]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Make the anti-replay feature optional
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/rand_drbg.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29 {
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34 }
35
36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53 }
54
55 static int ssl_undefined_function_4(SSL *ssl, int r)
56 {
57 (void)r;
58 return ssl_undefined_function(ssl);
59 }
60
61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63 {
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68 }
69
70 static int ssl_undefined_function_6(int r)
71 {
72 (void)r;
73 return ssl_undefined_function(NULL);
74 }
75
76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79 {
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88 }
89
90 SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103 };
104
105 struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115 };
116
117 static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121 } dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131 };
132
133 static int dane_ctx_enable(struct dane_ctx_st *dctx)
134 {
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170 }
171
172 static void dane_ctx_final(struct dane_ctx_st *dctx)
173 {
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180 }
181
182 static void tlsa_free(danetls_record *t)
183 {
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189 }
190
191 static void dane_final(SSL_DANE *dane)
192 {
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204 }
205
206 /*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209 static int ssl_dane_dup(SSL *to, SSL *from)
210 {
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236 }
237
238 static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240 {
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281 }
282
283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284 {
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288 }
289
290 static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned const char *data, size_t dlen)
294 {
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457 }
458
459 /*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463 static int ssl_check_allowed_versions(int min_version, int max_version)
464 {
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488 #ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491 #endif
492 #ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495 #endif
496 /* Done massaging versions; do the check. */
497 if (0
498 #ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501 #endif
502 #ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505 #endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514 #ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517 #endif
518 #ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521 #endif
522 #ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525 #endif
526 #ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529 #endif
530 #ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533 #endif
534 #ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537 #endif
538 #ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541 #endif
542 #ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545 #endif
546 /* Done massaging versions; do the check. */
547 if (0
548 #ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550 #endif
551 #ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553 #endif
554 #ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556 #endif
557 #ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562 #endif
563 )
564 return 0;
565 }
566 return 1;
567 }
568
569 static void clear_ciphers(SSL *s)
570 {
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575 }
576
577 int SSL_clear(SSL *s)
578 {
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593 s->hello_retry_request = 0;
594 s->sent_tickets = 0;
595
596 s->error = 0;
597 s->hit = 0;
598 s->shutdown = 0;
599
600 if (s->renegotiate) {
601 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
602 return 0;
603 }
604
605 ossl_statem_clear(s);
606
607 s->version = s->method->version;
608 s->client_version = s->version;
609 s->rwstate = SSL_NOTHING;
610
611 BUF_MEM_free(s->init_buf);
612 s->init_buf = NULL;
613 clear_ciphers(s);
614 s->first_packet = 0;
615
616 s->key_update = SSL_KEY_UPDATE_NONE;
617
618 EVP_MD_CTX_free(s->pha_dgst);
619 s->pha_dgst = NULL;
620
621 /* Reset DANE verification result state */
622 s->dane.mdpth = -1;
623 s->dane.pdpth = -1;
624 X509_free(s->dane.mcert);
625 s->dane.mcert = NULL;
626 s->dane.mtlsa = NULL;
627
628 /* Clear the verification result peername */
629 X509_VERIFY_PARAM_move_peername(s->param, NULL);
630
631 /*
632 * Check to see if we were changed into a different method, if so, revert
633 * back.
634 */
635 if (s->method != s->ctx->method) {
636 s->method->ssl_free(s);
637 s->method = s->ctx->method;
638 if (!s->method->ssl_new(s))
639 return 0;
640 } else {
641 if (!s->method->ssl_clear(s))
642 return 0;
643 }
644
645 RECORD_LAYER_clear(&s->rlayer);
646
647 return 1;
648 }
649
650 /** Used to change an SSL_CTXs default SSL method type */
651 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
652 {
653 STACK_OF(SSL_CIPHER) *sk;
654
655 ctx->method = meth;
656
657 sk = ssl_create_cipher_list(ctx->method,
658 ctx->tls13_ciphersuites,
659 &(ctx->cipher_list),
660 &(ctx->cipher_list_by_id),
661 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
662 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
663 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
664 return 0;
665 }
666 return 1;
667 }
668
669 SSL *SSL_new(SSL_CTX *ctx)
670 {
671 SSL *s;
672
673 if (ctx == NULL) {
674 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
675 return NULL;
676 }
677 if (ctx->method == NULL) {
678 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
679 return NULL;
680 }
681
682 s = OPENSSL_zalloc(sizeof(*s));
683 if (s == NULL)
684 goto err;
685
686 s->references = 1;
687 s->lock = CRYPTO_THREAD_lock_new();
688 if (s->lock == NULL) {
689 OPENSSL_free(s);
690 s = NULL;
691 goto err;
692 }
693
694 RECORD_LAYER_init(&s->rlayer, s);
695
696 s->options = ctx->options;
697 s->dane.flags = ctx->dane.flags;
698 s->min_proto_version = ctx->min_proto_version;
699 s->max_proto_version = ctx->max_proto_version;
700 s->mode = ctx->mode;
701 s->max_cert_list = ctx->max_cert_list;
702 s->max_early_data = ctx->max_early_data;
703 s->num_tickets = ctx->num_tickets;
704
705 /* Shallow copy of the ciphersuites stack */
706 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
707 if (s->tls13_ciphersuites == NULL)
708 goto err;
709
710 /*
711 * Earlier library versions used to copy the pointer to the CERT, not
712 * its contents; only when setting new parameters for the per-SSL
713 * copy, ssl_cert_new would be called (and the direct reference to
714 * the per-SSL_CTX settings would be lost, but those still were
715 * indirectly accessed for various purposes, and for that reason they
716 * used to be known as s->ctx->default_cert). Now we don't look at the
717 * SSL_CTX's CERT after having duplicated it once.
718 */
719 s->cert = ssl_cert_dup(ctx->cert);
720 if (s->cert == NULL)
721 goto err;
722
723 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
724 s->msg_callback = ctx->msg_callback;
725 s->msg_callback_arg = ctx->msg_callback_arg;
726 s->verify_mode = ctx->verify_mode;
727 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
728 s->record_padding_cb = ctx->record_padding_cb;
729 s->record_padding_arg = ctx->record_padding_arg;
730 s->block_padding = ctx->block_padding;
731 s->sid_ctx_length = ctx->sid_ctx_length;
732 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
733 goto err;
734 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
735 s->verify_callback = ctx->default_verify_callback;
736 s->generate_session_id = ctx->generate_session_id;
737
738 s->param = X509_VERIFY_PARAM_new();
739 if (s->param == NULL)
740 goto err;
741 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
742 s->quiet_shutdown = ctx->quiet_shutdown;
743
744 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
745 s->max_send_fragment = ctx->max_send_fragment;
746 s->split_send_fragment = ctx->split_send_fragment;
747 s->max_pipelines = ctx->max_pipelines;
748 if (s->max_pipelines > 1)
749 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
750 if (ctx->default_read_buf_len > 0)
751 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
752
753 SSL_CTX_up_ref(ctx);
754 s->ctx = ctx;
755 s->ext.debug_cb = 0;
756 s->ext.debug_arg = NULL;
757 s->ext.ticket_expected = 0;
758 s->ext.status_type = ctx->ext.status_type;
759 s->ext.status_expected = 0;
760 s->ext.ocsp.ids = NULL;
761 s->ext.ocsp.exts = NULL;
762 s->ext.ocsp.resp = NULL;
763 s->ext.ocsp.resp_len = 0;
764 SSL_CTX_up_ref(ctx);
765 s->session_ctx = ctx;
766 #ifndef OPENSSL_NO_EC
767 if (ctx->ext.ecpointformats) {
768 s->ext.ecpointformats =
769 OPENSSL_memdup(ctx->ext.ecpointformats,
770 ctx->ext.ecpointformats_len);
771 if (!s->ext.ecpointformats)
772 goto err;
773 s->ext.ecpointformats_len =
774 ctx->ext.ecpointformats_len;
775 }
776 if (ctx->ext.supportedgroups) {
777 s->ext.supportedgroups =
778 OPENSSL_memdup(ctx->ext.supportedgroups,
779 ctx->ext.supportedgroups_len
780 * sizeof(*ctx->ext.supportedgroups));
781 if (!s->ext.supportedgroups)
782 goto err;
783 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
784 }
785 #endif
786 #ifndef OPENSSL_NO_NEXTPROTONEG
787 s->ext.npn = NULL;
788 #endif
789
790 if (s->ctx->ext.alpn) {
791 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
792 if (s->ext.alpn == NULL)
793 goto err;
794 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
795 s->ext.alpn_len = s->ctx->ext.alpn_len;
796 }
797
798 s->verified_chain = NULL;
799 s->verify_result = X509_V_OK;
800
801 s->default_passwd_callback = ctx->default_passwd_callback;
802 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
803
804 s->method = ctx->method;
805
806 s->key_update = SSL_KEY_UPDATE_NONE;
807
808 if (!s->method->ssl_new(s))
809 goto err;
810
811 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
812
813 if (!SSL_clear(s))
814 goto err;
815
816 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
817 goto err;
818
819 #ifndef OPENSSL_NO_PSK
820 s->psk_client_callback = ctx->psk_client_callback;
821 s->psk_server_callback = ctx->psk_server_callback;
822 #endif
823 s->psk_find_session_cb = ctx->psk_find_session_cb;
824 s->psk_use_session_cb = ctx->psk_use_session_cb;
825
826 s->job = NULL;
827
828 #ifndef OPENSSL_NO_CT
829 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
830 ctx->ct_validation_callback_arg))
831 goto err;
832 #endif
833
834 return s;
835 err:
836 SSL_free(s);
837 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
838 return NULL;
839 }
840
841 int SSL_is_dtls(const SSL *s)
842 {
843 return SSL_IS_DTLS(s) ? 1 : 0;
844 }
845
846 int SSL_up_ref(SSL *s)
847 {
848 int i;
849
850 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
851 return 0;
852
853 REF_PRINT_COUNT("SSL", s);
854 REF_ASSERT_ISNT(i < 2);
855 return ((i > 1) ? 1 : 0);
856 }
857
858 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
859 unsigned int sid_ctx_len)
860 {
861 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
862 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
863 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
864 return 0;
865 }
866 ctx->sid_ctx_length = sid_ctx_len;
867 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
868
869 return 1;
870 }
871
872 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
873 unsigned int sid_ctx_len)
874 {
875 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
876 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
877 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
878 return 0;
879 }
880 ssl->sid_ctx_length = sid_ctx_len;
881 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
882
883 return 1;
884 }
885
886 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
887 {
888 CRYPTO_THREAD_write_lock(ctx->lock);
889 ctx->generate_session_id = cb;
890 CRYPTO_THREAD_unlock(ctx->lock);
891 return 1;
892 }
893
894 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
895 {
896 CRYPTO_THREAD_write_lock(ssl->lock);
897 ssl->generate_session_id = cb;
898 CRYPTO_THREAD_unlock(ssl->lock);
899 return 1;
900 }
901
902 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
903 unsigned int id_len)
904 {
905 /*
906 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
907 * we can "construct" a session to give us the desired check - i.e. to
908 * find if there's a session in the hash table that would conflict with
909 * any new session built out of this id/id_len and the ssl_version in use
910 * by this SSL.
911 */
912 SSL_SESSION r, *p;
913
914 if (id_len > sizeof(r.session_id))
915 return 0;
916
917 r.ssl_version = ssl->version;
918 r.session_id_length = id_len;
919 memcpy(r.session_id, id, id_len);
920
921 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
922 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
923 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
924 return (p != NULL);
925 }
926
927 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
928 {
929 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
930 }
931
932 int SSL_set_purpose(SSL *s, int purpose)
933 {
934 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
935 }
936
937 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
938 {
939 return X509_VERIFY_PARAM_set_trust(s->param, trust);
940 }
941
942 int SSL_set_trust(SSL *s, int trust)
943 {
944 return X509_VERIFY_PARAM_set_trust(s->param, trust);
945 }
946
947 int SSL_set1_host(SSL *s, const char *hostname)
948 {
949 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
950 }
951
952 int SSL_add1_host(SSL *s, const char *hostname)
953 {
954 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
955 }
956
957 void SSL_set_hostflags(SSL *s, unsigned int flags)
958 {
959 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
960 }
961
962 const char *SSL_get0_peername(SSL *s)
963 {
964 return X509_VERIFY_PARAM_get0_peername(s->param);
965 }
966
967 int SSL_CTX_dane_enable(SSL_CTX *ctx)
968 {
969 return dane_ctx_enable(&ctx->dane);
970 }
971
972 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
973 {
974 unsigned long orig = ctx->dane.flags;
975
976 ctx->dane.flags |= flags;
977 return orig;
978 }
979
980 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
981 {
982 unsigned long orig = ctx->dane.flags;
983
984 ctx->dane.flags &= ~flags;
985 return orig;
986 }
987
988 int SSL_dane_enable(SSL *s, const char *basedomain)
989 {
990 SSL_DANE *dane = &s->dane;
991
992 if (s->ctx->dane.mdmax == 0) {
993 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
994 return 0;
995 }
996 if (dane->trecs != NULL) {
997 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
998 return 0;
999 }
1000
1001 /*
1002 * Default SNI name. This rejects empty names, while set1_host below
1003 * accepts them and disables host name checks. To avoid side-effects with
1004 * invalid input, set the SNI name first.
1005 */
1006 if (s->ext.hostname == NULL) {
1007 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1008 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1009 return -1;
1010 }
1011 }
1012
1013 /* Primary RFC6125 reference identifier */
1014 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1015 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1016 return -1;
1017 }
1018
1019 dane->mdpth = -1;
1020 dane->pdpth = -1;
1021 dane->dctx = &s->ctx->dane;
1022 dane->trecs = sk_danetls_record_new_null();
1023
1024 if (dane->trecs == NULL) {
1025 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1026 return -1;
1027 }
1028 return 1;
1029 }
1030
1031 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1032 {
1033 unsigned long orig = ssl->dane.flags;
1034
1035 ssl->dane.flags |= flags;
1036 return orig;
1037 }
1038
1039 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1040 {
1041 unsigned long orig = ssl->dane.flags;
1042
1043 ssl->dane.flags &= ~flags;
1044 return orig;
1045 }
1046
1047 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1048 {
1049 SSL_DANE *dane = &s->dane;
1050
1051 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1052 return -1;
1053 if (dane->mtlsa) {
1054 if (mcert)
1055 *mcert = dane->mcert;
1056 if (mspki)
1057 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1058 }
1059 return dane->mdpth;
1060 }
1061
1062 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1063 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1064 {
1065 SSL_DANE *dane = &s->dane;
1066
1067 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1068 return -1;
1069 if (dane->mtlsa) {
1070 if (usage)
1071 *usage = dane->mtlsa->usage;
1072 if (selector)
1073 *selector = dane->mtlsa->selector;
1074 if (mtype)
1075 *mtype = dane->mtlsa->mtype;
1076 if (data)
1077 *data = dane->mtlsa->data;
1078 if (dlen)
1079 *dlen = dane->mtlsa->dlen;
1080 }
1081 return dane->mdpth;
1082 }
1083
1084 SSL_DANE *SSL_get0_dane(SSL *s)
1085 {
1086 return &s->dane;
1087 }
1088
1089 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1090 uint8_t mtype, unsigned const char *data, size_t dlen)
1091 {
1092 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1093 }
1094
1095 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1096 uint8_t ord)
1097 {
1098 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1099 }
1100
1101 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1102 {
1103 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1104 }
1105
1106 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1107 {
1108 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1109 }
1110
1111 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1112 {
1113 return ctx->param;
1114 }
1115
1116 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1117 {
1118 return ssl->param;
1119 }
1120
1121 void SSL_certs_clear(SSL *s)
1122 {
1123 ssl_cert_clear_certs(s->cert);
1124 }
1125
1126 void SSL_free(SSL *s)
1127 {
1128 int i;
1129
1130 if (s == NULL)
1131 return;
1132 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1133 REF_PRINT_COUNT("SSL", s);
1134 if (i > 0)
1135 return;
1136 REF_ASSERT_ISNT(i < 0);
1137
1138 X509_VERIFY_PARAM_free(s->param);
1139 dane_final(&s->dane);
1140 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1141
1142 /* Ignore return value */
1143 ssl_free_wbio_buffer(s);
1144
1145 BIO_free_all(s->wbio);
1146 BIO_free_all(s->rbio);
1147
1148 BUF_MEM_free(s->init_buf);
1149
1150 /* add extra stuff */
1151 sk_SSL_CIPHER_free(s->cipher_list);
1152 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1153 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1154
1155 /* Make the next call work :-) */
1156 if (s->session != NULL) {
1157 ssl_clear_bad_session(s);
1158 SSL_SESSION_free(s->session);
1159 }
1160 SSL_SESSION_free(s->psksession);
1161 OPENSSL_free(s->psksession_id);
1162
1163 clear_ciphers(s);
1164
1165 ssl_cert_free(s->cert);
1166 /* Free up if allocated */
1167
1168 OPENSSL_free(s->ext.hostname);
1169 SSL_CTX_free(s->session_ctx);
1170 #ifndef OPENSSL_NO_EC
1171 OPENSSL_free(s->ext.ecpointformats);
1172 OPENSSL_free(s->ext.supportedgroups);
1173 #endif /* OPENSSL_NO_EC */
1174 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1175 #ifndef OPENSSL_NO_OCSP
1176 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1177 #endif
1178 #ifndef OPENSSL_NO_CT
1179 SCT_LIST_free(s->scts);
1180 OPENSSL_free(s->ext.scts);
1181 #endif
1182 OPENSSL_free(s->ext.ocsp.resp);
1183 OPENSSL_free(s->ext.alpn);
1184 OPENSSL_free(s->ext.tls13_cookie);
1185 OPENSSL_free(s->clienthello);
1186 OPENSSL_free(s->pha_context);
1187 EVP_MD_CTX_free(s->pha_dgst);
1188
1189 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1190
1191 sk_X509_pop_free(s->verified_chain, X509_free);
1192
1193 if (s->method != NULL)
1194 s->method->ssl_free(s);
1195
1196 RECORD_LAYER_release(&s->rlayer);
1197
1198 SSL_CTX_free(s->ctx);
1199
1200 ASYNC_WAIT_CTX_free(s->waitctx);
1201
1202 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1203 OPENSSL_free(s->ext.npn);
1204 #endif
1205
1206 #ifndef OPENSSL_NO_SRTP
1207 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1208 #endif
1209
1210 CRYPTO_THREAD_lock_free(s->lock);
1211
1212 OPENSSL_free(s);
1213 }
1214
1215 void SSL_set0_rbio(SSL *s, BIO *rbio)
1216 {
1217 BIO_free_all(s->rbio);
1218 s->rbio = rbio;
1219 }
1220
1221 void SSL_set0_wbio(SSL *s, BIO *wbio)
1222 {
1223 /*
1224 * If the output buffering BIO is still in place, remove it
1225 */
1226 if (s->bbio != NULL)
1227 s->wbio = BIO_pop(s->wbio);
1228
1229 BIO_free_all(s->wbio);
1230 s->wbio = wbio;
1231
1232 /* Re-attach |bbio| to the new |wbio|. */
1233 if (s->bbio != NULL)
1234 s->wbio = BIO_push(s->bbio, s->wbio);
1235 }
1236
1237 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1238 {
1239 /*
1240 * For historical reasons, this function has many different cases in
1241 * ownership handling.
