;
2672 sk = s->session->ciphers;
2673
2674 if (sk_SSL_CIPHER_num(sk) == 0)
2675 return NULL;
2676
2677 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2678 int n;
2679
2680 c = sk_SSL_CIPHER_value(sk, i);
2681 n = strlen(c->name);
2682 if (n + 1 > len) {
2683 if (p != buf)
2684 --p;
2685 *p = '\0';
2686 return buf;
2687 }
2688 strcpy(p, c->name);
2689 p += n;
2690 *(p++) = ':';
2691 len -= n + 1;
2692 }
2693 p[-1] = '\0';
2694 return buf;
2695 }
2696
2697 /** return a servername extension value if provided in Client Hello, or NULL.
2698 * So far, only host_name types are defined (RFC 3546).
2699 */
2700
2701 const char *SSL_get_servername(const SSL *s, const int type)
2702 {
2703 if (type != TLSEXT_NAMETYPE_host_name)
2704 return NULL;
2705
2706 return s->session && !s->ext.hostname ?
2707 s->session->ext.hostname : s->ext.hostname;
2708 }
2709
2710 int SSL_get_servername_type(const SSL *s)
2711 {
2712 if (s->session
2713 && (!s->ext.hostname ? s->session->
2714 ext.hostname : s->ext.hostname))
2715 return TLSEXT_NAMETYPE_host_name;
2716 return -1;
2717 }
2718
2719 /*
2720 * SSL_select_next_proto implements the standard protocol selection. It is
2721 * expected that this function is called from the callback set by
2722 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2723 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2724 * not included in the length. A byte string of length 0 is invalid. No byte
2725 * string may be truncated. The current, but experimental algorithm for
2726 * selecting the protocol is: 1) If the server doesn't support NPN then this
2727 * is indicated to the callback. In this case, the client application has to
2728 * abort the connection or have a default application level protocol. 2) If
2729 * the server supports NPN, but advertises an empty list then the client
2730 * selects the first protocol in its list, but indicates via the API that this
2731 * fallback case was enacted. 3) Otherwise, the client finds the first
2732 * protocol in the server's list that it supports and selects this protocol.
2733 * This is because it's assumed that the server has better information about
2734 * which protocol a client should use. 4) If the client doesn't support any
2735 * of the server's advertised protocols, then this is treated the same as
2736 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2737 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2738 */
2739 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2740 const unsigned char *server,
2741 unsigned int server_len,
2742 const unsigned char *client, unsigned int client_len)
2743 {
2744 unsigned int i, j;
2745 const unsigned char *result;
2746 int status = OPENSSL_NPN_UNSUPPORTED;
2747
2748 /*
2749 * For each protocol in server preference order, see if we support it.
2750 */
2751 for (i = 0; i < server_len;) {
2752 for (j = 0; j < client_len;) {
2753 if (server[i] == client[j] &&
2754 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2755 /* We found a match */
2756 result = &server[i];
2757 status = OPENSSL_NPN_NEGOTIATED;
2758 goto found;
2759 }
2760 j += client[j];
2761 j++;
2762 }
2763 i += server[i];
2764 i++;
2765 }
2766
2767 /* There's no overlap between our protocols and the server's list. */
2768 result = client;
2769 status = OPENSSL_NPN_NO_OVERLAP;
2770
2771 found:
2772 *out = (unsigned char *)result + 1;
2773 *outlen = result[0];
2774 return status;
2775 }
2776
2777 #ifndef OPENSSL_NO_NEXTPROTONEG
2778 /*
2779 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2780 * client's requested protocol for this connection and returns 0. If the
2781 * client didn't request any protocol, then *data is set to NULL. Note that
2782 * the client can request any protocol it chooses. The value returned from
2783 * this function need not be a member of the list of supported protocols
2784 * provided by the callback.
2785 */
2786 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2787 unsigned *len)
2788 {
2789 *data = s->ext.npn;
2790 if (!*data) {
2791 *len = 0;
2792 } else {
2793 *len = (unsigned int)s->ext.npn_len;
2794 }
2795 }
2796
2797 /*
2798 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2799 * a TLS server needs a list of supported protocols for Next Protocol
2800 * Negotiation. The returned list must be in wire format. The list is
2801 * returned by setting |out| to point to it and |outlen| to its length. This
2802 * memory will not be modified, but one should assume that the SSL* keeps a
2803 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2804 * wishes to advertise. Otherwise, no such extension will be included in the
2805 * ServerHello.
2806 */
2807 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2808 SSL_CTX_npn_advertised_cb_func cb,
2809 void *arg)
2810 {
2811 ctx->ext.npn_advertised_cb = cb;
2812 ctx->ext.npn_advertised_cb_arg = arg;
2813 }
2814
2815 /*
2816 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2817 * client needs to select a protocol from the server's provided list. |out|
2818 * must be set to point to the selected protocol (which may be within |in|).
2819 * The length of the protocol name must be written into |outlen|. The
2820 * server's advertised protocols are provided in |in| and |inlen|. The
2821 * callback can assume that |in| is syntactically valid. The client must
2822 * select a protocol. It is fatal to the connection if this callback returns
2823 * a value other than SSL_TLSEXT_ERR_OK.
2824 */
2825 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2826 SSL_CTX_npn_select_cb_func cb,
2827 void *arg)
2828 {
2829 ctx->ext.npn_select_cb = cb;
2830 ctx->ext.npn_select_cb_arg = arg;
2831 }
2832 #endif
2833
2834 /*
2835 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2836 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2837 * length-prefixed strings). Returns 0 on success.
2838 */
2839 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2840 unsigned int protos_len)
2841 {
2842 OPENSSL_free(ctx->ext.alpn);
2843 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2844 if (ctx->ext.alpn == NULL) {
2845 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2846 return 1;
2847 }
2848 ctx->ext.alpn_len = protos_len;
2849
2850 return 0;
2851 }
2852
2853 /*
2854 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2855 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2856 * length-prefixed strings). Returns 0 on success.
2857 */
2858 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2859 unsigned int protos_len)
2860 {
2861 OPENSSL_free(ssl->ext.alpn);
2862 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2863 if (ssl->ext.alpn == NULL) {
2864 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2865 return 1;
2866 }
2867 ssl->ext.alpn_len = protos_len;
2868
2869 return 0;
2870 }
2871
2872 /*
2873 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2874 * called during ClientHello processing in order to select an ALPN protocol
2875 * from the client's list of offered protocols.
2876 */
2877 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2878 SSL_CTX_alpn_select_cb_func cb,
2879 void *arg)
2880 {
2881 ctx->ext.alpn_select_cb = cb;
2882 ctx->ext.alpn_select_cb_arg = arg;
2883 }
2884
2885 /*
2886 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2887 * On return it sets |*data| to point to |*len| bytes of protocol name
2888 * (not including the leading length-prefix byte). If the server didn't
2889 * respond with a negotiated protocol then |*len| will be zero.
2890 */
2891 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2892 unsigned int *len)
2893 {
2894 *data = NULL;
2895 if (ssl->s3)
2896 *data = ssl->s3->alpn_selected;
2897 if (*data == NULL)
2898 *len = 0;
2899 else
2900 *len = (unsigned int)ssl->s3->alpn_selected_len;
2901 }
2902
2903 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2904 const char *label, size_t llen,
2905 const unsigned char *context, size_t contextlen,
2906 int use_context)
2907 {
2908 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2909 return -1;
2910
2911 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2912 llen, context,
2913 contextlen, use_context);
2914 }
2915
2916 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2917 const char *label, size_t llen,
2918 const unsigned char *context,
2919 size_t contextlen)
2920 {
2921 if (s->version != TLS1_3_VERSION)
2922 return 0;
2923
2924 return tls13_export_keying_material_early(s, out, olen, label, llen,
2925 context, contextlen);
2926 }
2927
2928 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2929 {
2930 const unsigned char *session_id = a->session_id;
2931 unsigned long l;
2932 unsigned char tmp_storage[4];
2933
2934 if (a->session_id_length < sizeof(tmp_storage)) {
2935 memset(tmp_storage, 0, sizeof(tmp_storage));
2936 memcpy(tmp_storage, a->session_id, a->session_id_length);
2937 session_id = tmp_storage;
2938 }
2939
2940 l = (unsigned long)
2941 ((unsigned long)session_id[0]) |
2942 ((unsigned long)session_id[1] << 8L) |
2943 ((unsigned long)session_id[2] << 16L) |
2944 ((unsigned long)session_id[3] << 24L);
2945 return l;
2946 }
2947
2948 /*
2949 * NB: If this function (or indeed the hash function which uses a sort of
2950 * coarser function than this one) is changed, ensure
2951 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2952 * being able to construct an SSL_SESSION that will collide with any existing
2953 * session with a matching session ID.
2954 */
2955 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2956 {
2957 if (a->ssl_version != b->ssl_version)
2958 return 1;
2959 if (a->session_id_length != b->session_id_length)
2960 return 1;
2961 return memcmp(a->session_id, b->session_id, a->session_id_length);
2962 }
2963
2964 /*
2965 * These wrapper functions should remain rather than redeclaring
2966 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2967 * variable. The reason is that the functions aren't static, they're exposed
2968 * via ssl.h.
