]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Rename all getters to use get/get0 in name
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_local.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include <openssl/trace.h>
24 #include "internal/cryptlib.h"
25 #include "internal/refcount.h"
26 #include "internal/ktls.h"
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t,
29 SSL_MAC_BUF *mac, size_t macsize)
30 {
31 return ssl_undefined_function(ssl);
32 }
33
34 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
35 int t)
36 {
37 return ssl_undefined_function(ssl);
38 }
39
40 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
41 unsigned char *s, size_t t, size_t *u)
42 {
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_4(SSL *ssl, int r)
47 {
48 return ssl_undefined_function(ssl);
49 }
50
51 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
52 unsigned char *t)
53 {
54 return ssl_undefined_function(ssl);
55 }
56
57 static int ssl_undefined_function_6(int r)
58 {
59 return ssl_undefined_function(NULL);
60 }
61
62 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
63 const char *t, size_t u,
64 const unsigned char *v, size_t w, int x)
65 {
66 return ssl_undefined_function(ssl);
67 }
68
69 SSL3_ENC_METHOD ssl3_undef_enc_method = {
70 ssl_undefined_function_1,
71 ssl_undefined_function_2,
72 ssl_undefined_function,
73 ssl_undefined_function_3,
74 ssl_undefined_function_4,
75 ssl_undefined_function_5,
76 NULL, /* client_finished_label */
77 0, /* client_finished_label_len */
78 NULL, /* server_finished_label */
79 0, /* server_finished_label_len */
80 ssl_undefined_function_6,
81 ssl_undefined_function_7,
82 };
83
84 struct ssl_async_args {
85 SSL *s;
86 void *buf;
87 size_t num;
88 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
89 union {
90 int (*func_read) (SSL *, void *, size_t, size_t *);
91 int (*func_write) (SSL *, const void *, size_t, size_t *);
92 int (*func_other) (SSL *);
93 } f;
94 };
95
96 static const struct {
97 uint8_t mtype;
98 uint8_t ord;
99 int nid;
100 } dane_mds[] = {
101 {
102 DANETLS_MATCHING_FULL, 0, NID_undef
103 },
104 {
105 DANETLS_MATCHING_2256, 1, NID_sha256
106 },
107 {
108 DANETLS_MATCHING_2512, 2, NID_sha512
109 },
110 };
111
112 static int dane_ctx_enable(struct dane_ctx_st *dctx)
113 {
114 const EVP_MD **mdevp;
115 uint8_t *mdord;
116 uint8_t mdmax = DANETLS_MATCHING_LAST;
117 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
118 size_t i;
119
120 if (dctx->mdevp != NULL)
121 return 1;
122
123 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
124 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
125
126 if (mdord == NULL || mdevp == NULL) {
127 OPENSSL_free(mdord);
128 OPENSSL_free(mdevp);
129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
130 return 0;
131 }
132
133 /* Install default entries */
134 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
135 const EVP_MD *md;
136
137 if (dane_mds[i].nid == NID_undef ||
138 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
139 continue;
140 mdevp[dane_mds[i].mtype] = md;
141 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
142 }
143
144 dctx->mdevp = mdevp;
145 dctx->mdord = mdord;
146 dctx->mdmax = mdmax;
147
148 return 1;
149 }
150
151 static void dane_ctx_final(struct dane_ctx_st *dctx)
152 {
153 OPENSSL_free(dctx->mdevp);
154 dctx->mdevp = NULL;
155
156 OPENSSL_free(dctx->mdord);
157 dctx->mdord = NULL;
158 dctx->mdmax = 0;
159 }
160
161 static void tlsa_free(danetls_record *t)
162 {
163 if (t == NULL)
164 return;
165 OPENSSL_free(t->data);
166 EVP_PKEY_free(t->spki);
167 OPENSSL_free(t);
168 }
169
170 static void dane_final(SSL_DANE *dane)
171 {
172 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
173 dane->trecs = NULL;
174
175 sk_X509_pop_free(dane->certs, X509_free);
176 dane->certs = NULL;
177
178 X509_free(dane->mcert);
179 dane->mcert = NULL;
180 dane->mtlsa = NULL;
181 dane->mdpth = -1;
182 dane->pdpth = -1;
183 }
184
185 /*
186 * dane_copy - Copy dane configuration, sans verification state.
187 */
188 static int ssl_dane_dup(SSL *to, SSL *from)
189 {
190 int num;
191 int i;
192
193 if (!DANETLS_ENABLED(&from->dane))
194 return 1;
195
196 num = sk_danetls_record_num(from->dane.trecs);
197 dane_final(&to->dane);
198 to->dane.flags = from->dane.flags;
199 to->dane.dctx = &to->ctx->dane;
200 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
201
202 if (to->dane.trecs == NULL) {
203 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
204 return 0;
205 }
206
207 for (i = 0; i < num; ++i) {
208 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
209
210 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
211 t->data, t->dlen) <= 0)
212 return 0;
213 }
214 return 1;
215 }
216
217 static int dane_mtype_set(struct dane_ctx_st *dctx,
218 const EVP_MD *md, uint8_t mtype, uint8_t ord)
219 {
220 int i;
221
222 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
223 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
224 return 0;
225 }
226
227 if (mtype > dctx->mdmax) {
228 const EVP_MD **mdevp;
229 uint8_t *mdord;
230 int n = ((int)mtype) + 1;
231
232 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
233 if (mdevp == NULL) {
234 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
235 return -1;
236 }
237 dctx->mdevp = mdevp;
238
239 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
240 if (mdord == NULL) {
241 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
242 return -1;
243 }
244 dctx->mdord = mdord;
245
246 /* Zero-fill any gaps */
247 for (i = dctx->mdmax + 1; i < mtype; ++i) {
248 mdevp[i] = NULL;
249 mdord[i] = 0;
250 }
251
252 dctx->mdmax = mtype;
253 }
254
255 dctx->mdevp[mtype] = md;
256 /* Coerce ordinal of disabled matching types to 0 */
257 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
258
259 return 1;
260 }
261
262 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
263 {
264 if (mtype > dane->dctx->mdmax)
265 return NULL;
266 return dane->dctx->mdevp[mtype];
267 }
268
269 static int dane_tlsa_add(SSL_DANE *dane,
270 uint8_t usage,
271 uint8_t selector,
272 uint8_t mtype, const unsigned char *data, size_t dlen)
273 {
274 danetls_record *t;
275 const EVP_MD *md = NULL;
276 int ilen = (int)dlen;
277 int i;
278 int num;
279
280 if (dane->trecs == NULL) {
281 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED);
282 return -1;
283 }
284
285 if (ilen < 0 || dlen != (size_t)ilen) {
286 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
287 return 0;
288 }
289
290 if (usage > DANETLS_USAGE_LAST) {
291 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
292 return 0;
293 }
294
295 if (selector > DANETLS_SELECTOR_LAST) {
296 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR);
297 return 0;
298 }
299
300 if (mtype != DANETLS_MATCHING_FULL) {
301 md = tlsa_md_get(dane, mtype);
302 if (md == NULL) {
303 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
304 return 0;
305 }
306 }
307
308 if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) {
309 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
310 return 0;
311 }
312 if (!data) {
313 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA);
314 return 0;
315 }
316
317 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
318 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
319 return -1;
320 }
321
322 t->usage = usage;
323 t->selector = selector;
324 t->mtype = mtype;
325 t->data = OPENSSL_malloc(dlen);
326 if (t->data == NULL) {
327 tlsa_free(t);
328 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
329 return -1;
330 }
331 memcpy(t->data, data, dlen);
332 t->dlen = dlen;
333
334 /* Validate and cache full certificate or public key */
335 if (mtype == DANETLS_MATCHING_FULL) {
336 const unsigned char *p = data;
337 X509 *cert = NULL;
338 EVP_PKEY *pkey = NULL;
339
340 switch (selector) {
341 case DANETLS_SELECTOR_CERT:
342 if (!d2i_X509(&cert, &p, ilen) || p < data ||
343 dlen != (size_t)(p - data)) {
344 tlsa_free(t);
345 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
346 return 0;
347 }
348 if (X509_get0_pubkey(cert) == NULL) {
349 tlsa_free(t);
350 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
351 return 0;
352 }
353
354 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
355 X509_free(cert);
356 break;
357 }
358
359 /*
360 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
361 * records that contain full certificates of trust-anchors that are
362 * not present in the wire chain. For usage PKIX-TA(0), we augment
363 * the chain with untrusted Full(0) certificates from DNS, in case
364 * they are missing from the chain.
365 */
366 if ((dane->certs == NULL &&
367 (dane->certs = sk_X509_new_null()) == NULL) ||
368 !sk_X509_push(dane->certs, cert)) {
369 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
370 X509_free(cert);
371 tlsa_free(t);
372 return -1;
373 }
374 break;
375
376 case DANETLS_SELECTOR_SPKI:
377 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
378 dlen != (size_t)(p - data)) {
379 tlsa_free(t);
380 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
381 return 0;
382 }
383
384 /*
385 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
386 * records that contain full bare keys of trust-anchors that are
387 * not present in the wire chain.
388 */
389 if (usage == DANETLS_USAGE_DANE_TA)
390 t->spki = pkey;
391 else
392 EVP_PKEY_free(pkey);
393 break;
394 }
395 }
396
397 /*-
398 * Find the right insertion point for the new record.
399 *
400 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
401 * they can be processed first, as they require no chain building, and no
402 * expiration or hostname checks. Because DANE-EE(3) is numerically
403 * largest, this is accomplished via descending sort by "usage".
404 *
405 * We also sort in descending order by matching ordinal to simplify
406 * the implementation of digest agility in the verification code.
407 *
408 * The choice of order for the selector is not significant, so we
409 * use the same descending order for consistency.
410 */
411 num = sk_danetls_record_num(dane->trecs);
412 for (i = 0; i < num; ++i) {
413 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
414
415 if (rec->usage > usage)
416 continue;
417 if (rec->usage < usage)
418 break;
419 if (rec->selector > selector)
420 continue;
421 if (rec->selector < selector)
422 break;
423 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
424 continue;
425 break;
426 }
427
428 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
429 tlsa_free(t);
430 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
431 return -1;
432 }
433 dane->umask |= DANETLS_USAGE_BIT(usage);
434
435 return 1;
436 }
437
438 /*
439 * Return 0 if there is only one version configured and it was disabled
440 * at configure time. Return 1 otherwise.
441 */
442 static int ssl_check_allowed_versions(int min_version, int max_version)
443 {
444 int minisdtls = 0, maxisdtls = 0;
445
446 /* Figure out if we're doing DTLS versions or TLS versions */
447 if (min_version == DTLS1_BAD_VER
448 || min_version >> 8 == DTLS1_VERSION_MAJOR)
449 minisdtls = 1;
450 if (max_version == DTLS1_BAD_VER
451 || max_version >> 8 == DTLS1_VERSION_MAJOR)
452 maxisdtls = 1;
453 /* A wildcard version of 0 could be DTLS or TLS. */
454 if ((minisdtls && !maxisdtls && max_version != 0)
455 || (maxisdtls && !minisdtls && min_version != 0)) {
456 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
457 return 0;
458 }
459
460 if (minisdtls || maxisdtls) {
461 /* Do DTLS version checks. */
462 if (min_version == 0)
463 /* Ignore DTLS1_BAD_VER */
464 min_version = DTLS1_VERSION;
465 if (max_version == 0)
466 max_version = DTLS1_2_VERSION;
467 #ifdef OPENSSL_NO_DTLS1_2
468 if (max_version == DTLS1_2_VERSION)
469 max_version = DTLS1_VERSION;
470 #endif
471 #ifdef OPENSSL_NO_DTLS1
472 if (min_version == DTLS1_VERSION)
473 min_version = DTLS1_2_VERSION;
474 #endif
475 /* Done massaging versions; do the check. */
476 if (0
477 #ifdef OPENSSL_NO_DTLS1
478 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
479 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
480 #endif
481 #ifdef OPENSSL_NO_DTLS1_2
482 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
483 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
484 #endif
485 )
486 return 0;
487 } else {
488 /* Regular TLS version checks. */
489 if (min_version == 0)
490 min_version = SSL3_VERSION;
491 if (max_version == 0)
492 max_version = TLS1_3_VERSION;
493 #ifdef OPENSSL_NO_TLS1_3
494 if (max_version == TLS1_3_VERSION)
495 max_version = TLS1_2_VERSION;
496 #endif
497 #ifdef OPENSSL_NO_TLS1_2
498 if (max_version == TLS1_2_VERSION)
499 max_version = TLS1_1_VERSION;
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 if (max_version == TLS1_1_VERSION)
503 max_version = TLS1_VERSION;
504 #endif
505 #ifdef OPENSSL_NO_TLS1
506 if (max_version == TLS1_VERSION)
507 max_version = SSL3_VERSION;
508 #endif
509 #ifdef OPENSSL_NO_SSL3
510 if (min_version == SSL3_VERSION)
511 min_version = TLS1_VERSION;
512 #endif
513 #ifdef OPENSSL_NO_TLS1
514 if (min_version == TLS1_VERSION)
515 min_version = TLS1_1_VERSION;
516 #endif
517 #ifdef OPENSSL_NO_TLS1_1
518 if (min_version == TLS1_1_VERSION)
519 min_version = TLS1_2_VERSION;
520 #endif
521 #ifdef OPENSSL_NO_TLS1_2
522 if (min_version == TLS1_2_VERSION)
523 min_version = TLS1_3_VERSION;
524 #endif
525 /* Done massaging versions; do the check. */
526 if (0
527 #ifdef OPENSSL_NO_SSL3
528 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
529 #endif
530 #ifdef OPENSSL_NO_TLS1
531 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
532 #endif
533 #ifdef OPENSSL_NO_TLS1_1
534 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
535 #endif
536 #ifdef OPENSSL_NO_TLS1_2
537 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
538 #endif
539 #ifdef OPENSSL_NO_TLS1_3
540 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
541 #endif
542 )
543 return 0;
544 }
545 return 1;
546 }
547
548 #if defined(__TANDEM) && defined(OPENSSL_VPROC)
549 /*
550 * Define a VPROC function for HP NonStop build ssl library.
551 * This is used by platform version identification tools.
552 * Do not inline this procedure or make it static.
553 */
554 # define OPENSSL_VPROC_STRING_(x) x##_SSL
555 # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x)
556 # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC)
557 void OPENSSL_VPROC_FUNC(void) {}
558 #endif
559
560
561 static void clear_ciphers(SSL *s)
562 {
563 /* clear the current cipher */
564 ssl_clear_cipher_ctx(s);
565 ssl_clear_hash_ctx(&s->read_hash);
566 ssl_clear_hash_ctx(&s->write_hash);
567 }
568
569 int SSL_clear(SSL *s)
570 {
571 if (s->method == NULL) {
572 ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED);
573 return 0;
574 }
575
576 if (ssl_clear_bad_session(s)) {
577 SSL_SESSION_free(s->session);
578 s->session = NULL;
579 }
580 SSL_SESSION_free(s->psksession);
581 s->psksession = NULL;
582 OPENSSL_free(s->psksession_id);
583 s->psksession_id = NULL;
584 s->psksession_id_len = 0;
585 s->hello_retry_request = 0;
586 s->sent_tickets = 0;
587
588 s->error = 0;
589 s->hit = 0;
590 s->shutdown = 0;
591
592 if (s->renegotiate) {
593 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
594 return 0;
595 }
596
597 ossl_statem_clear(s);
598
599 s->version = s->method->version;
600 s->client_version = s->version;
601 s->rwstate = SSL_NOTHING;
602
603 BUF_MEM_free(s->init_buf);
604 s->init_buf = NULL;
605 clear_ciphers(s);
606 s->first_packet = 0;
607
608 s->key_update = SSL_KEY_UPDATE_NONE;
609
610 EVP_MD_CTX_free(s->pha_dgst);
611 s->pha_dgst = NULL;
612
613 /* Reset DANE verification result state */
614 s->dane.mdpth = -1;
615 s->dane.pdpth = -1;
616 X509_free(s->dane.mcert);
617 s->dane.mcert = NULL;
618 s->dane.mtlsa = NULL;
619
620 /* Clear the verification result peername */
621 X509_VERIFY_PARAM_move_peername(s->param, NULL);
622
623 /* Clear any shared connection state */
624 OPENSSL_free(s->shared_sigalgs);
625 s->shared_sigalgs = NULL;
626 s->shared_sigalgslen = 0;
627
628 /*
629 * Check to see if we were changed into a different method, if so, revert
630 * back.
631 */
632 if (s->method != s->ctx->method) {
633 s->method->ssl_free(s);
634 s->method = s->ctx->method;
635 if (!s->method->ssl_new(s))
636 return 0;
637 } else {
638 if (!s->method->ssl_clear(s))
639 return 0;
640 }
641
642 RECORD_LAYER_clear(&s->rlayer);
643
644 return 1;
645 }
646
647 #ifndef OPENSSL_NO_DEPRECATED_3_0
648 /** Used to change an SSL_CTXs default SSL method type */
649 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
650 {
651 STACK_OF(SSL_CIPHER) *sk;
652
653 ctx->method = meth;
654
655 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
656 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
657 return 0;
658 }
659 sk = ssl_create_cipher_list(ctx,
660 ctx->tls13_ciphersuites,
661 &(ctx->cipher_list),
662 &(ctx->cipher_list_by_id),
663 OSSL_default_cipher_list(), ctx->cert);
664 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
665 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
666 return 0;
667 }
668 return 1;
669 }
670 #endif
671
672 SSL *SSL_new(SSL_CTX *ctx)
673 {
674 SSL *s;
675
676 if (ctx == NULL) {
677 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX);
678 return NULL;
679 }
680 if (ctx->method == NULL) {
681 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
682 return NULL;
683 }
684
685 s = OPENSSL_zalloc(sizeof(*s));
686 if (s == NULL)
687 goto err;
688
689 s->references = 1;
690 s->lock = CRYPTO_THREAD_lock_new();
691 if (s->lock == NULL) {
692 OPENSSL_free(s);
693 s = NULL;
694 goto err;
695 }
696
697 RECORD_LAYER_init(&s->rlayer, s);
698
699 s->options = ctx->options;
700 s->dane.flags = ctx->dane.flags;
701 s->min_proto_version = ctx->min_proto_version;
702 s->max_proto_version = ctx->max_proto_version;
703 s->mode = ctx->mode;
704 s->max_cert_list = ctx->max_cert_list;
705 s->max_early_data = ctx->max_early_data;
706 s->recv_max_early_data = ctx->recv_max_early_data;
707 s->num_tickets = ctx->num_tickets;
708 s->pha_enabled = ctx->pha_enabled;
709
710 /* Shallow copy of the ciphersuites stack */
711 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
712 if (s->tls13_ciphersuites == NULL)
713 goto err;
714
715 /*
716 * Earlier library versions used to copy the pointer to the CERT, not
717 * its contents; only when setting new parameters for the per-SSL
718 * copy, ssl_cert_new would be called (and the direct reference to
719 * the per-SSL_CTX settings would be lost, but those still were
720 * indirectly accessed for various purposes, and for that reason they
721 * used to be known as s->ctx->default_cert). Now we don't look at the
722 * SSL_CTX's CERT after having duplicated it once.