1242 */
1243
1244 /* If nothing has changed, do nothing */
1245 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1246 return;
1247
1248 /*
1249 * If the two arguments are equal then one fewer reference is granted by the
1250 * caller than we want to take
1251 */
1252 if (rbio != NULL && rbio == wbio)
1253 BIO_up_ref(rbio);
1254
1255 /*
1256 * If only the wbio is changed only adopt one reference.
1257 */
1258 if (rbio == SSL_get_rbio(s)) {
1259 SSL_set0_wbio(s, wbio);
1260 return;
1261 }
1262 /*
1263 * There is an asymmetry here for historical reasons. If only the rbio is
1264 * changed AND the rbio and wbio were originally different, then we only
1265 * adopt one reference.
1266 */
1267 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1268 SSL_set0_rbio(s, rbio);
1269 return;
1270 }
1271
1272 /* Otherwise, adopt both references. */
1273 SSL_set0_rbio(s, rbio);
1274 SSL_set0_wbio(s, wbio);
1275 }
1276
1277 BIO *SSL_get_rbio(const SSL *s)
1278 {
1279 return s->rbio;
1280 }
1281
1282 BIO *SSL_get_wbio(const SSL *s)
1283 {
1284 if (s->bbio != NULL) {
1285 /*
1286 * If |bbio| is active, the true caller-configured BIO is its
1287 * |next_bio|.
1288 */
1289 return BIO_next(s->bbio);
1290 }
1291 return s->wbio;
1292 }
1293
1294 int SSL_get_fd(const SSL *s)
1295 {
1296 return SSL_get_rfd(s);
1297 }
1298
1299 int SSL_get_rfd(const SSL *s)
1300 {
1301 int ret = -1;
1302 BIO *b, *r;
1303
1304 b = SSL_get_rbio(s);
1305 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1306 if (r != NULL)
1307 BIO_get_fd(r, &ret);
1308 return ret;
1309 }
1310
1311 int SSL_get_wfd(const SSL *s)
1312 {
1313 int ret = -1;
1314 BIO *b, *r;
1315
1316 b = SSL_get_wbio(s);
1317 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1318 if (r != NULL)
1319 BIO_get_fd(r, &ret);
1320 return ret;
1321 }
1322
1323 #ifndef OPENSSL_NO_SOCK
1324 int SSL_set_fd(SSL *s, int fd)
1325 {
1326 int ret = 0;
1327 BIO *bio = NULL;
1328
1329 bio = BIO_new(BIO_s_socket());
1330
1331 if (bio == NULL) {
1332 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1333 goto err;
1334 }
1335 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1336 SSL_set_bio(s, bio, bio);
1337 ret = 1;
1338 err:
1339 return ret;
1340 }
1341
1342 int SSL_set_wfd(SSL *s, int fd)
1343 {
1344 BIO *rbio = SSL_get_rbio(s);
1345
1346 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1347 || (int)BIO_get_fd(rbio, NULL) != fd) {
1348 BIO *bio = BIO_new(BIO_s_socket());
1349
1350 if (bio == NULL) {
1351 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1352 return 0;
1353 }
1354 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1355 SSL_set0_wbio(s, bio);
1356 } else {
1357 BIO_up_ref(rbio);
1358 SSL_set0_wbio(s, rbio);
1359 }
1360 return 1;
1361 }
1362
1363 int SSL_set_rfd(SSL *s, int fd)
1364 {
1365 BIO *wbio = SSL_get_wbio(s);
1366
1367 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1368 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1369 BIO *bio = BIO_new(BIO_s_socket());
1370
1371 if (bio == NULL) {
1372 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1373 return 0;
1374 }
1375 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1376 SSL_set0_rbio(s, bio);
1377 } else {
1378 BIO_up_ref(wbio);
1379 SSL_set0_rbio(s, wbio);
1380 }
1381
1382 return 1;
1383 }
1384 #endif
1385
1386 /* return length of latest Finished message we sent, copy to 'buf' */
1387 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1388 {
1389 size_t ret = 0;
1390
1391 if (s->s3 != NULL) {
1392 ret = s->s3->tmp.finish_md_len;
1393 if (count > ret)
1394 count = ret;
1395 memcpy(buf, s->s3->tmp.finish_md, count);
1396 }
1397 return ret;
1398 }
1399
1400 /* return length of latest Finished message we expected, copy to 'buf' */
1401 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1402 {
1403 size_t ret = 0;
1404
1405 if (s->s3 != NULL) {
1406 ret = s->s3->tmp.peer_finish_md_len;
1407 if (count > ret)
1408 count = ret;
1409 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1410 }
1411 return ret;
1412 }
1413
1414 int SSL_get_verify_mode(const SSL *s)
1415 {
1416 return s->verify_mode;
1417 }
1418
1419 int SSL_get_verify_depth(const SSL *s)
1420 {
1421 return X509_VERIFY_PARAM_get_depth(s->param);
1422 }
1423
1424 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1425 return s->verify_callback;
1426 }
1427
1428 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1429 {
1430 return ctx->verify_mode;
1431 }
1432
1433 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1434 {
1435 return X509_VERIFY_PARAM_get_depth(ctx->param);
1436 }
1437
1438 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1439 return ctx->default_verify_callback;
1440 }
1441
1442 void SSL_set_verify(SSL *s, int mode,
1443 int (*callback) (int ok, X509_STORE_CTX *ctx))
1444 {
1445 s->verify_mode = mode;
1446 if (callback != NULL)
1447 s->verify_callback = callback;
1448 }
1449
1450 void SSL_set_verify_depth(SSL *s, int depth)
1451 {
1452 X509_VERIFY_PARAM_set_depth(s->param, depth);
1453 }
1454
1455 void SSL_set_read_ahead(SSL *s, int yes)
1456 {
1457 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1458 }
1459
1460 int SSL_get_read_ahead(const SSL *s)
1461 {
1462 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1463 }
1464
1465 int SSL_pending(const SSL *s)
1466 {
1467 size_t pending = s->method->ssl_pending(s);
1468
1469 /*
1470 * SSL_pending cannot work properly if read-ahead is enabled
1471 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1472 * impossible to fix since SSL_pending cannot report errors that may be
1473 * observed while scanning the new data. (Note that SSL_pending() is
1474 * often used as a boolean value, so we'd better not return -1.)
1475 *
1476 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1477 * we just return INT_MAX.
1478 */
1479 return pending < INT_MAX ? (int)pending : INT_MAX;
1480 }
1481
1482 int SSL_has_pending(const SSL *s)
1483 {
1484 /*
1485 * Similar to SSL_pending() but returns a 1 to indicate that we have
1486 * unprocessed data available or 0 otherwise (as opposed to the number of
1487 * bytes available). Unlike SSL_pending() this will take into account
1488 * read_ahead data. A 1 return simply indicates that we have unprocessed
1489 * data. That data may not result in any application data, or we may fail
1490 * to parse the records for some reason.
1491 */
1492 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1493 return 1;
1494
1495 return RECORD_LAYER_read_pending(&s->rlayer);
1496 }
1497
1498 X509 *SSL_get_peer_certificate(const SSL *s)
1499 {
1500 X509 *r;
1501
1502 if ((s == NULL) || (s->session == NULL))
1503 r = NULL;
1504 else
1505 r = s->session->peer;
1506
1507 if (r == NULL)
1508 return r;
1509
1510 X509_up_ref(r);
1511
1512 return r;
1513 }
1514
1515 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1516 {
1517 STACK_OF(X509) *r;
1518
1519 if ((s == NULL) || (s->session == NULL))
1520 r = NULL;
1521 else
1522 r = s->session->peer_chain;
1523
1524 /*
1525 * If we are a client, cert_chain includes the peer's own certificate; if
1526 * we are a server, it does not.
1527 */
1528
1529 return r;
1530 }
1531
1532 /*
1533 * Now in theory, since the calling process own 't' it should be safe to
1534 * modify. We need to be able to read f without being hassled
1535 */
1536 int SSL_copy_session_id(SSL *t, const SSL *f)
1537 {
1538 int i;
1539 /* Do we need to to SSL locking? */
1540 if (!SSL_set_session(t, SSL_get_session(f))) {
1541 return 0;
1542 }
1543
1544 /*
1545 * what if we are setup for one protocol version but want to talk another
1546 */
1547 if (t->method != f->method) {
1548 t->method->ssl_free(t);
1549 t->method = f->method;
1550 if (t->method->ssl_new(t) == 0)
1551 return 0;
1552 }
1553
1554 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1555 ssl_cert_free(t->cert);
1556 t->cert = f->cert;
1557 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1558 return 0;
1559 }
1560
1561 return 1;
1562 }
1563
1564 /* Fix this so it checks all the valid key/cert options */
1565 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1566 {
1567 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1568 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1569 return 0;
1570 }
1571 if (ctx->cert->key->privatekey == NULL) {
1572 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1573 return 0;
1574 }
1575 return X509_check_private_key
1576 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1577 }
1578
1579 /* Fix this function so that it takes an optional type parameter */
1580 int SSL_check_private_key(const SSL *ssl)
1581 {
1582 if (ssl == NULL) {
1583 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1584 return 0;
1585 }
1586 if (ssl->cert->key->x509 == NULL) {
1587 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1588 return 0;
1589 }
1590 if (ssl->cert->key->privatekey == NULL) {
1591 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1592 return 0;
1593 }
1594 return X509_check_private_key(ssl->cert->key->x509,
1595 ssl->cert->key->privatekey);
1596 }
1597
1598 int SSL_waiting_for_async(SSL *s)
1599 {
1600 if (s->job)
1601 return 1;
1602
1603 return 0;
1604 }
1605
1606 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1607 {
1608 ASYNC_WAIT_CTX *ctx = s->waitctx;
1609
1610 if (ctx == NULL)
1611 return 0;
1612 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1613 }
1614
1615 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1616 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1617 {
1618 ASYNC_WAIT_CTX *ctx = s->waitctx;
1619
1620 if (ctx == NULL)
1621 return 0;
1622 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1623 numdelfds);
1624 }
1625
1626 int SSL_accept(SSL *s)
1627 {
1628 if (s->handshake_func == NULL) {
1629 /* Not properly initialized yet */
1630 SSL_set_accept_state(s);
1631 }
1632
1633 return SSL_do_handshake(s);
1634 }
1635
1636 int SSL_connect(SSL *s)
1637 {
1638 if (s->handshake_func == NULL) {
1639 /* Not properly initialized yet */
1640 SSL_set_connect_state(s);
1641 }
1642
1643 return SSL_do_handshake(s);
1644 }
1645
1646 long SSL_get_default_timeout(const SSL *s)
1647 {
1648 return s->method->get_timeout();
1649 }
1650
1651 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1652 int (*func) (void *))
1653 {
1654 int ret;
1655 if (s->waitctx == NULL) {
1656 s->waitctx = ASYNC_WAIT_CTX_new();
1657 if (s->waitctx == NULL)
1658 return -1;
1659 }
1660 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1661 sizeof(struct ssl_async_args))) {
1662 case ASYNC_ERR:
1663 s->rwstate = SSL_NOTHING;
1664 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1665 return -1;
1666 case ASYNC_PAUSE:
1667 s->rwstate = SSL_ASYNC_PAUSED;
1668 return -1;
1669 case ASYNC_NO_JOBS:
1670 s->rwstate = SSL_ASYNC_NO_JOBS;
1671 return -1;
1672 case ASYNC_FINISH:
1673 s->job = NULL;
1674 return ret;
1675 default:
1676 s->rwstate = SSL_NOTHING;
1677 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1678 /* Shouldn't happen */
1679 return -1;
1680 }
1681 }
1682
1683 static int ssl_io_intern(void *vargs)
1684 {
1685 struct ssl_async_args *args;
1686 SSL *s;
1687 void *buf;
1688 size_t num;
1689
1690 args = (struct ssl_async_args *)vargs;
1691 s = args->s;
1692 buf = args->buf;
1693 num = args->num;
1694 switch (args->type) {
1695 case READFUNC:
1696 return args->f.func_read(s, buf, num, &s->asyncrw);
1697 case WRITEFUNC:
1698 return args->f.func_write(s, buf, num, &s->asyncrw);
1699 case OTHERFUNC:
1700 return args->f.func_other(s);
1701 }
1702 return -1;
1703 }
1704
1705 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1706 {
1707 if (s->handshake_func == NULL) {
1708 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1709 return -1;
1710 }
1711
1712 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1713 s->rwstate = SSL_NOTHING;
1714 return 0;
1715 }
1716
1717 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1718 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1719 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1720 return 0;
1721 }
1722 /*
1723 * If we are a client and haven't received the ServerHello etc then we
1724 * better do that
1725 */
1726 ossl_statem_check_finish_init(s, 0);
1727
1728 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1729 struct ssl_async_args args;
1730 int ret;
1731
1732 args.s = s;
1733 args.buf = buf;
1734 args.num = num;
1735 args.type = READFUNC;
1736 args.f.func_read = s->method->ssl_read;
1737
1738 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1739 *readbytes = s->asyncrw;
1740 return ret;
1741 } else {
1742 return s->method->ssl_read(s, buf, num, readbytes);
1743 }
1744 }
1745
1746 int SSL_read(SSL *s, void *buf, int num)
1747 {
1748 int ret;
1749 size_t readbytes;
1750
1751 if (num < 0) {
1752 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1753 return -1;
1754 }
1755
1756 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1757
1758 /*
1759 * The cast is safe here because ret should be <= INT_MAX because num is
1760 * <= INT_MAX
1761 */
1762 if (ret > 0)
1763 ret = (int)readbytes;
1764
1765 return ret;
1766 }
1767
1768 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1769 {
1770 int ret = ssl_read_internal(s, buf, num, readbytes);
1771
1772 if (ret < 0)
1773 ret = 0;
1774 return ret;
1775 }
1776
1777 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1778 {
1779 int ret;
1780
1781 if (!s->server) {
1782 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1783 return SSL_READ_EARLY_DATA_ERROR;
1784 }
1785
1786 switch (s->early_data_state) {
1787 case SSL_EARLY_DATA_NONE:
1788 if (!SSL_in_before(s)) {
1789 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1790 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1791 return SSL_READ_EARLY_DATA_ERROR;
1792 }
1793 /* fall through */
1794
1795 case SSL_EARLY_DATA_ACCEPT_RETRY:
1796 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1797 ret = SSL_accept(s);
1798 if (ret <= 0) {
1799 /* NBIO or error */
1800 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1801 return SSL_READ_EARLY_DATA_ERROR;
1802 }
1803 /* fall through */
1804
1805 case SSL_EARLY_DATA_READ_RETRY:
1806 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1807 s->early_data_state = SSL_EARLY_DATA_READING;
1808 ret = SSL_read_ex(s, buf, num, readbytes);
1809 /*
1810 * State machine will update early_data_state to
1811 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1812 * message
1813 */
1814 if (ret > 0 || (ret <= 0 && s->early_data_state
1815 != SSL_EARLY_DATA_FINISHED_READING)) {
1816 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1817 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1818 : SSL_READ_EARLY_DATA_ERROR;
1819 }
1820 } else {
1821 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1822 }
1823 *readbytes = 0;
1824 return SSL_READ_EARLY_DATA_FINISH;
1825
1826 default:
1827 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1828 return SSL_READ_EARLY_DATA_ERROR;
1829 }
1830 }
1831
1832 int SSL_get_early_data_status(const SSL *s)
1833 {
1834 return s->ext.early_data;
1835 }
1836
1837 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1838 {
1839 if (s->handshake_func == NULL) {
1840 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1841 return -1;
1842 }
1843
1844 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1845 return 0;
1846 }
1847 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1848 struct ssl_async_args args;
1849 int ret;
1850
1851 args.s = s;
1852 args.buf = buf;
1853 args.num = num;
1854 args.type = READFUNC;
1855 args.f.func_read = s->method->ssl_peek;
1856
1857 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1858 *readbytes = s->asyncrw;
1859 return ret;
1860 } else {
1861 return s->method->ssl_peek(s, buf, num, readbytes);
1862 }
1863 }
1864
1865 int SSL_peek(SSL *s, void *buf, int num)
1866 {
1867 int ret;
1868 size_t readbytes;
1869
1870 if (num < 0) {
1871 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1872 return -1;
1873 }
1874
1875 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1876
1877 /*
1878 * The cast is safe here because ret should be <= INT_MAX because num is
1879 * <= INT_MAX
1880 */
1881 if (ret > 0)
1882 ret = (int)readbytes;
1883
1884 return ret;
1885 }
1886
1887
1888 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1889 {
1890 int ret = ssl_peek_internal(s, buf, num, readbytes);
1891
1892 if (ret < 0)
1893 ret = 0;
1894 return ret;
1895 }
1896
1897 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1898 {
1899 if (s->handshake_func == NULL) {
1900 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1901 return -1;
1902 }
1903
1904 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1905 s->rwstate = SSL_NOTHING;
1906 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1907 return -1;
1908 }
1909