2969 */
2970
2971 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2972 {
2973 SSL_CTX *ret = NULL;
2974
2975 if (meth == NULL) {
2976 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2977 return NULL;
2978 }
2979
2980 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2981 return NULL;
2982
2983 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2984 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2985 goto err;
2986 }
2987 ret = OPENSSL_zalloc(sizeof(*ret));
2988 if (ret == NULL)
2989 goto err;
2990
2991 ret->method = meth;
2992 ret->min_proto_version = 0;
2993 ret->max_proto_version = 0;
2994 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2995 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2996 /* We take the system default. */
2997 ret->session_timeout = meth->get_timeout();
2998 ret->references = 1;
2999 ret->lock = CRYPTO_THREAD_lock_new();
3000 if (ret->lock == NULL) {
3001 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3002 OPENSSL_free(ret);
3003 return NULL;
3004 }
3005 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3006 ret->verify_mode = SSL_VERIFY_NONE;
3007 if ((ret->cert = ssl_cert_new()) == NULL)
3008 goto err;
3009
3010 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3011 if (ret->sessions == NULL)
3012 goto err;
3013 ret->cert_store = X509_STORE_new();
3014 if (ret->cert_store == NULL)
3015 goto err;
3016 #ifndef OPENSSL_NO_CT
3017 ret->ctlog_store = CTLOG_STORE_new();
3018 if (ret->ctlog_store == NULL)
3019 goto err;
3020 #endif
3021
3022 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES))
3023 goto err;
3024
3025 if (!ssl_create_cipher_list(ret->method,
3026 ret->tls13_ciphersuites,
3027 &ret->cipher_list, &ret->cipher_list_by_id,
3028 SSL_DEFAULT_CIPHER_LIST, ret->cert)
3029 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3030 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3031 goto err2;
3032 }
3033
3034 ret->param = X509_VERIFY_PARAM_new();
3035 if (ret->param == NULL)
3036 goto err;
3037
3038 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
3039 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
3040 goto err2;
3041 }
3042 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
3043 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
3044 goto err2;
3045 }
3046
3047 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3048 goto err;
3049
3050 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3051 goto err;
3052
3053 /* No compression for DTLS */
3054 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3055 ret->comp_methods = SSL_COMP_get_compression_methods();
3056
3057 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3058 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3059
3060 /* Setup RFC5077 ticket keys */
3061 if ((RAND_bytes(ret->ext.tick_key_name,
3062 sizeof(ret->ext.tick_key_name)) <= 0)
3063 || (RAND_bytes(ret->ext.tick_hmac_key,
3064 sizeof(ret->ext.tick_hmac_key)) <= 0)
3065 || (RAND_bytes(ret->ext.tick_aes_key,
3066 sizeof(ret->ext.tick_aes_key)) <= 0))
3067 ret->options |= SSL_OP_NO_TICKET;
3068
3069 if (RAND_bytes(ret->ext.cookie_hmac_key,
3070 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3071 goto err;
3072
3073 #ifndef OPENSSL_NO_SRP
3074 if (!SSL_CTX_SRP_CTX_init(ret))
3075 goto err;
3076 #endif
3077 #ifndef OPENSSL_NO_ENGINE
3078 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3079 # define eng_strx(x) #x
3080 # define eng_str(x) eng_strx(x)
3081 /* Use specific client engine automatically... ignore errors */
3082 {
3083 ENGINE *eng;
3084 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3085 if (!eng) {
3086 ERR_clear_error();
3087 ENGINE_load_builtin_engines();
3088 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3089 }
3090 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3091 ERR_clear_error();
3092 }
3093 # endif
3094 #endif
3095 /*
3096 * Default is to connect to non-RI servers. When RI is more widely
3097 * deployed might change this.
3098 */
3099 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3100 /*
3101 * Disable compression by default to prevent CRIME. Applications can
3102 * re-enable compression by configuring
3103 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3104 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3105 * middlebox compatibility by default. This may be disabled by default in
3106 * a later OpenSSL version.
3107 */
3108 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3109
3110 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3111
3112 /*
3113 * We cannot usefully set a default max_early_data here (which gets
3114 * propagated in SSL_new(), for the following reason: setting the
3115 * SSL field causes tls_construct_stoc_early_data() to tell the
3116 * client that early data will be accepted when constructing a TLS 1.3
3117 * session ticket, and the client will accordingly send us early data
3118 * when using that ticket (if the client has early data to send).
3119 * However, in order for the early data to actually be consumed by
3120 * the application, the application must also have calls to
3121 * SSL_read_early_data(); otherwise we'll just skip past the early data
3122 * and ignore it. So, since the application must add calls to
3123 * SSL_read_early_data(), we also require them to add
3124 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3125 * eliminating the bandwidth-wasting early data in the case described
3126 * above.
3127 */
3128 ret->max_early_data = 0;
3129
3130 return ret;
3131 err:
3132 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3133 err2:
3134 SSL_CTX_free(ret);
3135 return NULL;
3136 }
3137
3138 int SSL_CTX_up_ref(SSL_CTX *ctx)
3139 {
3140 int i;
3141
3142 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3143 return 0;
3144
3145 REF_PRINT_COUNT("SSL_CTX", ctx);
3146 REF_ASSERT_ISNT(i < 2);
3147 return ((i > 1) ? 1 : 0);
3148 }
3149
3150 void SSL_CTX_free(SSL_CTX *a)
3151 {
3152 int i;
3153
3154 if (a == NULL)
3155 return;
3156
3157 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3158 REF_PRINT_COUNT("SSL_CTX", a);
3159 if (i > 0)
3160 return;
3161 REF_ASSERT_ISNT(i < 0);
3162
3163 X509_VERIFY_PARAM_free(a->param);
3164 dane_ctx_final(&a->dane);
3165
3166 /*
3167 * Free internal session cache. However: the remove_cb() may reference
3168 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3169 * after the sessions were flushed.
3170 * As the ex_data handling routines might also touch the session cache,
3171 * the most secure solution seems to be: empty (flush) the cache, then
3172 * free ex_data, then finally free the cache.
3173 * (See ticket [openssl.org #212].)
3174 */
3175 if (a->sessions != NULL)
3176 SSL_CTX_flush_sessions(a, 0);
3177
3178 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3179 lh_SSL_SESSION_free(a->sessions);
3180 X509_STORE_free(a->cert_store);
3181 #ifndef OPENSSL_NO_CT
3182 CTLOG_STORE_free(a->ctlog_store);
3183 #endif
3184 sk_SSL_CIPHER_free(a->cipher_list);
3185 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3186 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3187 ssl_cert_free(a->cert);
3188 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3189 sk_X509_pop_free(a->extra_certs, X509_free);
3190 a->comp_methods = NULL;
3191 #ifndef OPENSSL_NO_SRTP
3192 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3193 #endif
3194 #ifndef OPENSSL_NO_SRP
3195 SSL_CTX_SRP_CTX_free(a);
3196 #endif
3197 #ifndef OPENSSL_NO_ENGINE
3198 ENGINE_finish(a->client_cert_engine);
3199 #endif
3200
3201 #ifndef OPENSSL_NO_EC
3202 OPENSSL_free(a->ext.ecpointformats);
3203 OPENSSL_free(a->ext.supportedgroups);
3204 #endif
3205 OPENSSL_free(a->ext.alpn);
3206
3207 CRYPTO_THREAD_lock_free(a->lock);
3208
3209 OPENSSL_free(a);
3210 }
3211
3212 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3213 {
3214 ctx->default_passwd_callback = cb;
3215 }
3216
3217 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3218 {
3219 ctx->default_passwd_callback_userdata = u;
3220 }
3221
3222 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3223 {
3224 return ctx->default_passwd_callback;
3225 }
3226
3227 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3228 {
3229 return ctx->default_passwd_callback_userdata;
3230 }
3231
3232 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3233 {
3234 s->default_passwd_callback = cb;
3235 }
3236
3237 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3238 {
3239 s->default_passwd_callback_userdata = u;
3240 }
3241
3242 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3243 {
3244 return s->default_passwd_callback;
3245 }
3246
3247 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3248 {
3249 return s->default_passwd_callback_userdata;
3250 }
3251
3252 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3253 int (*cb) (X509_STORE_CTX *, void *),
3254 void *arg)
3255 {
3256 ctx->app_verify_callback = cb;
3257 ctx->app_verify_arg = arg;
3258 }
3259
3260 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3261 int (*cb) (int, X509_STORE_CTX *))
3262 {
3263 ctx->verify_mode = mode;
3264 ctx->default_verify_callback = cb;
3265 }
3266
3267 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3268 {
3269 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3270 }
3271
3272 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3273 {
3274 ssl_cert_set_cert_cb(c->cert, cb, arg);
3275 }
3276
3277 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3278 {
3279 ssl_cert_set_cert_cb(s->cert, cb, arg);
3280 }
3281
3282 void ssl_set_masks(SSL *s)
3283 {
3284 CERT *c = s->cert;
3285 uint32_t *pvalid = s->s3->tmp.valid_flags;
3286 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3287 unsigned long mask_k, mask_a;
3288 #ifndef OPENSSL_NO_EC
3289 int have_ecc_cert, ecdsa_ok;
3290 #endif
3291 if (c == NULL)
3292 return;
3293
3294 #ifndef OPENSSL_NO_DH
3295 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3296 #else
3297 dh_tmp = 0;
3298 #endif
3299
3300 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3301 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3302 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3303 #ifndef OPENSSL_NO_EC
3304 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3305 #endif
3306 mask_k = 0;
3307 mask_a = 0;
3308
3309 #ifdef CIPHER_DEBUG
3310 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3311 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3312 #endif
3313
3314 #ifndef OPENSSL_NO_GOST
3315 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3316 mask_k |= SSL_kGOST;
3317 mask_a |= SSL_aGOST12;
3318 }
3319 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3320 mask_k |= SSL_kGOST;
3321 mask_a |= SSL_aGOST12;
3322 }
3323 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3324 mask_k |= SSL_kGOST;
3325 mask_a |= SSL_aGOST01;
3326 }
3327 #endif
3328
3329 if (rsa_enc)
3330 mask_k |= SSL_kRSA;
3331
3332 if (dh_tmp)
3333 mask_k |= SSL_kDHE;
3334
3335 /*
3336 * If we only have an RSA-PSS certificate allow RSA authentication
3337 * if TLS 1.2 and peer supports it.