723 */
724 s->cert = ssl_cert_dup(ctx->cert);
725 if (s->cert == NULL)
726 goto err;
727
728 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
729 s->msg_callback = ctx->msg_callback;
730 s->msg_callback_arg = ctx->msg_callback_arg;
731 s->verify_mode = ctx->verify_mode;
732 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
733 s->record_padding_cb = ctx->record_padding_cb;
734 s->record_padding_arg = ctx->record_padding_arg;
735 s->block_padding = ctx->block_padding;
736 s->sid_ctx_length = ctx->sid_ctx_length;
737 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
738 goto err;
739 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
740 s->verify_callback = ctx->default_verify_callback;
741 s->generate_session_id = ctx->generate_session_id;
742
743 s->param = X509_VERIFY_PARAM_new();
744 if (s->param == NULL)
745 goto err;
746 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
747 s->quiet_shutdown = ctx->quiet_shutdown;
748
749 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
750 s->max_send_fragment = ctx->max_send_fragment;
751 s->split_send_fragment = ctx->split_send_fragment;
752 s->max_pipelines = ctx->max_pipelines;
753 if (s->max_pipelines > 1)
754 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
755 if (ctx->default_read_buf_len > 0)
756 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
757
758 SSL_CTX_up_ref(ctx);
759 s->ctx = ctx;
760 s->ext.debug_cb = 0;
761 s->ext.debug_arg = NULL;
762 s->ext.ticket_expected = 0;
763 s->ext.status_type = ctx->ext.status_type;
764 s->ext.status_expected = 0;
765 s->ext.ocsp.ids = NULL;
766 s->ext.ocsp.exts = NULL;
767 s->ext.ocsp.resp = NULL;
768 s->ext.ocsp.resp_len = 0;
769 SSL_CTX_up_ref(ctx);
770 s->session_ctx = ctx;
771 if (ctx->ext.ecpointformats) {
772 s->ext.ecpointformats =
773 OPENSSL_memdup(ctx->ext.ecpointformats,
774 ctx->ext.ecpointformats_len);
775 if (!s->ext.ecpointformats) {
776 s->ext.ecpointformats_len = 0;
777 goto err;
778 }
779 s->ext.ecpointformats_len =
780 ctx->ext.ecpointformats_len;
781 }
782 if (ctx->ext.supportedgroups) {
783 s->ext.supportedgroups =
784 OPENSSL_memdup(ctx->ext.supportedgroups,
785 ctx->ext.supportedgroups_len
786 * sizeof(*ctx->ext.supportedgroups));
787 if (!s->ext.supportedgroups) {
788 s->ext.supportedgroups_len = 0;
789 goto err;
790 }
791 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
792 }
793
794 #ifndef OPENSSL_NO_NEXTPROTONEG
795 s->ext.npn = NULL;
796 #endif
797
798 if (s->ctx->ext.alpn) {
799 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
800 if (s->ext.alpn == NULL) {
801 s->ext.alpn_len = 0;
802 goto err;
803 }
804 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
805 s->ext.alpn_len = s->ctx->ext.alpn_len;
806 }
807
808 s->verified_chain = NULL;
809 s->verify_result = X509_V_OK;
810
811 s->default_passwd_callback = ctx->default_passwd_callback;
812 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
813
814 s->method = ctx->method;
815
816 s->key_update = SSL_KEY_UPDATE_NONE;
817
818 s->allow_early_data_cb = ctx->allow_early_data_cb;
819 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
820
821 if (!s->method->ssl_new(s))
822 goto err;
823
824 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
825
826 if (!SSL_clear(s))
827 goto err;
828
829 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
830 goto err;
831
832 #ifndef OPENSSL_NO_PSK
833 s->psk_client_callback = ctx->psk_client_callback;
834 s->psk_server_callback = ctx->psk_server_callback;
835 #endif
836 s->psk_find_session_cb = ctx->psk_find_session_cb;
837 s->psk_use_session_cb = ctx->psk_use_session_cb;
838
839 s->async_cb = ctx->async_cb;
840 s->async_cb_arg = ctx->async_cb_arg;
841
842 s->job = NULL;
843
844 #ifndef OPENSSL_NO_CT
845 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
846 ctx->ct_validation_callback_arg))
847 goto err;
848 #endif
849
850 return s;
851 err:
852 SSL_free(s);
853 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
854 return NULL;
855 }
856
857 int SSL_is_dtls(const SSL *s)
858 {
859 return SSL_IS_DTLS(s) ? 1 : 0;
860 }
861
862 int SSL_up_ref(SSL *s)
863 {
864 int i;
865
866 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
867 return 0;
868
869 REF_PRINT_COUNT("SSL", s);
870 REF_ASSERT_ISNT(i < 2);
871 return ((i > 1) ? 1 : 0);
872 }
873
874 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
875 unsigned int sid_ctx_len)
876 {
877 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
878 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
879 return 0;
880 }
881 ctx->sid_ctx_length = sid_ctx_len;
882 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
883
884 return 1;
885 }
886
887 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
888 unsigned int sid_ctx_len)
889 {
890 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
891 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
892 return 0;
893 }
894 ssl->sid_ctx_length = sid_ctx_len;
895 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
896
897 return 1;
898 }
899
900 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
901 {
902 if (!CRYPTO_THREAD_write_lock(ctx->lock))
903 return 0;
904 ctx->generate_session_id = cb;
905 CRYPTO_THREAD_unlock(ctx->lock);
906 return 1;
907 }
908
909 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
910 {
911 if (!CRYPTO_THREAD_write_lock(ssl->lock))
912 return 0;
913 ssl->generate_session_id = cb;
914 CRYPTO_THREAD_unlock(ssl->lock);
915 return 1;
916 }
917
918 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
919 unsigned int id_len)
920 {
921 /*
922 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
923 * we can "construct" a session to give us the desired check - i.e. to
924 * find if there's a session in the hash table that would conflict with
925 * any new session built out of this id/id_len and the ssl_version in use
926 * by this SSL.
927 */
928 SSL_SESSION r, *p;
929
930 if (id_len > sizeof(r.session_id))
931 return 0;
932
933 r.ssl_version = ssl->version;
934 r.session_id_length = id_len;
935 memcpy(r.session_id, id, id_len);
936
937 if (!CRYPTO_THREAD_read_lock(ssl->session_ctx->lock))
938 return 0;
939 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
940 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
941 return (p != NULL);
942 }
943
944 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
945 {
946 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
947 }
948
949 int SSL_set_purpose(SSL *s, int purpose)
950 {
951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
952 }
953
954 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
955 {
956 return X509_VERIFY_PARAM_set_trust(s->param, trust);
957 }
958
959 int SSL_set_trust(SSL *s, int trust)
960 {
961 return X509_VERIFY_PARAM_set_trust(s->param, trust);
962 }
963
964 int SSL_set1_host(SSL *s, const char *hostname)
965 {
966 /* If a hostname is provided and parses as an IP address,
967 * treat it as such. */
968 if (hostname && X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname) == 1)
969 return 1;
970
971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
972 }
973
974 int SSL_add1_host(SSL *s, const char *hostname)
975 {
976 /* If a hostname is provided and parses as an IP address,
977 * treat it as such. */
978 if (hostname)
979 {
980 ASN1_OCTET_STRING *ip;
981 char *old_ip;
982
983 ip = a2i_IPADDRESS(hostname);
984 if (ip) {
985 /* We didn't want it; only to check if it *is* an IP address */
986 ASN1_OCTET_STRING_free(ip);
987
988 old_ip = X509_VERIFY_PARAM_get1_ip_asc(s->param);
989 if (old_ip)
990 {
991 OPENSSL_free(old_ip);
992 /* There can be only one IP address */
993 return 0;
994 }
995
996 return X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname);
997 }
998 }
999
1000 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
1001 }
1002
1003 void SSL_set_hostflags(SSL *s, unsigned int flags)
1004 {
1005 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
1006 }
1007
1008 const char *SSL_get0_peername(SSL *s)
1009 {
1010 return X509_VERIFY_PARAM_get0_peername(s->param);
1011 }
1012
1013 int SSL_CTX_dane_enable(SSL_CTX *ctx)
1014 {
1015 return dane_ctx_enable(&ctx->dane);
1016 }
1017
1018 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
1019 {
1020 unsigned long orig = ctx->dane.flags;
1021
1022 ctx->dane.flags |= flags;
1023 return orig;
1024 }
1025
1026 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1027 {
1028 unsigned long orig = ctx->dane.flags;
1029
1030 ctx->dane.flags &= ~flags;
1031 return orig;
1032 }
1033
1034 int SSL_dane_enable(SSL *s, const char *basedomain)
1035 {
1036 SSL_DANE *dane = &s->dane;
1037
1038 if (s->ctx->dane.mdmax == 0) {
1039 ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1040 return 0;
1041 }
1042 if (dane->trecs != NULL) {
1043 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED);
1044 return 0;
1045 }
1046
1047 /*
1048 * Default SNI name. This rejects empty names, while set1_host below
1049 * accepts them and disables host name checks. To avoid side-effects with
1050 * invalid input, set the SNI name first.
1051 */
1052 if (s->ext.hostname == NULL) {
1053 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1054 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1055 return -1;
1056 }
1057 }
1058
1059 /* Primary RFC6125 reference identifier */
1060 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1061 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1062 return -1;
1063 }
1064
1065 dane->mdpth = -1;
1066 dane->pdpth = -1;
1067 dane->dctx = &s->ctx->dane;
1068 dane->trecs = sk_danetls_record_new_null();
1069
1070 if (dane->trecs == NULL) {
1071 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1072 return -1;
1073 }
1074 return 1;
1075 }
1076
1077 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1078 {
1079 unsigned long orig = ssl->dane.flags;
1080
1081 ssl->dane.flags |= flags;
1082 return orig;
1083 }
1084
1085 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1086 {
1087 unsigned long orig = ssl->dane.flags;
1088
1089 ssl->dane.flags &= ~flags;
1090 return orig;
1091 }
1092
1093 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1094 {
1095 SSL_DANE *dane = &s->dane;
1096
1097 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1098 return -1;
1099 if (dane->mtlsa) {
1100 if (mcert)
1101 *mcert = dane->mcert;
1102 if (mspki)
1103 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1104 }
1105 return dane->mdpth;
1106 }
1107
1108 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1109 uint8_t *mtype, const unsigned char **data, size_t *dlen)
1110 {
1111 SSL_DANE *dane = &s->dane;
1112
1113 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1114 return -1;
1115 if (dane->mtlsa) {
1116 if (usage)
1117 *usage = dane->mtlsa->usage;
1118 if (selector)
1119 *selector = dane->mtlsa->selector;
1120 if (mtype)
1121 *mtype = dane->mtlsa->mtype;
1122 if (data)
1123 *data = dane->mtlsa->data;
1124 if (dlen)
1125 *dlen = dane->mtlsa->dlen;
1126 }
1127 return dane->mdpth;
1128 }
1129
1130 SSL_DANE *SSL_get0_dane(SSL *s)
1131 {
1132 return &s->dane;
1133 }
1134
1135 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1136 uint8_t mtype, const unsigned char *data, size_t dlen)
1137 {
1138 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1139 }
1140
1141 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1142 uint8_t ord)
1143 {
1144 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1145 }
1146
1147 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1148 {
1149 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1150 }
1151
1152 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1153 {
1154 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1155 }
1156
1157 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1158 {
1159 return ctx->param;
1160 }
1161
1162 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1163 {
1164 return ssl->param;
1165 }
1166
1167 void SSL_certs_clear(SSL *s)
1168 {
1169 ssl_cert_clear_certs(s->cert);
1170 }
1171
1172 void SSL_free(SSL *s)
1173 {
1174 int i;
1175
1176 if (s == NULL)
1177 return;
1178 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1179 REF_PRINT_COUNT("SSL", s);
1180 if (i > 0)
1181 return;
1182 REF_ASSERT_ISNT(i < 0);
1183
1184 X509_VERIFY_PARAM_free(s->param);
1185 dane_final(&s->dane);
1186 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1187
1188 RECORD_LAYER_release(&s->rlayer);
1189
1190 /* Ignore return value */
1191 ssl_free_wbio_buffer(s);
1192
1193 BIO_free_all(s->wbio);
1194 s->wbio = NULL;
1195 BIO_free_all(s->rbio);
1196 s->rbio = NULL;
1197
1198 BUF_MEM_free(s->init_buf);
1199
1200 /* add extra stuff */
1201 sk_SSL_CIPHER_free(s->cipher_list);
1202 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1203 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1204 sk_SSL_CIPHER_free(s->peer_ciphers);
1205
1206 /* Make the next call work :-) */
1207 if (s->session != NULL) {
1208 ssl_clear_bad_session(s);
1209 SSL_SESSION_free(s->session);
1210 }
1211 SSL_SESSION_free(s->psksession);
1212 OPENSSL_free(s->psksession_id);
1213
1214 clear_ciphers(s);
1215
1216 ssl_cert_free(s->cert);
1217 OPENSSL_free(s->shared_sigalgs);
1218 /* Free up if allocated */
1219
1220 OPENSSL_free(s->ext.hostname);
1221 SSL_CTX_free(s->session_ctx);
1222 OPENSSL_free(s->ext.ecpointformats);
1223 OPENSSL_free(s->ext.peer_ecpointformats);
1224 OPENSSL_free(s->ext.supportedgroups);
1225 OPENSSL_free(s->ext.peer_supportedgroups);
1226 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1227 #ifndef OPENSSL_NO_OCSP
1228 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1229 #endif
1230 #ifndef OPENSSL_NO_CT
1231 SCT_LIST_free(s->scts);
1232 OPENSSL_free(s->ext.scts);
1233 #endif
1234 OPENSSL_free(s->ext.ocsp.resp);
1235 OPENSSL_free(s->ext.alpn);
1236 OPENSSL_free(s->ext.tls13_cookie);
1237 if (s->clienthello != NULL)
1238 OPENSSL_free(s->clienthello->pre_proc_exts);
1239 OPENSSL_free(s->clienthello);
1240 OPENSSL_free(s->pha_context);
1241 EVP_MD_CTX_free(s->pha_dgst);
1242
1243 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1244 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1245
1246 sk_X509_pop_free(s->verified_chain, X509_free);
1247
1248 if (s->method != NULL)
1249 s->method->ssl_free(s);
1250
1251 SSL_CTX_free(s->ctx);
1252
1253 ASYNC_WAIT_CTX_free(s->waitctx);
1254
1255 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1256 OPENSSL_free(s->ext.npn);
1257 #endif
1258
1259 #ifndef OPENSSL_NO_SRTP
1260 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1261 #endif
1262
1263 CRYPTO_THREAD_lock_free(s->lock);
1264
1265 OPENSSL_free(s);
1266 }
1267
1268 void SSL_set0_rbio(SSL *s, BIO *rbio)
1269 {
1270 BIO_free_all(s->rbio);
1271 s->rbio = rbio;
1272 }
1273
1274 void SSL_set0_wbio(SSL *s, BIO *wbio)
1275 {
1276 /*
1277 * If the output buffering BIO is still in place, remove it
1278 */
1279 if (s->bbio != NULL)
1280 s->wbio = BIO_pop(s->wbio);
1281
1282 BIO_free_all(s->wbio);
1283 s->wbio = wbio;
1284
1285 /* Re-attach |bbio| to the new |wbio|. */
1286 if (s->bbio != NULL)
1287 s->wbio = BIO_push(s->bbio, s->wbio);
1288 }
1289
1290 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1291 {
1292 /*
1293 * For historical reasons, this function has many different cases in
1294 * ownership handling.
1295 */
1296
1297 /* If nothing has changed, do nothing */
1298 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1299 return;
1300
1301 /*
1302 * If the two arguments are equal then one fewer reference is granted by the
1303 * caller than we want to take
1304 */
1305 if (rbio != NULL && rbio == wbio)
1306 BIO_up_ref(rbio);
1307
1308 /*
1309 * If only the wbio is changed only adopt one reference.
1310 */
1311 if (rbio == SSL_get_rbio(s)) {
1312 SSL_set0_wbio(s, wbio);
1313 return;
1314 }
1315 /*
1316 * There is an asymmetry here for historical reasons. If only the rbio is
1317 * changed AND the rbio and wbio were originally different, then we only
1318 * adopt one reference.
1319 */
1320 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1321 SSL_set0_rbio(s, rbio);
1322 return;
1323 }
1324
1325 /* Otherwise, adopt both references. */
1326 SSL_set0_rbio(s, rbio);
1327 SSL_set0_wbio(s, wbio);
1328 }
1329
1330 BIO *SSL_get_rbio(const SSL *s)
1331 {
1332 return s->rbio;
1333 }
1334
1335 BIO *SSL_get_wbio(const SSL *s)
1336 {
1337 if (s->bbio != NULL) {
1338 /*
1339 * If |bbio| is active, the true caller-configured BIO is its
1340 * |next_bio|.
1341 */
1342 return BIO_next(s->bbio);
1343 }
1344 return s->wbio;
1345 }
1346
1347 int SSL_get_fd(const SSL *s)
1348 {
1349 return SSL_get_rfd(s);
1350 }
1351
1352 int SSL_get_rfd(const SSL *s)
1353 {
1354 int ret = -1;
1355 BIO *b, *r;
1356
1357 b = SSL_get_rbio(s);
1358 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1359 if (r != NULL)
1360 BIO_get_fd(r, &ret);
1361 return ret;
1362 }
1363
1364 int SSL_get_wfd(const SSL *s)
1365 {
1366 int ret = -1;
1367 BIO *b, *r;
1368
1369 b = SSL_get_wbio(s);
1370 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1371 if (r != NULL)
1372 BIO_get_fd(r, &ret);
1373 return ret;
1374 }
1375
1376 #ifndef OPENSSL_NO_SOCK
1377 int SSL_set_fd(SSL *s, int fd)
1378 {
1379 int ret = 0;
1380 BIO *bio = NULL;
1381
1382 bio = BIO_new(BIO_s_socket());
1383
1384 if (bio == NULL) {
1385 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1386 goto err;
1387 }
1388 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1389 SSL_set_bio(s, bio, bio);
1390 #ifndef OPENSSL_NO_KTLS
1391 /*
1392 * The new socket is created successfully regardless of ktls_enable.
1393 * ktls_enable doesn't change any functionality of the socket, except
1394 * changing the setsockopt to enable the processing of ktls_start.
1395 * Thus, it is not a problem to call it for non-TLS sockets.
1396 */
1397 ktls_enable(fd);
1398 #endif /* OPENSSL_NO_KTLS */
1399 ret = 1;
1400 err:
1401 return ret;
1402 }
1403
1404 int SSL_set_wfd(SSL *s, int fd)
1405 {
1406 BIO *rbio = SSL_get_rbio(s);
1407
1408 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1409 || (int)BIO_get_fd(rbio, NULL) != fd) {
1410 BIO *bio = BIO_new(BIO_s_socket());
1411
1412 if (bio == NULL) {
1413 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1414 return 0;
1415 }
1416 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1417 SSL_set0_wbio(s, bio);
1418 #ifndef OPENSSL_NO_KTLS
1419 /*
1420 * The new socket is created successfully regardless of ktls_enable.
1421 * ktls_enable doesn't change any functionality of the socket, except
1422 * changing the setsockopt to enable the processing of ktls_start.
1423 * Thus, it is not a problem to call it for non-TLS sockets.
1424 */
1425 ktls_enable(fd);
1426 #endif /* OPENSSL_NO_KTLS */
1427 } else {
1428 BIO_up_ref(rbio);
1429 SSL_set0_wbio(s, rbio);
1430 }
1431 return 1;
1432 }
1433
1434 int SSL_set_rfd(SSL *s, int fd)
1435 {
1436 BIO *wbio = SSL_get_wbio(s);
1437
1438 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1439 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1440 BIO *bio = BIO_new(BIO_s_socket());
1441
1442 if (bio == NULL) {
1443 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1444 return 0;
1445 }
1446 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1447 SSL_set0_rbio(s, bio);
1448 } else {
1449 BIO_up_ref(wbio);
1450 SSL_set0_rbio(s, wbio);
1451 }
1452
1453 return 1;
1454 }
1455 #endif
1456
1457 /* return length of latest Finished message we sent, copy to 'buf' */
1458 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1459 {
1460 size_t ret = 0;
1461
1462 ret = s->s3.tmp.finish_md_len;
1463 if (count > ret)
1464 count = ret;
1465 memcpy(buf, s->s3.tmp.finish_md, count);
1466 return ret;
1467 }
1468
1469 /* return length of latest Finished message we expected, copy to 'buf' */
1470 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1471 {
1472 size_t ret = 0;
1473
1474 ret = s->s3.tmp.peer_finish_md_len;
1475 if (count > ret)
1476 count = ret;
1477 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1478 return ret;
1479 }
1480
1481 int SSL_get_verify_mode(const SSL *s)
1482 {
1483 return s->verify_mode;
1484 }
1485
1486 int SSL_get_verify_depth(const SSL *s)
1487 {
1488 return X509_VERIFY_PARAM_get_depth(s->param);
1489 }
1490
1491 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1492 return s->verify_callback;
1493 }
1494
1495 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1496 {
1497 return ctx->verify_mode;
1498 }
1499
1500 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1501 {
1502 return X509_VERIFY_PARAM_get_depth(ctx->param);
1503 }
1504
1505 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1506 return ctx->default_verify_callback;
1507 }
1508
1509 void SSL_set_verify(SSL *s, int mode,
1510 int (*callback) (int ok, X509_STORE_CTX *ctx))
1511 {
1512 s->verify_mode = mode;
1513 if (callback != NULL)
1514 s->verify_callback = callback;
1515 }
1516
1517 void SSL_set_verify_depth(SSL *s, int depth)
1518 {
1519 X509_VERIFY_PARAM_set_depth(s->param, depth);
1520 }
1521
1522 void SSL_set_read_ahead(SSL *s, int yes)
1523 {
1524 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1525 }
1526
1527 int SSL_get_read_ahead(const SSL *s)
1528 {
1529 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1530 }
1531
1532 int SSL_pending(const SSL *s)
1533 {
1534 size_t pending = s->method->ssl_pending(s);
1535
1536 /*
1537 * SSL_pending cannot work properly if read-ahead is enabled
1538 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1539 * impossible to fix since SSL_pending cannot report errors that may be
1540 * observed while scanning the new data. (Note that SSL_pending() is
1541 * often used as a boolean value, so we'd better not return -1.)