1910 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1911 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1912 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1913 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1914 return 0;
1915 }
1916 /* If we are a client and haven't sent the Finished we better do that */
1917 ossl_statem_check_finish_init(s, 1);
1918
1919 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1920 int ret;
1921 struct ssl_async_args args;
1922
1923 args.s = s;
1924 args.buf = (void *)buf;
1925 args.num = num;
1926 args.type = WRITEFUNC;
1927 args.f.func_write = s->method->ssl_write;
1928
1929 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1930 *written = s->asyncrw;
1931 return ret;
1932 } else {
1933 return s->method->ssl_write(s, buf, num, written);
1934 }
1935 }
1936
1937 int SSL_write(SSL *s, const void *buf, int num)
1938 {
1939 int ret;
1940 size_t written;
1941
1942 if (num < 0) {
1943 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1944 return -1;
1945 }
1946
1947 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1948
1949 /*
1950 * The cast is safe here because ret should be <= INT_MAX because num is
1951 * <= INT_MAX
1952 */
1953 if (ret > 0)
1954 ret = (int)written;
1955
1956 return ret;
1957 }
1958
1959 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1960 {
1961 int ret = ssl_write_internal(s, buf, num, written);
1962
1963 if (ret < 0)
1964 ret = 0;
1965 return ret;
1966 }
1967
1968 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1969 {
1970 int ret, early_data_state;
1971 size_t writtmp;
1972 uint32_t partialwrite;
1973
1974 switch (s->early_data_state) {
1975 case SSL_EARLY_DATA_NONE:
1976 if (s->server
1977 || !SSL_in_before(s)
1978 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1979 && (s->psk_use_session_cb == NULL))) {
1980 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1981 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1982 return 0;
1983 }
1984 /* fall through */
1985
1986 case SSL_EARLY_DATA_CONNECT_RETRY:
1987 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1988 ret = SSL_connect(s);
1989 if (ret <= 0) {
1990 /* NBIO or error */
1991 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1992 return 0;
1993 }
1994 /* fall through */
1995
1996 case SSL_EARLY_DATA_WRITE_RETRY:
1997 s->early_data_state = SSL_EARLY_DATA_WRITING;
1998 /*
1999 * We disable partial write for early data because we don't keep track
2000 * of how many bytes we've written between the SSL_write_ex() call and
2001 * the flush if the flush needs to be retried)
2002 */
2003 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2004 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2005 ret = SSL_write_ex(s, buf, num, &writtmp);
2006 s->mode |= partialwrite;
2007 if (!ret) {
2008 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2009 return ret;
2010 }
2011 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2012 /* fall through */
2013
2014 case SSL_EARLY_DATA_WRITE_FLUSH:
2015 /* The buffering BIO is still in place so we need to flush it */
2016 if (statem_flush(s) != 1)
2017 return 0;
2018 *written = num;
2019 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2020 return 1;
2021
2022 case SSL_EARLY_DATA_FINISHED_READING:
2023 case SSL_EARLY_DATA_READ_RETRY:
2024 early_data_state = s->early_data_state;
2025 /* We are a server writing to an unauthenticated client */
2026 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2027 ret = SSL_write_ex(s, buf, num, written);
2028 /* The buffering BIO is still in place */
2029 if (ret)
2030 (void)BIO_flush(s->wbio);
2031 s->early_data_state = early_data_state;
2032 return ret;
2033
2034 default:
2035 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2036 return 0;
2037 }
2038 }
2039
2040 int SSL_shutdown(SSL *s)
2041 {
2042 /*
2043 * Note that this function behaves differently from what one might
2044 * expect. Return values are 0 for no success (yet), 1 for success; but
2045 * calling it once is usually not enough, even if blocking I/O is used
2046 * (see ssl3_shutdown).
2047 */
2048
2049 if (s->handshake_func == NULL) {
2050 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2051 return -1;
2052 }
2053
2054 if (!SSL_in_init(s)) {
2055 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2056 struct ssl_async_args args;
2057
2058 args.s = s;
2059 args.type = OTHERFUNC;
2060 args.f.func_other = s->method->ssl_shutdown;
2061
2062 return ssl_start_async_job(s, &args, ssl_io_intern);
2063 } else {
2064 return s->method->ssl_shutdown(s);
2065 }
2066 } else {
2067 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2068 return -1;
2069 }
2070 }
2071
2072 int SSL_key_update(SSL *s, int updatetype)
2073 {
2074 /*
2075 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2076 * negotiated, and that it is appropriate to call SSL_key_update() instead
2077 * of SSL_renegotiate().
2078 */
2079 if (!SSL_IS_TLS13(s)) {
2080 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2081 return 0;
2082 }
2083
2084 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2085 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2086 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2087 return 0;
2088 }
2089
2090 if (!SSL_is_init_finished(s)) {
2091 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2092 return 0;
2093 }
2094
2095 ossl_statem_set_in_init(s, 1);
2096 s->key_update = updatetype;
2097 return 1;
2098 }
2099
2100 int SSL_get_key_update_type(SSL *s)
2101 {
2102 return s->key_update;
2103 }
2104
2105 int SSL_renegotiate(SSL *s)
2106 {
2107 if (SSL_IS_TLS13(s)) {
2108 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2109 return 0;
2110 }
2111
2112 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2113 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2114 return 0;
2115 }
2116
2117 s->renegotiate = 1;
2118 s->new_session = 1;
2119
2120 return s->method->ssl_renegotiate(s);
2121 }
2122
2123 int SSL_renegotiate_abbreviated(SSL *s)
2124 {
2125 if (SSL_IS_TLS13(s)) {
2126 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2127 return 0;
2128 }
2129
2130 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2131 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2132 return 0;
2133 }
2134
2135 s->renegotiate = 1;
2136 s->new_session = 0;
2137
2138 return s->method->ssl_renegotiate(s);
2139 }
2140
2141 int SSL_renegotiate_pending(SSL *s)
2142 {
2143 /*
2144 * becomes true when negotiation is requested; false again once a
2145 * handshake has finished
2146 */
2147 return (s->renegotiate != 0);
2148 }
2149
2150 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2151 {
2152 long l;
2153
2154 switch (cmd) {
2155 case SSL_CTRL_GET_READ_AHEAD:
2156 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2157 case SSL_CTRL_SET_READ_AHEAD:
2158 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2159 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2160 return l;
2161
2162 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2163 s->msg_callback_arg = parg;
2164 return 1;
2165
2166 case SSL_CTRL_MODE:
2167 return (s->mode |= larg);
2168 case SSL_CTRL_CLEAR_MODE:
2169 return (s->mode &= ~larg);
2170 case SSL_CTRL_GET_MAX_CERT_LIST:
2171 return (long)s->max_cert_list;
2172 case SSL_CTRL_SET_MAX_CERT_LIST:
2173 if (larg < 0)
2174 return 0;
2175 l = (long)s->max_cert_list;
2176 s->max_cert_list = (size_t)larg;
2177 return l;
2178 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2179 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2180 return 0;
2181 s->max_send_fragment = larg;
2182 if (s->max_send_fragment < s->split_send_fragment)
2183 s->split_send_fragment = s->max_send_fragment;
2184 return 1;
2185 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2186 if ((size_t)larg > s->max_send_fragment || larg == 0)
2187 return 0;
2188 s->split_send_fragment = larg;
2189 return 1;
2190 case SSL_CTRL_SET_MAX_PIPELINES:
2191 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2192 return 0;
2193 s->max_pipelines = larg;
2194 if (larg > 1)
2195 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2196 return 1;
2197 case SSL_CTRL_GET_RI_SUPPORT:
2198 if (s->s3)
2199 return s->s3->send_connection_binding;
2200 else
2201 return 0;
2202 case SSL_CTRL_CERT_FLAGS:
2203 return (s->cert->cert_flags |= larg);
2204 case SSL_CTRL_CLEAR_CERT_FLAGS:
2205 return (s->cert->cert_flags &= ~larg);
2206
2207 case SSL_CTRL_GET_RAW_CIPHERLIST:
2208 if (parg) {
2209 if (s->s3->tmp.ciphers_raw == NULL)
2210 return 0;
2211 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2212 return (int)s->s3->tmp.ciphers_rawlen;
2213 } else {
2214 return TLS_CIPHER_LEN;
2215 }
2216 case SSL_CTRL_GET_EXTMS_SUPPORT:
2217 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2218 return -1;
2219 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2220 return 1;
2221 else
2222 return 0;
2223 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2224 return ssl_check_allowed_versions(larg, s->max_proto_version)
2225 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2226 &s->min_proto_version);
2227 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2228 return s->min_proto_version;
2229 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2230 return ssl_check_allowed_versions(s->min_proto_version, larg)
2231 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2232 &s->max_proto_version);
2233 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2234 return s->max_proto_version;
2235 default:
2236 return s->method->ssl_ctrl(s, cmd, larg, parg);
2237 }
2238 }
2239
2240 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2241 {
2242 switch (cmd) {
2243 case SSL_CTRL_SET_MSG_CALLBACK:
2244 s->msg_callback = (void (*)
2245 (int write_p, int version, int content_type,
2246 const void *buf, size_t len, SSL *ssl,
2247 void *arg))(fp);
2248 return 1;
2249
2250 default:
2251 return s->method->ssl_callback_ctrl(s, cmd, fp);
2252 }
2253 }
2254
2255 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2256 {
2257 return ctx->sessions;
2258 }
2259
2260 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2261 {
2262 long l;
2263 int i;
2264 /* For some cases with ctx == NULL perform syntax checks */
2265 if (ctx == NULL) {
2266 switch (cmd) {
2267 #ifndef OPENSSL_NO_EC
2268 case SSL_CTRL_SET_GROUPS_LIST:
2269 return tls1_set_groups_list(NULL, NULL, parg);
2270 #endif
2271 case SSL_CTRL_SET_SIGALGS_LIST:
2272 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2273 return tls1_set_sigalgs_list(NULL, parg, 0);
2274 default:
2275 return 0;
2276 }
2277 }
2278
2279 switch (cmd) {
2280 case SSL_CTRL_GET_READ_AHEAD:
2281 return ctx->read_ahead;
2282 case SSL_CTRL_SET_READ_AHEAD:
2283 l = ctx->read_ahead;
2284 ctx->read_ahead = larg;
2285 return l;
2286
2287 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2288 ctx->msg_callback_arg = parg;
2289 return 1;
2290
2291 case SSL_CTRL_GET_MAX_CERT_LIST:
2292 return (long)ctx->max_cert_list;
2293 case SSL_CTRL_SET_MAX_CERT_LIST:
2294 if (larg < 0)
2295 return 0;
2296 l = (long)ctx->max_cert_list;
2297 ctx->max_cert_list = (size_t)larg;
2298 return l;
2299
2300 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2301 if (larg < 0)
2302 return 0;
2303 l = (long)ctx->session_cache_size;
2304 ctx->session_cache_size = (size_t)larg;
2305 return l;
2306 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2307 return (long)ctx->session_cache_size;
2308 case SSL_CTRL_SET_SESS_CACHE_MODE:
2309 l = ctx->session_cache_mode;
2310 ctx->session_cache_mode = larg;
2311 return l;
2312 case SSL_CTRL_GET_SESS_CACHE_MODE:
2313 return ctx->session_cache_mode;
2314
2315 case SSL_CTRL_SESS_NUMBER:
2316 return lh_SSL_SESSION_num_items(ctx->sessions);
2317 case SSL_CTRL_SESS_CONNECT:
2318 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2319 ? i : 0;
2320 case SSL_CTRL_SESS_CONNECT_GOOD:
2321 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2322 ? i : 0;
2323 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2324 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2325 ctx->lock)
2326 ? i : 0;
2327 case SSL_CTRL_SESS_ACCEPT:
2328 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2329 ? i : 0;
2330 case SSL_CTRL_SESS_ACCEPT_GOOD:
2331 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2332 ? i : 0;
2333 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2334 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2335 ctx->lock)
2336 ? i : 0;
2337 case SSL_CTRL_SESS_HIT:
2338 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2339 ? i : 0;
2340 case SSL_CTRL_SESS_CB_HIT:
2341 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2342 ? i : 0;
2343 case SSL_CTRL_SESS_MISSES:
2344 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2345 ? i : 0;
2346 case SSL_CTRL_SESS_TIMEOUTS:
2347 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2348 ? i : 0;
2349 case SSL_CTRL_SESS_CACHE_FULL:
2350 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2351 ? i : 0;
2352 case SSL_CTRL_MODE:
2353 return (ctx->mode |= larg);
2354 case SSL_CTRL_CLEAR_MODE:
2355 return (ctx->mode &= ~larg);
2356 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2357 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2358 return 0;
2359 ctx->max_send_fragment = larg;
2360 if (ctx->max_send_fragment < ctx->split_send_fragment)
2361 ctx->split_send_fragment = ctx->max_send_fragment;
2362 return 1;
2363 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2364 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2365 return 0;
2366 ctx->split_send_fragment = larg;
2367 return 1;
2368 case SSL_CTRL_SET_MAX_PIPELINES:
2369 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2370 return 0;
2371 ctx->max_pipelines = larg;
2372 return 1;
2373 case SSL_CTRL_CERT_FLAGS:
2374 return (ctx->cert->cert_flags |= larg);
2375 case SSL_CTRL_CLEAR_CERT_FLAGS:
2376 return (ctx->cert->cert_flags &= ~larg);
2377 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2378 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2379 && ssl_set_version_bound(ctx->method->version, (int)larg,
2380 &ctx->min_proto_version);
2381 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2382 return ctx->min_proto_version;
2383 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2384 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2385 && ssl_set_version_bound(ctx->method->version, (int)larg,
2386 &ctx->max_proto_version);
2387 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2388 return ctx->max_proto_version;
2389 default:
2390 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2391 }
2392 }
2393
2394 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2395 {
2396 switch (cmd) {
2397 case SSL_CTRL_SET_MSG_CALLBACK:
2398 ctx->msg_callback = (void (*)
2399 (int write_p, int version, int content_type,
2400 const void *buf, size_t len, SSL *ssl,
2401 void *arg))(fp);
2402 return 1;
2403
2404 default:
2405 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2406 }
2407 }
2408
2409 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2410 {
2411 if (a->id > b->id)
2412 return 1;
2413 if (a->id < b->id)
2414 return -1;
2415 return 0;
2416 }
2417
2418 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2419 const SSL_CIPHER *const *bp)
2420 {
2421 if ((*ap)->id > (*bp)->id)
2422 return 1;
2423 if ((*ap)->id < (*bp)->id)
2424 return -1;
2425 return 0;
2426 }
2427
2428 /** return a STACK of the ciphers available for the SSL and in order of
2429 * preference */
2430 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2431 {
2432 if (s != NULL) {
2433 if (s->cipher_list != NULL) {
2434 return s->cipher_list;
2435 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2436 return s->ctx->cipher_list;
2437 }
2438 }
2439 return NULL;
2440 }
2441
2442 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2443 {
2444 if ((s == NULL) || (s->session == NULL) || !s->server)
2445 return NULL;
2446 return s->session->ciphers;
2447 }
2448
2449 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2450 {
2451 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2452 int i;
2453
2454 ciphers = SSL_get_ciphers(s);
2455 if (!ciphers)
2456 return NULL;
2457 if (!ssl_set_client_disabled(s))
2458 return NULL;
2459 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2460 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2461 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2462 if (!sk)
2463 sk = sk_SSL_CIPHER_new_null();
2464 if (!sk)
2465 return NULL;
2466 if (!sk_SSL_CIPHER_push(sk, c)) {
2467 sk_SSL_CIPHER_free(sk);
2468 return NULL;
2469 }
2470 }
2471 }
2472 return sk;
2473 }
2474
2475 /** return a STACK of the ciphers available for the SSL and in order of
2476 * algorithm id */
2477 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2478 {
2479 if (s != NULL) {
2480 if (s->cipher_list_by_id != NULL) {
2481 return s->cipher_list_by_id;