3338 */
3339
3340 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3341 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3342 && TLS1_get_version(s) == TLS1_2_VERSION))
3343 mask_a |= SSL_aRSA;
3344
3345 if (dsa_sign) {
3346 mask_a |= SSL_aDSS;
3347 }
3348
3349 mask_a |= SSL_aNULL;
3350
3351 /*
3352 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3353 * depending on the key usage extension.
3354 */
3355 #ifndef OPENSSL_NO_EC
3356 if (have_ecc_cert) {
3357 uint32_t ex_kusage;
3358 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3359 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3360 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3361 ecdsa_ok = 0;
3362 if (ecdsa_ok)
3363 mask_a |= SSL_aECDSA;
3364 }
3365 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3366 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3367 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3368 && TLS1_get_version(s) == TLS1_2_VERSION)
3369 mask_a |= SSL_aECDSA;
3370
3371 /* Allow Ed448 for TLS 1.2 if peer supports it */
3372 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3373 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3374 && TLS1_get_version(s) == TLS1_2_VERSION)
3375 mask_a |= SSL_aECDSA;
3376 #endif
3377
3378 #ifndef OPENSSL_NO_EC
3379 mask_k |= SSL_kECDHE;
3380 #endif
3381
3382 #ifndef OPENSSL_NO_PSK
3383 mask_k |= SSL_kPSK;
3384 mask_a |= SSL_aPSK;
3385 if (mask_k & SSL_kRSA)
3386 mask_k |= SSL_kRSAPSK;
3387 if (mask_k & SSL_kDHE)
3388 mask_k |= SSL_kDHEPSK;
3389 if (mask_k & SSL_kECDHE)
3390 mask_k |= SSL_kECDHEPSK;
3391 #endif
3392
3393 s->s3->tmp.mask_k = mask_k;
3394 s->s3->tmp.mask_a = mask_a;
3395 }
3396
3397 #ifndef OPENSSL_NO_EC
3398
3399 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3400 {
3401 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3402 /* key usage, if present, must allow signing */
3403 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3404 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3405 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3406 return 0;
3407 }
3408 }
3409 return 1; /* all checks are ok */
3410 }
3411
3412 #endif
3413
3414 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3415 size_t *serverinfo_length)
3416 {
3417 CERT_PKEY *cpk = s->s3->tmp.cert;
3418 *serverinfo_length = 0;
3419
3420 if (cpk == NULL || cpk->serverinfo == NULL)
3421 return 0;
3422
3423 *serverinfo = cpk->serverinfo;
3424 *serverinfo_length = cpk->serverinfo_length;
3425 return 1;
3426 }
3427
3428 void ssl_update_cache(SSL *s, int mode)
3429 {
3430 int i;
3431
3432 /*
3433 * If the session_id_length is 0, we are not supposed to cache it, and it
3434 * would be rather hard to do anyway :-)
3435 */
3436 if (s->session->session_id_length == 0)
3437 return;
3438
3439 i = s->session_ctx->session_cache_mode;
3440 if ((i & mode) != 0
3441 && (!s->hit || SSL_IS_TLS13(s))
3442 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3443 || SSL_CTX_add_session(s->session_ctx, s->session))
3444 && s->session_ctx->new_session_cb != NULL) {
3445 SSL_SESSION_up_ref(s->session);
3446 if (!s->session_ctx->new_session_cb(s, s->session))
3447 SSL_SESSION_free(s->session);
3448 }
3449
3450 /* auto flush every 255 connections */
3451 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3452 int *stat, val;
3453 if (mode & SSL_SESS_CACHE_CLIENT)
3454 stat = &s->session_ctx->stats.sess_connect_good;
3455 else
3456 stat = &s->session_ctx->stats.sess_accept_good;
3457 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3458 && (val & 0xff) == 0xff)
3459 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3460 }
3461 }
3462
3463 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3464 {
3465 return ctx->method;
3466 }
3467
3468 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3469 {
3470 return s->method;
3471 }
3472
3473 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3474 {
3475 int ret = 1;
3476
3477 if (s->method != meth) {
3478 const SSL_METHOD *sm = s->method;
3479 int (*hf) (SSL *) = s->handshake_func;
3480
3481 if (sm->version == meth->version)
3482 s->method = meth;
3483 else {
3484 sm->ssl_free(s);
3485 s->method = meth;
3486 ret = s->method->ssl_new(s);
3487 }
3488
3489 if (hf == sm->ssl_connect)
3490 s->handshake_func = meth->ssl_connect;
3491 else if (hf == sm->ssl_accept)
3492 s->handshake_func = meth->ssl_accept;
3493 }
3494 return ret;
3495 }
3496
3497 int SSL_get_error(const SSL *s, int i)
3498 {
3499 int reason;
3500 unsigned long l;
3501 BIO *bio;
3502
3503 if (i > 0)
3504 return SSL_ERROR_NONE;
3505
3506 /*
3507 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3508 * where we do encode the error
3509 */
3510 if ((l = ERR_peek_error()) != 0) {
3511 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3512 return SSL_ERROR_SYSCALL;
3513 else
3514 return SSL_ERROR_SSL;
3515 }
3516
3517 if (SSL_want_read(s)) {
3518 bio = SSL_get_rbio(s);
3519 if (BIO_should_read(bio))
3520 return SSL_ERROR_WANT_READ;
3521 else if (BIO_should_write(bio))
3522 /*
3523 * This one doesn't make too much sense ... We never try to write
3524 * to the rbio, and an application program where rbio and wbio
3525 * are separate couldn't even know what it should wait for.
3526 * However if we ever set s->rwstate incorrectly (so that we have
3527 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3528 * wbio *are* the same, this test works around that bug; so it
3529 * might be safer to keep it.
3530 */
3531 return SSL_ERROR_WANT_WRITE;
3532 else if (BIO_should_io_special(bio)) {
3533 reason = BIO_get_retry_reason(bio);
3534 if (reason == BIO_RR_CONNECT)
3535 return SSL_ERROR_WANT_CONNECT;
3536 else if (reason == BIO_RR_ACCEPT)
3537 return SSL_ERROR_WANT_ACCEPT;
3538 else
3539 return SSL_ERROR_SYSCALL; /* unknown */
3540 }
3541 }
3542
3543 if (SSL_want_write(s)) {
3544 /* Access wbio directly - in order to use the buffered bio if present */
3545 bio = s->wbio;
3546 if (BIO_should_write(bio))
3547 return SSL_ERROR_WANT_WRITE;
3548 else if (BIO_should_read(bio))
3549 /*
3550 * See above (SSL_want_read(s) with BIO_should_write(bio))
3551 */
3552 return SSL_ERROR_WANT_READ;
3553 else if (BIO_should_io_special(bio)) {
3554 reason = BIO_get_retry_reason(bio);
3555 if (reason == BIO_RR_CONNECT)
3556 return SSL_ERROR_WANT_CONNECT;
3557 else if (reason == BIO_RR_ACCEPT)
3558 return SSL_ERROR_WANT_ACCEPT;
3559 else
3560 return SSL_ERROR_SYSCALL;
3561 }
3562 }
3563 if (SSL_want_x509_lookup(s))
3564 return SSL_ERROR_WANT_X509_LOOKUP;
3565 if (SSL_want_async(s))
3566 return SSL_ERROR_WANT_ASYNC;
3567 if (SSL_want_async_job(s))
3568 return SSL_ERROR_WANT_ASYNC_JOB;
3569 if (SSL_want_client_hello_cb(s))
3570 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3571
3572 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3573 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3574 return SSL_ERROR_ZERO_RETURN;
3575
3576 return SSL_ERROR_SYSCALL;
3577 }
3578
3579 static int ssl_do_handshake_intern(void *vargs)
3580 {
3581 struct ssl_async_args *args;
3582 SSL *s;
3583
3584 args = (struct ssl_async_args *)vargs;
3585 s = args->s;
3586
3587 return s->handshake_func(s);
3588 }
3589
3590 int SSL_do_handshake(SSL *s)
3591 {
3592 int ret = 1;
3593
3594 if (s->handshake_func == NULL) {
3595 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3596 return -1;
3597 }
3598
3599 ossl_statem_check_finish_init(s, -1);
3600
3601 s->method->ssl_renegotiate_check(s, 0);
3602
3603 if (SSL_is_server(s)) {
3604 /* clear SNI settings at server-side */
3605 OPENSSL_free(s->ext.hostname);
3606 s->ext.hostname = NULL;
3607 }
3608
3609 if (SSL_in_init(s) || SSL_in_before(s)) {
3610 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3611 struct ssl_async_args args;
3612
3613 args.s = s;
3614
3615 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3616 } else {
3617 ret = s->handshake_func(s);
3618 }
3619 }
3620 return ret;
3621 }
3622
3623 void SSL_set_accept_state(SSL *s)
3624 {
3625 s->server = 1;
3626 s->shutdown = 0;
3627 ossl_statem_clear(s);
3628 s->handshake_func = s->method->ssl_accept;
3629 clear_ciphers(s);
3630 }
3631
3632 void SSL_set_connect_state(SSL *s)
3633 {
3634 s->server = 0;
3635 s->shutdown = 0;
3636 ossl_statem_clear(s);
3637 s->handshake_func = s->method->ssl_connect;
3638 clear_ciphers(s);
3639 }
3640
3641 int ssl_undefined_function(SSL *s)
3642 {
3643 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3644 return 0;
3645 }
3646
3647 int ssl_undefined_void_function(void)
3648 {
3649 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3650 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3651 return 0;
3652 }
3653
3654 int ssl_undefined_const_function(const SSL *s)
3655 {
3656 return 0;
3657 }
3658
3659 const SSL_METHOD *ssl_bad_method(int ver)
3660 {
3661 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3662 return NULL;
3663 }
3664
3665 const char *ssl_protocol_to_string(int version)
3666 {
3667 switch(version)
3668 {
3669 case TLS1_3_VERSION:
3670 return "TLSv1.3";
3671
3672 case TLS1_2_VERSION:
3673 return "TLSv1.2";
3674
3675 case TLS1_1_VERSION:
3676 return "TLSv1.1";
3677
3678 case TLS1_VERSION:
3679 return "TLSv1";
3680
3681 case SSL3_VERSION:
3682 return "SSLv3";
3683
3684 case DTLS1_BAD_VER:
3685 return "DTLSv0.9";
3686
3687 case DTLS1_VERSION:
3688 return "DTLSv1";
3689
3690 case DTLS1_2_VERSION:
3691 return "DTLSv1.2";
3692
3693 default:
3694 return "unknown";
3695 }
3696 }
3697
3698 const char *SSL_get_version(const SSL *s)
3699 {
3700 return ssl_protocol_to_string(s->version);
3701 }
3702
3703 SSL *SSL_dup(SSL *s)
3704 {
3705 STACK_OF(X509_NAME) *sk;
3706 X509_NAME *xn;
3707 SSL *ret;
3708 int i;
3709
3710 /* If we're not quiescent, just up_ref! */
3711 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3712 CRYPTO_UP_REF(&s->references, &i, s->lock);
3713 return s;
3714 }
3715
3716 /*
3717 * Otherwise, copy configuration state, and session if set.