1542 *
1543 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1544 * we just return INT_MAX.
1545 */
1546 return pending < INT_MAX ? (int)pending : INT_MAX;
1547 }
1548
1549 int SSL_has_pending(const SSL *s)
1550 {
1551 /*
1552 * Similar to SSL_pending() but returns a 1 to indicate that we have
1553 * unprocessed data available or 0 otherwise (as opposed to the number of
1554 * bytes available). Unlike SSL_pending() this will take into account
1555 * read_ahead data. A 1 return simply indicates that we have unprocessed
1556 * data. That data may not result in any application data, or we may fail
1557 * to parse the records for some reason.
1558 */
1559 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1560 return 1;
1561
1562 return RECORD_LAYER_read_pending(&s->rlayer);
1563 }
1564
1565 X509 *SSL_get1_peer_certificate(const SSL *s)
1566 {
1567 X509 *r = SSL_get0_peer_certificate(s);
1568
1569 if (r != NULL)
1570 X509_up_ref(r);
1571
1572 return r;
1573 }
1574
1575 X509 *SSL_get0_peer_certificate(const SSL *s)
1576 {
1577 if ((s == NULL) || (s->session == NULL))
1578 return NULL;
1579 else
1580 return s->session->peer;
1581 }
1582
1583 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1584 {
1585 STACK_OF(X509) *r;
1586
1587 if ((s == NULL) || (s->session == NULL))
1588 r = NULL;
1589 else
1590 r = s->session->peer_chain;
1591
1592 /*
1593 * If we are a client, cert_chain includes the peer's own certificate; if
1594 * we are a server, it does not.
1595 */
1596
1597 return r;
1598 }
1599
1600 /*
1601 * Now in theory, since the calling process own 't' it should be safe to
1602 * modify. We need to be able to read f without being hassled
1603 */
1604 int SSL_copy_session_id(SSL *t, const SSL *f)
1605 {
1606 int i;
1607 /* Do we need to do SSL locking? */
1608 if (!SSL_set_session(t, SSL_get_session(f))) {
1609 return 0;
1610 }
1611
1612 /*
1613 * what if we are setup for one protocol version but want to talk another
1614 */
1615 if (t->method != f->method) {
1616 t->method->ssl_free(t);
1617 t->method = f->method;
1618 if (t->method->ssl_new(t) == 0)
1619 return 0;
1620 }
1621
1622 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1623 ssl_cert_free(t->cert);
1624 t->cert = f->cert;
1625 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1626 return 0;
1627 }
1628
1629 return 1;
1630 }
1631
1632 /* Fix this so it checks all the valid key/cert options */
1633 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1634 {
1635 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1636 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1637 return 0;
1638 }
1639 if (ctx->cert->key->privatekey == NULL) {
1640 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1641 return 0;
1642 }
1643 return X509_check_private_key
1644 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1645 }
1646
1647 /* Fix this function so that it takes an optional type parameter */
1648 int SSL_check_private_key(const SSL *ssl)
1649 {
1650 if (ssl == NULL) {
1651 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1652 return 0;
1653 }
1654 if (ssl->cert->key->x509 == NULL) {
1655 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1656 return 0;
1657 }
1658 if (ssl->cert->key->privatekey == NULL) {
1659 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1660 return 0;
1661 }
1662 return X509_check_private_key(ssl->cert->key->x509,
1663 ssl->cert->key->privatekey);
1664 }
1665
1666 int SSL_waiting_for_async(SSL *s)
1667 {
1668 if (s->job)
1669 return 1;
1670
1671 return 0;
1672 }
1673
1674 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1675 {
1676 ASYNC_WAIT_CTX *ctx = s->waitctx;
1677
1678 if (ctx == NULL)
1679 return 0;
1680 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1681 }
1682
1683 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1684 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1685 {
1686 ASYNC_WAIT_CTX *ctx = s->waitctx;
1687
1688 if (ctx == NULL)
1689 return 0;
1690 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1691 numdelfds);
1692 }
1693
1694 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1695 {
1696 ctx->async_cb = callback;
1697 return 1;
1698 }
1699
1700 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1701 {
1702 ctx->async_cb_arg = arg;
1703 return 1;
1704 }
1705
1706 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1707 {
1708 s->async_cb = callback;
1709 return 1;
1710 }
1711
1712 int SSL_set_async_callback_arg(SSL *s, void *arg)
1713 {
1714 s->async_cb_arg = arg;
1715 return 1;
1716 }
1717
1718 int SSL_get_async_status(SSL *s, int *status)
1719 {
1720 ASYNC_WAIT_CTX *ctx = s->waitctx;
1721
1722 if (ctx == NULL)
1723 return 0;
1724 *status = ASYNC_WAIT_CTX_get_status(ctx);
1725 return 1;
1726 }
1727
1728 int SSL_accept(SSL *s)
1729 {
1730 if (s->handshake_func == NULL) {
1731 /* Not properly initialized yet */
1732 SSL_set_accept_state(s);
1733 }
1734
1735 return SSL_do_handshake(s);
1736 }
1737
1738 int SSL_connect(SSL *s)
1739 {
1740 if (s->handshake_func == NULL) {
1741 /* Not properly initialized yet */
1742 SSL_set_connect_state(s);
1743 }
1744
1745 return SSL_do_handshake(s);
1746 }
1747
1748 long SSL_get_default_timeout(const SSL *s)
1749 {
1750 return s->method->get_timeout();
1751 }
1752
1753 static int ssl_async_wait_ctx_cb(void *arg)
1754 {
1755 SSL *s = (SSL *)arg;
1756
1757 return s->async_cb(s, s->async_cb_arg);
1758 }
1759
1760 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1761 int (*func) (void *))
1762 {
1763 int ret;
1764 if (s->waitctx == NULL) {
1765 s->waitctx = ASYNC_WAIT_CTX_new();
1766 if (s->waitctx == NULL)
1767 return -1;
1768 if (s->async_cb != NULL
1769 && !ASYNC_WAIT_CTX_set_callback
1770 (s->waitctx, ssl_async_wait_ctx_cb, s))
1771 return -1;
1772 }
1773 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1774 sizeof(struct ssl_async_args))) {
1775 case ASYNC_ERR:
1776 s->rwstate = SSL_NOTHING;
1777 ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC);
1778 return -1;
1779 case ASYNC_PAUSE:
1780 s->rwstate = SSL_ASYNC_PAUSED;
1781 return -1;
1782 case ASYNC_NO_JOBS:
1783 s->rwstate = SSL_ASYNC_NO_JOBS;
1784 return -1;
1785 case ASYNC_FINISH:
1786 s->job = NULL;
1787 return ret;
1788 default:
1789 s->rwstate = SSL_NOTHING;
1790 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1791 /* Shouldn't happen */
1792 return -1;
1793 }
1794 }
1795
1796 static int ssl_io_intern(void *vargs)
1797 {
1798 struct ssl_async_args *args;
1799 SSL *s;
1800 void *buf;
1801 size_t num;
1802
1803 args = (struct ssl_async_args *)vargs;
1804 s = args->s;
1805 buf = args->buf;
1806 num = args->num;
1807 switch (args->type) {
1808 case READFUNC:
1809 return args->f.func_read(s, buf, num, &s->asyncrw);
1810 case WRITEFUNC:
1811 return args->f.func_write(s, buf, num, &s->asyncrw);
1812 case OTHERFUNC:
1813 return args->f.func_other(s);
1814 }
1815 return -1;
1816 }
1817
1818 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1819 {
1820 if (s->handshake_func == NULL) {
1821 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1822 return -1;
1823 }
1824
1825 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1826 s->rwstate = SSL_NOTHING;
1827 return 0;
1828 }
1829
1830 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1831 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1832 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1833 return 0;
1834 }
1835 /*
1836 * If we are a client and haven't received the ServerHello etc then we
1837 * better do that
1838 */
1839 ossl_statem_check_finish_init(s, 0);
1840
1841 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1842 struct ssl_async_args args;
1843 int ret;
1844
1845 args.s = s;
1846 args.buf = buf;
1847 args.num = num;
1848 args.type = READFUNC;
1849 args.f.func_read = s->method->ssl_read;
1850
1851 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1852 *readbytes = s->asyncrw;
1853 return ret;
1854 } else {
1855 return s->method->ssl_read(s, buf, num, readbytes);
1856 }
1857 }
1858
1859 int SSL_read(SSL *s, void *buf, int num)
1860 {
1861 int ret;
1862 size_t readbytes;
1863
1864 if (num < 0) {
1865 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1866 return -1;
1867 }
1868
1869 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1870
1871 /*
1872 * The cast is safe here because ret should be <= INT_MAX because num is
1873 * <= INT_MAX
1874 */
1875 if (ret > 0)
1876 ret = (int)readbytes;
1877
1878 return ret;
1879 }
1880
1881 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1882 {
1883 int ret = ssl_read_internal(s, buf, num, readbytes);
1884
1885 if (ret < 0)
1886 ret = 0;
1887 return ret;
1888 }
1889
1890 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1891 {
1892 int ret;
1893
1894 if (!s->server) {
1895 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1896 return SSL_READ_EARLY_DATA_ERROR;
1897 }
1898
1899 switch (s->early_data_state) {
1900 case SSL_EARLY_DATA_NONE:
1901 if (!SSL_in_before(s)) {
1902 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1903 return SSL_READ_EARLY_DATA_ERROR;
1904 }
1905 /* fall through */
1906
1907 case SSL_EARLY_DATA_ACCEPT_RETRY:
1908 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1909 ret = SSL_accept(s);
1910 if (ret <= 0) {
1911 /* NBIO or error */
1912 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1913 return SSL_READ_EARLY_DATA_ERROR;
1914 }
1915 /* fall through */
1916
1917 case SSL_EARLY_DATA_READ_RETRY:
1918 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1919 s->early_data_state = SSL_EARLY_DATA_READING;
1920 ret = SSL_read_ex(s, buf, num, readbytes);
1921 /*
1922 * State machine will update early_data_state to
1923 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1924 * message
1925 */
1926 if (ret > 0 || (ret <= 0 && s->early_data_state
1927 != SSL_EARLY_DATA_FINISHED_READING)) {
1928 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1929 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1930 : SSL_READ_EARLY_DATA_ERROR;
1931 }
1932 } else {
1933 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1934 }
1935 *readbytes = 0;
1936 return SSL_READ_EARLY_DATA_FINISH;
1937
1938 default:
1939 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1940 return SSL_READ_EARLY_DATA_ERROR;
1941 }
1942 }
1943
1944 int SSL_get_early_data_status(const SSL *s)
1945 {
1946 return s->ext.early_data;
1947 }
1948
1949 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1950 {
1951 if (s->handshake_func == NULL) {
1952 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1953 return -1;
1954 }
1955
1956 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1957 return 0;
1958 }
1959 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1960 struct ssl_async_args args;
1961 int ret;
1962
1963 args.s = s;
1964 args.buf = buf;
1965 args.num = num;
1966 args.type = READFUNC;
1967 args.f.func_read = s->method->ssl_peek;
1968
1969 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1970 *readbytes = s->asyncrw;
1971 return ret;
1972 } else {
1973 return s->method->ssl_peek(s, buf, num, readbytes);
1974 }
1975 }
1976
1977 int SSL_peek(SSL *s, void *buf, int num)
1978 {
1979 int ret;
1980 size_t readbytes;
1981
1982 if (num < 0) {
1983 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1984 return -1;
1985 }
1986
1987 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1988
1989 /*
1990 * The cast is safe here because ret should be <= INT_MAX because num is
1991 * <= INT_MAX
1992 */
1993 if (ret > 0)
1994 ret = (int)readbytes;
1995
1996 return ret;
1997 }
1998
1999
2000 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
2001 {
2002 int ret = ssl_peek_internal(s, buf, num, readbytes);
2003
2004 if (ret < 0)
2005 ret = 0;
2006 return ret;
2007 }
2008
2009 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
2010 {
2011 if (s->handshake_func == NULL) {
2012 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2013 return -1;
2014 }
2015
2016 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2017 s->rwstate = SSL_NOTHING;
2018 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2019 return -1;
2020 }
2021
2022 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
2023 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
2024 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
2025 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2026 return 0;
2027 }
2028 /* If we are a client and haven't sent the Finished we better do that */
2029 ossl_statem_check_finish_init(s, 1);
2030
2031 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2032 int ret;
2033 struct ssl_async_args args;
2034
2035 args.s = s;
2036 args.buf = (void *)buf;
2037 args.num = num;
2038 args.type = WRITEFUNC;
2039 args.f.func_write = s->method->ssl_write;
2040
2041 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2042 *written = s->asyncrw;
2043 return ret;
2044 } else {
2045 return s->method->ssl_write(s, buf, num, written);
2046 }
2047 }
2048
2049 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2050 {
2051 ossl_ssize_t ret;
2052
2053 if (s->handshake_func == NULL) {
2054 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2055 return -1;
2056 }
2057
2058 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2059 s->rwstate = SSL_NOTHING;
2060 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2061 return -1;
2062 }
2063
2064 if (!BIO_get_ktls_send(s->wbio)) {
2065 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2066 return -1;
2067 }
2068
2069 /* If we have an alert to send, lets send it */
2070 if (s->s3.alert_dispatch) {
2071 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2072 if (ret <= 0) {
2073 /* SSLfatal() already called if appropriate */
2074 return ret;
2075 }
2076 /* if it went, fall through and send more stuff */
2077 }
2078
2079 s->rwstate = SSL_WRITING;
2080 if (BIO_flush(s->wbio) <= 0) {
2081 if (!BIO_should_retry(s->wbio)) {
2082 s->rwstate = SSL_NOTHING;
2083 } else {
2084 #ifdef EAGAIN
2085 set_sys_error(EAGAIN);
2086 #endif
2087 }
2088 return -1;
2089 }
2090
2091 #ifdef OPENSSL_NO_KTLS
2092 ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR,
2093 "can't call ktls_sendfile(), ktls disabled");
2094 return -1;
2095 #else
2096 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2097 if (ret < 0) {
2098 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2099 if ((get_last_sys_error() == EAGAIN) ||
2100 (get_last_sys_error() == EINTR) ||
2101 (get_last_sys_error() == EBUSY))
2102 BIO_set_retry_write(s->wbio);
2103 else
2104 #endif
2105 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2106 return ret;
2107 }
2108 s->rwstate = SSL_NOTHING;
2109 return ret;
2110 #endif
2111 }
2112
2113 int SSL_write(SSL *s, const void *buf, int num)
2114 {
2115 int ret;
2116 size_t written;
2117
2118 if (num < 0) {
2119 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
2120 return -1;
2121 }
2122
2123 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2124
2125 /*
2126 * The cast is safe here because ret should be <= INT_MAX because num is
2127 * <= INT_MAX
2128 */
2129 if (ret > 0)
2130 ret = (int)written;
2131
2132 return ret;
2133 }
2134
2135 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2136 {
2137 int ret = ssl_write_internal(s, buf, num, written);
2138
2139 if (ret < 0)
2140 ret = 0;
2141 return ret;
2142 }
2143
2144 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2145 {
2146 int ret, early_data_state;
2147 size_t writtmp;
2148 uint32_t partialwrite;
2149
2150 switch (s->early_data_state) {
2151 case SSL_EARLY_DATA_NONE:
2152 if (s->server
2153 || !SSL_in_before(s)
2154 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2155 && (s->psk_use_session_cb == NULL))) {
2156 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2157 return 0;
2158 }
2159 /* fall through */
2160
2161 case SSL_EARLY_DATA_CONNECT_RETRY:
2162 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2163 ret = SSL_connect(s);
2164 if (ret <= 0) {
2165 /* NBIO or error */
2166 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2167 return 0;
2168 }
2169 /* fall through */
2170
2171 case SSL_EARLY_DATA_WRITE_RETRY:
2172 s->early_data_state = SSL_EARLY_DATA_WRITING;
2173 /*
2174 * We disable partial write for early data because we don't keep track
2175 * of how many bytes we've written between the SSL_write_ex() call and
2176 * the flush if the flush needs to be retried)
2177 */
2178 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2179 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2180 ret = SSL_write_ex(s, buf, num, &writtmp);
2181 s->mode |= partialwrite;
2182 if (!ret) {
2183 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2184 return ret;
2185 }
2186 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2187 /* fall through */
2188
2189 case SSL_EARLY_DATA_WRITE_FLUSH:
2190 /* The buffering BIO is still in place so we need to flush it */
2191 if (statem_flush(s) != 1)
2192 return 0;
2193 *written = num;
2194 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2195 return 1;
2196
2197 case SSL_EARLY_DATA_FINISHED_READING:
2198 case SSL_EARLY_DATA_READ_RETRY:
2199 early_data_state = s->early_data_state;
2200 /* We are a server writing to an unauthenticated client */
2201 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2202 ret = SSL_write_ex(s, buf, num, written);
2203 /* The buffering BIO is still in place */
2204 if (ret)
2205 (void)BIO_flush(s->wbio);
2206 s->early_data_state = early_data_state;
2207 return ret;
2208
2209 default:
2210 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2211 return 0;
2212 }
2213 }
2214
2215 int SSL_shutdown(SSL *s)
2216 {
2217 /*
2218 * Note that this function behaves differently from what one might
2219 * expect. Return values are 0 for no success (yet), 1 for success; but
2220 * calling it once is usually not enough, even if blocking I/O is used
2221 * (see ssl3_shutdown).
2222 */
2223
2224 if (s->handshake_func == NULL) {
2225 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2226 return -1;
2227 }
2228
2229 if (!SSL_in_init(s)) {
2230 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2231 struct ssl_async_args args;
2232
2233 args.s = s;
2234 args.type = OTHERFUNC;
2235 args.f.func_other = s->method->ssl_shutdown;
2236
2237 return ssl_start_async_job(s, &args, ssl_io_intern);
2238 } else {
2239 return s->method->ssl_shutdown(s);
2240 }
2241 } else {
2242 ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2243 return -1;
2244 }
2245 }
2246
2247 int SSL_key_update(SSL *s, int updatetype)
2248 {
2249 /*
2250 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2251 * negotiated, and that it is appropriate to call SSL_key_update() instead
2252 * of SSL_renegotiate().
2253 */
2254 if (!SSL_IS_TLS13(s)) {
2255 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2256 return 0;
2257 }
2258
2259 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2260 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2261 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE);
2262 return 0;
2263 }
2264
2265 if (!SSL_is_init_finished(s)) {
2266 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
2267 return 0;
2268 }
2269
2270 ossl_statem_set_in_init(s, 1);
2271 s->key_update = updatetype;
2272 return 1;
2273 }
2274
2275 int SSL_get_key_update_type(const SSL *s)
2276 {
2277 return s->key_update;
2278 }
2279
2280 /*
2281 * Can we accept a renegotiation request? If yes, set the flag and
2282 * return 1 if yes. If not, raise error and return 0.