2482 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2483 return s->ctx->cipher_list_by_id;
2484 }
2485 }
2486 return NULL;
2487 }
2488
2489 /** The old interface to get the same thing as SSL_get_ciphers() */
2490 const char *SSL_get_cipher_list(const SSL *s, int n)
2491 {
2492 const SSL_CIPHER *c;
2493 STACK_OF(SSL_CIPHER) *sk;
2494
2495 if (s == NULL)
2496 return NULL;
2497 sk = SSL_get_ciphers(s);
2498 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2499 return NULL;
2500 c = sk_SSL_CIPHER_value(sk, n);
2501 if (c == NULL)
2502 return NULL;
2503 return c->name;
2504 }
2505
2506 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2507 * preference */
2508 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2509 {
2510 if (ctx != NULL)
2511 return ctx->cipher_list;
2512 return NULL;
2513 }
2514
2515 /** specify the ciphers to be used by default by the SSL_CTX */
2516 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2517 {
2518 STACK_OF(SSL_CIPHER) *sk;
2519
2520 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2521 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2522 ctx->cert);
2523 /*
2524 * ssl_create_cipher_list may return an empty stack if it was unable to
2525 * find a cipher matching the given rule string (for example if the rule
2526 * string specifies a cipher which has been disabled). This is not an
2527 * error as far as ssl_create_cipher_list is concerned, and hence
2528 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2529 */
2530 if (sk == NULL)
2531 return 0;
2532 else if (sk_SSL_CIPHER_num(sk) == 0) {
2533 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2534 return 0;
2535 }
2536 return 1;
2537 }
2538
2539 /** specify the ciphers to be used by the SSL */
2540 int SSL_set_cipher_list(SSL *s, const char *str)
2541 {
2542 STACK_OF(SSL_CIPHER) *sk;
2543
2544 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2545 &s->cipher_list, &s->cipher_list_by_id, str,
2546 s->cert);
2547 /* see comment in SSL_CTX_set_cipher_list */
2548 if (sk == NULL)
2549 return 0;
2550 else if (sk_SSL_CIPHER_num(sk) == 0) {
2551 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2552 return 0;
2553 }
2554 return 1;
2555 }
2556
2557 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2558 {
2559 char *p;
2560 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2561 const SSL_CIPHER *c;
2562 int i;
2563
2564 if (!s->server
2565 || s->session == NULL
2566 || s->session->ciphers == NULL
2567 || size < 2)
2568 return NULL;
2569
2570 p = buf;
2571 clntsk = s->session->ciphers;
2572 srvrsk = SSL_get_ciphers(s);
2573 if (clntsk == NULL || srvrsk == NULL)
2574 return NULL;
2575
2576 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2577 return NULL;
2578
2579 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2580 int n;
2581
2582 c = sk_SSL_CIPHER_value(clntsk, i);
2583 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2584 continue;
2585
2586 n = strlen(c->name);
2587 if (n + 1 > size) {
2588 if (p != buf)
2589 --p;
2590 *p = '\0';
2591 return buf;
2592 }
2593 strcpy(p, c->name);
2594 p += n;
2595 *(p++) = ':';
2596 size -= n + 1;
2597 }
2598 p[-1] = '\0';
2599 return buf;
2600 }
2601
2602 /** return a servername extension value if provided in Client Hello, or NULL.
2603 * So far, only host_name types are defined (RFC 3546).
2604 */
2605
2606 const char *SSL_get_servername(const SSL *s, const int type)
2607 {
2608 if (type != TLSEXT_NAMETYPE_host_name)
2609 return NULL;
2610
2611 return s->session && !s->ext.hostname ?
2612 s->session->ext.hostname : s->ext.hostname;
2613 }
2614
2615 int SSL_get_servername_type(const SSL *s)
2616 {
2617 if (s->session
2618 && (!s->ext.hostname ? s->session->
2619 ext.hostname : s->ext.hostname))
2620 return TLSEXT_NAMETYPE_host_name;
2621 return -1;
2622 }
2623
2624 /*
2625 * SSL_select_next_proto implements the standard protocol selection. It is
2626 * expected that this function is called from the callback set by
2627 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2628 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2629 * not included in the length. A byte string of length 0 is invalid. No byte
2630 * string may be truncated. The current, but experimental algorithm for
2631 * selecting the protocol is: 1) If the server doesn't support NPN then this
2632 * is indicated to the callback. In this case, the client application has to
2633 * abort the connection or have a default application level protocol. 2) If
2634 * the server supports NPN, but advertises an empty list then the client
2635 * selects the first protocol in its list, but indicates via the API that this
2636 * fallback case was enacted. 3) Otherwise, the client finds the first
2637 * protocol in the server's list that it supports and selects this protocol.
2638 * This is because it's assumed that the server has better information about
2639 * which protocol a client should use. 4) If the client doesn't support any
2640 * of the server's advertised protocols, then this is treated the same as
2641 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2642 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2643 */
2644 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2645 const unsigned char *server,
2646 unsigned int server_len,
2647 const unsigned char *client, unsigned int client_len)
2648 {
2649 unsigned int i, j;
2650 const unsigned char *result;
2651 int status = OPENSSL_NPN_UNSUPPORTED;
2652
2653 /*
2654 * For each protocol in server preference order, see if we support it.
2655 */
2656 for (i = 0; i < server_len;) {
2657 for (j = 0; j < client_len;) {
2658 if (server[i] == client[j] &&
2659 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2660 /* We found a match */
2661 result = &server[i];
2662 status = OPENSSL_NPN_NEGOTIATED;
2663 goto found;
2664 }
2665 j += client[j];
2666 j++;
2667 }
2668 i += server[i];
2669 i++;
2670 }
2671
2672 /* There's no overlap between our protocols and the server's list. */
2673 result = client;
2674 status = OPENSSL_NPN_NO_OVERLAP;
2675
2676 found:
2677 *out = (unsigned char *)result + 1;
2678 *outlen = result[0];
2679 return status;
2680 }
2681
2682 #ifndef OPENSSL_NO_NEXTPROTONEG
2683 /*
2684 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2685 * client's requested protocol for this connection and returns 0. If the
2686 * client didn't request any protocol, then *data is set to NULL. Note that
2687 * the client can request any protocol it chooses. The value returned from
2688 * this function need not be a member of the list of supported protocols
2689 * provided by the callback.
2690 */
2691 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2692 unsigned *len)
2693 {
2694 *data = s->ext.npn;
2695 if (!*data) {
2696 *len = 0;
2697 } else {
2698 *len = (unsigned int)s->ext.npn_len;
2699 }
2700 }
2701
2702 /*
2703 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2704 * a TLS server needs a list of supported protocols for Next Protocol
2705 * Negotiation. The returned list must be in wire format. The list is
2706 * returned by setting |out| to point to it and |outlen| to its length. This
2707 * memory will not be modified, but one should assume that the SSL* keeps a
2708 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2709 * wishes to advertise. Otherwise, no such extension will be included in the
2710 * ServerHello.
2711 */
2712 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2713 SSL_CTX_npn_advertised_cb_func cb,
2714 void *arg)
2715 {
2716 ctx->ext.npn_advertised_cb = cb;
2717 ctx->ext.npn_advertised_cb_arg = arg;
2718 }
2719
2720 /*
2721 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2722 * client needs to select a protocol from the server's provided list. |out|
2723 * must be set to point to the selected protocol (which may be within |in|).
2724 * The length of the protocol name must be written into |outlen|. The
2725 * server's advertised protocols are provided in |in| and |inlen|. The
2726 * callback can assume that |in| is syntactically valid. The client must
2727 * select a protocol. It is fatal to the connection if this callback returns
2728 * a value other than SSL_TLSEXT_ERR_OK.
2729 */
2730 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2731 SSL_CTX_npn_select_cb_func cb,
2732 void *arg)
2733 {
2734 ctx->ext.npn_select_cb = cb;
2735 ctx->ext.npn_select_cb_arg = arg;
2736 }
2737 #endif
2738
2739 /*
2740 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2741 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2742 * length-prefixed strings). Returns 0 on success.
2743 */
2744 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2745 unsigned int protos_len)
2746 {
2747 OPENSSL_free(ctx->ext.alpn);
2748 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2749 if (ctx->ext.alpn == NULL) {
2750 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2751 return 1;
2752 }
2753 ctx->ext.alpn_len = protos_len;
2754
2755 return 0;
2756 }
2757
2758 /*
2759 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2760 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2761 * length-prefixed strings). Returns 0 on success.
2762 */
2763 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2764 unsigned int protos_len)
2765 {
2766 OPENSSL_free(ssl->ext.alpn);
2767 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2768 if (ssl->ext.alpn == NULL) {
2769 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2770 return 1;
2771 }
2772 ssl->ext.alpn_len = protos_len;
2773
2774 return 0;
2775 }
2776
2777 /*
2778 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2779 * called during ClientHello processing in order to select an ALPN protocol
2780 * from the client's list of offered protocols.
2781 */
2782 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2783 SSL_CTX_alpn_select_cb_func cb,
2784 void *arg)
2785 {
2786 ctx->ext.alpn_select_cb = cb;
2787 ctx->ext.alpn_select_cb_arg = arg;
2788 }
2789
2790 /*
2791 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2792 * On return it sets |*data| to point to |*len| bytes of protocol name
2793 * (not including the leading length-prefix byte). If the server didn't
2794 * respond with a negotiated protocol then |*len| will be zero.
2795 */
2796 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2797 unsigned int *len)
2798 {
2799 *data = NULL;
2800 if (ssl->s3)
2801 *data = ssl->s3->alpn_selected;
2802 if (*data == NULL)
2803 *len = 0;
2804 else
2805 *len = (unsigned int)ssl->s3->alpn_selected_len;
2806 }
2807
2808 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2809 const char *label, size_t llen,
2810 const unsigned char *context, size_t contextlen,
2811 int use_context)
2812 {
2813 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2814 return -1;
2815
2816 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2817 llen, context,
2818 contextlen, use_context);
2819 }
2820
2821 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2822 const char *label, size_t llen,
2823 const unsigned char *context,
2824 size_t contextlen)
2825 {
2826 if (s->version != TLS1_3_VERSION)
2827 return 0;
2828
2829 return tls13_export_keying_material_early(s, out, olen, label, llen,
2830 context, contextlen);
2831 }
2832
2833 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2834 {
2835 const unsigned char *session_id = a->session_id;
2836 unsigned long l;
2837 unsigned char tmp_storage[4];
2838
2839 if (a->session_id_length < sizeof(tmp_storage)) {
2840 memset(tmp_storage, 0, sizeof(tmp_storage));
2841 memcpy(tmp_storage, a->session_id, a->session_id_length);
2842 session_id = tmp_storage;
2843 }
2844
2845 l = (unsigned long)
2846 ((unsigned long)session_id[0]) |
2847 ((unsigned long)session_id[1] << 8L) |
2848 ((unsigned long)session_id[2] << 16L) |
2849 ((unsigned long)session_id[3] << 24L);
2850 return l;
2851 }
2852
2853 /*
2854 * NB: If this function (or indeed the hash function which uses a sort of
2855 * coarser function than this one) is changed, ensure
2856 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2857 * being able to construct an SSL_SESSION that will collide with any existing
2858 * session with a matching session ID.
2859 */
2860 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2861 {
2862 if (a->ssl_version != b->ssl_version)
2863 return 1;
2864 if (a->session_id_length != b->session_id_length)
2865 return 1;
2866 return memcmp(a->session_id, b->session_id, a->session_id_length);
2867 }
2868
2869 /*
2870 * These wrapper functions should remain rather than redeclaring
2871 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2872 * variable. The reason is that the functions aren't static, they're exposed
2873 * via ssl.h.
2874 */
2875
2876 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2877 {
2878 SSL_CTX *ret = NULL;
2879
2880 if (meth == NULL) {
2881 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2882 return NULL;
2883 }
2884
2885 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2886 return NULL;
2887
2888 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2889 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2890 goto err;
2891 }
2892 ret = OPENSSL_zalloc(sizeof(*ret));
2893 if (ret == NULL)
2894 goto err;
2895
2896 ret->method = meth;
2897 ret->min_proto_version = 0;
2898 ret->max_proto_version = 0;
2899 ret->mode = SSL_MODE_AUTO_RETRY;
2900 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2901 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2902 /* We take the system default. */
2903 ret->session_timeout = meth->get_timeout();
2904 ret->references = 1;
2905 ret->lock = CRYPTO_THREAD_lock_new();
2906 if (ret->lock == NULL) {
2907 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2908 OPENSSL_free(ret);
2909 return NULL;
2910 }
2911 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2912 ret->verify_mode = SSL_VERIFY_NONE;
2913 if ((ret->cert = ssl_cert_new()) == NULL)
2914 goto err;
2915
2916 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2917 if (ret->sessions == NULL)
2918 goto err;
2919 ret->cert_store = X509_STORE_new();
2920 if (ret->cert_store == NULL)
2921 goto err;
2922 #ifndef OPENSSL_NO_CT
2923 ret->ctlog_store = CTLOG_STORE_new();
2924 if (ret->ctlog_store == NULL)
2925 goto err;
2926 #endif
2927
2928 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES))
2929 goto err;
2930
2931 if (!ssl_create_cipher_list(ret->method,
2932 ret->tls13_ciphersuites,
2933 &ret->cipher_list, &ret->cipher_list_by_id,
2934 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2935 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2936 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2937 goto err2;
2938 }
2939
2940 ret->param = X509_VERIFY_PARAM_new();
2941 if (ret->param == NULL)
2942 goto err;
2943
2944 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2945 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2946 goto err2;
2947 }
2948 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2949 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2950 goto err2;
2951 }
2952
2953 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2954 goto err;
2955
2956 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2957 goto err;
2958
2959 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
2960 goto err;
2961
2962 /* No compression for DTLS */
2963 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2964 ret->comp_methods = SSL_COMP_get_compression_methods();
2965
2966 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2967 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2968
2969 /* Setup RFC5077 ticket keys */
2970 if ((RAND_bytes(ret->ext.tick_key_name,
2971 sizeof(ret->ext.tick_key_name)) <= 0)
2972 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key,
2973 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
2974 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key,
2975 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
2976 ret->options |= SSL_OP_NO_TICKET;
2977
2978 if (RAND_priv_bytes(ret->ext.cookie_hmac_key,
2979 sizeof(ret->ext.cookie_hmac_key)) <= 0)
2980 goto err;
2981
2982 #ifndef OPENSSL_NO_SRP
2983 if (!SSL_CTX_SRP_CTX_init(ret))
2984 goto err;
2985 #endif
2986 #ifndef OPENSSL_NO_ENGINE
2987 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2988 # define eng_strx(x) #x
2989 # define eng_str(x) eng_strx(x)
2990 /* Use specific client engine automatically... ignore errors */
2991 {
2992 ENGINE *eng;
2993 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2994 if (!eng) {
2995 ERR_clear_error();
2996 ENGINE_load_builtin_engines();
2997 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2998 }
2999 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3000 ERR_clear_error();
3001 }
3002 # endif
3003 #endif
3004 /*
3005 * Default is to connect to non-RI servers. When RI is more widely
3006 * deployed might change this.
