]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Remove outdated DEBUG flags.
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * ! \file ssl/ssl_lib.c \brief Version independent SSL functions.
3 */
4 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * All rights reserved.
6 *
7 * This package is an SSL implementation written
8 * by Eric Young (eay@cryptsoft.com).
9 * The implementation was written so as to conform with Netscapes SSL.
10 *
11 * This library is free for commercial and non-commercial use as long as
12 * the following conditions are aheared to. The following conditions
13 * apply to all code found in this distribution, be it the RC4, RSA,
14 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
15 * included with this distribution is covered by the same copyright terms
16 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
17 *
18 * Copyright remains Eric Young's, and as such any Copyright notices in
19 * the code are not to be removed.
20 * If this package is used in a product, Eric Young should be given attribution
21 * as the author of the parts of the library used.
22 * This can be in the form of a textual message at program startup or
23 * in documentation (online or textual) provided with the package.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. All advertising materials mentioning features or use of this software
34 * must display the following acknowledgement:
35 * "This product includes cryptographic software written by
36 * Eric Young (eay@cryptsoft.com)"
37 * The word 'cryptographic' can be left out if the rouines from the library
38 * being used are not cryptographic related :-).
39 * 4. If you include any Windows specific code (or a derivative thereof) from
40 * the apps directory (application code) you must include an acknowledgement:
41 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
42 *
43 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 * The licence and distribution terms for any publically available version or
56 * derivative of this code cannot be changed. i.e. this code cannot simply be
57 * copied and put under another distribution licence
58 * [including the GNU Public Licence.]
59 */
60 /* ====================================================================
61 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 *
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in
72 * the documentation and/or other materials provided with the
73 * distribution.
74 *
75 * 3. All advertising materials mentioning features or use of this
76 * software must display the following acknowledgment:
77 * "This product includes software developed by the OpenSSL Project
78 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
79 *
80 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
81 * endorse or promote products derived from this software without
82 * prior written permission. For written permission, please contact
83 * openssl-core@openssl.org.
84 *
85 * 5. Products derived from this software may not be called "OpenSSL"
86 * nor may "OpenSSL" appear in their names without prior written
87 * permission of the OpenSSL Project.
88 *
89 * 6. Redistributions of any form whatsoever must retain the following
90 * acknowledgment:
91 * "This product includes software developed by the OpenSSL Project
92 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
95 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
97 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
98 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
99 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
100 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
101 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
103 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
104 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
105 * OF THE POSSIBILITY OF SUCH DAMAGE.
106 * ====================================================================
107 *
108 * This product includes cryptographic software written by Eric Young
109 * (eay@cryptsoft.com). This product includes software written by Tim
110 * Hudson (tjh@cryptsoft.com).
111 *
112 */
113 /* ====================================================================
114 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
115 * ECC cipher suite support in OpenSSL originally developed by
116 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
117 */
118 /* ====================================================================
119 * Copyright 2005 Nokia. All rights reserved.
120 *
121 * The portions of the attached software ("Contribution") is developed by
122 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
123 * license.
124 *
125 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
126 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
127 * support (see RFC 4279) to OpenSSL.
128 *
129 * No patent licenses or other rights except those expressly stated in
130 * the OpenSSL open source license shall be deemed granted or received
131 * expressly, by implication, estoppel, or otherwise.
132 *
133 * No assurances are provided by Nokia that the Contribution does not
134 * infringe the patent or other intellectual property rights of any third
135 * party or that the license provides you with all the necessary rights
136 * to make use of the Contribution.
137 *
138 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
139 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
140 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
141 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
142 * OTHERWISE.
143 */
144
145 #ifdef REF_DEBUG
146 # include <assert.h>
147 #endif
148 #include <stdio.h>
149 #include "ssl_locl.h"
150 #include <openssl/objects.h>
151 #include <openssl/lhash.h>
152 #include <openssl/x509v3.h>
153 #include <openssl/rand.h>
154 #include <openssl/ocsp.h>
155 #ifndef OPENSSL_NO_DH
156 # include <openssl/dh.h>
157 #endif
158 #ifndef OPENSSL_NO_ENGINE
159 # include <openssl/engine.h>
160 #endif
161 #include <openssl/async.h>
162
163 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
164
165 SSL3_ENC_METHOD ssl3_undef_enc_method = {
166 /*
167 * evil casts, but these functions are only called if there's a library
168 * bug
169 */
170 (int (*)(SSL *, int))ssl_undefined_function,
171 (int (*)(SSL *, unsigned char *, int))ssl_undefined_function,
172 ssl_undefined_function,
173 (int (*)(SSL *, unsigned char *, unsigned char *, int))
174 ssl_undefined_function,
175 (int (*)(SSL *, int))ssl_undefined_function,
176 (int (*)(SSL *, const char *, int, unsigned char *))
177 ssl_undefined_function,
178 0, /* finish_mac_length */
179 NULL, /* client_finished_label */
180 0, /* client_finished_label_len */
181 NULL, /* server_finished_label */
182 0, /* server_finished_label_len */
183 (int (*)(int))ssl_undefined_function,
184 (int (*)(SSL *, unsigned char *, size_t, const char *,
185 size_t, const unsigned char *, size_t,
186 int use_context))ssl_undefined_function,
187 };
188
189 struct ssl_async_args {
190 SSL *s;
191 void *buf;
192 int num;
193 enum { READFUNC, WRITEFUNC, OTHERFUNC} type;
194 union {
195 int (*func_read)(SSL *, void *, int);
196 int (*func_write)(SSL *, const void *, int);
197 int (*func_other)(SSL *);
198 } f;
199 };
200
201 static const struct {
202 uint8_t mtype;
203 uint8_t ord;
204 int nid;
205 } dane_mds[] = {
206 { DANETLS_MATCHING_FULL, 0, NID_undef },
207 { DANETLS_MATCHING_2256, 1, NID_sha256 },
208 { DANETLS_MATCHING_2512, 2, NID_sha512 },
209 };
210
211 static int dane_ctx_enable(struct dane_ctx_st *dctx)
212 {
213 const EVP_MD **mdevp;
214 uint8_t *mdord;
215 uint8_t mdmax = DANETLS_MATCHING_LAST;
216 int n = ((int) mdmax) + 1; /* int to handle PrivMatch(255) */
217 size_t i;
218
219 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
220 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
221
222 if (mdord == NULL || mdevp == NULL) {
223 OPENSSL_free(mdevp);
224 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 /* Install default entries */
229 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
230 const EVP_MD *md;
231
232 if (dane_mds[i].nid == NID_undef ||
233 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
234 continue;
235 mdevp[dane_mds[i].mtype] = md;
236 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
237 }
238
239 dctx->mdevp = mdevp;
240 dctx->mdord = mdord;
241 dctx->mdmax = mdmax;
242
243 return 1;
244 }
245
246 static void dane_ctx_final(struct dane_ctx_st *dctx)
247 {
248 OPENSSL_free(dctx->mdevp);
249 dctx->mdevp = NULL;
250
251 OPENSSL_free(dctx->mdord);
252 dctx->mdord = NULL;
253 dctx->mdmax = 0;
254 }
255
256 static void tlsa_free(danetls_record *t)
257 {
258 if (t == NULL)
259 return;
260 OPENSSL_free(t->data);
261 EVP_PKEY_free(t->spki);
262 OPENSSL_free(t);
263 }
264
265 static void dane_final(struct dane_st *dane)
266 {
267 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
268 dane->trecs = NULL;
269
270 sk_X509_pop_free(dane->certs, X509_free);
271 dane->certs = NULL;
272
273 X509_free(dane->mcert);
274 dane->mcert = NULL;
275 dane->mtlsa = NULL;
276 dane->mdpth = -1;
277 dane->pdpth = -1;
278 }
279
280 /*
281 * dane_copy - Copy dane configuration, sans verification state.
282 */
283 static int ssl_dane_dup(SSL *to, SSL *from)
284 {
285 int num;
286 int i;
287
288 if (!DANETLS_ENABLED(&from->dane))
289 return 1;
290
291 dane_final(&to->dane);
292
293 num = sk_danetls_record_num(from->dane.trecs);
294 for (i = 0; i < num; ++i) {
295 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
296 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
297 t->data, t->dlen) <= 0)
298 return 0;
299 }
300 return 1;
301 }
302
303 static int dane_mtype_set(
304 struct dane_ctx_st *dctx,
305 const EVP_MD *md,
306 uint8_t mtype,
307 uint8_t ord)
308 {
309 int i;
310
311 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
312 SSLerr(SSL_F_DANE_MTYPE_SET,
313 SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
314 return 0;
315 }
316
317 if (mtype > dctx->mdmax) {
318 const EVP_MD **mdevp;
319 uint8_t *mdord;
320 int n = ((int) mtype) + 1;
321
322 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
323 if (mdevp == NULL) {
324 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
325 return -1;
326 }
327 dctx->mdevp = mdevp;
328
329 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
330 if (mdord == NULL) {
331 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
332 return -1;
333 }
334 dctx->mdord = mdord;
335
336 /* Zero-fill any gaps */
337 for (i = dctx->mdmax+1; i < mtype; ++i) {
338 mdevp[i] = NULL;
339 mdord[i] = 0;
340 }
341
342 dctx->mdmax = mtype;
343 }
344
345 dctx->mdevp[mtype] = md;
346 /* Coerce ordinal of disabled matching types to 0 */
347 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
348
349 return 1;
350 }
351
352 static const EVP_MD *tlsa_md_get(struct dane_st *dane, uint8_t mtype)
353 {
354 if (mtype > dane->dctx->mdmax)
355 return NULL;
356 return dane->dctx->mdevp[mtype];
357 }
358
359 static int dane_tlsa_add(
360 struct dane_st *dane,
361 uint8_t usage,
362 uint8_t selector,
363 uint8_t mtype,
364 unsigned char *data,
365 size_t dlen)
366 {
367 danetls_record *t;
368 const EVP_MD *md = NULL;
369 int ilen = (int)dlen;
370 int i;
371
372 if (dane->trecs == NULL) {
373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
374 return -1;
375 }
376
377 if (ilen < 0 || dlen != (size_t)ilen) {
378 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
379 return 0;
380 }
381
382 if (usage > DANETLS_USAGE_LAST) {
383 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
384 return 0;
385 }
386
387 if (selector > DANETLS_SELECTOR_LAST) {
388 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
389 return 0;
390 }
391
392 if (mtype != DANETLS_MATCHING_FULL) {
393 md = tlsa_md_get(dane, mtype);
394 if (md == NULL) {
395 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
396 return 0;
397 }
398 }
399
400 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
402 return 0;
403 }
404 if (!data) {
405 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
406 return 0;
407 }
408
409 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
410 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
411 return -1;
412 }
413
414 t->usage = usage;
415 t->selector = selector;
416 t->mtype = mtype;
417 t->data = OPENSSL_malloc(ilen);
418 if (t->data == NULL) {
419 tlsa_free(t);
420 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
421 return -1;
422 }
423 memcpy(t->data, data, ilen);
424 t->dlen = ilen;
425
426 /* Validate and cache full certificate or public key */
427 if (mtype == DANETLS_MATCHING_FULL) {
428 const unsigned char *p = data;
429 X509 *cert = NULL;
430 EVP_PKEY *pkey = NULL;
431
432 switch (selector) {
433 case DANETLS_SELECTOR_CERT:
434 if (!d2i_X509(&cert, &p, dlen) || p < data ||
435 dlen != (size_t)(p - data)) {
436 tlsa_free(t);
437 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
438 return 0;
439 }
440 if (X509_get0_pubkey(cert) == NULL) {
441 tlsa_free(t);
442 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
443 return 0;
444 }
445
446 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
447 X509_free(cert);
448 break;
449 }
450
451 /*
452 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
453 * records that contain full certificates of trust-anchors that are
454 * not present in the wire chain. For usage PKIX-TA(0), we augment
455 * the chain with untrusted Full(0) certificates from DNS, in case
456 * they are missing from the chain.
457 */
458 if ((dane->certs == NULL &&
459 (dane->certs = sk_X509_new_null()) == NULL) ||
460 !sk_X509_push(dane->certs, cert)) {
461 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
462 X509_free(cert);
463 tlsa_free(t);
464 return -1;
465 }
466 break;
467
468 case DANETLS_SELECTOR_SPKI:
469 if (!d2i_PUBKEY(&pkey, &p, dlen) || p < data ||
470 dlen != (size_t)(p - data)) {
471 tlsa_free(t);
472 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
473 return 0;
474 }
475
476 /*
477 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
478 * records that contain full bare keys of trust-anchors that are
479 * not present in the wire chain.
480 */
481 if (usage == DANETLS_USAGE_DANE_TA)
482 t->spki = pkey;
483 else
484 EVP_PKEY_free(pkey);
485 break;
486 }
487 }
488
489 /*-
490 * Find the right insertion point for the new record.
491 *
492 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
493 * they can be processed first, as they require no chain building, and no
494 * expiration or hostname checks. Because DANE-EE(3) is numerically
495 * largest, this is accomplished via descending sort by "usage".
496 *
497 * We also sort in descending order by matching ordinal to simplify
498 * the implementation of digest agility in the verification code.