2283 */
2284 static int can_renegotiate(const SSL *s)
2285 {
2286 if (SSL_IS_TLS13(s)) {
2287 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2288 return 0;
2289 }
2290
2291 if ((s->options & SSL_OP_NO_RENEGOTIATION) != 0) {
2292 ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION);
2293 return 0;
2294 }
2295
2296 return 1;
2297 }
2298
2299 int SSL_renegotiate(SSL *s)
2300 {
2301 if (!can_renegotiate(s))
2302 return 0;
2303
2304 s->renegotiate = 1;
2305 s->new_session = 1;
2306 return s->method->ssl_renegotiate(s);
2307 }
2308
2309 int SSL_renegotiate_abbreviated(SSL *s)
2310 {
2311 if (!can_renegotiate(s))
2312 return 0;
2313
2314 s->renegotiate = 1;
2315 s->new_session = 0;
2316 return s->method->ssl_renegotiate(s);
2317 }
2318
2319 int SSL_renegotiate_pending(const SSL *s)
2320 {
2321 /*
2322 * becomes true when negotiation is requested; false again once a
2323 * handshake has finished
2324 */
2325 return (s->renegotiate != 0);
2326 }
2327
2328 int SSL_new_session_ticket(SSL *s)
2329 {
2330 /* If we are in init because we're sending tickets, okay to send more. */
2331 if ((SSL_in_init(s) && s->ext.extra_tickets_expected == 0)
2332 || SSL_IS_FIRST_HANDSHAKE(s) || !s->server
2333 || !SSL_IS_TLS13(s))
2334 return 0;
2335 s->ext.extra_tickets_expected++;
2336 if (s->rlayer.wbuf[0].left == 0 && !SSL_in_init(s))
2337 ossl_statem_set_in_init(s, 1);
2338 return 1;
2339 }
2340
2341 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2342 {
2343 long l;
2344
2345 switch (cmd) {
2346 case SSL_CTRL_GET_READ_AHEAD:
2347 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2348 case SSL_CTRL_SET_READ_AHEAD:
2349 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2350 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2351 return l;
2352
2353 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2354 s->msg_callback_arg = parg;
2355 return 1;
2356
2357 case SSL_CTRL_MODE:
2358 return (s->mode |= larg);
2359 case SSL_CTRL_CLEAR_MODE:
2360 return (s->mode &= ~larg);
2361 case SSL_CTRL_GET_MAX_CERT_LIST:
2362 return (long)s->max_cert_list;
2363 case SSL_CTRL_SET_MAX_CERT_LIST:
2364 if (larg < 0)
2365 return 0;
2366 l = (long)s->max_cert_list;
2367 s->max_cert_list = (size_t)larg;
2368 return l;
2369 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2370 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2371 return 0;
2372 #ifndef OPENSSL_NO_KTLS
2373 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2374 return 0;
2375 #endif /* OPENSSL_NO_KTLS */
2376 s->max_send_fragment = larg;
2377 if (s->max_send_fragment < s->split_send_fragment)
2378 s->split_send_fragment = s->max_send_fragment;
2379 return 1;
2380 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2381 if ((size_t)larg > s->max_send_fragment || larg == 0)
2382 return 0;
2383 s->split_send_fragment = larg;
2384 return 1;
2385 case SSL_CTRL_SET_MAX_PIPELINES:
2386 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2387 return 0;
2388 s->max_pipelines = larg;
2389 if (larg > 1)
2390 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2391 return 1;
2392 case SSL_CTRL_GET_RI_SUPPORT:
2393 return s->s3.send_connection_binding;
2394 case SSL_CTRL_CERT_FLAGS:
2395 return (s->cert->cert_flags |= larg);
2396 case SSL_CTRL_CLEAR_CERT_FLAGS:
2397 return (s->cert->cert_flags &= ~larg);
2398
2399 case SSL_CTRL_GET_RAW_CIPHERLIST:
2400 if (parg) {
2401 if (s->s3.tmp.ciphers_raw == NULL)
2402 return 0;
2403 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2404 return (int)s->s3.tmp.ciphers_rawlen;
2405 } else {
2406 return TLS_CIPHER_LEN;
2407 }
2408 case SSL_CTRL_GET_EXTMS_SUPPORT:
2409 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2410 return -1;
2411 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2412 return 1;
2413 else
2414 return 0;
2415 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2416 return ssl_check_allowed_versions(larg, s->max_proto_version)
2417 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2418 &s->min_proto_version);
2419 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2420 return s->min_proto_version;
2421 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2422 return ssl_check_allowed_versions(s->min_proto_version, larg)
2423 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2424 &s->max_proto_version);
2425 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2426 return s->max_proto_version;
2427 default:
2428 return s->method->ssl_ctrl(s, cmd, larg, parg);
2429 }
2430 }
2431
2432 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2433 {
2434 switch (cmd) {
2435 case SSL_CTRL_SET_MSG_CALLBACK:
2436 s->msg_callback = (void (*)
2437 (int write_p, int version, int content_type,
2438 const void *buf, size_t len, SSL *ssl,
2439 void *arg))(fp);
2440 return 1;
2441
2442 default:
2443 return s->method->ssl_callback_ctrl(s, cmd, fp);
2444 }
2445 }
2446
2447 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2448 {
2449 return ctx->sessions;
2450 }
2451
2452 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2453 {
2454 long l;
2455 /* For some cases with ctx == NULL perform syntax checks */
2456 if (ctx == NULL) {
2457 switch (cmd) {
2458 case SSL_CTRL_SET_GROUPS_LIST:
2459 return tls1_set_groups_list(ctx, NULL, NULL, parg);
2460 case SSL_CTRL_SET_SIGALGS_LIST:
2461 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2462 return tls1_set_sigalgs_list(NULL, parg, 0);
2463 default:
2464 return 0;
2465 }
2466 }
2467
2468 switch (cmd) {
2469 case SSL_CTRL_GET_READ_AHEAD:
2470 return ctx->read_ahead;
2471 case SSL_CTRL_SET_READ_AHEAD:
2472 l = ctx->read_ahead;
2473 ctx->read_ahead = larg;
2474 return l;
2475
2476 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2477 ctx->msg_callback_arg = parg;
2478 return 1;
2479
2480 case SSL_CTRL_GET_MAX_CERT_LIST:
2481 return (long)ctx->max_cert_list;
2482 case SSL_CTRL_SET_MAX_CERT_LIST:
2483 if (larg < 0)
2484 return 0;
2485 l = (long)ctx->max_cert_list;
2486 ctx->max_cert_list = (size_t)larg;
2487 return l;
2488
2489 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2490 if (larg < 0)
2491 return 0;
2492 l = (long)ctx->session_cache_size;
2493 ctx->session_cache_size = (size_t)larg;
2494 return l;
2495 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2496 return (long)ctx->session_cache_size;
2497 case SSL_CTRL_SET_SESS_CACHE_MODE:
2498 l = ctx->session_cache_mode;
2499 ctx->session_cache_mode = larg;
2500 return l;
2501 case SSL_CTRL_GET_SESS_CACHE_MODE:
2502 return ctx->session_cache_mode;
2503
2504 case SSL_CTRL_SESS_NUMBER:
2505 return lh_SSL_SESSION_num_items(ctx->sessions);
2506 case SSL_CTRL_SESS_CONNECT:
2507 return tsan_load(&ctx->stats.sess_connect);
2508 case SSL_CTRL_SESS_CONNECT_GOOD:
2509 return tsan_load(&ctx->stats.sess_connect_good);
2510 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2511 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2512 case SSL_CTRL_SESS_ACCEPT:
2513 return tsan_load(&ctx->stats.sess_accept);
2514 case SSL_CTRL_SESS_ACCEPT_GOOD:
2515 return tsan_load(&ctx->stats.sess_accept_good);
2516 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2517 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2518 case SSL_CTRL_SESS_HIT:
2519 return tsan_load(&ctx->stats.sess_hit);
2520 case SSL_CTRL_SESS_CB_HIT:
2521 return tsan_load(&ctx->stats.sess_cb_hit);
2522 case SSL_CTRL_SESS_MISSES:
2523 return tsan_load(&ctx->stats.sess_miss);
2524 case SSL_CTRL_SESS_TIMEOUTS:
2525 return tsan_load(&ctx->stats.sess_timeout);
2526 case SSL_CTRL_SESS_CACHE_FULL:
2527 return tsan_load(&ctx->stats.sess_cache_full);
2528 case SSL_CTRL_MODE:
2529 return (ctx->mode |= larg);
2530 case SSL_CTRL_CLEAR_MODE:
2531 return (ctx->mode &= ~larg);
2532 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2533 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2534 return 0;
2535 ctx->max_send_fragment = larg;
2536 if (ctx->max_send_fragment < ctx->split_send_fragment)
2537 ctx->split_send_fragment = ctx->max_send_fragment;
2538 return 1;
2539 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2540 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2541 return 0;
2542 ctx->split_send_fragment = larg;
2543 return 1;
2544 case SSL_CTRL_SET_MAX_PIPELINES:
2545 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2546 return 0;
2547 ctx->max_pipelines = larg;
2548 return 1;
2549 case SSL_CTRL_CERT_FLAGS:
2550 return (ctx->cert->cert_flags |= larg);
2551 case SSL_CTRL_CLEAR_CERT_FLAGS:
2552 return (ctx->cert->cert_flags &= ~larg);
2553 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2554 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2555 && ssl_set_version_bound(ctx->method->version, (int)larg,
2556 &ctx->min_proto_version);
2557 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2558 return ctx->min_proto_version;
2559 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2560 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2561 && ssl_set_version_bound(ctx->method->version, (int)larg,
2562 &ctx->max_proto_version);
2563 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2564 return ctx->max_proto_version;
2565 default:
2566 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2567 }
2568 }
2569
2570 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2571 {
2572 switch (cmd) {
2573 case SSL_CTRL_SET_MSG_CALLBACK:
2574 ctx->msg_callback = (void (*)
2575 (int write_p, int version, int content_type,
2576 const void *buf, size_t len, SSL *ssl,
2577 void *arg))(fp);
2578 return 1;
2579
2580 default:
2581 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2582 }
2583 }
2584
2585 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2586 {
2587 if (a->id > b->id)
2588 return 1;
2589 if (a->id < b->id)
2590 return -1;
2591 return 0;
2592 }
2593
2594 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2595 const SSL_CIPHER *const *bp)
2596 {
2597 if ((*ap)->id > (*bp)->id)
2598 return 1;
2599 if ((*ap)->id < (*bp)->id)
2600 return -1;
2601 return 0;
2602 }
2603
2604 /** return a STACK of the ciphers available for the SSL and in order of
2605 * preference */
2606 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2607 {
2608 if (s != NULL) {
2609 if (s->cipher_list != NULL) {
2610 return s->cipher_list;
2611 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2612 return s->ctx->cipher_list;
2613 }
2614 }
2615 return NULL;
2616 }
2617
2618 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2619 {
2620 if ((s == NULL) || !s->server)
2621 return NULL;
2622 return s->peer_ciphers;
2623 }
2624
2625 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2626 {
2627 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2628 int i;
2629
2630 ciphers = SSL_get_ciphers(s);
2631 if (!ciphers)
2632 return NULL;
2633 if (!ssl_set_client_disabled(s))
2634 return NULL;
2635 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2636 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2637 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2638 if (!sk)
2639 sk = sk_SSL_CIPHER_new_null();
2640 if (!sk)
2641 return NULL;
2642 if (!sk_SSL_CIPHER_push(sk, c)) {
2643 sk_SSL_CIPHER_free(sk);
2644 return NULL;
2645 }
2646 }
2647 }
2648 return sk;
2649 }
2650
2651 /** return a STACK of the ciphers available for the SSL and in order of
2652 * algorithm id */
2653 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2654 {
2655 if (s != NULL) {
2656 if (s->cipher_list_by_id != NULL) {
2657 return s->cipher_list_by_id;
2658 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2659 return s->ctx->cipher_list_by_id;
2660 }
2661 }
2662 return NULL;
2663 }
2664
2665 /** The old interface to get the same thing as SSL_get_ciphers() */
2666 const char *SSL_get_cipher_list(const SSL *s, int n)
2667 {
2668 const SSL_CIPHER *c;
2669 STACK_OF(SSL_CIPHER) *sk;
2670
2671 if (s == NULL)
2672 return NULL;
2673 sk = SSL_get_ciphers(s);
2674 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2675 return NULL;
2676 c = sk_SSL_CIPHER_value(sk, n);
2677 if (c == NULL)
2678 return NULL;
2679 return c->name;
2680 }
2681
2682 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2683 * preference */
2684 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2685 {
2686 if (ctx != NULL)
2687 return ctx->cipher_list;
2688 return NULL;
2689 }
2690
2691 /*
2692 * Distinguish between ciphers controlled by set_ciphersuite() and
2693 * set_cipher_list() when counting.
2694 */
2695 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2696 {
2697 int i, num = 0;
2698 const SSL_CIPHER *c;
2699
2700 if (sk == NULL)
2701 return 0;
2702 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2703 c = sk_SSL_CIPHER_value(sk, i);
2704 if (c->min_tls >= TLS1_3_VERSION)
2705 continue;
2706 num++;
2707 }
2708 return num;
2709 }
2710
2711 /** specify the ciphers to be used by default by the SSL_CTX */
2712 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2713 {
2714 STACK_OF(SSL_CIPHER) *sk;
2715
2716 sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites,
2717 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2718 ctx->cert);
2719 /*
2720 * ssl_create_cipher_list may return an empty stack if it was unable to
2721 * find a cipher matching the given rule string (for example if the rule
2722 * string specifies a cipher which has been disabled). This is not an
2723 * error as far as ssl_create_cipher_list is concerned, and hence
2724 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2725 */
2726 if (sk == NULL)
2727 return 0;
2728 else if (cipher_list_tls12_num(sk) == 0) {
2729 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2730 return 0;
2731 }
2732 return 1;
2733 }
2734
2735 /** specify the ciphers to be used by the SSL */
2736 int SSL_set_cipher_list(SSL *s, const char *str)
2737 {
2738 STACK_OF(SSL_CIPHER) *sk;
2739
2740 sk = ssl_create_cipher_list(s->ctx, s->tls13_ciphersuites,
2741 &s->cipher_list, &s->cipher_list_by_id, str,
2742 s->cert);
2743 /* see comment in SSL_CTX_set_cipher_list */
2744 if (sk == NULL)
2745 return 0;
2746 else if (cipher_list_tls12_num(sk) == 0) {
2747 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2748 return 0;
2749 }
2750 return 1;
2751 }
2752
2753 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2754 {
2755 char *p;
2756 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2757 const SSL_CIPHER *c;
2758 int i;
2759
2760 if (!s->server
2761 || s->peer_ciphers == NULL
2762 || size < 2)
2763 return NULL;
2764
2765 p = buf;
2766 clntsk = s->peer_ciphers;
2767 srvrsk = SSL_get_ciphers(s);
2768 if (clntsk == NULL || srvrsk == NULL)
2769 return NULL;
2770
2771 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2772 return NULL;
2773
2774 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2775 int n;
2776
2777 c = sk_SSL_CIPHER_value(clntsk, i);
2778 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2779 continue;
2780
2781 n = strlen(c->name);
2782 if (n + 1 > size) {
2783 if (p != buf)
2784 --p;
2785 *p = '\0';
2786 return buf;
2787 }
2788 strcpy(p, c->name);
2789 p += n;
2790 *(p++) = ':';
2791 size -= n + 1;
2792 }
2793 p[-1] = '\0';
2794 return buf;
2795 }
2796
2797 /**
2798 * Return the requested servername (SNI) value. Note that the behaviour varies
2799 * depending on:
2800 * - whether this is called by the client or the server,
2801 * - if we are before or during/after the handshake,
2802 * - if a resumption or normal handshake is being attempted/has occurred
2803 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2804 *
2805 * Note that only the host_name type is defined (RFC 3546).
2806 */
2807 const char *SSL_get_servername(const SSL *s, const int type)
2808 {
2809 /*
2810 * If we don't know if we are the client or the server yet then we assume
2811 * client.
2812 */
2813 int server = s->handshake_func == NULL ? 0 : s->server;
2814 if (type != TLSEXT_NAMETYPE_host_name)
2815 return NULL;
2816
2817 if (server) {
2818 /**
2819 * Server side
2820 * In TLSv1.3 on the server SNI is not associated with the session
2821 * but in TLSv1.2 or below it is.
2822 *
2823 * Before the handshake:
2824 * - return NULL
2825 *
2826 * During/after the handshake (TLSv1.2 or below resumption occurred):
2827 * - If a servername was accepted by the server in the original
2828 * handshake then it will return that servername, or NULL otherwise.
2829 *
2830 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2831 * - The function will return the servername requested by the client in
2832 * this handshake or NULL if none was requested.
2833 */
2834 if (s->hit && !SSL_IS_TLS13(s))
2835 return s->session->ext.hostname;
2836 } else {
2837 /**
2838 * Client side
2839 *
2840 * Before the handshake:
2841 * - If a servername has been set via a call to
2842 * SSL_set_tlsext_host_name() then it will return that servername
2843 * - If one has not been set, but a TLSv1.2 resumption is being
2844 * attempted and the session from the original handshake had a
2845 * servername accepted by the server then it will return that
2846 * servername
2847 * - Otherwise it returns NULL
2848 *
2849 * During/after the handshake (TLSv1.2 or below resumption occurred):
2850 * - If the session from the original handshake had a servername accepted
2851 * by the server then it will return that servername.
2852 * - Otherwise it returns the servername set via
2853 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2854 *
2855 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2856 * - It will return the servername set via SSL_set_tlsext_host_name()
2857 * (or NULL if it was not called).
2858 */
2859 if (SSL_in_before(s)) {
2860 if (s->ext.hostname == NULL
2861 && s->session != NULL
2862 && s->session->ssl_version != TLS1_3_VERSION)
2863 return s->session->ext.hostname;
2864 } else {
2865 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2866 return s->session->ext.hostname;
2867 }
2868 }
2869
2870 return s->ext.hostname;
2871 }
2872
2873 int SSL_get_servername_type(const SSL *s)
2874 {
2875 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2876 return TLSEXT_NAMETYPE_host_name;
2877 return -1;
2878 }
2879
2880 /*
2881 * SSL_select_next_proto implements the standard protocol selection. It is
2882 * expected that this function is called from the callback set by
2883 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2884 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2885 * not included in the length. A byte string of length 0 is invalid. No byte
2886 * string may be truncated. The current, but experimental algorithm for
2887 * selecting the protocol is: 1) If the server doesn't support NPN then this
2888 * is indicated to the callback. In this case, the client application has to
2889 * abort the connection or have a default application level protocol. 2) If
2890 * the server supports NPN, but advertises an empty list then the client
2891 * selects the first protocol in its list, but indicates via the API that this
2892 * fallback case was enacted. 3) Otherwise, the client finds the first
2893 * protocol in the server's list that it supports and selects this protocol.
2894 * This is because it's assumed that the server has better information about
2895 * which protocol a client should use. 4) If the client doesn't support any
2896 * of the server's advertised protocols, then this is treated the same as
2897 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2898 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2899 */
2900 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2901 const unsigned char *server,
2902 unsigned int server_len,
2903 const unsigned char *client, unsigned int client_len)
2904 {
2905 unsigned int i, j;
2906 const unsigned char *result;
2907 int status = OPENSSL_NPN_UNSUPPORTED;
2908
2909 /*
2910 * For each protocol in server preference order, see if we support it.
2911 */
2912 for (i = 0; i < server_len;) {
2913 for (j = 0; j < client_len;) {
2914 if (server[i] == client[j] &&
2915 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2916 /* We found a match */
2917 result = &server[i];
2918 status = OPENSSL_NPN_NEGOTIATED;
2919 goto found;
2920 }
2921 j += client[j];
2922 j++;
2923 }
2924 i += server[i];
2925 i++;
2926 }
2927
2928 /* There's no overlap between our protocols and the server's list. */
2929 result = client;
2930 status = OPENSSL_NPN_NO_OVERLAP;
2931
2932 found:
2933 *out = (unsigned char *)result + 1;
2934 *outlen = result[0];
2935 return status;
2936 }
2937
2938 #ifndef OPENSSL_NO_NEXTPROTONEG
2939 /*
2940 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2941 * client's requested protocol for this connection and returns 0. If the
2942 * client didn't request any protocol, then *data is set to NULL. Note that
2943 * the client can request any protocol it chooses. The value returned from
2944 * this function need not be a member of the list of supported protocols
2945 * provided by the callback.
