]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Make BIO opaque
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * ! \file ssl/ssl_lib.c \brief Version independent SSL functions.
3 */
4 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * All rights reserved.
6 *
7 * This package is an SSL implementation written
8 * by Eric Young (eay@cryptsoft.com).
9 * The implementation was written so as to conform with Netscapes SSL.
10 *
11 * This library is free for commercial and non-commercial use as long as
12 * the following conditions are aheared to. The following conditions
13 * apply to all code found in this distribution, be it the RC4, RSA,
14 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
15 * included with this distribution is covered by the same copyright terms
16 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
17 *
18 * Copyright remains Eric Young's, and as such any Copyright notices in
19 * the code are not to be removed.
20 * If this package is used in a product, Eric Young should be given attribution
21 * as the author of the parts of the library used.
22 * This can be in the form of a textual message at program startup or
23 * in documentation (online or textual) provided with the package.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. All advertising materials mentioning features or use of this software
34 * must display the following acknowledgement:
35 * "This product includes cryptographic software written by
36 * Eric Young (eay@cryptsoft.com)"
37 * The word 'cryptographic' can be left out if the rouines from the library
38 * being used are not cryptographic related :-).
39 * 4. If you include any Windows specific code (or a derivative thereof) from
40 * the apps directory (application code) you must include an acknowledgement:
41 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
42 *
43 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 * The licence and distribution terms for any publically available version or
56 * derivative of this code cannot be changed. i.e. this code cannot simply be
57 * copied and put under another distribution licence
58 * [including the GNU Public Licence.]
59 */
60 /* ====================================================================
61 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 *
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in
72 * the documentation and/or other materials provided with the
73 * distribution.
74 *
75 * 3. All advertising materials mentioning features or use of this
76 * software must display the following acknowledgment:
77 * "This product includes software developed by the OpenSSL Project
78 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
79 *
80 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
81 * endorse or promote products derived from this software without
82 * prior written permission. For written permission, please contact
83 * openssl-core@openssl.org.
84 *
85 * 5. Products derived from this software may not be called "OpenSSL"
86 * nor may "OpenSSL" appear in their names without prior written
87 * permission of the OpenSSL Project.
88 *
89 * 6. Redistributions of any form whatsoever must retain the following
90 * acknowledgment:
91 * "This product includes software developed by the OpenSSL Project
92 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
95 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
97 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
98 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
99 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
100 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
101 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
103 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
104 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
105 * OF THE POSSIBILITY OF SUCH DAMAGE.
106 * ====================================================================
107 *
108 * This product includes cryptographic software written by Eric Young
109 * (eay@cryptsoft.com). This product includes software written by Tim
110 * Hudson (tjh@cryptsoft.com).
111 *
112 */
113 /* ====================================================================
114 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
115 * ECC cipher suite support in OpenSSL originally developed by
116 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
117 */
118 /* ====================================================================
119 * Copyright 2005 Nokia. All rights reserved.
120 *
121 * The portions of the attached software ("Contribution") is developed by
122 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
123 * license.
124 *
125 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
126 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
127 * support (see RFC 4279) to OpenSSL.
128 *
129 * No patent licenses or other rights except those expressly stated in
130 * the OpenSSL open source license shall be deemed granted or received
131 * expressly, by implication, estoppel, or otherwise.
132 *
133 * No assurances are provided by Nokia that the Contribution does not
134 * infringe the patent or other intellectual property rights of any third
135 * party or that the license provides you with all the necessary rights
136 * to make use of the Contribution.
137 *
138 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
139 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
140 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
141 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
142 * OTHERWISE.
143 */
144
145 #ifdef REF_DEBUG
146 # include <assert.h>
147 #endif
148 #include <stdio.h>
149 #include "ssl_locl.h"
150 #include <openssl/objects.h>
151 #include <openssl/lhash.h>
152 #include <openssl/x509v3.h>
153 #include <openssl/rand.h>
154 #include <openssl/ocsp.h>
155 #include <openssl/dh.h>
156 #include <openssl/engine.h>
157 #include <openssl/async.h>
158 #include <openssl/ct.h>
159
160 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
161
162 SSL3_ENC_METHOD ssl3_undef_enc_method = {
163 /*
164 * evil casts, but these functions are only called if there's a library
165 * bug
166 */
167 (int (*)(SSL *, SSL3_RECORD *, unsigned int, int))ssl_undefined_function,
168 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
169 ssl_undefined_function,
170 (int (*)(SSL *, unsigned char *, unsigned char *, int))
171 ssl_undefined_function,
172 (int (*)(SSL *, int))ssl_undefined_function,
173 (int (*)(SSL *, const char *, int, unsigned char *))
174 ssl_undefined_function,
175 0, /* finish_mac_length */
176 NULL, /* client_finished_label */
177 0, /* client_finished_label_len */
178 NULL, /* server_finished_label */
179 0, /* server_finished_label_len */
180 (int (*)(int))ssl_undefined_function,
181 (int (*)(SSL *, unsigned char *, size_t, const char *,
182 size_t, const unsigned char *, size_t,
183 int use_context))ssl_undefined_function,
184 };
185
186 struct ssl_async_args {
187 SSL *s;
188 void *buf;
189 int num;
190 enum { READFUNC, WRITEFUNC, OTHERFUNC} type;
191 union {
192 int (*func_read)(SSL *, void *, int);
193 int (*func_write)(SSL *, const void *, int);
194 int (*func_other)(SSL *);
195 } f;
196 };
197
198 static const struct {
199 uint8_t mtype;
200 uint8_t ord;
201 int nid;
202 } dane_mds[] = {
203 { DANETLS_MATCHING_FULL, 0, NID_undef },
204 { DANETLS_MATCHING_2256, 1, NID_sha256 },
205 { DANETLS_MATCHING_2512, 2, NID_sha512 },
206 };
207
208 static int dane_ctx_enable(struct dane_ctx_st *dctx)
209 {
210 const EVP_MD **mdevp;
211 uint8_t *mdord;
212 uint8_t mdmax = DANETLS_MATCHING_LAST;
213 int n = ((int) mdmax) + 1; /* int to handle PrivMatch(255) */
214 size_t i;
215
216 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
217 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
218
219 if (mdord == NULL || mdevp == NULL) {
220 OPENSSL_free(mdevp);
221 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
222 return 0;
223 }
224
225 /* Install default entries */
226 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
227 const EVP_MD *md;
228
229 if (dane_mds[i].nid == NID_undef ||
230 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
231 continue;
232 mdevp[dane_mds[i].mtype] = md;
233 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
234 }
235
236 dctx->mdevp = mdevp;
237 dctx->mdord = mdord;
238 dctx->mdmax = mdmax;
239
240 return 1;
241 }
242
243 static void dane_ctx_final(struct dane_ctx_st *dctx)
244 {
245 OPENSSL_free(dctx->mdevp);
246 dctx->mdevp = NULL;
247
248 OPENSSL_free(dctx->mdord);
249 dctx->mdord = NULL;
250 dctx->mdmax = 0;
251 }
252
253 static void tlsa_free(danetls_record *t)
254 {
255 if (t == NULL)
256 return;
257 OPENSSL_free(t->data);
258 EVP_PKEY_free(t->spki);
259 OPENSSL_free(t);
260 }
261
262 static void dane_final(struct dane_st *dane)
263 {
264 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
265 dane->trecs = NULL;
266
267 sk_X509_pop_free(dane->certs, X509_free);
268 dane->certs = NULL;
269
270 X509_free(dane->mcert);
271 dane->mcert = NULL;
272 dane->mtlsa = NULL;
273 dane->mdpth = -1;
274 dane->pdpth = -1;
275 }
276
277 /*
278 * dane_copy - Copy dane configuration, sans verification state.
279 */
280 static int ssl_dane_dup(SSL *to, SSL *from)
281 {
282 int num;
283 int i;
284
285 if (!DANETLS_ENABLED(&from->dane))
286 return 1;
287
288 dane_final(&to->dane);
289
290 num = sk_danetls_record_num(from->dane.trecs);
291 for (i = 0; i < num; ++i) {
292 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
293 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
294 t->data, t->dlen) <= 0)
295 return 0;
296 }
297 return 1;
298 }
299
300 static int dane_mtype_set(
301 struct dane_ctx_st *dctx,
302 const EVP_MD *md,
303 uint8_t mtype,
304 uint8_t ord)
305 {
306 int i;
307
308 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
309 SSLerr(SSL_F_DANE_MTYPE_SET,
310 SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
311 return 0;
312 }
313
314 if (mtype > dctx->mdmax) {
315 const EVP_MD **mdevp;
316 uint8_t *mdord;
317 int n = ((int) mtype) + 1;
318
319 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
320 if (mdevp == NULL) {
321 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
322 return -1;
323 }
324 dctx->mdevp = mdevp;
325
326 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
327 if (mdord == NULL) {
328 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
329 return -1;
330 }
331 dctx->mdord = mdord;
332
333 /* Zero-fill any gaps */
334 for (i = dctx->mdmax+1; i < mtype; ++i) {
335 mdevp[i] = NULL;
336 mdord[i] = 0;
337 }
338
339 dctx->mdmax = mtype;
340 }
341
342 dctx->mdevp[mtype] = md;
343 /* Coerce ordinal of disabled matching types to 0 */
344 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
345
346 return 1;
347 }
348
349 static const EVP_MD *tlsa_md_get(struct dane_st *dane, uint8_t mtype)
350 {
351 if (mtype > dane->dctx->mdmax)
352 return NULL;
353 return dane->dctx->mdevp[mtype];
354 }
355
356 static int dane_tlsa_add(
357 struct dane_st *dane,
358 uint8_t usage,
359 uint8_t selector,
360 uint8_t mtype,
361 unsigned char *data,
362 size_t dlen)
363 {
364 danetls_record *t;
365 const EVP_MD *md = NULL;
366 int ilen = (int)dlen;
367 int i;
368
369 if (dane->trecs == NULL) {
370 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
371 return -1;
372 }
373
374 if (ilen < 0 || dlen != (size_t)ilen) {
375 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
376 return 0;
377 }
378
379 if (usage > DANETLS_USAGE_LAST) {
380 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
381 return 0;
382 }
383
384 if (selector > DANETLS_SELECTOR_LAST) {
385 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
386 return 0;
387 }
388
389 if (mtype != DANETLS_MATCHING_FULL) {
390 md = tlsa_md_get(dane, mtype);
391 if (md == NULL) {
392 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
393 return 0;
394 }
395 }
396
397 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
398 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
399 return 0;
400 }
401 if (!data) {
402 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
403 return 0;
404 }
405
406 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
407 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
408 return -1;
409 }
410
411 t->usage = usage;
412 t->selector = selector;
413 t->mtype = mtype;
414 t->data = OPENSSL_malloc(ilen);
415 if (t->data == NULL) {
416 tlsa_free(t);
417 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
418 return -1;
419 }
420 memcpy(t->data, data, ilen);
421 t->dlen = ilen;
422
423 /* Validate and cache full certificate or public key */
424 if (mtype == DANETLS_MATCHING_FULL) {
425 const unsigned char *p = data;
426 X509 *cert = NULL;
427 EVP_PKEY *pkey = NULL;
428
429 switch (selector) {
430 case DANETLS_SELECTOR_CERT:
431 if (!d2i_X509(&cert, &p, dlen) || p < data ||
432 dlen != (size_t)(p - data)) {
433 tlsa_free(t);
434 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
435 return 0;
436 }
437 if (X509_get0_pubkey(cert) == NULL) {
438 tlsa_free(t);
439 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
440 return 0;
441 }
442
443 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
444 X509_free(cert);
445 break;
446 }
447
448 /*
449 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
450 * records that contain full certificates of trust-anchors that are
451 * not present in the wire chain. For usage PKIX-TA(0), we augment
452 * the chain with untrusted Full(0) certificates from DNS, in case
453 * they are missing from the chain.
454 */
455 if ((dane->certs == NULL &&
456 (dane->certs = sk_X509_new_null()) == NULL) ||
457 !sk_X509_push(dane->certs, cert)) {
458 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
459 X509_free(cert);
460 tlsa_free(t);
461 return -1;
462 }
463 break;
464
465 case DANETLS_SELECTOR_SPKI:
466 if (!d2i_PUBKEY(&pkey, &p, dlen) || p < data ||
467 dlen != (size_t)(p - data)) {
468 tlsa_free(t);
469 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
470 return 0;
471 }
472
473 /*
474 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
475 * records that contain full bare keys of trust-anchors that are
476 * not present in the wire chain.
477 */
478 if (usage == DANETLS_USAGE_DANE_TA)
479 t->spki = pkey;
480 else
481 EVP_PKEY_free(pkey);
482 break;
483 }
484 }
485
486 /*-
487 * Find the right insertion point for the new record.
488 *
489 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
490 * they can be processed first, as they require no chain building, and no
491 * expiration or hostname checks. Because DANE-EE(3) is numerically
492 * largest, this is accomplished via descending sort by "usage".
493 *
494 * We also sort in descending order by matching ordinal to simplify
495 * the implementation of digest agility in the verification code.
496 *
497 * The choice of order for the selector is not significant, so we
498 * use the same descending order for consistency.
499 */
500 for (i = 0; i < sk_danetls_record_num(dane->trecs); ++i) {
501 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
502 if (rec->usage > usage)
503 continue;
504 if (rec->usage < usage)
505 break;
506 if (rec->selector > selector)
507 continue;
508 if (rec->selector < selector)
509 break;
510 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
511 continue;
512 break;
513 }
514
515 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
516 tlsa_free(t);
517 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
518 return -1;
519 }
520 dane->umask |= DANETLS_USAGE_BIT(usage);
521
522 return 1;
523 }
524
525 static void clear_ciphers(SSL *s)
526 {
527 /* clear the current cipher */
528 ssl_clear_cipher_ctx(s);
529 ssl_clear_hash_ctx(&s->read_hash);
530 ssl_clear_hash_ctx(&s->write_hash);
531 }
532
533 int SSL_clear(SSL *s)
534 {
535 if (s->method == NULL) {
536 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
537 return (0);
538 }
539
540 if (ssl_clear_bad_session(s)) {
541 SSL_SESSION_free(s->session);
542 s->session = NULL;
543 }
544
545 s->error = 0;
546 s->hit = 0;
547 s->shutdown = 0;
548
549 if (s->renegotiate) {
550 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
551 return 0;
552 }
553
554 ossl_statem_clear(s);
555
556 s->version = s->method->version;
557 s->client_version = s->version;
558 s->rwstate = SSL_NOTHING;
559
560 BUF_MEM_free(s->init_buf);
561 s->init_buf = NULL;
562 clear_ciphers(s);
563 s->first_packet = 0;
564
565 /* Reset DANE verification result state */
566 s->dane.mdpth = -1;
567 s->dane.pdpth = -1;
568 X509_free(s->dane.mcert);
569 s->dane.mcert = NULL;
570 s->dane.mtlsa = NULL;
571
572 /* Clear the verification result peername */
573 X509_VERIFY_PARAM_move_peername(s->param, NULL);
574
575 /*
576 * Check to see if we were changed into a different method, if so, revert
577 * back if we are not doing session-id reuse.