3007 */
3008 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3009 /*
3010 * Disable compression by default to prevent CRIME. Applications can
3011 * re-enable compression by configuring
3012 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3013 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3014 * middlebox compatibility by default. This may be disabled by default in
3015 * a later OpenSSL version.
3016 */
3017 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3018
3019 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3020
3021 /*
3022 * We cannot usefully set a default max_early_data here (which gets
3023 * propagated in SSL_new(), for the following reason: setting the
3024 * SSL field causes tls_construct_stoc_early_data() to tell the
3025 * client that early data will be accepted when constructing a TLS 1.3
3026 * session ticket, and the client will accordingly send us early data
3027 * when using that ticket (if the client has early data to send).
3028 * However, in order for the early data to actually be consumed by
3029 * the application, the application must also have calls to
3030 * SSL_read_early_data(); otherwise we'll just skip past the early data
3031 * and ignore it. So, since the application must add calls to
3032 * SSL_read_early_data(), we also require them to add
3033 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3034 * eliminating the bandwidth-wasting early data in the case described
3035 * above.
3036 */
3037 ret->max_early_data = 0;
3038
3039 /* By default we send two session tickets automatically in TLSv1.3 */
3040 ret->num_tickets = 2;
3041
3042 ssl_ctx_system_config(ret);
3043
3044 return ret;
3045 err:
3046 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3047 err2:
3048 SSL_CTX_free(ret);
3049 return NULL;
3050 }
3051
3052 int SSL_CTX_up_ref(SSL_CTX *ctx)
3053 {
3054 int i;
3055
3056 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3057 return 0;
3058
3059 REF_PRINT_COUNT("SSL_CTX", ctx);
3060 REF_ASSERT_ISNT(i < 2);
3061 return ((i > 1) ? 1 : 0);
3062 }
3063
3064 void SSL_CTX_free(SSL_CTX *a)
3065 {
3066 int i;
3067
3068 if (a == NULL)
3069 return;
3070
3071 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3072 REF_PRINT_COUNT("SSL_CTX", a);
3073 if (i > 0)
3074 return;
3075 REF_ASSERT_ISNT(i < 0);
3076
3077 X509_VERIFY_PARAM_free(a->param);
3078 dane_ctx_final(&a->dane);
3079
3080 /*
3081 * Free internal session cache. However: the remove_cb() may reference
3082 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3083 * after the sessions were flushed.
3084 * As the ex_data handling routines might also touch the session cache,
3085 * the most secure solution seems to be: empty (flush) the cache, then
3086 * free ex_data, then finally free the cache.
3087 * (See ticket [openssl.org #212].)
3088 */
3089 if (a->sessions != NULL)
3090 SSL_CTX_flush_sessions(a, 0);
3091
3092 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3093 lh_SSL_SESSION_free(a->sessions);
3094 X509_STORE_free(a->cert_store);
3095 #ifndef OPENSSL_NO_CT
3096 CTLOG_STORE_free(a->ctlog_store);
3097 #endif
3098 sk_SSL_CIPHER_free(a->cipher_list);
3099 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3100 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3101 ssl_cert_free(a->cert);
3102 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3103 sk_X509_pop_free(a->extra_certs, X509_free);
3104 a->comp_methods = NULL;
3105 #ifndef OPENSSL_NO_SRTP
3106 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3107 #endif
3108 #ifndef OPENSSL_NO_SRP
3109 SSL_CTX_SRP_CTX_free(a);
3110 #endif
3111 #ifndef OPENSSL_NO_ENGINE
3112 ENGINE_finish(a->client_cert_engine);
3113 #endif
3114
3115 #ifndef OPENSSL_NO_EC
3116 OPENSSL_free(a->ext.ecpointformats);
3117 OPENSSL_free(a->ext.supportedgroups);
3118 #endif
3119 OPENSSL_free(a->ext.alpn);
3120 OPENSSL_secure_free(a->ext.secure);
3121
3122 CRYPTO_THREAD_lock_free(a->lock);
3123
3124 OPENSSL_free(a);
3125 }
3126
3127 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3128 {
3129 ctx->default_passwd_callback = cb;
3130 }
3131
3132 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3133 {
3134 ctx->default_passwd_callback_userdata = u;
3135 }
3136
3137 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3138 {
3139 return ctx->default_passwd_callback;
3140 }
3141
3142 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3143 {
3144 return ctx->default_passwd_callback_userdata;
3145 }
3146
3147 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3148 {
3149 s->default_passwd_callback = cb;
3150 }
3151
3152 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3153 {
3154 s->default_passwd_callback_userdata = u;
3155 }
3156
3157 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3158 {
3159 return s->default_passwd_callback;
3160 }
3161
3162 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3163 {
3164 return s->default_passwd_callback_userdata;
3165 }
3166
3167 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3168 int (*cb) (X509_STORE_CTX *, void *),
3169 void *arg)
3170 {
3171 ctx->app_verify_callback = cb;
3172 ctx->app_verify_arg = arg;
3173 }
3174
3175 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3176 int (*cb) (int, X509_STORE_CTX *))
3177 {
3178 ctx->verify_mode = mode;
3179 ctx->default_verify_callback = cb;
3180 }
3181
3182 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3183 {
3184 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3185 }
3186
3187 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3188 {
3189 ssl_cert_set_cert_cb(c->cert, cb, arg);
3190 }
3191
3192 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3193 {
3194 ssl_cert_set_cert_cb(s->cert, cb, arg);
3195 }
3196
3197 void ssl_set_masks(SSL *s)
3198 {
3199 CERT *c = s->cert;
3200 uint32_t *pvalid = s->s3->tmp.valid_flags;
3201 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3202 unsigned long mask_k, mask_a;
3203 #ifndef OPENSSL_NO_EC
3204 int have_ecc_cert, ecdsa_ok;
3205 #endif
3206 if (c == NULL)
3207 return;
3208
3209 #ifndef OPENSSL_NO_DH
3210 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3211 #else
3212 dh_tmp = 0;
3213 #endif
3214
3215 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3216 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3217 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3218 #ifndef OPENSSL_NO_EC
3219 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3220 #endif
3221 mask_k = 0;
3222 mask_a = 0;
3223
3224 #ifdef CIPHER_DEBUG
3225 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3226 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3227 #endif
3228
3229 #ifndef OPENSSL_NO_GOST
3230 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3231 mask_k |= SSL_kGOST;
3232 mask_a |= SSL_aGOST12;
3233 }
3234 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3235 mask_k |= SSL_kGOST;
3236 mask_a |= SSL_aGOST12;
3237 }
3238 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3239 mask_k |= SSL_kGOST;
3240 mask_a |= SSL_aGOST01;
3241 }
3242 #endif
3243
3244 if (rsa_enc)
3245 mask_k |= SSL_kRSA;
3246
3247 if (dh_tmp)
3248 mask_k |= SSL_kDHE;
3249
3250 /*
3251 * If we only have an RSA-PSS certificate allow RSA authentication
3252 * if TLS 1.2 and peer supports it.
3253 */
3254
3255 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3256 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3257 && TLS1_get_version(s) == TLS1_2_VERSION))
3258 mask_a |= SSL_aRSA;
3259
3260 if (dsa_sign) {
3261 mask_a |= SSL_aDSS;
3262 }
3263
3264 mask_a |= SSL_aNULL;
3265
3266 /*
3267 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3268 * depending on the key usage extension.
3269 */
3270 #ifndef OPENSSL_NO_EC
3271 if (have_ecc_cert) {
3272 uint32_t ex_kusage;
3273 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3274 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3275 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3276 ecdsa_ok = 0;
3277 if (ecdsa_ok)
3278 mask_a |= SSL_aECDSA;
3279 }
3280 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3281 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3282 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3283 && TLS1_get_version(s) == TLS1_2_VERSION)
3284 mask_a |= SSL_aECDSA;
3285
3286 /* Allow Ed448 for TLS 1.2 if peer supports it */
3287 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3288 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3289 && TLS1_get_version(s) == TLS1_2_VERSION)
3290 mask_a |= SSL_aECDSA;
3291 #endif
3292
3293 #ifndef OPENSSL_NO_EC
3294 mask_k |= SSL_kECDHE;
3295 #endif
3296
3297 #ifndef OPENSSL_NO_PSK
3298 mask_k |= SSL_kPSK;
3299 mask_a |= SSL_aPSK;
3300 if (mask_k & SSL_kRSA)
3301 mask_k |= SSL_kRSAPSK;
3302 if (mask_k & SSL_kDHE)
3303 mask_k |= SSL_kDHEPSK;
3304 if (mask_k & SSL_kECDHE)
3305 mask_k |= SSL_kECDHEPSK;
3306 #endif
3307
3308 s->s3->tmp.mask_k = mask_k;
3309 s->s3->tmp.mask_a = mask_a;
3310 }
3311
3312 #ifndef OPENSSL_NO_EC
3313
3314 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3315 {
3316 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3317 /* key usage, if present, must allow signing */
3318 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3319 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3320 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3321 return 0;
3322 }
3323 }
3324 return 1; /* all checks are ok */
3325 }
3326
3327 #endif
3328
3329 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3330 size_t *serverinfo_length)
3331 {
3332 CERT_PKEY *cpk = s->s3->tmp.cert;
3333 *serverinfo_length = 0;
3334
3335 if (cpk == NULL || cpk->serverinfo == NULL)
3336 return 0;
3337
3338 *serverinfo = cpk->serverinfo;
3339 *serverinfo_length = cpk->serverinfo_length;
3340 return 1;
3341 }
3342
3343 void ssl_update_cache(SSL *s, int mode)
3344 {
3345 int i;
3346
3347 /*
3348 * If the session_id_length is 0, we are not supposed to cache it, and it
3349 * would be rather hard to do anyway :-)
3350 */
3351 if (s->session->session_id_length == 0)
3352 return;
3353
3354 /*
3355 * If sid_ctx_length is 0 there is no specific application context
3356 * associated with this session, so when we try to resume it and
3357 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3358 * indication that this is actually a session for the proper application
3359 * context, and the *handshake* will fail, not just the resumption attempt.
3360 * Do not cache (on the server) these sessions that are not resumable
3361 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3362 */
3363 if (s->server && s->session->sid_ctx_length == 0
3364 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3365 return;
3366
3367 i = s->session_ctx->session_cache_mode;
3368 if ((i & mode) != 0
3369 && (!s->hit || SSL_IS_TLS13(s))) {
3370 /*
3371 * Add the session to the internal cache. In server side TLSv1.3 we
3372 * normally don't do this because by default it's a full stateless ticket
3373 * with only a dummy session id so there is no reason to cache it,
3374 * unless:
3375 * - we are doing early_data, in which case we cache so that we can
3376 * detect replays
3377 * - the application has set a remove_session_cb so needs to know about
3378 * session timeout events
3379 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3380 */
3381 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3382 && (!SSL_IS_TLS13(s)
3383 || !s->server
3384 || (s->max_early_data > 0
3385 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3386 || s->session_ctx->remove_session_cb != NULL
3387 || (s->options & SSL_OP_NO_TICKET) != 0))
3388 SSL_CTX_add_session(s->session_ctx, s->session);
3389
3390 /*
3391 * Add the session to the external cache. We do this even in server side
3392 * TLSv1.3 without early data because some applications just want to
3393 * know about the creation of a session and aren't doing a full cache.
3394 */
3395 if (s->session_ctx->new_session_cb != NULL) {
3396 SSL_SESSION_up_ref(s->session);
3397 if (!s->session_ctx->new_session_cb(s, s->session))
3398 SSL_SESSION_free(s->session);
3399 }
3400 }
3401
3402 /* auto flush every 255 connections */
3403 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3404 int *stat, val;
3405 if (mode & SSL_SESS_CACHE_CLIENT)
3406 stat = &s->session_ctx->stats.sess_connect_good;
3407 else
3408 stat = &s->session_ctx->stats.sess_accept_good;
3409 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3410 && (val & 0xff) == 0xff)
3411 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3412 }
3413 }
3414
3415 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3416 {
3417 return ctx->method;
3418 }
3419
3420 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3421 {
3422 return s->method;
3423 }
3424
3425 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3426 {
3427 int ret = 1;
3428
3429 if (s->method != meth) {
3430 const SSL_METHOD *sm = s->method;
3431 int (*hf) (SSL *) = s->handshake_func;
3432
3433 if (sm->version == meth->version)
3434 s->method = meth;
3435 else {
3436 sm->ssl_free(s);
3437 s->method = meth;
3438 ret = s->method->ssl_new(s);
3439 }
3440
3441 if (hf == sm->ssl_connect)
3442 s->handshake_func = meth->ssl_connect;
3443 else if (hf == sm->ssl_accept)
3444 s->handshake_func = meth->ssl_accept;
3445 }
3446 return ret;
3447 }
3448
3449 int SSL_get_error(const SSL *s, int i)
3450 {
3451 int reason;
3452 unsigned long l;
3453 BIO *bio;
3454
3455 if (i > 0)
3456 return SSL_ERROR_NONE;
3457
3458 /*
3459 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3460 * where we do encode the error
3461 */
3462 if ((l = ERR_peek_error()) != 0) {
3463 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3464 return SSL_ERROR_SYSCALL;
3465 else
3466 return SSL_ERROR_SSL;
3467 }
3468
3469 if (SSL_want_read(s)) {
3470 bio = SSL_get_rbio(s);
3471 if (BIO_should_read(bio))
3472 return SSL_ERROR_WANT_READ;
3473 else if (BIO_should_write(bio))
3474 /*
3475 * This one doesn't make too much sense ... We never try to write
3476 * to the rbio, and an application program where rbio and wbio
3477 * are separate couldn't even know what it should wait for.
3478 * However if we ever set s->rwstate incorrectly (so that we have
3479 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3480 * wbio *are* the same, this test works around that bug; so it
3481 * might be safer to keep it.
