]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Don't reset the packet pointer in ssl3_setup_read_buffer
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_local.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include <openssl/trace.h>
24 #include "internal/cryptlib.h"
25 #include "internal/refcount.h"
26 #include "internal/ktls.h"
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t,
29 SSL_MAC_BUF *mac, size_t macsize)
30 {
31 return ssl_undefined_function(ssl);
32 }
33
34 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
35 int t)
36 {
37 return ssl_undefined_function(ssl);
38 }
39
40 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
41 unsigned char *s, size_t t, size_t *u)
42 {
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_4(SSL *ssl, int r)
47 {
48 return ssl_undefined_function(ssl);
49 }
50
51 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
52 unsigned char *t)
53 {
54 return ssl_undefined_function(ssl);
55 }
56
57 static int ssl_undefined_function_6(int r)
58 {
59 return ssl_undefined_function(NULL);
60 }
61
62 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
63 const char *t, size_t u,
64 const unsigned char *v, size_t w, int x)
65 {
66 return ssl_undefined_function(ssl);
67 }
68
69 SSL3_ENC_METHOD ssl3_undef_enc_method = {
70 ssl_undefined_function_1,
71 ssl_undefined_function_2,
72 ssl_undefined_function,
73 ssl_undefined_function_3,
74 ssl_undefined_function_4,
75 ssl_undefined_function_5,
76 NULL, /* client_finished_label */
77 0, /* client_finished_label_len */
78 NULL, /* server_finished_label */
79 0, /* server_finished_label_len */
80 ssl_undefined_function_6,
81 ssl_undefined_function_7,
82 };
83
84 struct ssl_async_args {
85 SSL *s;
86 void *buf;
87 size_t num;
88 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
89 union {
90 int (*func_read) (SSL *, void *, size_t, size_t *);
91 int (*func_write) (SSL *, const void *, size_t, size_t *);
92 int (*func_other) (SSL *);
93 } f;
94 };
95
96 static const struct {
97 uint8_t mtype;
98 uint8_t ord;
99 int nid;
100 } dane_mds[] = {
101 {
102 DANETLS_MATCHING_FULL, 0, NID_undef
103 },
104 {
105 DANETLS_MATCHING_2256, 1, NID_sha256
106 },
107 {
108 DANETLS_MATCHING_2512, 2, NID_sha512
109 },
110 };
111
112 static int dane_ctx_enable(struct dane_ctx_st *dctx)
113 {
114 const EVP_MD **mdevp;
115 uint8_t *mdord;
116 uint8_t mdmax = DANETLS_MATCHING_LAST;
117 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
118 size_t i;
119
120 if (dctx->mdevp != NULL)
121 return 1;
122
123 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
124 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
125
126 if (mdord == NULL || mdevp == NULL) {
127 OPENSSL_free(mdord);
128 OPENSSL_free(mdevp);
129 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
130 return 0;
131 }
132
133 /* Install default entries */
134 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
135 const EVP_MD *md;
136
137 if (dane_mds[i].nid == NID_undef ||
138 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
139 continue;
140 mdevp[dane_mds[i].mtype] = md;
141 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
142 }
143
144 dctx->mdevp = mdevp;
145 dctx->mdord = mdord;
146 dctx->mdmax = mdmax;
147
148 return 1;
149 }
150
151 static void dane_ctx_final(struct dane_ctx_st *dctx)
152 {
153 OPENSSL_free(dctx->mdevp);
154 dctx->mdevp = NULL;
155
156 OPENSSL_free(dctx->mdord);
157 dctx->mdord = NULL;
158 dctx->mdmax = 0;
159 }
160
161 static void tlsa_free(danetls_record *t)
162 {
163 if (t == NULL)
164 return;
165 OPENSSL_free(t->data);
166 EVP_PKEY_free(t->spki);
167 OPENSSL_free(t);
168 }
169
170 static void dane_final(SSL_DANE *dane)
171 {
172 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
173 dane->trecs = NULL;
174
175 sk_X509_pop_free(dane->certs, X509_free);
176 dane->certs = NULL;
177
178 X509_free(dane->mcert);
179 dane->mcert = NULL;
180 dane->mtlsa = NULL;
181 dane->mdpth = -1;
182 dane->pdpth = -1;
183 }
184
185 /*
186 * dane_copy - Copy dane configuration, sans verification state.
187 */
188 static int ssl_dane_dup(SSL *to, SSL *from)
189 {
190 int num;
191 int i;
192
193 if (!DANETLS_ENABLED(&from->dane))
194 return 1;
195
196 num = sk_danetls_record_num(from->dane.trecs);
197 dane_final(&to->dane);
198 to->dane.flags = from->dane.flags;
199 to->dane.dctx = &to->ctx->dane;
200 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
201
202 if (to->dane.trecs == NULL) {
203 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
204 return 0;
205 }
206
207 for (i = 0; i < num; ++i) {
208 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
209
210 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
211 t->data, t->dlen) <= 0)
212 return 0;
213 }
214 return 1;
215 }
216
217 static int dane_mtype_set(struct dane_ctx_st *dctx,
218 const EVP_MD *md, uint8_t mtype, uint8_t ord)
219 {
220 int i;
221
222 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
223 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
224 return 0;
225 }
226
227 if (mtype > dctx->mdmax) {
228 const EVP_MD **mdevp;
229 uint8_t *mdord;
230 int n = ((int)mtype) + 1;
231
232 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
233 if (mdevp == NULL) {
234 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
235 return -1;
236 }
237 dctx->mdevp = mdevp;
238
239 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
240 if (mdord == NULL) {
241 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
242 return -1;
243 }
244 dctx->mdord = mdord;
245
246 /* Zero-fill any gaps */
247 for (i = dctx->mdmax + 1; i < mtype; ++i) {
248 mdevp[i] = NULL;
249 mdord[i] = 0;
250 }
251
252 dctx->mdmax = mtype;
253 }
254
255 dctx->mdevp[mtype] = md;
256 /* Coerce ordinal of disabled matching types to 0 */
257 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
258
259 return 1;
260 }
261
262 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
263 {
264 if (mtype > dane->dctx->mdmax)
265 return NULL;
266 return dane->dctx->mdevp[mtype];
267 }
268
269 static int dane_tlsa_add(SSL_DANE *dane,
270 uint8_t usage,
271 uint8_t selector,
272 uint8_t mtype, const unsigned char *data, size_t dlen)
273 {
274 danetls_record *t;
275 const EVP_MD *md = NULL;
276 int ilen = (int)dlen;
277 int i;
278 int num;
279
280 if (dane->trecs == NULL) {
281 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED);
282 return -1;
283 }
284
285 if (ilen < 0 || dlen != (size_t)ilen) {
286 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
287 return 0;
288 }
289
290 if (usage > DANETLS_USAGE_LAST) {
291 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
292 return 0;
293 }
294
295 if (selector > DANETLS_SELECTOR_LAST) {
296 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR);
297 return 0;
298 }
299
300 if (mtype != DANETLS_MATCHING_FULL) {
301 md = tlsa_md_get(dane, mtype);
302 if (md == NULL) {
303 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
304 return 0;
305 }
306 }
307
308 if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) {
309 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
310 return 0;
311 }
312 if (!data) {
313 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA);
314 return 0;
315 }
316
317 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
318 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
319 return -1;
320 }
321
322 t->usage = usage;
323 t->selector = selector;
324 t->mtype = mtype;
325 t->data = OPENSSL_malloc(dlen);
326 if (t->data == NULL) {
327 tlsa_free(t);
328 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
329 return -1;
330 }
331 memcpy(t->data, data, dlen);
332 t->dlen = dlen;
333
334 /* Validate and cache full certificate or public key */
335 if (mtype == DANETLS_MATCHING_FULL) {
336 const unsigned char *p = data;
337 X509 *cert = NULL;
338 EVP_PKEY *pkey = NULL;
339
340 switch (selector) {
341 case DANETLS_SELECTOR_CERT:
342 if (!d2i_X509(&cert, &p, ilen) || p < data ||
343 dlen != (size_t)(p - data)) {
344 tlsa_free(t);
345 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
346 return 0;
347 }
348 if (X509_get0_pubkey(cert) == NULL) {
349 tlsa_free(t);
350 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
351 return 0;
352 }
353
354 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
355 X509_free(cert);
356 break;
357 }
358
359 /*
360 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
361 * records that contain full certificates of trust-anchors that are
362 * not present in the wire chain. For usage PKIX-TA(0), we augment
363 * the chain with untrusted Full(0) certificates from DNS, in case
364 * they are missing from the chain.
365 */
366 if ((dane->certs == NULL &&
367 (dane->certs = sk_X509_new_null()) == NULL) ||
368 !sk_X509_push(dane->certs, cert)) {
369 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
370 X509_free(cert);
371 tlsa_free(t);
372 return -1;
373 }
374 break;
375
376 case DANETLS_SELECTOR_SPKI:
377 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
378 dlen != (size_t)(p - data)) {
379 tlsa_free(t);
380 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
381 return 0;
382 }
383
384 /*
385 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
386 * records that contain full bare keys of trust-anchors that are
387 * not present in the wire chain.
388 */
389 if (usage == DANETLS_USAGE_DANE_TA)
390 t->spki = pkey;
391 else
392 EVP_PKEY_free(pkey);
393 break;
394 }
395 }
396
397 /*-
398 * Find the right insertion point for the new record.
399 *
400 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
401 * they can be processed first, as they require no chain building, and no
402 * expiration or hostname checks. Because DANE-EE(3) is numerically
403 * largest, this is accomplished via descending sort by "usage".
404 *
405 * We also sort in descending order by matching ordinal to simplify
406 * the implementation of digest agility in the verification code.
407 *
408 * The choice of order for the selector is not significant, so we
409 * use the same descending order for consistency.
410 */
411 num = sk_danetls_record_num(dane->trecs);
412 for (i = 0; i < num; ++i) {
413 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
414
415 if (rec->usage > usage)
416 continue;
417 if (rec->usage < usage)
418 break;
419 if (rec->selector > selector)
420 continue;
421 if (rec->selector < selector)
422 break;
423 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
424 continue;
425 break;
426 }
427
428 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
429 tlsa_free(t);
430 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
431 return -1;
432 }
433 dane->umask |= DANETLS_USAGE_BIT(usage);
434
435 return 1;
436 }
437
438 /*
439 * Return 0 if there is only one version configured and it was disabled
440 * at configure time. Return 1 otherwise.
441 */
442 static int ssl_check_allowed_versions(int min_version, int max_version)
443 {
444 int minisdtls = 0, maxisdtls = 0;
445
446 /* Figure out if we're doing DTLS versions or TLS versions */
447 if (min_version == DTLS1_BAD_VER
448 || min_version >> 8 == DTLS1_VERSION_MAJOR)
449 minisdtls = 1;
450 if (max_version == DTLS1_BAD_VER
451 || max_version >> 8 == DTLS1_VERSION_MAJOR)
452 maxisdtls = 1;
453 /* A wildcard version of 0 could be DTLS or TLS. */
454 if ((minisdtls && !maxisdtls && max_version != 0)
455 || (maxisdtls && !minisdtls && min_version != 0)) {
456 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
457 return 0;
458 }
459
460 if (minisdtls || maxisdtls) {
461 /* Do DTLS version checks. */
462 if (min_version == 0)
463 /* Ignore DTLS1_BAD_VER */
464 min_version = DTLS1_VERSION;
465 if (max_version == 0)
466 max_version = DTLS1_2_VERSION;
467 #ifdef OPENSSL_NO_DTLS1_2
468 if (max_version == DTLS1_2_VERSION)
469 max_version = DTLS1_VERSION;
470 #endif
471 #ifdef OPENSSL_NO_DTLS1
472 if (min_version == DTLS1_VERSION)
473 min_version = DTLS1_2_VERSION;
474 #endif
475 /* Done massaging versions; do the check. */
476 if (0
477 #ifdef OPENSSL_NO_DTLS1
478 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
479 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
480 #endif
481 #ifdef OPENSSL_NO_DTLS1_2
482 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
483 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
484 #endif
485 )
486 return 0;
487 } else {
488 /* Regular TLS version checks. */
489 if (min_version == 0)
490 min_version = SSL3_VERSION;
491 if (max_version == 0)
492 max_version = TLS1_3_VERSION;
493 #ifdef OPENSSL_NO_TLS1_3
494 if (max_version == TLS1_3_VERSION)
495 max_version = TLS1_2_VERSION;
496 #endif
497 #ifdef OPENSSL_NO_TLS1_2
498 if (max_version == TLS1_2_VERSION)
499 max_version = TLS1_1_VERSION;
500 #endif
501 #ifdef OPENSSL_NO_TLS1_1
502 if (max_version == TLS1_1_VERSION)
503 max_version = TLS1_VERSION;
504 #endif
505 #ifdef OPENSSL_NO_TLS1
506 if (max_version == TLS1_VERSION)
507 max_version = SSL3_VERSION;
508 #endif
509 #ifdef OPENSSL_NO_SSL3
510 if (min_version == SSL3_VERSION)
511 min_version = TLS1_VERSION;
512 #endif
513 #ifdef OPENSSL_NO_TLS1
514 if (min_version == TLS1_VERSION)
515 min_version = TLS1_1_VERSION;
516 #endif
517 #ifdef OPENSSL_NO_TLS1_1
518 if (min_version == TLS1_1_VERSION)
519 min_version = TLS1_2_VERSION;
520 #endif
521 #ifdef OPENSSL_NO_TLS1_2
522 if (min_version == TLS1_2_VERSION)
523 min_version = TLS1_3_VERSION;
524 #endif
525 /* Done massaging versions; do the check. */
526 if (0
527 #ifdef OPENSSL_NO_SSL3
528 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
529 #endif
530 #ifdef OPENSSL_NO_TLS1
531 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
532 #endif
533 #ifdef OPENSSL_NO_TLS1_1
534 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
535 #endif
536 #ifdef OPENSSL_NO_TLS1_2
537 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
538 #endif
539 #ifdef OPENSSL_NO_TLS1_3
540 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
541 #endif
542 )
543 return 0;
544 }
545 return 1;
546 }
547
548 #if defined(__TANDEM) && defined(OPENSSL_VPROC)
549 /*
550 * Define a VPROC function for HP NonStop build ssl library.
551 * This is used by platform version identification tools.
552 * Do not inline this procedure or make it static.
553 */
554 # define OPENSSL_VPROC_STRING_(x) x##_SSL
555 # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x)
556 # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC)
557 void OPENSSL_VPROC_FUNC(void) {}
558 #endif
559
560
561 static void clear_ciphers(SSL *s)
562 {
563 /* clear the current cipher */
564 ssl_clear_cipher_ctx(s);
565 ssl_clear_hash_ctx(&s->read_hash);
566 ssl_clear_hash_ctx(&s->write_hash);
567 }
568
569 int SSL_clear(SSL *s)
570 {
571 if (s->method == NULL) {
572 ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED);
573 return 0;
574 }
575
576 if (ssl_clear_bad_session(s)) {
577 SSL_SESSION_free(s->session);
578 s->session = NULL;
579 }
580 SSL_SESSION_free(s->psksession);
581 s->psksession = NULL;
582 OPENSSL_free(s->psksession_id);
583 s->psksession_id = NULL;
584 s->psksession_id_len = 0;
585 s->hello_retry_request = 0;
586 s->sent_tickets = 0;
587
588 s->error = 0;
589 s->hit = 0;
590 s->shutdown = 0;
591
592 if (s->renegotiate) {
593 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
594 return 0;
595 }
596
597 ossl_statem_clear(s);
598
599 s->version = s->method->version;
600 s->client_version = s->version;
601 s->rwstate = SSL_NOTHING;
602
603 BUF_MEM_free(s->init_buf);
604 s->init_buf = NULL;
605 clear_ciphers(s);
606 s->first_packet = 0;
607
608 s->key_update = SSL_KEY_UPDATE_NONE;
609
610 EVP_MD_CTX_free(s->pha_dgst);
611 s->pha_dgst = NULL;
612
613 /* Reset DANE verification result state */
614 s->dane.mdpth = -1;
615 s->dane.pdpth = -1;
616 X509_free(s->dane.mcert);
617 s->dane.mcert = NULL;
618 s->dane.mtlsa = NULL;
619
620 /* Clear the verification result peername */
621 X509_VERIFY_PARAM_move_peername(s->param, NULL);
622
623 /* Clear any shared connection state */
624 OPENSSL_free(s->shared_sigalgs);
625 s->shared_sigalgs = NULL;
626 s->shared_sigalgslen = 0;
627
628 /*
629 * Check to see if we were changed into a different method, if so, revert
630 * back.