578 */
579 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
580 && (s->method != s->ctx->method)) {
581 s->method->ssl_free(s);
582 s->method = s->ctx->method;
583 if (!s->method->ssl_new(s))
584 return (0);
585 } else
586 s->method->ssl_clear(s);
587
588 RECORD_LAYER_clear(&s->rlayer);
589
590 return (1);
591 }
592
593 /** Used to change an SSL_CTXs default SSL method type */
594 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
595 {
596 STACK_OF(SSL_CIPHER) *sk;
597
598 ctx->method = meth;
599
600 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
601 &(ctx->cipher_list_by_id),
602 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
603 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
604 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION,
605 SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
606 return (0);
607 }
608 return (1);
609 }
610
611 SSL *SSL_new(SSL_CTX *ctx)
612 {
613 SSL *s;
614
615 if (ctx == NULL) {
616 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
617 return (NULL);
618 }
619 if (ctx->method == NULL) {
620 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
621 return (NULL);
622 }
623
624 s = OPENSSL_zalloc(sizeof(*s));
625 if (s == NULL)
626 goto err;
627
628 s->lock = CRYPTO_THREAD_lock_new();
629 if (s->lock == NULL) {
630 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
631 OPENSSL_free(s);
632 return NULL;
633 }
634
635 RECORD_LAYER_init(&s->rlayer, s);
636
637 s->options = ctx->options;
638 s->min_proto_version = ctx->min_proto_version;
639 s->max_proto_version = ctx->max_proto_version;
640 s->mode = ctx->mode;
641 s->max_cert_list = ctx->max_cert_list;
642 s->references = 1;
643
644 /*
645 * Earlier library versions used to copy the pointer to the CERT, not
646 * its contents; only when setting new parameters for the per-SSL
647 * copy, ssl_cert_new would be called (and the direct reference to
648 * the per-SSL_CTX settings would be lost, but those still were
649 * indirectly accessed for various purposes, and for that reason they
650 * used to be known as s->ctx->default_cert). Now we don't look at the
651 * SSL_CTX's CERT after having duplicated it once.
652 */
653 s->cert = ssl_cert_dup(ctx->cert);
654 if (s->cert == NULL)
655 goto err;
656
657 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
658 s->msg_callback = ctx->msg_callback;
659 s->msg_callback_arg = ctx->msg_callback_arg;
660 s->verify_mode = ctx->verify_mode;
661 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
662 s->sid_ctx_length = ctx->sid_ctx_length;
663 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
664 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
665 s->verify_callback = ctx->default_verify_callback;
666 s->generate_session_id = ctx->generate_session_id;
667
668 s->param = X509_VERIFY_PARAM_new();
669 if (s->param == NULL)
670 goto err;
671 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
672 s->quiet_shutdown = ctx->quiet_shutdown;
673 s->max_send_fragment = ctx->max_send_fragment;
674 s->split_send_fragment = ctx->split_send_fragment;
675 s->max_pipelines = ctx->max_pipelines;
676 if (s->max_pipelines > 1)
677 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
678 if (ctx->default_read_buf_len > 0)
679 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
680
681 SSL_CTX_up_ref(ctx);
682 s->ctx = ctx;
683 s->tlsext_debug_cb = 0;
684 s->tlsext_debug_arg = NULL;
685 s->tlsext_ticket_expected = 0;
686 s->tlsext_status_type = -1;
687 s->tlsext_status_expected = 0;
688 s->tlsext_ocsp_ids = NULL;
689 s->tlsext_ocsp_exts = NULL;
690 s->tlsext_ocsp_resp = NULL;
691 s->tlsext_ocsp_resplen = -1;
692 SSL_CTX_up_ref(ctx);
693 s->initial_ctx = ctx;
694 # ifndef OPENSSL_NO_EC
695 if (ctx->tlsext_ecpointformatlist) {
696 s->tlsext_ecpointformatlist =
697 OPENSSL_memdup(ctx->tlsext_ecpointformatlist,
698 ctx->tlsext_ecpointformatlist_length);
699 if (!s->tlsext_ecpointformatlist)
700 goto err;
701 s->tlsext_ecpointformatlist_length =
702 ctx->tlsext_ecpointformatlist_length;
703 }
704 if (ctx->tlsext_ellipticcurvelist) {
705 s->tlsext_ellipticcurvelist =
706 OPENSSL_memdup(ctx->tlsext_ellipticcurvelist,
707 ctx->tlsext_ellipticcurvelist_length);
708 if (!s->tlsext_ellipticcurvelist)
709 goto err;
710 s->tlsext_ellipticcurvelist_length =
711 ctx->tlsext_ellipticcurvelist_length;
712 }
713 # endif
714 # ifndef OPENSSL_NO_NEXTPROTONEG
715 s->next_proto_negotiated = NULL;
716 # endif
717
718 if (s->ctx->alpn_client_proto_list) {
719 s->alpn_client_proto_list =
720 OPENSSL_malloc(s->ctx->alpn_client_proto_list_len);
721 if (s->alpn_client_proto_list == NULL)
722 goto err;
723 memcpy(s->alpn_client_proto_list, s->ctx->alpn_client_proto_list,
724 s->ctx->alpn_client_proto_list_len);
725 s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
726 }
727
728 s->verified_chain = NULL;
729 s->verify_result = X509_V_OK;
730
731 s->default_passwd_callback = ctx->default_passwd_callback;
732 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
733
734 s->method = ctx->method;
735
736 if (!s->method->ssl_new(s))
737 goto err;
738
739 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
740
741 if (!SSL_clear(s))
742 goto err;
743
744 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
745
746 #ifndef OPENSSL_NO_PSK
747 s->psk_client_callback = ctx->psk_client_callback;
748 s->psk_server_callback = ctx->psk_server_callback;
749 #endif
750
751 s->job = NULL;
752
753 #ifndef OPENSSL_NO_CT
754 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
755 ctx->ct_validation_callback_arg))
756 goto err;
757 #endif
758
759 return s;
760 err:
761 SSL_free(s);
762 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
763 return NULL;
764 }
765
766 void SSL_up_ref(SSL *s)
767 {
768 int i;
769 CRYPTO_atomic_add(&s->references, 1, &i, s->lock);
770 }
771
772 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
773 unsigned int sid_ctx_len)
774 {
775 if (sid_ctx_len > sizeof ctx->sid_ctx) {
776 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
777 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
778 return 0;
779 }
780 ctx->sid_ctx_length = sid_ctx_len;
781 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
782
783 return 1;
784 }
785
786 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
787 unsigned int sid_ctx_len)
788 {
789 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
790 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
791 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
792 return 0;
793 }
794 ssl->sid_ctx_length = sid_ctx_len;
795 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
796
797 return 1;
798 }
799
800 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
801 {
802 CRYPTO_THREAD_write_lock(ctx->lock);
803 ctx->generate_session_id = cb;
804 CRYPTO_THREAD_unlock(ctx->lock);
805 return 1;
806 }
807
808 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
809 {
810 CRYPTO_THREAD_write_lock(ssl->lock);
811 ssl->generate_session_id = cb;
812 CRYPTO_THREAD_unlock(ssl->lock);
813 return 1;
814 }
815
816 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
817 unsigned int id_len)
818 {
819 /*
820 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
821 * we can "construct" a session to give us the desired check - ie. to
822 * find if there's a session in the hash table that would conflict with
823 * any new session built out of this id/id_len and the ssl_version in use
824 * by this SSL.
825 */
826 SSL_SESSION r, *p;
827
828 if (id_len > sizeof r.session_id)
829 return 0;
830
831 r.ssl_version = ssl->version;
832 r.session_id_length = id_len;
833 memcpy(r.session_id, id, id_len);
834
835 CRYPTO_THREAD_read_lock(ssl->ctx->lock);
836 p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
837 CRYPTO_THREAD_unlock(ssl->ctx->lock);
838 return (p != NULL);
839 }
840
841 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
842 {
843 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
844 }
845
846 int SSL_set_purpose(SSL *s, int purpose)
847 {
848 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
849 }
850
851 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
852 {
853 return X509_VERIFY_PARAM_set_trust(s->param, trust);
854 }
855
856 int SSL_set_trust(SSL *s, int trust)
857 {
858 return X509_VERIFY_PARAM_set_trust(s->param, trust);
859 }
860
861 int SSL_set1_host(SSL *s, const char *hostname)
862 {
863 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
864 }
865
866 int SSL_add1_host(SSL *s, const char *hostname)
867 {
868 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
869 }
870
871 void SSL_set_hostflags(SSL *s, unsigned int flags)
872 {
873 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
874 }
875
876 const char *SSL_get0_peername(SSL *s)
877 {
878 return X509_VERIFY_PARAM_get0_peername(s->param);
879 }
880
881 int SSL_CTX_dane_enable(SSL_CTX *ctx)
882 {
883 return dane_ctx_enable(&ctx->dane);
884 }
885
886 int SSL_dane_enable(SSL *s, const char *basedomain)
887 {
888 struct dane_st *dane = &s->dane;
889
890 if (s->ctx->dane.mdmax == 0) {
891 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
892 return 0;
893 }
894 if (dane->trecs != NULL) {
895 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
896 return 0;
897 }
898
899 /*
900 * Default SNI name. This rejects empty names, while set1_host below
901 * accepts them and disables host name checks. To avoid side-effects with
902 * invalid input, set the SNI name first.
903 */
904 if (s->tlsext_hostname == NULL) {
905 if (!SSL_set_tlsext_host_name(s, basedomain)) {
906 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
907 return -1;
908 }
909 }
910
911 /* Primary RFC6125 reference identifier */
912 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
913 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
914 return -1;
915 }
916
917 dane->mdpth = -1;
918 dane->pdpth = -1;
919 dane->dctx = &s->ctx->dane;
920 dane->trecs = sk_danetls_record_new_null();
921
922 if (dane->trecs == NULL) {
923 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
924 return -1;
925 }
926 return 1;
927 }
928
929 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
930 {
931 struct dane_st *dane = &s->dane;
932
933 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
934 return -1;
935 if (dane->mtlsa) {
936 if (mcert)
937 *mcert = dane->mcert;
938 if (mspki)
939 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
940 }
941 return dane->mdpth;
942 }
943
944 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
945 uint8_t *mtype, unsigned const char **data, size_t *dlen)
946 {
947 struct dane_st *dane = &s->dane;
948
949 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
950 return -1;
951 if (dane->mtlsa) {
952 if (usage)
953 *usage = dane->mtlsa->usage;
954 if (selector)
955 *selector = dane->mtlsa->selector;
956 if (mtype)
957 *mtype = dane->mtlsa->mtype;
958 if (data)
959 *data = dane->mtlsa->data;
960 if (dlen)
961 *dlen = dane->mtlsa->dlen;
962 }
963 return dane->mdpth;
964 }
965
966 struct dane_st *SSL_get0_dane(SSL *s)
967 {
968 return &s->dane;
969 }
970
971 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
972 uint8_t mtype, unsigned char *data, size_t dlen)
973 {
974 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
975 }
976
977 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord)
978 {
979 return dane_mtype_set(&ctx->dane, md, mtype, ord);
980 }
981
982 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
983 {
984 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
985 }
986
987 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
988 {
989 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
990 }
991
992 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
993 {
994 return ctx->param;
995 }
996
997 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
998 {
999 return ssl->param;
1000 }
1001
1002 void SSL_certs_clear(SSL *s)
1003 {
1004 ssl_cert_clear_certs(s->cert);
1005 }
1006
1007 void SSL_free(SSL *s)
1008 {
1009 int i;
1010
1011 if (s == NULL)
1012 return;
1013
1014 CRYPTO_atomic_add(&s->references, -1, &i, s->lock);
1015 REF_PRINT_COUNT("SSL", s);
1016 if (i > 0)
1017 return;
1018 REF_ASSERT_ISNT(i < 0);
1019
1020 X509_VERIFY_PARAM_free(s->param);
1021 dane_final(&s->dane);
1022 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1023
1024 if (s->bbio != NULL) {
1025 /* If the buffering BIO is in place, pop it off */
1026 if (s->bbio == s->wbio) {
1027 s->wbio = BIO_pop(s->wbio);
1028 }
1029 BIO_free(s->bbio);
1030 s->bbio = NULL;
1031 }
1032 BIO_free_all(s->rbio);
1033 if (s->wbio != s->rbio)
1034 BIO_free_all(s->wbio);
1035
1036 BUF_MEM_free(s->init_buf);
1037
1038 /* add extra stuff */
1039 sk_SSL_CIPHER_free(s->cipher_list);
1040 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1041
1042 /* Make the next call work :-) */
1043 if (s->session != NULL) {
1044 ssl_clear_bad_session(s);
1045 SSL_SESSION_free(s->session);
1046 }
1047
1048 clear_ciphers(s);
1049
1050 ssl_cert_free(s->cert);
1051 /* Free up if allocated */
1052
1053 OPENSSL_free(s->tlsext_hostname);
1054 SSL_CTX_free(s->initial_ctx);
1055 #ifndef OPENSSL_NO_EC
1056 OPENSSL_free(s->tlsext_ecpointformatlist);
1057 OPENSSL_free(s->tlsext_ellipticcurvelist);
1058 #endif /* OPENSSL_NO_EC */
1059 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free);
1060 sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
1061 #ifndef OPENSSL_NO_CT
1062 SCT_LIST_free(s->scts);
1063 OPENSSL_free(s->tlsext_scts);
1064 #endif
1065 OPENSSL_free(s->tlsext_ocsp_resp);
1066 OPENSSL_free(s->alpn_client_proto_list);
1067
1068 sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
1069
1070 sk_X509_pop_free(s->verified_chain, X509_free);
1071
1072 if (s->method != NULL)
1073 s->method->ssl_free(s);
1074
1075 RECORD_LAYER_release(&s->rlayer);
1076