3482 */
3483 return SSL_ERROR_WANT_WRITE;
3484 else if (BIO_should_io_special(bio)) {
3485 reason = BIO_get_retry_reason(bio);
3486 if (reason == BIO_RR_CONNECT)
3487 return SSL_ERROR_WANT_CONNECT;
3488 else if (reason == BIO_RR_ACCEPT)
3489 return SSL_ERROR_WANT_ACCEPT;
3490 else
3491 return SSL_ERROR_SYSCALL; /* unknown */
3492 }
3493 }
3494
3495 if (SSL_want_write(s)) {
3496 /* Access wbio directly - in order to use the buffered bio if present */
3497 bio = s->wbio;
3498 if (BIO_should_write(bio))
3499 return SSL_ERROR_WANT_WRITE;
3500 else if (BIO_should_read(bio))
3501 /*
3502 * See above (SSL_want_read(s) with BIO_should_write(bio))
3503 */
3504 return SSL_ERROR_WANT_READ;
3505 else if (BIO_should_io_special(bio)) {
3506 reason = BIO_get_retry_reason(bio);
3507 if (reason == BIO_RR_CONNECT)
3508 return SSL_ERROR_WANT_CONNECT;
3509 else if (reason == BIO_RR_ACCEPT)
3510 return SSL_ERROR_WANT_ACCEPT;
3511 else
3512 return SSL_ERROR_SYSCALL;
3513 }
3514 }
3515 if (SSL_want_x509_lookup(s))
3516 return SSL_ERROR_WANT_X509_LOOKUP;
3517 if (SSL_want_async(s))
3518 return SSL_ERROR_WANT_ASYNC;
3519 if (SSL_want_async_job(s))
3520 return SSL_ERROR_WANT_ASYNC_JOB;
3521 if (SSL_want_client_hello_cb(s))
3522 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3523
3524 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3525 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3526 return SSL_ERROR_ZERO_RETURN;
3527
3528 return SSL_ERROR_SYSCALL;
3529 }
3530
3531 static int ssl_do_handshake_intern(void *vargs)
3532 {
3533 struct ssl_async_args *args;
3534 SSL *s;
3535
3536 args = (struct ssl_async_args *)vargs;
3537 s = args->s;
3538
3539 return s->handshake_func(s);
3540 }
3541
3542 int SSL_do_handshake(SSL *s)
3543 {
3544 int ret = 1;
3545
3546 if (s->handshake_func == NULL) {
3547 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3548 return -1;
3549 }
3550
3551 ossl_statem_check_finish_init(s, -1);
3552
3553 s->method->ssl_renegotiate_check(s, 0);
3554
3555 if (SSL_is_server(s)) {
3556 /* clear SNI settings at server-side */
3557 OPENSSL_free(s->ext.hostname);
3558 s->ext.hostname = NULL;
3559 }
3560
3561 if (SSL_in_init(s) || SSL_in_before(s)) {
3562 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3563 struct ssl_async_args args;
3564
3565 args.s = s;
3566
3567 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3568 } else {
3569 ret = s->handshake_func(s);
3570 }
3571 }
3572 return ret;
3573 }
3574
3575 void SSL_set_accept_state(SSL *s)
3576 {
3577 s->server = 1;
3578 s->shutdown = 0;
3579 ossl_statem_clear(s);
3580 s->handshake_func = s->method->ssl_accept;
3581 clear_ciphers(s);
3582 }
3583
3584 void SSL_set_connect_state(SSL *s)
3585 {
3586 s->server = 0;
3587 s->shutdown = 0;
3588 ossl_statem_clear(s);
3589 s->handshake_func = s->method->ssl_connect;
3590 clear_ciphers(s);
3591 }
3592
3593 int ssl_undefined_function(SSL *s)
3594 {
3595 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3596 return 0;
3597 }
3598
3599 int ssl_undefined_void_function(void)
3600 {
3601 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3602 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3603 return 0;
3604 }
3605
3606 int ssl_undefined_const_function(const SSL *s)
3607 {
3608 return 0;
3609 }
3610
3611 const SSL_METHOD *ssl_bad_method(int ver)
3612 {
3613 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3614 return NULL;
3615 }
3616
3617 const char *ssl_protocol_to_string(int version)
3618 {
3619 switch(version)
3620 {
3621 case TLS1_3_VERSION:
3622 return "TLSv1.3";
3623
3624 case TLS1_2_VERSION:
3625 return "TLSv1.2";
3626
3627 case TLS1_1_VERSION:
3628 return "TLSv1.1";
3629
3630 case TLS1_VERSION:
3631 return "TLSv1";
3632
3633 case SSL3_VERSION:
3634 return "SSLv3";
3635
3636 case DTLS1_BAD_VER:
3637 return "DTLSv0.9";
3638
3639 case DTLS1_VERSION:
3640 return "DTLSv1";
3641
3642 case DTLS1_2_VERSION:
3643 return "DTLSv1.2";
3644
3645 default:
3646 return "unknown";
3647 }
3648 }
3649
3650 const char *SSL_get_version(const SSL *s)
3651 {
3652 return ssl_protocol_to_string(s->version);
3653 }
3654
3655 SSL *SSL_dup(SSL *s)
3656 {
3657 STACK_OF(X509_NAME) *sk;
3658 X509_NAME *xn;
3659 SSL *ret;
3660 int i;
3661
3662 /* If we're not quiescent, just up_ref! */
3663 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3664 CRYPTO_UP_REF(&s->references, &i, s->lock);
3665 return s;
3666 }
3667
3668 /*
3669 * Otherwise, copy configuration state, and session if set.
3670 */
3671 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3672 return NULL;
3673
3674 if (s->session != NULL) {
3675 /*
3676 * Arranges to share the same session via up_ref. This "copies"
3677 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3678 */
3679 if (!SSL_copy_session_id(ret, s))
3680 goto err;
3681 } else {
3682 /*
3683 * No session has been established yet, so we have to expect that
3684 * s->cert or ret->cert will be changed later -- they should not both
3685 * point to the same object, and thus we can't use
3686 * SSL_copy_session_id.
3687 */
3688 if (!SSL_set_ssl_method(ret, s->method))
3689 goto err;
3690
3691 if (s->cert != NULL) {
3692 ssl_cert_free(ret->cert);
3693 ret->cert = ssl_cert_dup(s->cert);
3694 if (ret->cert == NULL)
3695 goto err;
3696 }
3697
3698 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3699 (int)s->sid_ctx_length))
3700 goto err;
3701 }
3702
3703 if (!ssl_dane_dup(ret, s))
3704 goto err;
3705 ret->version = s->version;
3706 ret->options = s->options;
3707 ret->mode = s->mode;
3708 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3709 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3710 ret->msg_callback = s->msg_callback;
3711 ret->msg_callback_arg = s->msg_callback_arg;
3712 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3713 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3714 ret->generate_session_id = s->generate_session_id;
3715
3716 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3717
3718 /* copy app data, a little dangerous perhaps */
3719 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3720 goto err;
3721
3722 /* setup rbio, and wbio */
3723 if (s->rbio != NULL) {
3724 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3725 goto err;
3726 }
3727 if (s->wbio != NULL) {
3728 if (s->wbio != s->rbio) {
3729 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3730 goto err;
3731 } else {
3732 BIO_up_ref(ret->rbio);
3733 ret->wbio = ret->rbio;
3734 }
3735 }
3736
3737 ret->server = s->server;
3738 if (s->handshake_func) {
3739 if (s->server)
3740 SSL_set_accept_state(ret);
3741 else
3742 SSL_set_connect_state(ret);
3743 }
3744 ret->shutdown = s->shutdown;
3745 ret->hit = s->hit;
3746
3747 ret->default_passwd_callback = s->default_passwd_callback;
3748 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3749
3750 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3751
3752 /* dup the cipher_list and cipher_list_by_id stacks */
3753 if (s->cipher_list != NULL) {
3754 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3755 goto err;
3756 }
3757 if (s->cipher_list_by_id != NULL)
3758 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3759 == NULL)
3760 goto err;
3761
3762 /* Dup the client_CA list */
3763 if (s->ca_names != NULL) {
3764 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3765 goto err;
3766 ret->ca_names = sk;
3767 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3768 xn = sk_X509_NAME_value(sk, i);
3769 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3770 X509_NAME_free(xn);
3771 goto err;
3772 }
3773 }
3774 }
3775 return ret;
3776
3777 err:
3778 SSL_free(ret);
3779 return NULL;
3780 }
3781
3782 void ssl_clear_cipher_ctx(SSL *s)
3783 {
3784 if (s->enc_read_ctx != NULL) {
3785 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3786 s->enc_read_ctx = NULL;
3787 }
3788 if (s->enc_write_ctx != NULL) {
3789 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3790 s->enc_write_ctx = NULL;
3791 }
3792 #ifndef OPENSSL_NO_COMP
3793 COMP_CTX_free(s->expand);
3794 s->expand = NULL;
3795 COMP_CTX_free(s->compress);
3796 s->compress = NULL;
3797 #endif
3798 }
3799
3800 X509 *SSL_get_certificate(const SSL *s)
3801 {
3802 if (s->cert != NULL)
3803 return s->cert->key->x509;
3804 else
3805 return NULL;
3806 }
3807
3808 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3809 {
3810 if (s->cert != NULL)
3811 return s->cert->key->privatekey;
3812 else
3813 return NULL;
3814 }
3815
3816 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3817 {
3818 if (ctx->cert != NULL)
3819 return ctx->cert->key->x509;
3820 else
3821 return NULL;
3822 }
3823
3824 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3825 {
3826 if (ctx->cert != NULL)
3827 return ctx->cert->key->privatekey;
3828 else
3829 return NULL;
3830 }
3831
3832 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3833 {
3834 if ((s->session != NULL) && (s->session->cipher != NULL))
3835 return s->session->cipher;
3836 return NULL;
3837 }
3838
3839 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3840 {
3841 return s->s3->tmp.new_cipher;
3842 }
3843
3844 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3845 {
3846 #ifndef OPENSSL_NO_COMP
3847 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3848 #else
3849 return NULL;
3850 #endif
3851 }
3852
3853 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3854 {
3855 #ifndef OPENSSL_NO_COMP
3856 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3857 #else
3858 return NULL;
3859 #endif
3860 }
3861
3862 int ssl_init_wbio_buffer(SSL *s)
3863 {
3864 BIO *bbio;
3865
3866 if (s->bbio != NULL) {
3867 /* Already buffered. */
3868 return 1;
3869 }
3870
3871 bbio = BIO_new(BIO_f_buffer());
3872 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3873 BIO_free(bbio);
3874 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3875 return 0;
3876 }
3877 s->bbio = bbio;
3878 s->wbio = BIO_push(bbio, s->wbio);
3879
3880 return 1;
3881 }
3882
3883 int ssl_free_wbio_buffer(SSL *s)
3884 {
3885 /* callers ensure s is never null */
3886 if (s->bbio == NULL)
3887 return 1;
3888
3889 s->wbio = BIO_pop(s->wbio);
3890 BIO_free(s->bbio);
3891 s->bbio = NULL;
3892
3893 return 1;
3894 }
3895
3896 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3897 {
3898 ctx->quiet_shutdown = mode;
3899 }
3900
3901 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3902 {
3903 return ctx->quiet_shutdown;
3904 }
3905
3906 void SSL_set_quiet_shutdown(SSL *s, int mode)
3907 {
3908 s->quiet_shutdown = mode;
3909 }
3910
3911 int SSL_get_quiet_shutdown(const SSL *s)
3912 {
3913 return s->quiet_shutdown;
3914 }
3915
3916 void SSL_set_shutdown(SSL *s, int mode)
3917 {
3918 s->shutdown = mode;
3919 }
3920
3921 int SSL_get_shutdown(const SSL *s)
3922 {
3923 return s->shutdown;
3924 }
3925
3926 int SSL_version(const SSL *s)
3927 {
3928 return s->version;
3929 }
3930
3931 int SSL_client_version(const SSL *s)
3932 {
3933 return s->client_version;
3934 }
3935
3936 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3937 {
3938 return ssl->ctx;
3939 }
3940
3941 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3942 {
3943 CERT *new_cert;
3944 if (ssl->ctx == ctx)
3945 return ssl->ctx;
3946 if (ctx == NULL)
3947 ctx = ssl->session_ctx;
3948 new_cert = ssl_cert_dup(ctx->cert);
3949 if (new_cert == NULL) {
3950 return NULL;
3951 }
3952
3953 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3954 ssl_cert_free(new_cert);
3955 return NULL;
3956 }
3957
3958 ssl_cert_free(ssl->cert);
3959 ssl->cert = new_cert;
3960
3961 /*
3962 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3963 * so setter APIs must prevent invalid lengths from entering the system.
3964 */
3965 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3966 return NULL;
3967
3968 /*
3969 * If the session ID context matches that of the parent SSL_CTX,
3970 * inherit it from the new SSL_CTX as well. If however the context does
3971 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3972 * leave it unchanged.
3973 */
3974 if ((ssl->ctx != NULL) &&
3975 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3976 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3977 ssl->sid_ctx_length = ctx->sid_ctx_length;
3978 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3979 }
3980
3981 SSL_CTX_up_ref(ctx);
3982 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3983 ssl->ctx = ctx;
3984
3985 return ssl->ctx;
3986 }
3987
3988 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3989 {
3990 return X509_STORE_set_default_paths(ctx->cert_store);
3991 }
3992
3993 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3994 {
3995 X509_LOOKUP *lookup;
3996
3997 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3998 if (lookup == NULL)
3999 return 0;
4000 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4001
4002 /* Clear any errors if the default directory does not exist */
4003 ERR_clear_error();
4004
4005 return 1;
4006 }
4007
4008 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4009 {
4010 X509_LOOKUP *lookup;
4011
4012 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4013 if (lookup == NULL)
4014 return 0;
4015
4016 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4017
4018 /* Clear any errors if the default file does not exist */
4019 ERR_clear_error();
4020
4021 return 1;
4022 }
4023
4024 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4025 const char *CApath)
4026 {
4027 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4028 }
4029
4030 void SSL_set_info_callback(SSL *ssl,
4031 void (*cb) (const SSL *ssl, int type, int val))
4032 {
4033 ssl->info_callback = cb;
4034 }
4035
4036 /*
4037 * One compiler (Diab DCC) doesn't like argument names in returned function
4038 * pointer.
4039 */
4040 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4041 int /* type */ ,
4042 int /* val */ ) {
4043 return ssl->info_callback;
4044 }
4045
4046 void SSL_set_verify_result(SSL *ssl, long arg)
4047 {
4048 ssl->verify_result = arg;
4049 }
4050
4051 long SSL_get_verify_result(const SSL *ssl)
4052 {
4053 return ssl->verify_result;
4054 }
4055
4056 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4057 {
4058 if (outlen == 0)
4059 return sizeof(ssl->s3->client_random);
4060 if (outlen > sizeof(ssl->s3->client_random))
4061 outlen = sizeof(ssl->s3->client_random);
4062 memcpy(out, ssl->s3->client_random, outlen);
4063 return outlen;
4064 }
4065
4066 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4067 {
4068 if (outlen == 0)
4069 return sizeof(ssl->s3->server_random);
4070 if (outlen > sizeof(ssl->s3->server_random))
4071 outlen = sizeof(ssl->s3->server_random);
4072 memcpy(out, ssl->s3->server_random, outlen);
4073 return outlen;
4074 }
4075
4076 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4077 unsigned char *out, size_t outlen)
4078 {
4079 if (outlen == 0)
4080 return session->master_key_length;
4081 if (outlen > session->master_key_length)
4082 outlen = session->master_key_length;
4083 memcpy(out, session->master_key, outlen);
4084 return outlen;
4085 }
4086
4087 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4088 size_t len)
4089 {
4090 if (len > sizeof(sess->master_key))
4091 return 0;
4092
4093 memcpy(sess->master_key, in, len);
4094 sess->master_key_length = len;
4095 return 1;
4096 }
4097
4098
4099 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4100 {
4101 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4102 }
4103
4104 void *SSL_get_ex_data(const SSL *s, int idx)
4105 {
4106 return CRYPTO_get_ex_data(&s->ex_data, idx);
4107 }
4108
4109 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4110 {
4111 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4112 }
4113
4114 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4115 {
4116 return CRYPTO_get_ex_data(&s->ex_data, idx);
4117 }
4118
4119 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4120 {
4121 return ctx->cert_store;
4122 }
4123
4124 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4125 {
4126 X509_STORE_free(ctx->cert_store);
4127 ctx->cert_store = store;
4128 }
4129
4130 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4131 {
4132 if (store != NULL)
4133 X509_STORE_up_ref(store);
4134 SSL_CTX_set_cert_store(ctx, store);
4135 }
4136
4137 int SSL_want(const SSL *s)
4138 {
4139 return s->rwstate;
4140 }
4141
4142 /**
4143 * \brief Set the callback for generating temporary DH keys.
4144 * \param ctx the SSL context.