499 *
500 * The choice of order for the selector is not significant, so we
501 * use the same descending order for consistency.
502 */
503 for (i = 0; i < sk_danetls_record_num(dane->trecs); ++i) {
504 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
505 if (rec->usage > usage)
506 continue;
507 if (rec->usage < usage)
508 break;
509 if (rec->selector > selector)
510 continue;
511 if (rec->selector < selector)
512 break;
513 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
514 continue;
515 break;
516 }
517
518 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
519 tlsa_free(t);
520 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
521 return -1;
522 }
523 dane->umask |= DANETLS_USAGE_BIT(usage);
524
525 return 1;
526 }
527
528 static void clear_ciphers(SSL *s)
529 {
530 /* clear the current cipher */
531 ssl_clear_cipher_ctx(s);
532 ssl_clear_hash_ctx(&s->read_hash);
533 ssl_clear_hash_ctx(&s->write_hash);
534 }
535
536 int SSL_clear(SSL *s)
537 {
538 if (s->method == NULL) {
539 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
540 return (0);
541 }
542
543 if (ssl_clear_bad_session(s)) {
544 SSL_SESSION_free(s->session);
545 s->session = NULL;
546 }
547
548 s->error = 0;
549 s->hit = 0;
550 s->shutdown = 0;
551
552 if (s->renegotiate) {
553 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
554 return 0;
555 }
556
557 ossl_statem_clear(s);
558
559 s->version = s->method->version;
560 s->client_version = s->version;
561 s->rwstate = SSL_NOTHING;
562
563 BUF_MEM_free(s->init_buf);
564 s->init_buf = NULL;
565 clear_ciphers(s);
566 s->first_packet = 0;
567
568 /* Reset DANE verification result state */
569 s->dane.mdpth = -1;
570 s->dane.pdpth = -1;
571 X509_free(s->dane.mcert);
572 s->dane.mcert = NULL;
573 s->dane.mtlsa = NULL;
574
575 /* Clear the verification result peername */
576 X509_VERIFY_PARAM_move_peername(s->param, NULL);
577
578 /*
579 * Check to see if we were changed into a different method, if so, revert
580 * back if we are not doing session-id reuse.
581 */
582 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
583 && (s->method != s->ctx->method)) {
584 s->method->ssl_free(s);
585 s->method = s->ctx->method;
586 if (!s->method->ssl_new(s))
587 return (0);
588 } else
589 s->method->ssl_clear(s);
590
591 RECORD_LAYER_clear(&s->rlayer);
592
593 return (1);
594 }
595
596 /** Used to change an SSL_CTXs default SSL method type */
597 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
598 {
599 STACK_OF(SSL_CIPHER) *sk;
600
601 ctx->method = meth;
602
603 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
604 &(ctx->cipher_list_by_id),
605 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
606 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
607 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION,
608 SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
609 return (0);
610 }
611 return (1);
612 }
613
614 SSL *SSL_new(SSL_CTX *ctx)
615 {
616 SSL *s;
617
618 if (ctx == NULL) {
619 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
620 return (NULL);
621 }
622 if (ctx->method == NULL) {
623 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
624 return (NULL);
625 }
626
627 s = OPENSSL_zalloc(sizeof(*s));
628 if (s == NULL)
629 goto err;
630
631 RECORD_LAYER_init(&s->rlayer, s);
632
633 s->options = ctx->options;
634 s->min_proto_version = ctx->min_proto_version;
635 s->max_proto_version = ctx->max_proto_version;
636 s->mode = ctx->mode;
637 s->max_cert_list = ctx->max_cert_list;
638 s->references = 1;
639
640 /*
641 * Earlier library versions used to copy the pointer to the CERT, not
642 * its contents; only when setting new parameters for the per-SSL
643 * copy, ssl_cert_new would be called (and the direct reference to
644 * the per-SSL_CTX settings would be lost, but those still were
645 * indirectly accessed for various purposes, and for that reason they
646 * used to be known as s->ctx->default_cert). Now we don't look at the
647 * SSL_CTX's CERT after having duplicated it once.
648 */
649 s->cert = ssl_cert_dup(ctx->cert);
650 if (s->cert == NULL)
651 goto err;
652
653 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
654 s->msg_callback = ctx->msg_callback;
655 s->msg_callback_arg = ctx->msg_callback_arg;
656 s->verify_mode = ctx->verify_mode;
657 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
658 s->sid_ctx_length = ctx->sid_ctx_length;
659 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
660 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
661 s->verify_callback = ctx->default_verify_callback;
662 s->generate_session_id = ctx->generate_session_id;
663
664 s->param = X509_VERIFY_PARAM_new();
665 if (s->param == NULL)
666 goto err;
667 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
668 s->quiet_shutdown = ctx->quiet_shutdown;
669 s->max_send_fragment = ctx->max_send_fragment;
670
671 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
672 s->ctx = ctx;
673 s->tlsext_debug_cb = 0;
674 s->tlsext_debug_arg = NULL;
675 s->tlsext_ticket_expected = 0;
676 s->tlsext_status_type = -1;
677 s->tlsext_status_expected = 0;
678 s->tlsext_ocsp_ids = NULL;
679 s->tlsext_ocsp_exts = NULL;
680 s->tlsext_ocsp_resp = NULL;
681 s->tlsext_ocsp_resplen = -1;
682 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
683 s->initial_ctx = ctx;
684 # ifndef OPENSSL_NO_EC
685 if (ctx->tlsext_ecpointformatlist) {
686 s->tlsext_ecpointformatlist =
687 OPENSSL_memdup(ctx->tlsext_ecpointformatlist,
688 ctx->tlsext_ecpointformatlist_length);
689 if (!s->tlsext_ecpointformatlist)
690 goto err;
691 s->tlsext_ecpointformatlist_length =
692 ctx->tlsext_ecpointformatlist_length;
693 }
694 if (ctx->tlsext_ellipticcurvelist) {
695 s->tlsext_ellipticcurvelist =
696 OPENSSL_memdup(ctx->tlsext_ellipticcurvelist,
697 ctx->tlsext_ellipticcurvelist_length);
698 if (!s->tlsext_ellipticcurvelist)
699 goto err;
700 s->tlsext_ellipticcurvelist_length =
701 ctx->tlsext_ellipticcurvelist_length;
702 }
703 # endif
704 # ifndef OPENSSL_NO_NEXTPROTONEG
705 s->next_proto_negotiated = NULL;
706 # endif
707
708 if (s->ctx->alpn_client_proto_list) {
709 s->alpn_client_proto_list =
710 OPENSSL_malloc(s->ctx->alpn_client_proto_list_len);
711 if (s->alpn_client_proto_list == NULL)
712 goto err;
713 memcpy(s->alpn_client_proto_list, s->ctx->alpn_client_proto_list,
714 s->ctx->alpn_client_proto_list_len);
715 s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
716 }
717
718 s->verified_chain = NULL;
719 s->verify_result = X509_V_OK;
720
721 s->default_passwd_callback = ctx->default_passwd_callback;
722 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
723
724 s->method = ctx->method;
725
726 if (!s->method->ssl_new(s))
727 goto err;
728
729 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
730
731 if (!SSL_clear(s))
732 goto err;
733
734 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
735
736 #ifndef OPENSSL_NO_PSK
737 s->psk_client_callback = ctx->psk_client_callback;
738 s->psk_server_callback = ctx->psk_server_callback;
739 #endif
740
741 s->job = NULL;
742
743 return (s);
744 err:
745 SSL_free(s);
746 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
747 return (NULL);
748 }
749
750 void SSL_up_ref(SSL *s)
751 {
752 CRYPTO_add(&s->references, 1, CRYPTO_LOCK_SSL);
753 }
754
755 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
756 unsigned int sid_ctx_len)
757 {
758 if (sid_ctx_len > sizeof ctx->sid_ctx) {
759 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
760 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
761 return 0;
762 }
763 ctx->sid_ctx_length = sid_ctx_len;
764 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
765
766 return 1;
767 }
768
769 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
770 unsigned int sid_ctx_len)
771 {
772 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
773 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
774 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
775 return 0;
776 }
777 ssl->sid_ctx_length = sid_ctx_len;
778 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
779
780 return 1;
781 }
782
783 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
784 {
785 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
786 ctx->generate_session_id = cb;
787 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
788 return 1;
789 }
790
791 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
792 {
793 CRYPTO_w_lock(CRYPTO_LOCK_SSL);
794 ssl->generate_session_id = cb;
795 CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
796 return 1;
797 }
798
799 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
800 unsigned int id_len)
801 {
802 /*
803 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
804 * we can "construct" a session to give us the desired check - ie. to
805 * find if there's a session in the hash table that would conflict with
806 * any new session built out of this id/id_len and the ssl_version in use
807 * by this SSL.
808 */
809 SSL_SESSION r, *p;
810
811 if (id_len > sizeof r.session_id)
812 return 0;
813
814 r.ssl_version = ssl->version;
815 r.session_id_length = id_len;
816 memcpy(r.session_id, id, id_len);
817
818 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
819 p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
820 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
821 return (p != NULL);
822 }
823
824 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
825 {
826 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
827 }
828
829 int SSL_set_purpose(SSL *s, int purpose)
830 {
831 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
832 }
833
834 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
835 {
836 return X509_VERIFY_PARAM_set_trust(s->param, trust);
837 }
838
839 int SSL_set_trust(SSL *s, int trust)
840 {
841 return X509_VERIFY_PARAM_set_trust(s->param, trust);
842 }
843
844 int SSL_set1_host(SSL *s, const char *hostname)
845 {
846 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
847 }
848
849 int SSL_add1_host(SSL *s, const char *hostname)
850 {
851 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
852 }
853
854 void SSL_set_hostflags(SSL *s, unsigned int flags)
855 {
856 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
857 }
858
859 const char *SSL_get0_peername(SSL *s)
860 {
861 return X509_VERIFY_PARAM_get0_peername(s->param);
862 }
863
864 int SSL_CTX_dane_enable(SSL_CTX *ctx)
865 {
866 return dane_ctx_enable(&ctx->dane);
867 }
868
869 int SSL_dane_enable(SSL *s, const char *basedomain)
870 {
871 struct dane_st *dane = &s->dane;
872
873 if (s->ctx->dane.mdmax == 0) {
874 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
875 return 0;
876 }
877 if (dane->trecs != NULL) {
878 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
879 return 0;
880 }
881
882 /*
883 * Default SNI name. This rejects empty names, while set1_host below
884 * accepts them and disables host name checks. To avoid side-effects with
885 * invalid input, set the SNI name first.