1077 SSL_CTX_free(s->ctx);
1078
1079 ASYNC_WAIT_CTX_free(s->waitctx);
1080
1081 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1082 OPENSSL_free(s->next_proto_negotiated);
1083 #endif
1084
1085 #ifndef OPENSSL_NO_SRTP
1086 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1087 #endif
1088
1089 CRYPTO_THREAD_lock_free(s->lock);
1090
1091 OPENSSL_free(s);
1092 }
1093
1094 void SSL_set_rbio(SSL *s, BIO *rbio)
1095 {
1096 if (s->rbio != rbio)
1097 BIO_free_all(s->rbio);
1098 s->rbio = rbio;
1099 }
1100
1101 void SSL_set_wbio(SSL *s, BIO *wbio)
1102 {
1103 /*
1104 * If the output buffering BIO is still in place, remove it
1105 */
1106 if (s->bbio != NULL) {
1107 if (s->wbio == s->bbio) {
1108 s->wbio = BIO_next(s->wbio);
1109 BIO_set_next(s->bbio, NULL);
1110 }
1111 }
1112 if (s->wbio != wbio && s->rbio != s->wbio)
1113 BIO_free_all(s->wbio);
1114 s->wbio = wbio;
1115 }
1116
1117 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1118 {
1119 SSL_set_wbio(s, wbio);
1120 SSL_set_rbio(s, rbio);
1121 }
1122
1123 BIO *SSL_get_rbio(const SSL *s)
1124 {
1125 return (s->rbio);
1126 }
1127
1128 BIO *SSL_get_wbio(const SSL *s)
1129 {
1130 return (s->wbio);
1131 }
1132
1133 int SSL_get_fd(const SSL *s)
1134 {
1135 return (SSL_get_rfd(s));
1136 }
1137
1138 int SSL_get_rfd(const SSL *s)
1139 {
1140 int ret = -1;
1141 BIO *b, *r;
1142
1143 b = SSL_get_rbio(s);
1144 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1145 if (r != NULL)
1146 BIO_get_fd(r, &ret);
1147 return (ret);
1148 }
1149
1150 int SSL_get_wfd(const SSL *s)
1151 {
1152 int ret = -1;
1153 BIO *b, *r;
1154
1155 b = SSL_get_wbio(s);
1156 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1157 if (r != NULL)
1158 BIO_get_fd(r, &ret);
1159 return (ret);
1160 }
1161
1162 #ifndef OPENSSL_NO_SOCK
1163 int SSL_set_fd(SSL *s, int fd)
1164 {
1165 int ret = 0;
1166 BIO *bio = NULL;
1167
1168 bio = BIO_new(BIO_s_socket());
1169
1170 if (bio == NULL) {
1171 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1172 goto err;
1173 }
1174 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1175 SSL_set_bio(s, bio, bio);
1176 ret = 1;
1177 err:
1178 return (ret);
1179 }
1180
1181 int SSL_set_wfd(SSL *s, int fd)
1182 {
1183 int ret = 0;
1184 BIO *bio = NULL;
1185
1186 if ((s->rbio == NULL) || (BIO_method_type(s->rbio) != BIO_TYPE_SOCKET)
1187 || ((int)BIO_get_fd(s->rbio, NULL) != fd)) {
1188 bio = BIO_new(BIO_s_socket());
1189
1190 if (bio == NULL) {
1191 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1192 goto err;
1193 }
1194 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1195 SSL_set_bio(s, SSL_get_rbio(s), bio);
1196 } else
1197 SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
1198 ret = 1;
1199 err:
1200 return (ret);
1201 }
1202
1203 int SSL_set_rfd(SSL *s, int fd)
1204 {
1205 int ret = 0;
1206 BIO *bio = NULL;
1207
1208 if ((s->wbio == NULL) || (BIO_method_type(s->wbio) != BIO_TYPE_SOCKET)
1209 || ((int)BIO_get_fd(s->wbio, NULL) != fd)) {
1210 bio = BIO_new(BIO_s_socket());
1211
1212 if (bio == NULL) {
1213 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1214 goto err;
1215 }
1216 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1217 SSL_set_bio(s, bio, SSL_get_wbio(s));
1218 } else
1219 SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
1220 ret = 1;
1221 err:
1222 return (ret);
1223 }
1224 #endif
1225
1226 /* return length of latest Finished message we sent, copy to 'buf' */
1227 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1228 {
1229 size_t ret = 0;
1230
1231 if (s->s3 != NULL) {
1232 ret = s->s3->tmp.finish_md_len;
1233 if (count > ret)
1234 count = ret;
1235 memcpy(buf, s->s3->tmp.finish_md, count);
1236 }
1237 return ret;
1238 }
1239
1240 /* return length of latest Finished message we expected, copy to 'buf' */
1241 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1242 {
1243 size_t ret = 0;
1244
1245 if (s->s3 != NULL) {
1246 ret = s->s3->tmp.peer_finish_md_len;
1247 if (count > ret)
1248 count = ret;
1249 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1250 }
1251 return ret;
1252 }
1253
1254 int SSL_get_verify_mode(const SSL *s)
1255 {
1256 return (s->verify_mode);
1257 }
1258
1259 int SSL_get_verify_depth(const SSL *s)
1260 {
1261 return X509_VERIFY_PARAM_get_depth(s->param);
1262 }
1263
1264 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1265 return (s->verify_callback);
1266 }
1267
1268 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1269 {
1270 return (ctx->verify_mode);
1271 }
1272
1273 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1274 {
1275 return X509_VERIFY_PARAM_get_depth(ctx->param);
1276 }
1277
1278 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1279 return (ctx->default_verify_callback);
1280 }
1281
1282 void SSL_set_verify(SSL *s, int mode,
1283 int (*callback) (int ok, X509_STORE_CTX *ctx))
1284 {
1285 s->verify_mode = mode;
1286 if (callback != NULL)
1287 s->verify_callback = callback;
1288 }
1289
1290 void SSL_set_verify_depth(SSL *s, int depth)
1291 {
1292 X509_VERIFY_PARAM_set_depth(s->param, depth);
1293 }
1294
1295 void SSL_set_read_ahead(SSL *s, int yes)
1296 {
1297 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1298 }
1299
1300 int SSL_get_read_ahead(const SSL *s)
1301 {
1302 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1303 }
1304
1305 int SSL_pending(const SSL *s)
1306 {
1307 /*
1308 * SSL_pending cannot work properly if read-ahead is enabled
1309 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1310 * impossible to fix since SSL_pending cannot report errors that may be
1311 * observed while scanning the new data. (Note that SSL_pending() is
1312 * often used as a boolean value, so we'd better not return -1.)
1313 */
1314 return (s->method->ssl_pending(s));
1315 }
1316
1317 int SSL_has_pending(const SSL *s)
1318 {
1319 /*
1320 * Similar to SSL_pending() but returns a 1 to indicate that we have
1321 * unprocessed data available or 0 otherwise (as opposed to the number of
1322 * bytes available). Unlike SSL_pending() this will take into account
1323 * read_ahead data. A 1 return simply indicates that we have unprocessed
1324 * data. That data may not result in any application data, or we may fail
1325 * to parse the records for some reason.
1326 */
1327 if (SSL_pending(s))
1328 return 1;
1329
1330 return RECORD_LAYER_read_pending(&s->rlayer);
1331 }
1332
1333 X509 *SSL_get_peer_certificate(const SSL *s)
1334 {
1335 X509 *r;
1336
1337 if ((s == NULL) || (s->session == NULL))
1338 r = NULL;
1339 else
1340 r = s->session->peer;
1341
1342 if (r == NULL)
1343 return (r);
1344
1345 X509_up_ref(r);
1346
1347 return (r);
1348 }
1349
1350 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1351 {
1352 STACK_OF(X509) *r;
1353
1354 if ((s == NULL) || (s->session == NULL))
1355 r = NULL;
1356 else
1357 r = s->session->peer_chain;
1358
1359 /*
1360 * If we are a client, cert_chain includes the peer's own certificate; if
1361 * we are a server, it does not.
1362 */
1363
1364 return (r);
1365 }
1366
1367 /*
1368 * Now in theory, since the calling process own 't' it should be safe to
1369 * modify. We need to be able to read f without being hassled
1370 */
1371 int SSL_copy_session_id(SSL *t, const SSL *f)
1372 {
1373 int i;
1374 /* Do we need to to SSL locking? */
1375 if (!SSL_set_session(t, SSL_get_session(f))) {
1376 return 0;
1377 }
1378
1379 /*
1380 * what if we are setup for one protocol version but want to talk another
1381 */
1382 if (t->method != f->method) {
1383 t->method->ssl_free(t);
1384 t->method = f->method;
1385 if (t->method->ssl_new(t) == 0)
1386 return 0;
1387 }
1388
1389 CRYPTO_atomic_add(&f->cert->references, 1, &i, f->cert->lock);
1390 ssl_cert_free(t->cert);
1391 t->cert = f->cert;
1392 if (!SSL_set_session_id_context(t, f->sid_ctx, f->sid_ctx_length)) {
1393 return 0;
1394 }
1395
1396 return 1;
1397 }
1398
1399 /* Fix this so it checks all the valid key/cert options */
1400 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1401 {
1402 if ((ctx == NULL) ||
1403 (ctx->cert->key->x509 == NULL)) {
1404 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1405 SSL_R_NO_CERTIFICATE_ASSIGNED);
1406 return (0);
1407 }
1408 if (ctx->cert->key->privatekey == NULL) {
1409 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1410 SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1411 return (0);
1412 }
1413 return (X509_check_private_key
1414 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1415 }
1416
1417 /* Fix this function so that it takes an optional type parameter */
1418 int SSL_check_private_key(const SSL *ssl)
1419 {
1420 if (ssl == NULL) {
1421 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1422 return (0);
1423 }
1424 if (ssl->cert->key->x509 == NULL) {
1425 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1426 return (0);
1427 }
1428 if (ssl->cert->key->privatekey == NULL) {
1429 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1430 return (0);
1431 }
1432 return (X509_check_private_key(ssl->cert->key->x509,
1433 ssl->cert->key->privatekey));
1434 }
1435
1436 int SSL_waiting_for_async(SSL *s)
1437 {
1438 if(s->job)
1439 return 1;
1440
1441 return 0;
1442 }
1443
1444 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1445 {
1446 ASYNC_WAIT_CTX *ctx = s->waitctx;
1447
1448 if (ctx == NULL)
1449 return 0;
1450 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1451 }
1452
1453 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1454 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1455 {
1456 ASYNC_WAIT_CTX *ctx = s->waitctx;
1457
1458 if (ctx == NULL)
1459 return 0;
1460 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1461 numdelfds);
1462 }
1463
1464 int SSL_accept(SSL *s)
1465 {
1466 if (s->handshake_func == NULL) {
1467 /* Not properly initialized yet */
1468 SSL_set_accept_state(s);
1469 }
1470
1471 return SSL_do_handshake(s);
1472 }
1473
1474 int SSL_connect(SSL *s)
1475 {
1476 if (s->handshake_func == NULL) {
1477 /* Not properly initialized yet */
1478 SSL_set_connect_state(s);
1479 }
1480
1481 return SSL_do_handshake(s);
1482 }
1483
1484 long SSL_get_default_timeout(const SSL *s)
1485 {
1486 return (s->method->get_timeout());
1487 }
1488
1489 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1490 int (*func)(void *)) {
1491 int ret;
1492 if (s->waitctx == NULL) {
1493 s->waitctx = ASYNC_WAIT_CTX_new();
1494 if (s->waitctx == NULL)
1495 return -1;
1496 }
1497 switch(ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1498 sizeof(struct ssl_async_args))) {
1499 case ASYNC_ERR:
1500 s->rwstate = SSL_NOTHING;
1501 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1502 return -1;
1503 case ASYNC_PAUSE:
1504 s->rwstate = SSL_ASYNC_PAUSED;
1505 return -1;
1506 case ASYNC_FINISH:
1507 s->job = NULL;
1508 return ret;
1509 default:
1510 s->rwstate = SSL_NOTHING;
1511 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1512 /* Shouldn't happen */
1513 return -1;
1514 }
1515 }
1516
1517 static int ssl_io_intern(void *vargs)
1518 {
1519 struct ssl_async_args *args;
1520 SSL *s;
1521 void *buf;
1522 int num;
1523
1524 args = (struct ssl_async_args *)vargs;
1525 s = args->s;
1526 buf = args->buf;
1527 num = args->num;
1528 switch (args->type) {
1529 case READFUNC:
1530 return args->f.func_read(s, buf, num);
1531 case WRITEFUNC:
1532 return args->f.func_write(s, buf, num);
1533 case OTHERFUNC:
1534 return args->f.func_other(s);
1535 }
1536 return -1;
1537 }
1538
1539 int SSL_read(SSL *s, void *buf, int num)
1540 {
1541 if (s->handshake_func == NULL) {
1542 SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
1543 return -1;
1544 }
1545
1546 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1547 s->rwstate = SSL_NOTHING;
1548 return (0);
1549 }
1550
1551 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1552 struct ssl_async_args args;
1553
1554 args.s = s;
1555 args.buf = buf;
1556 args.num = num;
1557 args.type = READFUNC;
1558 args.f.func_read = s->method->ssl_read;
1559
1560 return ssl_start_async_job(s, &args, ssl_io_intern);
1561 } else {
1562 return s->method->ssl_read(s, buf, num);
1563 }
1564 }
1565
1566 int SSL_peek(SSL *s, void *buf, int num)
1567 {
1568 if (s->handshake_func == NULL) {
1569 SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
1570 return -1;
1571 }
1572
1573 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1574 return (0);
1575 }
1576 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1577 struct ssl_async_args args;
1578
1579 args.s = s;
1580 args.buf = buf;
1581 args.num = num;
1582 args.type = READFUNC;
1583 args.f.func_read = s->method->ssl_peek;
1584
1585 return ssl_start_async_job(s, &args, ssl_io_intern);
1586 } else {
1587 return s->method->ssl_peek(s, buf, num);
1588 }
1589 }
1590
1591 int SSL_write(SSL *s, const void *buf, int num)
1592 {
1593 if (s->handshake_func == NULL) {
1594 SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
1595 return -1;
1596 }
1597
1598 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1599 s->rwstate = SSL_NOTHING;
1600 SSLerr(SSL_F_SSL_WRITE, SSL_R_PROTOCOL_IS_SHUTDOWN);
1601 return (-1);
1602 }
1603
1604 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1605 struct ssl_async_args args;
1606
1607 args.s = s;
1608 args.buf = (void *)buf;
1609 args.num = num;
1610 args.type = WRITEFUNC;
1611 args.f.func_write = s->method->ssl_write;
1612
1613 return ssl_start_async_job(s, &args, ssl_io_intern);
1614 } else {
1615 return s->method->ssl_write(s, buf, num);
1616 }
1617 }
1618
1619 int SSL_shutdown(SSL *s)
1620 {
1621 /*
1622 * Note that this function behaves differently from what one might
1623 * expect. Return values are 0 for no success (yet), 1 for success; but
1624 * calling it once is usually not enough, even if blocking I/O is used
1625 * (see ssl3_shutdown).