631 */
632 if (s->method != s->ctx->method) {
633 s->method->ssl_free(s);
634 s->method = s->ctx->method;
635 if (!s->method->ssl_new(s))
636 return 0;
637 } else {
638 if (!s->method->ssl_clear(s))
639 return 0;
640 }
641
642 RECORD_LAYER_clear(&s->rlayer);
643
644 return 1;
645 }
646
647 #ifndef OPENSSL_NO_DEPRECATED_3_0
648 /** Used to change an SSL_CTXs default SSL method type */
649 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
650 {
651 STACK_OF(SSL_CIPHER) *sk;
652
653 ctx->method = meth;
654
655 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
656 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
657 return 0;
658 }
659 sk = ssl_create_cipher_list(ctx,
660 ctx->tls13_ciphersuites,
661 &(ctx->cipher_list),
662 &(ctx->cipher_list_by_id),
663 OSSL_default_cipher_list(), ctx->cert);
664 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
665 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
666 return 0;
667 }
668 return 1;
669 }
670 #endif
671
672 SSL *SSL_new(SSL_CTX *ctx)
673 {
674 SSL *s;
675
676 if (ctx == NULL) {
677 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX);
678 return NULL;
679 }
680 if (ctx->method == NULL) {
681 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
682 return NULL;
683 }
684
685 s = OPENSSL_zalloc(sizeof(*s));
686 if (s == NULL)
687 goto err;
688
689 s->references = 1;
690 s->lock = CRYPTO_THREAD_lock_new();
691 if (s->lock == NULL) {
692 OPENSSL_free(s);
693 s = NULL;
694 goto err;
695 }
696
697 RECORD_LAYER_init(&s->rlayer, s);
698
699 s->options = ctx->options;
700 s->dane.flags = ctx->dane.flags;
701 s->min_proto_version = ctx->min_proto_version;
702 s->max_proto_version = ctx->max_proto_version;
703 s->mode = ctx->mode;
704 s->max_cert_list = ctx->max_cert_list;
705 s->max_early_data = ctx->max_early_data;
706 s->recv_max_early_data = ctx->recv_max_early_data;
707 s->num_tickets = ctx->num_tickets;
708 s->pha_enabled = ctx->pha_enabled;
709
710 /* Shallow copy of the ciphersuites stack */
711 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
712 if (s->tls13_ciphersuites == NULL)
713 goto err;
714
715 /*
716 * Earlier library versions used to copy the pointer to the CERT, not
717 * its contents; only when setting new parameters for the per-SSL
718 * copy, ssl_cert_new would be called (and the direct reference to
719 * the per-SSL_CTX settings would be lost, but those still were
720 * indirectly accessed for various purposes, and for that reason they
721 * used to be known as s->ctx->default_cert). Now we don't look at the
722 * SSL_CTX's CERT after having duplicated it once.
723 */
724 s->cert = ssl_cert_dup(ctx->cert);
725 if (s->cert == NULL)
726 goto err;
727
728 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
729 s->msg_callback = ctx->msg_callback;
730 s->msg_callback_arg = ctx->msg_callback_arg;
731 s->verify_mode = ctx->verify_mode;
732 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
733 s->record_padding_cb = ctx->record_padding_cb;
734 s->record_padding_arg = ctx->record_padding_arg;
735 s->block_padding = ctx->block_padding;
736 s->sid_ctx_length = ctx->sid_ctx_length;
737 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
738 goto err;
739 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
740 s->verify_callback = ctx->default_verify_callback;
741 s->generate_session_id = ctx->generate_session_id;
742
743 s->param = X509_VERIFY_PARAM_new();
744 if (s->param == NULL)
745 goto err;
746 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
747 s->quiet_shutdown = ctx->quiet_shutdown;
748
749 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
750 s->max_send_fragment = ctx->max_send_fragment;
751 s->split_send_fragment = ctx->split_send_fragment;
752 s->max_pipelines = ctx->max_pipelines;
753 if (s->max_pipelines > 1)
754 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
755 if (ctx->default_read_buf_len > 0)
756 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
757
758 SSL_CTX_up_ref(ctx);
759 s->ctx = ctx;
760 s->ext.debug_cb = 0;
761 s->ext.debug_arg = NULL;
762 s->ext.ticket_expected = 0;
763 s->ext.status_type = ctx->ext.status_type;
764 s->ext.status_expected = 0;
765 s->ext.ocsp.ids = NULL;
766 s->ext.ocsp.exts = NULL;
767 s->ext.ocsp.resp = NULL;
768 s->ext.ocsp.resp_len = 0;
769 SSL_CTX_up_ref(ctx);
770 s->session_ctx = ctx;
771 if (ctx->ext.ecpointformats) {
772 s->ext.ecpointformats =
773 OPENSSL_memdup(ctx->ext.ecpointformats,
774 ctx->ext.ecpointformats_len);
775 if (!s->ext.ecpointformats) {
776 s->ext.ecpointformats_len = 0;
777 goto err;
778 }
779 s->ext.ecpointformats_len =
780 ctx->ext.ecpointformats_len;
781 }
782 if (ctx->ext.supportedgroups) {
783 s->ext.supportedgroups =
784 OPENSSL_memdup(ctx->ext.supportedgroups,
785 ctx->ext.supportedgroups_len
786 * sizeof(*ctx->ext.supportedgroups));
787 if (!s->ext.supportedgroups) {
788 s->ext.supportedgroups_len = 0;
789 goto err;
790 }
791 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
792 }
793
794 #ifndef OPENSSL_NO_NEXTPROTONEG
795 s->ext.npn = NULL;
796 #endif
797
798 if (s->ctx->ext.alpn) {
799 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
800 if (s->ext.alpn == NULL) {
801 s->ext.alpn_len = 0;
802 goto err;
803 }
804 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
805 s->ext.alpn_len = s->ctx->ext.alpn_len;
806 }
807
808 s->verified_chain = NULL;
809 s->verify_result = X509_V_OK;
810
811 s->default_passwd_callback = ctx->default_passwd_callback;
812 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
813
814 s->method = ctx->method;
815
816 s->key_update = SSL_KEY_UPDATE_NONE;
817
818 s->allow_early_data_cb = ctx->allow_early_data_cb;
819 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
820
821 if (!s->method->ssl_new(s))
822 goto err;
823
824 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
825
826 if (!SSL_clear(s))
827 goto err;
828
829 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
830 goto err;
831
832 #ifndef OPENSSL_NO_PSK
833 s->psk_client_callback = ctx->psk_client_callback;
834 s->psk_server_callback = ctx->psk_server_callback;
835 #endif
836 s->psk_find_session_cb = ctx->psk_find_session_cb;
837 s->psk_use_session_cb = ctx->psk_use_session_cb;
838
839 s->async_cb = ctx->async_cb;
840 s->async_cb_arg = ctx->async_cb_arg;
841
842 s->job = NULL;
843
844 #ifndef OPENSSL_NO_CT
845 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
846 ctx->ct_validation_callback_arg))
847 goto err;
848 #endif
849
850 return s;
851 err:
852 SSL_free(s);
853 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
854 return NULL;
855 }
856
857 int SSL_is_dtls(const SSL *s)
858 {
859 return SSL_IS_DTLS(s) ? 1 : 0;
860 }
861
862 int SSL_up_ref(SSL *s)
863 {
864 int i;
865
866 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
867 return 0;
868
869 REF_PRINT_COUNT("SSL", s);
870 REF_ASSERT_ISNT(i < 2);
871 return ((i > 1) ? 1 : 0);
872 }
873
874 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
875 unsigned int sid_ctx_len)
876 {
877 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
878 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
879 return 0;
880 }
881 ctx->sid_ctx_length = sid_ctx_len;
882 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
883
884 return 1;
885 }
886
887 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
888 unsigned int sid_ctx_len)
889 {
890 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
891 ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
892 return 0;
893 }
894 ssl->sid_ctx_length = sid_ctx_len;
895 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
896
897 return 1;
898 }
899
900 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
901 {
902 if (!CRYPTO_THREAD_write_lock(ctx->lock))
903 return 0;
904 ctx->generate_session_id = cb;
905 CRYPTO_THREAD_unlock(ctx->lock);
906 return 1;
907 }
908
909 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
910 {
911 if (!CRYPTO_THREAD_write_lock(ssl->lock))
912 return 0;
913 ssl->generate_session_id = cb;
914 CRYPTO_THREAD_unlock(ssl->lock);
915 return 1;
916 }
917
918 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
919 unsigned int id_len)
920 {
921 /*
922 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
923 * we can "construct" a session to give us the desired check - i.e. to
924 * find if there's a session in the hash table that would conflict with
925 * any new session built out of this id/id_len and the ssl_version in use
926 * by this SSL.
927 */
928 SSL_SESSION r, *p;
929
930 if (id_len > sizeof(r.session_id))
931 return 0;
932
933 r.ssl_version = ssl->version;
934 r.session_id_length = id_len;
935 memcpy(r.session_id, id, id_len);
936
937 if (!CRYPTO_THREAD_read_lock(ssl->session_ctx->lock))
938 return 0;
939 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
940 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
941 return (p != NULL);
942 }
943
944 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
945 {
946 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
947 }
948
949 int SSL_set_purpose(SSL *s, int purpose)
950 {
951 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
952 }
953
954 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
955 {
956 return X509_VERIFY_PARAM_set_trust(s->param, trust);
957 }
958
959 int SSL_set_trust(SSL *s, int trust)
960 {
961 return X509_VERIFY_PARAM_set_trust(s->param, trust);
962 }
963
964 int SSL_set1_host(SSL *s, const char *hostname)
965 {
966 /* If a hostname is provided and parses as an IP address,
967 * treat it as such. */
968 if (hostname && X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname) == 1)
969 return 1;
970
971 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
972 }
973
974 int SSL_add1_host(SSL *s, const char *hostname)
975 {
976 /* If a hostname is provided and parses as an IP address,
977 * treat it as such. */
978 if (hostname)
979 {
980 ASN1_OCTET_STRING *ip;
981 char *old_ip;
982
983 ip = a2i_IPADDRESS(hostname);
984 if (ip) {
985 /* We didn't want it; only to check if it *is* an IP address */
986 ASN1_OCTET_STRING_free(ip);
987
988 old_ip = X509_VERIFY_PARAM_get1_ip_asc(s->param);
989 if (old_ip)
990 {
991 OPENSSL_free(old_ip);
992 /* There can be only one IP address */
993 return 0;
994 }
995
996 return X509_VERIFY_PARAM_set1_ip_asc(s->param, hostname);
997 }
998 }
999
1000 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
1001 }
1002
1003 void SSL_set_hostflags(SSL *s, unsigned int flags)
1004 {
1005 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
1006 }
1007
1008 const char *SSL_get0_peername(SSL *s)
1009 {
1010 return X509_VERIFY_PARAM_get0_peername(s->param);
1011 }
1012
1013 int SSL_CTX_dane_enable(SSL_CTX *ctx)
1014 {
1015 return dane_ctx_enable(&ctx->dane);
1016 }
1017
1018 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
1019 {
1020 unsigned long orig = ctx->dane.flags;
1021
1022 ctx->dane.flags |= flags;
1023 return orig;
1024 }
1025
1026 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1027 {
1028 unsigned long orig = ctx->dane.flags;
1029
1030 ctx->dane.flags &= ~flags;
1031 return orig;
1032 }
1033
1034 int SSL_dane_enable(SSL *s, const char *basedomain)
1035 {
1036 SSL_DANE *dane = &s->dane;
1037
1038 if (s->ctx->dane.mdmax == 0) {
1039 ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1040 return 0;
1041 }
1042 if (dane->trecs != NULL) {
1043 ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED);
1044 return 0;
1045 }
1046
1047 /*
1048 * Default SNI name. This rejects empty names, while set1_host below
1049 * accepts them and disables host name checks. To avoid side-effects with
1050 * invalid input, set the SNI name first.
1051 */
1052 if (s->ext.hostname == NULL) {
1053 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1054 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1055 return -1;
1056 }
1057 }
1058
1059 /* Primary RFC6125 reference identifier */
1060 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1061 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1062 return -1;
1063 }
1064
1065 dane->mdpth = -1;
1066 dane->pdpth = -1;
1067 dane->dctx = &s->ctx->dane;
1068 dane->trecs = sk_danetls_record_new_null();
1069
1070 if (dane->trecs == NULL) {
1071 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1072 return -1;
1073 }
1074 return 1;
1075 }
1076
1077 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1078 {
1079 unsigned long orig = ssl->dane.flags;
1080
1081 ssl->dane.flags |= flags;
1082 return orig;
1083 }
1084
1085 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1086 {
1087 unsigned long orig = ssl->dane.flags;
1088
1089 ssl->dane.flags &= ~flags;
1090 return orig;
1091 }
1092
1093 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1094 {
1095 SSL_DANE *dane = &s->dane;
1096
1097 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1098 return -1;
1099 if (dane->mtlsa) {
1100 if (mcert)
1101 *mcert = dane->mcert;
1102 if (mspki)
1103 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1104 }
1105 return dane->mdpth;
1106 }
1107
1108 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1109 uint8_t *mtype, const unsigned char **data, size_t *dlen)
1110 {
1111 SSL_DANE *dane = &s->dane;
1112
1113 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1114 return -1;
1115 if (dane->mtlsa) {
1116 if (usage)
1117 *usage = dane->mtlsa->usage;
1118 if (selector)
1119 *selector = dane->mtlsa->selector;
1120 if (mtype)
1121 *mtype = dane->mtlsa->mtype;
1122 if (data)
1123 *data = dane->mtlsa->data;
1124 if (dlen)
1125 *dlen = dane->mtlsa->dlen;
1126 }
1127 return dane->mdpth;
1128 }
1129
1130 SSL_DANE *SSL_get0_dane(SSL *s)
1131 {
1132 return &s->dane;
1133 }
1134
1135 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1136 uint8_t mtype, const unsigned char *data, size_t dlen)
1137 {
1138 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1139 }
1140
1141 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1142 uint8_t ord)
1143 {
1144 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1145 }
1146
1147 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1148 {
1149 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1150 }
1151
1152 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1153 {
1154 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1155 }
1156
1157 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1158 {
1159 return ctx->param;
1160 }
1161
1162 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1163 {
1164 return ssl->param;
1165 }
1166
1167 void SSL_certs_clear(SSL *s)
1168 {
1169 ssl_cert_clear_certs(s->cert);
1170 }
1171
1172 void SSL_free(SSL *s)
1173 {
1174 int i;
1175
1176 if (s == NULL)
1177 return;
1178 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1179 REF_PRINT_COUNT("SSL", s);
1180 if (i > 0)
1181 return;
1182 REF_ASSERT_ISNT(i < 0);
1183
1184 X509_VERIFY_PARAM_free(s->param);
1185 dane_final(&s->dane);
1186 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1187
1188 RECORD_LAYER_release(&s->rlayer);
1189
1190 /* Ignore return value */
1191 ssl_free_wbio_buffer(s);
1192
1193 BIO_free_all(s->wbio);
1194 s->wbio = NULL;
1195 BIO_free_all(s->rbio);
1196 s->rbio = NULL;
1197
1198 BUF_MEM_free(s->init_buf);
1199
1200 /* add extra stuff */
1201 sk_SSL_CIPHER_free(s->cipher_list);
1202 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1203 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1204 sk_SSL_CIPHER_free(s->peer_ciphers);
1205
1206 /* Make the next call work :-) */
1207 if (s->session != NULL) {
1208 ssl_clear_bad_session(s);
1209 SSL_SESSION_free(s->session);
1210 }
1211 SSL_SESSION_free(s->psksession);
1212 OPENSSL_free(s->psksession_id);
1213
1214 clear_ciphers(s);
1215
1216 ssl_cert_free(s->cert);
1217 OPENSSL_free(s->shared_sigalgs);
1218 /* Free up if allocated */
1219
1220 OPENSSL_free(s->ext.hostname);
1221 SSL_CTX_free(s->session_ctx);
1222 OPENSSL_free(s->ext.ecpointformats);
1223 OPENSSL_free(s->ext.peer_ecpointformats);
1224 OPENSSL_free(s->ext.supportedgroups);
1225 OPENSSL_free(s->ext.peer_supportedgroups);
1226 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1227 #ifndef OPENSSL_NO_OCSP
1228 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1229 #endif
1230 #ifndef OPENSSL_NO_CT
1231 SCT_LIST_free(s->scts);
1232 OPENSSL_free(s->ext.scts);
1233 #endif
1234 OPENSSL_free(s->ext.ocsp.resp);
1235 OPENSSL_free(s->ext.alpn);
1236 OPENSSL_free(s->ext.tls13_cookie);
1237 if (s->clienthello != NULL)
1238 OPENSSL_free(s->clienthello->pre_proc_exts);
1239 OPENSSL_free(s->clienthello);
1240 OPENSSL_free(s->pha_context);
1241 EVP_MD_CTX_free(s->pha_dgst);
1242
1243 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1244 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1245
1246 sk_X509_pop_free(s->verified_chain, X509_free);
1247
1248 if (s->method != NULL)
1249 s->method->ssl_free(s);
1250
1251 SSL_CTX_free(s->ctx);
1252
1253 ASYNC_WAIT_CTX_free(s->waitctx);
1254
1255 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1256 OPENSSL_free(s->ext.npn);
1257 #endif
1258
1259 #ifndef OPENSSL_NO_SRTP
1260 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1261 #endif
1262
1263 CRYPTO_THREAD_lock_free(s->lock);
1264
1265 OPENSSL_free(s);
1266 }
1267
1268 void SSL_set0_rbio(SSL *s, BIO *rbio)
1269 {
1270 BIO_free_all(s->rbio);
1271 s->rbio = rbio;
1272 }
1273
1274 void SSL_set0_wbio(SSL *s, BIO *wbio)
1275 {
1276 /*
1277 * If the output buffering BIO is still in place, remove it
1278 */
1279 if (s->bbio != NULL)
1280 s->wbio = BIO_pop(s->wbio);
1281
1282 BIO_free_all(s->wbio);
1283 s->wbio = wbio;
1284
1285 /* Re-attach |bbio| to the new |wbio|. */
1286 if (s->bbio != NULL)
1287 s->wbio = BIO_push(s->bbio, s->wbio);
1288 }
1289
1290 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1291 {
1292 /*
1293 * For historical reasons, this function has many different cases in
1294 * ownership handling.