886 */
887 if (s->tlsext_hostname == NULL) {
888 if (!SSL_set_tlsext_host_name(s, basedomain)) {
889 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
890 return -1;
891 }
892 }
893
894 /* Primary RFC6125 reference identifier */
895 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
896 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
897 return -1;
898 }
899
900 dane->mdpth = -1;
901 dane->pdpth = -1;
902 dane->dctx = &s->ctx->dane;
903 dane->trecs = sk_danetls_record_new_null();
904
905 if (dane->trecs == NULL) {
906 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
907 return -1;
908 }
909 return 1;
910 }
911
912 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
913 {
914 struct dane_st *dane = &s->dane;
915
916 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
917 return -1;
918 if (dane->mtlsa) {
919 if (mcert)
920 *mcert = dane->mcert;
921 if (mspki)
922 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
923 }
924 return dane->mdpth;
925 }
926
927 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
928 uint8_t *mtype, unsigned const char **data, size_t *dlen)
929 {
930 struct dane_st *dane = &s->dane;
931
932 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
933 return -1;
934 if (dane->mtlsa) {
935 if (usage)
936 *usage = dane->mtlsa->usage;
937 if (selector)
938 *selector = dane->mtlsa->selector;
939 if (mtype)
940 *mtype = dane->mtlsa->mtype;
941 if (data)
942 *data = dane->mtlsa->data;
943 if (dlen)
944 *dlen = dane->mtlsa->dlen;
945 }
946 return dane->mdpth;
947 }
948
949 struct dane_st *SSL_get0_dane(SSL *s)
950 {
951 return &s->dane;
952 }
953
954 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
955 uint8_t mtype, unsigned char *data, size_t dlen)
956 {
957 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
958 }
959
960 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord)
961 {
962 return dane_mtype_set(&ctx->dane, md, mtype, ord);
963 }
964
965 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
966 {
967 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
968 }
969
970 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
971 {
972 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
973 }
974
975 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
976 {
977 return ctx->param;
978 }
979
980 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
981 {
982 return ssl->param;
983 }
984
985 void SSL_certs_clear(SSL *s)
986 {
987 ssl_cert_clear_certs(s->cert);
988 }
989
990 void SSL_free(SSL *s)
991 {
992 int i;
993
994 if (s == NULL)
995 return;
996
997 i = CRYPTO_add(&s->references, -1, CRYPTO_LOCK_SSL);
998 REF_PRINT_COUNT("SSL", s);
999 if (i > 0)
1000 return;
1001 REF_ASSERT_ISNT(i < 0);
1002
1003 X509_VERIFY_PARAM_free(s->param);
1004 dane_final(&s->dane);
1005 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1006
1007 if (s->bbio != NULL) {
1008 /* If the buffering BIO is in place, pop it off */
1009 if (s->bbio == s->wbio) {
1010 s->wbio = BIO_pop(s->wbio);
1011 }
1012 BIO_free(s->bbio);
1013 s->bbio = NULL;
1014 }
1015 BIO_free_all(s->rbio);
1016 if (s->wbio != s->rbio)
1017 BIO_free_all(s->wbio);
1018
1019 BUF_MEM_free(s->init_buf);
1020
1021 /* add extra stuff */
1022 sk_SSL_CIPHER_free(s->cipher_list);
1023 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1024
1025 /* Make the next call work :-) */
1026 if (s->session != NULL) {
1027 ssl_clear_bad_session(s);
1028 SSL_SESSION_free(s->session);
1029 }
1030
1031 clear_ciphers(s);
1032
1033 ssl_cert_free(s->cert);
1034 /* Free up if allocated */
1035
1036 OPENSSL_free(s->tlsext_hostname);
1037 SSL_CTX_free(s->initial_ctx);
1038 #ifndef OPENSSL_NO_EC
1039 OPENSSL_free(s->tlsext_ecpointformatlist);
1040 OPENSSL_free(s->tlsext_ellipticcurvelist);
1041 #endif /* OPENSSL_NO_EC */
1042 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free);
1043 sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
1044 OPENSSL_free(s->tlsext_ocsp_resp);
1045 OPENSSL_free(s->alpn_client_proto_list);
1046
1047 sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
1048
1049 sk_X509_pop_free(s->verified_chain, X509_free);
1050
1051 if (s->method != NULL)
1052 s->method->ssl_free(s);
1053
1054 RECORD_LAYER_release(&s->rlayer);
1055
1056 SSL_CTX_free(s->ctx);
1057
1058 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1059 OPENSSL_free(s->next_proto_negotiated);
1060 #endif
1061
1062 #ifndef OPENSSL_NO_SRTP
1063 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1064 #endif
1065
1066 OPENSSL_free(s);
1067 }
1068
1069 void SSL_set_rbio(SSL *s, BIO *rbio)
1070 {
1071 if (s->rbio != rbio)
1072 BIO_free_all(s->rbio);
1073 s->rbio = rbio;
1074 }
1075
1076 void SSL_set_wbio(SSL *s, BIO *wbio)
1077 {
1078 /*
1079 * If the output buffering BIO is still in place, remove it
1080 */
1081 if (s->bbio != NULL) {
1082 if (s->wbio == s->bbio) {
1083 s->wbio = s->wbio->next_bio;
1084 s->bbio->next_bio = NULL;
1085 }
1086 }
1087 if (s->wbio != wbio && s->rbio != s->wbio)
1088 BIO_free_all(s->wbio);
1089 s->wbio = wbio;
1090 }
1091
1092 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1093 {
1094 SSL_set_wbio(s, wbio);
1095 SSL_set_rbio(s, rbio);
1096 }
1097
1098 BIO *SSL_get_rbio(const SSL *s)
1099 {
1100 return (s->rbio);
1101 }
1102
1103 BIO *SSL_get_wbio(const SSL *s)
1104 {
1105 return (s->wbio);
1106 }
1107
1108 int SSL_get_fd(const SSL *s)
1109 {
1110 return (SSL_get_rfd(s));
1111 }
1112
1113 int SSL_get_rfd(const SSL *s)
1114 {
1115 int ret = -1;
1116 BIO *b, *r;
1117
1118 b = SSL_get_rbio(s);
1119 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1120 if (r != NULL)
1121 BIO_get_fd(r, &ret);
1122 return (ret);
1123 }
1124
1125 int SSL_get_wfd(const SSL *s)
1126 {
1127 int ret = -1;
1128 BIO *b, *r;
1129
1130 b = SSL_get_wbio(s);
1131 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1132 if (r != NULL)
1133 BIO_get_fd(r, &ret);
1134 return (ret);
1135 }
1136
1137 #ifndef OPENSSL_NO_SOCK
1138 int SSL_set_fd(SSL *s, int fd)
1139 {
1140 int ret = 0;
1141 BIO *bio = NULL;
1142
1143 bio = BIO_new(BIO_s_socket());
1144
1145 if (bio == NULL) {
1146 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1147 goto err;
1148 }
1149 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1150 SSL_set_bio(s, bio, bio);
1151 ret = 1;
1152 err:
1153 return (ret);
1154 }
1155
1156 int SSL_set_wfd(SSL *s, int fd)
1157 {
1158 int ret = 0;
1159 BIO *bio = NULL;
1160
1161 if ((s->rbio == NULL) || (BIO_method_type(s->rbio) != BIO_TYPE_SOCKET)
1162 || ((int)BIO_get_fd(s->rbio, NULL) != fd)) {
1163 bio = BIO_new(BIO_s_socket());
1164
1165 if (bio == NULL) {
1166 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1167 goto err;
1168 }
1169 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1170 SSL_set_bio(s, SSL_get_rbio(s), bio);
1171 } else
1172 SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
1173 ret = 1;
1174 err:
1175 return (ret);
1176 }
1177
1178 int SSL_set_rfd(SSL *s, int fd)
1179 {
1180 int ret = 0;
1181 BIO *bio = NULL;
1182
1183 if ((s->wbio == NULL) || (BIO_method_type(s->wbio) != BIO_TYPE_SOCKET)
1184 || ((int)BIO_get_fd(s->wbio, NULL) != fd)) {
1185 bio = BIO_new(BIO_s_socket());
1186
1187 if (bio == NULL) {
1188 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1189 goto err;
1190 }
1191 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1192 SSL_set_bio(s, bio, SSL_get_wbio(s));
1193 } else
1194 SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
1195 ret = 1;
1196 err:
1197 return (ret);
1198 }
1199 #endif
1200
1201 /* return length of latest Finished message we sent, copy to 'buf' */
1202 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1203 {
1204 size_t ret = 0;
1205
1206 if (s->s3 != NULL) {
1207 ret = s->s3->tmp.finish_md_len;
1208 if (count > ret)
1209 count = ret;
1210 memcpy(buf, s->s3->tmp.finish_md, count);
1211 }
1212 return ret;
1213 }
1214
1215 /* return length of latest Finished message we expected, copy to 'buf' */
1216 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1217 {
1218 size_t ret = 0;
1219
1220 if (s->s3 != NULL) {
1221 ret = s->s3->tmp.peer_finish_md_len;
1222 if (count > ret)
1223 count = ret;
1224 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1225 }
1226 return ret;
1227 }
1228
1229 int SSL_get_verify_mode(const SSL *s)
1230 {
1231 return (s->verify_mode);
1232 }
1233
1234 int SSL_get_verify_depth(const SSL *s)
1235 {
1236 return X509_VERIFY_PARAM_get_depth(s->param);
1237 }
1238
1239 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1240 return (s->verify_callback);
1241 }
1242
1243 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1244 {
1245 return (ctx->verify_mode);
1246 }
1247
1248 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1249 {
1250 return X509_VERIFY_PARAM_get_depth(ctx->param);
1251 }
1252
1253 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1254 return (ctx->default_verify_callback);
1255 }
1256
1257 void SSL_set_verify(SSL *s, int mode,
1258 int (*callback) (int ok, X509_STORE_CTX *ctx))
1259 {
1260 s->verify_mode = mode;
1261 if (callback != NULL)
1262 s->verify_callback = callback;
1263 }
1264
1265 void SSL_set_verify_depth(SSL *s, int depth)
1266 {
1267 X509_VERIFY_PARAM_set_depth(s->param, depth);
1268 }
1269
1270 void SSL_set_read_ahead(SSL *s, int yes)
1271 {
1272 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1273 }
1274
1275 int SSL_get_read_ahead(const SSL *s)
1276 {
1277 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1278 }
1279
1280 int SSL_pending(const SSL *s)
1281 {
1282 /*
1283 * SSL_pending cannot work properly if read-ahead is enabled
1284 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1285 * impossible to fix since SSL_pending cannot report errors that may be
1286 * observed while scanning the new data. (Note that SSL_pending() is
1287 * often used as a boolean value, so we'd better not return -1.)
1288 */
1289 return (s->method->ssl_pending(s));
1290 }
1291
1292 X509 *SSL_get_peer_certificate(const SSL *s)
1293 {
1294 X509 *r;
1295
1296 if ((s == NULL) || (s->session == NULL))
1297 r = NULL;
1298 else
1299 r = s->session->peer;
1300
1301 if (r == NULL)
1302 return (r);
1303
1304 X509_up_ref(r);
1305
1306 return (r);
1307 }
1308
1309 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1310 {
1311 STACK_OF(X509) *r;
1312
1313 if ((s == NULL) || (s->session == NULL))
1314 r = NULL;
1315 else
1316 r = s->session->peer_chain;
1317
1318 /*
1319 * If we are a client, cert_chain includes the peer's own certificate; if
1320 * we are a server, it does not.
1321 */
1322
1323 return (r);
1324 }
1325
1326 /*
1327 * Now in theory, since the calling process own 't' it should be safe to
1328 * modify. We need to be able to read f without being hassled
1329 */
1330 int SSL_copy_session_id(SSL *t, const SSL *f)
1331 {
1332 /* Do we need to to SSL locking? */
1333 if (!SSL_set_session(t, SSL_get_session(f))) {
1334 return 0;
1335 }
1336
1337 /*
1338 * what if we are setup for one protocol version but want to talk another
1339 */
1340 if (t->method != f->method) {
1341 t->method->ssl_free(t);
1342 t->method = f->method;
1343 if (t->method->ssl_new(t) == 0)
1344 return 0;
1345 }
1346
1347 CRYPTO_add(&f->cert->references, 1, CRYPTO_LOCK_SSL_CERT);
1348 ssl_cert_free(t->cert);
1349 t->cert = f->cert;
1350 if (!SSL_set_session_id_context(t, f->sid_ctx, f->sid_ctx_length)) {
1351 return 0;
1352 }
1353
1354 return 1;
1355 }
1356
1357 /* Fix this so it checks all the valid key/cert options */
1358 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1359 {
1360 if ((ctx == NULL) ||
1361 (ctx->cert->key->x509 == NULL)) {
1362 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1363 SSL_R_NO_CERTIFICATE_ASSIGNED);
1364 return (0);
1365 }
1366 if (ctx->cert->key->privatekey == NULL) {
1367 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1368 SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1369 return (0);
1370 }
1371 return (X509_check_private_key
1372 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1373 }
1374
1375 /* Fix this function so that it takes an optional type parameter */
1376 int SSL_check_private_key(const SSL *ssl)
1377 {
1378 if (ssl == NULL) {
1379 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1380 return (0);
1381 }
1382 if (ssl->cert->key->x509 == NULL) {
1383 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1384 return (0);
1385 }
1386 if (ssl->cert->key->privatekey == NULL) {
1387 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1388 return (0);
1389 }
1390 return (X509_check_private_key(ssl->cert->key->x509,
1391 ssl->cert->key->privatekey));
1392 }
1393
1394 int SSL_waiting_for_async(SSL *s)
1395 {
1396 if(s->job)
1397 return 1;
1398
1399 return 0;
1400 }
1401
1402 int SSL_get_async_wait_fd(SSL *s)
1403 {
1404 if (!s->job)
1405 return -1;
1406
1407 return ASYNC_get_wait_fd(s->job);
1408 }
1409
1410 int SSL_accept(SSL *s)
1411 {
1412 if (s->handshake_func == NULL) {
1413 /* Not properly initialized yet */
1414 SSL_set_accept_state(s);
1415 }
1416
1417 return SSL_do_handshake(s);
1418 }
1419
1420 int SSL_connect(SSL *s)
1421 {
1422 if (s->handshake_func == NULL) {
1423 /* Not properly initialized yet */
1424 SSL_set_connect_state(s);
1425 }
1426
1427 return SSL_do_handshake(s);
1428 }
1429
1430 long SSL_get_default_timeout(const SSL *s)
1431 {
1432 return (s->method->get_timeout());
1433 }
1434
1435 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1436 int (*func)(void *)) {
1437 int ret;
1438 switch(ASYNC_start_job(&s->job, &ret, func, args,
1439 sizeof(struct ssl_async_args))) {
1440 case ASYNC_ERR:
1441 s->rwstate = SSL_NOTHING;
1442 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1443 return -1;
1444 case ASYNC_PAUSE:
1445 s->rwstate = SSL_ASYNC_PAUSED;
1446 return -1;
1447 case ASYNC_FINISH:
1448 s->job = NULL;
1449 return ret;
1450 default:
1451 s->rwstate = SSL_NOTHING;
1452 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1453 /* Shouldn't happen */
1454 return -1;
1455 }
1456 }
1457
1458 static int ssl_io_intern(void *vargs)
1459 {
1460 struct ssl_async_args *args;
1461 SSL *s;
1462 void *buf;
1463 int num;
1464
1465 args = (struct ssl_async_args *)vargs;
1466 s = args->s;
1467 buf = args->buf;
1468 num = args->num;
1469 switch (args->type) {
1470 case READFUNC:
1471 return args->f.func_read(s, buf, num);
1472 case WRITEFUNC:
1473 return args->f.func_write(s, buf, num);
1474 case OTHERFUNC:
1475 return args->f.func_other(s);
1476 }
1477 return -1;
1478 }
1479
1480 int SSL_read(SSL *s, void *buf, int num)
1481 {
1482 if (s->handshake_func == NULL) {
1483 SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
1484 return -1;
1485 }
1486
1487 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1488 s->rwstate = SSL_NOTHING;
1489 return (0);
1490 }
1491
1492 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1493 struct ssl_async_args args;
1494
1495 args.s = s;
1496 args.buf = buf;
1497 args.num = num;
1498 args.type = READFUNC;
1499 args.f.func_read = s->method->ssl_read;
1500
1501 return ssl_start_async_job(s, &args, ssl_io_intern);
1502 } else {
1503 return s->method->ssl_read(s, buf, num);
1504 }
1505 }
1506
1507 int SSL_peek(SSL *s, void *buf, int num)
1508 {
1509 if (s->handshake_func == NULL) {
1510 SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
1511 return -1;
1512 }
1513
1514 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1515 return (0);
1516 }
1517 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1518 struct ssl_async_args args;
1519
1520 args.s = s;
1521 args.buf = buf;
1522 args.num = num;
1523 args.type = READFUNC;
1524 args.f.func_read = s->method->ssl_peek;
1525
1526 return ssl_start_async_job(s, &args, ssl_io_intern);
1527 } else {
1528 return s->method->ssl_peek(s, buf, num);
1529 }
1530 }
1531
1532 int SSL_write(SSL *s, const void *buf, int num)
1533 {
1534 if (s->handshake_func == NULL) {
1535 SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
1536 return -1;
1537 }
1538
1539 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1540 s->rwstate = SSL_NOTHING;
1541 SSLerr(SSL_F_SSL_WRITE, SSL_R_PROTOCOL_IS_SHUTDOWN);
1542 return (-1);
1543 }
1544
1545 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1546 struct ssl_async_args args;
1547
1548 args.s = s;
1549 args.buf = (void *)buf;
1550 args.num = num;
1551 args.type = WRITEFUNC;
1552 args.f.func_write = s->method->ssl_write;
1553
1554 return ssl_start_async_job(s, &args, ssl_io_intern);
1555 } else {
1556 return s->method->ssl_write(s, buf, num);
1557 }
1558 }
1559
1560 int SSL_shutdown(SSL *s)
1561 {
1562 /*
1563 * Note that this function behaves differently from what one might
1564 * expect. Return values are 0 for no success (yet), 1 for success; but
1565 * calling it once is usually not enough, even if blocking I/O is used
1566 * (see ssl3_shutdown).