2946 */
2947 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2948 unsigned *len)
2949 {
2950 *data = s->ext.npn;
2951 if (*data == NULL) {
2952 *len = 0;
2953 } else {
2954 *len = (unsigned int)s->ext.npn_len;
2955 }
2956 }
2957
2958 /*
2959 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2960 * a TLS server needs a list of supported protocols for Next Protocol
2961 * Negotiation. The returned list must be in wire format. The list is
2962 * returned by setting |out| to point to it and |outlen| to its length. This
2963 * memory will not be modified, but one should assume that the SSL* keeps a
2964 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2965 * wishes to advertise. Otherwise, no such extension will be included in the
2966 * ServerHello.
2967 */
2968 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2969 SSL_CTX_npn_advertised_cb_func cb,
2970 void *arg)
2971 {
2972 ctx->ext.npn_advertised_cb = cb;
2973 ctx->ext.npn_advertised_cb_arg = arg;
2974 }
2975
2976 /*
2977 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2978 * client needs to select a protocol from the server's provided list. |out|
2979 * must be set to point to the selected protocol (which may be within |in|).
2980 * The length of the protocol name must be written into |outlen|. The
2981 * server's advertised protocols are provided in |in| and |inlen|. The
2982 * callback can assume that |in| is syntactically valid. The client must
2983 * select a protocol. It is fatal to the connection if this callback returns
2984 * a value other than SSL_TLSEXT_ERR_OK.
2985 */
2986 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2987 SSL_CTX_npn_select_cb_func cb,
2988 void *arg)
2989 {
2990 ctx->ext.npn_select_cb = cb;
2991 ctx->ext.npn_select_cb_arg = arg;
2992 }
2993 #endif
2994
2995 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len)
2996 {
2997 unsigned int idx;
2998
2999 if (protos_len < 2 || protos == NULL)
3000 return 0;
3001
3002 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) {
3003 if (protos[idx] == 0)
3004 return 0;
3005 }
3006 return idx == protos_len;
3007 }
3008 /*
3009 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
3010 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3011 * length-prefixed strings). Returns 0 on success.
3012 */
3013 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
3014 unsigned int protos_len)
3015 {
3016 unsigned char *alpn;
3017
3018 if (protos_len == 0 || protos == NULL) {
3019 OPENSSL_free(ctx->ext.alpn);
3020 ctx->ext.alpn = NULL;
3021 ctx->ext.alpn_len = 0;
3022 return 0;
3023 }
3024 /* Not valid per RFC */
3025 if (!alpn_value_ok(protos, protos_len))
3026 return 1;
3027
3028 alpn = OPENSSL_memdup(protos, protos_len);
3029 if (alpn == NULL) {
3030 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3031 return 1;
3032 }
3033 OPENSSL_free(ctx->ext.alpn);
3034 ctx->ext.alpn = alpn;
3035 ctx->ext.alpn_len = protos_len;
3036
3037 return 0;
3038 }
3039
3040 /*
3041 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
3042 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3043 * length-prefixed strings). Returns 0 on success.
3044 */
3045 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
3046 unsigned int protos_len)
3047 {
3048 unsigned char *alpn;
3049
3050 if (protos_len == 0 || protos == NULL) {
3051 OPENSSL_free(ssl->ext.alpn);
3052 ssl->ext.alpn = NULL;
3053 ssl->ext.alpn_len = 0;
3054 return 0;
3055 }
3056 /* Not valid per RFC */
3057 if (!alpn_value_ok(protos, protos_len))
3058 return 1;
3059
3060 alpn = OPENSSL_memdup(protos, protos_len);
3061 if (alpn == NULL) {
3062 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3063 return 1;
3064 }
3065 OPENSSL_free(ssl->ext.alpn);
3066 ssl->ext.alpn = alpn;
3067 ssl->ext.alpn_len = protos_len;
3068
3069 return 0;
3070 }
3071
3072 /*
3073 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
3074 * called during ClientHello processing in order to select an ALPN protocol
3075 * from the client's list of offered protocols.
3076 */
3077 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
3078 SSL_CTX_alpn_select_cb_func cb,
3079 void *arg)
3080 {
3081 ctx->ext.alpn_select_cb = cb;
3082 ctx->ext.alpn_select_cb_arg = arg;
3083 }
3084
3085 /*
3086 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
3087 * On return it sets |*data| to point to |*len| bytes of protocol name
3088 * (not including the leading length-prefix byte). If the server didn't
3089 * respond with a negotiated protocol then |*len| will be zero.
3090 */
3091 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
3092 unsigned int *len)
3093 {
3094 *data = ssl->s3.alpn_selected;
3095 if (*data == NULL)
3096 *len = 0;
3097 else
3098 *len = (unsigned int)ssl->s3.alpn_selected_len;
3099 }
3100
3101 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
3102 const char *label, size_t llen,
3103 const unsigned char *context, size_t contextlen,
3104 int use_context)
3105 {
3106 if (s->session == NULL
3107 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER))
3108 return -1;
3109
3110 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
3111 llen, context,
3112 contextlen, use_context);
3113 }
3114
3115 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
3116 const char *label, size_t llen,
3117 const unsigned char *context,
3118 size_t contextlen)
3119 {
3120 if (s->version != TLS1_3_VERSION)
3121 return 0;
3122
3123 return tls13_export_keying_material_early(s, out, olen, label, llen,
3124 context, contextlen);
3125 }
3126
3127 static unsigned long ssl_session_hash(const SSL_SESSION *a)
3128 {
3129 const unsigned char *session_id = a->session_id;
3130 unsigned long l;
3131 unsigned char tmp_storage[4];
3132
3133 if (a->session_id_length < sizeof(tmp_storage)) {
3134 memset(tmp_storage, 0, sizeof(tmp_storage));
3135 memcpy(tmp_storage, a->session_id, a->session_id_length);
3136 session_id = tmp_storage;
3137 }
3138
3139 l = (unsigned long)
3140 ((unsigned long)session_id[0]) |
3141 ((unsigned long)session_id[1] << 8L) |
3142 ((unsigned long)session_id[2] << 16L) |
3143 ((unsigned long)session_id[3] << 24L);
3144 return l;
3145 }
3146
3147 /*
3148 * NB: If this function (or indeed the hash function which uses a sort of
3149 * coarser function than this one) is changed, ensure
3150 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3151 * being able to construct an SSL_SESSION that will collide with any existing
3152 * session with a matching session ID.
3153 */
3154 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3155 {
3156 if (a->ssl_version != b->ssl_version)
3157 return 1;
3158 if (a->session_id_length != b->session_id_length)
3159 return 1;
3160 return memcmp(a->session_id, b->session_id, a->session_id_length);
3161 }
3162
3163 /*
3164 * These wrapper functions should remain rather than redeclaring
3165 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3166 * variable. The reason is that the functions aren't static, they're exposed
3167 * via ssl.h.
3168 */
3169
3170 SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq,
3171 const SSL_METHOD *meth)
3172 {
3173 SSL_CTX *ret = NULL;
3174
3175 if (meth == NULL) {
3176 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED);
3177 return NULL;
3178 }
3179
3180 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3181 return NULL;
3182
3183 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3184 ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3185 goto err;
3186 }
3187 ret = OPENSSL_zalloc(sizeof(*ret));
3188 if (ret == NULL)
3189 goto err;
3190
3191 /* Init the reference counting before any call to SSL_CTX_free */
3192 ret->references = 1;
3193 ret->lock = CRYPTO_THREAD_lock_new();
3194 if (ret->lock == NULL) {
3195 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3196 OPENSSL_free(ret);
3197 return NULL;
3198 }
3199
3200 ret->libctx = libctx;
3201 if (propq != NULL) {
3202 ret->propq = OPENSSL_strdup(propq);
3203 if (ret->propq == NULL)
3204 goto err;
3205 }
3206
3207 ret->method = meth;
3208 ret->min_proto_version = 0;
3209 ret->max_proto_version = 0;
3210 ret->mode = SSL_MODE_AUTO_RETRY;
3211 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3212 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3213 /* We take the system default. */
3214 ret->session_timeout = meth->get_timeout();
3215 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3216 ret->verify_mode = SSL_VERIFY_NONE;
3217 if ((ret->cert = ssl_cert_new()) == NULL)
3218 goto err;
3219
3220 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3221 if (ret->sessions == NULL)
3222 goto err;
3223 ret->cert_store = X509_STORE_new();
3224 if (ret->cert_store == NULL)
3225 goto err;
3226 #ifndef OPENSSL_NO_CT
3227 ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq);
3228 if (ret->ctlog_store == NULL)
3229 goto err;
3230 #endif
3231
3232 /* initialize cipher/digest methods table */
3233 if (!ssl_load_ciphers(ret))
3234 goto err2;
3235 /* initialise sig algs */
3236 if (!ssl_setup_sig_algs(ret))
3237 goto err2;
3238
3239
3240 if (!ssl_load_groups(ret))
3241 goto err2;
3242
3243 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3244 goto err;
3245
3246 if (!ssl_create_cipher_list(ret,
3247 ret->tls13_ciphersuites,
3248 &ret->cipher_list, &ret->cipher_list_by_id,
3249 OSSL_default_cipher_list(), ret->cert)
3250 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3251 ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3252 goto err2;
3253 }
3254
3255 ret->param = X509_VERIFY_PARAM_new();
3256 if (ret->param == NULL)
3257 goto err;
3258
3259 /*
3260 * If these aren't available from the provider we'll get NULL returns.
3261 * That's fine but will cause errors later if SSLv3 is negotiated
3262 */
3263 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq);
3264 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq);
3265
3266 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3267 goto err;
3268
3269 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3270 goto err;
3271
3272 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3273 goto err;
3274
3275 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3276 goto err;
3277
3278 /* No compression for DTLS */
3279 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3280 ret->comp_methods = SSL_COMP_get_compression_methods();
3281
3282 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3283 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3284
3285 /* Setup RFC5077 ticket keys */
3286 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name,
3287 sizeof(ret->ext.tick_key_name), 0) <= 0)
3288 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key,
3289 sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0)
3290 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key,
3291 sizeof(ret->ext.secure->tick_aes_key), 0) <= 0))
3292 ret->options |= SSL_OP_NO_TICKET;
3293
3294 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key,
3295 sizeof(ret->ext.cookie_hmac_key), 0) <= 0)
3296 goto err;
3297
3298 #ifndef OPENSSL_NO_SRP
3299 if (!ssl_ctx_srp_ctx_init_intern(ret))
3300 goto err;
3301 #endif
3302 #ifndef OPENSSL_NO_ENGINE
3303 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3304 # define eng_strx(x) #x
3305 # define eng_str(x) eng_strx(x)
3306 /* Use specific client engine automatically... ignore errors */
3307 {
3308 ENGINE *eng;
3309 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3310 if (!eng) {
3311 ERR_clear_error();
3312 ENGINE_load_builtin_engines();
3313 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3314 }
3315 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3316 ERR_clear_error();
3317 }
3318 # endif
3319 #endif
3320 /*
3321 * Disable compression by default to prevent CRIME. Applications can
3322 * re-enable compression by configuring
3323 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3324 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3325 * middlebox compatibility by default. This may be disabled by default in
3326 * a later OpenSSL version.
3327 */
3328 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3329
3330 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3331
3332 /*
3333 * We cannot usefully set a default max_early_data here (which gets
3334 * propagated in SSL_new(), for the following reason: setting the
3335 * SSL field causes tls_construct_stoc_early_data() to tell the
3336 * client that early data will be accepted when constructing a TLS 1.3
3337 * session ticket, and the client will accordingly send us early data
3338 * when using that ticket (if the client has early data to send).
3339 * However, in order for the early data to actually be consumed by
3340 * the application, the application must also have calls to
3341 * SSL_read_early_data(); otherwise we'll just skip past the early data
3342 * and ignore it. So, since the application must add calls to
3343 * SSL_read_early_data(), we also require them to add
3344 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3345 * eliminating the bandwidth-wasting early data in the case described
3346 * above.
3347 */
3348 ret->max_early_data = 0;
3349
3350 /*
3351 * Default recv_max_early_data is a fully loaded single record. Could be
3352 * split across multiple records in practice. We set this differently to
3353 * max_early_data so that, in the default case, we do not advertise any
3354 * support for early_data, but if a client were to send us some (e.g.
3355 * because of an old, stale ticket) then we will tolerate it and skip over
3356 * it.
3357 */
3358 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3359
3360 /* By default we send two session tickets automatically in TLSv1.3 */
3361 ret->num_tickets = 2;
3362
3363 ssl_ctx_system_config(ret);
3364
3365 return ret;
3366 err:
3367 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3368 err2:
3369 SSL_CTX_free(ret);
3370 return NULL;
3371 }
3372
3373 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3374 {
3375 return SSL_CTX_new_ex(NULL, NULL, meth);
3376 }
3377
3378 int SSL_CTX_up_ref(SSL_CTX *ctx)
3379 {
3380 int i;
3381
3382 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3383 return 0;
3384
3385 REF_PRINT_COUNT("SSL_CTX", ctx);
3386 REF_ASSERT_ISNT(i < 2);
3387 return ((i > 1) ? 1 : 0);
3388 }
3389
3390 void SSL_CTX_free(SSL_CTX *a)
3391 {
3392 int i;
3393 size_t j;
3394
3395 if (a == NULL)
3396 return;
3397
3398 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3399 REF_PRINT_COUNT("SSL_CTX", a);
3400 if (i > 0)
3401 return;
3402 REF_ASSERT_ISNT(i < 0);
3403
3404 X509_VERIFY_PARAM_free(a->param);
3405 dane_ctx_final(&a->dane);
3406
3407 /*
3408 * Free internal session cache. However: the remove_cb() may reference
3409 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3410 * after the sessions were flushed.
3411 * As the ex_data handling routines might also touch the session cache,
3412 * the most secure solution seems to be: empty (flush) the cache, then
3413 * free ex_data, then finally free the cache.
3414 * (See ticket [openssl.org #212].)
3415 */
3416 if (a->sessions != NULL)
3417 SSL_CTX_flush_sessions(a, 0);
3418
3419 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3420 lh_SSL_SESSION_free(a->sessions);
3421 X509_STORE_free(a->cert_store);
3422 #ifndef OPENSSL_NO_CT
3423 CTLOG_STORE_free(a->ctlog_store);
3424 #endif
3425 sk_SSL_CIPHER_free(a->cipher_list);
3426 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3427 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3428 ssl_cert_free(a->cert);
3429 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3430 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3431 sk_X509_pop_free(a->extra_certs, X509_free);
3432 a->comp_methods = NULL;
3433 #ifndef OPENSSL_NO_SRTP
3434 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3435 #endif
3436 #ifndef OPENSSL_NO_SRP
3437 ssl_ctx_srp_ctx_free_intern(a);
3438 #endif
3439 #ifndef OPENSSL_NO_ENGINE
3440 tls_engine_finish(a->client_cert_engine);
3441 #endif
3442
3443 OPENSSL_free(a->ext.ecpointformats);
3444 OPENSSL_free(a->ext.supportedgroups);
3445 OPENSSL_free(a->ext.supported_groups_default);
3446 OPENSSL_free(a->ext.alpn);
3447 OPENSSL_secure_free(a->ext.secure);
3448
3449 ssl_evp_md_free(a->md5);
3450 ssl_evp_md_free(a->sha1);
3451
3452 for (j = 0; j < SSL_ENC_NUM_IDX; j++)
3453 ssl_evp_cipher_free(a->ssl_cipher_methods[j]);
3454 for (j = 0; j < SSL_MD_NUM_IDX; j++)
3455 ssl_evp_md_free(a->ssl_digest_methods[j]);
3456 for (j = 0; j < a->group_list_len; j++) {
3457 OPENSSL_free(a->group_list[j].tlsname);
3458 OPENSSL_free(a->group_list[j].realname);
3459 OPENSSL_free(a->group_list[j].algorithm);
3460 }
3461 OPENSSL_free(a->group_list);
3462
3463 OPENSSL_free(a->sigalg_lookup_cache);
3464
3465 CRYPTO_THREAD_lock_free(a->lock);
3466
3467 OPENSSL_free(a->propq);
3468
3469 OPENSSL_free(a);
3470 }
3471
3472 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3473 {
3474 ctx->default_passwd_callback = cb;
3475 }
3476
3477 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3478 {
3479 ctx->default_passwd_callback_userdata = u;
3480 }
3481
3482 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3483 {
3484 return ctx->default_passwd_callback;
3485 }
3486
3487 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3488 {
3489 return ctx->default_passwd_callback_userdata;
3490 }
3491
3492 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3493 {
3494 s->default_passwd_callback = cb;
3495 }
3496
3497 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3498 {
3499 s->default_passwd_callback_userdata = u;
3500 }
3501
3502 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3503 {
3504 return s->default_passwd_callback;
3505 }
3506
3507 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3508 {
3509 return s->default_passwd_callback_userdata;
3510 }
3511
3512 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3513 int (*cb) (X509_STORE_CTX *, void *),
3514 void *arg)
3515 {
3516 ctx->app_verify_callback = cb;
3517 ctx->app_verify_arg = arg;
3518 }
3519
3520 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3521 int (*cb) (int, X509_STORE_CTX *))
3522 {
3523 ctx->verify_mode = mode;
3524 ctx->default_verify_callback = cb;
3525 }
3526
3527 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3528 {
3529 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3530 }
3531
3532 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3533 {
3534 ssl_cert_set_cert_cb(c->cert, cb, arg);
3535 }
3536
3537 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3538 {
3539 ssl_cert_set_cert_cb(s->cert, cb, arg);
3540 }
3541
3542 void ssl_set_masks(SSL *s)
3543 {
3544 CERT *c = s->cert;
3545 uint32_t *pvalid = s->s3.tmp.valid_flags;
3546 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3547 unsigned long mask_k, mask_a;
3548 int have_ecc_cert, ecdsa_ok;
3549
3550 if (c == NULL)
3551 return;
3552
3553 dh_tmp = (c->dh_tmp != NULL
3554 || c->dh_tmp_cb != NULL
3555 || c->dh_tmp_auto);
3556
3557 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3558 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3559 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3560 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3561 mask_k = 0;
3562 mask_a = 0;
3563
3564 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3565 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3566
3567 #ifndef OPENSSL_NO_GOST
3568 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3569 mask_k |= SSL_kGOST | SSL_kGOST18;
3570 mask_a |= SSL_aGOST12;
3571 }
3572 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3573 mask_k |= SSL_kGOST | SSL_kGOST18;
3574 mask_a |= SSL_aGOST12;
3575 }
3576 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3577 mask_k |= SSL_kGOST;
3578 mask_a |= SSL_aGOST01;
3579 }
3580 #endif
3581
3582 if (rsa_enc)
3583 mask_k |= SSL_kRSA;
3584
3585 if (dh_tmp)
3586 mask_k |= SSL_kDHE;
3587
3588 /*
3589 * If we only have an RSA-PSS certificate allow RSA authentication
3590 * if TLS 1.2 and peer supports it.
3591 */
3592
3593 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3594 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3595 && TLS1_get_version(s) == TLS1_2_VERSION))
3596 mask_a |= SSL_aRSA;
3597
3598 if (dsa_sign) {
3599 mask_a |= SSL_aDSS;
3600 }
3601
3602 mask_a |= SSL_aNULL;
3603
3604 /*
3605 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3606 * depending on the key usage extension.