1295 */
1296
1297 /* If nothing has changed, do nothing */
1298 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1299 return;
1300
1301 /*
1302 * If the two arguments are equal then one fewer reference is granted by the
1303 * caller than we want to take
1304 */
1305 if (rbio != NULL && rbio == wbio)
1306 BIO_up_ref(rbio);
1307
1308 /*
1309 * If only the wbio is changed only adopt one reference.
1310 */
1311 if (rbio == SSL_get_rbio(s)) {
1312 SSL_set0_wbio(s, wbio);
1313 return;
1314 }
1315 /*
1316 * There is an asymmetry here for historical reasons. If only the rbio is
1317 * changed AND the rbio and wbio were originally different, then we only
1318 * adopt one reference.
1319 */
1320 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1321 SSL_set0_rbio(s, rbio);
1322 return;
1323 }
1324
1325 /* Otherwise, adopt both references. */
1326 SSL_set0_rbio(s, rbio);
1327 SSL_set0_wbio(s, wbio);
1328 }
1329
1330 BIO *SSL_get_rbio(const SSL *s)
1331 {
1332 return s->rbio;
1333 }
1334
1335 BIO *SSL_get_wbio(const SSL *s)
1336 {
1337 if (s->bbio != NULL) {
1338 /*
1339 * If |bbio| is active, the true caller-configured BIO is its
1340 * |next_bio|.
1341 */
1342 return BIO_next(s->bbio);
1343 }
1344 return s->wbio;
1345 }
1346
1347 int SSL_get_fd(const SSL *s)
1348 {
1349 return SSL_get_rfd(s);
1350 }
1351
1352 int SSL_get_rfd(const SSL *s)
1353 {
1354 int ret = -1;
1355 BIO *b, *r;
1356
1357 b = SSL_get_rbio(s);
1358 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1359 if (r != NULL)
1360 BIO_get_fd(r, &ret);
1361 return ret;
1362 }
1363
1364 int SSL_get_wfd(const SSL *s)
1365 {
1366 int ret = -1;
1367 BIO *b, *r;
1368
1369 b = SSL_get_wbio(s);
1370 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1371 if (r != NULL)
1372 BIO_get_fd(r, &ret);
1373 return ret;
1374 }
1375
1376 #ifndef OPENSSL_NO_SOCK
1377 int SSL_set_fd(SSL *s, int fd)
1378 {
1379 int ret = 0;
1380 BIO *bio = NULL;
1381
1382 bio = BIO_new(BIO_s_socket());
1383
1384 if (bio == NULL) {
1385 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1386 goto err;
1387 }
1388 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1389 SSL_set_bio(s, bio, bio);
1390 #ifndef OPENSSL_NO_KTLS
1391 /*
1392 * The new socket is created successfully regardless of ktls_enable.
1393 * ktls_enable doesn't change any functionality of the socket, except
1394 * changing the setsockopt to enable the processing of ktls_start.
1395 * Thus, it is not a problem to call it for non-TLS sockets.
1396 */
1397 ktls_enable(fd);
1398 #endif /* OPENSSL_NO_KTLS */
1399 ret = 1;
1400 err:
1401 return ret;
1402 }
1403
1404 int SSL_set_wfd(SSL *s, int fd)
1405 {
1406 BIO *rbio = SSL_get_rbio(s);
1407
1408 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1409 || (int)BIO_get_fd(rbio, NULL) != fd) {
1410 BIO *bio = BIO_new(BIO_s_socket());
1411
1412 if (bio == NULL) {
1413 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1414 return 0;
1415 }
1416 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1417 SSL_set0_wbio(s, bio);
1418 #ifndef OPENSSL_NO_KTLS
1419 /*
1420 * The new socket is created successfully regardless of ktls_enable.
1421 * ktls_enable doesn't change any functionality of the socket, except
1422 * changing the setsockopt to enable the processing of ktls_start.
1423 * Thus, it is not a problem to call it for non-TLS sockets.
1424 */
1425 ktls_enable(fd);
1426 #endif /* OPENSSL_NO_KTLS */
1427 } else {
1428 BIO_up_ref(rbio);
1429 SSL_set0_wbio(s, rbio);
1430 }
1431 return 1;
1432 }
1433
1434 int SSL_set_rfd(SSL *s, int fd)
1435 {
1436 BIO *wbio = SSL_get_wbio(s);
1437
1438 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1439 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1440 BIO *bio = BIO_new(BIO_s_socket());
1441
1442 if (bio == NULL) {
1443 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
1444 return 0;
1445 }
1446 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1447 SSL_set0_rbio(s, bio);
1448 } else {
1449 BIO_up_ref(wbio);
1450 SSL_set0_rbio(s, wbio);
1451 }
1452
1453 return 1;
1454 }
1455 #endif
1456
1457 /* return length of latest Finished message we sent, copy to 'buf' */
1458 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1459 {
1460 size_t ret = 0;
1461
1462 ret = s->s3.tmp.finish_md_len;
1463 if (count > ret)
1464 count = ret;
1465 memcpy(buf, s->s3.tmp.finish_md, count);
1466 return ret;
1467 }
1468
1469 /* return length of latest Finished message we expected, copy to 'buf' */
1470 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1471 {
1472 size_t ret = 0;
1473
1474 ret = s->s3.tmp.peer_finish_md_len;
1475 if (count > ret)
1476 count = ret;
1477 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1478 return ret;
1479 }
1480
1481 int SSL_get_verify_mode(const SSL *s)
1482 {
1483 return s->verify_mode;
1484 }
1485
1486 int SSL_get_verify_depth(const SSL *s)
1487 {
1488 return X509_VERIFY_PARAM_get_depth(s->param);
1489 }
1490
1491 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1492 return s->verify_callback;
1493 }
1494
1495 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1496 {
1497 return ctx->verify_mode;
1498 }
1499
1500 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1501 {
1502 return X509_VERIFY_PARAM_get_depth(ctx->param);
1503 }
1504
1505 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1506 return ctx->default_verify_callback;
1507 }
1508
1509 void SSL_set_verify(SSL *s, int mode,
1510 int (*callback) (int ok, X509_STORE_CTX *ctx))
1511 {
1512 s->verify_mode = mode;
1513 if (callback != NULL)
1514 s->verify_callback = callback;
1515 }
1516
1517 void SSL_set_verify_depth(SSL *s, int depth)
1518 {
1519 X509_VERIFY_PARAM_set_depth(s->param, depth);
1520 }
1521
1522 void SSL_set_read_ahead(SSL *s, int yes)
1523 {
1524 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1525 }
1526
1527 int SSL_get_read_ahead(const SSL *s)
1528 {
1529 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1530 }
1531
1532 int SSL_pending(const SSL *s)
1533 {
1534 size_t pending = s->method->ssl_pending(s);
1535
1536 /*
1537 * SSL_pending cannot work properly if read-ahead is enabled
1538 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1539 * impossible to fix since SSL_pending cannot report errors that may be
1540 * observed while scanning the new data. (Note that SSL_pending() is
1541 * often used as a boolean value, so we'd better not return -1.)
1542 *
1543 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1544 * we just return INT_MAX.
1545 */
1546 return pending < INT_MAX ? (int)pending : INT_MAX;
1547 }
1548
1549 int SSL_has_pending(const SSL *s)
1550 {
1551 /*
1552 * Similar to SSL_pending() but returns a 1 to indicate that we have
1553 * unprocessed data available or 0 otherwise (as opposed to the number of
1554 * bytes available). Unlike SSL_pending() this will take into account
1555 * read_ahead data. A 1 return simply indicates that we have unprocessed
1556 * data. That data may not result in any application data, or we may fail
1557 * to parse the records for some reason.
1558 */
1559 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1560 return 1;
1561
1562 return RECORD_LAYER_read_pending(&s->rlayer);
1563 }
1564
1565 X509 *SSL_get1_peer_certificate(const SSL *s)
1566 {
1567 X509 *r = SSL_get0_peer_certificate(s);
1568
1569 if (r != NULL)
1570 X509_up_ref(r);
1571
1572 return r;
1573 }
1574
1575 X509 *SSL_get0_peer_certificate(const SSL *s)
1576 {
1577 if ((s == NULL) || (s->session == NULL))
1578 return NULL;
1579 else
1580 return s->session->peer;
1581 }
1582
1583 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1584 {
1585 STACK_OF(X509) *r;
1586
1587 if ((s == NULL) || (s->session == NULL))
1588 r = NULL;
1589 else
1590 r = s->session->peer_chain;
1591
1592 /*
1593 * If we are a client, cert_chain includes the peer's own certificate; if
1594 * we are a server, it does not.