1567 */
1568
1569 if (s->handshake_func == NULL) {
1570 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1571 return -1;
1572 }
1573
1574 if (!SSL_in_init(s)) {
1575 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1576 struct ssl_async_args args;
1577
1578 args.s = s;
1579 args.type = OTHERFUNC;
1580 args.f.func_other = s->method->ssl_shutdown;
1581
1582 return ssl_start_async_job(s, &args, ssl_io_intern);
1583 } else {
1584 return s->method->ssl_shutdown(s);
1585 }
1586 } else {
1587 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1588 return -1;
1589 }
1590 }
1591
1592 int SSL_renegotiate(SSL *s)
1593 {
1594 if (s->renegotiate == 0)
1595 s->renegotiate = 1;
1596
1597 s->new_session = 1;
1598
1599 return (s->method->ssl_renegotiate(s));
1600 }
1601
1602 int SSL_renegotiate_abbreviated(SSL *s)
1603 {
1604 if (s->renegotiate == 0)
1605 s->renegotiate = 1;
1606
1607 s->new_session = 0;
1608
1609 return (s->method->ssl_renegotiate(s));
1610 }
1611
1612 int SSL_renegotiate_pending(SSL *s)
1613 {
1614 /*
1615 * becomes true when negotiation is requested; false again once a
1616 * handshake has finished
1617 */
1618 return (s->renegotiate != 0);
1619 }
1620
1621 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1622 {
1623 long l;
1624
1625 switch (cmd) {
1626 case SSL_CTRL_GET_READ_AHEAD:
1627 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1628 case SSL_CTRL_SET_READ_AHEAD:
1629 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1630 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1631 return (l);
1632
1633 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1634 s->msg_callback_arg = parg;
1635 return 1;
1636
1637 case SSL_CTRL_MODE:
1638 return (s->mode |= larg);
1639 case SSL_CTRL_CLEAR_MODE:
1640 return (s->mode &= ~larg);
1641 case SSL_CTRL_GET_MAX_CERT_LIST:
1642 return (s->max_cert_list);
1643 case SSL_CTRL_SET_MAX_CERT_LIST:
1644 l = s->max_cert_list;
1645 s->max_cert_list = larg;
1646 return (l);
1647 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1648 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1649 return 0;
1650 s->max_send_fragment = larg;
1651 return 1;
1652 case SSL_CTRL_GET_RI_SUPPORT:
1653 if (s->s3)
1654 return s->s3->send_connection_binding;
1655 else
1656 return 0;
1657 case SSL_CTRL_CERT_FLAGS:
1658 return (s->cert->cert_flags |= larg);
1659 case SSL_CTRL_CLEAR_CERT_FLAGS:
1660 return (s->cert->cert_flags &= ~larg);
1661
1662 case SSL_CTRL_GET_RAW_CIPHERLIST:
1663 if (parg) {
1664 if (s->s3->tmp.ciphers_raw == NULL)
1665 return 0;
1666 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
1667 return (int)s->s3->tmp.ciphers_rawlen;
1668 } else {
1669 return TLS_CIPHER_LEN;
1670 }
1671 case SSL_CTRL_GET_EXTMS_SUPPORT:
1672 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
1673 return -1;
1674 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
1675 return 1;
1676 else
1677 return 0;
1678 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1679 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1680 &s->min_proto_version);
1681 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1682 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1683 &s->max_proto_version);
1684 default:
1685 return (s->method->ssl_ctrl(s, cmd, larg, parg));
1686 }
1687 }
1688
1689 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
1690 {
1691 switch (cmd) {
1692 case SSL_CTRL_SET_MSG_CALLBACK:
1693 s->msg_callback = (void (*)
1694 (int write_p, int version, int content_type,
1695 const void *buf, size_t len, SSL *ssl,
1696 void *arg))(fp);
1697 return 1;
1698
1699 default:
1700 return (s->method->ssl_callback_ctrl(s, cmd, fp));
1701 }
1702 }
1703
1704 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
1705 {
1706 return ctx->sessions;
1707 }
1708
1709 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
1710 {
1711 long l;
1712 /* For some cases with ctx == NULL perform syntax checks */
1713 if (ctx == NULL) {
1714 switch (cmd) {
1715 #ifndef OPENSSL_NO_EC
1716 case SSL_CTRL_SET_CURVES_LIST:
1717 return tls1_set_curves_list(NULL, NULL, parg);
1718 #endif
1719 case SSL_CTRL_SET_SIGALGS_LIST:
1720 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
1721 return tls1_set_sigalgs_list(NULL, parg, 0);
1722 default:
1723 return 0;
1724 }
1725 }
1726
1727 switch (cmd) {
1728 case SSL_CTRL_GET_READ_AHEAD:
1729 return (ctx->read_ahead);
1730 case SSL_CTRL_SET_READ_AHEAD:
1731 l = ctx->read_ahead;
1732 ctx->read_ahead = larg;
1733 return (l);
1734
1735 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1736 ctx->msg_callback_arg = parg;
1737 return 1;
1738
1739 case SSL_CTRL_GET_MAX_CERT_LIST:
1740 return (ctx->max_cert_list);
1741 case SSL_CTRL_SET_MAX_CERT_LIST:
1742 l = ctx->max_cert_list;
1743 ctx->max_cert_list = larg;
1744 return (l);
1745
1746 case SSL_CTRL_SET_SESS_CACHE_SIZE:
1747 l = ctx->session_cache_size;
1748 ctx->session_cache_size = larg;
1749 return (l);
1750 case SSL_CTRL_GET_SESS_CACHE_SIZE:
1751 return (ctx->session_cache_size);
1752 case SSL_CTRL_SET_SESS_CACHE_MODE:
1753 l = ctx->session_cache_mode;
1754 ctx->session_cache_mode = larg;
1755 return (l);
1756 case SSL_CTRL_GET_SESS_CACHE_MODE:
1757 return (ctx->session_cache_mode);
1758
1759 case SSL_CTRL_SESS_NUMBER:
1760 return (lh_SSL_SESSION_num_items(ctx->sessions));
1761 case SSL_CTRL_SESS_CONNECT:
1762 return (ctx->stats.sess_connect);
1763 case SSL_CTRL_SESS_CONNECT_GOOD:
1764 return (ctx->stats.sess_connect_good);
1765 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
1766 return (ctx->stats.sess_connect_renegotiate);
1767 case SSL_CTRL_SESS_ACCEPT:
1768 return (ctx->stats.sess_accept);
1769 case SSL_CTRL_SESS_ACCEPT_GOOD:
1770 return (ctx->stats.sess_accept_good);
1771 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
1772 return (ctx->stats.sess_accept_renegotiate);
1773 case SSL_CTRL_SESS_HIT:
1774 return (ctx->stats.sess_hit);
1775 case SSL_CTRL_SESS_CB_HIT:
1776 return (ctx->stats.sess_cb_hit);
1777 case SSL_CTRL_SESS_MISSES:
1778 return (ctx->stats.sess_miss);
1779 case SSL_CTRL_SESS_TIMEOUTS:
1780 return (ctx->stats.sess_timeout);
1781 case SSL_CTRL_SESS_CACHE_FULL:
1782 return (ctx->stats.sess_cache_full);
1783 case SSL_CTRL_MODE:
1784 return (ctx->mode |= larg);
1785 case SSL_CTRL_CLEAR_MODE:
1786 return (ctx->mode &= ~larg);
1787 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1788 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1789 return 0;
1790 ctx->max_send_fragment = larg;
1791 return 1;
1792 case SSL_CTRL_CERT_FLAGS:
1793 return (ctx->cert->cert_flags |= larg);
1794 case SSL_CTRL_CLEAR_CERT_FLAGS:
1795 return (ctx->cert->cert_flags &= ~larg);
1796 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1797 return ssl_set_version_bound(ctx->method->version, (int)larg,
1798 &ctx->min_proto_version);
1799 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1800 return ssl_set_version_bound(ctx->method->version, (int)larg,
1801 &ctx->max_proto_version);
1802 default:
1803 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
1804 }
1805 }
1806
1807 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
1808 {
1809 switch (cmd) {
1810 case SSL_CTRL_SET_MSG_CALLBACK:
1811 ctx->msg_callback = (void (*)
1812 (int write_p, int version, int content_type,
1813 const void *buf, size_t len, SSL *ssl,
1814 void *arg))(fp);
1815 return 1;
1816
1817 default:
1818 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
1819 }
1820 }
1821
1822 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
1823 {
1824 if (a->id > b->id)
1825 return 1;
1826 if (a->id < b->id)
1827 return -1;
1828 return 0;
1829 }
1830
1831 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
1832 const SSL_CIPHER *const *bp)
1833 {
1834 if ((*ap)->id > (*bp)->id)
1835 return 1;
1836 if ((*ap)->id < (*bp)->id)
1837 return -1;
1838 return 0;
1839 }
1840
1841 /** return a STACK of the ciphers available for the SSL and in order of
1842 * preference */
1843 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
1844 {
1845 if (s != NULL) {
1846 if (s->cipher_list != NULL) {
1847 return (s->cipher_list);
1848 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
1849 return (s->ctx->cipher_list);
1850 }
1851 }
1852 return (NULL);
1853 }
1854
1855 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
1856 {
1857 if ((s == NULL) || (s->session == NULL) || !s->server)
1858 return NULL;
1859 return s->session->ciphers;
1860 }
1861
1862 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
1863 {
1864 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
1865 int i;
1866 ciphers = SSL_get_ciphers(s);
1867 if (!ciphers)
1868 return NULL;
1869 ssl_set_client_disabled(s);
1870 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
1871 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
1872 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
1873 if (!sk)
1874 sk = sk_SSL_CIPHER_new_null();
1875 if (!sk)
1876 return NULL;
1877 if (!sk_SSL_CIPHER_push(sk, c)) {
1878 sk_SSL_CIPHER_free(sk);
1879 return NULL;
1880 }
1881 }
1882 }
1883 return sk;
1884 }
1885
1886 /** return a STACK of the ciphers available for the SSL and in order of
1887 * algorithm id */
1888 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
1889 {
1890 if (s != NULL) {
1891 if (s->cipher_list_by_id != NULL) {
1892 return (s->cipher_list_by_id);
1893 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
1894 return (s->ctx->cipher_list_by_id);
1895 }
1896 }
1897 return (NULL);
1898 }
1899
1900 /** The old interface to get the same thing as SSL_get_ciphers() */
1901 const char *SSL_get_cipher_list(const SSL *s, int n)
1902 {
1903 const SSL_CIPHER *c;
1904 STACK_OF(SSL_CIPHER) *sk;
1905
1906 if (s == NULL)
1907 return (NULL);
1908 sk = SSL_get_ciphers(s);
1909 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
1910 return (NULL);
1911 c = sk_SSL_CIPHER_value(sk, n);
1912 if (c == NULL)
1913 return (NULL);
1914 return (c->name);
1915 }
1916
1917 /** specify the ciphers to be used by default by the SSL_CTX */
1918 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
1919 {
1920 STACK_OF(SSL_CIPHER) *sk;
1921
1922 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
1923 &ctx->cipher_list_by_id, str, ctx->cert);
1924 /*
1925 * ssl_create_cipher_list may return an empty stack if it was unable to
1926 * find a cipher matching the given rule string (for example if the rule
1927 * string specifies a cipher which has been disabled). This is not an
1928 * error as far as ssl_create_cipher_list is concerned, and hence
1929 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
1930 */
1931 if (sk == NULL)
1932 return 0;
1933 else if (sk_SSL_CIPHER_num(sk) == 0) {
1934 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1935 return 0;
1936 }
1937 return 1;
1938 }
1939
1940 /** specify the ciphers to be used by the SSL */
1941 int SSL_set_cipher_list(SSL *s, const char *str)
1942 {
1943 STACK_OF(SSL_CIPHER) *sk;
1944
1945 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
1946 &s->cipher_list_by_id, str, s->cert);
1947 /* see comment in SSL_CTX_set_cipher_list */
1948 if (sk == NULL)
1949 return 0;
1950 else if (sk_SSL_CIPHER_num(sk) == 0) {
1951 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1952 return 0;
1953 }
1954 return 1;
1955 }
1956
1957 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
1958 {
1959 char *p;
1960 STACK_OF(SSL_CIPHER) *sk;
1961 const SSL_CIPHER *c;
1962 int i;
1963
1964 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
1965 return (NULL);
1966
1967 p = buf;
1968 sk = s->session->ciphers;
1969
1970 if (sk_SSL_CIPHER_num(sk) == 0)
1971 return NULL;
1972
1973 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
1974 int n;
1975
1976 c = sk_SSL_CIPHER_value(sk, i);
1977 n = strlen(c->name);
1978 if (n + 1 > len) {
1979 if (p != buf)
1980 --p;
1981 *p = '\0';
1982 return buf;
1983 }
1984 memcpy(p, c->name, n + 1);
1985 p += n;
1986 *(p++) = ':';
1987 len -= n + 1;
1988 }
1989 p[-1] = '\0';
1990 return (buf);
1991 }
1992
1993 /** return a servername extension value if provided in Client Hello, or NULL.