3607 */
3608 if (have_ecc_cert) {
3609 uint32_t ex_kusage;
3610 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3611 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3612 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3613 ecdsa_ok = 0;
3614 if (ecdsa_ok)
3615 mask_a |= SSL_aECDSA;
3616 }
3617 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3618 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3619 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3620 && TLS1_get_version(s) == TLS1_2_VERSION)
3621 mask_a |= SSL_aECDSA;
3622
3623 /* Allow Ed448 for TLS 1.2 if peer supports it */
3624 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3625 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3626 && TLS1_get_version(s) == TLS1_2_VERSION)
3627 mask_a |= SSL_aECDSA;
3628
3629 mask_k |= SSL_kECDHE;
3630
3631 #ifndef OPENSSL_NO_PSK
3632 mask_k |= SSL_kPSK;
3633 mask_a |= SSL_aPSK;
3634 if (mask_k & SSL_kRSA)
3635 mask_k |= SSL_kRSAPSK;
3636 if (mask_k & SSL_kDHE)
3637 mask_k |= SSL_kDHEPSK;
3638 if (mask_k & SSL_kECDHE)
3639 mask_k |= SSL_kECDHEPSK;
3640 #endif
3641
3642 s->s3.tmp.mask_k = mask_k;
3643 s->s3.tmp.mask_a = mask_a;
3644 }
3645
3646 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3647 {
3648 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3649 /* key usage, if present, must allow signing */
3650 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3651 ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3652 return 0;
3653 }
3654 }
3655 return 1; /* all checks are ok */
3656 }
3657
3658 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3659 size_t *serverinfo_length)
3660 {
3661 CERT_PKEY *cpk = s->s3.tmp.cert;
3662 *serverinfo_length = 0;
3663
3664 if (cpk == NULL || cpk->serverinfo == NULL)
3665 return 0;
3666
3667 *serverinfo = cpk->serverinfo;
3668 *serverinfo_length = cpk->serverinfo_length;
3669 return 1;
3670 }
3671
3672 void ssl_update_cache(SSL *s, int mode)
3673 {
3674 int i;
3675
3676 /*
3677 * If the session_id_length is 0, we are not supposed to cache it, and it
3678 * would be rather hard to do anyway :-)
3679 */
3680 if (s->session->session_id_length == 0)
3681 return;
3682
3683 /*
3684 * If sid_ctx_length is 0 there is no specific application context
3685 * associated with this session, so when we try to resume it and
3686 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3687 * indication that this is actually a session for the proper application
3688 * context, and the *handshake* will fail, not just the resumption attempt.
3689 * Do not cache (on the server) these sessions that are not resumable
3690 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3691 */
3692 if (s->server && s->session->sid_ctx_length == 0
3693 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3694 return;
3695
3696 i = s->session_ctx->session_cache_mode;
3697 if ((i & mode) != 0
3698 && (!s->hit || SSL_IS_TLS13(s))) {
3699 /*
3700 * Add the session to the internal cache. In server side TLSv1.3 we
3701 * normally don't do this because by default it's a full stateless ticket
3702 * with only a dummy session id so there is no reason to cache it,
3703 * unless:
3704 * - we are doing early_data, in which case we cache so that we can
3705 * detect replays
3706 * - the application has set a remove_session_cb so needs to know about
3707 * session timeout events
3708 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3709 */
3710 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3711 && (!SSL_IS_TLS13(s)
3712 || !s->server
3713 || (s->max_early_data > 0
3714 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3715 || s->session_ctx->remove_session_cb != NULL
3716 || (s->options & SSL_OP_NO_TICKET) != 0))
3717 SSL_CTX_add_session(s->session_ctx, s->session);
3718
3719 /*
3720 * Add the session to the external cache. We do this even in server side
3721 * TLSv1.3 without early data because some applications just want to
3722 * know about the creation of a session and aren't doing a full cache.
3723 */
3724 if (s->session_ctx->new_session_cb != NULL) {
3725 SSL_SESSION_up_ref(s->session);
3726 if (!s->session_ctx->new_session_cb(s, s->session))
3727 SSL_SESSION_free(s->session);
3728 }
3729 }
3730
3731 /* auto flush every 255 connections */
3732 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3733 TSAN_QUALIFIER int *stat;
3734 if (mode & SSL_SESS_CACHE_CLIENT)
3735 stat = &s->session_ctx->stats.sess_connect_good;
3736 else
3737 stat = &s->session_ctx->stats.sess_accept_good;
3738 if ((tsan_load(stat) & 0xff) == 0xff)
3739 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3740 }
3741 }
3742
3743 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3744 {
3745 return ctx->method;
3746 }
3747
3748 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3749 {
3750 return s->method;
3751 }
3752
3753 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3754 {
3755 int ret = 1;
3756
3757 if (s->method != meth) {
3758 const SSL_METHOD *sm = s->method;
3759 int (*hf) (SSL *) = s->handshake_func;
3760
3761 if (sm->version == meth->version)
3762 s->method = meth;
3763 else {
3764 sm->ssl_free(s);
3765 s->method = meth;
3766 ret = s->method->ssl_new(s);
3767 }
3768
3769 if (hf == sm->ssl_connect)
3770 s->handshake_func = meth->ssl_connect;
3771 else if (hf == sm->ssl_accept)
3772 s->handshake_func = meth->ssl_accept;
3773 }
3774 return ret;
3775 }
3776
3777 int SSL_get_error(const SSL *s, int i)
3778 {
3779 int reason;
3780 unsigned long l;
3781 BIO *bio;
3782
3783 if (i > 0)
3784 return SSL_ERROR_NONE;
3785
3786 /*
3787 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3788 * where we do encode the error
3789 */
3790 if ((l = ERR_peek_error()) != 0) {
3791 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3792 return SSL_ERROR_SYSCALL;
3793 else
3794 return SSL_ERROR_SSL;
3795 }
3796
3797 if (SSL_want_read(s)) {
3798 bio = SSL_get_rbio(s);
3799 if (BIO_should_read(bio))
3800 return SSL_ERROR_WANT_READ;
3801 else if (BIO_should_write(bio))
3802 /*
3803 * This one doesn't make too much sense ... We never try to write
3804 * to the rbio, and an application program where rbio and wbio
3805 * are separate couldn't even know what it should wait for.
3806 * However if we ever set s->rwstate incorrectly (so that we have
3807 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3808 * wbio *are* the same, this test works around that bug; so it
3809 * might be safer to keep it.
3810 */
3811 return SSL_ERROR_WANT_WRITE;
3812 else if (BIO_should_io_special(bio)) {
3813 reason = BIO_get_retry_reason(bio);
3814 if (reason == BIO_RR_CONNECT)
3815 return SSL_ERROR_WANT_CONNECT;
3816 else if (reason == BIO_RR_ACCEPT)
3817 return SSL_ERROR_WANT_ACCEPT;
3818 else
3819 return SSL_ERROR_SYSCALL; /* unknown */
3820 }
3821 }
3822
3823 if (SSL_want_write(s)) {
3824 /* Access wbio directly - in order to use the buffered bio if present */
3825 bio = s->wbio;
3826 if (BIO_should_write(bio))
3827 return SSL_ERROR_WANT_WRITE;
3828 else if (BIO_should_read(bio))
3829 /*
3830 * See above (SSL_want_read(s) with BIO_should_write(bio))
3831 */
3832 return SSL_ERROR_WANT_READ;
3833 else if (BIO_should_io_special(bio)) {
3834 reason = BIO_get_retry_reason(bio);
3835 if (reason == BIO_RR_CONNECT)
3836 return SSL_ERROR_WANT_CONNECT;
3837 else if (reason == BIO_RR_ACCEPT)
3838 return SSL_ERROR_WANT_ACCEPT;
3839 else
3840 return SSL_ERROR_SYSCALL;
3841 }
3842 }
3843 if (SSL_want_x509_lookup(s))
3844 return SSL_ERROR_WANT_X509_LOOKUP;
3845 if (SSL_want_retry_verify(s))
3846 return SSL_ERROR_WANT_RETRY_VERIFY;
3847 if (SSL_want_async(s))
3848 return SSL_ERROR_WANT_ASYNC;
3849 if (SSL_want_async_job(s))
3850 return SSL_ERROR_WANT_ASYNC_JOB;
3851 if (SSL_want_client_hello_cb(s))
3852 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3853
3854 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3855 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3856 return SSL_ERROR_ZERO_RETURN;
3857
3858 return SSL_ERROR_SYSCALL;
3859 }
3860
3861 static int ssl_do_handshake_intern(void *vargs)
3862 {
3863 struct ssl_async_args *args;
3864 SSL *s;
3865
3866 args = (struct ssl_async_args *)vargs;
3867 s = args->s;
3868
3869 return s->handshake_func(s);
3870 }
3871
3872 int SSL_do_handshake(SSL *s)
3873 {
3874 int ret = 1;
3875
3876 if (s->handshake_func == NULL) {
3877 ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
3878 return -1;
3879 }
3880
3881 ossl_statem_check_finish_init(s, -1);
3882
3883 s->method->ssl_renegotiate_check(s, 0);
3884
3885 if (SSL_in_init(s) || SSL_in_before(s)) {
3886 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3887 struct ssl_async_args args;
3888
3889 args.s = s;
3890
3891 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3892 } else {
3893 ret = s->handshake_func(s);
3894 }
3895 }
3896 return ret;
3897 }
3898
3899 void SSL_set_accept_state(SSL *s)
3900 {
3901 s->server = 1;
3902 s->shutdown = 0;
3903 ossl_statem_clear(s);
3904 s->handshake_func = s->method->ssl_accept;
3905 clear_ciphers(s);
3906 }
3907
3908 void SSL_set_connect_state(SSL *s)
3909 {
3910 s->server = 0;
3911 s->shutdown = 0;
3912 ossl_statem_clear(s);
3913 s->handshake_func = s->method->ssl_connect;
3914 clear_ciphers(s);
3915 }
3916
3917 int ssl_undefined_function(SSL *s)
3918 {
3919 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3920 return 0;
3921 }
3922
3923 int ssl_undefined_void_function(void)
3924 {
3925 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3926 return 0;
3927 }
3928
3929 int ssl_undefined_const_function(const SSL *s)
3930 {
3931 return 0;
3932 }
3933
3934 const SSL_METHOD *ssl_bad_method(int ver)
3935 {
3936 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3937 return NULL;
3938 }
3939
3940 const char *ssl_protocol_to_string(int version)
3941 {
3942 switch(version)
3943 {
3944 case TLS1_3_VERSION:
3945 return "TLSv1.3";
3946
3947 case TLS1_2_VERSION:
3948 return "TLSv1.2";
3949
3950 case TLS1_1_VERSION:
3951 return "TLSv1.1";
3952
3953 case TLS1_VERSION:
3954 return "TLSv1";
3955
3956 case SSL3_VERSION:
3957 return "SSLv3";
3958
3959 case DTLS1_BAD_VER:
3960 return "DTLSv0.9";
3961
3962 case DTLS1_VERSION:
3963 return "DTLSv1";
3964
3965 case DTLS1_2_VERSION:
3966 return "DTLSv1.2";
3967
3968 default:
3969 return "unknown";
3970 }
3971 }
3972
3973 const char *SSL_get_version(const SSL *s)
3974 {
3975 return ssl_protocol_to_string(s->version);
3976 }
3977
3978 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3979 {
3980 STACK_OF(X509_NAME) *sk;
3981 X509_NAME *xn;
3982 int i;
3983
3984 if (src == NULL) {
3985 *dst = NULL;
3986 return 1;
3987 }
3988
3989 if ((sk = sk_X509_NAME_new_null()) == NULL)
3990 return 0;
3991 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3992 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3993 if (xn == NULL) {
3994 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3995 return 0;
3996 }
3997 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3998 X509_NAME_free(xn);
3999 sk_X509_NAME_pop_free(sk, X509_NAME_free);
4000 return 0;
4001 }
4002 }
4003 *dst = sk;
4004
4005 return 1;
4006 }
4007
4008 SSL *SSL_dup(SSL *s)
4009 {
4010 SSL *ret;
4011 int i;
4012
4013 /* If we're not quiescent, just up_ref! */
4014 if (!SSL_in_init(s) || !SSL_in_before(s)) {
4015 CRYPTO_UP_REF(&s->references, &i, s->lock);
4016 return s;
4017 }
4018
4019 /*
4020 * Otherwise, copy configuration state, and session if set.
4021 */
4022 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
4023 return NULL;
4024
4025 if (s->session != NULL) {
4026 /*
4027 * Arranges to share the same session via up_ref. This "copies"
4028 * session-id, SSL_METHOD, sid_ctx, and 'cert'
4029 */
4030 if (!SSL_copy_session_id(ret, s))
4031 goto err;
4032 } else {
4033 /*
4034 * No session has been established yet, so we have to expect that
4035 * s->cert or ret->cert will be changed later -- they should not both
4036 * point to the same object, and thus we can't use
4037 * SSL_copy_session_id.
4038 */
4039 if (!SSL_set_ssl_method(ret, s->method))
4040 goto err;
4041
4042 if (s->cert != NULL) {
4043 ssl_cert_free(ret->cert);
4044 ret->cert = ssl_cert_dup(s->cert);
4045 if (ret->cert == NULL)
4046 goto err;
4047 }
4048
4049 if (!SSL_set_session_id_context(ret, s->sid_ctx,
4050 (int)s->sid_ctx_length))
4051 goto err;
4052 }
4053
4054 if (!ssl_dane_dup(ret, s))
4055 goto err;
4056 ret->version = s->version;
4057 ret->options = s->options;
4058 ret->min_proto_version = s->min_proto_version;
4059 ret->max_proto_version = s->max_proto_version;
4060 ret->mode = s->mode;
4061 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
4062 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
4063 ret->msg_callback = s->msg_callback;
4064 ret->msg_callback_arg = s->msg_callback_arg;
4065 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
4066 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
4067 ret->generate_session_id = s->generate_session_id;
4068
4069 SSL_set_info_callback(ret, SSL_get_info_callback(s));
4070
4071 /* copy app data, a little dangerous perhaps */
4072 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
4073 goto err;
4074
4075 ret->server = s->server;
4076 if (s->handshake_func) {
4077 if (s->server)
4078 SSL_set_accept_state(ret);
4079 else
4080 SSL_set_connect_state(ret);
4081 }
4082 ret->shutdown = s->shutdown;
4083 ret->hit = s->hit;
4084
4085 ret->default_passwd_callback = s->default_passwd_callback;
4086 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
4087
4088 X509_VERIFY_PARAM_inherit(ret->param, s->param);
4089
4090 /* dup the cipher_list and cipher_list_by_id stacks */
4091 if (s->cipher_list != NULL) {
4092 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
4093 goto err;
4094 }
4095 if (s->cipher_list_by_id != NULL)
4096 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
4097 == NULL)
4098 goto err;
4099
4100 /* Dup the client_CA list */
4101 if (!dup_ca_names(&ret->ca_names, s->ca_names)
4102 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
4103 goto err;
4104
4105 return ret;
4106
4107 err:
4108 SSL_free(ret);
4109 return NULL;
4110 }
4111
4112 void ssl_clear_cipher_ctx(SSL *s)
4113 {
4114 if (s->enc_read_ctx != NULL) {
4115 EVP_CIPHER_CTX_free(s->enc_read_ctx);
4116 s->enc_read_ctx = NULL;
4117 }
4118 if (s->enc_write_ctx != NULL) {
4119 EVP_CIPHER_CTX_free(s->enc_write_ctx);
4120 s->enc_write_ctx = NULL;
4121 }
4122 #ifndef OPENSSL_NO_COMP
4123 COMP_CTX_free(s->expand);
4124 s->expand = NULL;
4125 COMP_CTX_free(s->compress);
4126 s->compress = NULL;
4127 #endif
4128 }
4129
4130 X509 *SSL_get_certificate(const SSL *s)
4131 {
4132 if (s->cert != NULL)
4133 return s->cert->key->x509;
4134 else
4135 return NULL;
4136 }
4137
4138 EVP_PKEY *SSL_get_privatekey(const SSL *s)
4139 {
4140 if (s->cert != NULL)
4141 return s->cert->key->privatekey;
4142 else
4143 return NULL;
4144 }
4145
4146 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4147 {
4148 if (ctx->cert != NULL)
4149 return ctx->cert->key->x509;
4150 else
4151 return NULL;
4152 }
4153
4154 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4155 {
4156 if (ctx->cert != NULL)
4157 return ctx->cert->key->privatekey;
4158 else
4159 return NULL;
4160 }
4161
4162 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4163 {
4164 if ((s->session != NULL) && (s->session->cipher != NULL))
4165 return s->session->cipher;
4166 return NULL;
4167 }
4168
4169 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4170 {
4171 return s->s3.tmp.new_cipher;
4172 }
4173
4174 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4175 {
4176 #ifndef OPENSSL_NO_COMP
4177 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4178 #else
4179 return NULL;
4180 #endif
4181 }
4182
4183 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4184 {
4185 #ifndef OPENSSL_NO_COMP
4186 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4187 #else
4188 return NULL;
4189 #endif
4190 }
4191
4192 int ssl_init_wbio_buffer(SSL *s)
4193 {
4194 BIO *bbio;
4195
4196 if (s->bbio != NULL) {
4197 /* Already buffered. */
4198 return 1;
4199 }
4200
4201 bbio = BIO_new(BIO_f_buffer());
4202 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4203 BIO_free(bbio);
4204 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
4205 return 0;
4206 }
4207 s->bbio = bbio;
4208 s->wbio = BIO_push(bbio, s->wbio);
4209
4210 return 1;
4211 }
4212
4213 int ssl_free_wbio_buffer(SSL *s)
4214 {
4215 /* callers ensure s is never null */
4216 if (s->bbio == NULL)
4217 return 1;
4218
4219 s->wbio = BIO_pop(s->wbio);
4220 BIO_free(s->bbio);
4221 s->bbio = NULL;
4222
4223 return 1;
4224 }
4225
4226 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4227 {
4228 ctx->quiet_shutdown = mode;
4229 }
4230
4231 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4232 {
4233 return ctx->quiet_shutdown;
4234 }
4235
4236 void SSL_set_quiet_shutdown(SSL *s, int mode)
4237 {
4238 s->quiet_shutdown = mode;
4239 }
4240
4241 int SSL_get_quiet_shutdown(const SSL *s)
4242 {
4243 return s->quiet_shutdown;
4244 }
4245
4246 void SSL_set_shutdown(SSL *s, int mode)
4247 {
4248 s->shutdown = mode;
4249 }
4250
4251 int SSL_get_shutdown(const SSL *s)
4252 {
4253 return s->shutdown;
4254 }
4255
4256 int SSL_version(const SSL *s)
4257 {
4258 return s->version;
4259 }
4260
4261 int SSL_client_version(const SSL *s)
4262 {
4263 return s->client_version;
4264 }
4265
4266 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4267 {
4268 return ssl->ctx;
4269 }
4270
4271 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4272 {
4273 CERT *new_cert;
4274 if (ssl->ctx == ctx)
4275 return ssl->ctx;
4276 if (ctx == NULL)
4277 ctx = ssl->session_ctx;
4278 new_cert = ssl_cert_dup(ctx->cert);
4279 if (new_cert == NULL) {
4280 return NULL;
4281 }
4282
4283 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4284 ssl_cert_free(new_cert);
4285 return NULL;
4286 }
4287
4288 ssl_cert_free(ssl->cert);
4289 ssl->cert = new_cert;
4290
4291 /*
4292 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4293 * so setter APIs must prevent invalid lengths from entering the system.
4294 */
4295 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4296 return NULL;
4297
4298 /*
4299 * If the session ID context matches that of the parent SSL_CTX,
4300 * inherit it from the new SSL_CTX as well. If however the context does
4301 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4302 * leave it unchanged.
4303 */
4304 if ((ssl->ctx != NULL) &&
4305 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4306 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4307 ssl->sid_ctx_length = ctx->sid_ctx_length;
4308 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4309 }
4310
4311 SSL_CTX_up_ref(ctx);
4312 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4313 ssl->ctx = ctx;
4314
4315 return ssl->ctx;
4316 }
4317
4318 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4319 {
4320 return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx,
4321 ctx->propq);
4322 }
4323
4324 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4325 {
4326 X509_LOOKUP *lookup;
4327
4328 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4329 if (lookup == NULL)
4330 return 0;
4331
4332 /* We ignore errors, in case the directory doesn't exist */
4333 ERR_set_mark();
4334
4335 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4336
4337 ERR_pop_to_mark();
4338
4339 return 1;
4340 }
4341
4342 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4343 {
4344 X509_LOOKUP *lookup;
4345
4346 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4347 if (lookup == NULL)
4348 return 0;
4349
4350 /* We ignore errors, in case the file doesn't exist */
4351 ERR_set_mark();
4352
4353 X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx,
4354 ctx->propq);
4355
4356 ERR_pop_to_mark();
4357
4358 return 1;
4359 }
4360
4361 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx)
4362 {
4363 X509_LOOKUP *lookup;
4364
4365 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store());
4366 if (lookup == NULL)
4367 return 0;
4368
4369 /* We ignore errors, in case the directory doesn't exist */
4370 ERR_set_mark();
4371
4372 X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq);
4373
4374 ERR_pop_to_mark();
4375
4376 return 1;
4377 }
4378
4379 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile)
4380 {
4381 return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx,
4382 ctx->propq);
4383 }
4384
4385 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath)
4386 {
4387 return X509_STORE_load_path(ctx->cert_store, CApath);
4388 }
4389
4390 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore)
4391 {
4392 return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx,
4393 ctx->propq);
4394 }
4395
4396 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4397 const char *CApath)
4398 {
4399 if (CAfile == NULL && CApath == NULL)
4400 return 0;
4401 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile))
4402 return 0;
4403 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath))
4404 return 0;
4405 return 1;
4406 }
4407
4408 void SSL_set_info_callback(SSL *ssl,
4409 void (*cb) (const SSL *ssl, int type, int val))
4410 {
4411 ssl->info_callback = cb;
4412 }
4413
4414 /*
4415 * One compiler (Diab DCC) doesn't like argument names in returned function
4416 * pointer.