3718 */
3719 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3720 return NULL;
3721
3722 if (s->session != NULL) {
3723 /*
3724 * Arranges to share the same session via up_ref. This "copies"
3725 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3726 */
3727 if (!SSL_copy_session_id(ret, s))
3728 goto err;
3729 } else {
3730 /*
3731 * No session has been established yet, so we have to expect that
3732 * s->cert or ret->cert will be changed later -- they should not both
3733 * point to the same object, and thus we can't use
3734 * SSL_copy_session_id.
3735 */
3736 if (!SSL_set_ssl_method(ret, s->method))
3737 goto err;
3738
3739 if (s->cert != NULL) {
3740 ssl_cert_free(ret->cert);
3741 ret->cert = ssl_cert_dup(s->cert);
3742 if (ret->cert == NULL)
3743 goto err;
3744 }
3745
3746 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3747 (int)s->sid_ctx_length))
3748 goto err;
3749 }
3750
3751 if (!ssl_dane_dup(ret, s))
3752 goto err;
3753 ret->version = s->version;
3754 ret->options = s->options;
3755 ret->mode = s->mode;
3756 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3757 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3758 ret->msg_callback = s->msg_callback;
3759 ret->msg_callback_arg = s->msg_callback_arg;
3760 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3761 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3762 ret->generate_session_id = s->generate_session_id;
3763
3764 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3765
3766 /* copy app data, a little dangerous perhaps */
3767 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3768 goto err;
3769
3770 /* setup rbio, and wbio */
3771 if (s->rbio != NULL) {
3772 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3773 goto err;
3774 }
3775 if (s->wbio != NULL) {
3776 if (s->wbio != s->rbio) {
3777 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3778 goto err;
3779 } else {
3780 BIO_up_ref(ret->rbio);
3781 ret->wbio = ret->rbio;
3782 }
3783 }
3784
3785 ret->server = s->server;
3786 if (s->handshake_func) {
3787 if (s->server)
3788 SSL_set_accept_state(ret);
3789 else
3790 SSL_set_connect_state(ret);
3791 }
3792 ret->shutdown = s->shutdown;
3793 ret->hit = s->hit;
3794
3795 ret->default_passwd_callback = s->default_passwd_callback;
3796 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3797
3798 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3799
3800 /* dup the cipher_list and cipher_list_by_id stacks */
3801 if (s->cipher_list != NULL) {
3802 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3803 goto err;
3804 }
3805 if (s->cipher_list_by_id != NULL)
3806 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3807 == NULL)
3808 goto err;
3809
3810 /* Dup the client_CA list */
3811 if (s->ca_names != NULL) {
3812 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3813 goto err;
3814 ret->ca_names = sk;
3815 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3816 xn = sk_X509_NAME_value(sk, i);
3817 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3818 X509_NAME_free(xn);
3819 goto err;
3820 }
3821 }
3822 }
3823 return ret;
3824
3825 err:
3826 SSL_free(ret);
3827 return NULL;
3828 }
3829
3830 void ssl_clear_cipher_ctx(SSL *s)
3831 {
3832 if (s->enc_read_ctx != NULL) {
3833 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3834 s->enc_read_ctx = NULL;
3835 }
3836 if (s->enc_write_ctx != NULL) {
3837 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3838 s->enc_write_ctx = NULL;
3839 }
3840 #ifndef OPENSSL_NO_COMP
3841 COMP_CTX_free(s->expand);
3842 s->expand = NULL;
3843 COMP_CTX_free(s->compress);
3844 s->compress = NULL;
3845 #endif
3846 }
3847
3848 X509 *SSL_get_certificate(const SSL *s)
3849 {
3850 if (s->cert != NULL)
3851 return s->cert->key->x509;
3852 else
3853 return NULL;
3854 }
3855
3856 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3857 {
3858 if (s->cert != NULL)
3859 return s->cert->key->privatekey;
3860 else
3861 return NULL;
3862 }
3863
3864 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3865 {
3866 if (ctx->cert != NULL)
3867 return ctx->cert->key->x509;
3868 else
3869 return NULL;
3870 }
3871
3872 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3873 {
3874 if (ctx->cert != NULL)
3875 return ctx->cert->key->privatekey;
3876 else
3877 return NULL;
3878 }
3879
3880 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3881 {
3882 if ((s->session != NULL) && (s->session->cipher != NULL))
3883 return s->session->cipher;
3884 return NULL;
3885 }
3886
3887 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3888 {
3889 return s->s3->tmp.new_cipher;
3890 }
3891
3892 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3893 {
3894 #ifndef OPENSSL_NO_COMP
3895 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3896 #else
3897 return NULL;
3898 #endif
3899 }
3900
3901 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3902 {
3903 #ifndef OPENSSL_NO_COMP
3904 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3905 #else
3906 return NULL;
3907 #endif
3908 }
3909
3910 int ssl_init_wbio_buffer(SSL *s)
3911 {
3912 BIO *bbio;
3913
3914 if (s->bbio != NULL) {
3915 /* Already buffered. */
3916 return 1;
3917 }
3918
3919 bbio = BIO_new(BIO_f_buffer());
3920 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3921 BIO_free(bbio);
3922 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3923 return 0;
3924 }
3925 s->bbio = bbio;
3926 s->wbio = BIO_push(bbio, s->wbio);
3927
3928 return 1;
3929 }
3930
3931 int ssl_free_wbio_buffer(SSL *s)
3932 {
3933 /* callers ensure s is never null */
3934 if (s->bbio == NULL)
3935 return 1;
3936
3937 s->wbio = BIO_pop(s->wbio);
3938 if (!ossl_assert(s->wbio != NULL))
3939 return 0;
3940 BIO_free(s->bbio);
3941 s->bbio = NULL;
3942
3943 return 1;
3944 }
3945
3946 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3947 {
3948 ctx->quiet_shutdown = mode;
3949 }
3950
3951 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3952 {
3953 return ctx->quiet_shutdown;
3954 }
3955
3956 void SSL_set_quiet_shutdown(SSL *s, int mode)
3957 {
3958 s->quiet_shutdown = mode;
3959 }
3960
3961 int SSL_get_quiet_shutdown(const SSL *s)
3962 {
3963 return s->quiet_shutdown;
3964 }
3965
3966 void SSL_set_shutdown(SSL *s, int mode)
3967 {
3968 s->shutdown = mode;
3969 }
3970
3971 int SSL_get_shutdown(const SSL *s)
3972 {
3973 return s->shutdown;
3974 }
3975
3976 int SSL_version(const SSL *s)
3977 {
3978 return s->version;
3979 }
3980
3981 int SSL_client_version(const SSL *s)
3982 {
3983 return s->client_version;
3984 }
3985
3986 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3987 {
3988 return ssl->ctx;
3989 }
3990
3991 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3992 {
3993 CERT *new_cert;
3994 if (ssl->ctx == ctx)
3995 return ssl->ctx;
3996 if (ctx == NULL)
3997 ctx = ssl->session_ctx;
3998 new_cert = ssl_cert_dup(ctx->cert);
3999 if (new_cert == NULL) {
4000 return NULL;
4001 }
4002
4003 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4004 ssl_cert_free(new_cert);
4005 return NULL;
4006 }
4007
4008 ssl_cert_free(ssl->cert);
4009 ssl->cert = new_cert;
4010
4011 /*
4012 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4013 * so setter APIs must prevent invalid lengths from entering the system.
4014 */
4015 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4016 return NULL;
4017
4018 /*
4019 * If the session ID context matches that of the parent SSL_CTX,
4020 * inherit it from the new SSL_CTX as well. If however the context does
4021 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4022 * leave it unchanged.