1626 */
1627
1628 if (s->handshake_func == NULL) {
1629 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1630 return -1;
1631 }
1632
1633 if (!SSL_in_init(s)) {
1634 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1635 struct ssl_async_args args;
1636
1637 args.s = s;
1638 args.type = OTHERFUNC;
1639 args.f.func_other = s->method->ssl_shutdown;
1640
1641 return ssl_start_async_job(s, &args, ssl_io_intern);
1642 } else {
1643 return s->method->ssl_shutdown(s);
1644 }
1645 } else {
1646 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1647 return -1;
1648 }
1649 }
1650
1651 int SSL_renegotiate(SSL *s)
1652 {
1653 if (s->renegotiate == 0)
1654 s->renegotiate = 1;
1655
1656 s->new_session = 1;
1657
1658 return (s->method->ssl_renegotiate(s));
1659 }
1660
1661 int SSL_renegotiate_abbreviated(SSL *s)
1662 {
1663 if (s->renegotiate == 0)
1664 s->renegotiate = 1;
1665
1666 s->new_session = 0;
1667
1668 return (s->method->ssl_renegotiate(s));
1669 }
1670
1671 int SSL_renegotiate_pending(SSL *s)
1672 {
1673 /*
1674 * becomes true when negotiation is requested; false again once a
1675 * handshake has finished
1676 */
1677 return (s->renegotiate != 0);
1678 }
1679
1680 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1681 {
1682 long l;
1683
1684 switch (cmd) {
1685 case SSL_CTRL_GET_READ_AHEAD:
1686 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1687 case SSL_CTRL_SET_READ_AHEAD:
1688 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1689 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1690 return (l);
1691
1692 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1693 s->msg_callback_arg = parg;
1694 return 1;
1695
1696 case SSL_CTRL_MODE:
1697 return (s->mode |= larg);
1698 case SSL_CTRL_CLEAR_MODE:
1699 return (s->mode &= ~larg);
1700 case SSL_CTRL_GET_MAX_CERT_LIST:
1701 return (s->max_cert_list);
1702 case SSL_CTRL_SET_MAX_CERT_LIST:
1703 l = s->max_cert_list;
1704 s->max_cert_list = larg;
1705 return (l);
1706 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1707 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1708 return 0;
1709 s->max_send_fragment = larg;
1710 if (s->max_send_fragment < s->split_send_fragment)
1711 s->split_send_fragment = s->max_send_fragment;
1712 return 1;
1713 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1714 if ((unsigned int)larg > s->max_send_fragment || larg == 0)
1715 return 0;
1716 s->split_send_fragment = larg;
1717 return 1;
1718 case SSL_CTRL_SET_MAX_PIPELINES:
1719 if (larg < 1 || larg > SSL_MAX_PIPELINES)
1720 return 0;
1721 s->max_pipelines = larg;
1722 if (larg > 1)
1723 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
1724 return 1;
1725 case SSL_CTRL_GET_RI_SUPPORT:
1726 if (s->s3)
1727 return s->s3->send_connection_binding;
1728 else
1729 return 0;
1730 case SSL_CTRL_CERT_FLAGS:
1731 return (s->cert->cert_flags |= larg);
1732 case SSL_CTRL_CLEAR_CERT_FLAGS:
1733 return (s->cert->cert_flags &= ~larg);
1734
1735 case SSL_CTRL_GET_RAW_CIPHERLIST:
1736 if (parg) {
1737 if (s->s3->tmp.ciphers_raw == NULL)
1738 return 0;
1739 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
1740 return (int)s->s3->tmp.ciphers_rawlen;
1741 } else {
1742 return TLS_CIPHER_LEN;
1743 }
1744 case SSL_CTRL_GET_EXTMS_SUPPORT:
1745 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
1746 return -1;
1747 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
1748 return 1;
1749 else
1750 return 0;
1751 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1752 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1753 &s->min_proto_version);
1754 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1755 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1756 &s->max_proto_version);
1757 default:
1758 return (s->method->ssl_ctrl(s, cmd, larg, parg));
1759 }
1760 }
1761
1762 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
1763 {
1764 switch (cmd) {
1765 case SSL_CTRL_SET_MSG_CALLBACK:
1766 s->msg_callback = (void (*)
1767 (int write_p, int version, int content_type,
1768 const void *buf, size_t len, SSL *ssl,
1769 void *arg))(fp);
1770 return 1;
1771
1772 default:
1773 return (s->method->ssl_callback_ctrl(s, cmd, fp));
1774 }
1775 }
1776
1777 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
1778 {
1779 return ctx->sessions;
1780 }
1781
1782 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
1783 {
1784 long l;
1785 /* For some cases with ctx == NULL perform syntax checks */
1786 if (ctx == NULL) {
1787 switch (cmd) {
1788 #ifndef OPENSSL_NO_EC
1789 case SSL_CTRL_SET_CURVES_LIST:
1790 return tls1_set_curves_list(NULL, NULL, parg);
1791 #endif
1792 case SSL_CTRL_SET_SIGALGS_LIST:
1793 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
1794 return tls1_set_sigalgs_list(NULL, parg, 0);
1795 default:
1796 return 0;
1797 }
1798 }
1799
1800 switch (cmd) {
1801 case SSL_CTRL_GET_READ_AHEAD:
1802 return (ctx->read_ahead);
1803 case SSL_CTRL_SET_READ_AHEAD:
1804 l = ctx->read_ahead;
1805 ctx->read_ahead = larg;
1806 return (l);
1807
1808 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1809 ctx->msg_callback_arg = parg;
1810 return 1;
1811
1812 case SSL_CTRL_GET_MAX_CERT_LIST:
1813 return (ctx->max_cert_list);
1814 case SSL_CTRL_SET_MAX_CERT_LIST:
1815 l = ctx->max_cert_list;
1816 ctx->max_cert_list = larg;
1817 return (l);
1818
1819 case SSL_CTRL_SET_SESS_CACHE_SIZE:
1820 l = ctx->session_cache_size;
1821 ctx->session_cache_size = larg;
1822 return (l);
1823 case SSL_CTRL_GET_SESS_CACHE_SIZE:
1824 return (ctx->session_cache_size);
1825 case SSL_CTRL_SET_SESS_CACHE_MODE:
1826 l = ctx->session_cache_mode;
1827 ctx->session_cache_mode = larg;
1828 return (l);
1829 case SSL_CTRL_GET_SESS_CACHE_MODE:
1830 return (ctx->session_cache_mode);
1831
1832 case SSL_CTRL_SESS_NUMBER:
1833 return (lh_SSL_SESSION_num_items(ctx->sessions));
1834 case SSL_CTRL_SESS_CONNECT:
1835 return (ctx->stats.sess_connect);
1836 case SSL_CTRL_SESS_CONNECT_GOOD:
1837 return (ctx->stats.sess_connect_good);
1838 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
1839 return (ctx->stats.sess_connect_renegotiate);
1840 case SSL_CTRL_SESS_ACCEPT:
1841 return (ctx->stats.sess_accept);
1842 case SSL_CTRL_SESS_ACCEPT_GOOD:
1843 return (ctx->stats.sess_accept_good);
1844 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
1845 return (ctx->stats.sess_accept_renegotiate);
1846 case SSL_CTRL_SESS_HIT:
1847 return (ctx->stats.sess_hit);
1848 case SSL_CTRL_SESS_CB_HIT:
1849 return (ctx->stats.sess_cb_hit);
1850 case SSL_CTRL_SESS_MISSES:
1851 return (ctx->stats.sess_miss);
1852 case SSL_CTRL_SESS_TIMEOUTS:
1853 return (ctx->stats.sess_timeout);
1854 case SSL_CTRL_SESS_CACHE_FULL:
1855 return (ctx->stats.sess_cache_full);
1856 case SSL_CTRL_MODE:
1857 return (ctx->mode |= larg);
1858 case SSL_CTRL_CLEAR_MODE:
1859 return (ctx->mode &= ~larg);
1860 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1861 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1862 return 0;
1863 ctx->max_send_fragment = larg;
1864 if (ctx->max_send_fragment < ctx->split_send_fragment)
1865 ctx->split_send_fragment = ctx->split_send_fragment;
1866 return 1;
1867 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1868 if ((unsigned int)larg > ctx->max_send_fragment || larg == 0)
1869 return 0;
1870 ctx->split_send_fragment = larg;
1871 return 1;
1872 case SSL_CTRL_SET_MAX_PIPELINES:
1873 if (larg < 1 || larg > SSL_MAX_PIPELINES)
1874 return 0;
1875 ctx->max_pipelines = larg;
1876 return 1;
1877 case SSL_CTRL_CERT_FLAGS:
1878 return (ctx->cert->cert_flags |= larg);
1879 case SSL_CTRL_CLEAR_CERT_FLAGS:
1880 return (ctx->cert->cert_flags &= ~larg);
1881 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1882 return ssl_set_version_bound(ctx->method->version, (int)larg,
1883 &ctx->min_proto_version);
1884 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1885 return ssl_set_version_bound(ctx->method->version, (int)larg,
1886 &ctx->max_proto_version);
1887 default:
1888 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
1889 }
1890 }
1891
1892 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
1893 {
1894 switch (cmd) {
1895 case SSL_CTRL_SET_MSG_CALLBACK:
1896 ctx->msg_callback = (void (*)
1897 (int write_p, int version, int content_type,
1898 const void *buf, size_t len, SSL *ssl,
1899 void *arg))(fp);
1900 return 1;
1901
1902 default:
1903 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
1904 }
1905 }
1906
1907 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
1908 {
1909 if (a->id > b->id)
1910 return 1;
1911 if (a->id < b->id)
1912 return -1;
1913 return 0;
1914 }
1915
1916 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
1917 const SSL_CIPHER *const *bp)
1918 {
1919 if ((*ap)->id > (*bp)->id)
1920 return 1;
1921 if ((*ap)->id < (*bp)->id)
1922 return -1;
1923 return 0;
1924 }
1925
1926 /** return a STACK of the ciphers available for the SSL and in order of
1927 * preference */
1928 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
1929 {
1930 if (s != NULL) {
1931 if (s->cipher_list != NULL) {
1932 return (s->cipher_list);
1933 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
1934 return (s->ctx->cipher_list);
1935 }
1936 }
1937 return (NULL);
1938 }
1939
1940 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
1941 {
1942 if ((s == NULL) || (s->session == NULL) || !s->server)
1943 return NULL;
1944 return s->session->ciphers;
1945 }
1946
1947 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
1948 {
1949 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
1950 int i;
1951 ciphers = SSL_get_ciphers(s);
1952 if (!ciphers)
1953 return NULL;
1954 ssl_set_client_disabled(s);
1955 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
1956 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
1957 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
1958 if (!sk)
1959 sk = sk_SSL_CIPHER_new_null();
1960 if (!sk)
1961 return NULL;
1962 if (!sk_SSL_CIPHER_push(sk, c)) {
1963 sk_SSL_CIPHER_free(sk);
1964 return NULL;
1965 }
1966 }
1967 }
1968 return sk;
1969 }
1970
1971 /** return a STACK of the ciphers available for the SSL and in order of
1972 * algorithm id */
1973 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
1974 {
1975 if (s != NULL) {
1976 if (s->cipher_list_by_id != NULL) {
1977 return (s->cipher_list_by_id);
1978 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
1979 return (s->ctx->cipher_list_by_id);
1980 }
1981 }
1982 return (NULL);
1983 }
1984
1985 /** The old interface to get the same thing as SSL_get_ciphers() */
1986 const char *SSL_get_cipher_list(const SSL *s, int n)
1987 {
1988 const SSL_CIPHER *c;
1989 STACK_OF(SSL_CIPHER) *sk;
1990
1991 if (s == NULL)
1992 return (NULL);
1993 sk = SSL_get_ciphers(s);
1994 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
1995 return (NULL);
1996 c = sk_SSL_CIPHER_value(sk, n);
1997 if (c == NULL)
1998 return (NULL);
1999 return (c->name);
2000 }
2001
2002 /** specify the ciphers to be used by default by the SSL_CTX */
2003 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2004 {
2005 STACK_OF(SSL_CIPHER) *sk;
2006
2007 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2008 &ctx->cipher_list_by_id, str, ctx->cert);
2009 /*
2010 * ssl_create_cipher_list may return an empty stack if it was unable to
2011 * find a cipher matching the given rule string (for example if the rule
2012 * string specifies a cipher which has been disabled). This is not an
2013 * error as far as ssl_create_cipher_list is concerned, and hence
2014 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2015 */
2016 if (sk == NULL)
2017 return 0;
2018 else if (sk_SSL_CIPHER_num(sk) == 0) {
2019 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2020 return 0;
2021 }
2022 return 1;
2023 }
2024
2025 /** specify the ciphers to be used by the SSL */
2026 int SSL_set_cipher_list(SSL *s, const char *str)
2027 {
2028 STACK_OF(SSL_CIPHER) *sk;
2029
2030 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2031 &s->cipher_list_by_id, str, s->cert);
2032 /* see comment in SSL_CTX_set_cipher_list */
2033 if (sk == NULL)
2034 return 0;
2035 else if (sk_SSL_CIPHER_num(sk) == 0) {
2036 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2037 return 0;
2038 }
2039 return 1;
2040 }
2041
2042 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2043 {
2044 char *p;
2045 STACK_OF(SSL_CIPHER) *sk;
2046 const SSL_CIPHER *c;
2047 int i;
2048
2049 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2050 return (NULL);
2051
2052 p = buf;
2053 sk = s->session->ciphers;
2054
2055 if (sk_SSL_CIPHER_num(sk) == 0)
2056 return NULL;
2057
2058 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2059 int n;
2060
2061 c = sk_SSL_CIPHER_value(sk, i);
2062 n = strlen(c->name);
2063 if (n + 1 > len) {
2064 if (p != buf)
2065 --p;
2066 *p = '\0';
2067 return buf;
2068 }
2069 memcpy(p, c->name, n + 1);
2070 p += n;
2071 *(p++) = ':';
2072 len -= n + 1;
2073 }
2074 p[-1] = '\0';
2075 return (buf);
2076 }
2077
2078 /** return a servername extension value if provided in Client Hello, or NULL.
2079 * So far, only host_name types are defined (RFC 3546).
2080 */
2081
2082 const char *SSL_get_servername(const SSL *s, const int type)
2083 {
2084 if (type != TLSEXT_NAMETYPE_host_name)
2085 return NULL;
2086
2087 return s->session && !s->tlsext_hostname ?