4145 * \param dh the callback
4146 */
4147
4148 #ifndef OPENSSL_NO_DH
4149 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4150 DH *(*dh) (SSL *ssl, int is_export,
4151 int keylength))
4152 {
4153 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4154 }
4155
4156 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4157 int keylength))
4158 {
4159 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4160 }
4161 #endif
4162
4163 #ifndef OPENSSL_NO_PSK
4164 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4165 {
4166 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4167 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4168 return 0;
4169 }
4170 OPENSSL_free(ctx->cert->psk_identity_hint);
4171 if (identity_hint != NULL) {
4172 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4173 if (ctx->cert->psk_identity_hint == NULL)
4174 return 0;
4175 } else
4176 ctx->cert->psk_identity_hint = NULL;
4177 return 1;
4178 }
4179
4180 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4181 {
4182 if (s == NULL)
4183 return 0;
4184
4185 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4186 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4187 return 0;
4188 }
4189 OPENSSL_free(s->cert->psk_identity_hint);
4190 if (identity_hint != NULL) {
4191 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4192 if (s->cert->psk_identity_hint == NULL)
4193 return 0;
4194 } else
4195 s->cert->psk_identity_hint = NULL;
4196 return 1;
4197 }
4198
4199 const char *SSL_get_psk_identity_hint(const SSL *s)
4200 {
4201 if (s == NULL || s->session == NULL)
4202 return NULL;
4203 return s->session->psk_identity_hint;
4204 }
4205
4206 const char *SSL_get_psk_identity(const SSL *s)
4207 {
4208 if (s == NULL || s->session == NULL)
4209 return NULL;
4210 return s->session->psk_identity;
4211 }
4212
4213 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4214 {
4215 s->psk_client_callback = cb;
4216 }
4217
4218 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4219 {
4220 ctx->psk_client_callback = cb;
4221 }
4222
4223 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4224 {
4225 s->psk_server_callback = cb;
4226 }
4227
4228 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4229 {
4230 ctx->psk_server_callback = cb;
4231 }
4232 #endif
4233
4234 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4235 {
4236 s->psk_find_session_cb = cb;
4237 }
4238
4239 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4240 SSL_psk_find_session_cb_func cb)
4241 {
4242 ctx->psk_find_session_cb = cb;
4243 }
4244
4245 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4246 {
4247 s->psk_use_session_cb = cb;
4248 }
4249
4250 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4251 SSL_psk_use_session_cb_func cb)
4252 {
4253 ctx->psk_use_session_cb = cb;
4254 }
4255
4256 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4257 void (*cb) (int write_p, int version,
4258 int content_type, const void *buf,
4259 size_t len, SSL *ssl, void *arg))
4260 {
4261 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4262 }
4263
4264 void SSL_set_msg_callback(SSL *ssl,
4265 void (*cb) (int write_p, int version,
4266 int content_type, const void *buf,
4267 size_t len, SSL *ssl, void *arg))
4268 {
4269 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4270 }
4271
4272 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4273 int (*cb) (SSL *ssl,
4274 int
4275 is_forward_secure))
4276 {
4277 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4278 (void (*)(void))cb);
4279 }
4280
4281 void SSL_set_not_resumable_session_callback(SSL *ssl,
4282 int (*cb) (SSL *ssl,
4283 int is_forward_secure))
4284 {
4285 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4286 (void (*)(void))cb);
4287 }
4288
4289 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4290 size_t (*cb) (SSL *ssl, int type,
4291 size_t len, void *arg))
4292 {
4293 ctx->record_padding_cb = cb;
4294 }
4295
4296 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4297 {
4298 ctx->record_padding_arg = arg;
4299 }
4300
4301 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4302 {
4303 return ctx->record_padding_arg;
4304 }
4305
4306 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4307 {
4308 /* block size of 0 or 1 is basically no padding */
4309 if (block_size == 1)
4310 ctx->block_padding = 0;
4311 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4312 ctx->block_padding = block_size;
4313 else
4314 return 0;
4315 return 1;
4316 }
4317
4318 void SSL_set_record_padding_callback(SSL *ssl,
4319 size_t (*cb) (SSL *ssl, int type,
4320 size_t len, void *arg))
4321 {
4322 ssl->record_padding_cb = cb;
4323 }
4324
4325 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4326 {
4327 ssl->record_padding_arg = arg;
4328 }
4329
4330 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4331 {
4332 return ssl->record_padding_arg;
4333 }
4334
4335 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4336 {
4337 /* block size of 0 or 1 is basically no padding */
4338 if (block_size == 1)
4339 ssl->block_padding = 0;
4340 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4341 ssl->block_padding = block_size;
4342 else
4343 return 0;
4344 return 1;
4345 }
4346
4347 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4348 {
4349 s->num_tickets = num_tickets;
4350
4351 return 1;
4352 }
4353
4354 size_t SSL_get_num_tickets(SSL *s)
4355 {
4356 return s->num_tickets;
4357 }
4358
4359 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4360 {
4361 ctx->num_tickets = num_tickets;
4362
4363 return 1;
4364 }
4365
4366 size_t SSL_CTX_get_num_tickets(SSL_CTX *ctx)
4367 {
4368 return ctx->num_tickets;
4369 }
4370
4371 /*
4372 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4373 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4374 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4375 * Returns the newly allocated ctx;
4376 */
4377
4378 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4379 {
4380 ssl_clear_hash_ctx(hash);
4381 *hash = EVP_MD_CTX_new();
4382 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4383 EVP_MD_CTX_free(*hash);
4384 *hash = NULL;
4385 return NULL;
4386 }
4387 return *hash;
4388 }
4389
4390 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4391 {
4392
4393 EVP_MD_CTX_free(*hash);
4394 *hash = NULL;
4395 }
4396
4397 /* Retrieve handshake hashes */
4398 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4399 size_t *hashlen)
4400 {
4401 EVP_MD_CTX *ctx = NULL;
4402 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4403 int hashleni = EVP_MD_CTX_size(hdgst);
4404 int ret = 0;
4405
4406 if (hashleni < 0 || (size_t)hashleni > outlen) {
4407 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4408 ERR_R_INTERNAL_ERROR);
4409 goto err;
4410 }
4411
4412 ctx = EVP_MD_CTX_new();
4413 if (ctx == NULL)
4414 goto err;
4415
4416 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4417 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4418 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4419 ERR_R_INTERNAL_ERROR);
4420 goto err;
4421 }
4422
4423 *hashlen = hashleni;
4424
4425 ret = 1;
4426 err:
4427 EVP_MD_CTX_free(ctx);
4428 return ret;
4429 }
4430
4431 int SSL_session_reused(SSL *s)
4432 {
4433 return s->hit;
4434 }
4435
4436 int SSL_is_server(const SSL *s)
4437 {
4438 return s->server;
4439 }
4440
4441 #if OPENSSL_API_COMPAT < 0x10100000L
4442 void SSL_set_debug(SSL *s, int debug)
4443 {
4444 /* Old function was do-nothing anyway... */
4445 (void)s;
4446 (void)debug;
4447 }
4448 #endif
4449
4450 void SSL_set_security_level(SSL *s, int level)
4451 {
4452 s->cert->sec_level = level;
4453 }
4454
4455 int SSL_get_security_level(const SSL *s)
4456 {
4457 return s->cert->sec_level;
4458 }
4459
4460 void SSL_set_security_callback(SSL *s,
4461 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4462 int op, int bits, int nid,
4463 void *other, void *ex))
4464 {
4465 s->cert->sec_cb = cb;
4466 }
4467
4468 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4469 const SSL_CTX *ctx, int op,
4470 int bits, int nid, void *other,
4471 void *ex) {
4472 return s->cert->sec_cb;
4473 }
4474
4475 void SSL_set0_security_ex_data(SSL *s, void *ex)
4476 {
4477 s->cert->sec_ex = ex;
4478 }
4479
4480 void *SSL_get0_security_ex_data(const SSL *s)
4481 {
4482 return s->cert->sec_ex;
4483 }
4484
4485 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4486 {
4487 ctx->cert->sec_level = level;
4488 }
4489
4490 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4491 {
4492 return ctx->cert->sec_level;
4493 }
4494
4495 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4496 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4497 int op, int bits, int nid,
4498 void *other, void *ex))
4499 {
4500 ctx->cert->sec_cb = cb;
4501 }
4502
4503 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4504 const SSL_CTX *ctx,
4505 int op, int bits,
4506 int nid,
4507 void *other,
4508 void *ex) {
4509 return ctx->cert->sec_cb;
4510 }
4511
4512 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4513 {
4514 ctx->cert->sec_ex = ex;
4515 }
4516
4517 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4518 {
4519 return ctx->cert->sec_ex;
4520 }
4521
4522 /*
4523 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4524 * can return unsigned long, instead of the generic long return value from the
4525 * control interface.
4526 */
4527 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4528 {
4529 return ctx->options;
4530 }
4531
4532 unsigned long SSL_get_options(const SSL *s)
4533 {
4534 return s->options;
4535 }
4536
4537 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4538 {
4539 return ctx->options |= op;
4540 }
4541
4542 unsigned long SSL_set_options(SSL *s, unsigned long op)
4543 {
4544 return s->options |= op;
4545 }
4546
4547 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4548 {
4549 return ctx->options &= ~op;
4550 }
4551
4552 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4553 {
4554 return s->options &= ~op;
4555 }
4556
4557 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4558 {
4559 return s->verified_chain;
4560 }
4561
4562 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4563
4564 #ifndef OPENSSL_NO_CT
4565
4566 /*
4567 * Moves SCTs from the |src| stack to the |dst| stack.
4568 * The source of each SCT will be set to |origin|.
4569 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4570 * the caller.
4571 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4572 */
4573 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4574 sct_source_t origin)
4575 {
4576 int scts_moved = 0;
4577 SCT *sct = NULL;
4578
4579 if (*dst == NULL) {
4580 *dst = sk_SCT_new_null();
4581 if (*dst == NULL) {
4582 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4583 goto err;
4584 }
4585 }
4586
4587 while ((sct = sk_SCT_pop(src)) != NULL) {
4588 if (SCT_set_source(sct, origin) != 1)
4589 goto err;
4590
4591 if (sk_SCT_push(*dst, sct) <= 0)
4592 goto err;
4593 scts_moved += 1;
4594 }
4595
4596 return scts_moved;
4597 err:
4598 if (sct != NULL)
4599 sk_SCT_push(src, sct); /* Put the SCT back */
4600 return -1;
4601 }
4602
4603 /*
4604 * Look for data collected during ServerHello and parse if found.
4605 * Returns the number of SCTs extracted.
4606 */
4607 static int ct_extract_tls_extension_scts(SSL *s)
4608 {
4609 int scts_extracted = 0;
4610
4611 if (s->ext.scts != NULL) {
4612 const unsigned char *p = s->ext.scts;
4613 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4614
4615 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4616
4617 SCT_LIST_free(scts);
4618 }
4619
4620 return scts_extracted;
4621 }
4622
4623 /*
4624 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4625 * contains an SCT X509 extension. They will be stored in |s->scts|.
4626 * Returns:
4627 * - The number of SCTs extracted, assuming an OCSP response exists.
4628 * - 0 if no OCSP response exists or it contains no SCTs.
4629 * - A negative integer if an error occurs.
4630 */
4631 static int ct_extract_ocsp_response_scts(SSL *s)
4632 {
4633 # ifndef OPENSSL_NO_OCSP
4634 int scts_extracted = 0;
4635 const unsigned char *p;
4636 OCSP_BASICRESP *br = NULL;
4637 OCSP_RESPONSE *rsp = NULL;
4638 STACK_OF(SCT) *scts = NULL;
4639 int i;
4640
4641 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4642 goto err;
4643
4644 p = s->ext.ocsp.resp;
4645 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4646 if (rsp == NULL)
4647 goto err;
4648
4649 br = OCSP_response_get1_basic(rsp);
4650 if (br == NULL)
4651 goto err;
4652
4653 for (i = 0; i < OCSP_resp_count(br); ++i) {
4654 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4655
4656 if (single == NULL)
4657 continue;
4658
4659 scts =
4660 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4661 scts_extracted =
4662 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4663 if (scts_extracted < 0)
4664 goto err;
4665 }
4666 err:
4667 SCT_LIST_free(scts);
4668 OCSP_BASICRESP_free(br);
4669 OCSP_RESPONSE_free(rsp);
4670 return scts_extracted;
4671 # else
4672 /* Behave as if no OCSP response exists */
4673 return 0;
4674 # endif
4675 }
4676
4677 /*
4678 * Attempts to extract SCTs from the peer certificate.
4679 * Return the number of SCTs extracted, or a negative integer if an error
4680 * occurs.
4681 */
4682 static int ct_extract_x509v3_extension_scts(SSL *s)
4683 {
4684 int scts_extracted = 0;
4685 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4686
4687 if (cert != NULL) {
4688 STACK_OF(SCT) *scts =
4689 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4690
4691 scts_extracted =
4692 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4693
4694 SCT_LIST_free(scts);
4695 }
4696
4697 return scts_extracted;
4698 }
4699
4700 /*
4701 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4702 * response (if it exists) and X509v3 extensions in the certificate.
4703 * Returns NULL if an error occurs.
4704 */
4705 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4706 {
4707 if (!s->scts_parsed) {
4708 if (ct_extract_tls_extension_scts(s) < 0 ||
4709 ct_extract_ocsp_response_scts(s) < 0 ||
4710 ct_extract_x509v3_extension_scts(s) < 0)
4711 goto err;
4712
4713 s->scts_parsed = 1;
4714 }
4715 return s->scts;
4716 err:
4717 return NULL;
4718 }
4719
4720 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4721 const STACK_OF(SCT) *scts, void *unused_arg)
4722 {
4723 return 1;
4724 }
4725
4726 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4727 const STACK_OF(SCT) *scts, void *unused_arg)
4728 {
4729 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4730 int i;
4731
4732 for (i = 0; i < count; ++i) {
4733 SCT *sct = sk_SCT_value(scts, i);
4734 int status = SCT_get_validation_status(sct);
4735
4736 if (status == SCT_VALIDATION_STATUS_VALID)
4737 return 1;
4738 }
4739 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4740 return 0;
4741 }
4742
4743 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4744 void *arg)
4745 {
4746 /*
4747 * Since code exists that uses the custom extension handler for CT, look
4748 * for this and throw an error if they have already registered to use CT.
4749 */
4750 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4751 TLSEXT_TYPE_signed_certificate_timestamp))
4752 {
4753 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4754 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4755 return 0;
4756 }
4757
4758 if (callback != NULL) {
4759 /*
4760 * If we are validating CT, then we MUST accept SCTs served via OCSP
4761 */
4762 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4763 return 0;
4764 }
4765
4766 s->ct_validation_callback = callback;
4767 s->ct_validation_callback_arg = arg;
4768
4769 return 1;
4770 }
4771
4772 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4773 ssl_ct_validation_cb callback, void *arg)
4774 {
4775 /*
4776 * Since code exists that uses the custom extension handler for CT, look for
4777 * this and throw an error if they have already registered to use CT.
4778 */
4779 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4780 TLSEXT_TYPE_signed_certificate_timestamp))
4781 {
4782 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4783 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4784 return 0;
4785 }
4786
4787 ctx->ct_validation_callback = callback;
4788 ctx->ct_validation_callback_arg = arg;
4789 return 1;
4790 }
4791
4792 int SSL_ct_is_enabled(const SSL *s)
4793 {
4794 return s->ct_validation_callback != NULL;
4795 }
4796
4797 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4798 {
4799 return ctx->ct_validation_callback != NULL;
4800 }
4801
4802 int ssl_validate_ct(SSL *s)
4803 {
4804 int ret = 0;
4805 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4806 X509 *issuer;
4807 SSL_DANE *dane = &s->dane;
4808 CT_POLICY_EVAL_CTX *ctx = NULL;
4809 const STACK_OF(SCT) *scts;
4810
4811 /*
4812 * If no callback is set, the peer is anonymous, or its chain is invalid,
4813 * skip SCT validation - just return success. Applications that continue
4814 * handshakes without certificates, with unverified chains, or pinned leaf
4815 * certificates are outside the scope of the WebPKI and CT.
4816 *
4817 * The above exclusions notwithstanding the vast majority of peers will
4818 * have rather ordinary certificate chains validated by typical
4819 * applications that perform certificate verification and therefore will
4820 * process SCTs when enabled.
4821 */
4822 if (s->ct_validation_callback == NULL || cert == NULL ||
4823 s->verify_result != X509_V_OK ||
4824 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4825 return 1;
4826
4827 /*
4828 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4829 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4830 */
4831 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4832 switch (dane->mtlsa->usage) {
4833 case DANETLS_USAGE_DANE_TA:
4834 case DANETLS_USAGE_DANE_EE:
4835 return 1;
4836 }
4837 }
4838
4839 ctx = CT_POLICY_EVAL_CTX_new();
4840 if (ctx == NULL) {
4841 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4842 ERR_R_MALLOC_FAILURE);
4843 goto end;
4844 }
4845
4846 issuer = sk_X509_value(s->verified_chain, 1);
4847 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4848 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4849 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4850 CT_POLICY_EVAL_CTX_set_time(
4851 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4852
4853 scts = SSL_get0_peer_scts(s);
4854
4855 /*
4856 * This function returns success (> 0) only when all the SCTs are valid, 0
4857 * when some are invalid, and < 0 on various internal errors (out of
4858 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4859 * reason to abort the handshake, that decision is up to the callback.