4023 */
4024 if ((ssl->ctx != NULL) &&
4025 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4026 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4027 ssl->sid_ctx_length = ctx->sid_ctx_length;
4028 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4029 }
4030
4031 SSL_CTX_up_ref(ctx);
4032 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4033 ssl->ctx = ctx;
4034
4035 return ssl->ctx;
4036 }
4037
4038 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4039 {
4040 return X509_STORE_set_default_paths(ctx->cert_store);
4041 }
4042
4043 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4044 {
4045 X509_LOOKUP *lookup;
4046
4047 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4048 if (lookup == NULL)
4049 return 0;
4050 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4051
4052 /* Clear any errors if the default directory does not exist */
4053 ERR_clear_error();
4054
4055 return 1;
4056 }
4057
4058 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4059 {
4060 X509_LOOKUP *lookup;
4061
4062 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4063 if (lookup == NULL)
4064 return 0;
4065
4066 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4067
4068 /* Clear any errors if the default file does not exist */
4069 ERR_clear_error();
4070
4071 return 1;
4072 }
4073
4074 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4075 const char *CApath)
4076 {
4077 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4078 }
4079
4080 void SSL_set_info_callback(SSL *ssl,
4081 void (*cb) (const SSL *ssl, int type, int val))
4082 {
4083 ssl->info_callback = cb;
4084 }
4085
4086 /*
4087 * One compiler (Diab DCC) doesn't like argument names in returned function
4088 * pointer.
4089 */
4090 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4091 int /* type */ ,
4092 int /* val */ ) {
4093 return ssl->info_callback;
4094 }
4095
4096 void SSL_set_verify_result(SSL *ssl, long arg)
4097 {
4098 ssl->verify_result = arg;
4099 }
4100
4101 long SSL_get_verify_result(const SSL *ssl)
4102 {
4103 return ssl->verify_result;
4104 }
4105
4106 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4107 {
4108 if (outlen == 0)
4109 return sizeof(ssl->s3->client_random);
4110 if (outlen > sizeof(ssl->s3->client_random))
4111 outlen = sizeof(ssl->s3->client_random);
4112 memcpy(out, ssl->s3->client_random, outlen);
4113 return outlen;
4114 }
4115
4116 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4117 {
4118 if (outlen == 0)
4119 return sizeof(ssl->s3->server_random);
4120 if (outlen > sizeof(ssl->s3->server_random))
4121 outlen = sizeof(ssl->s3->server_random);
4122 memcpy(out, ssl->s3->server_random, outlen);
4123 return outlen;
4124 }
4125
4126 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4127 unsigned char *out, size_t outlen)
4128 {
4129 if (outlen == 0)
4130 return session->master_key_length;
4131 if (outlen > session->master_key_length)
4132 outlen = session->master_key_length;
4133 memcpy(out, session->master_key, outlen);
4134 return outlen;
4135 }
4136
4137 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4138 size_t len)
4139 {
4140 if (len > sizeof(sess->master_key))
4141 return 0;
4142
4143 memcpy(sess->master_key, in, len);
4144 sess->master_key_length = len;
4145 return 1;
4146 }
4147
4148
4149 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4150 {
4151 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4152 }
4153
4154 void *SSL_get_ex_data(const SSL *s, int idx)
4155 {
4156 return CRYPTO_get_ex_data(&s->ex_data, idx);
4157 }
4158
4159 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4160 {
4161 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4162 }
4163
4164 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4165 {
4166 return CRYPTO_get_ex_data(&s->ex_data, idx);
4167 }
4168
4169 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4170 {
4171 return ctx->cert_store;
4172 }
4173
4174 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4175 {
4176 X509_STORE_free(ctx->cert_store);
4177 ctx->cert_store = store;
4178 }
4179
4180 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4181 {
4182 if (store != NULL)
4183 X509_STORE_up_ref(store);
4184 SSL_CTX_set_cert_store(ctx, store);
4185 }
4186
4187 int SSL_want(const SSL *s)
4188 {
4189 return s->rwstate;
4190 }
4191
4192 /**
4193 * \brief Set the callback for generating temporary DH keys.
4194 * \param ctx the SSL context.
4195 * \param dh the callback
4196 */
4197
4198 #ifndef OPENSSL_NO_DH
4199 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4200 DH *(*dh) (SSL *ssl, int is_export,
4201 int keylength))
4202 {
4203 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4204 }
4205
4206 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4207 int keylength))
4208 {
4209 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4210 }
4211 #endif
4212
4213 #ifndef OPENSSL_NO_PSK
4214 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4215 {
4216 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4217 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4218 return 0;
4219 }
4220 OPENSSL_free(ctx->cert->psk_identity_hint);
4221 if (identity_hint != NULL) {
4222 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4223 if (ctx->cert->psk_identity_hint == NULL)
4224 return 0;
4225 } else
4226 ctx->cert->psk_identity_hint = NULL;
4227 return 1;
4228 }
4229
4230 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4231 {
4232 if (s == NULL)
4233 return 0;
4234
4235 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4236 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4237 return 0;
4238 }
4239 OPENSSL_free(s->cert->psk_identity_hint);
4240 if (identity_hint != NULL) {
4241 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4242 if (s->cert->psk_identity_hint == NULL)
4243 return 0;
4244 } else
4245 s->cert->psk_identity_hint = NULL;
4246 return 1;
4247 }
4248
4249 const char *SSL_get_psk_identity_hint(const SSL *s)
4250 {
4251 if (s == NULL || s->session == NULL)
4252 return NULL;
4253 return s->session->psk_identity_hint;
4254 }
4255
4256 const char *SSL_get_psk_identity(const SSL *s)
4257 {
4258 if (s == NULL || s->session == NULL)
4259 return NULL;
4260 return s->session->psk_identity;
4261 }
4262
4263 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4264 {
4265 s->psk_client_callback = cb;
4266 }
4267
4268 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4269 {
4270 ctx->psk_client_callback = cb;
4271 }
4272
4273 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4274 {
4275 s->psk_server_callback = cb;
4276 }
4277
4278 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4279 {
4280 ctx->psk_server_callback = cb;
4281 }
4282 #endif
4283
4284 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4285 {
4286 s->psk_find_session_cb = cb;
4287 }
4288
4289 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4290 SSL_psk_find_session_cb_func cb)
4291 {
4292 ctx->psk_find_session_cb = cb;
4293 }
4294
4295 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4296 {
4297 s->psk_use_session_cb = cb;
4298 }
4299
4300 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4301 SSL_psk_use_session_cb_func cb)
4302 {
4303 ctx->psk_use_session_cb = cb;
4304 }
4305
4306 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4307 void (*cb) (int write_p, int version,
4308 int content_type, const void *buf,
4309 size_t len, SSL *ssl, void *arg))
4310 {
4311 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4312 }
4313
4314 void SSL_set_msg_callback(SSL *ssl,
4315 void (*cb) (int write_p, int version,
4316 int content_type, const void *buf,
4317 size_t len, SSL *ssl, void *arg))
4318 {
4319 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4320 }
4321
4322 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4323 int (*cb) (SSL *ssl,
4324 int
4325 is_forward_secure))
4326 {
4327 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4328 (void (*)(void))cb);
4329 }
4330
4331 void SSL_set_not_resumable_session_callback(SSL *ssl,
4332 int (*cb) (SSL *ssl,
4333 int is_forward_secure))
4334 {
4335 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4336 (void (*)(void))cb);
4337 }
4338
4339 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4340 size_t (*cb) (SSL *ssl, int type,
4341 size_t len, void *arg))
4342 {
4343 ctx->record_padding_cb = cb;
4344 }
4345
4346 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4347 {
4348 ctx->record_padding_arg = arg;
4349 }
4350
4351 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4352 {
4353 return ctx->record_padding_arg;
4354 }
4355
4356 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4357 {
4358 /* block size of 0 or 1 is basically no padding */
4359 if (block_size == 1)
4360 ctx->block_padding = 0;
4361 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4362 ctx->block_padding = block_size;
4363 else
4364 return 0;
4365 return 1;
4366 }
4367
4368 void SSL_set_record_padding_callback(SSL *ssl,
4369 size_t (*cb) (SSL *ssl, int type,
4370 size_t len, void *arg))
4371 {
4372 ssl->record_padding_cb = cb;
4373 }
4374
4375 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4376 {
4377 ssl->record_padding_arg = arg;
4378 }
4379
4380 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4381 {
4382 return ssl->record_padding_arg;
4383 }
4384
4385 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4386 {
4387 /* block size of 0 or 1 is basically no padding */
4388 if (block_size == 1)
4389 ssl->block_padding = 0;
4390 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4391 ssl->block_padding = block_size;
4392 else
4393 return 0;
4394 return 1;
4395 }
4396
4397 /*
4398 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4399 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4400 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4401 * Returns the newly allocated ctx;
4402 */
4403
4404 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4405 {
4406 ssl_clear_hash_ctx(hash);
4407 *hash = EVP_MD_CTX_new();
4408 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4409 EVP_MD_CTX_free(*hash);
4410 *hash = NULL;
4411 return NULL;
4412 }
4413 return *hash;
4414 }
4415
4416 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4417 {
4418
4419 EVP_MD_CTX_free(*hash);
4420 *hash = NULL;
4421 }
4422
4423 /* Retrieve handshake hashes */
4424 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4425 size_t *hashlen)
4426 {
4427 EVP_MD_CTX *ctx = NULL;
4428 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4429 int hashleni = EVP_MD_CTX_size(hdgst);
4430 int ret = 0;
4431
4432 if (hashleni < 0 || (size_t)hashleni > outlen) {
4433 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4434 ERR_R_INTERNAL_ERROR);
4435 goto err;
4436 }
4437
4438 ctx = EVP_MD_CTX_new();
4439 if (ctx == NULL)
4440 goto err;
4441
4442 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4443 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4444 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4445 ERR_R_INTERNAL_ERROR);
4446 goto err;
4447 }
4448
4449 *hashlen = hashleni;
4450
4451 ret = 1;
4452 err:
4453 EVP_MD_CTX_free(ctx);
4454 return ret;
4455 }
4456
4457 int SSL_session_reused(SSL *s)
4458 {
4459 return s->hit;
4460 }
4461
4462 int SSL_is_server(const SSL *s)
4463 {
4464 return s->server;
4465 }
4466
4467 #if OPENSSL_API_COMPAT < 0x10100000L
4468 void SSL_set_debug(SSL *s, int debug)
4469 {
4470 /* Old function was do-nothing anyway... */
4471 (void)s;
4472 (void)debug;
4473 }
4474 #endif
4475
4476 void SSL_set_security_level(SSL *s, int level)
4477 {
4478 s->cert->sec_level = level;
4479 }
4480
4481 int SSL_get_security_level(const SSL *s)
4482 {
4483 return s->cert->sec_level;
4484 }
4485
4486 void SSL_set_security_callback(SSL *s,
4487 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4488 int op, int bits, int nid,
4489 void *other, void *ex))
4490 {
4491 s->cert->sec_cb = cb;
4492 }
4493
4494 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4495 const SSL_CTX *ctx, int op,
4496 int bits, int nid, void *other,
4497 void *ex) {
4498 return s->cert->sec_cb;
4499 }
4500
4501 void SSL_set0_security_ex_data(SSL *s, void *ex)
4502 {
4503 s->cert->sec_ex = ex;
4504 }
4505
4506 void *SSL_get0_security_ex_data(const SSL *s)
4507 {
4508 return s->cert->sec_ex;
4509 }
4510
4511 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4512 {
4513 ctx->cert->sec_level = level;
4514 }
4515
4516 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4517 {
4518 return ctx->cert->sec_level;
4519 }
4520
4521 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4522 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4523 int op, int bits, int nid,
4524 void *other, void *ex))
4525 {
4526 ctx->cert->sec_cb = cb;
4527 }
4528
4529 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4530 const SSL_CTX *ctx,
4531 int op, int bits,
4532 int nid,
4533 void *other,
4534 void *ex) {
4535 return ctx->cert->sec_cb;
4536 }
4537
4538 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4539 {
4540 ctx->cert->sec_ex = ex;
4541 }
4542
4543 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4544 {
4545 return ctx->cert->sec_ex;
4546 }
4547
4548 /*
4549 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4550 * can return unsigned long, instead of the generic long return value from the
4551 * control interface.