2088 s->session->tlsext_hostname : s->tlsext_hostname;
2089 }
2090
2091 int SSL_get_servername_type(const SSL *s)
2092 {
2093 if (s->session
2094 && (!s->tlsext_hostname ? s->session->
2095 tlsext_hostname : s->tlsext_hostname))
2096 return TLSEXT_NAMETYPE_host_name;
2097 return -1;
2098 }
2099
2100 /*
2101 * SSL_select_next_proto implements the standard protocol selection. It is
2102 * expected that this function is called from the callback set by
2103 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2104 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2105 * not included in the length. A byte string of length 0 is invalid. No byte
2106 * string may be truncated. The current, but experimental algorithm for
2107 * selecting the protocol is: 1) If the server doesn't support NPN then this
2108 * is indicated to the callback. In this case, the client application has to
2109 * abort the connection or have a default application level protocol. 2) If
2110 * the server supports NPN, but advertises an empty list then the client
2111 * selects the first protcol in its list, but indicates via the API that this
2112 * fallback case was enacted. 3) Otherwise, the client finds the first
2113 * protocol in the server's list that it supports and selects this protocol.
2114 * This is because it's assumed that the server has better information about
2115 * which protocol a client should use. 4) If the client doesn't support any
2116 * of the server's advertised protocols, then this is treated the same as
2117 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2118 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2119 */
2120 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2121 const unsigned char *server,
2122 unsigned int server_len,
2123 const unsigned char *client,
2124 unsigned int client_len)
2125 {
2126 unsigned int i, j;
2127 const unsigned char *result;
2128 int status = OPENSSL_NPN_UNSUPPORTED;
2129
2130 /*
2131 * For each protocol in server preference order, see if we support it.
2132 */
2133 for (i = 0; i < server_len;) {
2134 for (j = 0; j < client_len;) {
2135 if (server[i] == client[j] &&
2136 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2137 /* We found a match */
2138 result = &server[i];
2139 status = OPENSSL_NPN_NEGOTIATED;
2140 goto found;
2141 }
2142 j += client[j];
2143 j++;
2144 }
2145 i += server[i];
2146 i++;
2147 }
2148
2149 /* There's no overlap between our protocols and the server's list. */
2150 result = client;
2151 status = OPENSSL_NPN_NO_OVERLAP;
2152
2153 found:
2154 *out = (unsigned char *)result + 1;
2155 *outlen = result[0];
2156 return status;
2157 }
2158
2159 #ifndef OPENSSL_NO_NEXTPROTONEG
2160 /*
2161 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2162 * client's requested protocol for this connection and returns 0. If the
2163 * client didn't request any protocol, then *data is set to NULL. Note that
2164 * the client can request any protocol it chooses. The value returned from
2165 * this function need not be a member of the list of supported protocols
2166 * provided by the callback.
2167 */
2168 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2169 unsigned *len)
2170 {
2171 *data = s->next_proto_negotiated;
2172 if (!*data) {
2173 *len = 0;
2174 } else {
2175 *len = s->next_proto_negotiated_len;
2176 }
2177 }
2178
2179 /*
2180 * SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when
2181 * a TLS server needs a list of supported protocols for Next Protocol
2182 * Negotiation. The returned list must be in wire format. The list is
2183 * returned by setting |out| to point to it and |outlen| to its length. This
2184 * memory will not be modified, but one should assume that the SSL* keeps a
2185 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2186 * wishes to advertise. Otherwise, no such extension will be included in the
2187 * ServerHello.
2188 */
2189 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx,
2190 int (*cb) (SSL *ssl,
2191 const unsigned char
2192 **out,
2193 unsigned int *outlen,
2194 void *arg), void *arg)
2195 {
2196 ctx->next_protos_advertised_cb = cb;
2197 ctx->next_protos_advertised_cb_arg = arg;
2198 }
2199
2200 /*
2201 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2202 * client needs to select a protocol from the server's provided list. |out|
2203 * must be set to point to the selected protocol (which may be within |in|).
2204 * The length of the protocol name must be written into |outlen|. The
2205 * server's advertised protocols are provided in |in| and |inlen|. The
2206 * callback can assume that |in| is syntactically valid. The client must
2207 * select a protocol. It is fatal to the connection if this callback returns
2208 * a value other than SSL_TLSEXT_ERR_OK.
2209 */
2210 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
2211 int (*cb) (SSL *s, unsigned char **out,
2212 unsigned char *outlen,
2213 const unsigned char *in,
2214 unsigned int inlen,
2215 void *arg), void *arg)
2216 {
2217 ctx->next_proto_select_cb = cb;
2218 ctx->next_proto_select_cb_arg = arg;
2219 }
2220 #endif
2221
2222 /*
2223 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2224 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2225 * length-prefixed strings). Returns 0 on success.
2226 */
2227 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2228 unsigned int protos_len)
2229 {
2230 OPENSSL_free(ctx->alpn_client_proto_list);
2231 ctx->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
2232 if (ctx->alpn_client_proto_list == NULL) {
2233 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2234 return 1;
2235 }
2236 ctx->alpn_client_proto_list_len = protos_len;
2237
2238 return 0;
2239 }
2240
2241 /*
2242 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2243 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2244 * length-prefixed strings). Returns 0 on success.
2245 */
2246 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2247 unsigned int protos_len)
2248 {
2249 OPENSSL_free(ssl->alpn_client_proto_list);
2250 ssl->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
2251 if (ssl->alpn_client_proto_list == NULL) {
2252 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2253 return 1;
2254 }
2255 ssl->alpn_client_proto_list_len = protos_len;
2256
2257 return 0;
2258 }
2259
2260 /*
2261 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2262 * called during ClientHello processing in order to select an ALPN protocol
2263 * from the client's list of offered protocols.
2264 */
2265 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2266 int (*cb) (SSL *ssl,
2267 const unsigned char **out,
2268 unsigned char *outlen,
2269 const unsigned char *in,
2270 unsigned int inlen,
2271 void *arg), void *arg)
2272 {
2273 ctx->alpn_select_cb = cb;
2274 ctx->alpn_select_cb_arg = arg;
2275 }
2276
2277 /*
2278 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
2279 * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
2280 * (not including the leading length-prefix byte). If the server didn't
2281 * respond with a negotiated protocol then |*len| will be zero.
2282 */
2283 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2284 unsigned int *len)
2285 {
2286 *data = NULL;
2287 if (ssl->s3)
2288 *data = ssl->s3->alpn_selected;
2289 if (*data == NULL)
2290 *len = 0;
2291 else
2292 *len = ssl->s3->alpn_selected_len;
2293 }
2294
2295
2296 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2297 const char *label, size_t llen,
2298 const unsigned char *p, size_t plen,
2299 int use_context)
2300 {
2301 if (s->version < TLS1_VERSION)
2302 return -1;
2303
2304 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2305 llen, p, plen,
2306 use_context);
2307 }
2308
2309 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2310 {
2311 unsigned long l;
2312
2313 l = (unsigned long)
2314 ((unsigned int)a->session_id[0]) |
2315 ((unsigned int)a->session_id[1] << 8L) |
2316 ((unsigned long)a->session_id[2] << 16L) |
2317 ((unsigned long)a->session_id[3] << 24L);
2318 return (l);
2319 }
2320
2321 /*
2322 * NB: If this function (or indeed the hash function which uses a sort of
2323 * coarser function than this one) is changed, ensure
2324 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2325 * being able to construct an SSL_SESSION that will collide with any existing
2326 * session with a matching session ID.
2327 */
2328 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2329 {
2330 if (a->ssl_version != b->ssl_version)
2331 return (1);
2332 if (a->session_id_length != b->session_id_length)
2333 return (1);
2334 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2335 }
2336
2337 /*
2338 * These wrapper functions should remain rather than redeclaring
2339 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2340 * variable. The reason is that the functions aren't static, they're exposed
2341 * via ssl.h.
2342 */
2343
2344 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2345 {
2346 SSL_CTX *ret = NULL;
2347
2348 if (meth == NULL) {
2349 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2350 return (NULL);
2351 }
2352
2353 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2354 return NULL;
2355
2356 if (FIPS_mode() && (meth->version < TLS1_VERSION)) {
2357 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE);
2358 return NULL;
2359 }
2360
2361 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2362 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2363 goto err;
2364 }
2365 ret = OPENSSL_zalloc(sizeof(*ret));
2366 if (ret == NULL)
2367 goto err;
2368
2369 ret->method = meth;
2370 ret->min_proto_version = 0;
2371 ret->max_proto_version = 0;
2372 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2373 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2374 /* We take the system default. */
2375 ret->session_timeout = meth->get_timeout();
2376 ret->references = 1;
2377 ret->lock = CRYPTO_THREAD_lock_new();
2378 if (ret->lock == NULL) {
2379 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2380 OPENSSL_free(ret);
2381 return NULL;
2382 }
2383 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2384 ret->verify_mode = SSL_VERIFY_NONE;
2385 if ((ret->cert = ssl_cert_new()) == NULL)
2386 goto err;
2387
2388 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2389 if (ret->sessions == NULL)
2390 goto err;
2391 ret->cert_store = X509_STORE_new();
2392 if (ret->cert_store == NULL)
2393 goto err;
2394 #ifndef OPENSSL_NO_CT
2395 ret->ctlog_store = CTLOG_STORE_new();
2396 if (ret->ctlog_store == NULL)
2397 goto err;
2398 #endif
2399 if (!ssl_create_cipher_list(ret->method,
2400 &ret->cipher_list, &ret->cipher_list_by_id,
2401 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2402 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2403 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2404 goto err2;
2405 }
2406
2407 ret->param = X509_VERIFY_PARAM_new();
2408 if (ret->param == NULL)
2409 goto err;
2410
2411 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2412 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2413 goto err2;
2414 }
2415 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2416 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2417 goto err2;
2418 }
2419
2420 if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
2421 goto err;
2422
2423 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data);
2424
2425 /* No compression for DTLS */
2426 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2427 ret->comp_methods = SSL_COMP_get_compression_methods();
2428
2429 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2430 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2431
2432 /* Setup RFC4507 ticket keys */
2433 if ((RAND_bytes(ret->tlsext_tick_key_name, 16) <= 0)
2434 || (RAND_bytes(ret->tlsext_tick_hmac_key, 16) <= 0)
2435 || (RAND_bytes(ret->tlsext_tick_aes_key, 16) <= 0))
2436 ret->options |= SSL_OP_NO_TICKET;
2437
2438 #ifndef OPENSSL_NO_SRP
2439 if (!SSL_CTX_SRP_CTX_init(ret))
2440 goto err;
2441 #endif
2442 #ifndef OPENSSL_NO_ENGINE
2443 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2444 # define eng_strx(x) #x
2445 # define eng_str(x) eng_strx(x)
2446 /* Use specific client engine automatically... ignore errors */
2447 {
2448 ENGINE *eng;
2449 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2450 if (!eng) {
2451 ERR_clear_error();
2452 ENGINE_load_builtin_engines();
2453 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2454 }
2455 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2456 ERR_clear_error();
2457 }
2458 # endif
2459 #endif
2460 /*
2461 * Default is to connect to non-RI servers. When RI is more widely
2462 * deployed might change this.
2463 */
2464 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2465 /*
2466 * Disable compression by default to prevent CRIME. Applications can
2467 * re-enable compression by configuring
2468 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2469 * or by using the SSL_CONF library.
2470 */
2471 ret->options |= SSL_OP_NO_COMPRESSION;
2472
2473 return ret;
2474 err:
2475 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2476 err2:
2477 SSL_CTX_free(ret);
2478 return NULL;
2479 }
2480
2481 void SSL_CTX_up_ref(SSL_CTX *ctx)
2482 {
2483 int i;
2484 CRYPTO_atomic_add(&ctx->references, 1, &i, ctx->lock);
2485 }
2486
2487 void SSL_CTX_free(SSL_CTX *a)
2488 {
2489 int i;
2490
2491 if (a == NULL)
2492 return;
2493
2494 CRYPTO_atomic_add(&a->references, -1, &i, a->lock);
2495 REF_PRINT_COUNT("SSL_CTX", a);
2496 if (i > 0)
2497 return;
2498 REF_ASSERT_ISNT(i < 0);
2499
2500 X509_VERIFY_PARAM_free(a->param);
2501 dane_ctx_final(&a->dane);
2502
2503 /*
2504 * Free internal session cache. However: the remove_cb() may reference
2505 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2506 * after the sessions were flushed.
2507 * As the ex_data handling routines might also touch the session cache,
2508 * the most secure solution seems to be: empty (flush) the cache, then
2509 * free ex_data, then finally free the cache.
2510 * (See ticket [openssl.org #212].)