1994 * So far, only host_name types are defined (RFC 3546).
1995 */
1996
1997 const char *SSL_get_servername(const SSL *s, const int type)
1998 {
1999 if (type != TLSEXT_NAMETYPE_host_name)
2000 return NULL;
2001
2002 return s->session && !s->tlsext_hostname ?
2003 s->session->tlsext_hostname : s->tlsext_hostname;
2004 }
2005
2006 int SSL_get_servername_type(const SSL *s)
2007 {
2008 if (s->session
2009 && (!s->tlsext_hostname ? s->session->
2010 tlsext_hostname : s->tlsext_hostname))
2011 return TLSEXT_NAMETYPE_host_name;
2012 return -1;
2013 }
2014
2015 /*
2016 * SSL_select_next_proto implements the standard protocol selection. It is
2017 * expected that this function is called from the callback set by
2018 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2019 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2020 * not included in the length. A byte string of length 0 is invalid. No byte
2021 * string may be truncated. The current, but experimental algorithm for
2022 * selecting the protocol is: 1) If the server doesn't support NPN then this
2023 * is indicated to the callback. In this case, the client application has to
2024 * abort the connection or have a default application level protocol. 2) If
2025 * the server supports NPN, but advertises an empty list then the client
2026 * selects the first protcol in its list, but indicates via the API that this
2027 * fallback case was enacted. 3) Otherwise, the client finds the first
2028 * protocol in the server's list that it supports and selects this protocol.
2029 * This is because it's assumed that the server has better information about
2030 * which protocol a client should use. 4) If the client doesn't support any
2031 * of the server's advertised protocols, then this is treated the same as
2032 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2033 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2034 */
2035 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2036 const unsigned char *server,
2037 unsigned int server_len,
2038 const unsigned char *client,
2039 unsigned int client_len)
2040 {
2041 unsigned int i, j;
2042 const unsigned char *result;
2043 int status = OPENSSL_NPN_UNSUPPORTED;
2044
2045 /*
2046 * For each protocol in server preference order, see if we support it.
2047 */
2048 for (i = 0; i < server_len;) {
2049 for (j = 0; j < client_len;) {
2050 if (server[i] == client[j] &&
2051 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2052 /* We found a match */
2053 result = &server[i];
2054 status = OPENSSL_NPN_NEGOTIATED;
2055 goto found;
2056 }
2057 j += client[j];
2058 j++;
2059 }
2060 i += server[i];
2061 i++;
2062 }
2063
2064 /* There's no overlap between our protocols and the server's list. */
2065 result = client;
2066 status = OPENSSL_NPN_NO_OVERLAP;
2067
2068 found:
2069 *out = (unsigned char *)result + 1;
2070 *outlen = result[0];
2071 return status;
2072 }
2073
2074 #ifndef OPENSSL_NO_NEXTPROTONEG
2075 /*
2076 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2077 * client's requested protocol for this connection and returns 0. If the
2078 * client didn't request any protocol, then *data is set to NULL. Note that
2079 * the client can request any protocol it chooses. The value returned from
2080 * this function need not be a member of the list of supported protocols
2081 * provided by the callback.
2082 */
2083 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2084 unsigned *len)
2085 {
2086 *data = s->next_proto_negotiated;
2087 if (!*data) {
2088 *len = 0;
2089 } else {
2090 *len = s->next_proto_negotiated_len;
2091 }
2092 }
2093
2094 /*
2095 * SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when
2096 * a TLS server needs a list of supported protocols for Next Protocol
2097 * Negotiation. The returned list must be in wire format. The list is
2098 * returned by setting |out| to point to it and |outlen| to its length. This
2099 * memory will not be modified, but one should assume that the SSL* keeps a
2100 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2101 * wishes to advertise. Otherwise, no such extension will be included in the
2102 * ServerHello.
2103 */
2104 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx,
2105 int (*cb) (SSL *ssl,
2106 const unsigned char
2107 **out,
2108 unsigned int *outlen,
2109 void *arg), void *arg)
2110 {
2111 ctx->next_protos_advertised_cb = cb;
2112 ctx->next_protos_advertised_cb_arg = arg;
2113 }
2114
2115 /*
2116 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2117 * client needs to select a protocol from the server's provided list. |out|
2118 * must be set to point to the selected protocol (which may be within |in|).
2119 * The length of the protocol name must be written into |outlen|. The
2120 * server's advertised protocols are provided in |in| and |inlen|. The
2121 * callback can assume that |in| is syntactically valid. The client must
2122 * select a protocol. It is fatal to the connection if this callback returns
2123 * a value other than SSL_TLSEXT_ERR_OK.
2124 */
2125 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
2126 int (*cb) (SSL *s, unsigned char **out,
2127 unsigned char *outlen,
2128 const unsigned char *in,
2129 unsigned int inlen,
2130 void *arg), void *arg)
2131 {
2132 ctx->next_proto_select_cb = cb;
2133 ctx->next_proto_select_cb_arg = arg;
2134 }
2135 #endif
2136
2137 /*
2138 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2139 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2140 * length-prefixed strings). Returns 0 on success.
2141 */
2142 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2143 unsigned protos_len)
2144 {
2145 OPENSSL_free(ctx->alpn_client_proto_list);
2146 ctx->alpn_client_proto_list = OPENSSL_malloc(protos_len);
2147 if (ctx->alpn_client_proto_list == NULL)
2148 return 1;
2149 memcpy(ctx->alpn_client_proto_list, protos, protos_len);
2150 ctx->alpn_client_proto_list_len = protos_len;
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2157 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2158 * length-prefixed strings). Returns 0 on success.
2159 */
2160 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2161 unsigned protos_len)
2162 {
2163 OPENSSL_free(ssl->alpn_client_proto_list);
2164 ssl->alpn_client_proto_list = OPENSSL_malloc(protos_len);
2165 if (ssl->alpn_client_proto_list == NULL)
2166 return 1;
2167 memcpy(ssl->alpn_client_proto_list, protos, protos_len);
2168 ssl->alpn_client_proto_list_len = protos_len;
2169
2170 return 0;
2171 }
2172
2173 /*
2174 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2175 * called during ClientHello processing in order to select an ALPN protocol
2176 * from the client's list of offered protocols.
2177 */
2178 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2179 int (*cb) (SSL *ssl,
2180 const unsigned char **out,
2181 unsigned char *outlen,
2182 const unsigned char *in,
2183 unsigned int inlen,
2184 void *arg), void *arg)
2185 {
2186 ctx->alpn_select_cb = cb;
2187 ctx->alpn_select_cb_arg = arg;
2188 }
2189
2190 /*
2191 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
2192 * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
2193 * (not including the leading length-prefix byte). If the server didn't
2194 * respond with a negotiated protocol then |*len| will be zero.
2195 */
2196 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2197 unsigned *len)
2198 {
2199 *data = NULL;
2200 if (ssl->s3)
2201 *data = ssl->s3->alpn_selected;
2202 if (*data == NULL)
2203 *len = 0;
2204 else
2205 *len = ssl->s3->alpn_selected_len;
2206 }
2207
2208
2209 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2210 const char *label, size_t llen,
2211 const unsigned char *p, size_t plen,
2212 int use_context)
2213 {
2214 if (s->version < TLS1_VERSION)
2215 return -1;
2216
2217 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2218 llen, p, plen,
2219 use_context);
2220 }
2221
2222 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2223 {
2224 unsigned long l;
2225
2226 l = (unsigned long)
2227 ((unsigned int)a->session_id[0]) |
2228 ((unsigned int)a->session_id[1] << 8L) |
2229 ((unsigned long)a->session_id[2] << 16L) |
2230 ((unsigned long)a->session_id[3] << 24L);
2231 return (l);
2232 }
2233
2234 /*
2235 * NB: If this function (or indeed the hash function which uses a sort of
2236 * coarser function than this one) is changed, ensure
2237 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2238 * being able to construct an SSL_SESSION that will collide with any existing
2239 * session with a matching session ID.
2240 */
2241 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2242 {
2243 if (a->ssl_version != b->ssl_version)
2244 return (1);
2245 if (a->session_id_length != b->session_id_length)
2246 return (1);
2247 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2248 }
2249
2250 /*
2251 * These wrapper functions should remain rather than redeclaring
2252 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2253 * variable. The reason is that the functions aren't static, they're exposed
2254 * via ssl.h.
2255 */
2256
2257 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2258 {
2259 SSL_CTX *ret = NULL;
2260
2261 if (meth == NULL) {
2262 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2263 return (NULL);
2264 }
2265
2266 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2267 return NULL;
2268
2269 if (FIPS_mode() && (meth->version < TLS1_VERSION)) {
2270 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE);
2271 return NULL;
2272 }
2273
2274 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2275 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2276 goto err;
2277 }
2278 ret = OPENSSL_zalloc(sizeof(*ret));
2279 if (ret == NULL)
2280 goto err;
2281
2282 ret->method = meth;
2283 ret->min_proto_version = 0;
2284 ret->max_proto_version = 0;
2285 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2286 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2287 /* We take the system default. */
2288 ret->session_timeout = meth->get_timeout();
2289 ret->references = 1;
2290 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2291 ret->verify_mode = SSL_VERIFY_NONE;
2292 if ((ret->cert = ssl_cert_new()) == NULL)
2293 goto err;
2294
2295 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2296 if (ret->sessions == NULL)
2297 goto err;
2298 ret->cert_store = X509_STORE_new();
2299 if (ret->cert_store == NULL)
2300 goto err;
2301
2302 if (!ssl_create_cipher_list(ret->method,
2303 &ret->cipher_list, &ret->cipher_list_by_id,
2304 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2305 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2306 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2307 goto err2;
2308 }
2309
2310 ret->param = X509_VERIFY_PARAM_new();
2311 if (ret->param == NULL)
2312 goto err;
2313
2314 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2315 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2316 goto err2;
2317 }
2318 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2319 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2320 goto err2;
2321 }
2322
2323 if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
2324 goto err;
2325
2326 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data);
2327
2328 /* No compression for DTLS */
2329 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2330 ret->comp_methods = SSL_COMP_get_compression_methods();
2331
2332 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2333
2334 /* Setup RFC4507 ticket keys */
2335 if ((RAND_bytes(ret->tlsext_tick_key_name, 16) <= 0)
2336 || (RAND_bytes(ret->tlsext_tick_hmac_key, 16) <= 0)
2337 || (RAND_bytes(ret->tlsext_tick_aes_key, 16) <= 0))
2338 ret->options |= SSL_OP_NO_TICKET;
2339
2340 #ifndef OPENSSL_NO_SRP
2341 if (!SSL_CTX_SRP_CTX_init(ret))
2342 goto err;
2343 #endif
2344 #ifndef OPENSSL_NO_ENGINE
2345 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2346 # define eng_strx(x) #x
2347 # define eng_str(x) eng_strx(x)
2348 /* Use specific client engine automatically... ignore errors */
2349 {
2350 ENGINE *eng;
2351 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2352 if (!eng) {
2353 ERR_clear_error();
2354 ENGINE_load_builtin_engines();
2355 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2356 }
2357 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2358 ERR_clear_error();
2359 }
2360 # endif
2361 #endif
2362 /*
2363 * Default is to connect to non-RI servers. When RI is more widely
2364 * deployed might change this.