4552 */
4553 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4554 {
4555 return ctx->options;
4556 }
4557
4558 unsigned long SSL_get_options(const SSL *s)
4559 {
4560 return s->options;
4561 }
4562
4563 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4564 {
4565 return ctx->options |= op;
4566 }
4567
4568 unsigned long SSL_set_options(SSL *s, unsigned long op)
4569 {
4570 return s->options |= op;
4571 }
4572
4573 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4574 {
4575 return ctx->options &= ~op;
4576 }
4577
4578 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4579 {
4580 return s->options &= ~op;
4581 }
4582
4583 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4584 {
4585 return s->verified_chain;
4586 }
4587
4588 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4589
4590 #ifndef OPENSSL_NO_CT
4591
4592 /*
4593 * Moves SCTs from the |src| stack to the |dst| stack.
4594 * The source of each SCT will be set to |origin|.
4595 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4596 * the caller.
4597 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4598 */
4599 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4600 sct_source_t origin)
4601 {
4602 int scts_moved = 0;
4603 SCT *sct = NULL;
4604
4605 if (*dst == NULL) {
4606 *dst = sk_SCT_new_null();
4607 if (*dst == NULL) {
4608 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4609 goto err;
4610 }
4611 }
4612
4613 while ((sct = sk_SCT_pop(src)) != NULL) {
4614 if (SCT_set_source(sct, origin) != 1)
4615 goto err;
4616
4617 if (sk_SCT_push(*dst, sct) <= 0)
4618 goto err;
4619 scts_moved += 1;
4620 }
4621
4622 return scts_moved;
4623 err:
4624 if (sct != NULL)
4625 sk_SCT_push(src, sct); /* Put the SCT back */
4626 return -1;
4627 }
4628
4629 /*
4630 * Look for data collected during ServerHello and parse if found.
4631 * Returns the number of SCTs extracted.
4632 */
4633 static int ct_extract_tls_extension_scts(SSL *s)
4634 {
4635 int scts_extracted = 0;
4636
4637 if (s->ext.scts != NULL) {
4638 const unsigned char *p = s->ext.scts;
4639 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4640
4641 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4642
4643 SCT_LIST_free(scts);
4644 }
4645
4646 return scts_extracted;
4647 }
4648
4649 /*
4650 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4651 * contains an SCT X509 extension. They will be stored in |s->scts|.
4652 * Returns:
4653 * - The number of SCTs extracted, assuming an OCSP response exists.
4654 * - 0 if no OCSP response exists or it contains no SCTs.
4655 * - A negative integer if an error occurs.
4656 */
4657 static int ct_extract_ocsp_response_scts(SSL *s)
4658 {
4659 # ifndef OPENSSL_NO_OCSP
4660 int scts_extracted = 0;
4661 const unsigned char *p;
4662 OCSP_BASICRESP *br = NULL;
4663 OCSP_RESPONSE *rsp = NULL;
4664 STACK_OF(SCT) *scts = NULL;
4665 int i;
4666
4667 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4668 goto err;
4669
4670 p = s->ext.ocsp.resp;
4671 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4672 if (rsp == NULL)
4673 goto err;
4674
4675 br = OCSP_response_get1_basic(rsp);
4676 if (br == NULL)
4677 goto err;
4678
4679 for (i = 0; i < OCSP_resp_count(br); ++i) {
4680 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4681
4682 if (single == NULL)
4683 continue;
4684
4685 scts =
4686 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4687 scts_extracted =
4688 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4689 if (scts_extracted < 0)
4690 goto err;
4691 }
4692 err:
4693 SCT_LIST_free(scts);
4694 OCSP_BASICRESP_free(br);
4695 OCSP_RESPONSE_free(rsp);
4696 return scts_extracted;
4697 # else
4698 /* Behave as if no OCSP response exists */
4699 return 0;
4700 # endif
4701 }
4702
4703 /*
4704 * Attempts to extract SCTs from the peer certificate.
4705 * Return the number of SCTs extracted, or a negative integer if an error
4706 * occurs.
4707 */
4708 static int ct_extract_x509v3_extension_scts(SSL *s)
4709 {
4710 int scts_extracted = 0;
4711 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4712
4713 if (cert != NULL) {
4714 STACK_OF(SCT) *scts =
4715 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4716
4717 scts_extracted =
4718 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4719
4720 SCT_LIST_free(scts);
4721 }
4722
4723 return scts_extracted;
4724 }
4725
4726 /*
4727 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4728 * response (if it exists) and X509v3 extensions in the certificate.
4729 * Returns NULL if an error occurs.
4730 */
4731 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4732 {
4733 if (!s->scts_parsed) {
4734 if (ct_extract_tls_extension_scts(s) < 0 ||
4735 ct_extract_ocsp_response_scts(s) < 0 ||
4736 ct_extract_x509v3_extension_scts(s) < 0)
4737 goto err;
4738
4739 s->scts_parsed = 1;
4740 }
4741 return s->scts;
4742 err:
4743 return NULL;
4744 }
4745
4746 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4747 const STACK_OF(SCT) *scts, void *unused_arg)
4748 {
4749 return 1;
4750 }
4751
4752 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4753 const STACK_OF(SCT) *scts, void *unused_arg)
4754 {
4755 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4756 int i;
4757
4758 for (i = 0; i < count; ++i) {
4759 SCT *sct = sk_SCT_value(scts, i);
4760 int status = SCT_get_validation_status(sct);
4761
4762 if (status == SCT_VALIDATION_STATUS_VALID)
4763 return 1;
4764 }
4765 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4766 return 0;
4767 }
4768
4769 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4770 void *arg)
4771 {
4772 /*
4773 * Since code exists that uses the custom extension handler for CT, look
4774 * for this and throw an error if they have already registered to use CT.
4775 */
4776 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4777 TLSEXT_TYPE_signed_certificate_timestamp))
4778 {
4779 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4780 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4781 return 0;
4782 }
4783
4784 if (callback != NULL) {
4785 /*
4786 * If we are validating CT, then we MUST accept SCTs served via OCSP
4787 */
4788 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4789 return 0;
4790 }
4791
4792 s->ct_validation_callback = callback;
4793 s->ct_validation_callback_arg = arg;
4794
4795 return 1;
4796 }
4797
4798 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4799 ssl_ct_validation_cb callback, void *arg)
4800 {
4801 /*
4802 * Since code exists that uses the custom extension handler for CT, look for
4803 * this and throw an error if they have already registered to use CT.
4804 */
4805 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4806 TLSEXT_TYPE_signed_certificate_timestamp))
4807 {
4808 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4809 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4810 return 0;
4811 }
4812
4813 ctx->ct_validation_callback = callback;
4814 ctx->ct_validation_callback_arg = arg;
4815 return 1;
4816 }
4817
4818 int SSL_ct_is_enabled(const SSL *s)
4819 {
4820 return s->ct_validation_callback != NULL;
4821 }
4822
4823 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4824 {
4825 return ctx->ct_validation_callback != NULL;
4826 }
4827
4828 int ssl_validate_ct(SSL *s)
4829 {
4830 int ret = 0;
4831 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4832 X509 *issuer;
4833 SSL_DANE *dane = &s->dane;
4834 CT_POLICY_EVAL_CTX *ctx = NULL;
4835 const STACK_OF(SCT) *scts;
4836
4837 /*
4838 * If no callback is set, the peer is anonymous, or its chain is invalid,
4839 * skip SCT validation - just return success. Applications that continue
4840 * handshakes without certificates, with unverified chains, or pinned leaf
4841 * certificates are outside the scope of the WebPKI and CT.