4860 * Therefore, we error out only in the unexpected case that the return
4861 * value is negative.
4862 *
4863 * XXX: One might well argue that the return value of this function is an
4864 * unfortunate design choice. Its job is only to determine the validation
4865 * status of each of the provided SCTs. So long as it correctly separates
4866 * the wheat from the chaff it should return success. Failure in this case
4867 * ought to correspond to an inability to carry out its duties.
4868 */
4869 if (SCT_LIST_validate(scts, ctx) < 0) {
4870 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4871 SSL_R_SCT_VERIFICATION_FAILED);
4872 goto end;
4873 }
4874
4875 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4876 if (ret < 0)
4877 ret = 0; /* This function returns 0 on failure */
4878 if (!ret)
4879 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4880 SSL_R_CALLBACK_FAILED);
4881
4882 end:
4883 CT_POLICY_EVAL_CTX_free(ctx);
4884 /*
4885 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4886 * failure return code here. Also the application may wish the complete
4887 * the handshake, and then disconnect cleanly at a higher layer, after
4888 * checking the verification status of the completed connection.
4889 *
4890 * We therefore force a certificate verification failure which will be
4891 * visible via SSL_get_verify_result() and cached as part of any resumed
4892 * session.
4893 *
4894 * Note: the permissive callback is for information gathering only, always
4895 * returns success, and does not affect verification status. Only the
4896 * strict callback or a custom application-specified callback can trigger
4897 * connection failure or record a verification error.
4898 */
4899 if (ret <= 0)
4900 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4901 return ret;
4902 }
4903
4904 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4905 {
4906 switch (validation_mode) {
4907 default:
4908 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4909 return 0;
4910 case SSL_CT_VALIDATION_PERMISSIVE:
4911 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4912 case SSL_CT_VALIDATION_STRICT:
4913 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4914 }
4915 }
4916
4917 int SSL_enable_ct(SSL *s, int validation_mode)
4918 {
4919 switch (validation_mode) {
4920 default:
4921 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4922 return 0;
4923 case SSL_CT_VALIDATION_PERMISSIVE:
4924 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4925 case SSL_CT_VALIDATION_STRICT:
4926 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4927 }
4928 }
4929
4930 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4931 {
4932 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4933 }
4934
4935 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4936 {
4937 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4938 }
4939
4940 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4941 {
4942 CTLOG_STORE_free(ctx->ctlog_store);
4943 ctx->ctlog_store = logs;
4944 }
4945
4946 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4947 {
4948 return ctx->ctlog_store;
4949 }
4950
4951 #endif /* OPENSSL_NO_CT */
4952
4953 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4954 void *arg)
4955 {
4956 c->client_hello_cb = cb;
4957 c->client_hello_cb_arg = arg;
4958 }
4959
4960 int SSL_client_hello_isv2(SSL *s)
4961 {
4962 if (s->clienthello == NULL)
4963 return 0;
4964 return s->clienthello->isv2;
4965 }
4966
4967 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4968 {
4969 if (s->clienthello == NULL)
4970 return 0;
4971 return s->clienthello->legacy_version;
4972 }
4973
4974 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4975 {
4976 if (s->clienthello == NULL)
4977 return 0;
4978 if (out != NULL)
4979 *out = s->clienthello->random;
4980 return SSL3_RANDOM_SIZE;
4981 }
4982
4983 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4984 {
4985 if (s->clienthello == NULL)
4986 return 0;
4987 if (out != NULL)
4988 *out = s->clienthello->session_id;
4989 return s->clienthello->session_id_len;
4990 }
4991
4992 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4993 {
4994 if (s->clienthello == NULL)
4995 return 0;
4996 if (out != NULL)
4997 *out = PACKET_data(&s->clienthello->ciphersuites);
4998 return PACKET_remaining(&s->clienthello->ciphersuites);
4999 }
5000
5001 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5002 {
5003 if (s->clienthello == NULL)
5004 return 0;
5005 if (out != NULL)
5006 *out = s->clienthello->compressions;
5007 return s->clienthello->compressions_len;
5008 }
5009
5010 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5011 {
5012 RAW_EXTENSION *ext;
5013 int *present;
5014 size_t num = 0, i;
5015
5016 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5017 return 0;
5018 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5019 ext = s->clienthello->pre_proc_exts + i;
5020 if (ext->present)
5021 num++;
5022 }
5023 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5024 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5025 ERR_R_MALLOC_FAILURE);
5026 return 0;
5027 }
5028 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5029 ext = s->clienthello->pre_proc_exts + i;
5030 if (ext->present) {
5031 if (ext->received_order >= num)
5032 goto err;
5033 present[ext->received_order] = ext->type;
5034 }
5035 }
5036 *out = present;
5037 *outlen = num;
5038 return 1;
5039 err:
5040 OPENSSL_free(present);
5041 return 0;
5042 }
5043
5044 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5045 size_t *outlen)
5046 {
5047 size_t i;
5048 RAW_EXTENSION *r;
5049
5050 if (s->clienthello == NULL)
5051 return 0;
5052 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5053 r = s->clienthello->pre_proc_exts + i;
5054 if (r->present && r->type == type) {
5055 if (out != NULL)
5056 *out = PACKET_data(&r->data);
5057 if (outlen != NULL)
5058 *outlen = PACKET_remaining(&r->data);
5059 return 1;
5060 }
5061 }
5062 return 0;
5063 }
5064
5065 int SSL_free_buffers(SSL *ssl)
5066 {
5067 RECORD_LAYER *rl = &ssl->rlayer;
5068
5069 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5070 return 0;
5071
5072 RECORD_LAYER_release(rl);
5073 return 1;
5074 }
5075
5076 int SSL_alloc_buffers(SSL *ssl)
5077 {
5078 return ssl3_setup_buffers(ssl);
5079 }
5080
5081 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5082 {
5083 ctx->keylog_callback = cb;
5084 }
5085
5086 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5087 {
5088 return ctx->keylog_callback;
5089 }
5090
5091 static int nss_keylog_int(const char *prefix,
5092 SSL *ssl,
5093 const uint8_t *parameter_1,
5094 size_t parameter_1_len,
5095 const uint8_t *parameter_2,
5096 size_t parameter_2_len)
5097 {
5098 char *out = NULL;
5099 char *cursor = NULL;
5100 size_t out_len = 0;
5101 size_t i;
5102 size_t prefix_len;
5103
5104 if (ssl->ctx->keylog_callback == NULL) return 1;
5105
5106 /*
5107 * Our output buffer will contain the following strings, rendered with
5108 * space characters in between, terminated by a NULL character: first the
5109 * prefix, then the first parameter, then the second parameter. The
5110 * meaning of each parameter depends on the specific key material being
5111 * logged. Note that the first and second parameters are encoded in
5112 * hexadecimal, so we need a buffer that is twice their lengths.
5113 */
5114 prefix_len = strlen(prefix);
5115 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
5116 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5117 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5118 ERR_R_MALLOC_FAILURE);
5119 return 0;
5120 }
5121
5122 strcpy(cursor, prefix);
5123 cursor += prefix_len;
5124 *cursor++ = ' ';
5125
5126 for (i = 0; i < parameter_1_len; i++) {
5127 sprintf(cursor, "%02x", parameter_1[i]);
5128 cursor += 2;
5129 }
5130 *cursor++ = ' ';
5131
5132 for (i = 0; i < parameter_2_len; i++) {
5133 sprintf(cursor, "%02x", parameter_2[i]);
5134 cursor += 2;
5135 }
5136 *cursor = '\0';
5137
5138 ssl->ctx->keylog_callback(ssl, (const char *)out);
5139 OPENSSL_free(out);
5140 return 1;
5141
5142 }
5143
5144 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5145 const uint8_t *encrypted_premaster,
5146 size_t encrypted_premaster_len,
5147 const uint8_t *premaster,
5148 size_t premaster_len)
5149 {
5150 if (encrypted_premaster_len < 8) {
5151 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5152 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5153 return 0;
5154 }
5155
5156 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5157 return nss_keylog_int("RSA",
5158 ssl,
5159 encrypted_premaster,
5160 8,
5161 premaster,
5162 premaster_len);
5163 }
5164
5165 int ssl_log_secret(SSL *ssl,
5166 const char *label,
5167 const uint8_t *secret,
5168 size_t secret_len)
5169 {
5170 return nss_keylog_int(label,
5171 ssl,
5172 ssl->s3->client_random,
5173 SSL3_RANDOM_SIZE,
5174 secret,
5175 secret_len);
5176 }
5177
5178 #define SSLV2_CIPHER_LEN 3
5179
5180 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5181 {
5182 int n;
5183
5184 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5185
5186 if (PACKET_remaining(cipher_suites) == 0) {
5187 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5188 SSL_R_NO_CIPHERS_SPECIFIED);
5189 return 0;
5190 }
5191
5192 if (PACKET_remaining(cipher_suites) % n != 0) {
5193 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5194 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5195 return 0;
5196 }
5197
5198 OPENSSL_free(s->s3->tmp.ciphers_raw);
5199 s->s3->tmp.ciphers_raw = NULL;
5200 s->s3->tmp.ciphers_rawlen = 0;
5201
5202 if (sslv2format) {
5203 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5204 PACKET sslv2ciphers = *cipher_suites;
5205 unsigned int leadbyte;
5206 unsigned char *raw;
5207
5208 /*
5209 * We store the raw ciphers list in SSLv3+ format so we need to do some
5210 * preprocessing to convert the list first. If there are any SSLv2 only
5211 * ciphersuites with a non-zero leading byte then we are going to
5212 * slightly over allocate because we won't store those. But that isn't a
5213 * problem.
5214 */
5215 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5216 s->s3->tmp.ciphers_raw = raw;
5217 if (raw == NULL) {
5218 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5219 ERR_R_MALLOC_FAILURE);
5220 return 0;
5221 }
5222 for (s->s3->tmp.ciphers_rawlen = 0;
5223 PACKET_remaining(&sslv2ciphers) > 0;
5224 raw += TLS_CIPHER_LEN) {
5225 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5226 || (leadbyte == 0
5227 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5228 TLS_CIPHER_LEN))
5229 || (leadbyte != 0
5230 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5231 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5232 SSL_R_BAD_PACKET);
5233 OPENSSL_free(s->s3->tmp.ciphers_raw);
5234 s->s3->tmp.ciphers_raw = NULL;
5235 s->s3->tmp.ciphers_rawlen = 0;
5236 return 0;
5237 }
5238 if (leadbyte == 0)
5239 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5240 }
5241 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5242 &s->s3->tmp.ciphers_rawlen)) {
5243 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5244 ERR_R_INTERNAL_ERROR);
5245 return 0;
5246 }
5247 return 1;
5248 }
5249
5250 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5251 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5252 STACK_OF(SSL_CIPHER) **scsvs)
5253 {
5254 PACKET pkt;
5255
5256 if (!PACKET_buf_init(&pkt, bytes, len))
5257 return 0;
5258 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5259 }
5260
5261 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5262 STACK_OF(SSL_CIPHER) **skp,
5263 STACK_OF(SSL_CIPHER) **scsvs_out,
5264 int sslv2format, int fatal)
5265 {
5266 const SSL_CIPHER *c;
5267 STACK_OF(SSL_CIPHER) *sk = NULL;
5268 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5269 int n;
5270 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5271 unsigned char cipher[SSLV2_CIPHER_LEN];
5272
5273 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5274
5275 if (PACKET_remaining(cipher_suites) == 0) {
5276 if (fatal)
5277 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5278 SSL_R_NO_CIPHERS_SPECIFIED);
5279 else
5280 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5281 return 0;
5282 }
5283
5284 if (PACKET_remaining(cipher_suites) % n != 0) {
5285 if (fatal)
5286 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5287 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5288 else
5289 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5290 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5291 return 0;
5292 }
5293
5294 sk = sk_SSL_CIPHER_new_null();
5295 scsvs = sk_SSL_CIPHER_new_null();
5296 if (sk == NULL || scsvs == NULL) {
5297 if (fatal)
5298 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5299 ERR_R_MALLOC_FAILURE);
5300 else
5301 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5302 goto err;
5303 }
5304
5305 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5306 /*
5307 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5308 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5309 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5310 */
5311 if (sslv2format && cipher[0] != '\0')
5312 continue;
5313
5314 /* For SSLv2-compat, ignore leading 0-byte. */
5315 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5316 if (c != NULL) {
5317 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5318 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5319 if (fatal)
5320 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5321 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5322 else
5323 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5324 goto err;
5325 }
5326 }
5327 }
5328 if (PACKET_remaining(cipher_suites) > 0) {
5329 if (fatal)
5330 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5331 SSL_R_BAD_LENGTH);
5332 else
5333 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5334 goto err;
5335 }
5336
5337 if (skp != NULL)
5338 *skp = sk;
5339 else
5340 sk_SSL_CIPHER_free(sk);
5341 if (scsvs_out != NULL)
5342 *scsvs_out = scsvs;
5343 else
5344 sk_SSL_CIPHER_free(scsvs);
5345 return 1;
5346 err:
5347 sk_SSL_CIPHER_free(sk);
5348 sk_SSL_CIPHER_free(scsvs);
5349 return 0;
5350 }
5351
5352 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5353 {
5354 ctx->max_early_data = max_early_data;
5355
5356 return 1;
5357 }
5358
5359 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5360 {
5361 return ctx->max_early_data;
5362 }
5363
5364 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5365 {
5366 s->max_early_data = max_early_data;
5367
5368 return 1;
5369 }
5370
5371 uint32_t SSL_get_max_early_data(const SSL *s)
5372 {
5373 return s->max_early_data;
5374 }
5375
5376 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5377 {
5378 /* Return any active Max Fragment Len extension */
5379 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5380 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5381
5382 /* return current SSL connection setting */
5383 return ssl->max_send_fragment;
5384 }
5385
5386 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5387 {
5388 /* Return a value regarding an active Max Fragment Len extension */
5389 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5390 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5391 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5392
5393 /* else limit |split_send_fragment| to current |max_send_fragment| */
5394 if (ssl->split_send_fragment > ssl->max_send_fragment)
5395 return ssl->max_send_fragment;
5396
5397 /* return current SSL connection setting */
5398 return ssl->split_send_fragment;
5399 }
5400
5401 int SSL_stateless(SSL *s)
5402 {
5403 int ret;
5404
5405 /* Ensure there is no state left over from a previous invocation */
5406 if (!SSL_clear(s))
5407 return 0;
5408
5409 ERR_clear_error();
5410
5411 s->s3->flags |= TLS1_FLAGS_STATELESS;
5412 ret = SSL_accept(s);
5413 s->s3->flags &= ~TLS1_FLAGS_STATELESS;
5414
5415 if (ret > 0 && s->ext.cookieok)
5416 return 1;
5417
5418 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5419 return 0;
5420
5421 return -1;
5422 }
5423
5424 void SSL_force_post_handshake_auth(SSL *ssl)
5425 {
5426 ssl->pha_forced = 1;
5427 }
5428
5429 int SSL_verify_client_post_handshake(SSL *ssl)
5430 {
5431 if (!SSL_IS_TLS13(ssl)) {
5432 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5433 return 0;
5434 }
5435 if (!ssl->server) {
5436 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5437 return 0;
5438 }
5439
5440 if (!SSL_is_init_finished(ssl)) {
5441 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5442 return 0;
5443 }
5444
5445 switch (ssl->post_handshake_auth) {
5446 case SSL_PHA_NONE:
5447 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5448 return 0;
5449 default:
5450 case SSL_PHA_EXT_SENT:
5451 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5452 return 0;
5453 case SSL_PHA_EXT_RECEIVED:
5454 break;
5455 case SSL_PHA_REQUEST_PENDING:
5456 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5457 return 0;
5458 case SSL_PHA_REQUESTED:
5459 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5460 return 0;
5461 }
5462
5463 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5464
5465 /* checks verify_mode and algorithm_auth */
5466 if (!send_certificate_request(ssl)) {
5467 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5468 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5469 return 0;
5470 }
5471
5472 ossl_statem_set_in_init(ssl, 1);
5473 return 1;
5474 }
5475
5476 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5477 SSL_CTX_generate_session_ticket_fn gen_cb,
5478 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5479 void *arg)
5480 {
5481 ctx->generate_ticket_cb = gen_cb;
5482 ctx->decrypt_ticket_cb = dec_cb;
5483 ctx->ticket_cb_data = arg;
5484 return 1;
5485 }