2365 */
2366 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2367 /*
2368 * Disable compression by default to prevent CRIME. Applications can
2369 * re-enable compression by configuring
2370 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2371 * or by using the SSL_CONF library.
2372 */
2373 ret->options |= SSL_OP_NO_COMPRESSION;
2374
2375 return (ret);
2376 err:
2377 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2378 err2:
2379 SSL_CTX_free(ret);
2380 return (NULL);
2381 }
2382
2383 void SSL_CTX_up_ref(SSL_CTX *ctx)
2384 {
2385 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
2386 }
2387
2388 void SSL_CTX_free(SSL_CTX *a)
2389 {
2390 int i;
2391
2392 if (a == NULL)
2393 return;
2394
2395 i = CRYPTO_add(&a->references, -1, CRYPTO_LOCK_SSL_CTX);
2396 REF_PRINT_COUNT("SSL_CTX", a);
2397 if (i > 0)
2398 return;
2399 REF_ASSERT_ISNT(i < 0);
2400
2401 X509_VERIFY_PARAM_free(a->param);
2402 dane_ctx_final(&a->dane);
2403
2404 /*
2405 * Free internal session cache. However: the remove_cb() may reference
2406 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2407 * after the sessions were flushed.
2408 * As the ex_data handling routines might also touch the session cache,
2409 * the most secure solution seems to be: empty (flush) the cache, then
2410 * free ex_data, then finally free the cache.
2411 * (See ticket [openssl.org #212].)
2412 */
2413 if (a->sessions != NULL)
2414 SSL_CTX_flush_sessions(a, 0);
2415
2416 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2417 lh_SSL_SESSION_free(a->sessions);
2418 X509_STORE_free(a->cert_store);
2419 sk_SSL_CIPHER_free(a->cipher_list);
2420 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2421 ssl_cert_free(a->cert);
2422 sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
2423 sk_X509_pop_free(a->extra_certs, X509_free);
2424 a->comp_methods = NULL;
2425 #ifndef OPENSSL_NO_SRTP
2426 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2427 #endif
2428 #ifndef OPENSSL_NO_SRP
2429 SSL_CTX_SRP_CTX_free(a);
2430 #endif
2431 #ifndef OPENSSL_NO_ENGINE
2432 if (a->client_cert_engine)
2433 ENGINE_finish(a->client_cert_engine);
2434 #endif
2435
2436 #ifndef OPENSSL_NO_EC
2437 OPENSSL_free(a->tlsext_ecpointformatlist);
2438 OPENSSL_free(a->tlsext_ellipticcurvelist);
2439 #endif
2440 OPENSSL_free(a->alpn_client_proto_list);
2441
2442 OPENSSL_free(a);
2443 }
2444
2445 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2446 {
2447 ctx->default_passwd_callback = cb;
2448 }
2449
2450 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2451 {
2452 ctx->default_passwd_callback_userdata = u;
2453 }
2454
2455 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2456 {
2457 s->default_passwd_callback = cb;
2458 }
2459
2460 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2461 {
2462 s->default_passwd_callback_userdata = u;
2463 }
2464
2465 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2466 int (*cb) (X509_STORE_CTX *, void *),
2467 void *arg)
2468 {
2469 ctx->app_verify_callback = cb;
2470 ctx->app_verify_arg = arg;
2471 }
2472
2473 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2474 int (*cb) (int, X509_STORE_CTX *))
2475 {
2476 ctx->verify_mode = mode;
2477 ctx->default_verify_callback = cb;
2478 }
2479
2480 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2481 {
2482 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2483 }
2484
2485 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg),
2486 void *arg)
2487 {
2488 ssl_cert_set_cert_cb(c->cert, cb, arg);
2489 }
2490
2491 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2492 {
2493 ssl_cert_set_cert_cb(s->cert, cb, arg);
2494 }
2495
2496 void ssl_set_masks(SSL *s, const SSL_CIPHER *cipher)
2497 {
2498 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_GOST)
2499 CERT_PKEY *cpk;
2500 #endif
2501 CERT *c = s->cert;
2502 uint32_t *pvalid = s->s3->tmp.valid_flags;
2503 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2504 unsigned long mask_k, mask_a;
2505 #ifndef OPENSSL_NO_EC
2506 int have_ecc_cert, ecdsa_ok;
2507 X509 *x = NULL;
2508 #endif
2509 if (c == NULL)
2510 return;
2511
2512 #ifndef OPENSSL_NO_DH
2513 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2514 #else
2515 dh_tmp = 0;
2516 #endif
2517
2518 rsa_enc = pvalid[SSL_PKEY_RSA_ENC] & CERT_PKEY_VALID;
2519 rsa_sign = pvalid[SSL_PKEY_RSA_SIGN] & CERT_PKEY_SIGN;
2520 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_SIGN;
2521 #ifndef OPENSSL_NO_EC
2522 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2523 #endif
2524 mask_k = 0;
2525 mask_a = 0;
2526
2527 #ifdef CIPHER_DEBUG
2528 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2529 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2530 #endif
2531
2532 #ifndef OPENSSL_NO_GOST
2533 cpk = &(c->pkeys[SSL_PKEY_GOST12_512]);
2534 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2535 mask_k |= SSL_kGOST;
2536 mask_a |= SSL_aGOST12;
2537 }
2538 cpk = &(c->pkeys[SSL_PKEY_GOST12_256]);
2539 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2540 mask_k |= SSL_kGOST;
2541 mask_a |= SSL_aGOST12;
2542 }
2543 cpk = &(c->pkeys[SSL_PKEY_GOST01]);
2544 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2545 mask_k |= SSL_kGOST;
2546 mask_a |= SSL_aGOST01;
2547 }
2548 #endif
2549
2550 if (rsa_enc)
2551 mask_k |= SSL_kRSA;
2552
2553 if (dh_tmp)
2554 mask_k |= SSL_kDHE;
2555
2556 if (rsa_enc || rsa_sign) {
2557 mask_a |= SSL_aRSA;
2558 }
2559
2560 if (dsa_sign) {
2561 mask_a |= SSL_aDSS;
2562 }
2563
2564 mask_a |= SSL_aNULL;
2565
2566 /*
2567 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2568 * depending on the key usage extension.
2569 */
2570 #ifndef OPENSSL_NO_EC
2571 if (have_ecc_cert) {
2572 uint32_t ex_kusage;
2573 cpk = &c->pkeys[SSL_PKEY_ECC];
2574 x = cpk->x509;
2575 ex_kusage = X509_get_key_usage(x);
2576 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2577 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2578 ecdsa_ok = 0;
2579 if (ecdsa_ok)
2580 mask_a |= SSL_aECDSA;
2581 }
2582 #endif
2583
2584 #ifndef OPENSSL_NO_EC
2585 mask_k |= SSL_kECDHE;
2586 #endif
2587
2588 #ifndef OPENSSL_NO_PSK
2589 mask_k |= SSL_kPSK;
2590 mask_a |= SSL_aPSK;
2591 if (mask_k & SSL_kRSA)
2592 mask_k |= SSL_kRSAPSK;
2593 if (mask_k & SSL_kDHE)
2594 mask_k |= SSL_kDHEPSK;
2595 if (mask_k & SSL_kECDHE)
2596 mask_k |= SSL_kECDHEPSK;
2597 #endif
2598
2599 s->s3->tmp.mask_k = mask_k;
2600 s->s3->tmp.mask_a = mask_a;
2601 }
2602
2603 #ifndef OPENSSL_NO_EC
2604
2605 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2606 {
2607 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
2608 /* key usage, if present, must allow signing */
2609 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
2610 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2611 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
2612 return 0;
2613 }
2614 }
2615 return 1; /* all checks are ok */
2616 }
2617
2618 #endif
2619
2620 static int ssl_get_server_cert_index(const SSL *s)
2621 {
2622 int idx;
2623 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2624 if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509)
2625 idx = SSL_PKEY_RSA_SIGN;
2626 if (idx == SSL_PKEY_GOST_EC) {
2627 if (s->cert->pkeys[SSL_PKEY_GOST12_512].x509)
2628 idx = SSL_PKEY_GOST12_512;
2629 else if (s->cert->pkeys[SSL_PKEY_GOST12_256].x509)
2630 idx = SSL_PKEY_GOST12_256;
2631 else if (s->cert->pkeys[SSL_PKEY_GOST01].x509)
2632 idx = SSL_PKEY_GOST01;
2633 else
2634 idx = -1;
2635 }
2636 if (idx == -1)
2637 SSLerr(SSL_F_SSL_GET_SERVER_CERT_INDEX, ERR_R_INTERNAL_ERROR);
2638 return idx;
2639 }
2640
2641 CERT_PKEY *ssl_get_server_send_pkey(SSL *s)
2642 {
2643 CERT *c;
2644 int i;
2645
2646 c = s->cert;
2647 if (!s->s3 || !s->s3->tmp.new_cipher)
2648 return NULL;
2649 ssl_set_masks(s, s->s3->tmp.new_cipher);
2650
2651 i = ssl_get_server_cert_index(s);
2652
2653 /* This may or may not be an error. */
2654 if (i < 0)
2655 return NULL;
2656
2657 /* May be NULL. */
2658 return &c->pkeys[i];
2659 }
2660
2661 EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher,
2662 const EVP_MD **pmd)
2663 {
2664 unsigned long alg_a;
2665 CERT *c;
2666 int idx = -1;
2667
2668 alg_a = cipher->algorithm_auth;
2669 c = s->cert;
2670
2671 if ((alg_a & SSL_aDSS) &&
2672 (c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
2673 idx = SSL_PKEY_DSA_SIGN;
2674 else if (alg_a & SSL_aRSA) {
2675 if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
2676 idx = SSL_PKEY_RSA_SIGN;
2677 else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
2678 idx = SSL_PKEY_RSA_ENC;
2679 } else if ((alg_a & SSL_aECDSA) &&
2680 (c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
2681 idx = SSL_PKEY_ECC;
2682 if (idx == -1) {
2683 SSLerr(SSL_F_SSL_GET_SIGN_PKEY, ERR_R_INTERNAL_ERROR);
2684 return (NULL);
2685 }
2686 if (pmd)
2687 *pmd = s->s3->tmp.md[idx];
2688 return c->pkeys[idx].privatekey;
2689 }
2690
2691 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
2692 size_t *serverinfo_length)
2693 {
2694 CERT *c = NULL;
2695 int i = 0;
2696 *serverinfo_length = 0;
2697
2698 c = s->cert;
2699 i = ssl_get_server_cert_index(s);
2700
2701 if (i == -1)
2702 return 0;
2703 if (c->pkeys[i].serverinfo == NULL)
2704 return 0;
2705
2706 *serverinfo = c->pkeys[i].serverinfo;
2707 *serverinfo_length = c->pkeys[i].serverinfo_length;
2708 return 1;
2709 }
2710
2711 void ssl_update_cache(SSL *s, int mode)
2712 {
2713 int i;
2714
2715 /*
2716 * If the session_id_length is 0, we are not supposed to cache it, and it
2717 * would be rather hard to do anyway :-)
2718 */
2719 if (s->session->session_id_length == 0)
2720 return;
2721
2722 i = s->session_ctx->session_cache_mode;
2723 if ((i & mode) && (!s->hit)
2724 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
2725 || SSL_CTX_add_session(s->session_ctx, s->session))
2726 && (s->session_ctx->new_session_cb != NULL)) {
2727 CRYPTO_add(&s->session->references, 1, CRYPTO_LOCK_SSL_SESSION);
2728 if (!s->session_ctx->new_session_cb(s, s->session))
2729 SSL_SESSION_free(s->session);
2730 }
2731
2732 /* auto flush every 255 connections */
2733 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
2734 if ((((mode & SSL_SESS_CACHE_CLIENT)
2735 ? s->session_ctx->stats.sess_connect_good
2736 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
2737 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
2738 }
2739 }
2740 }
2741
2742 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
2743 {
2744 return ctx->method;
2745 }
2746
2747 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
2748 {
2749 return (s->method);
2750 }
2751
2752 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
2753 {
2754 int ret = 1;
2755
2756 if (s->method != meth) {
2757 const SSL_METHOD *sm = s->method;
2758 int (*hf)(SSL *) = s->handshake_func;
2759
2760 if (sm->version == meth->version)
2761 s->method = meth;
2762 else {
2763 sm->ssl_free(s);
2764 s->method = meth;
2765 ret = s->method->ssl_new(s);
2766 }
2767
2768 if (hf == sm->ssl_connect)
2769 s->handshake_func = meth->ssl_connect;
2770 else if (hf == sm->ssl_accept)
2771 s->handshake_func = meth->ssl_accept;
2772 }
2773 return (ret);
2774 }
2775
2776 int SSL_get_error(const SSL *s, int i)
2777 {
2778 int reason;
2779 unsigned long l;
2780 BIO *bio;
2781
2782 if (i > 0)
2783 return (SSL_ERROR_NONE);
2784
2785 /*
2786 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
2787 * where we do encode the error
2788 */
2789 if ((l = ERR_peek_error()) != 0) {
2790 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
2791 return (SSL_ERROR_SYSCALL);
2792 else
2793 return (SSL_ERROR_SSL);
2794 }
2795
2796 if ((i < 0) && SSL_want_read(s)) {
2797 bio = SSL_get_rbio(s);
2798 if (BIO_should_read(bio))
2799 return (SSL_ERROR_WANT_READ);
2800 else if (BIO_should_write(bio))
2801 /*
2802 * This one doesn't make too much sense ... We never try to write
2803 * to the rbio, and an application program where rbio and wbio
2804 * are separate couldn't even know what it should wait for.