2511 */
2512 if (a->sessions != NULL)
2513 SSL_CTX_flush_sessions(a, 0);
2514
2515 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2516 lh_SSL_SESSION_free(a->sessions);
2517 X509_STORE_free(a->cert_store);
2518 #ifndef OPENSSL_NO_CT
2519 CTLOG_STORE_free(a->ctlog_store);
2520 #endif
2521 sk_SSL_CIPHER_free(a->cipher_list);
2522 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2523 ssl_cert_free(a->cert);
2524 sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
2525 sk_X509_pop_free(a->extra_certs, X509_free);
2526 a->comp_methods = NULL;
2527 #ifndef OPENSSL_NO_SRTP
2528 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2529 #endif
2530 #ifndef OPENSSL_NO_SRP
2531 SSL_CTX_SRP_CTX_free(a);
2532 #endif
2533 #ifndef OPENSSL_NO_ENGINE
2534 ENGINE_finish(a->client_cert_engine);
2535 #endif
2536
2537 #ifndef OPENSSL_NO_EC
2538 OPENSSL_free(a->tlsext_ecpointformatlist);
2539 OPENSSL_free(a->tlsext_ellipticcurvelist);
2540 #endif
2541 OPENSSL_free(a->alpn_client_proto_list);
2542
2543 CRYPTO_THREAD_lock_free(a->lock);
2544
2545 OPENSSL_free(a);
2546 }
2547
2548 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2549 {
2550 ctx->default_passwd_callback = cb;
2551 }
2552
2553 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2554 {
2555 ctx->default_passwd_callback_userdata = u;
2556 }
2557
2558 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2559 {
2560 return ctx->default_passwd_callback;
2561 }
2562
2563 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2564 {
2565 return ctx->default_passwd_callback_userdata;
2566 }
2567
2568 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2569 {
2570 s->default_passwd_callback = cb;
2571 }
2572
2573 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2574 {
2575 s->default_passwd_callback_userdata = u;
2576 }
2577
2578 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
2579 {
2580 return s->default_passwd_callback;
2581 }
2582
2583 void *SSL_get_default_passwd_cb_userdata(SSL *s)
2584 {
2585 return s->default_passwd_callback_userdata;
2586 }
2587
2588 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2589 int (*cb) (X509_STORE_CTX *, void *),
2590 void *arg)
2591 {
2592 ctx->app_verify_callback = cb;
2593 ctx->app_verify_arg = arg;
2594 }
2595
2596 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2597 int (*cb) (int, X509_STORE_CTX *))
2598 {
2599 ctx->verify_mode = mode;
2600 ctx->default_verify_callback = cb;
2601 }
2602
2603 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2604 {
2605 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2606 }
2607
2608 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg),
2609 void *arg)
2610 {
2611 ssl_cert_set_cert_cb(c->cert, cb, arg);
2612 }
2613
2614 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2615 {
2616 ssl_cert_set_cert_cb(s->cert, cb, arg);
2617 }
2618
2619 void ssl_set_masks(SSL *s)
2620 {
2621 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_GOST)
2622 CERT_PKEY *cpk;
2623 #endif
2624 CERT *c = s->cert;
2625 uint32_t *pvalid = s->s3->tmp.valid_flags;
2626 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2627 unsigned long mask_k, mask_a;
2628 #ifndef OPENSSL_NO_EC
2629 int have_ecc_cert, ecdsa_ok;
2630 X509 *x = NULL;
2631 #endif
2632 if (c == NULL)
2633 return;
2634
2635 #ifndef OPENSSL_NO_DH
2636 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2637 #else
2638 dh_tmp = 0;
2639 #endif
2640
2641 rsa_enc = pvalid[SSL_PKEY_RSA_ENC] & CERT_PKEY_VALID;
2642 rsa_sign = pvalid[SSL_PKEY_RSA_SIGN] & CERT_PKEY_SIGN;
2643 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_SIGN;
2644 #ifndef OPENSSL_NO_EC
2645 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2646 #endif
2647 mask_k = 0;
2648 mask_a = 0;
2649
2650 #ifdef CIPHER_DEBUG
2651 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2652 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2653 #endif
2654
2655 #ifndef OPENSSL_NO_GOST
2656 cpk = &(c->pkeys[SSL_PKEY_GOST12_512]);
2657 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2658 mask_k |= SSL_kGOST;
2659 mask_a |= SSL_aGOST12;
2660 }
2661 cpk = &(c->pkeys[SSL_PKEY_GOST12_256]);
2662 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2663 mask_k |= SSL_kGOST;
2664 mask_a |= SSL_aGOST12;
2665 }
2666 cpk = &(c->pkeys[SSL_PKEY_GOST01]);
2667 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2668 mask_k |= SSL_kGOST;
2669 mask_a |= SSL_aGOST01;
2670 }
2671 #endif
2672
2673 if (rsa_enc)
2674 mask_k |= SSL_kRSA;
2675
2676 if (dh_tmp)
2677 mask_k |= SSL_kDHE;
2678
2679 if (rsa_enc || rsa_sign) {
2680 mask_a |= SSL_aRSA;
2681 }
2682
2683 if (dsa_sign) {
2684 mask_a |= SSL_aDSS;
2685 }
2686
2687 mask_a |= SSL_aNULL;
2688
2689 /*
2690 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2691 * depending on the key usage extension.
2692 */
2693 #ifndef OPENSSL_NO_EC
2694 if (have_ecc_cert) {
2695 uint32_t ex_kusage;
2696 cpk = &c->pkeys[SSL_PKEY_ECC];
2697 x = cpk->x509;
2698 ex_kusage = X509_get_key_usage(x);
2699 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2700 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2701 ecdsa_ok = 0;
2702 if (ecdsa_ok)
2703 mask_a |= SSL_aECDSA;
2704 }
2705 #endif
2706
2707 #ifndef OPENSSL_NO_EC
2708 mask_k |= SSL_kECDHE;
2709 #endif
2710
2711 #ifndef OPENSSL_NO_PSK
2712 mask_k |= SSL_kPSK;
2713 mask_a |= SSL_aPSK;
2714 if (mask_k & SSL_kRSA)
2715 mask_k |= SSL_kRSAPSK;
2716 if (mask_k & SSL_kDHE)
2717 mask_k |= SSL_kDHEPSK;
2718 if (mask_k & SSL_kECDHE)
2719 mask_k |= SSL_kECDHEPSK;
2720 #endif
2721
2722 s->s3->tmp.mask_k = mask_k;
2723 s->s3->tmp.mask_a = mask_a;
2724 }
2725
2726 #ifndef OPENSSL_NO_EC
2727
2728 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2729 {
2730 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
2731 /* key usage, if present, must allow signing */
2732 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
2733 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2734 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
2735 return 0;
2736 }
2737 }
2738 return 1; /* all checks are ok */
2739 }
2740
2741 #endif
2742
2743 static int ssl_get_server_cert_index(const SSL *s)
2744 {
2745 int idx;
2746 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2747 if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509)
2748 idx = SSL_PKEY_RSA_SIGN;
2749 if (idx == SSL_PKEY_GOST_EC) {
2750 if (s->cert->pkeys[SSL_PKEY_GOST12_512].x509)
2751 idx = SSL_PKEY_GOST12_512;
2752 else if (s->cert->pkeys[SSL_PKEY_GOST12_256].x509)
2753 idx = SSL_PKEY_GOST12_256;
2754 else if (s->cert->pkeys[SSL_PKEY_GOST01].x509)
2755 idx = SSL_PKEY_GOST01;
2756 else
2757 idx = -1;
2758 }
2759 if (idx == -1)
2760 SSLerr(SSL_F_SSL_GET_SERVER_CERT_INDEX, ERR_R_INTERNAL_ERROR);
2761 return idx;
2762 }
2763
2764 CERT_PKEY *ssl_get_server_send_pkey(SSL *s)
2765 {
2766 CERT *c;
2767 int i;
2768
2769 c = s->cert;
2770 if (!s->s3 || !s->s3->tmp.new_cipher)
2771 return NULL;
2772 ssl_set_masks(s);
2773
2774 i = ssl_get_server_cert_index(s);
2775
2776 /* This may or may not be an error. */
2777 if (i < 0)
2778 return NULL;
2779
2780 /* May be NULL. */
2781 return &c->pkeys[i];
2782 }
2783
2784 EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher,
2785 const EVP_MD **pmd)
2786 {
2787 unsigned long alg_a;
2788 CERT *c;
2789 int idx = -1;
2790
2791 alg_a = cipher->algorithm_auth;
2792 c = s->cert;
2793
2794 if ((alg_a & SSL_aDSS) &&
2795 (c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
2796 idx = SSL_PKEY_DSA_SIGN;
2797 else if (alg_a & SSL_aRSA) {
2798 if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
2799 idx = SSL_PKEY_RSA_SIGN;
2800 else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
2801 idx = SSL_PKEY_RSA_ENC;
2802 } else if ((alg_a & SSL_aECDSA) &&
2803 (c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
2804 idx = SSL_PKEY_ECC;
2805 if (idx == -1) {
2806 SSLerr(SSL_F_SSL_GET_SIGN_PKEY, ERR_R_INTERNAL_ERROR);
2807 return (NULL);
2808 }
2809 if (pmd)
2810 *pmd = s->s3->tmp.md[idx];
2811 return c->pkeys[idx].privatekey;
2812 }
2813
2814 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
2815 size_t *serverinfo_length)
2816 {
2817 CERT *c = NULL;
2818 int i = 0;
2819 *serverinfo_length = 0;
2820
2821 c = s->cert;
2822 i = ssl_get_server_cert_index(s);
2823
2824 if (i == -1)
2825 return 0;
2826 if (c->pkeys[i].serverinfo == NULL)
2827 return 0;
2828
2829 *serverinfo = c->pkeys[i].serverinfo;
2830 *serverinfo_length = c->pkeys[i].serverinfo_length;
2831 return 1;
2832 }
2833
2834 void ssl_update_cache(SSL *s, int mode)
2835 {
2836 int i;
2837
2838 /*
2839 * If the session_id_length is 0, we are not supposed to cache it, and it
2840 * would be rather hard to do anyway :-)
2841 */
2842 if (s->session->session_id_length == 0)
2843 return;
2844
2845 i = s->session_ctx->session_cache_mode;
2846 if ((i & mode) && (!s->hit)
2847 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
2848 || SSL_CTX_add_session(s->session_ctx, s->session))
2849 && (s->session_ctx->new_session_cb != NULL)) {
2850 SSL_SESSION_up_ref(s->session);
2851 if (!s->session_ctx->new_session_cb(s, s->session))
2852 SSL_SESSION_free(s->session);
2853 }
2854
2855 /* auto flush every 255 connections */
2856 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
2857 if ((((mode & SSL_SESS_CACHE_CLIENT)
2858 ? s->session_ctx->stats.sess_connect_good
2859 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
2860 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
2861 }
2862 }
2863 }
2864
2865 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
2866 {
2867 return ctx->method;
2868 }
2869
2870 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
2871 {
2872 return (s->method);
2873 }
2874
2875 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
2876 {
2877 int ret = 1;
2878
2879 if (s->method != meth) {
2880 const SSL_METHOD *sm = s->method;
2881 int (*hf)(SSL *) = s->handshake_func;
2882
2883 if (sm->version == meth->version)
2884 s->method = meth;
2885 else {
2886 sm->ssl_free(s);
2887 s->method = meth;
2888 ret = s->method->ssl_new(s);
2889 }
2890
2891 if (hf == sm->ssl_connect)
2892 s->handshake_func = meth->ssl_connect;
2893 else if (hf == sm->ssl_accept)
2894 s->handshake_func = meth->ssl_accept;
2895 }
2896 return (ret);
2897 }
2898
2899 int SSL_get_error(const SSL *s, int i)
2900 {
2901 int reason;
2902 unsigned long l;
2903 BIO *bio;
2904
2905 if (i > 0)
2906 return (SSL_ERROR_NONE);
2907
2908 /*
2909 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
2910 * where we do encode the error
2911 */
2912 if ((l = ERR_peek_error()) != 0) {
2913 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
2914 return (SSL_ERROR_SYSCALL);
2915 else
2916 return (SSL_ERROR_SSL);
2917 }
2918
2919 if ((i < 0) && SSL_want_read(s)) {
2920 bio = SSL_get_rbio(s);
2921 if (BIO_should_read(bio))
2922 return (SSL_ERROR_WANT_READ);
2923 else if (BIO_should_write(bio))
2924 /*
2925 * This one doesn't make too much sense ... We never try to write
2926 * to the rbio, and an application program where rbio and wbio
2927 * are separate couldn't even know what it should wait for.
2928 * However if we ever set s->rwstate incorrectly (so that we have
2929 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
2930 * wbio *are* the same, this test works around that bug; so it
2931 * might be safer to keep it.
2932 */
2933 return (SSL_ERROR_WANT_WRITE);
2934 else if (BIO_should_io_special(bio)) {
2935 reason = BIO_get_retry_reason(bio);
2936 if (reason == BIO_RR_CONNECT)
2937 return (SSL_ERROR_WANT_CONNECT);
2938 else if (reason == BIO_RR_ACCEPT)
2939 return (SSL_ERROR_WANT_ACCEPT);
2940 else
2941 return (SSL_ERROR_SYSCALL); /* unknown */
2942 }
2943 }
2944
2945 if ((i < 0) && SSL_want_write(s)) {
2946 bio = SSL_get_wbio(s);
2947 if (BIO_should_write(bio))
2948 return (SSL_ERROR_WANT_WRITE);
2949 else if (BIO_should_read(bio))
2950 /*
2951 * See above (SSL_want_read(s) with BIO_should_write(bio))
2952 */
2953 return (SSL_ERROR_WANT_READ);
2954 else if (BIO_should_io_special(bio)) {
2955 reason = BIO_get_retry_reason(bio);
2956 if (reason == BIO_RR_CONNECT)
2957 return (SSL_ERROR_WANT_CONNECT);
2958 else if (reason == BIO_RR_ACCEPT)
2959 return (SSL_ERROR_WANT_ACCEPT);
2960 else
2961 return (SSL_ERROR_SYSCALL);
2962 }
2963 }
2964 if ((i < 0) && SSL_want_x509_lookup(s)) {
2965 return (SSL_ERROR_WANT_X509_LOOKUP);
2966 }
2967 if ((i < 0) && SSL_want_async(s)) {
2968 return SSL_ERROR_WANT_ASYNC;
2969 }
2970
2971 if (i == 0) {
2972 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
2973 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
2974 return (SSL_ERROR_ZERO_RETURN);
2975 }
2976 return (SSL_ERROR_SYSCALL);
2977 }
2978
2979 static int ssl_do_handshake_intern(void *vargs)
2980 {
2981 struct ssl_async_args *args;
2982 SSL *s;
2983
2984 args = (struct ssl_async_args *)vargs;
2985 s = args->s;
2986
2987 return s->handshake_func(s);
2988 }
2989
2990 int SSL_do_handshake(SSL *s)
2991 {
2992 int ret = 1;
2993
2994 if (s->handshake_func == NULL) {
2995 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
2996 return -1;
2997 }
2998
2999 s->method->ssl_renegotiate_check(s);
3000
3001 if (SSL_in_init(s) || SSL_in_before(s)) {
3002 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3003 struct ssl_async_args args;
3004
3005 args.s = s;
3006
3007 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3008 } else {
3009 ret = s->handshake_func(s);
3010 }
3011 }
3012 return ret;
3013 }
3014
3015 void SSL_set_accept_state(SSL *s)
3016 {
3017 s->server = 1;
3018 s->shutdown = 0;
3019 ossl_statem_clear(s);
3020 s->handshake_func = s->method->ssl_accept;
3021 clear_ciphers(s);
3022 }
3023
3024 void SSL_set_connect_state(SSL *s)
3025 {
3026 s->server = 0;
3027 s->shutdown = 0;
3028 ossl_statem_clear(s);
3029 s->handshake_func = s->method->ssl_connect;
3030 clear_ciphers(s);
3031 }
3032
3033 int ssl_undefined_function(SSL *s)
3034 {
3035 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3036 return (0);
3037 }
3038
3039 int ssl_undefined_void_function(void)
3040 {
3041 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3042 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3043 return (0);
3044 }
3045
3046 int ssl_undefined_const_function(const SSL *s)
3047 {
3048 return (0);
3049 }
3050
3051 const SSL_METHOD *ssl_bad_method(int ver)
3052 {
3053 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3054 return (NULL);
3055 }
3056
3057 const char *ssl_protocol_to_string(int version)
3058 {
3059 if (version == TLS1_2_VERSION)
3060 return "TLSv1.2";
3061 else if (version == TLS1_1_VERSION)
3062 return "TLSv1.1";
3063 else if (version == TLS1_VERSION)
3064 return "TLSv1";
3065 else if (version == SSL3_VERSION)
3066 return "SSLv3";
3067 else if (version == DTLS1_BAD_VER)
3068 return "DTLSv0.9";
3069 else if (version == DTLS1_VERSION)
3070 return "DTLSv1";
3071 else if (version == DTLS1_2_VERSION)
3072 return "DTLSv1.2";
3073 else
3074 return ("unknown");
3075 }
3076
3077 const char *SSL_get_version(const SSL *s)
3078 {
3079 return ssl_protocol_to_string(s->version);
3080 }
3081
3082 SSL *SSL_dup(SSL *s)
3083 {
3084 STACK_OF(X509_NAME) *sk;
3085 X509_NAME *xn;
3086 SSL *ret;
3087 int i;
3088
3089 /* If we're not quiescent, just up_ref! */
3090 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3091 CRYPTO_atomic_add(&s->references, 1, &i, s->lock);
3092 return s;
3093 }
3094
3095 /*
3096 * Otherwise, copy configuration state, and session if set.