1595 */
1596
1597 return r;
1598 }
1599
1600 /*
1601 * Now in theory, since the calling process own 't' it should be safe to
1602 * modify. We need to be able to read f without being hassled
1603 */
1604 int SSL_copy_session_id(SSL *t, const SSL *f)
1605 {
1606 int i;
1607 /* Do we need to do SSL locking? */
1608 if (!SSL_set_session(t, SSL_get_session(f))) {
1609 return 0;
1610 }
1611
1612 /*
1613 * what if we are setup for one protocol version but want to talk another
1614 */
1615 if (t->method != f->method) {
1616 t->method->ssl_free(t);
1617 t->method = f->method;
1618 if (t->method->ssl_new(t) == 0)
1619 return 0;
1620 }
1621
1622 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1623 ssl_cert_free(t->cert);
1624 t->cert = f->cert;
1625 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1626 return 0;
1627 }
1628
1629 return 1;
1630 }
1631
1632 /* Fix this so it checks all the valid key/cert options */
1633 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1634 {
1635 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1636 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1637 return 0;
1638 }
1639 if (ctx->cert->key->privatekey == NULL) {
1640 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1641 return 0;
1642 }
1643 return X509_check_private_key
1644 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1645 }
1646
1647 /* Fix this function so that it takes an optional type parameter */
1648 int SSL_check_private_key(const SSL *ssl)
1649 {
1650 if (ssl == NULL) {
1651 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1652 return 0;
1653 }
1654 if (ssl->cert->key->x509 == NULL) {
1655 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
1656 return 0;
1657 }
1658 if (ssl->cert->key->privatekey == NULL) {
1659 ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1660 return 0;
1661 }
1662 return X509_check_private_key(ssl->cert->key->x509,
1663 ssl->cert->key->privatekey);
1664 }
1665
1666 int SSL_waiting_for_async(SSL *s)
1667 {
1668 if (s->job)
1669 return 1;
1670
1671 return 0;
1672 }
1673
1674 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1675 {
1676 ASYNC_WAIT_CTX *ctx = s->waitctx;
1677
1678 if (ctx == NULL)
1679 return 0;
1680 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1681 }
1682
1683 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1684 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1685 {
1686 ASYNC_WAIT_CTX *ctx = s->waitctx;
1687
1688 if (ctx == NULL)
1689 return 0;
1690 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1691 numdelfds);
1692 }
1693
1694 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1695 {
1696 ctx->async_cb = callback;
1697 return 1;
1698 }
1699
1700 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1701 {
1702 ctx->async_cb_arg = arg;
1703 return 1;
1704 }
1705
1706 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1707 {
1708 s->async_cb = callback;
1709 return 1;
1710 }
1711
1712 int SSL_set_async_callback_arg(SSL *s, void *arg)
1713 {
1714 s->async_cb_arg = arg;
1715 return 1;
1716 }
1717
1718 int SSL_get_async_status(SSL *s, int *status)
1719 {
1720 ASYNC_WAIT_CTX *ctx = s->waitctx;
1721
1722 if (ctx == NULL)
1723 return 0;
1724 *status = ASYNC_WAIT_CTX_get_status(ctx);
1725 return 1;
1726 }
1727
1728 int SSL_accept(SSL *s)
1729 {
1730 if (s->handshake_func == NULL) {
1731 /* Not properly initialized yet */
1732 SSL_set_accept_state(s);
1733 }
1734
1735 return SSL_do_handshake(s);
1736 }
1737
1738 int SSL_connect(SSL *s)
1739 {
1740 if (s->handshake_func == NULL) {
1741 /* Not properly initialized yet */
1742 SSL_set_connect_state(s);
1743 }
1744
1745 return SSL_do_handshake(s);
1746 }
1747
1748 long SSL_get_default_timeout(const SSL *s)
1749 {
1750 return s->method->get_timeout();
1751 }
1752
1753 static int ssl_async_wait_ctx_cb(void *arg)
1754 {
1755 SSL *s = (SSL *)arg;
1756
1757 return s->async_cb(s, s->async_cb_arg);
1758 }
1759
1760 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1761 int (*func) (void *))
1762 {
1763 int ret;
1764 if (s->waitctx == NULL) {
1765 s->waitctx = ASYNC_WAIT_CTX_new();
1766 if (s->waitctx == NULL)
1767 return -1;
1768 if (s->async_cb != NULL
1769 && !ASYNC_WAIT_CTX_set_callback
1770 (s->waitctx, ssl_async_wait_ctx_cb, s))
1771 return -1;
1772 }
1773 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1774 sizeof(struct ssl_async_args))) {
1775 case ASYNC_ERR:
1776 s->rwstate = SSL_NOTHING;
1777 ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC);
1778 return -1;
1779 case ASYNC_PAUSE:
1780 s->rwstate = SSL_ASYNC_PAUSED;
1781 return -1;
1782 case ASYNC_NO_JOBS:
1783 s->rwstate = SSL_ASYNC_NO_JOBS;
1784 return -1;
1785 case ASYNC_FINISH:
1786 s->job = NULL;
1787 return ret;
1788 default:
1789 s->rwstate = SSL_NOTHING;
1790 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1791 /* Shouldn't happen */
1792 return -1;
1793 }
1794 }
1795
1796 static int ssl_io_intern(void *vargs)
1797 {
1798 struct ssl_async_args *args;
1799 SSL *s;
1800 void *buf;
1801 size_t num;
1802
1803 args = (struct ssl_async_args *)vargs;
1804 s = args->s;
1805 buf = args->buf;
1806 num = args->num;
1807 switch (args->type) {
1808 case READFUNC:
1809 return args->f.func_read(s, buf, num, &s->asyncrw);
1810 case WRITEFUNC:
1811 return args->f.func_write(s, buf, num, &s->asyncrw);
1812 case OTHERFUNC:
1813 return args->f.func_other(s);
1814 }
1815 return -1;
1816 }
1817
1818 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1819 {
1820 if (s->handshake_func == NULL) {
1821 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1822 return -1;
1823 }
1824
1825 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1826 s->rwstate = SSL_NOTHING;
1827 return 0;
1828 }
1829
1830 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1831 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1832 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1833 return 0;
1834 }
1835 /*
1836 * If we are a client and haven't received the ServerHello etc then we
1837 * better do that
1838 */
1839 ossl_statem_check_finish_init(s, 0);
1840
1841 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1842 struct ssl_async_args args;
1843 int ret;
1844
1845 args.s = s;
1846 args.buf = buf;
1847 args.num = num;
1848 args.type = READFUNC;
1849 args.f.func_read = s->method->ssl_read;
1850
1851 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1852 *readbytes = s->asyncrw;
1853 return ret;
1854 } else {
1855 return s->method->ssl_read(s, buf, num, readbytes);
1856 }
1857 }
1858
1859 int SSL_read(SSL *s, void *buf, int num)
1860 {
1861 int ret;
1862 size_t readbytes;
1863
1864 if (num < 0) {
1865 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1866 return -1;
1867 }
1868
1869 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1870
1871 /*
1872 * The cast is safe here because ret should be <= INT_MAX because num is
1873 * <= INT_MAX
1874 */
1875 if (ret > 0)
1876 ret = (int)readbytes;
1877
1878 return ret;
1879 }
1880
1881 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1882 {
1883 int ret = ssl_read_internal(s, buf, num, readbytes);
1884
1885 if (ret < 0)
1886 ret = 0;
1887 return ret;
1888 }
1889
1890 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1891 {
1892 int ret;
1893
1894 if (!s->server) {
1895 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1896 return SSL_READ_EARLY_DATA_ERROR;
1897 }
1898
1899 switch (s->early_data_state) {
1900 case SSL_EARLY_DATA_NONE:
1901 if (!SSL_in_before(s)) {
1902 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1903 return SSL_READ_EARLY_DATA_ERROR;
1904 }
1905 /* fall through */
1906
1907 case SSL_EARLY_DATA_ACCEPT_RETRY:
1908 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1909 ret = SSL_accept(s);
1910 if (ret <= 0) {
1911 /* NBIO or error */
1912 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1913 return SSL_READ_EARLY_DATA_ERROR;
1914 }
1915 /* fall through */
1916
1917 case SSL_EARLY_DATA_READ_RETRY:
1918 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1919 s->early_data_state = SSL_EARLY_DATA_READING;
1920 ret = SSL_read_ex(s, buf, num, readbytes);
1921 /*
1922 * State machine will update early_data_state to
1923 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1924 * message
1925 */
1926 if (ret > 0 || (ret <= 0 && s->early_data_state
1927 != SSL_EARLY_DATA_FINISHED_READING)) {
1928 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1929 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1930 : SSL_READ_EARLY_DATA_ERROR;
1931 }
1932 } else {
1933 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1934 }
1935 *readbytes = 0;
1936 return SSL_READ_EARLY_DATA_FINISH;
1937
1938 default:
1939 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1940 return SSL_READ_EARLY_DATA_ERROR;
1941 }
1942 }
1943
1944 int SSL_get_early_data_status(const SSL *s)
1945 {
1946 return s->ext.early_data;
1947 }
1948
1949 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1950 {
1951 if (s->handshake_func == NULL) {
1952 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
1953 return -1;
1954 }
1955
1956 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1957 return 0;
1958 }
1959 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1960 struct ssl_async_args args;
1961 int ret;
1962
1963 args.s = s;
1964 args.buf = buf;
1965 args.num = num;
1966 args.type = READFUNC;
1967 args.f.func_read = s->method->ssl_peek;
1968
1969 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1970 *readbytes = s->asyncrw;
1971 return ret;
1972 } else {
1973 return s->method->ssl_peek(s, buf, num, readbytes);
1974 }
1975 }
1976
1977 int SSL_peek(SSL *s, void *buf, int num)
1978 {
1979 int ret;
1980 size_t readbytes;
1981
1982 if (num < 0) {
1983 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1984 return -1;
1985 }
1986
1987 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1988
1989 /*
1990 * The cast is safe here because ret should be <= INT_MAX because num is
1991 * <= INT_MAX
1992 */
1993 if (ret > 0)
1994 ret = (int)readbytes;
1995
1996 return ret;
1997 }
1998
1999
2000 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
2001 {
2002 int ret = ssl_peek_internal(s, buf, num, readbytes);
2003
2004 if (ret < 0)
2005 ret = 0;
2006 return ret;
2007 }
2008
2009 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
2010 {
2011 if (s->handshake_func == NULL) {
2012 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2013 return -1;
2014 }
2015
2016 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2017 s->rwstate = SSL_NOTHING;
2018 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2019 return -1;
2020 }
2021
2022 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
2023 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
2024 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
2025 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2026 return 0;
2027 }
2028 /* If we are a client and haven't sent the Finished we better do that */
2029 ossl_statem_check_finish_init(s, 1);
2030
2031 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2032 int ret;
2033 struct ssl_async_args args;
2034
2035 args.s = s;
2036 args.buf = (void *)buf;
2037 args.num = num;
2038 args.type = WRITEFUNC;
2039 args.f.func_write = s->method->ssl_write;
2040
2041 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2042 *written = s->asyncrw;
2043 return ret;
2044 } else {
2045 return s->method->ssl_write(s, buf, num, written);
2046 }
2047 }
2048
2049 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2050 {
2051 ossl_ssize_t ret;
2052
2053 if (s->handshake_func == NULL) {
2054 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2055 return -1;
2056 }
2057
2058 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2059 s->rwstate = SSL_NOTHING;
2060 ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
2061 return -1;
2062 }
2063
2064 if (!BIO_get_ktls_send(s->wbio)) {
2065 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2066 return -1;
2067 }
2068
2069 /* If we have an alert to send, lets send it */
2070 if (s->s3.alert_dispatch) {
2071 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2072 if (ret <= 0) {
2073 /* SSLfatal() already called if appropriate */
2074 return ret;
2075 }
2076 /* if it went, fall through and send more stuff */
2077 }
2078
2079 s->rwstate = SSL_WRITING;
2080 if (BIO_flush(s->wbio) <= 0) {
2081 if (!BIO_should_retry(s->wbio)) {
2082 s->rwstate = SSL_NOTHING;
2083 } else {
2084 #ifdef EAGAIN
2085 set_sys_error(EAGAIN);
2086 #endif
2087 }
2088 return -1;
2089 }
2090
2091 #ifdef OPENSSL_NO_KTLS
2092 ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR,
2093 "can't call ktls_sendfile(), ktls disabled");
2094 return -1;
2095 #else
2096 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2097 if (ret < 0) {
2098 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2099 if ((get_last_sys_error() == EAGAIN) ||
2100 (get_last_sys_error() == EINTR) ||
2101 (get_last_sys_error() == EBUSY))
2102 BIO_set_retry_write(s->wbio);
2103 else
2104 #endif
2105 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2106 return ret;
2107 }
2108 s->rwstate = SSL_NOTHING;
2109 return ret;
2110 #endif
2111 }
2112
2113 int SSL_write(SSL *s, const void *buf, int num)
2114 {
2115 int ret;
2116 size_t written;
2117
2118 if (num < 0) {
2119 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
2120 return -1;
2121 }
2122
2123 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2124
2125 /*
2126 * The cast is safe here because ret should be <= INT_MAX because num is
2127 * <= INT_MAX
2128 */
2129 if (ret > 0)
2130 ret = (int)written;
2131
2132 return ret;
2133 }
2134
2135 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2136 {
2137 int ret = ssl_write_internal(s, buf, num, written);
2138
2139 if (ret < 0)
2140 ret = 0;
2141 return ret;
2142 }
2143
2144 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2145 {
2146 int ret, early_data_state;
2147 size_t writtmp;
2148 uint32_t partialwrite;
2149
2150 switch (s->early_data_state) {
2151 case SSL_EARLY_DATA_NONE:
2152 if (s->server
2153 || !SSL_in_before(s)
2154 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2155 && (s->psk_use_session_cb == NULL))) {
2156 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2157 return 0;
2158 }
2159 /* fall through */
2160
2161 case SSL_EARLY_DATA_CONNECT_RETRY:
2162 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2163 ret = SSL_connect(s);
2164 if (ret <= 0) {
2165 /* NBIO or error */
2166 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2167 return 0;
2168 }
2169 /* fall through */
2170
2171 case SSL_EARLY_DATA_WRITE_RETRY:
2172 s->early_data_state = SSL_EARLY_DATA_WRITING;
2173 /*
2174 * We disable partial write for early data because we don't keep track
2175 * of how many bytes we've written between the SSL_write_ex() call and
2176 * the flush if the flush needs to be retried)
2177 */
2178 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2179 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2180 ret = SSL_write_ex(s, buf, num, &writtmp);
2181 s->mode |= partialwrite;
2182 if (!ret) {
2183 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2184 return ret;
2185 }
2186 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2187 /* fall through */
2188
2189 case SSL_EARLY_DATA_WRITE_FLUSH:
2190 /* The buffering BIO is still in place so we need to flush it */
2191 if (statem_flush(s) != 1)
2192 return 0;
2193 *written = num;
2194 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2195 return 1;
2196
2197 case SSL_EARLY_DATA_FINISHED_READING:
2198 case SSL_EARLY_DATA_READ_RETRY:
2199 early_data_state = s->early_data_state;
2200 /* We are a server writing to an unauthenticated client */
2201 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2202 ret = SSL_write_ex(s, buf, num, written);
2203 /* The buffering BIO is still in place */
2204 if (ret)
2205 (void)BIO_flush(s->wbio);
2206 s->early_data_state = early_data_state;
2207 return ret;
2208
2209 default:
2210 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2211 return 0;
2212 }
2213 }
2214
2215 int SSL_shutdown(SSL *s)
2216 {
2217 /*
2218 * Note that this function behaves differently from what one might
2219 * expect. Return values are 0 for no success (yet), 1 for success; but
2220 * calling it once is usually not enough, even if blocking I/O is used
2221 * (see ssl3_shutdown).
2222 */
2223
2224 if (s->handshake_func == NULL) {
2225 ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED);
2226 return -1;
2227 }
2228
2229 if (!SSL_in_init(s)) {
2230 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2231 struct ssl_async_args args;
2232
2233 args.s = s;
2234 args.type = OTHERFUNC;
2235 args.f.func_other = s->method->ssl_shutdown;
2236
2237 return ssl_start_async_job(s, &args, ssl_io_intern);
2238 } else {
2239 return s->method->ssl_shutdown(s);
2240 }
2241 } else {
2242 ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2243 return -1;
2244 }
2245 }
2246
2247 int SSL_key_update(SSL *s, int updatetype)
2248 {
2249 if (!SSL_IS_TLS13(s)) {
2250 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2251 return 0;
2252 }
2253
2254 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2255 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2256 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE);
2257 return 0;
2258 }
2259
2260 if (!SSL_is_init_finished(s)) {
2261 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
2262 return 0;
2263 }
2264
2265 ossl_statem_set_in_init(s, 1);
2266 s->key_update = updatetype;
2267 return 1;
2268 }
2269
2270 int SSL_get_key_update_type(const SSL *s)
2271 {
2272 return s->key_update;
2273 }
2274
2275 /*
2276 * Can we accept a renegotiation request? If yes, set the flag and
2277 * return 1 if yes. If not, raise error and return 0.