2805 * However if we ever set s->rwstate incorrectly (so that we have
2806 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
2807 * wbio *are* the same, this test works around that bug; so it
2808 * might be safer to keep it.
2809 */
2810 return (SSL_ERROR_WANT_WRITE);
2811 else if (BIO_should_io_special(bio)) {
2812 reason = BIO_get_retry_reason(bio);
2813 if (reason == BIO_RR_CONNECT)
2814 return (SSL_ERROR_WANT_CONNECT);
2815 else if (reason == BIO_RR_ACCEPT)
2816 return (SSL_ERROR_WANT_ACCEPT);
2817 else
2818 return (SSL_ERROR_SYSCALL); /* unknown */
2819 }
2820 }
2821
2822 if ((i < 0) && SSL_want_write(s)) {
2823 bio = SSL_get_wbio(s);
2824 if (BIO_should_write(bio))
2825 return (SSL_ERROR_WANT_WRITE);
2826 else if (BIO_should_read(bio))
2827 /*
2828 * See above (SSL_want_read(s) with BIO_should_write(bio))
2829 */
2830 return (SSL_ERROR_WANT_READ);
2831 else if (BIO_should_io_special(bio)) {
2832 reason = BIO_get_retry_reason(bio);
2833 if (reason == BIO_RR_CONNECT)
2834 return (SSL_ERROR_WANT_CONNECT);
2835 else if (reason == BIO_RR_ACCEPT)
2836 return (SSL_ERROR_WANT_ACCEPT);
2837 else
2838 return (SSL_ERROR_SYSCALL);
2839 }
2840 }
2841 if ((i < 0) && SSL_want_x509_lookup(s)) {
2842 return (SSL_ERROR_WANT_X509_LOOKUP);
2843 }
2844 if ((i < 0) && SSL_want_async(s)) {
2845 return SSL_ERROR_WANT_ASYNC;
2846 }
2847
2848 if (i == 0) {
2849 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
2850 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
2851 return (SSL_ERROR_ZERO_RETURN);
2852 }
2853 return (SSL_ERROR_SYSCALL);
2854 }
2855
2856 static int ssl_do_handshake_intern(void *vargs)
2857 {
2858 struct ssl_async_args *args;
2859 SSL *s;
2860
2861 args = (struct ssl_async_args *)vargs;
2862 s = args->s;
2863
2864 return s->handshake_func(s);
2865 }
2866
2867 int SSL_do_handshake(SSL *s)
2868 {
2869 int ret = 1;
2870
2871 if (s->handshake_func == NULL) {
2872 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
2873 return -1;
2874 }
2875
2876 s->method->ssl_renegotiate_check(s);
2877
2878 if (SSL_in_init(s) || SSL_in_before(s)) {
2879 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2880 struct ssl_async_args args;
2881
2882 args.s = s;
2883
2884 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
2885 } else {
2886 ret = s->handshake_func(s);
2887 }
2888 }
2889 return ret;
2890 }
2891
2892 void SSL_set_accept_state(SSL *s)
2893 {
2894 s->server = 1;
2895 s->shutdown = 0;
2896 ossl_statem_clear(s);
2897 s->handshake_func = s->method->ssl_accept;
2898 clear_ciphers(s);
2899 }
2900
2901 void SSL_set_connect_state(SSL *s)
2902 {
2903 s->server = 0;
2904 s->shutdown = 0;
2905 ossl_statem_clear(s);
2906 s->handshake_func = s->method->ssl_connect;
2907 clear_ciphers(s);
2908 }
2909
2910 int ssl_undefined_function(SSL *s)
2911 {
2912 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2913 return (0);
2914 }
2915
2916 int ssl_undefined_void_function(void)
2917 {
2918 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
2919 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2920 return (0);
2921 }
2922
2923 int ssl_undefined_const_function(const SSL *s)
2924 {
2925 return (0);
2926 }
2927
2928 SSL_METHOD *ssl_bad_method(int ver)
2929 {
2930 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2931 return (NULL);
2932 }
2933
2934 const char *SSL_get_version(const SSL *s)
2935 {
2936 if (s->version == TLS1_2_VERSION)
2937 return ("TLSv1.2");
2938 else if (s->version == TLS1_1_VERSION)
2939 return ("TLSv1.1");
2940 else if (s->version == TLS1_VERSION)
2941 return ("TLSv1");
2942 else if (s->version == SSL3_VERSION)
2943 return ("SSLv3");
2944 else if (s->version == DTLS1_BAD_VER)
2945 return ("DTLSv0.9");
2946 else if (s->version == DTLS1_VERSION)
2947 return ("DTLSv1");
2948 else if (s->version == DTLS1_2_VERSION)
2949 return ("DTLSv1.2");
2950 else
2951 return ("unknown");
2952 }
2953
2954 SSL *SSL_dup(SSL *s)
2955 {
2956 STACK_OF(X509_NAME) *sk;
2957 X509_NAME *xn;
2958 SSL *ret;
2959 int i;
2960
2961 /* If we're not quiescent, just up_ref! */
2962 if (!SSL_in_init(s) || !SSL_in_before(s)) {
2963 CRYPTO_add(&s->references, 1, CRYPTO_LOCK_SSL);
2964 return s;
2965 }
2966
2967 /*
2968 * Otherwise, copy configuration state, and session if set.
2969 */
2970 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
2971 return (NULL);
2972
2973 if (s->session != NULL) {
2974 /*
2975 * Arranges to share the same session via up_ref. This "copies"
2976 * session-id, SSL_METHOD, sid_ctx, and 'cert'
2977 */
2978 if (!SSL_copy_session_id(ret, s))
2979 goto err;
2980 } else {
2981 /*
2982 * No session has been established yet, so we have to expect that
2983 * s->cert or ret->cert will be changed later -- they should not both
2984 * point to the same object, and thus we can't use
2985 * SSL_copy_session_id.
2986 */
2987 if (!SSL_set_ssl_method(ret, s->method))
2988 goto err;
2989
2990 if (s->cert != NULL) {
2991 ssl_cert_free(ret->cert);
2992 ret->cert = ssl_cert_dup(s->cert);
2993 if (ret->cert == NULL)
2994 goto err;
2995 }
2996
2997 if (!SSL_set_session_id_context(ret, s->sid_ctx, s->sid_ctx_length))
2998 goto err;
2999 }
3000
3001 ssl_dane_dup(ret, s);
3002 ret->version = s->version;
3003 ret->options = s->options;
3004 ret->mode = s->mode;
3005 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3006 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3007 ret->msg_callback = s->msg_callback;
3008 ret->msg_callback_arg = s->msg_callback_arg;
3009 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3010 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3011 ret->generate_session_id = s->generate_session_id;
3012
3013 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3014
3015 /* copy app data, a little dangerous perhaps */
3016 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3017 goto err;
3018
3019 /* setup rbio, and wbio */
3020 if (s->rbio != NULL) {
3021 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3022 goto err;
3023 }
3024 if (s->wbio != NULL) {
3025 if (s->wbio != s->rbio) {
3026 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3027 goto err;
3028 } else
3029 ret->wbio = ret->rbio;
3030 }
3031
3032 ret->server = s->server;
3033 if (s->handshake_func) {
3034 if (s->server)
3035 SSL_set_accept_state(ret);
3036 else
3037 SSL_set_connect_state(ret);
3038 }
3039 ret->shutdown = s->shutdown;
3040 ret->hit = s->hit;
3041
3042 ret->default_passwd_callback = s->default_passwd_callback;
3043 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3044
3045 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3046
3047 /* dup the cipher_list and cipher_list_by_id stacks */
3048 if (s->cipher_list != NULL) {
3049 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3050 goto err;
3051 }
3052 if (s->cipher_list_by_id != NULL)
3053 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3054 == NULL)
3055 goto err;
3056
3057 /* Dup the client_CA list */
3058 if (s->client_CA != NULL) {
3059 if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
3060 goto err;
3061 ret->client_CA = sk;
3062 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3063 xn = sk_X509_NAME_value(sk, i);
3064 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3065 X509_NAME_free(xn);
3066 goto err;
3067 }
3068 }
3069 }
3070 return ret;
3071
3072 err:
3073 SSL_free(ret);
3074 return NULL;
3075 }
3076
3077 void ssl_clear_cipher_ctx(SSL *s)
3078 {
3079 if (s->enc_read_ctx != NULL) {
3080 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3081 s->enc_read_ctx = NULL;
3082 }
3083 if (s->enc_write_ctx != NULL) {
3084 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3085 s->enc_write_ctx = NULL;
3086 }
3087 #ifndef OPENSSL_NO_COMP
3088 COMP_CTX_free(s->expand);
3089 s->expand = NULL;
3090 COMP_CTX_free(s->compress);
3091 s->compress = NULL;
3092 #endif
3093 }
3094
3095 X509 *SSL_get_certificate(const SSL *s)
3096 {
3097 if (s->cert != NULL)
3098 return (s->cert->key->x509);
3099 else
3100 return (NULL);
3101 }
3102
3103 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3104 {
3105 if (s->cert != NULL)
3106 return (s->cert->key->privatekey);
3107 else
3108 return (NULL);
3109 }
3110
3111 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3112 {
3113 if (ctx->cert != NULL)
3114 return ctx->cert->key->x509;
3115 else
3116 return NULL;
3117 }
3118
3119 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3120 {
3121 if (ctx->cert != NULL)
3122 return ctx->cert->key->privatekey;
3123 else
3124 return NULL;
3125 }
3126
3127 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3128 {
3129 if ((s->session != NULL) && (s->session->cipher != NULL))
3130 return (s->session->cipher);
3131 return (NULL);
3132 }
3133
3134 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3135 {
3136 #ifndef OPENSSL_NO_COMP
3137 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3138 #else
3139 return NULL;
3140 #endif
3141 }
3142
3143 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3144 {
3145 #ifndef OPENSSL_NO_COMP
3146 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3147 #else
3148 return NULL;
3149 #endif
3150 }
3151
3152 int ssl_init_wbio_buffer(SSL *s, int push)
3153 {
3154 BIO *bbio;
3155
3156 if (s->bbio == NULL) {
3157 bbio = BIO_new(BIO_f_buffer());
3158 if (bbio == NULL)
3159 return (0);
3160 s->bbio = bbio;
3161 } else {
3162 bbio = s->bbio;
3163 if (s->bbio == s->wbio)
3164 s->wbio = BIO_pop(s->wbio);
3165 }
3166 (void)BIO_reset(bbio);
3167 /* if (!BIO_set_write_buffer_size(bbio,16*1024)) */
3168 if (!BIO_set_read_buffer_size(bbio, 1)) {
3169 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3170 return (0);
3171 }
3172 if (push) {
3173 if (s->wbio != bbio)
3174 s->wbio = BIO_push(bbio, s->wbio);
3175 } else {
3176 if (s->wbio == bbio)
3177 s->wbio = BIO_pop(bbio);
3178 }
3179 return (1);
3180 }
3181
3182 void ssl_free_wbio_buffer(SSL *s)
3183 {
3184 /* callers ensure s is never null */
3185 if (s->bbio == NULL)
3186 return;
3187
3188 if (s->bbio == s->wbio) {
3189 /* remove buffering */
3190 s->wbio = BIO_pop(s->wbio);
3191 #ifdef REF_DEBUG
3192 /*
3193 * not the usual REF_DEBUG, but this avoids
3194 * adding one more preprocessor symbol
3195 */
3196 assert(s->wbio != NULL);
3197 #endif
3198 }
3199 BIO_free(s->bbio);
3200 s->bbio = NULL;
3201 }
3202
3203 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3204 {
3205 ctx->quiet_shutdown = mode;
3206 }
3207
3208 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3209 {
3210 return (ctx->quiet_shutdown);
3211 }
3212
3213 void SSL_set_quiet_shutdown(SSL *s, int mode)
3214 {
3215 s->quiet_shutdown = mode;
3216 }
3217
3218 int SSL_get_quiet_shutdown(const SSL *s)
3219 {
3220 return (s->quiet_shutdown);
3221 }
3222
3223 void SSL_set_shutdown(SSL *s, int mode)
3224 {
3225 s->shutdown = mode;
3226 }
3227
3228 int SSL_get_shutdown(const SSL *s)
3229 {
3230 return (s->shutdown);
3231 }
3232
3233 int SSL_version(const SSL *s)
3234 {
3235 return (s->version);
3236 }
3237
3238 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3239 {
3240 return (ssl->ctx);
3241 }
3242
3243 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3244 {
3245 CERT *new_cert;
3246 if (ssl->ctx == ctx)
3247 return ssl->ctx;
3248 if (ctx == NULL)
3249 ctx = ssl->initial_ctx;
3250 new_cert = ssl_cert_dup(ctx->cert);
3251 if (new_cert == NULL) {
3252 return NULL;
3253 }
3254 ssl_cert_free(ssl->cert);
3255 ssl->cert = new_cert;
3256
3257 /*
3258 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3259 * so setter APIs must prevent invalid lengths from entering the system.