3097 */
3098 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3099 return (NULL);
3100
3101 if (s->session != NULL) {
3102 /*
3103 * Arranges to share the same session via up_ref. This "copies"
3104 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3105 */
3106 if (!SSL_copy_session_id(ret, s))
3107 goto err;
3108 } else {
3109 /*
3110 * No session has been established yet, so we have to expect that
3111 * s->cert or ret->cert will be changed later -- they should not both
3112 * point to the same object, and thus we can't use
3113 * SSL_copy_session_id.
3114 */
3115 if (!SSL_set_ssl_method(ret, s->method))
3116 goto err;
3117
3118 if (s->cert != NULL) {
3119 ssl_cert_free(ret->cert);
3120 ret->cert = ssl_cert_dup(s->cert);
3121 if (ret->cert == NULL)
3122 goto err;
3123 }
3124
3125 if (!SSL_set_session_id_context(ret, s->sid_ctx, s->sid_ctx_length))
3126 goto err;
3127 }
3128
3129 ssl_dane_dup(ret, s);
3130 ret->version = s->version;
3131 ret->options = s->options;
3132 ret->mode = s->mode;
3133 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3134 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3135 ret->msg_callback = s->msg_callback;
3136 ret->msg_callback_arg = s->msg_callback_arg;
3137 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3138 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3139 ret->generate_session_id = s->generate_session_id;
3140
3141 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3142
3143 /* copy app data, a little dangerous perhaps */
3144 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3145 goto err;
3146
3147 /* setup rbio, and wbio */
3148 if (s->rbio != NULL) {
3149 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3150 goto err;
3151 }
3152 if (s->wbio != NULL) {
3153 if (s->wbio != s->rbio) {
3154 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3155 goto err;
3156 } else
3157 ret->wbio = ret->rbio;
3158 }
3159
3160 ret->server = s->server;
3161 if (s->handshake_func) {
3162 if (s->server)
3163 SSL_set_accept_state(ret);
3164 else
3165 SSL_set_connect_state(ret);
3166 }
3167 ret->shutdown = s->shutdown;
3168 ret->hit = s->hit;
3169
3170 ret->default_passwd_callback = s->default_passwd_callback;
3171 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3172
3173 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3174
3175 /* dup the cipher_list and cipher_list_by_id stacks */
3176 if (s->cipher_list != NULL) {
3177 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3178 goto err;
3179 }
3180 if (s->cipher_list_by_id != NULL)
3181 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3182 == NULL)
3183 goto err;
3184
3185 /* Dup the client_CA list */
3186 if (s->client_CA != NULL) {
3187 if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
3188 goto err;
3189 ret->client_CA = sk;
3190 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3191 xn = sk_X509_NAME_value(sk, i);
3192 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3193 X509_NAME_free(xn);
3194 goto err;
3195 }
3196 }
3197 }
3198 return ret;
3199
3200 err:
3201 SSL_free(ret);
3202 return NULL;
3203 }
3204
3205 void ssl_clear_cipher_ctx(SSL *s)
3206 {
3207 if (s->enc_read_ctx != NULL) {
3208 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3209 s->enc_read_ctx = NULL;
3210 }
3211 if (s->enc_write_ctx != NULL) {
3212 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3213 s->enc_write_ctx = NULL;
3214 }
3215 #ifndef OPENSSL_NO_COMP
3216 COMP_CTX_free(s->expand);
3217 s->expand = NULL;
3218 COMP_CTX_free(s->compress);
3219 s->compress = NULL;
3220 #endif
3221 }
3222
3223 X509 *SSL_get_certificate(const SSL *s)
3224 {
3225 if (s->cert != NULL)
3226 return (s->cert->key->x509);
3227 else
3228 return (NULL);
3229 }
3230
3231 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3232 {
3233 if (s->cert != NULL)
3234 return (s->cert->key->privatekey);
3235 else
3236 return (NULL);
3237 }
3238
3239 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3240 {
3241 if (ctx->cert != NULL)
3242 return ctx->cert->key->x509;
3243 else
3244 return NULL;
3245 }
3246
3247 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3248 {
3249 if (ctx->cert != NULL)
3250 return ctx->cert->key->privatekey;
3251 else
3252 return NULL;
3253 }
3254
3255 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3256 {
3257 if ((s->session != NULL) && (s->session->cipher != NULL))
3258 return (s->session->cipher);
3259 return (NULL);
3260 }
3261
3262 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3263 {
3264 #ifndef OPENSSL_NO_COMP
3265 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3266 #else
3267 return NULL;
3268 #endif
3269 }
3270
3271 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3272 {
3273 #ifndef OPENSSL_NO_COMP
3274 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3275 #else
3276 return NULL;
3277 #endif
3278 }
3279
3280 int ssl_init_wbio_buffer(SSL *s, int push)
3281 {
3282 BIO *bbio;
3283
3284 if (s->bbio == NULL) {
3285 bbio = BIO_new(BIO_f_buffer());
3286 if (bbio == NULL)
3287 return (0);
3288 s->bbio = bbio;
3289 } else {
3290 bbio = s->bbio;
3291 if (s->bbio == s->wbio)
3292 s->wbio = BIO_pop(s->wbio);
3293 }
3294 (void)BIO_reset(bbio);
3295 /* if (!BIO_set_write_buffer_size(bbio,16*1024)) */
3296 if (!BIO_set_read_buffer_size(bbio, 1)) {
3297 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3298 return (0);
3299 }
3300 if (push) {
3301 if (s->wbio != bbio)
3302 s->wbio = BIO_push(bbio, s->wbio);
3303 } else {
3304 if (s->wbio == bbio)
3305 s->wbio = BIO_pop(bbio);
3306 }
3307 return (1);
3308 }
3309
3310 void ssl_free_wbio_buffer(SSL *s)
3311 {
3312 /* callers ensure s is never null */
3313 if (s->bbio == NULL)
3314 return;
3315
3316 if (s->bbio == s->wbio) {
3317 /* remove buffering */
3318 s->wbio = BIO_pop(s->wbio);
3319 #ifdef REF_DEBUG
3320 /*
3321 * not the usual REF_DEBUG, but this avoids
3322 * adding one more preprocessor symbol
3323 */
3324 assert(s->wbio != NULL);
3325 #endif
3326 }
3327 BIO_free(s->bbio);
3328 s->bbio = NULL;
3329 }
3330
3331 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3332 {
3333 ctx->quiet_shutdown = mode;
3334 }
3335
3336 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3337 {
3338 return (ctx->quiet_shutdown);
3339 }
3340
3341 void SSL_set_quiet_shutdown(SSL *s, int mode)
3342 {
3343 s->quiet_shutdown = mode;
3344 }
3345
3346 int SSL_get_quiet_shutdown(const SSL *s)
3347 {
3348 return (s->quiet_shutdown);
3349 }
3350
3351 void SSL_set_shutdown(SSL *s, int mode)
3352 {
3353 s->shutdown = mode;
3354 }
3355
3356 int SSL_get_shutdown(const SSL *s)
3357 {
3358 return (s->shutdown);
3359 }
3360
3361 int SSL_version(const SSL *s)
3362 {
3363 return (s->version);
3364 }
3365
3366 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3367 {
3368 return (ssl->ctx);
3369 }
3370
3371 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3372 {
3373 CERT *new_cert;
3374 if (ssl->ctx == ctx)
3375 return ssl->ctx;
3376 if (ctx == NULL)
3377 ctx = ssl->initial_ctx;
3378 new_cert = ssl_cert_dup(ctx->cert);
3379 if (new_cert == NULL) {
3380 return NULL;
3381 }
3382 ssl_cert_free(ssl->cert);
3383 ssl->cert = new_cert;
3384
3385 /*
3386 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3387 * so setter APIs must prevent invalid lengths from entering the system.
3388 */
3389 OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
3390
3391 /*
3392 * If the session ID context matches that of the parent SSL_CTX,
3393 * inherit it from the new SSL_CTX as well. If however the context does
3394 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3395 * leave it unchanged.
3396 */
3397 if ((ssl->ctx != NULL) &&
3398 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3399 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3400 ssl->sid_ctx_length = ctx->sid_ctx_length;
3401 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3402 }
3403
3404 SSL_CTX_up_ref(ctx);
3405 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3406 ssl->ctx = ctx;
3407
3408 return ssl->ctx;
3409 }
3410
3411 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3412 {
3413 return (X509_STORE_set_default_paths(ctx->cert_store));
3414 }
3415
3416 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3417 {
3418 X509_LOOKUP *lookup;
3419
3420 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3421 if (lookup == NULL)
3422 return 0;
3423 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3424
3425 /* Clear any errors if the default directory does not exist */
3426 ERR_clear_error();
3427
3428 return 1;
3429 }
3430
3431 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3432 {
3433 X509_LOOKUP *lookup;
3434
3435 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3436 if (lookup == NULL)
3437 return 0;
3438
3439 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3440
3441 /* Clear any errors if the default file does not exist */
3442 ERR_clear_error();
3443
3444 return 1;
3445 }
3446
3447 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3448 const char *CApath)
3449 {
3450 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3451 }
3452
3453 void SSL_set_info_callback(SSL *ssl,
3454 void (*cb) (const SSL *ssl, int type, int val))
3455 {
3456 ssl->info_callback = cb;
3457 }
3458
3459 /*
3460 * One compiler (Diab DCC) doesn't like argument names in returned function
3461 * pointer.
3462 */
3463 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3464 int /* type */ ,
3465 int /* val */ ) {
3466 return ssl->info_callback;
3467 }
3468
3469 void SSL_set_verify_result(SSL *ssl, long arg)
3470 {
3471 ssl->verify_result = arg;
3472 }
3473
3474 long SSL_get_verify_result(const SSL *ssl)
3475 {
3476 return (ssl->verify_result);
3477 }
3478
3479 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3480 {
3481 if (outlen == 0)
3482 return sizeof(ssl->s3->client_random);
3483 if (outlen > sizeof(ssl->s3->client_random))
3484 outlen = sizeof(ssl->s3->client_random);
3485 memcpy(out, ssl->s3->client_random, outlen);
3486 return outlen;
3487 }
3488
3489 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3490 {
3491 if (outlen == 0)
3492 return sizeof(ssl->s3->server_random);
3493 if (outlen > sizeof(ssl->s3->server_random))
3494 outlen = sizeof(ssl->s3->server_random);
3495 memcpy(out, ssl->s3->server_random, outlen);
3496 return outlen;
3497 }
3498
3499 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3500 unsigned char *out, size_t outlen)
3501 {
3502 if (session->master_key_length < 0) {
3503 /* Should never happen */
3504 return 0;
3505 }
3506 if (outlen == 0)
3507 return session->master_key_length;
3508 if (outlen > (size_t)session->master_key_length)
3509 outlen = session->master_key_length;
3510 memcpy(out, session->master_key, outlen);
3511 return outlen;
3512 }
3513
3514 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3515 {
3516 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3517 }
3518
3519 void *SSL_get_ex_data(const SSL *s, int idx)
3520 {
3521 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3522 }
3523
3524 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3525 {
3526 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3527 }
3528
3529 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3530 {
3531 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3532 }
3533
3534 int ssl_ok(SSL *s)
3535 {
3536 return (1);
3537 }
3538
3539 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3540 {
3541 return (ctx->cert_store);
3542 }
3543
3544 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3545 {
3546 X509_STORE_free(ctx->cert_store);
3547 ctx->cert_store = store;
3548 }
3549
3550 int SSL_want(const SSL *s)
3551 {
3552 return (s->rwstate);
3553 }
3554
3555 /**
3556 * \brief Set the callback for generating temporary DH keys.
3557 * \param ctx the SSL context.