2278 */
2279 static int can_renegotiate(const SSL *s)
2280 {
2281 if (SSL_IS_TLS13(s)) {
2282 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
2283 return 0;
2284 }
2285
2286 if ((s->options & SSL_OP_NO_RENEGOTIATION) != 0) {
2287 ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION);
2288 return 0;
2289 }
2290
2291 return 1;
2292 }
2293
2294 int SSL_renegotiate(SSL *s)
2295 {
2296 if (!can_renegotiate(s))
2297 return 0;
2298
2299 s->renegotiate = 1;
2300 s->new_session = 1;
2301 return s->method->ssl_renegotiate(s);
2302 }
2303
2304 int SSL_renegotiate_abbreviated(SSL *s)
2305 {
2306 if (!can_renegotiate(s))
2307 return 0;
2308
2309 s->renegotiate = 1;
2310 s->new_session = 0;
2311 return s->method->ssl_renegotiate(s);
2312 }
2313
2314 int SSL_renegotiate_pending(const SSL *s)
2315 {
2316 /*
2317 * becomes true when negotiation is requested; false again once a
2318 * handshake has finished
2319 */
2320 return (s->renegotiate != 0);
2321 }
2322
2323 int SSL_new_session_ticket(SSL *s)
2324 {
2325 /* If we are in init because we're sending tickets, okay to send more. */
2326 if ((SSL_in_init(s) && s->ext.extra_tickets_expected == 0)
2327 || SSL_IS_FIRST_HANDSHAKE(s) || !s->server
2328 || !SSL_IS_TLS13(s))
2329 return 0;
2330 s->ext.extra_tickets_expected++;
2331 if (s->rlayer.wbuf[0].left == 0 && !SSL_in_init(s))
2332 ossl_statem_set_in_init(s, 1);
2333 return 1;
2334 }
2335
2336 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2337 {
2338 long l;
2339
2340 switch (cmd) {
2341 case SSL_CTRL_GET_READ_AHEAD:
2342 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2343 case SSL_CTRL_SET_READ_AHEAD:
2344 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2345 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2346 return l;
2347
2348 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2349 s->msg_callback_arg = parg;
2350 return 1;
2351
2352 case SSL_CTRL_MODE:
2353 return (s->mode |= larg);
2354 case SSL_CTRL_CLEAR_MODE:
2355 return (s->mode &= ~larg);
2356 case SSL_CTRL_GET_MAX_CERT_LIST:
2357 return (long)s->max_cert_list;
2358 case SSL_CTRL_SET_MAX_CERT_LIST:
2359 if (larg < 0)
2360 return 0;
2361 l = (long)s->max_cert_list;
2362 s->max_cert_list = (size_t)larg;
2363 return l;
2364 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2365 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2366 return 0;
2367 #ifndef OPENSSL_NO_KTLS
2368 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2369 return 0;
2370 #endif /* OPENSSL_NO_KTLS */
2371 s->max_send_fragment = larg;
2372 if (s->max_send_fragment < s->split_send_fragment)
2373 s->split_send_fragment = s->max_send_fragment;
2374 return 1;
2375 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2376 if ((size_t)larg > s->max_send_fragment || larg == 0)
2377 return 0;
2378 s->split_send_fragment = larg;
2379 return 1;
2380 case SSL_CTRL_SET_MAX_PIPELINES:
2381 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2382 return 0;
2383 s->max_pipelines = larg;
2384 if (larg > 1)
2385 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2386 return 1;
2387 case SSL_CTRL_GET_RI_SUPPORT:
2388 return s->s3.send_connection_binding;
2389 case SSL_CTRL_CERT_FLAGS:
2390 return (s->cert->cert_flags |= larg);
2391 case SSL_CTRL_CLEAR_CERT_FLAGS:
2392 return (s->cert->cert_flags &= ~larg);
2393
2394 case SSL_CTRL_GET_RAW_CIPHERLIST:
2395 if (parg) {
2396 if (s->s3.tmp.ciphers_raw == NULL)
2397 return 0;
2398 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2399 return (int)s->s3.tmp.ciphers_rawlen;
2400 } else {
2401 return TLS_CIPHER_LEN;
2402 }
2403 case SSL_CTRL_GET_EXTMS_SUPPORT:
2404 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2405 return -1;
2406 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2407 return 1;
2408 else
2409 return 0;
2410 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2411 return ssl_check_allowed_versions(larg, s->max_proto_version)
2412 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2413 &s->min_proto_version);
2414 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2415 return s->min_proto_version;
2416 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2417 return ssl_check_allowed_versions(s->min_proto_version, larg)
2418 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2419 &s->max_proto_version);
2420 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2421 return s->max_proto_version;
2422 default:
2423 return s->method->ssl_ctrl(s, cmd, larg, parg);
2424 }
2425 }
2426
2427 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2428 {
2429 switch (cmd) {
2430 case SSL_CTRL_SET_MSG_CALLBACK:
2431 s->msg_callback = (void (*)
2432 (int write_p, int version, int content_type,
2433 const void *buf, size_t len, SSL *ssl,
2434 void *arg))(fp);
2435 return 1;
2436
2437 default:
2438 return s->method->ssl_callback_ctrl(s, cmd, fp);
2439 }
2440 }
2441
2442 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2443 {
2444 return ctx->sessions;
2445 }
2446
2447 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2448 {
2449 long l;
2450 /* For some cases with ctx == NULL perform syntax checks */
2451 if (ctx == NULL) {
2452 switch (cmd) {
2453 case SSL_CTRL_SET_GROUPS_LIST:
2454 return tls1_set_groups_list(ctx, NULL, NULL, parg);
2455 case SSL_CTRL_SET_SIGALGS_LIST:
2456 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2457 return tls1_set_sigalgs_list(NULL, parg, 0);
2458 default:
2459 return 0;
2460 }
2461 }
2462
2463 switch (cmd) {
2464 case SSL_CTRL_GET_READ_AHEAD:
2465 return ctx->read_ahead;
2466 case SSL_CTRL_SET_READ_AHEAD:
2467 l = ctx->read_ahead;
2468 ctx->read_ahead = larg;
2469 return l;
2470
2471 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2472 ctx->msg_callback_arg = parg;
2473 return 1;
2474
2475 case SSL_CTRL_GET_MAX_CERT_LIST:
2476 return (long)ctx->max_cert_list;
2477 case SSL_CTRL_SET_MAX_CERT_LIST:
2478 if (larg < 0)
2479 return 0;
2480 l = (long)ctx->max_cert_list;
2481 ctx->max_cert_list = (size_t)larg;
2482 return l;
2483
2484 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2485 if (larg < 0)
2486 return 0;
2487 l = (long)ctx->session_cache_size;
2488 ctx->session_cache_size = (size_t)larg;
2489 return l;
2490 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2491 return (long)ctx->session_cache_size;
2492 case SSL_CTRL_SET_SESS_CACHE_MODE:
2493 l = ctx->session_cache_mode;
2494 ctx->session_cache_mode = larg;
2495 return l;
2496 case SSL_CTRL_GET_SESS_CACHE_MODE:
2497 return ctx->session_cache_mode;
2498
2499 case SSL_CTRL_SESS_NUMBER:
2500 return lh_SSL_SESSION_num_items(ctx->sessions);
2501 case SSL_CTRL_SESS_CONNECT:
2502 return tsan_load(&ctx->stats.sess_connect);
2503 case SSL_CTRL_SESS_CONNECT_GOOD:
2504 return tsan_load(&ctx->stats.sess_connect_good);
2505 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2506 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2507 case SSL_CTRL_SESS_ACCEPT:
2508 return tsan_load(&ctx->stats.sess_accept);
2509 case SSL_CTRL_SESS_ACCEPT_GOOD:
2510 return tsan_load(&ctx->stats.sess_accept_good);
2511 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2512 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2513 case SSL_CTRL_SESS_HIT:
2514 return tsan_load(&ctx->stats.sess_hit);
2515 case SSL_CTRL_SESS_CB_HIT:
2516 return tsan_load(&ctx->stats.sess_cb_hit);
2517 case SSL_CTRL_SESS_MISSES:
2518 return tsan_load(&ctx->stats.sess_miss);
2519 case SSL_CTRL_SESS_TIMEOUTS:
2520 return tsan_load(&ctx->stats.sess_timeout);
2521 case SSL_CTRL_SESS_CACHE_FULL:
2522 return tsan_load(&ctx->stats.sess_cache_full);
2523 case SSL_CTRL_MODE:
2524 return (ctx->mode |= larg);
2525 case SSL_CTRL_CLEAR_MODE:
2526 return (ctx->mode &= ~larg);
2527 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2528 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2529 return 0;
2530 ctx->max_send_fragment = larg;
2531 if (ctx->max_send_fragment < ctx->split_send_fragment)
2532 ctx->split_send_fragment = ctx->max_send_fragment;
2533 return 1;
2534 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2535 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2536 return 0;
2537 ctx->split_send_fragment = larg;
2538 return 1;
2539 case SSL_CTRL_SET_MAX_PIPELINES:
2540 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2541 return 0;
2542 ctx->max_pipelines = larg;
2543 return 1;
2544 case SSL_CTRL_CERT_FLAGS:
2545 return (ctx->cert->cert_flags |= larg);
2546 case SSL_CTRL_CLEAR_CERT_FLAGS:
2547 return (ctx->cert->cert_flags &= ~larg);
2548 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2549 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2550 && ssl_set_version_bound(ctx->method->version, (int)larg,
2551 &ctx->min_proto_version);
2552 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2553 return ctx->min_proto_version;
2554 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2555 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2556 && ssl_set_version_bound(ctx->method->version, (int)larg,
2557 &ctx->max_proto_version);
2558 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2559 return ctx->max_proto_version;
2560 default:
2561 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2562 }
2563 }
2564
2565 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2566 {
2567 switch (cmd) {
2568 case SSL_CTRL_SET_MSG_CALLBACK:
2569 ctx->msg_callback = (void (*)
2570 (int write_p, int version, int content_type,
2571 const void *buf, size_t len, SSL *ssl,
2572 void *arg))(fp);
2573 return 1;
2574
2575 default:
2576 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2577 }
2578 }
2579
2580 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2581 {
2582 if (a->id > b->id)
2583 return 1;
2584 if (a->id < b->id)
2585 return -1;
2586 return 0;
2587 }
2588
2589 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2590 const SSL_CIPHER *const *bp)
2591 {
2592 if ((*ap)->id > (*bp)->id)
2593 return 1;
2594 if ((*ap)->id < (*bp)->id)
2595 return -1;
2596 return 0;
2597 }
2598
2599 /** return a STACK of the ciphers available for the SSL and in order of
2600 * preference */
2601 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2602 {
2603 if (s != NULL) {
2604 if (s->cipher_list != NULL) {
2605 return s->cipher_list;
2606 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2607 return s->ctx->cipher_list;
2608 }
2609 }
2610 return NULL;
2611 }
2612
2613 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2614 {
2615 if ((s == NULL) || !s->server)
2616 return NULL;
2617 return s->peer_ciphers;
2618 }
2619
2620 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2621 {
2622 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2623 int i;
2624
2625 ciphers = SSL_get_ciphers(s);
2626 if (!ciphers)
2627 return NULL;
2628 if (!ssl_set_client_disabled(s))
2629 return NULL;
2630 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2631 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2632 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2633 if (!sk)
2634 sk = sk_SSL_CIPHER_new_null();
2635 if (!sk)
2636 return NULL;
2637 if (!sk_SSL_CIPHER_push(sk, c)) {
2638 sk_SSL_CIPHER_free(sk);
2639 return NULL;
2640 }
2641 }
2642 }
2643 return sk;
2644 }
2645
2646 /** return a STACK of the ciphers available for the SSL and in order of
2647 * algorithm id */
2648 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2649 {
2650 if (s != NULL) {
2651 if (s->cipher_list_by_id != NULL) {
2652 return s->cipher_list_by_id;
2653 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2654 return s->ctx->cipher_list_by_id;
2655 }
2656 }
2657 return NULL;
2658 }
2659
2660 /** The old interface to get the same thing as SSL_get_ciphers() */
2661 const char *SSL_get_cipher_list(const SSL *s, int n)
2662 {
2663 const SSL_CIPHER *c;
2664 STACK_OF(SSL_CIPHER) *sk;
2665
2666 if (s == NULL)
2667 return NULL;
2668 sk = SSL_get_ciphers(s);
2669 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2670 return NULL;
2671 c = sk_SSL_CIPHER_value(sk, n);
2672 if (c == NULL)
2673 return NULL;
2674 return c->name;
2675 }
2676
2677 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2678 * preference */
2679 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2680 {
2681 if (ctx != NULL)
2682 return ctx->cipher_list;
2683 return NULL;
2684 }
2685
2686 /*
2687 * Distinguish between ciphers controlled by set_ciphersuite() and
2688 * set_cipher_list() when counting.
2689 */
2690 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2691 {
2692 int i, num = 0;
2693 const SSL_CIPHER *c;
2694
2695 if (sk == NULL)
2696 return 0;
2697 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2698 c = sk_SSL_CIPHER_value(sk, i);
2699 if (c->min_tls >= TLS1_3_VERSION)
2700 continue;
2701 num++;
2702 }
2703 return num;
2704 }
2705
2706 /** specify the ciphers to be used by default by the SSL_CTX */
2707 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2708 {
2709 STACK_OF(SSL_CIPHER) *sk;
2710
2711 sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites,
2712 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2713 ctx->cert);
2714 /*
2715 * ssl_create_cipher_list may return an empty stack if it was unable to
2716 * find a cipher matching the given rule string (for example if the rule
2717 * string specifies a cipher which has been disabled). This is not an
2718 * error as far as ssl_create_cipher_list is concerned, and hence
2719 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2720 */
2721 if (sk == NULL)
2722 return 0;
2723 else if (cipher_list_tls12_num(sk) == 0) {
2724 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2725 return 0;
2726 }
2727 return 1;
2728 }
2729
2730 /** specify the ciphers to be used by the SSL */
2731 int SSL_set_cipher_list(SSL *s, const char *str)
2732 {
2733 STACK_OF(SSL_CIPHER) *sk;
2734
2735 sk = ssl_create_cipher_list(s->ctx, s->tls13_ciphersuites,
2736 &s->cipher_list, &s->cipher_list_by_id, str,
2737 s->cert);
2738 /* see comment in SSL_CTX_set_cipher_list */
2739 if (sk == NULL)
2740 return 0;
2741 else if (cipher_list_tls12_num(sk) == 0) {
2742 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
2743 return 0;
2744 }
2745 return 1;
2746 }
2747
2748 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2749 {
2750 char *p;
2751 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2752 const SSL_CIPHER *c;
2753 int i;
2754
2755 if (!s->server
2756 || s->peer_ciphers == NULL
2757 || size < 2)
2758 return NULL;
2759
2760 p = buf;
2761 clntsk = s->peer_ciphers;
2762 srvrsk = SSL_get_ciphers(s);
2763 if (clntsk == NULL || srvrsk == NULL)
2764 return NULL;
2765
2766 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2767 return NULL;
2768
2769 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2770 int n;
2771
2772 c = sk_SSL_CIPHER_value(clntsk, i);
2773 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2774 continue;
2775
2776 n = strlen(c->name);
2777 if (n + 1 > size) {
2778 if (p != buf)
2779 --p;
2780 *p = '\0';
2781 return buf;
2782 }
2783 strcpy(p, c->name);
2784 p += n;
2785 *(p++) = ':';
2786 size -= n + 1;
2787 }
2788 p[-1] = '\0';
2789 return buf;
2790 }
2791
2792 /**
2793 * Return the requested servername (SNI) value. Note that the behaviour varies
2794 * depending on:
2795 * - whether this is called by the client or the server,
2796 * - if we are before or during/after the handshake,
2797 * - if a resumption or normal handshake is being attempted/has occurred
2798 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2799 *
2800 * Note that only the host_name type is defined (RFC 3546).
2801 */
2802 const char *SSL_get_servername(const SSL *s, const int type)
2803 {
2804 /*
2805 * If we don't know if we are the client or the server yet then we assume
2806 * client.
2807 */
2808 int server = s->handshake_func == NULL ? 0 : s->server;
2809 if (type != TLSEXT_NAMETYPE_host_name)
2810 return NULL;
2811
2812 if (server) {
2813 /**
2814 * Server side
2815 * In TLSv1.3 on the server SNI is not associated with the session
2816 * but in TLSv1.2 or below it is.
2817 *
2818 * Before the handshake:
2819 * - return NULL
2820 *
2821 * During/after the handshake (TLSv1.2 or below resumption occurred):
2822 * - If a servername was accepted by the server in the original
2823 * handshake then it will return that servername, or NULL otherwise.
2824 *
2825 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2826 * - The function will return the servername requested by the client in
2827 * this handshake or NULL if none was requested.
2828 */
2829 if (s->hit && !SSL_IS_TLS13(s))
2830 return s->session->ext.hostname;
2831 } else {
2832 /**
2833 * Client side
2834 *
2835 * Before the handshake:
2836 * - If a servername has been set via a call to
2837 * SSL_set_tlsext_host_name() then it will return that servername
2838 * - If one has not been set, but a TLSv1.2 resumption is being
2839 * attempted and the session from the original handshake had a
2840 * servername accepted by the server then it will return that
2841 * servername
2842 * - Otherwise it returns NULL
2843 *
2844 * During/after the handshake (TLSv1.2 or below resumption occurred):
2845 * - If the session from the original handshake had a servername accepted
2846 * by the server then it will return that servername.
2847 * - Otherwise it returns the servername set via
2848 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2849 *
2850 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2851 * - It will return the servername set via SSL_set_tlsext_host_name()
2852 * (or NULL if it was not called).
2853 */
2854 if (SSL_in_before(s)) {
2855 if (s->ext.hostname == NULL
2856 && s->session != NULL
2857 && s->session->ssl_version != TLS1_3_VERSION)
2858 return s->session->ext.hostname;
2859 } else {
2860 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2861 return s->session->ext.hostname;
2862 }
2863 }
2864
2865 return s->ext.hostname;
2866 }
2867
2868 int SSL_get_servername_type(const SSL *s)
2869 {
2870 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2871 return TLSEXT_NAMETYPE_host_name;
2872 return -1;
2873 }
2874
2875 /*
2876 * SSL_select_next_proto implements the standard protocol selection. It is
2877 * expected that this function is called from the callback set by
2878 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2879 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2880 * not included in the length. A byte string of length 0 is invalid. No byte
2881 * string may be truncated. The current, but experimental algorithm for
2882 * selecting the protocol is: 1) If the server doesn't support NPN then this
2883 * is indicated to the callback. In this case, the client application has to
2884 * abort the connection or have a default application level protocol. 2) If
2885 * the server supports NPN, but advertises an empty list then the client
2886 * selects the first protocol in its list, but indicates via the API that this
2887 * fallback case was enacted. 3) Otherwise, the client finds the first
2888 * protocol in the server's list that it supports and selects this protocol.