4417 */
4418 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4419 int /* type */ ,
4420 int /* val */ ) {
4421 return ssl->info_callback;
4422 }
4423
4424 void SSL_set_verify_result(SSL *ssl, long arg)
4425 {
4426 ssl->verify_result = arg;
4427 }
4428
4429 long SSL_get_verify_result(const SSL *ssl)
4430 {
4431 return ssl->verify_result;
4432 }
4433
4434 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4435 {
4436 if (outlen == 0)
4437 return sizeof(ssl->s3.client_random);
4438 if (outlen > sizeof(ssl->s3.client_random))
4439 outlen = sizeof(ssl->s3.client_random);
4440 memcpy(out, ssl->s3.client_random, outlen);
4441 return outlen;
4442 }
4443
4444 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4445 {
4446 if (outlen == 0)
4447 return sizeof(ssl->s3.server_random);
4448 if (outlen > sizeof(ssl->s3.server_random))
4449 outlen = sizeof(ssl->s3.server_random);
4450 memcpy(out, ssl->s3.server_random, outlen);
4451 return outlen;
4452 }
4453
4454 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4455 unsigned char *out, size_t outlen)
4456 {
4457 if (outlen == 0)
4458 return session->master_key_length;
4459 if (outlen > session->master_key_length)
4460 outlen = session->master_key_length;
4461 memcpy(out, session->master_key, outlen);
4462 return outlen;
4463 }
4464
4465 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4466 size_t len)
4467 {
4468 if (len > sizeof(sess->master_key))
4469 return 0;
4470
4471 memcpy(sess->master_key, in, len);
4472 sess->master_key_length = len;
4473 return 1;
4474 }
4475
4476
4477 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4478 {
4479 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4480 }
4481
4482 void *SSL_get_ex_data(const SSL *s, int idx)
4483 {
4484 return CRYPTO_get_ex_data(&s->ex_data, idx);
4485 }
4486
4487 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4488 {
4489 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4490 }
4491
4492 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4493 {
4494 return CRYPTO_get_ex_data(&s->ex_data, idx);
4495 }
4496
4497 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4498 {
4499 return ctx->cert_store;
4500 }
4501
4502 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4503 {
4504 X509_STORE_free(ctx->cert_store);
4505 ctx->cert_store = store;
4506 }
4507
4508 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4509 {
4510 if (store != NULL)
4511 X509_STORE_up_ref(store);
4512 SSL_CTX_set_cert_store(ctx, store);
4513 }
4514
4515 int SSL_want(const SSL *s)
4516 {
4517 return s->rwstate;
4518 }
4519
4520 #ifndef OPENSSL_NO_PSK
4521 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4522 {
4523 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4524 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4525 return 0;
4526 }
4527 OPENSSL_free(ctx->cert->psk_identity_hint);
4528 if (identity_hint != NULL) {
4529 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4530 if (ctx->cert->psk_identity_hint == NULL)
4531 return 0;
4532 } else
4533 ctx->cert->psk_identity_hint = NULL;
4534 return 1;
4535 }
4536
4537 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4538 {
4539 if (s == NULL)
4540 return 0;
4541
4542 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4543 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4544 return 0;
4545 }
4546 OPENSSL_free(s->cert->psk_identity_hint);
4547 if (identity_hint != NULL) {
4548 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4549 if (s->cert->psk_identity_hint == NULL)
4550 return 0;
4551 } else
4552 s->cert->psk_identity_hint = NULL;
4553 return 1;
4554 }
4555
4556 const char *SSL_get_psk_identity_hint(const SSL *s)
4557 {
4558 if (s == NULL || s->session == NULL)
4559 return NULL;
4560 return s->session->psk_identity_hint;
4561 }
4562
4563 const char *SSL_get_psk_identity(const SSL *s)
4564 {
4565 if (s == NULL || s->session == NULL)
4566 return NULL;
4567 return s->session->psk_identity;
4568 }
4569
4570 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4571 {
4572 s->psk_client_callback = cb;
4573 }
4574
4575 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4576 {
4577 ctx->psk_client_callback = cb;
4578 }
4579
4580 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4581 {
4582 s->psk_server_callback = cb;
4583 }
4584
4585 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4586 {
4587 ctx->psk_server_callback = cb;
4588 }
4589 #endif
4590
4591 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4592 {
4593 s->psk_find_session_cb = cb;
4594 }
4595
4596 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4597 SSL_psk_find_session_cb_func cb)
4598 {
4599 ctx->psk_find_session_cb = cb;
4600 }
4601
4602 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4603 {
4604 s->psk_use_session_cb = cb;
4605 }
4606
4607 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4608 SSL_psk_use_session_cb_func cb)
4609 {
4610 ctx->psk_use_session_cb = cb;
4611 }
4612
4613 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4614 void (*cb) (int write_p, int version,
4615 int content_type, const void *buf,
4616 size_t len, SSL *ssl, void *arg))
4617 {
4618 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4619 }
4620
4621 void SSL_set_msg_callback(SSL *ssl,
4622 void (*cb) (int write_p, int version,
4623 int content_type, const void *buf,
4624 size_t len, SSL *ssl, void *arg))
4625 {
4626 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4627 }
4628
4629 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4630 int (*cb) (SSL *ssl,
4631 int
4632 is_forward_secure))
4633 {
4634 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4635 (void (*)(void))cb);
4636 }
4637
4638 void SSL_set_not_resumable_session_callback(SSL *ssl,
4639 int (*cb) (SSL *ssl,
4640 int is_forward_secure))
4641 {
4642 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4643 (void (*)(void))cb);
4644 }
4645
4646 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4647 size_t (*cb) (SSL *ssl, int type,
4648 size_t len, void *arg))
4649 {
4650 ctx->record_padding_cb = cb;
4651 }
4652
4653 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4654 {
4655 ctx->record_padding_arg = arg;
4656 }
4657
4658 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4659 {
4660 return ctx->record_padding_arg;
4661 }
4662
4663 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4664 {
4665 /* block size of 0 or 1 is basically no padding */
4666 if (block_size == 1)
4667 ctx->block_padding = 0;
4668 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4669 ctx->block_padding = block_size;
4670 else
4671 return 0;
4672 return 1;
4673 }
4674
4675 int SSL_set_record_padding_callback(SSL *ssl,
4676 size_t (*cb) (SSL *ssl, int type,
4677 size_t len, void *arg))
4678 {
4679 BIO *b;
4680
4681 b = SSL_get_wbio(ssl);
4682 if (b == NULL || !BIO_get_ktls_send(b)) {
4683 ssl->record_padding_cb = cb;
4684 return 1;
4685 }
4686 return 0;
4687 }
4688
4689 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4690 {
4691 ssl->record_padding_arg = arg;
4692 }
4693
4694 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4695 {
4696 return ssl->record_padding_arg;
4697 }
4698
4699 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4700 {
4701 /* block size of 0 or 1 is basically no padding */
4702 if (block_size == 1)
4703 ssl->block_padding = 0;
4704 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4705 ssl->block_padding = block_size;
4706 else
4707 return 0;
4708 return 1;
4709 }
4710
4711 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4712 {
4713 s->num_tickets = num_tickets;
4714
4715 return 1;
4716 }
4717
4718 size_t SSL_get_num_tickets(const SSL *s)
4719 {
4720 return s->num_tickets;
4721 }
4722
4723 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4724 {
4725 ctx->num_tickets = num_tickets;
4726
4727 return 1;
4728 }
4729
4730 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4731 {
4732 return ctx->num_tickets;
4733 }
4734
4735 /*
4736 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4737 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4738 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4739 * Returns the newly allocated ctx;
4740 */
4741
4742 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4743 {
4744 ssl_clear_hash_ctx(hash);
4745 *hash = EVP_MD_CTX_new();
4746 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4747 EVP_MD_CTX_free(*hash);
4748 *hash = NULL;
4749 return NULL;
4750 }
4751 return *hash;
4752 }
4753
4754 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4755 {
4756
4757 EVP_MD_CTX_free(*hash);
4758 *hash = NULL;
4759 }
4760
4761 /* Retrieve handshake hashes */
4762 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4763 size_t *hashlen)
4764 {
4765 EVP_MD_CTX *ctx = NULL;
4766 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4767 int hashleni = EVP_MD_CTX_get_size(hdgst);
4768 int ret = 0;
4769
4770 if (hashleni < 0 || (size_t)hashleni > outlen) {
4771 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4772 goto err;
4773 }
4774
4775 ctx = EVP_MD_CTX_new();
4776 if (ctx == NULL)
4777 goto err;
4778
4779 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4780 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4781 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4782 goto err;
4783 }
4784
4785 *hashlen = hashleni;
4786
4787 ret = 1;
4788 err:
4789 EVP_MD_CTX_free(ctx);
4790 return ret;
4791 }
4792
4793 int SSL_session_reused(const SSL *s)
4794 {
4795 return s->hit;
4796 }
4797
4798 int SSL_is_server(const SSL *s)
4799 {
4800 return s->server;
4801 }
4802
4803 #ifndef OPENSSL_NO_DEPRECATED_1_1_0
4804 void SSL_set_debug(SSL *s, int debug)
4805 {
4806 /* Old function was do-nothing anyway... */
4807 (void)s;
4808 (void)debug;
4809 }
4810 #endif
4811
4812 void SSL_set_security_level(SSL *s, int level)
4813 {
4814 s->cert->sec_level = level;
4815 }
4816
4817 int SSL_get_security_level(const SSL *s)
4818 {
4819 return s->cert->sec_level;
4820 }
4821
4822 void SSL_set_security_callback(SSL *s,
4823 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4824 int op, int bits, int nid,
4825 void *other, void *ex))
4826 {
4827 s->cert->sec_cb = cb;
4828 }
4829
4830 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4831 const SSL_CTX *ctx, int op,
4832 int bits, int nid, void *other,
4833 void *ex) {
4834 return s->cert->sec_cb;
4835 }
4836
4837 void SSL_set0_security_ex_data(SSL *s, void *ex)
4838 {
4839 s->cert->sec_ex = ex;
4840 }
4841
4842 void *SSL_get0_security_ex_data(const SSL *s)
4843 {
4844 return s->cert->sec_ex;
4845 }
4846
4847 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4848 {
4849 ctx->cert->sec_level = level;
4850 }
4851
4852 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4853 {
4854 return ctx->cert->sec_level;
4855 }
4856
4857 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4858 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4859 int op, int bits, int nid,
4860 void *other, void *ex))
4861 {
4862 ctx->cert->sec_cb = cb;
4863 }
4864
4865 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4866 const SSL_CTX *ctx,
4867 int op, int bits,
4868 int nid,
4869 void *other,
4870 void *ex) {
4871 return ctx->cert->sec_cb;
4872 }
4873
4874 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4875 {
4876 ctx->cert->sec_ex = ex;
4877 }
4878
4879 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4880 {
4881 return ctx->cert->sec_ex;
4882 }
4883
4884 uint64_t SSL_CTX_get_options(const SSL_CTX *ctx)
4885 {
4886 return ctx->options;
4887 }
4888
4889 uint64_t SSL_get_options(const SSL *s)
4890 {
4891 return s->options;
4892 }
4893
4894 uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op)
4895 {
4896 return ctx->options |= op;
4897 }
4898
4899 uint64_t SSL_set_options(SSL *s, uint64_t op)
4900 {
4901 return s->options |= op;
4902 }
4903
4904 uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op)
4905 {
4906 return ctx->options &= ~op;
4907 }
4908
4909 uint64_t SSL_clear_options(SSL *s, uint64_t op)
4910 {
4911 return s->options &= ~op;
4912 }
4913
4914 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4915 {
4916 return s->verified_chain;
4917 }
4918
4919 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4920
4921 #ifndef OPENSSL_NO_CT
4922
4923 /*
4924 * Moves SCTs from the |src| stack to the |dst| stack.
4925 * The source of each SCT will be set to |origin|.
4926 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4927 * the caller.
4928 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4929 */
4930 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4931 sct_source_t origin)
4932 {
4933 int scts_moved = 0;
4934 SCT *sct = NULL;
4935
4936 if (*dst == NULL) {
4937 *dst = sk_SCT_new_null();
4938 if (*dst == NULL) {
4939 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
4940 goto err;
4941 }
4942 }
4943
4944 while ((sct = sk_SCT_pop(src)) != NULL) {
4945 if (SCT_set_source(sct, origin) != 1)
4946 goto err;
4947
4948 if (sk_SCT_push(*dst, sct) <= 0)
4949 goto err;
4950 scts_moved += 1;
4951 }
4952
4953 return scts_moved;
4954 err:
4955 if (sct != NULL)
4956 sk_SCT_push(src, sct); /* Put the SCT back */
4957 return -1;
4958 }
4959
4960 /*
4961 * Look for data collected during ServerHello and parse if found.
4962 * Returns the number of SCTs extracted.
4963 */
4964 static int ct_extract_tls_extension_scts(SSL *s)
4965 {
4966 int scts_extracted = 0;
4967
4968 if (s->ext.scts != NULL) {
4969 const unsigned char *p = s->ext.scts;
4970 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4971
4972 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4973
4974 SCT_LIST_free(scts);
4975 }
4976
4977 return scts_extracted;
4978 }
4979
4980 /*
4981 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4982 * contains an SCT X509 extension. They will be stored in |s->scts|.
4983 * Returns:
4984 * - The number of SCTs extracted, assuming an OCSP response exists.
4985 * - 0 if no OCSP response exists or it contains no SCTs.
4986 * - A negative integer if an error occurs.
4987 */
4988 static int ct_extract_ocsp_response_scts(SSL *s)
4989 {
4990 # ifndef OPENSSL_NO_OCSP
4991 int scts_extracted = 0;
4992 const unsigned char *p;
4993 OCSP_BASICRESP *br = NULL;
4994 OCSP_RESPONSE *rsp = NULL;
4995 STACK_OF(SCT) *scts = NULL;
4996 int i;
4997
4998 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4999 goto err;
5000
5001 p = s->ext.ocsp.resp;
5002 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
5003 if (rsp == NULL)
5004 goto err;
5005
5006 br = OCSP_response_get1_basic(rsp);
5007 if (br == NULL)
5008 goto err;
5009
5010 for (i = 0; i < OCSP_resp_count(br); ++i) {
5011 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
5012
5013 if (single == NULL)
5014 continue;
5015
5016 scts =
5017 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
5018 scts_extracted =
5019 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
5020 if (scts_extracted < 0)
5021 goto err;
5022 }
5023 err:
5024 SCT_LIST_free(scts);
5025 OCSP_BASICRESP_free(br);
5026 OCSP_RESPONSE_free(rsp);
5027 return scts_extracted;
5028 # else
5029 /* Behave as if no OCSP response exists */
5030 return 0;
5031 # endif
5032 }
5033
5034 /*
5035 * Attempts to extract SCTs from the peer certificate.
5036 * Return the number of SCTs extracted, or a negative integer if an error
5037 * occurs.
5038 */
5039 static int ct_extract_x509v3_extension_scts(SSL *s)
5040 {
5041 int scts_extracted = 0;
5042 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5043
5044 if (cert != NULL) {
5045 STACK_OF(SCT) *scts =
5046 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
5047
5048 scts_extracted =
5049 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
5050
5051 SCT_LIST_free(scts);
5052 }
5053
5054 return scts_extracted;
5055 }
5056
5057 /*
5058 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
5059 * response (if it exists) and X509v3 extensions in the certificate.
5060 * Returns NULL if an error occurs.
5061 */
5062 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
5063 {
5064 if (!s->scts_parsed) {
5065 if (ct_extract_tls_extension_scts(s) < 0 ||
5066 ct_extract_ocsp_response_scts(s) < 0 ||
5067 ct_extract_x509v3_extension_scts(s) < 0)
5068 goto err;
5069
5070 s->scts_parsed = 1;
5071 }
5072 return s->scts;
5073 err:
5074 return NULL;
5075 }
5076
5077 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
5078 const STACK_OF(SCT) *scts, void *unused_arg)
5079 {
5080 return 1;
5081 }
5082
5083 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
5084 const STACK_OF(SCT) *scts, void *unused_arg)
5085 {
5086 int count = scts != NULL ? sk_SCT_num(scts) : 0;
5087 int i;
5088
5089 for (i = 0; i < count; ++i) {
5090 SCT *sct = sk_SCT_value(scts, i);
5091 int status = SCT_get_validation_status(sct);
5092
5093 if (status == SCT_VALIDATION_STATUS_VALID)
5094 return 1;
5095 }
5096 ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS);
5097 return 0;
5098 }
5099
5100 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
5101 void *arg)
5102 {
5103 /*
5104 * Since code exists that uses the custom extension handler for CT, look
5105 * for this and throw an error if they have already registered to use CT.
5106 */
5107 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
5108 TLSEXT_TYPE_signed_certificate_timestamp))
5109 {
5110 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5111 return 0;
5112 }
5113
5114 if (callback != NULL) {
5115 /*
5116 * If we are validating CT, then we MUST accept SCTs served via OCSP
5117 */
5118 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
5119 return 0;
5120 }
5121
5122 s->ct_validation_callback = callback;
5123 s->ct_validation_callback_arg = arg;
5124
5125 return 1;
5126 }
5127
5128 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
5129 ssl_ct_validation_cb callback, void *arg)
5130 {
5131 /*
5132 * Since code exists that uses the custom extension handler for CT, look for
5133 * this and throw an error if they have already registered to use CT.
5134 */
5135 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
5136 TLSEXT_TYPE_signed_certificate_timestamp))
5137 {
5138 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5139 return 0;
5140 }
5141
5142 ctx->ct_validation_callback = callback;
5143 ctx->ct_validation_callback_arg = arg;
5144 return 1;
5145 }
5146
5147 int SSL_ct_is_enabled(const SSL *s)
5148 {
5149 return s->ct_validation_callback != NULL;
5150 }
5151
5152 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
5153 {
5154 return ctx->ct_validation_callback != NULL;
5155 }
5156
5157 int ssl_validate_ct(SSL *s)
5158 {
5159 int ret = 0;
5160 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5161 X509 *issuer;
5162 SSL_DANE *dane = &s->dane;
5163 CT_POLICY_EVAL_CTX *ctx = NULL;
5164 const STACK_OF(SCT) *scts;
5165
5166 /*
5167 * If no callback is set, the peer is anonymous, or its chain is invalid,
5168 * skip SCT validation - just return success. Applications that continue
5169 * handshakes without certificates, with unverified chains, or pinned leaf
5170 * certificates are outside the scope of the WebPKI and CT.
5171 *
5172 * The above exclusions notwithstanding the vast majority of peers will
5173 * have rather ordinary certificate chains validated by typical
5174 * applications that perform certificate verification and therefore will
5175 * process SCTs when enabled.
5176 */
5177 if (s->ct_validation_callback == NULL || cert == NULL ||
5178 s->verify_result != X509_V_OK ||
5179 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5180 return 1;
5181
5182 /*
5183 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5184 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5185 */
5186 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5187 switch (dane->mtlsa->usage) {
5188 case DANETLS_USAGE_DANE_TA:
5189 case DANETLS_USAGE_DANE_EE:
5190 return 1;
5191 }
5192 }
5193
5194 ctx = CT_POLICY_EVAL_CTX_new_ex(s->ctx->libctx, s->ctx->propq);
5195 if (ctx == NULL) {
5196 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5197 goto end;
5198 }
5199
5200 issuer = sk_X509_value(s->verified_chain, 1);
5201 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5202 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5203 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5204 CT_POLICY_EVAL_CTX_set_time(
5205 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5206
5207 scts = SSL_get0_peer_scts(s);
5208
5209 /*
5210 * This function returns success (> 0) only when all the SCTs are valid, 0
5211 * when some are invalid, and < 0 on various internal errors (out of
5212 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5213 * reason to abort the handshake, that decision is up to the callback.