3558 * \param dh the callback
3559 */
3560
3561 #ifndef OPENSSL_NO_DH
3562 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3563 DH *(*dh) (SSL *ssl, int is_export,
3564 int keylength))
3565 {
3566 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3567 }
3568
3569 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3570 int keylength))
3571 {
3572 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3573 }
3574 #endif
3575
3576 #ifndef OPENSSL_NO_PSK
3577 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3578 {
3579 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3580 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT,
3581 SSL_R_DATA_LENGTH_TOO_LONG);
3582 return 0;
3583 }
3584 OPENSSL_free(ctx->cert->psk_identity_hint);
3585 if (identity_hint != NULL) {
3586 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3587 if (ctx->cert->psk_identity_hint == NULL)
3588 return 0;
3589 } else
3590 ctx->cert->psk_identity_hint = NULL;
3591 return 1;
3592 }
3593
3594 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3595 {
3596 if (s == NULL)
3597 return 0;
3598
3599 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3600 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3601 return 0;
3602 }
3603 OPENSSL_free(s->cert->psk_identity_hint);
3604 if (identity_hint != NULL) {
3605 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3606 if (s->cert->psk_identity_hint == NULL)
3607 return 0;
3608 } else
3609 s->cert->psk_identity_hint = NULL;
3610 return 1;
3611 }
3612
3613 const char *SSL_get_psk_identity_hint(const SSL *s)
3614 {
3615 if (s == NULL || s->session == NULL)
3616 return NULL;
3617 return (s->session->psk_identity_hint);
3618 }
3619
3620 const char *SSL_get_psk_identity(const SSL *s)
3621 {
3622 if (s == NULL || s->session == NULL)
3623 return NULL;
3624 return (s->session->psk_identity);
3625 }
3626
3627 void SSL_set_psk_client_callback(SSL *s,
3628 unsigned int (*cb) (SSL *ssl,
3629 const char *hint,
3630 char *identity,
3631 unsigned int
3632 max_identity_len,
3633 unsigned char *psk,
3634 unsigned int
3635 max_psk_len))
3636 {
3637 s->psk_client_callback = cb;
3638 }
3639
3640 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
3641 unsigned int (*cb) (SSL *ssl,
3642 const char *hint,
3643 char *identity,
3644 unsigned int
3645 max_identity_len,
3646 unsigned char *psk,
3647 unsigned int
3648 max_psk_len))
3649 {
3650 ctx->psk_client_callback = cb;
3651 }
3652
3653 void SSL_set_psk_server_callback(SSL *s,
3654 unsigned int (*cb) (SSL *ssl,
3655 const char *identity,
3656 unsigned char *psk,
3657 unsigned int
3658 max_psk_len))
3659 {
3660 s->psk_server_callback = cb;
3661 }
3662
3663 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
3664 unsigned int (*cb) (SSL *ssl,
3665 const char *identity,
3666 unsigned char *psk,
3667 unsigned int
3668 max_psk_len))
3669 {
3670 ctx->psk_server_callback = cb;
3671 }
3672 #endif
3673
3674 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3675 void (*cb) (int write_p, int version,
3676 int content_type, const void *buf,
3677 size_t len, SSL *ssl, void *arg))
3678 {
3679 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3680 }
3681
3682 void SSL_set_msg_callback(SSL *ssl,
3683 void (*cb) (int write_p, int version,
3684 int content_type, const void *buf,
3685 size_t len, SSL *ssl, void *arg))
3686 {
3687 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3688 }
3689
3690 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3691 int (*cb) (SSL *ssl,
3692 int
3693 is_forward_secure))
3694 {
3695 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3696 (void (*)(void))cb);
3697 }
3698
3699 void SSL_set_not_resumable_session_callback(SSL *ssl,
3700 int (*cb) (SSL *ssl,
3701 int is_forward_secure))
3702 {
3703 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3704 (void (*)(void))cb);
3705 }
3706
3707 /*
3708 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3709 * vairable, freeing EVP_MD_CTX previously stored in that variable, if any.
3710 * If EVP_MD pointer is passed, initializes ctx with this md Returns newly
3711 * allocated ctx;
3712 */
3713
3714 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3715 {
3716 ssl_clear_hash_ctx(hash);
3717 *hash = EVP_MD_CTX_new();
3718 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3719 EVP_MD_CTX_free(*hash);
3720 *hash = NULL;
3721 return NULL;
3722 }
3723 return *hash;
3724 }
3725
3726 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3727 {
3728
3729 if (*hash)
3730 EVP_MD_CTX_free(*hash);
3731 *hash = NULL;
3732 }
3733
3734 /* Retrieve handshake hashes */
3735 int ssl_handshake_hash(SSL *s, unsigned char *out, int outlen)
3736 {
3737 EVP_MD_CTX *ctx = NULL;
3738 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3739 int ret = EVP_MD_CTX_size(hdgst);
3740 if (ret < 0 || ret > outlen) {
3741 ret = 0;
3742 goto err;
3743 }
3744 ctx = EVP_MD_CTX_new();
3745 if (ctx == NULL) {
3746 ret = 0;
3747 goto err;
3748 }
3749 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3750 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3751 ret = 0;
3752 err:
3753 EVP_MD_CTX_free(ctx);
3754 return ret;
3755 }
3756
3757 int SSL_session_reused(SSL *s)
3758 {
3759 return s->hit;
3760 }
3761
3762 int SSL_is_server(SSL *s)
3763 {
3764 return s->server;
3765 }
3766
3767 #if OPENSSL_API_COMPAT < 0x10100000L
3768 void SSL_set_debug(SSL *s, int debug)
3769 {
3770 /* Old function was do-nothing anyway... */
3771 (void)s;
3772 (void)debug;
3773 }
3774 #endif
3775
3776
3777 void SSL_set_security_level(SSL *s, int level)
3778 {
3779 s->cert->sec_level = level;
3780 }
3781
3782 int SSL_get_security_level(const SSL *s)
3783 {
3784 return s->cert->sec_level;
3785 }
3786
3787 void SSL_set_security_callback(SSL *s,
3788 int (*cb) (const SSL *s, const SSL_CTX *ctx, int op,
3789 int bits, int nid, void *other,
3790 void *ex))
3791 {
3792 s->cert->sec_cb = cb;
3793 }
3794
3795 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, const SSL_CTX *ctx, int op,
3796 int bits, int nid,
3797 void *other, void *ex) {
3798 return s->cert->sec_cb;
3799 }
3800
3801 void SSL_set0_security_ex_data(SSL *s, void *ex)
3802 {
3803 s->cert->sec_ex = ex;
3804 }
3805
3806 void *SSL_get0_security_ex_data(const SSL *s)
3807 {
3808 return s->cert->sec_ex;
3809 }
3810
3811 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
3812 {
3813 ctx->cert->sec_level = level;
3814 }
3815
3816 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
3817 {
3818 return ctx->cert->sec_level;
3819 }
3820
3821 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
3822 int (*cb) (const SSL *s, const SSL_CTX *ctx, int op,
3823 int bits, int nid, void *other,
3824 void *ex))
3825 {
3826 ctx->cert->sec_cb = cb;
3827 }
3828
3829 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
3830 const SSL_CTX *ctx,
3831 int op, int bits,
3832 int nid,
3833 void *other,
3834 void *ex) {
3835 return ctx->cert->sec_cb;
3836 }
3837
3838 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
3839 {
3840 ctx->cert->sec_ex = ex;
3841 }
3842
3843 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
3844 {
3845 return ctx->cert->sec_ex;
3846 }
3847
3848
3849 /*
3850 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
3851 * can return unsigned long, instead of the generic long return value from the
3852 * control interface.
3853 */
3854 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
3855 {
3856 return ctx->options;
3857 }
3858 unsigned long SSL_get_options(const SSL* s)
3859 {
3860 return s->options;
3861 }
3862 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
3863 {
3864 return ctx->options |= op;
3865 }
3866 unsigned long SSL_set_options(SSL *s, unsigned long op)
3867 {
3868 return s->options |= op;
3869 }
3870 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
3871 {
3872 return ctx->options &= ~op;
3873 }
3874 unsigned long SSL_clear_options(SSL *s, unsigned long op)
3875 {
3876 return s->options &= ~op;
3877 }
3878
3879 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
3880 {
3881 return s->verified_chain;
3882 }
3883
3884 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
3885
3886 #ifndef OPENSSL_NO_CT
3887
3888 /*
3889 * Moves SCTs from the |src| stack to the |dst| stack.
3890 * The source of each SCT will be set to |origin|.
3891 * If |dst| points to a NULL pointer, a new stack will be created and owned by
3892 * the caller.
3893 * Returns the number of SCTs moved, or a negative integer if an error occurs.
3894 */
3895 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, sct_source_t origin)
3896 {
3897 int scts_moved = 0;
3898 SCT *sct = NULL;
3899
3900 if (*dst == NULL) {
3901 *dst = sk_SCT_new_null();
3902 if (*dst == NULL) {
3903 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
3904 goto err;
3905 }
3906 }
3907
3908 while ((sct = sk_SCT_pop(src)) != NULL) {
3909 if (SCT_set_source(sct, origin) != 1)
3910 goto err;
3911
3912 if (sk_SCT_push(*dst, sct) <= 0)
3913 goto err;
3914 scts_moved += 1;
3915 }
3916
3917 return scts_moved;
3918 err:
3919 if (sct != NULL)
3920 sk_SCT_push(src, sct); /* Put the SCT back */
3921 return scts_moved;
3922 }
3923
3924 /*
3925 * Look for data collected during ServerHello and parse if found.
3926 * Return 1 on success, 0 on failure.
3927 */
3928 static int ct_extract_tls_extension_scts(SSL *s)
3929 {
3930 int scts_extracted = 0;
3931
3932 if (s->tlsext_scts != NULL) {
3933 const unsigned char *p = s->tlsext_scts;
3934 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->tlsext_scts_len);
3935
3936 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
3937
3938 SCT_LIST_free(scts);
3939 }
3940
3941 return scts_extracted;
3942 }
3943
3944 /*
3945 * Checks for an OCSP response and then attempts to extract any SCTs found if it
3946 * contains an SCT X509 extension. They will be stored in |s->scts|.
3947 * Returns:
3948 * - The number of SCTs extracted, assuming an OCSP response exists.
3949 * - 0 if no OCSP response exists or it contains no SCTs.
3950 * - A negative integer if an error occurs.
3951 */
3952 static int ct_extract_ocsp_response_scts(SSL *s)
3953 {
3954 int scts_extracted = 0;
3955 const unsigned char *p;
3956 OCSP_BASICRESP *br = NULL;
3957 OCSP_RESPONSE *rsp = NULL;
3958 STACK_OF(SCT) *scts = NULL;
3959 int i;
3960
3961 if (s->tlsext_ocsp_resp == NULL || s->tlsext_ocsp_resplen == 0)
3962 goto err;
3963
3964 p = s->tlsext_ocsp_resp;
3965 rsp = d2i_OCSP_RESPONSE(NULL, &p, s->tlsext_ocsp_resplen);
3966 if (rsp == NULL)
3967 goto err;
3968
3969 br = OCSP_response_get1_basic(rsp);
3970 if (br == NULL)
3971 goto err;
3972
3973 for (i = 0; i < OCSP_resp_count(br); ++i) {
3974 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
3975
3976 if (single == NULL)
3977 continue;
3978
3979 scts = OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
3980 scts_extracted = ct_move_scts(&s->scts, scts,
3981 SCT_SOURCE_OCSP_STAPLED_RESPONSE);
3982 if (scts_extracted < 0)
3983 goto err;
3984 }
3985 err:
3986 SCT_LIST_free(scts);
3987 OCSP_BASICRESP_free(br);
3988 OCSP_RESPONSE_free(rsp);
3989 return scts_extracted;
3990 }
3991
3992 /*
3993 * Attempts to extract SCTs from the peer certificate.
3994 * Return the number of SCTs extracted, or a negative integer if an error
3995 * occurs.
3996 */
3997 static int ct_extract_x509v3_extension_scts(SSL *s)
3998 {
3999 int scts_extracted = 0;
4000 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4001
4002 if (cert != NULL) {
4003 STACK_OF(SCT) *scts =
4004 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4005
4006 scts_extracted =
4007 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4008
4009 SCT_LIST_free(scts);
4010 }
4011
4012 return scts_extracted;
4013 }
4014
4015 /*
4016 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4017 * response (if it exists) and X509v3 extensions in the certificate.
4018 * Returns NULL if an error occurs.
4019 */
4020 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4021 {
4022 if (!s->scts_parsed) {
4023 if (ct_extract_tls_extension_scts(s) < 0 ||
4024 ct_extract_ocsp_response_scts(s) < 0 ||
4025 ct_extract_x509v3_extension_scts(s) < 0)
4026 goto err;
4027
4028 s->scts_parsed = 1;
4029 }
4030 return s->scts;
4031 err:
4032 return NULL;
4033 }
4034
4035 int SSL_set_ct_validation_callback(SSL *s, ct_validation_cb callback, void *arg)
4036 {
4037 int ret = 0;
4038
4039 /*
4040 * Since code exists that uses the custom extension handler for CT, look
4041 * for this and throw an error if they have already registered to use CT.
4042 */
4043 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4044 TLSEXT_TYPE_signed_certificate_timestamp)) {
4045 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4046 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4047 goto err;
4048 }
4049
4050 s->ct_validation_callback = callback;
4051 s->ct_validation_callback_arg = arg;
4052
4053 if (callback != NULL) {
4054 /* If we are validating CT, then we MUST accept SCTs served via OCSP */
4055 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4056 goto err;
4057 }
4058
4059 ret = 1;
4060 err:
4061 return ret;
4062 }
4063
4064 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, ct_validation_cb callback,
4065 void *arg)
4066 {
4067 int ret = 0;
4068
4069 /*
4070 * Since code exists that uses the custom extension handler for CT, look for
4071 * this and throw an error if they have already registered to use CT.
4072 */
4073 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4074 TLSEXT_TYPE_signed_certificate_timestamp)) {
4075 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4076 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4077 goto err;
4078 }
4079
4080 ctx->ct_validation_callback = callback;
4081 ctx->ct_validation_callback_arg = arg;
4082 ret = 1;
4083 err:
4084 return ret;
4085 }
4086
4087 ct_validation_cb SSL_get_ct_validation_callback(const SSL *s)
4088 {
4089 return s->ct_validation_callback;
4090 }
4091
4092 ct_validation_cb SSL_CTX_get_ct_validation_callback(const SSL_CTX *ctx)
4093 {
4094 return ctx->ct_validation_callback;
4095 }
4096
4097 int ssl_validate_ct(SSL *s)
4098 {
4099 int ret = 0;
4100 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4101 X509 *issuer = NULL;
4102 CT_POLICY_EVAL_CTX *ctx = NULL;
4103 const STACK_OF(SCT) *scts;
4104
4105 /* If no callback is set, attempt no validation - just return success */
4106 if (s->ct_validation_callback == NULL)
4107 return 1;
4108
4109 if (cert == NULL) {
4110 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_NO_CERTIFICATE_ASSIGNED);
4111 goto end;
4112 }
4113
4114 if (s->verified_chain != NULL && sk_X509_num(s->verified_chain) > 1)
4115 issuer = sk_X509_value(s->verified_chain, 1);
4116
4117 ctx = CT_POLICY_EVAL_CTX_new();
4118 if (ctx == NULL) {
4119 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4120 goto end;
4121 }
4122
4123 CT_POLICY_EVAL_CTX_set0_cert(ctx, cert);
4124 CT_POLICY_EVAL_CTX_set0_issuer(ctx, issuer);
4125 CT_POLICY_EVAL_CTX_set0_log_store(ctx, s->ctx->ctlog_store);
4126
4127 scts = SSL_get0_peer_scts(s);
4128
4129 if (SCT_LIST_validate(scts, ctx) != 1) {
4130 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4131 goto end;
4132 }
4133
4134 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4135 if (ret < 0)
4136 ret = 0; /* This function returns 0 on failure */
4137
4138 end:
4139 CT_POLICY_EVAL_CTX_free(ctx);
4140 return ret;
4141 }
4142
4143 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4144 {
4145 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4146 }
4147
4148 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4149 {
4150 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4151 }
4152
4153 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE *logs)
4154 {
4155 CTLOG_STORE_free(ctx->ctlog_store);
4156 ctx->ctlog_store = logs;
4157 }
4158
4159 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4160 {
4161 return ctx->ctlog_store;
4162 }
4163
4164 #endif