2889 * This is because it's assumed that the server has better information about
2890 * which protocol a client should use. 4) If the client doesn't support any
2891 * of the server's advertised protocols, then this is treated the same as
2892 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2893 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2894 */
2895 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2896 const unsigned char *server,
2897 unsigned int server_len,
2898 const unsigned char *client, unsigned int client_len)
2899 {
2900 unsigned int i, j;
2901 const unsigned char *result;
2902 int status = OPENSSL_NPN_UNSUPPORTED;
2903
2904 /*
2905 * For each protocol in server preference order, see if we support it.
2906 */
2907 for (i = 0; i < server_len;) {
2908 for (j = 0; j < client_len;) {
2909 if (server[i] == client[j] &&
2910 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2911 /* We found a match */
2912 result = &server[i];
2913 status = OPENSSL_NPN_NEGOTIATED;
2914 goto found;
2915 }
2916 j += client[j];
2917 j++;
2918 }
2919 i += server[i];
2920 i++;
2921 }
2922
2923 /* There's no overlap between our protocols and the server's list. */
2924 result = client;
2925 status = OPENSSL_NPN_NO_OVERLAP;
2926
2927 found:
2928 *out = (unsigned char *)result + 1;
2929 *outlen = result[0];
2930 return status;
2931 }
2932
2933 #ifndef OPENSSL_NO_NEXTPROTONEG
2934 /*
2935 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2936 * client's requested protocol for this connection and returns 0. If the
2937 * client didn't request any protocol, then *data is set to NULL. Note that
2938 * the client can request any protocol it chooses. The value returned from
2939 * this function need not be a member of the list of supported protocols
2940 * provided by the callback.
2941 */
2942 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2943 unsigned *len)
2944 {
2945 *data = s->ext.npn;
2946 if (*data == NULL) {
2947 *len = 0;
2948 } else {
2949 *len = (unsigned int)s->ext.npn_len;
2950 }
2951 }
2952
2953 /*
2954 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2955 * a TLS server needs a list of supported protocols for Next Protocol
2956 * Negotiation. The returned list must be in wire format. The list is
2957 * returned by setting |out| to point to it and |outlen| to its length. This
2958 * memory will not be modified, but one should assume that the SSL* keeps a
2959 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2960 * wishes to advertise. Otherwise, no such extension will be included in the
2961 * ServerHello.
2962 */
2963 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2964 SSL_CTX_npn_advertised_cb_func cb,
2965 void *arg)
2966 {
2967 ctx->ext.npn_advertised_cb = cb;
2968 ctx->ext.npn_advertised_cb_arg = arg;
2969 }
2970
2971 /*
2972 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2973 * client needs to select a protocol from the server's provided list. |out|
2974 * must be set to point to the selected protocol (which may be within |in|).
2975 * The length of the protocol name must be written into |outlen|. The
2976 * server's advertised protocols are provided in |in| and |inlen|. The
2977 * callback can assume that |in| is syntactically valid. The client must
2978 * select a protocol. It is fatal to the connection if this callback returns
2979 * a value other than SSL_TLSEXT_ERR_OK.
2980 */
2981 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2982 SSL_CTX_npn_select_cb_func cb,
2983 void *arg)
2984 {
2985 ctx->ext.npn_select_cb = cb;
2986 ctx->ext.npn_select_cb_arg = arg;
2987 }
2988 #endif
2989
2990 static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len)
2991 {
2992 unsigned int idx;
2993
2994 if (protos_len < 2 || protos == NULL)
2995 return 0;
2996
2997 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) {
2998 if (protos[idx] == 0)
2999 return 0;
3000 }
3001 return idx == protos_len;
3002 }
3003 /*
3004 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
3005 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3006 * length-prefixed strings). Returns 0 on success.
3007 */
3008 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
3009 unsigned int protos_len)
3010 {
3011 unsigned char *alpn;
3012
3013 if (protos_len == 0 || protos == NULL) {
3014 OPENSSL_free(ctx->ext.alpn);
3015 ctx->ext.alpn = NULL;
3016 ctx->ext.alpn_len = 0;
3017 return 0;
3018 }
3019 /* Not valid per RFC */
3020 if (!alpn_value_ok(protos, protos_len))
3021 return 1;
3022
3023 alpn = OPENSSL_memdup(protos, protos_len);
3024 if (alpn == NULL) {
3025 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3026 return 1;
3027 }
3028 OPENSSL_free(ctx->ext.alpn);
3029 ctx->ext.alpn = alpn;
3030 ctx->ext.alpn_len = protos_len;
3031
3032 return 0;
3033 }
3034
3035 /*
3036 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
3037 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
3038 * length-prefixed strings). Returns 0 on success.
3039 */
3040 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
3041 unsigned int protos_len)
3042 {
3043 unsigned char *alpn;
3044
3045 if (protos_len == 0 || protos == NULL) {
3046 OPENSSL_free(ssl->ext.alpn);
3047 ssl->ext.alpn = NULL;
3048 ssl->ext.alpn_len = 0;
3049 return 0;
3050 }
3051 /* Not valid per RFC */
3052 if (!alpn_value_ok(protos, protos_len))
3053 return 1;
3054
3055 alpn = OPENSSL_memdup(protos, protos_len);
3056 if (alpn == NULL) {
3057 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3058 return 1;
3059 }
3060 OPENSSL_free(ssl->ext.alpn);
3061 ssl->ext.alpn = alpn;
3062 ssl->ext.alpn_len = protos_len;
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
3069 * called during ClientHello processing in order to select an ALPN protocol
3070 * from the client's list of offered protocols.
3071 */
3072 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
3073 SSL_CTX_alpn_select_cb_func cb,
3074 void *arg)
3075 {
3076 ctx->ext.alpn_select_cb = cb;
3077 ctx->ext.alpn_select_cb_arg = arg;
3078 }
3079
3080 /*
3081 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
3082 * On return it sets |*data| to point to |*len| bytes of protocol name
3083 * (not including the leading length-prefix byte). If the server didn't
3084 * respond with a negotiated protocol then |*len| will be zero.
3085 */
3086 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
3087 unsigned int *len)
3088 {
3089 *data = ssl->s3.alpn_selected;
3090 if (*data == NULL)
3091 *len = 0;
3092 else
3093 *len = (unsigned int)ssl->s3.alpn_selected_len;
3094 }
3095
3096 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
3097 const char *label, size_t llen,
3098 const unsigned char *context, size_t contextlen,
3099 int use_context)
3100 {
3101 if (s->session == NULL
3102 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER))
3103 return -1;
3104
3105 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
3106 llen, context,
3107 contextlen, use_context);
3108 }
3109
3110 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
3111 const char *label, size_t llen,
3112 const unsigned char *context,
3113 size_t contextlen)
3114 {
3115 if (s->version != TLS1_3_VERSION)
3116 return 0;
3117
3118 return tls13_export_keying_material_early(s, out, olen, label, llen,
3119 context, contextlen);
3120 }
3121
3122 static unsigned long ssl_session_hash(const SSL_SESSION *a)
3123 {
3124 const unsigned char *session_id = a->session_id;
3125 unsigned long l;
3126 unsigned char tmp_storage[4];
3127
3128 if (a->session_id_length < sizeof(tmp_storage)) {
3129 memset(tmp_storage, 0, sizeof(tmp_storage));
3130 memcpy(tmp_storage, a->session_id, a->session_id_length);
3131 session_id = tmp_storage;
3132 }
3133
3134 l = (unsigned long)
3135 ((unsigned long)session_id[0]) |
3136 ((unsigned long)session_id[1] << 8L) |
3137 ((unsigned long)session_id[2] << 16L) |
3138 ((unsigned long)session_id[3] << 24L);
3139 return l;
3140 }
3141
3142 /*
3143 * NB: If this function (or indeed the hash function which uses a sort of
3144 * coarser function than this one) is changed, ensure
3145 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3146 * being able to construct an SSL_SESSION that will collide with any existing
3147 * session with a matching session ID.
3148 */
3149 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3150 {
3151 if (a->ssl_version != b->ssl_version)
3152 return 1;
3153 if (a->session_id_length != b->session_id_length)
3154 return 1;
3155 return memcmp(a->session_id, b->session_id, a->session_id_length);
3156 }
3157
3158 /*
3159 * These wrapper functions should remain rather than redeclaring
3160 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3161 * variable. The reason is that the functions aren't static, they're exposed
3162 * via ssl.h.
3163 */
3164
3165 SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq,
3166 const SSL_METHOD *meth)
3167 {
3168 SSL_CTX *ret = NULL;
3169
3170 if (meth == NULL) {
3171 ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED);
3172 return NULL;
3173 }
3174
3175 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3176 return NULL;
3177
3178 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3179 ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3180 goto err;
3181 }
3182 ret = OPENSSL_zalloc(sizeof(*ret));
3183 if (ret == NULL)
3184 goto err;
3185
3186 /* Init the reference counting before any call to SSL_CTX_free */
3187 ret->references = 1;
3188 ret->lock = CRYPTO_THREAD_lock_new();
3189 if (ret->lock == NULL) {
3190 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3191 OPENSSL_free(ret);
3192 return NULL;
3193 }
3194
3195 ret->libctx = libctx;
3196 if (propq != NULL) {
3197 ret->propq = OPENSSL_strdup(propq);
3198 if (ret->propq == NULL)
3199 goto err;
3200 }
3201
3202 ret->method = meth;
3203 ret->min_proto_version = 0;
3204 ret->max_proto_version = 0;
3205 ret->mode = SSL_MODE_AUTO_RETRY;
3206 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3207 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3208 /* We take the system default. */
3209 ret->session_timeout = meth->get_timeout();
3210 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3211 ret->verify_mode = SSL_VERIFY_NONE;
3212 if ((ret->cert = ssl_cert_new()) == NULL)
3213 goto err;
3214
3215 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3216 if (ret->sessions == NULL)
3217 goto err;
3218 ret->cert_store = X509_STORE_new();
3219 if (ret->cert_store == NULL)
3220 goto err;
3221 #ifndef OPENSSL_NO_CT
3222 ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq);
3223 if (ret->ctlog_store == NULL)
3224 goto err;
3225 #endif
3226
3227 /* initialize cipher/digest methods table */
3228 if (!ssl_load_ciphers(ret))
3229 goto err2;
3230 /* initialise sig algs */
3231 if (!ssl_setup_sig_algs(ret))
3232 goto err2;
3233
3234
3235 if (!ssl_load_groups(ret))
3236 goto err2;
3237
3238 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3239 goto err;
3240
3241 if (!ssl_create_cipher_list(ret,
3242 ret->tls13_ciphersuites,
3243 &ret->cipher_list, &ret->cipher_list_by_id,
3244 OSSL_default_cipher_list(), ret->cert)
3245 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3246 ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3247 goto err2;
3248 }
3249
3250 ret->param = X509_VERIFY_PARAM_new();
3251 if (ret->param == NULL)
3252 goto err;
3253
3254 /*
3255 * If these aren't available from the provider we'll get NULL returns.
3256 * That's fine but will cause errors later if SSLv3 is negotiated
3257 */
3258 ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq);
3259 ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq);
3260
3261 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3262 goto err;
3263
3264 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3265 goto err;
3266
3267 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3268 goto err;
3269
3270 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3271 goto err;
3272
3273 /* No compression for DTLS */
3274 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3275 ret->comp_methods = SSL_COMP_get_compression_methods();
3276
3277 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3278 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3279
3280 /* Setup RFC5077 ticket keys */
3281 if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name,
3282 sizeof(ret->ext.tick_key_name), 0) <= 0)
3283 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key,
3284 sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0)
3285 || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key,
3286 sizeof(ret->ext.secure->tick_aes_key), 0) <= 0))
3287 ret->options |= SSL_OP_NO_TICKET;
3288
3289 if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key,
3290 sizeof(ret->ext.cookie_hmac_key), 0) <= 0)
3291 goto err;
3292
3293 #ifndef OPENSSL_NO_SRP
3294 if (!ssl_ctx_srp_ctx_init_intern(ret))
3295 goto err;
3296 #endif
3297 #ifndef OPENSSL_NO_ENGINE
3298 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3299 # define eng_strx(x) #x
3300 # define eng_str(x) eng_strx(x)
3301 /* Use specific client engine automatically... ignore errors */
3302 {
3303 ENGINE *eng;
3304 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3305 if (!eng) {
3306 ERR_clear_error();
3307 ENGINE_load_builtin_engines();
3308 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3309 }
3310 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3311 ERR_clear_error();
3312 }
3313 # endif
3314 #endif
3315 /*
3316 * Disable compression by default to prevent CRIME. Applications can
3317 * re-enable compression by configuring
3318 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3319 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3320 * middlebox compatibility by default. This may be disabled by default in
3321 * a later OpenSSL version.
3322 */
3323 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3324
3325 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3326
3327 /*
3328 * We cannot usefully set a default max_early_data here (which gets
3329 * propagated in SSL_new(), for the following reason: setting the
3330 * SSL field causes tls_construct_stoc_early_data() to tell the
3331 * client that early data will be accepted when constructing a TLS 1.3
3332 * session ticket, and the client will accordingly send us early data
3333 * when using that ticket (if the client has early data to send).
3334 * However, in order for the early data to actually be consumed by
3335 * the application, the application must also have calls to
3336 * SSL_read_early_data(); otherwise we'll just skip past the early data
3337 * and ignore it. So, since the application must add calls to
3338 * SSL_read_early_data(), we also require them to add
3339 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3340 * eliminating the bandwidth-wasting early data in the case described
3341 * above.
3342 */
3343 ret->max_early_data = 0;
3344
3345 /*
3346 * Default recv_max_early_data is a fully loaded single record. Could be
3347 * split across multiple records in practice. We set this differently to
3348 * max_early_data so that, in the default case, we do not advertise any
3349 * support for early_data, but if a client were to send us some (e.g.
3350 * because of an old, stale ticket) then we will tolerate it and skip over
3351 * it.
3352 */
3353 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3354
3355 /* By default we send two session tickets automatically in TLSv1.3 */
3356 ret->num_tickets = 2;
3357
3358 ssl_ctx_system_config(ret);
3359
3360 return ret;
3361 err:
3362 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
3363 err2:
3364 SSL_CTX_free(ret);
3365 return NULL;
3366 }
3367
3368 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3369 {
3370 return SSL_CTX_new_ex(NULL, NULL, meth);
3371 }
3372
3373 int SSL_CTX_up_ref(SSL_CTX *ctx)
3374 {
3375 int i;
3376
3377 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3378 return 0;
3379
3380 REF_PRINT_COUNT("SSL_CTX", ctx);
3381 REF_ASSERT_ISNT(i < 2);
3382 return ((i > 1) ? 1 : 0);
3383 }
3384
3385 void SSL_CTX_free(SSL_CTX *a)
3386 {
3387 int i;
3388 size_t j;
3389
3390 if (a == NULL)
3391 return;
3392
3393 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3394 REF_PRINT_COUNT("SSL_CTX", a);
3395 if (i > 0)
3396 return;
3397 REF_ASSERT_ISNT(i < 0);
3398
3399 X509_VERIFY_PARAM_free(a->param);
3400 dane_ctx_final(&a->dane);
3401
3402 /*
3403 * Free internal session cache. However: the remove_cb() may reference
3404 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3405 * after the sessions were flushed.
3406 * As the ex_data handling routines might also touch the session cache,
3407 * the most secure solution seems to be: empty (flush) the cache, then
3408 * free ex_data, then finally free the cache.
3409 * (See ticket [openssl.org #212].)