5214 * Therefore, we error out only in the unexpected case that the return
5215 * value is negative.
5216 *
5217 * XXX: One might well argue that the return value of this function is an
5218 * unfortunate design choice. Its job is only to determine the validation
5219 * status of each of the provided SCTs. So long as it correctly separates
5220 * the wheat from the chaff it should return success. Failure in this case
5221 * ought to correspond to an inability to carry out its duties.
5222 */
5223 if (SCT_LIST_validate(scts, ctx) < 0) {
5224 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED);
5225 goto end;
5226 }
5227
5228 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5229 if (ret < 0)
5230 ret = 0; /* This function returns 0 on failure */
5231 if (!ret)
5232 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED);
5233
5234 end:
5235 CT_POLICY_EVAL_CTX_free(ctx);
5236 /*
5237 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5238 * failure return code here. Also the application may wish the complete
5239 * the handshake, and then disconnect cleanly at a higher layer, after
5240 * checking the verification status of the completed connection.
5241 *
5242 * We therefore force a certificate verification failure which will be
5243 * visible via SSL_get_verify_result() and cached as part of any resumed
5244 * session.
5245 *
5246 * Note: the permissive callback is for information gathering only, always
5247 * returns success, and does not affect verification status. Only the
5248 * strict callback or a custom application-specified callback can trigger
5249 * connection failure or record a verification error.
5250 */
5251 if (ret <= 0)
5252 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5253 return ret;
5254 }
5255
5256 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5257 {
5258 switch (validation_mode) {
5259 default:
5260 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5261 return 0;
5262 case SSL_CT_VALIDATION_PERMISSIVE:
5263 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5264 case SSL_CT_VALIDATION_STRICT:
5265 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5266 }
5267 }
5268
5269 int SSL_enable_ct(SSL *s, int validation_mode)
5270 {
5271 switch (validation_mode) {
5272 default:
5273 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5274 return 0;
5275 case SSL_CT_VALIDATION_PERMISSIVE:
5276 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5277 case SSL_CT_VALIDATION_STRICT:
5278 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5279 }
5280 }
5281
5282 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5283 {
5284 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5285 }
5286
5287 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5288 {
5289 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5290 }
5291
5292 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5293 {
5294 CTLOG_STORE_free(ctx->ctlog_store);
5295 ctx->ctlog_store = logs;
5296 }
5297
5298 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5299 {
5300 return ctx->ctlog_store;
5301 }
5302
5303 #endif /* OPENSSL_NO_CT */
5304
5305 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5306 void *arg)
5307 {
5308 c->client_hello_cb = cb;
5309 c->client_hello_cb_arg = arg;
5310 }
5311
5312 int SSL_client_hello_isv2(SSL *s)
5313 {
5314 if (s->clienthello == NULL)
5315 return 0;
5316 return s->clienthello->isv2;
5317 }
5318
5319 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5320 {
5321 if (s->clienthello == NULL)
5322 return 0;
5323 return s->clienthello->legacy_version;
5324 }
5325
5326 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5327 {
5328 if (s->clienthello == NULL)
5329 return 0;
5330 if (out != NULL)
5331 *out = s->clienthello->random;
5332 return SSL3_RANDOM_SIZE;
5333 }
5334
5335 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5336 {
5337 if (s->clienthello == NULL)
5338 return 0;
5339 if (out != NULL)
5340 *out = s->clienthello->session_id;
5341 return s->clienthello->session_id_len;
5342 }
5343
5344 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5345 {
5346 if (s->clienthello == NULL)
5347 return 0;
5348 if (out != NULL)
5349 *out = PACKET_data(&s->clienthello->ciphersuites);
5350 return PACKET_remaining(&s->clienthello->ciphersuites);
5351 }
5352
5353 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5354 {
5355 if (s->clienthello == NULL)
5356 return 0;
5357 if (out != NULL)
5358 *out = s->clienthello->compressions;
5359 return s->clienthello->compressions_len;
5360 }
5361
5362 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5363 {
5364 RAW_EXTENSION *ext;
5365 int *present;
5366 size_t num = 0, i;
5367
5368 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5369 return 0;
5370 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5371 ext = s->clienthello->pre_proc_exts + i;
5372 if (ext->present)
5373 num++;
5374 }
5375 if (num == 0) {
5376 *out = NULL;
5377 *outlen = 0;
5378 return 1;
5379 }
5380 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5381 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5382 return 0;
5383 }
5384 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5385 ext = s->clienthello->pre_proc_exts + i;
5386 if (ext->present) {
5387 if (ext->received_order >= num)
5388 goto err;
5389 present[ext->received_order] = ext->type;
5390 }
5391 }
5392 *out = present;
5393 *outlen = num;
5394 return 1;
5395 err:
5396 OPENSSL_free(present);
5397 return 0;
5398 }
5399
5400 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5401 size_t *outlen)
5402 {
5403 size_t i;
5404 RAW_EXTENSION *r;
5405
5406 if (s->clienthello == NULL)
5407 return 0;
5408 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5409 r = s->clienthello->pre_proc_exts + i;
5410 if (r->present && r->type == type) {
5411 if (out != NULL)
5412 *out = PACKET_data(&r->data);
5413 if (outlen != NULL)
5414 *outlen = PACKET_remaining(&r->data);
5415 return 1;
5416 }
5417 }
5418 return 0;
5419 }
5420
5421 int SSL_free_buffers(SSL *ssl)
5422 {
5423 RECORD_LAYER *rl = &ssl->rlayer;
5424
5425 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5426 return 0;
5427
5428 RECORD_LAYER_release(rl);
5429 return 1;
5430 }
5431
5432 int SSL_alloc_buffers(SSL *ssl)
5433 {
5434 return ssl3_setup_buffers(ssl);
5435 }
5436
5437 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5438 {
5439 ctx->keylog_callback = cb;
5440 }
5441
5442 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5443 {
5444 return ctx->keylog_callback;
5445 }
5446
5447 static int nss_keylog_int(const char *prefix,
5448 SSL *ssl,
5449 const uint8_t *parameter_1,
5450 size_t parameter_1_len,
5451 const uint8_t *parameter_2,
5452 size_t parameter_2_len)
5453 {
5454 char *out = NULL;
5455 char *cursor = NULL;
5456 size_t out_len = 0;
5457 size_t i;
5458 size_t prefix_len;
5459
5460 if (ssl->ctx->keylog_callback == NULL)
5461 return 1;
5462
5463 /*
5464 * Our output buffer will contain the following strings, rendered with
5465 * space characters in between, terminated by a NULL character: first the
5466 * prefix, then the first parameter, then the second parameter. The
5467 * meaning of each parameter depends on the specific key material being
5468 * logged. Note that the first and second parameters are encoded in
5469 * hexadecimal, so we need a buffer that is twice their lengths.
5470 */
5471 prefix_len = strlen(prefix);
5472 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5473 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5474 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5475 return 0;
5476 }
5477
5478 strcpy(cursor, prefix);
5479 cursor += prefix_len;
5480 *cursor++ = ' ';
5481
5482 for (i = 0; i < parameter_1_len; i++) {
5483 sprintf(cursor, "%02x", parameter_1[i]);
5484 cursor += 2;
5485 }
5486 *cursor++ = ' ';
5487
5488 for (i = 0; i < parameter_2_len; i++) {
5489 sprintf(cursor, "%02x", parameter_2[i]);
5490 cursor += 2;
5491 }
5492 *cursor = '\0';
5493
5494 ssl->ctx->keylog_callback(ssl, (const char *)out);
5495 OPENSSL_clear_free(out, out_len);
5496 return 1;
5497
5498 }
5499
5500 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5501 const uint8_t *encrypted_premaster,
5502 size_t encrypted_premaster_len,
5503 const uint8_t *premaster,
5504 size_t premaster_len)
5505 {
5506 if (encrypted_premaster_len < 8) {
5507 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5508 return 0;
5509 }
5510
5511 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5512 return nss_keylog_int("RSA",
5513 ssl,
5514 encrypted_premaster,
5515 8,
5516 premaster,
5517 premaster_len);
5518 }
5519
5520 int ssl_log_secret(SSL *ssl,
5521 const char *label,
5522 const uint8_t *secret,
5523 size_t secret_len)
5524 {
5525 return nss_keylog_int(label,
5526 ssl,
5527 ssl->s3.client_random,
5528 SSL3_RANDOM_SIZE,
5529 secret,
5530 secret_len);
5531 }
5532
5533 #define SSLV2_CIPHER_LEN 3
5534
5535 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5536 {
5537 int n;
5538
5539 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5540
5541 if (PACKET_remaining(cipher_suites) == 0) {
5542 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5543 return 0;
5544 }
5545
5546 if (PACKET_remaining(cipher_suites) % n != 0) {
5547 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5548 return 0;
5549 }
5550
5551 OPENSSL_free(s->s3.tmp.ciphers_raw);
5552 s->s3.tmp.ciphers_raw = NULL;
5553 s->s3.tmp.ciphers_rawlen = 0;
5554
5555 if (sslv2format) {
5556 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5557 PACKET sslv2ciphers = *cipher_suites;
5558 unsigned int leadbyte;
5559 unsigned char *raw;
5560
5561 /*
5562 * We store the raw ciphers list in SSLv3+ format so we need to do some
5563 * preprocessing to convert the list first. If there are any SSLv2 only
5564 * ciphersuites with a non-zero leading byte then we are going to
5565 * slightly over allocate because we won't store those. But that isn't a
5566 * problem.
5567 */
5568 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5569 s->s3.tmp.ciphers_raw = raw;
5570 if (raw == NULL) {
5571 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5572 return 0;
5573 }
5574 for (s->s3.tmp.ciphers_rawlen = 0;
5575 PACKET_remaining(&sslv2ciphers) > 0;
5576 raw += TLS_CIPHER_LEN) {
5577 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5578 || (leadbyte == 0
5579 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5580 TLS_CIPHER_LEN))
5581 || (leadbyte != 0
5582 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5583 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET);
5584 OPENSSL_free(s->s3.tmp.ciphers_raw);
5585 s->s3.tmp.ciphers_raw = NULL;
5586 s->s3.tmp.ciphers_rawlen = 0;
5587 return 0;
5588 }
5589 if (leadbyte == 0)
5590 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5591 }
5592 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5593 &s->s3.tmp.ciphers_rawlen)) {
5594 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5595 return 0;
5596 }
5597 return 1;
5598 }
5599
5600 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5601 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5602 STACK_OF(SSL_CIPHER) **scsvs)
5603 {
5604 PACKET pkt;
5605
5606 if (!PACKET_buf_init(&pkt, bytes, len))
5607 return 0;
5608 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5609 }
5610
5611 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5612 STACK_OF(SSL_CIPHER) **skp,
5613 STACK_OF(SSL_CIPHER) **scsvs_out,
5614 int sslv2format, int fatal)
5615 {
5616 const SSL_CIPHER *c;
5617 STACK_OF(SSL_CIPHER) *sk = NULL;
5618 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5619 int n;
5620 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5621 unsigned char cipher[SSLV2_CIPHER_LEN];
5622
5623 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5624
5625 if (PACKET_remaining(cipher_suites) == 0) {
5626 if (fatal)
5627 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5628 else
5629 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED);
5630 return 0;
5631 }
5632
5633 if (PACKET_remaining(cipher_suites) % n != 0) {
5634 if (fatal)
5635 SSLfatal(s, SSL_AD_DECODE_ERROR,
5636 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5637 else
5638 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5639 return 0;
5640 }
5641
5642 sk = sk_SSL_CIPHER_new_null();
5643 scsvs = sk_SSL_CIPHER_new_null();
5644 if (sk == NULL || scsvs == NULL) {
5645 if (fatal)
5646 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5647 else
5648 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5649 goto err;
5650 }
5651
5652 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5653 /*
5654 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5655 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5656 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5657 */
5658 if (sslv2format && cipher[0] != '\0')
5659 continue;
5660
5661 /* For SSLv2-compat, ignore leading 0-byte. */
5662 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5663 if (c != NULL) {
5664 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5665 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5666 if (fatal)
5667 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5668 else
5669 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5670 goto err;
5671 }
5672 }
5673 }
5674 if (PACKET_remaining(cipher_suites) > 0) {
5675 if (fatal)
5676 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH);
5677 else
5678 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
5679 goto err;
5680 }
5681
5682 if (skp != NULL)
5683 *skp = sk;
5684 else
5685 sk_SSL_CIPHER_free(sk);
5686 if (scsvs_out != NULL)
5687 *scsvs_out = scsvs;
5688 else
5689 sk_SSL_CIPHER_free(scsvs);
5690 return 1;
5691 err:
5692 sk_SSL_CIPHER_free(sk);
5693 sk_SSL_CIPHER_free(scsvs);
5694 return 0;
5695 }
5696
5697 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5698 {
5699 ctx->max_early_data = max_early_data;
5700
5701 return 1;
5702 }
5703
5704 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5705 {
5706 return ctx->max_early_data;
5707 }
5708
5709 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5710 {
5711 s->max_early_data = max_early_data;
5712
5713 return 1;
5714 }
5715
5716 uint32_t SSL_get_max_early_data(const SSL *s)
5717 {
5718 return s->max_early_data;
5719 }
5720
5721 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5722 {
5723 ctx->recv_max_early_data = recv_max_early_data;
5724
5725 return 1;
5726 }
5727
5728 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5729 {
5730 return ctx->recv_max_early_data;
5731 }
5732
5733 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5734 {
5735 s->recv_max_early_data = recv_max_early_data;
5736
5737 return 1;
5738 }
5739
5740 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5741 {
5742 return s->recv_max_early_data;
5743 }
5744
5745 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5746 {
5747 /* Return any active Max Fragment Len extension */
5748 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5749 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5750
5751 /* return current SSL connection setting */
5752 return ssl->max_send_fragment;
5753 }
5754
5755 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5756 {
5757 /* Return a value regarding an active Max Fragment Len extension */
5758 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5759 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5760 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5761
5762 /* else limit |split_send_fragment| to current |max_send_fragment| */
5763 if (ssl->split_send_fragment > ssl->max_send_fragment)
5764 return ssl->max_send_fragment;
5765
5766 /* return current SSL connection setting */
5767 return ssl->split_send_fragment;
5768 }
5769
5770 int SSL_stateless(SSL *s)
5771 {
5772 int ret;
5773
5774 /* Ensure there is no state left over from a previous invocation */
5775 if (!SSL_clear(s))
5776 return 0;
5777
5778 ERR_clear_error();
5779
5780 s->s3.flags |= TLS1_FLAGS_STATELESS;
5781 ret = SSL_accept(s);
5782 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5783
5784 if (ret > 0 && s->ext.cookieok)
5785 return 1;
5786
5787 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5788 return 0;
5789
5790 return -1;
5791 }
5792
5793 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5794 {
5795 ctx->pha_enabled = val;
5796 }
5797
5798 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5799 {
5800 ssl->pha_enabled = val;
5801 }
5802
5803 int SSL_verify_client_post_handshake(SSL *ssl)
5804 {
5805 if (!SSL_IS_TLS13(ssl)) {
5806 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
5807 return 0;
5808 }
5809 if (!ssl->server) {
5810 ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER);
5811 return 0;
5812 }
5813
5814 if (!SSL_is_init_finished(ssl)) {
5815 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
5816 return 0;
5817 }
5818
5819 switch (ssl->post_handshake_auth) {
5820 case SSL_PHA_NONE:
5821 ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED);
5822 return 0;
5823 default:
5824 case SSL_PHA_EXT_SENT:
5825 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
5826 return 0;
5827 case SSL_PHA_EXT_RECEIVED:
5828 break;
5829 case SSL_PHA_REQUEST_PENDING:
5830 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING);
5831 return 0;
5832 case SSL_PHA_REQUESTED:
5833 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT);
5834 return 0;
5835 }
5836
5837 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5838
5839 /* checks verify_mode and algorithm_auth */
5840 if (!send_certificate_request(ssl)) {
5841 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5842 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG);
5843 return 0;
5844 }
5845
5846 ossl_statem_set_in_init(ssl, 1);
5847 return 1;
5848 }
5849
5850 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5851 SSL_CTX_generate_session_ticket_fn gen_cb,
5852 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5853 void *arg)
5854 {
5855 ctx->generate_ticket_cb = gen_cb;
5856 ctx->decrypt_ticket_cb = dec_cb;
5857 ctx->ticket_cb_data = arg;
5858 return 1;
5859 }
5860
5861 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5862 SSL_allow_early_data_cb_fn cb,
5863 void *arg)
5864 {
5865 ctx->allow_early_data_cb = cb;
5866 ctx->allow_early_data_cb_data = arg;
5867 }
5868
5869 void SSL_set_allow_early_data_cb(SSL *s,
5870 SSL_allow_early_data_cb_fn cb,
5871 void *arg)
5872 {
5873 s->allow_early_data_cb = cb;
5874 s->allow_early_data_cb_data = arg;
5875 }
5876
5877 const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx,
5878 int nid,
5879 const char *properties)
5880 {
5881 const EVP_CIPHER *ciph;
5882
5883 ciph = tls_get_cipher_from_engine(nid);
5884 if (ciph != NULL)
5885 return ciph;
5886
5887 /*
5888 * If there is no engine cipher then we do an explicit fetch. This may fail
5889 * and that could be ok
5890 */
5891 ERR_set_mark();
5892 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties);
5893 ERR_pop_to_mark();
5894 return ciph;
5895 }
5896
5897
5898 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher)
5899 {
5900 /* Don't up-ref an implicit EVP_CIPHER */
5901 if (EVP_CIPHER_get0_provider(cipher) == NULL)
5902 return 1;
5903
5904 /*
5905 * The cipher was explicitly fetched and therefore it is safe to cast
5906 * away the const
5907 */
5908 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher);
5909 }
5910
5911 void ssl_evp_cipher_free(const EVP_CIPHER *cipher)
5912 {
5913 if (cipher == NULL)
5914 return;
5915
5916 if (EVP_CIPHER_get0_provider(cipher) != NULL) {
5917 /*
5918 * The cipher was explicitly fetched and therefore it is safe to cast
5919 * away the const
5920 */
5921 EVP_CIPHER_free((EVP_CIPHER *)cipher);
5922 }
5923 }
5924
5925 const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx,
5926 int nid,
5927 const char *properties)
5928 {
5929 const EVP_MD *md;
5930
5931 md = tls_get_digest_from_engine(nid);
5932 if (md != NULL)
5933 return md;
5934
5935 /* Otherwise we do an explicit fetch */
5936 ERR_set_mark();
5937 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties);
5938 ERR_pop_to_mark();
5939 return md;
5940 }
5941
5942 int ssl_evp_md_up_ref(const EVP_MD *md)
5943 {
5944 /* Don't up-ref an implicit EVP_MD */
5945 if (EVP_MD_get0_provider(md) == NULL)
5946 return 1;
5947
5948 /*
5949 * The digest was explicitly fetched and therefore it is safe to cast
5950 * away the const
5951 */
5952 return EVP_MD_up_ref((EVP_MD *)md);
5953 }
5954
5955 void ssl_evp_md_free(const EVP_MD *md)
5956 {
5957 if (md == NULL)
5958 return;
5959
5960 if (EVP_MD_get0_provider(md) != NULL) {
5961 /*
5962 * The digest was explicitly fetched and therefore it is safe to cast
5963 * away the const
5964 */
5965 EVP_MD_free((EVP_MD *)md);
5966 }
5967 }
5968
5969 int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey)
5970 {
5971 if (!ssl_security(s, SSL_SECOP_TMP_DH,
5972 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
5973 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
5974 EVP_PKEY_free(dhpkey);
5975 return 0;
5976 }
5977 EVP_PKEY_free(s->cert->dh_tmp);
5978 s->cert->dh_tmp = dhpkey;
5979 return 1;
5980 }
5981
5982 int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey)
5983 {
5984 if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH,
5985 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
5986 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
5987 EVP_PKEY_free(dhpkey);
5988 return 0;
5989 }
5990 EVP_PKEY_free(ctx->cert->dh_tmp);
5991 ctx->cert->dh_tmp = dhpkey;
5992 return 1;
5993 }