4842 *
4843 * The above exclusions notwithstanding the vast majority of peers will
4844 * have rather ordinary certificate chains validated by typical
4845 * applications that perform certificate verification and therefore will
4846 * process SCTs when enabled.
4847 */
4848 if (s->ct_validation_callback == NULL || cert == NULL ||
4849 s->verify_result != X509_V_OK ||
4850 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4851 return 1;
4852
4853 /*
4854 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4855 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4856 */
4857 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4858 switch (dane->mtlsa->usage) {
4859 case DANETLS_USAGE_DANE_TA:
4860 case DANETLS_USAGE_DANE_EE:
4861 return 1;
4862 }
4863 }
4864
4865 ctx = CT_POLICY_EVAL_CTX_new();
4866 if (ctx == NULL) {
4867 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4868 ERR_R_MALLOC_FAILURE);
4869 goto end;
4870 }
4871
4872 issuer = sk_X509_value(s->verified_chain, 1);
4873 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4874 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4875 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4876 CT_POLICY_EVAL_CTX_set_time(
4877 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4878
4879 scts = SSL_get0_peer_scts(s);
4880
4881 /*
4882 * This function returns success (> 0) only when all the SCTs are valid, 0
4883 * when some are invalid, and < 0 on various internal errors (out of
4884 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4885 * reason to abort the handshake, that decision is up to the callback.
4886 * Therefore, we error out only in the unexpected case that the return
4887 * value is negative.
4888 *
4889 * XXX: One might well argue that the return value of this function is an
4890 * unfortunate design choice. Its job is only to determine the validation
4891 * status of each of the provided SCTs. So long as it correctly separates
4892 * the wheat from the chaff it should return success. Failure in this case
4893 * ought to correspond to an inability to carry out its duties.
4894 */
4895 if (SCT_LIST_validate(scts, ctx) < 0) {
4896 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4897 SSL_R_SCT_VERIFICATION_FAILED);
4898 goto end;
4899 }
4900
4901 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4902 if (ret < 0)
4903 ret = 0; /* This function returns 0 on failure */
4904 if (!ret)
4905 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4906 SSL_R_CALLBACK_FAILED);
4907
4908 end:
4909 CT_POLICY_EVAL_CTX_free(ctx);
4910 /*
4911 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4912 * failure return code here. Also the application may wish the complete
4913 * the handshake, and then disconnect cleanly at a higher layer, after
4914 * checking the verification status of the completed connection.
4915 *
4916 * We therefore force a certificate verification failure which will be
4917 * visible via SSL_get_verify_result() and cached as part of any resumed
4918 * session.
4919 *
4920 * Note: the permissive callback is for information gathering only, always
4921 * returns success, and does not affect verification status. Only the
4922 * strict callback or a custom application-specified callback can trigger
4923 * connection failure or record a verification error.
4924 */
4925 if (ret <= 0)
4926 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4927 return ret;
4928 }
4929
4930 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4931 {
4932 switch (validation_mode) {
4933 default:
4934 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4935 return 0;
4936 case SSL_CT_VALIDATION_PERMISSIVE:
4937 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4938 case SSL_CT_VALIDATION_STRICT:
4939 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4940 }
4941 }
4942
4943 int SSL_enable_ct(SSL *s, int validation_mode)
4944 {
4945 switch (validation_mode) {
4946 default:
4947 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4948 return 0;
4949 case SSL_CT_VALIDATION_PERMISSIVE:
4950 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4951 case SSL_CT_VALIDATION_STRICT:
4952 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4953 }
4954 }
4955
4956 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4957 {
4958 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4959 }
4960
4961 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4962 {
4963 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4964 }
4965
4966 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4967 {
4968 CTLOG_STORE_free(ctx->ctlog_store);
4969 ctx->ctlog_store = logs;
4970 }
4971
4972 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4973 {
4974 return ctx->ctlog_store;
4975 }
4976
4977 #endif /* OPENSSL_NO_CT */
4978
4979 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4980 void *arg)
4981 {
4982 c->client_hello_cb = cb;
4983 c->client_hello_cb_arg = arg;
4984 }
4985
4986 int SSL_client_hello_isv2(SSL *s)
4987 {
4988 if (s->clienthello == NULL)
4989 return 0;
4990 return s->clienthello->isv2;
4991 }
4992
4993 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4994 {
4995 if (s->clienthello == NULL)
4996 return 0;
4997 return s->clienthello->legacy_version;
4998 }
4999
5000 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5001 {
5002 if (s->clienthello == NULL)
5003 return 0;
5004 if (out != NULL)
5005 *out = s->clienthello->random;
5006 return SSL3_RANDOM_SIZE;
5007 }
5008
5009 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5010 {
5011 if (s->clienthello == NULL)
5012 return 0;
5013 if (out != NULL)
5014 *out = s->clienthello->session_id;
5015 return s->clienthello->session_id_len;
5016 }
5017
5018 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5019 {
5020 if (s->clienthello == NULL)
5021 return 0;
5022 if (out != NULL)
5023 *out = PACKET_data(&s->clienthello->ciphersuites);
5024 return PACKET_remaining(&s->clienthello->ciphersuites);
5025 }
5026
5027 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5028 {
5029 if (s->clienthello == NULL)
5030 return 0;
5031 if (out != NULL)
5032 *out = s->clienthello->compressions;
5033 return s->clienthello->compressions_len;
5034 }
5035
5036 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5037 {
5038 RAW_EXTENSION *ext;
5039 int *present;
5040 size_t num = 0, i;
5041
5042 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5043 return 0;
5044 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5045 ext = s->clienthello->pre_proc_exts + i;
5046 if (ext->present)
5047 num++;
5048 }
5049 present = OPENSSL_malloc(sizeof(*present) * num);
5050 if (present == NULL)
5051 return 0;
5052 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5053 ext = s->clienthello->pre_proc_exts + i;
5054 if (ext->present) {
5055 if (ext->received_order >= num)
5056 goto err;
5057 present[ext->received_order] = ext->type;
5058 }
5059 }
5060 *out = present;
5061 *outlen = num;
5062 return 1;
5063 err:
5064 OPENSSL_free(present);
5065 return 0;
5066 }
5067
5068 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5069 size_t *outlen)
5070 {
5071 size_t i;
5072 RAW_EXTENSION *r;
5073
5074 if (s->clienthello == NULL)
5075 return 0;
5076 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5077 r = s->clienthello->pre_proc_exts + i;
5078 if (r->present && r->type == type) {
5079 if (out != NULL)
5080 *out = PACKET_data(&r->data);
5081 if (outlen != NULL)
5082 *outlen = PACKET_remaining(&r->data);
5083 return 1;
5084 }
5085 }
5086 return 0;
5087 }
5088
5089 int SSL_free_buffers(SSL *ssl)
5090 {
5091 RECORD_LAYER *rl = &ssl->rlayer;
5092
5093 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5094 return 0;
5095
5096 RECORD_LAYER_release(rl);
5097 return 1;
5098 }
5099
5100 int SSL_alloc_buffers(SSL *ssl)
5101 {
5102 return ssl3_setup_buffers(ssl);
5103 }
5104
5105 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5106 {
5107 ctx->keylog_callback = cb;
5108 }
5109
5110 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5111 {
5112 return ctx->keylog_callback;
5113 }
5114
5115 static int nss_keylog_int(const char *prefix,
5116 SSL *ssl,
5117 const uint8_t *parameter_1,
5118 size_t parameter_1_len,
5119 const uint8_t *parameter_2,
5120 size_t parameter_2_len)
5121 {
5122 char *out = NULL;
5123 char *cursor = NULL;
5124 size_t out_len = 0;
5125 size_t i;
5126 size_t prefix_len;
5127
5128 if (ssl->ctx->keylog_callback == NULL) return 1;
5129
5130 /*
5131 * Our output buffer will contain the following strings, rendered with
5132 * space characters in between, terminated by a NULL character: first the
5133 * prefix, then the first parameter, then the second parameter. The
5134 * meaning of each parameter depends on the specific key material being
5135 * logged. Note that the first and second parameters are encoded in
5136 * hexadecimal, so we need a buffer that is twice their lengths.