3410 */
3411 if (a->sessions != NULL)
3412 SSL_CTX_flush_sessions(a, 0);
3413
3414 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3415 lh_SSL_SESSION_free(a->sessions);
3416 X509_STORE_free(a->cert_store);
3417 #ifndef OPENSSL_NO_CT
3418 CTLOG_STORE_free(a->ctlog_store);
3419 #endif
3420 sk_SSL_CIPHER_free(a->cipher_list);
3421 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3422 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3423 ssl_cert_free(a->cert);
3424 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3425 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3426 sk_X509_pop_free(a->extra_certs, X509_free);
3427 a->comp_methods = NULL;
3428 #ifndef OPENSSL_NO_SRTP
3429 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3430 #endif
3431 #ifndef OPENSSL_NO_SRP
3432 ssl_ctx_srp_ctx_free_intern(a);
3433 #endif
3434 #ifndef OPENSSL_NO_ENGINE
3435 tls_engine_finish(a->client_cert_engine);
3436 #endif
3437
3438 OPENSSL_free(a->ext.ecpointformats);
3439 OPENSSL_free(a->ext.supportedgroups);
3440 OPENSSL_free(a->ext.supported_groups_default);
3441 OPENSSL_free(a->ext.alpn);
3442 OPENSSL_secure_free(a->ext.secure);
3443
3444 ssl_evp_md_free(a->md5);
3445 ssl_evp_md_free(a->sha1);
3446
3447 for (j = 0; j < SSL_ENC_NUM_IDX; j++)
3448 ssl_evp_cipher_free(a->ssl_cipher_methods[j]);
3449 for (j = 0; j < SSL_MD_NUM_IDX; j++)
3450 ssl_evp_md_free(a->ssl_digest_methods[j]);
3451 for (j = 0; j < a->group_list_len; j++) {
3452 OPENSSL_free(a->group_list[j].tlsname);
3453 OPENSSL_free(a->group_list[j].realname);
3454 OPENSSL_free(a->group_list[j].algorithm);
3455 }
3456 OPENSSL_free(a->group_list);
3457
3458 OPENSSL_free(a->sigalg_lookup_cache);
3459
3460 CRYPTO_THREAD_lock_free(a->lock);
3461
3462 OPENSSL_free(a->propq);
3463
3464 OPENSSL_free(a);
3465 }
3466
3467 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3468 {
3469 ctx->default_passwd_callback = cb;
3470 }
3471
3472 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3473 {
3474 ctx->default_passwd_callback_userdata = u;
3475 }
3476
3477 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3478 {
3479 return ctx->default_passwd_callback;
3480 }
3481
3482 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3483 {
3484 return ctx->default_passwd_callback_userdata;
3485 }
3486
3487 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3488 {
3489 s->default_passwd_callback = cb;
3490 }
3491
3492 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3493 {
3494 s->default_passwd_callback_userdata = u;
3495 }
3496
3497 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3498 {
3499 return s->default_passwd_callback;
3500 }
3501
3502 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3503 {
3504 return s->default_passwd_callback_userdata;
3505 }
3506
3507 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3508 int (*cb) (X509_STORE_CTX *, void *),
3509 void *arg)
3510 {
3511 ctx->app_verify_callback = cb;
3512 ctx->app_verify_arg = arg;
3513 }
3514
3515 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3516 int (*cb) (int, X509_STORE_CTX *))
3517 {
3518 ctx->verify_mode = mode;
3519 ctx->default_verify_callback = cb;
3520 }
3521
3522 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3523 {
3524 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3525 }
3526
3527 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3528 {
3529 ssl_cert_set_cert_cb(c->cert, cb, arg);
3530 }
3531
3532 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3533 {
3534 ssl_cert_set_cert_cb(s->cert, cb, arg);
3535 }
3536
3537 void ssl_set_masks(SSL *s)
3538 {
3539 CERT *c = s->cert;
3540 uint32_t *pvalid = s->s3.tmp.valid_flags;
3541 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3542 unsigned long mask_k, mask_a;
3543 int have_ecc_cert, ecdsa_ok;
3544
3545 if (c == NULL)
3546 return;
3547
3548 dh_tmp = (c->dh_tmp != NULL
3549 || c->dh_tmp_cb != NULL
3550 || c->dh_tmp_auto);
3551
3552 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3553 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3554 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3555 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3556 mask_k = 0;
3557 mask_a = 0;
3558
3559 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3560 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3561
3562 #ifndef OPENSSL_NO_GOST
3563 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3564 mask_k |= SSL_kGOST | SSL_kGOST18;
3565 mask_a |= SSL_aGOST12;
3566 }
3567 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3568 mask_k |= SSL_kGOST | SSL_kGOST18;
3569 mask_a |= SSL_aGOST12;
3570 }
3571 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3572 mask_k |= SSL_kGOST;
3573 mask_a |= SSL_aGOST01;
3574 }
3575 #endif
3576
3577 if (rsa_enc)
3578 mask_k |= SSL_kRSA;
3579
3580 if (dh_tmp)
3581 mask_k |= SSL_kDHE;
3582
3583 /*
3584 * If we only have an RSA-PSS certificate allow RSA authentication
3585 * if TLS 1.2 and peer supports it.
3586 */
3587
3588 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3589 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3590 && TLS1_get_version(s) == TLS1_2_VERSION))
3591 mask_a |= SSL_aRSA;
3592
3593 if (dsa_sign) {
3594 mask_a |= SSL_aDSS;
3595 }
3596
3597 mask_a |= SSL_aNULL;
3598
3599 /*
3600 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3601 * depending on the key usage extension.
3602 */
3603 if (have_ecc_cert) {
3604 uint32_t ex_kusage;
3605 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3606 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3607 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3608 ecdsa_ok = 0;
3609 if (ecdsa_ok)
3610 mask_a |= SSL_aECDSA;
3611 }
3612 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3613 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3614 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3615 && TLS1_get_version(s) == TLS1_2_VERSION)
3616 mask_a |= SSL_aECDSA;
3617
3618 /* Allow Ed448 for TLS 1.2 if peer supports it */
3619 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3620 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3621 && TLS1_get_version(s) == TLS1_2_VERSION)
3622 mask_a |= SSL_aECDSA;
3623
3624 mask_k |= SSL_kECDHE;
3625
3626 #ifndef OPENSSL_NO_PSK
3627 mask_k |= SSL_kPSK;
3628 mask_a |= SSL_aPSK;
3629 if (mask_k & SSL_kRSA)
3630 mask_k |= SSL_kRSAPSK;
3631 if (mask_k & SSL_kDHE)
3632 mask_k |= SSL_kDHEPSK;
3633 if (mask_k & SSL_kECDHE)
3634 mask_k |= SSL_kECDHEPSK;
3635 #endif
3636
3637 s->s3.tmp.mask_k = mask_k;
3638 s->s3.tmp.mask_a = mask_a;
3639 }
3640
3641 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3642 {
3643 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3644 /* key usage, if present, must allow signing */
3645 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3646 ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3647 return 0;
3648 }
3649 }
3650 return 1; /* all checks are ok */
3651 }
3652
3653 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3654 size_t *serverinfo_length)
3655 {
3656 CERT_PKEY *cpk = s->s3.tmp.cert;
3657 *serverinfo_length = 0;
3658
3659 if (cpk == NULL || cpk->serverinfo == NULL)
3660 return 0;
3661
3662 *serverinfo = cpk->serverinfo;
3663 *serverinfo_length = cpk->serverinfo_length;
3664 return 1;
3665 }
3666
3667 void ssl_update_cache(SSL *s, int mode)
3668 {
3669 int i;
3670
3671 /*
3672 * If the session_id_length is 0, we are not supposed to cache it, and it
3673 * would be rather hard to do anyway :-)
3674 */
3675 if (s->session->session_id_length == 0)
3676 return;
3677
3678 /*
3679 * If sid_ctx_length is 0 there is no specific application context
3680 * associated with this session, so when we try to resume it and
3681 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3682 * indication that this is actually a session for the proper application
3683 * context, and the *handshake* will fail, not just the resumption attempt.
3684 * Do not cache (on the server) these sessions that are not resumable
3685 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3686 */
3687 if (s->server && s->session->sid_ctx_length == 0
3688 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3689 return;
3690
3691 i = s->session_ctx->session_cache_mode;
3692 if ((i & mode) != 0
3693 && (!s->hit || SSL_IS_TLS13(s))) {
3694 /*
3695 * Add the session to the internal cache. In server side TLSv1.3 we
3696 * normally don't do this because by default it's a full stateless ticket
3697 * with only a dummy session id so there is no reason to cache it,
3698 * unless:
3699 * - we are doing early_data, in which case we cache so that we can
3700 * detect replays
3701 * - the application has set a remove_session_cb so needs to know about
3702 * session timeout events
3703 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3704 */
3705 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3706 && (!SSL_IS_TLS13(s)
3707 || !s->server
3708 || (s->max_early_data > 0
3709 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3710 || s->session_ctx->remove_session_cb != NULL
3711 || (s->options & SSL_OP_NO_TICKET) != 0))
3712 SSL_CTX_add_session(s->session_ctx, s->session);
3713
3714 /*
3715 * Add the session to the external cache. We do this even in server side
3716 * TLSv1.3 without early data because some applications just want to
3717 * know about the creation of a session and aren't doing a full cache.
3718 */
3719 if (s->session_ctx->new_session_cb != NULL) {
3720 SSL_SESSION_up_ref(s->session);
3721 if (!s->session_ctx->new_session_cb(s, s->session))
3722 SSL_SESSION_free(s->session);
3723 }
3724 }
3725
3726 /* auto flush every 255 connections */
3727 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3728 TSAN_QUALIFIER int *stat;
3729 if (mode & SSL_SESS_CACHE_CLIENT)
3730 stat = &s->session_ctx->stats.sess_connect_good;
3731 else
3732 stat = &s->session_ctx->stats.sess_accept_good;
3733 if ((tsan_load(stat) & 0xff) == 0xff)
3734 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3735 }
3736 }
3737
3738 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3739 {
3740 return ctx->method;
3741 }
3742
3743 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3744 {
3745 return s->method;
3746 }
3747
3748 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3749 {
3750 int ret = 1;
3751
3752 if (s->method != meth) {
3753 const SSL_METHOD *sm = s->method;
3754 int (*hf) (SSL *) = s->handshake_func;
3755
3756 if (sm->version == meth->version)
3757 s->method = meth;
3758 else {
3759 sm->ssl_free(s);
3760 s->method = meth;
3761 ret = s->method->ssl_new(s);
3762 }
3763
3764 if (hf == sm->ssl_connect)
3765 s->handshake_func = meth->ssl_connect;
3766 else if (hf == sm->ssl_accept)
3767 s->handshake_func = meth->ssl_accept;
3768 }
3769 return ret;
3770 }
3771
3772 int SSL_get_error(const SSL *s, int i)
3773 {
3774 int reason;
3775 unsigned long l;
3776 BIO *bio;
3777
3778 if (i > 0)
3779 return SSL_ERROR_NONE;
3780
3781 /*
3782 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3783 * where we do encode the error
3784 */
3785 if ((l = ERR_peek_error()) != 0) {
3786 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3787 return SSL_ERROR_SYSCALL;
3788 else
3789 return SSL_ERROR_SSL;
3790 }
3791
3792 if (SSL_want_read(s)) {
3793 bio = SSL_get_rbio(s);
3794 if (BIO_should_read(bio))
3795 return SSL_ERROR_WANT_READ;
3796 else if (BIO_should_write(bio))
3797 /*
3798 * This one doesn't make too much sense ... We never try to write
3799 * to the rbio, and an application program where rbio and wbio
3800 * are separate couldn't even know what it should wait for.
3801 * However if we ever set s->rwstate incorrectly (so that we have
3802 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3803 * wbio *are* the same, this test works around that bug; so it
3804 * might be safer to keep it.
3805 */
3806 return SSL_ERROR_WANT_WRITE;
3807 else if (BIO_should_io_special(bio)) {
3808 reason = BIO_get_retry_reason(bio);
3809 if (reason == BIO_RR_CONNECT)
3810 return SSL_ERROR_WANT_CONNECT;
3811 else if (reason == BIO_RR_ACCEPT)
3812 return SSL_ERROR_WANT_ACCEPT;
3813 else
3814 return SSL_ERROR_SYSCALL; /* unknown */
3815 }
3816 }
3817
3818 if (SSL_want_write(s)) {
3819 /* Access wbio directly - in order to use the buffered bio if present */
3820 bio = s->wbio;
3821 if (BIO_should_write(bio))
3822 return SSL_ERROR_WANT_WRITE;
3823 else if (BIO_should_read(bio))
3824 /*
3825 * See above (SSL_want_read(s) with BIO_should_write(bio))
3826 */
3827 return SSL_ERROR_WANT_READ;
3828 else if (BIO_should_io_special(bio)) {
3829 reason = BIO_get_retry_reason(bio);
3830 if (reason == BIO_RR_CONNECT)
3831 return SSL_ERROR_WANT_CONNECT;
3832 else if (reason == BIO_RR_ACCEPT)
3833 return SSL_ERROR_WANT_ACCEPT;
3834 else
3835 return SSL_ERROR_SYSCALL;
3836 }
3837 }
3838 if (SSL_want_x509_lookup(s))
3839 return SSL_ERROR_WANT_X509_LOOKUP;
3840 if (SSL_want_retry_verify(s))
3841 return SSL_ERROR_WANT_RETRY_VERIFY;
3842 if (SSL_want_async(s))
3843 return SSL_ERROR_WANT_ASYNC;
3844 if (SSL_want_async_job(s))
3845 return SSL_ERROR_WANT_ASYNC_JOB;
3846 if (SSL_want_client_hello_cb(s))
3847 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3848
3849 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3850 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3851 return SSL_ERROR_ZERO_RETURN;
3852
3853 return SSL_ERROR_SYSCALL;
3854 }
3855
3856 static int ssl_do_handshake_intern(void *vargs)
3857 {
3858 struct ssl_async_args *args;
3859 SSL *s;
3860
3861 args = (struct ssl_async_args *)vargs;
3862 s = args->s;
3863
3864 return s->handshake_func(s);
3865 }
3866
3867 int SSL_do_handshake(SSL *s)
3868 {
3869 int ret = 1;
3870
3871 if (s->handshake_func == NULL) {
3872 ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
3873 return -1;
3874 }
3875
3876 ossl_statem_check_finish_init(s, -1);
3877
3878 s->method->ssl_renegotiate_check(s, 0);
3879
3880 if (SSL_in_init(s) || SSL_in_before(s)) {
3881 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3882 struct ssl_async_args args;
3883
3884 args.s = s;
3885
3886 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3887 } else {
3888 ret = s->handshake_func(s);
3889 }
3890 }
3891 return ret;
3892 }
3893
3894 void SSL_set_accept_state(SSL *s)
3895 {
3896 s->server = 1;
3897 s->shutdown = 0;
3898 ossl_statem_clear(s);
3899 s->handshake_func = s->method->ssl_accept;
3900 clear_ciphers(s);
3901 }
3902
3903 void SSL_set_connect_state(SSL *s)
3904 {
3905 s->server = 0;
3906 s->shutdown = 0;
3907 ossl_statem_clear(s);
3908 s->handshake_func = s->method->ssl_connect;
3909 clear_ciphers(s);
3910 }
3911
3912 int ssl_undefined_function(SSL *s)
3913 {
3914 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3915 return 0;
3916 }
3917
3918 int ssl_undefined_void_function(void)
3919 {
3920 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3921 return 0;
3922 }
3923
3924 int ssl_undefined_const_function(const SSL *s)
3925 {
3926 return 0;
3927 }
3928
3929 const SSL_METHOD *ssl_bad_method(int ver)
3930 {
3931 ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3932 return NULL;
3933 }
3934
3935 const char *ssl_protocol_to_string(int version)
3936 {
3937 switch(version)
3938 {
3939 case TLS1_3_VERSION:
3940 return "TLSv1.3";
3941
3942 case TLS1_2_VERSION:
3943 return "TLSv1.2";
3944
3945 case TLS1_1_VERSION:
3946 return "TLSv1.1";
3947
3948 case TLS1_VERSION:
3949 return "TLSv1";
3950
3951 case SSL3_VERSION:
3952 return "SSLv3";
3953
3954 case DTLS1_BAD_VER:
3955 return "DTLSv0.9";
3956
3957 case DTLS1_VERSION:
3958 return "DTLSv1";
3959
3960 case DTLS1_2_VERSION:
3961 return "DTLSv1.2";
3962
3963 default:
3964 return "unknown";
3965 }
3966 }
3967
3968 const char *SSL_get_version(const SSL *s)
3969 {
3970 return ssl_protocol_to_string(s->version);
3971 }
3972
3973 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3974 {
3975 STACK_OF(X509_NAME) *sk;
3976 X509_NAME *xn;
3977 int i;
3978
3979 if (src == NULL) {
3980 *dst = NULL;
3981 return 1;
3982 }
3983
3984 if ((sk = sk_X509_NAME_new_null()) == NULL)
3985 return 0;
3986 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3987 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3988 if (xn == NULL) {
3989 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3990 return 0;
3991 }
3992 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3993 X509_NAME_free(xn);
3994 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3995 return 0;
3996 }
3997 }
3998 *dst = sk;
3999
4000 return 1;
4001 }
4002
4003 SSL *SSL_dup(SSL *s)
4004 {
4005 SSL *ret;
4006 int i;
4007
4008 /* If we're not quiescent, just up_ref! */
4009 if (!SSL_in_init(s) || !SSL_in_before(s)) {
4010 CRYPTO_UP_REF(&s->references, &i, s->lock);
4011 return s;
4012 }
4013
4014 /*
4015 * Otherwise, copy configuration state, and session if set.