3260 */
3261 OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
3262
3263 /*
3264 * If the session ID context matches that of the parent SSL_CTX,
3265 * inherit it from the new SSL_CTX as well. If however the context does
3266 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3267 * leave it unchanged.
3268 */
3269 if ((ssl->ctx != NULL) &&
3270 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3271 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3272 ssl->sid_ctx_length = ctx->sid_ctx_length;
3273 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3274 }
3275
3276 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
3277 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3278 ssl->ctx = ctx;
3279
3280 return (ssl->ctx);
3281 }
3282
3283 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3284 {
3285 return (X509_STORE_set_default_paths(ctx->cert_store));
3286 }
3287
3288 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3289 {
3290 X509_LOOKUP *lookup;
3291
3292 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3293 if (lookup == NULL)
3294 return 0;
3295 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3296
3297 /* Clear any errors if the default directory does not exist */
3298 ERR_clear_error();
3299
3300 return 1;
3301 }
3302
3303 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3304 {
3305 X509_LOOKUP *lookup;
3306
3307 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3308 if (lookup == NULL)
3309 return 0;
3310
3311 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3312
3313 /* Clear any errors if the default file does not exist */
3314 ERR_clear_error();
3315
3316 return 1;
3317 }
3318
3319 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3320 const char *CApath)
3321 {
3322 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3323 }
3324
3325 void SSL_set_info_callback(SSL *ssl,
3326 void (*cb) (const SSL *ssl, int type, int val))
3327 {
3328 ssl->info_callback = cb;
3329 }
3330
3331 /*
3332 * One compiler (Diab DCC) doesn't like argument names in returned function
3333 * pointer.
3334 */
3335 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3336 int /* type */ ,
3337 int /* val */ ) {
3338 return ssl->info_callback;
3339 }
3340
3341 void SSL_set_verify_result(SSL *ssl, long arg)
3342 {
3343 ssl->verify_result = arg;
3344 }
3345
3346 long SSL_get_verify_result(const SSL *ssl)
3347 {
3348 return (ssl->verify_result);
3349 }
3350
3351 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3352 {
3353 if (outlen == 0)
3354 return sizeof(ssl->s3->client_random);
3355 if (outlen > sizeof(ssl->s3->client_random))
3356 outlen = sizeof(ssl->s3->client_random);
3357 memcpy(out, ssl->s3->client_random, outlen);
3358 return outlen;
3359 }
3360
3361 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3362 {
3363 if (outlen == 0)
3364 return sizeof(ssl->s3->server_random);
3365 if (outlen > sizeof(ssl->s3->server_random))
3366 outlen = sizeof(ssl->s3->server_random);
3367 memcpy(out, ssl->s3->server_random, outlen);
3368 return outlen;
3369 }
3370
3371 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3372 unsigned char *out, size_t outlen)
3373 {
3374 if (session->master_key_length < 0) {
3375 /* Should never happen */
3376 return 0;
3377 }
3378 if (outlen == 0)
3379 return session->master_key_length;
3380 if (outlen > (size_t)session->master_key_length)
3381 outlen = session->master_key_length;
3382 memcpy(out, session->master_key, outlen);
3383 return outlen;
3384 }
3385
3386 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3387 {
3388 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3389 }
3390
3391 void *SSL_get_ex_data(const SSL *s, int idx)
3392 {
3393 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3394 }
3395
3396 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3397 {
3398 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3399 }
3400
3401 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3402 {
3403 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3404 }
3405
3406 int ssl_ok(SSL *s)
3407 {
3408 return (1);
3409 }
3410
3411 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3412 {
3413 return (ctx->cert_store);
3414 }
3415
3416 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3417 {
3418 X509_STORE_free(ctx->cert_store);
3419 ctx->cert_store = store;
3420 }
3421
3422 int SSL_want(const SSL *s)
3423 {
3424 return (s->rwstate);
3425 }
3426
3427 /**
3428 * \brief Set the callback for generating temporary DH keys.
3429 * \param ctx the SSL context.
3430 * \param dh the callback
3431 */
3432
3433 #ifndef OPENSSL_NO_DH
3434 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3435 DH *(*dh) (SSL *ssl, int is_export,
3436 int keylength))
3437 {
3438 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3439 }
3440
3441 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3442 int keylength))
3443 {
3444 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3445 }
3446 #endif
3447
3448 #ifndef OPENSSL_NO_PSK
3449 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3450 {
3451 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3452 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT,
3453 SSL_R_DATA_LENGTH_TOO_LONG);
3454 return 0;
3455 }
3456 OPENSSL_free(ctx->cert->psk_identity_hint);
3457 if (identity_hint != NULL) {
3458 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3459 if (ctx->cert->psk_identity_hint == NULL)
3460 return 0;
3461 } else
3462 ctx->cert->psk_identity_hint = NULL;
3463 return 1;
3464 }
3465
3466 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3467 {
3468 if (s == NULL)
3469 return 0;
3470
3471 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3472 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3473 return 0;
3474 }
3475 OPENSSL_free(s->cert->psk_identity_hint);
3476 if (identity_hint != NULL) {
3477 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3478 if (s->cert->psk_identity_hint == NULL)
3479 return 0;
3480 } else
3481 s->cert->psk_identity_hint = NULL;
3482 return 1;
3483 }
3484
3485 const char *SSL_get_psk_identity_hint(const SSL *s)
3486 {
3487 if (s == NULL || s->session == NULL)
3488 return NULL;
3489 return (s->session->psk_identity_hint);
3490 }
3491
3492 const char *SSL_get_psk_identity(const SSL *s)
3493 {
3494 if (s == NULL || s->session == NULL)
3495 return NULL;
3496 return (s->session->psk_identity);
3497 }
3498
3499 void SSL_set_psk_client_callback(SSL *s,
3500 unsigned int (*cb) (SSL *ssl,
3501 const char *hint,
3502 char *identity,
3503 unsigned int
3504 max_identity_len,
3505 unsigned char *psk,
3506 unsigned int
3507 max_psk_len))
3508 {
3509 s->psk_client_callback = cb;
3510 }
3511
3512 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
3513 unsigned int (*cb) (SSL *ssl,
3514 const char *hint,
3515 char *identity,
3516 unsigned int
3517 max_identity_len,
3518 unsigned char *psk,
3519 unsigned int
3520 max_psk_len))
3521 {
3522 ctx->psk_client_callback = cb;
3523 }
3524
3525 void SSL_set_psk_server_callback(SSL *s,
3526 unsigned int (*cb) (SSL *ssl,
3527 const char *identity,
3528 unsigned char *psk,
3529 unsigned int
3530 max_psk_len))
3531 {
3532 s->psk_server_callback = cb;
3533 }
3534
3535 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
3536 unsigned int (*cb) (SSL *ssl,
3537 const char *identity,
3538 unsigned char *psk,
3539 unsigned int
3540 max_psk_len))
3541 {
3542 ctx->psk_server_callback = cb;
3543 }
3544 #endif
3545
3546 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3547 void (*cb) (int write_p, int version,
3548 int content_type, const void *buf,
3549 size_t len, SSL *ssl, void *arg))
3550 {
3551 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3552 }
3553
3554 void SSL_set_msg_callback(SSL *ssl,
3555 void (*cb) (int write_p, int version,
3556 int content_type, const void *buf,
3557 size_t len, SSL *ssl, void *arg))
3558 {
3559 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3560 }
3561
3562 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3563 int (*cb) (SSL *ssl,
3564 int
3565 is_forward_secure))
3566 {
3567 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3568 (void (*)(void))cb);
3569 }
3570
3571 void SSL_set_not_resumable_session_callback(SSL *ssl,
3572 int (*cb) (SSL *ssl,
3573 int is_forward_secure))
3574 {
3575 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3576 (void (*)(void))cb);
3577 }
3578
3579 /*
3580 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3581 * vairable, freeing EVP_MD_CTX previously stored in that variable, if any.
3582 * If EVP_MD pointer is passed, initializes ctx with this md Returns newly
3583 * allocated ctx;
3584 */
3585
3586 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3587 {
3588 ssl_clear_hash_ctx(hash);
3589 *hash = EVP_MD_CTX_new();
3590 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3591 EVP_MD_CTX_free(*hash);
3592 *hash = NULL;
3593 return NULL;
3594 }
3595 return *hash;
3596 }
3597
3598 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3599 {
3600
3601 if (*hash)
3602 EVP_MD_CTX_free(*hash);
3603 *hash = NULL;
3604 }
3605
3606 /* Retrieve handshake hashes */
3607 int ssl_handshake_hash(SSL *s, unsigned char *out, int outlen)
3608 {
3609 EVP_MD_CTX *ctx = NULL;
3610 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3611 int ret = EVP_MD_CTX_size(hdgst);
3612 if (ret < 0 || ret > outlen) {
3613 ret = 0;
3614 goto err;
3615 }
3616 ctx = EVP_MD_CTX_new();
3617 if (ctx == NULL) {
3618 ret = 0;
3619 goto err;
3620 }
3621 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3622 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3623 ret = 0;
3624 err:
3625 EVP_MD_CTX_free(ctx);
3626 return ret;
3627 }
3628
3629 int SSL_session_reused(SSL *s)
3630 {
3631 return s->hit;
3632 }
3633
3634 int SSL_is_server(SSL *s)
3635 {
3636 return s->server;
3637 }
3638
3639 #if OPENSSL_API_COMPAT < 0x10100000L
3640 void SSL_set_debug(SSL *s, int debug)
3641 {
3642 /* Old function was do-nothing anyway... */
3643 (void)s;
3644 (void)debug;
3645 }
3646 #endif
3647
3648
3649 void SSL_set_security_level(SSL *s, int level)
3650 {
3651 s->cert->sec_level = level;
3652 }
3653
3654 int SSL_get_security_level(const SSL *s)
3655 {
3656 return s->cert->sec_level;
3657 }
3658
3659 void SSL_set_security_callback(SSL *s,
3660 int (*cb) (SSL *s, SSL_CTX *ctx, int op,
3661 int bits, int nid, void *other,
3662 void *ex))
3663 {
3664 s->cert->sec_cb = cb;
3665 }
3666
3667 int (*SSL_get_security_callback(const SSL *s)) (SSL *s, SSL_CTX *ctx, int op,
3668 int bits, int nid,
3669 void *other, void *ex) {
3670 return s->cert->sec_cb;
3671 }
3672
3673 void SSL_set0_security_ex_data(SSL *s, void *ex)
3674 {
3675 s->cert->sec_ex = ex;
3676 }
3677
3678 void *SSL_get0_security_ex_data(const SSL *s)
3679 {
3680 return s->cert->sec_ex;
3681 }
3682
3683 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
3684 {
3685 ctx->cert->sec_level = level;
3686 }
3687
3688 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
3689 {
3690 return ctx->cert->sec_level;
3691 }
3692
3693 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
3694 int (*cb) (SSL *s, SSL_CTX *ctx, int op,
3695 int bits, int nid, void *other,
3696 void *ex))
3697 {
3698 ctx->cert->sec_cb = cb;
3699 }
3700
3701 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (SSL *s,
3702 SSL_CTX *ctx,
3703 int op, int bits,
3704 int nid,
3705 void *other,
3706 void *ex) {
3707 return ctx->cert->sec_cb;
3708 }
3709
3710 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
3711 {
3712 ctx->cert->sec_ex = ex;
3713 }
3714
3715 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
3716 {
3717 return ctx->cert->sec_ex;
3718 }
3719
3720
3721 /*
3722 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
3723 * can return unsigned long, instead of the generic long return value from the
3724 * control interface.
3725 */
3726 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
3727 {
3728 return ctx->options;
3729 }
3730 unsigned long SSL_get_options(const SSL* s)
3731 {
3732 return s->options;
3733 }
3734 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
3735 {
3736 return ctx->options |= op;
3737 }
3738 unsigned long SSL_set_options(SSL *s, unsigned long op)
3739 {
3740 return s->options |= op;
3741 }
3742 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
3743 {
3744 return ctx->options &= ~op;
3745 }
3746 unsigned long SSL_clear_options(SSL *s, unsigned long op)
3747 {
3748 return s->options &= ~op;
3749 }
3750
3751 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
3752 {
3753 return s->verified_chain;
3754 }
3755
3756 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);