5137 */
5138 prefix_len = strlen(prefix);
5139 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
5140 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5141 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5142 ERR_R_MALLOC_FAILURE);
5143 return 0;
5144 }
5145
5146 strcpy(cursor, prefix);
5147 cursor += prefix_len;
5148 *cursor++ = ' ';
5149
5150 for (i = 0; i < parameter_1_len; i++) {
5151 sprintf(cursor, "%02x", parameter_1[i]);
5152 cursor += 2;
5153 }
5154 *cursor++ = ' ';
5155
5156 for (i = 0; i < parameter_2_len; i++) {
5157 sprintf(cursor, "%02x", parameter_2[i]);
5158 cursor += 2;
5159 }
5160 *cursor = '\0';
5161
5162 ssl->ctx->keylog_callback(ssl, (const char *)out);
5163 OPENSSL_free(out);
5164 return 1;
5165
5166 }
5167
5168 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5169 const uint8_t *encrypted_premaster,
5170 size_t encrypted_premaster_len,
5171 const uint8_t *premaster,
5172 size_t premaster_len)
5173 {
5174 if (encrypted_premaster_len < 8) {
5175 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5176 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5177 return 0;
5178 }
5179
5180 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5181 return nss_keylog_int("RSA",
5182 ssl,
5183 encrypted_premaster,
5184 8,
5185 premaster,
5186 premaster_len);
5187 }
5188
5189 int ssl_log_secret(SSL *ssl,
5190 const char *label,
5191 const uint8_t *secret,
5192 size_t secret_len)
5193 {
5194 return nss_keylog_int(label,
5195 ssl,
5196 ssl->s3->client_random,
5197 SSL3_RANDOM_SIZE,
5198 secret,
5199 secret_len);
5200 }
5201
5202 #define SSLV2_CIPHER_LEN 3
5203
5204 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5205 {
5206 int n;
5207
5208 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5209
5210 if (PACKET_remaining(cipher_suites) == 0) {
5211 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5212 SSL_R_NO_CIPHERS_SPECIFIED);
5213 return 0;
5214 }
5215
5216 if (PACKET_remaining(cipher_suites) % n != 0) {
5217 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5218 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5219 return 0;
5220 }
5221
5222 OPENSSL_free(s->s3->tmp.ciphers_raw);
5223 s->s3->tmp.ciphers_raw = NULL;
5224 s->s3->tmp.ciphers_rawlen = 0;
5225
5226 if (sslv2format) {
5227 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5228 PACKET sslv2ciphers = *cipher_suites;
5229 unsigned int leadbyte;
5230 unsigned char *raw;
5231
5232 /*
5233 * We store the raw ciphers list in SSLv3+ format so we need to do some
5234 * preprocessing to convert the list first. If there are any SSLv2 only
5235 * ciphersuites with a non-zero leading byte then we are going to
5236 * slightly over allocate because we won't store those. But that isn't a
5237 * problem.
5238 */
5239 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5240 s->s3->tmp.ciphers_raw = raw;
5241 if (raw == NULL) {
5242 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5243 ERR_R_MALLOC_FAILURE);
5244 return 0;
5245 }
5246 for (s->s3->tmp.ciphers_rawlen = 0;
5247 PACKET_remaining(&sslv2ciphers) > 0;
5248 raw += TLS_CIPHER_LEN) {
5249 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5250 || (leadbyte == 0
5251 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5252 TLS_CIPHER_LEN))
5253 || (leadbyte != 0
5254 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5255 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5256 SSL_R_BAD_PACKET);
5257 OPENSSL_free(s->s3->tmp.ciphers_raw);
5258 s->s3->tmp.ciphers_raw = NULL;
5259 s->s3->tmp.ciphers_rawlen = 0;
5260 return 0;
5261 }
5262 if (leadbyte == 0)
5263 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5264 }
5265 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5266 &s->s3->tmp.ciphers_rawlen)) {
5267 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5268 ERR_R_INTERNAL_ERROR);
5269 return 0;
5270 }
5271 return 1;
5272 }
5273
5274 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5275 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5276 STACK_OF(SSL_CIPHER) **scsvs)
5277 {
5278 PACKET pkt;
5279
5280 if (!PACKET_buf_init(&pkt, bytes, len))
5281 return 0;
5282 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5283 }
5284
5285 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5286 STACK_OF(SSL_CIPHER) **skp,
5287 STACK_OF(SSL_CIPHER) **scsvs_out,
5288 int sslv2format, int fatal)
5289 {
5290 const SSL_CIPHER *c;
5291 STACK_OF(SSL_CIPHER) *sk = NULL;
5292 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5293 int n;
5294 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5295 unsigned char cipher[SSLV2_CIPHER_LEN];
5296
5297 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5298
5299 if (PACKET_remaining(cipher_suites) == 0) {
5300 if (fatal)
5301 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5302 SSL_R_NO_CIPHERS_SPECIFIED);
5303 else
5304 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5305 return 0;
5306 }
5307
5308 if (PACKET_remaining(cipher_suites) % n != 0) {
5309 if (fatal)
5310 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5311 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5312 else
5313 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5314 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5315 return 0;
5316 }
5317
5318 sk = sk_SSL_CIPHER_new_null();
5319 scsvs = sk_SSL_CIPHER_new_null();
5320 if (sk == NULL || scsvs == NULL) {
5321 if (fatal)
5322 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5323 ERR_R_MALLOC_FAILURE);
5324 else
5325 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5326 goto err;
5327 }
5328
5329 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5330 /*
5331 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5332 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5333 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5334 */
5335 if (sslv2format && cipher[0] != '\0')
5336 continue;
5337
5338 /* For SSLv2-compat, ignore leading 0-byte. */
5339 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5340 if (c != NULL) {
5341 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5342 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5343 if (fatal)
5344 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5345 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5346 else
5347 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5348 goto err;
5349 }
5350 }
5351 }
5352 if (PACKET_remaining(cipher_suites) > 0) {
5353 if (fatal)
5354 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5355 SSL_R_BAD_LENGTH);
5356 else
5357 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5358 goto err;
5359 }
5360
5361 if (skp != NULL)
5362 *skp = sk;
5363 else
5364 sk_SSL_CIPHER_free(sk);
5365 if (scsvs_out != NULL)
5366 *scsvs_out = scsvs;
5367 else
5368 sk_SSL_CIPHER_free(scsvs);
5369 return 1;
5370 err:
5371 sk_SSL_CIPHER_free(sk);
5372 sk_SSL_CIPHER_free(scsvs);
5373 return 0;
5374 }
5375
5376 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5377 {
5378 ctx->max_early_data = max_early_data;
5379
5380 return 1;
5381 }
5382
5383 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5384 {
5385 return ctx->max_early_data;
5386 }
5387
5388 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5389 {
5390 s->max_early_data = max_early_data;
5391
5392 return 1;
5393 }
5394
5395 uint32_t SSL_get_max_early_data(const SSL *s)
5396 {
5397 return s->max_early_data;
5398 }
5399
5400 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5401 {
5402 if (s->drbg != NULL) {
5403 /*
5404 * Currently, it's the duty of the caller to serialize the generate
5405 * requests to the DRBG. So formally we have to check whether
5406 * s->drbg->lock != NULL and take the lock if this is the case.
5407 * However, this DRBG is unique to a given SSL object, and we already
5408 * require that SSL objects are only accessed by a single thread at
5409 * a given time. Also, SSL DRBGs have no child DRBG, so there is
5410 * no risk that this DRBG is accessed by a child DRBG in parallel
5411 * for reseeding. As such, we can rely on the application's
5412 * serialization of SSL accesses for the needed concurrency protection
5413 * here.
5414 */
5415 return RAND_DRBG_bytes(s->drbg, rnd, size);
5416 }
5417 if (size > INT_MAX)
5418 return 0;
5419 return RAND_bytes(rnd, size);
5420 }
5421
5422 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5423 {
5424 /* Return any active Max Fragment Len extension */
5425 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5426 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5427
5428 /* return current SSL connection setting */
5429 return ssl->max_send_fragment;
5430 }
5431
5432 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5433 {
5434 /* Return a value regarding an active Max Fragment Len extension */
5435 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5436 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5437 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5438
5439 /* else limit |split_send_fragment| to current |max_send_fragment| */
5440 if (ssl->split_send_fragment > ssl->max_send_fragment)
5441 return ssl->max_send_fragment;
5442
5443 /* return current SSL connection setting */
5444 return ssl->split_send_fragment;
5445 }
5446
5447 int SSL_stateless(SSL *s)
5448 {
5449 int ret;
5450
5451 /* Ensure there is no state left over from a previous invocation */
5452 if (!SSL_clear(s))
5453 return 0;
5454
5455 ERR_clear_error();
5456
5457 s->s3->flags |= TLS1_FLAGS_STATELESS;
5458 ret = SSL_accept(s);
5459 s->s3->flags &= ~TLS1_FLAGS_STATELESS;
5460
5461 if (ret > 0 && s->ext.cookieok)
5462 return 1;
5463
5464 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5465 return 0;
5466
5467 return -1;
5468 }
5469
5470 void SSL_force_post_handshake_auth(SSL *ssl)
5471 {
5472 ssl->pha_forced = 1;
5473 }
5474
5475 int SSL_verify_client_post_handshake(SSL *ssl)
5476 {
5477 if (!SSL_IS_TLS13(ssl)) {
5478 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5479 return 0;
5480 }
5481 if (!ssl->server) {
5482 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5483 return 0;
5484 }
5485
5486 if (!SSL_is_init_finished(ssl)) {
5487 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5488 return 0;
5489 }
5490
5491 switch (ssl->post_handshake_auth) {
5492 case SSL_PHA_NONE:
5493 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5494 return 0;
5495 default:
5496 case SSL_PHA_EXT_SENT:
5497 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5498 return 0;
5499 case SSL_PHA_EXT_RECEIVED:
5500 break;
5501 case SSL_PHA_REQUEST_PENDING:
5502 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5503 return 0;
5504 case SSL_PHA_REQUESTED:
5505 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5506 return 0;
5507 }
5508
5509 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5510
5511 /* checks verify_mode and algorithm_auth */
5512 if (!send_certificate_request(ssl)) {
5513 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5514 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5515 return 0;
5516 }
5517
5518 ossl_statem_set_in_init(ssl, 1);
5519 return 1;
5520 }
5521
5522 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5523 SSL_CTX_generate_session_ticket_fn gen_cb,
5524 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5525 void *arg)
5526 {
5527 ctx->generate_ticket_cb = gen_cb;
5528 ctx->decrypt_ticket_cb = dec_cb;
5529 ctx->ticket_cb_data = arg;
5530 return 1;
5531 }