4016 */
4017 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
4018 return NULL;
4019
4020 if (s->session != NULL) {
4021 /*
4022 * Arranges to share the same session via up_ref. This "copies"
4023 * session-id, SSL_METHOD, sid_ctx, and 'cert'
4024 */
4025 if (!SSL_copy_session_id(ret, s))
4026 goto err;
4027 } else {
4028 /*
4029 * No session has been established yet, so we have to expect that
4030 * s->cert or ret->cert will be changed later -- they should not both
4031 * point to the same object, and thus we can't use
4032 * SSL_copy_session_id.
4033 */
4034 if (!SSL_set_ssl_method(ret, s->method))
4035 goto err;
4036
4037 if (s->cert != NULL) {
4038 ssl_cert_free(ret->cert);
4039 ret->cert = ssl_cert_dup(s->cert);
4040 if (ret->cert == NULL)
4041 goto err;
4042 }
4043
4044 if (!SSL_set_session_id_context(ret, s->sid_ctx,
4045 (int)s->sid_ctx_length))
4046 goto err;
4047 }
4048
4049 if (!ssl_dane_dup(ret, s))
4050 goto err;
4051 ret->version = s->version;
4052 ret->options = s->options;
4053 ret->min_proto_version = s->min_proto_version;
4054 ret->max_proto_version = s->max_proto_version;
4055 ret->mode = s->mode;
4056 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
4057 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
4058 ret->msg_callback = s->msg_callback;
4059 ret->msg_callback_arg = s->msg_callback_arg;
4060 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
4061 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
4062 ret->generate_session_id = s->generate_session_id;
4063
4064 SSL_set_info_callback(ret, SSL_get_info_callback(s));
4065
4066 /* copy app data, a little dangerous perhaps */
4067 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
4068 goto err;
4069
4070 ret->server = s->server;
4071 if (s->handshake_func) {
4072 if (s->server)
4073 SSL_set_accept_state(ret);
4074 else
4075 SSL_set_connect_state(ret);
4076 }
4077 ret->shutdown = s->shutdown;
4078 ret->hit = s->hit;
4079
4080 ret->default_passwd_callback = s->default_passwd_callback;
4081 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
4082
4083 X509_VERIFY_PARAM_inherit(ret->param, s->param);
4084
4085 /* dup the cipher_list and cipher_list_by_id stacks */
4086 if (s->cipher_list != NULL) {
4087 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
4088 goto err;
4089 }
4090 if (s->cipher_list_by_id != NULL)
4091 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
4092 == NULL)
4093 goto err;
4094
4095 /* Dup the client_CA list */
4096 if (!dup_ca_names(&ret->ca_names, s->ca_names)
4097 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
4098 goto err;
4099
4100 return ret;
4101
4102 err:
4103 SSL_free(ret);
4104 return NULL;
4105 }
4106
4107 void ssl_clear_cipher_ctx(SSL *s)
4108 {
4109 if (s->enc_read_ctx != NULL) {
4110 EVP_CIPHER_CTX_free(s->enc_read_ctx);
4111 s->enc_read_ctx = NULL;
4112 }
4113 if (s->enc_write_ctx != NULL) {
4114 EVP_CIPHER_CTX_free(s->enc_write_ctx);
4115 s->enc_write_ctx = NULL;
4116 }
4117 #ifndef OPENSSL_NO_COMP
4118 COMP_CTX_free(s->expand);
4119 s->expand = NULL;
4120 COMP_CTX_free(s->compress);
4121 s->compress = NULL;
4122 #endif
4123 }
4124
4125 X509 *SSL_get_certificate(const SSL *s)
4126 {
4127 if (s->cert != NULL)
4128 return s->cert->key->x509;
4129 else
4130 return NULL;
4131 }
4132
4133 EVP_PKEY *SSL_get_privatekey(const SSL *s)
4134 {
4135 if (s->cert != NULL)
4136 return s->cert->key->privatekey;
4137 else
4138 return NULL;
4139 }
4140
4141 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4142 {
4143 if (ctx->cert != NULL)
4144 return ctx->cert->key->x509;
4145 else
4146 return NULL;
4147 }
4148
4149 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4150 {
4151 if (ctx->cert != NULL)
4152 return ctx->cert->key->privatekey;
4153 else
4154 return NULL;
4155 }
4156
4157 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4158 {
4159 if ((s->session != NULL) && (s->session->cipher != NULL))
4160 return s->session->cipher;
4161 return NULL;
4162 }
4163
4164 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4165 {
4166 return s->s3.tmp.new_cipher;
4167 }
4168
4169 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4170 {
4171 #ifndef OPENSSL_NO_COMP
4172 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4173 #else
4174 return NULL;
4175 #endif
4176 }
4177
4178 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4179 {
4180 #ifndef OPENSSL_NO_COMP
4181 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4182 #else
4183 return NULL;
4184 #endif
4185 }
4186
4187 int ssl_init_wbio_buffer(SSL *s)
4188 {
4189 BIO *bbio;
4190
4191 if (s->bbio != NULL) {
4192 /* Already buffered. */
4193 return 1;
4194 }
4195
4196 bbio = BIO_new(BIO_f_buffer());
4197 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4198 BIO_free(bbio);
4199 ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB);
4200 return 0;
4201 }
4202 s->bbio = bbio;
4203 s->wbio = BIO_push(bbio, s->wbio);
4204
4205 return 1;
4206 }
4207
4208 int ssl_free_wbio_buffer(SSL *s)
4209 {
4210 /* callers ensure s is never null */
4211 if (s->bbio == NULL)
4212 return 1;
4213
4214 s->wbio = BIO_pop(s->wbio);
4215 BIO_free(s->bbio);
4216 s->bbio = NULL;
4217
4218 return 1;
4219 }
4220
4221 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4222 {
4223 ctx->quiet_shutdown = mode;
4224 }
4225
4226 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4227 {
4228 return ctx->quiet_shutdown;
4229 }
4230
4231 void SSL_set_quiet_shutdown(SSL *s, int mode)
4232 {
4233 s->quiet_shutdown = mode;
4234 }
4235
4236 int SSL_get_quiet_shutdown(const SSL *s)
4237 {
4238 return s->quiet_shutdown;
4239 }
4240
4241 void SSL_set_shutdown(SSL *s, int mode)
4242 {
4243 s->shutdown = mode;
4244 }
4245
4246 int SSL_get_shutdown(const SSL *s)
4247 {
4248 return s->shutdown;
4249 }
4250
4251 int SSL_version(const SSL *s)
4252 {
4253 return s->version;
4254 }
4255
4256 int SSL_client_version(const SSL *s)
4257 {
4258 return s->client_version;
4259 }
4260
4261 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4262 {
4263 return ssl->ctx;
4264 }
4265
4266 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4267 {
4268 CERT *new_cert;
4269 if (ssl->ctx == ctx)
4270 return ssl->ctx;
4271 if (ctx == NULL)
4272 ctx = ssl->session_ctx;
4273 new_cert = ssl_cert_dup(ctx->cert);
4274 if (new_cert == NULL) {
4275 return NULL;
4276 }
4277
4278 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4279 ssl_cert_free(new_cert);
4280 return NULL;
4281 }
4282
4283 ssl_cert_free(ssl->cert);
4284 ssl->cert = new_cert;
4285
4286 /*
4287 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4288 * so setter APIs must prevent invalid lengths from entering the system.
4289 */
4290 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4291 return NULL;
4292
4293 /*
4294 * If the session ID context matches that of the parent SSL_CTX,
4295 * inherit it from the new SSL_CTX as well. If however the context does
4296 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4297 * leave it unchanged.
4298 */
4299 if ((ssl->ctx != NULL) &&
4300 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4301 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4302 ssl->sid_ctx_length = ctx->sid_ctx_length;
4303 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4304 }
4305
4306 SSL_CTX_up_ref(ctx);
4307 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4308 ssl->ctx = ctx;
4309
4310 return ssl->ctx;
4311 }
4312
4313 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4314 {
4315 return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx,
4316 ctx->propq);
4317 }
4318
4319 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4320 {
4321 X509_LOOKUP *lookup;
4322
4323 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4324 if (lookup == NULL)
4325 return 0;
4326
4327 /* We ignore errors, in case the directory doesn't exist */
4328 ERR_set_mark();
4329
4330 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4331
4332 ERR_pop_to_mark();
4333
4334 return 1;
4335 }
4336
4337 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4338 {
4339 X509_LOOKUP *lookup;
4340
4341 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4342 if (lookup == NULL)
4343 return 0;
4344
4345 /* We ignore errors, in case the file doesn't exist */
4346 ERR_set_mark();
4347
4348 X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx,
4349 ctx->propq);
4350
4351 ERR_pop_to_mark();
4352
4353 return 1;
4354 }
4355
4356 int SSL_CTX_set_default_verify_store(SSL_CTX *ctx)
4357 {
4358 X509_LOOKUP *lookup;
4359
4360 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store());
4361 if (lookup == NULL)
4362 return 0;
4363
4364 /* We ignore errors, in case the directory doesn't exist */
4365 ERR_set_mark();
4366
4367 X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq);
4368
4369 ERR_pop_to_mark();
4370
4371 return 1;
4372 }
4373
4374 int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile)
4375 {
4376 return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx,
4377 ctx->propq);
4378 }
4379
4380 int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath)
4381 {
4382 return X509_STORE_load_path(ctx->cert_store, CApath);
4383 }
4384
4385 int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore)
4386 {
4387 return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx,
4388 ctx->propq);
4389 }
4390
4391 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4392 const char *CApath)
4393 {
4394 if (CAfile == NULL && CApath == NULL)
4395 return 0;
4396 if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile))
4397 return 0;
4398 if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath))
4399 return 0;
4400 return 1;
4401 }
4402
4403 void SSL_set_info_callback(SSL *ssl,
4404 void (*cb) (const SSL *ssl, int type, int val))
4405 {
4406 ssl->info_callback = cb;
4407 }
4408
4409 /*
4410 * One compiler (Diab DCC) doesn't like argument names in returned function
4411 * pointer.
4412 */
4413 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4414 int /* type */ ,
4415 int /* val */ ) {
4416 return ssl->info_callback;
4417 }
4418
4419 void SSL_set_verify_result(SSL *ssl, long arg)
4420 {
4421 ssl->verify_result = arg;
4422 }
4423
4424 long SSL_get_verify_result(const SSL *ssl)
4425 {
4426 return ssl->verify_result;
4427 }
4428
4429 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4430 {
4431 if (outlen == 0)
4432 return sizeof(ssl->s3.client_random);
4433 if (outlen > sizeof(ssl->s3.client_random))
4434 outlen = sizeof(ssl->s3.client_random);
4435 memcpy(out, ssl->s3.client_random, outlen);
4436 return outlen;
4437 }
4438
4439 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4440 {
4441 if (outlen == 0)
4442 return sizeof(ssl->s3.server_random);
4443 if (outlen > sizeof(ssl->s3.server_random))
4444 outlen = sizeof(ssl->s3.server_random);
4445 memcpy(out, ssl->s3.server_random, outlen);
4446 return outlen;
4447 }
4448
4449 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4450 unsigned char *out, size_t outlen)
4451 {
4452 if (outlen == 0)
4453 return session->master_key_length;
4454 if (outlen > session->master_key_length)
4455 outlen = session->master_key_length;
4456 memcpy(out, session->master_key, outlen);
4457 return outlen;
4458 }
4459
4460 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4461 size_t len)
4462 {
4463 if (len > sizeof(sess->master_key))
4464 return 0;
4465
4466 memcpy(sess->master_key, in, len);
4467 sess->master_key_length = len;
4468 return 1;
4469 }
4470
4471
4472 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4473 {
4474 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4475 }
4476
4477 void *SSL_get_ex_data(const SSL *s, int idx)
4478 {
4479 return CRYPTO_get_ex_data(&s->ex_data, idx);
4480 }
4481
4482 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4483 {
4484 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4485 }
4486
4487 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4488 {
4489 return CRYPTO_get_ex_data(&s->ex_data, idx);
4490 }
4491
4492 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4493 {
4494 return ctx->cert_store;
4495 }
4496
4497 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4498 {
4499 X509_STORE_free(ctx->cert_store);
4500 ctx->cert_store = store;
4501 }
4502
4503 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4504 {
4505 if (store != NULL)
4506 X509_STORE_up_ref(store);
4507 SSL_CTX_set_cert_store(ctx, store);
4508 }
4509
4510 int SSL_want(const SSL *s)
4511 {
4512 return s->rwstate;
4513 }
4514
4515 #ifndef OPENSSL_NO_PSK
4516 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4517 {
4518 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4519 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4520 return 0;
4521 }
4522 OPENSSL_free(ctx->cert->psk_identity_hint);
4523 if (identity_hint != NULL) {
4524 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4525 if (ctx->cert->psk_identity_hint == NULL)
4526 return 0;
4527 } else
4528 ctx->cert->psk_identity_hint = NULL;
4529 return 1;
4530 }
4531
4532 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4533 {
4534 if (s == NULL)
4535 return 0;
4536
4537 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4538 ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG);
4539 return 0;
4540 }
4541 OPENSSL_free(s->cert->psk_identity_hint);
4542 if (identity_hint != NULL) {
4543 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4544 if (s->cert->psk_identity_hint == NULL)
4545 return 0;
4546 } else
4547 s->cert->psk_identity_hint = NULL;
4548 return 1;
4549 }
4550
4551 const char *SSL_get_psk_identity_hint(const SSL *s)
4552 {
4553 if (s == NULL || s->session == NULL)
4554 return NULL;
4555 return s->session->psk_identity_hint;
4556 }
4557
4558 const char *SSL_get_psk_identity(const SSL *s)
4559 {
4560 if (s == NULL || s->session == NULL)
4561 return NULL;
4562 return s->session->psk_identity;
4563 }
4564
4565 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4566 {
4567 s->psk_client_callback = cb;
4568 }
4569
4570 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4571 {
4572 ctx->psk_client_callback = cb;
4573 }
4574
4575 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4576 {
4577 s->psk_server_callback = cb;
4578 }
4579
4580 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4581 {
4582 ctx->psk_server_callback = cb;
4583 }
4584 #endif
4585
4586 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4587 {
4588 s->psk_find_session_cb = cb;
4589 }
4590
4591 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4592 SSL_psk_find_session_cb_func cb)
4593 {
4594 ctx->psk_find_session_cb = cb;
4595 }
4596
4597 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4598 {
4599 s->psk_use_session_cb = cb;
4600 }
4601
4602 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4603 SSL_psk_use_session_cb_func cb)
4604 {
4605 ctx->psk_use_session_cb = cb;
4606 }
4607
4608 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4609 void (*cb) (int write_p, int version,
4610 int content_type, const void *buf,
4611 size_t len, SSL *ssl, void *arg))
4612 {
4613 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4614 }
4615
4616 void SSL_set_msg_callback(SSL *ssl,
4617 void (*cb) (int write_p, int version,
4618 int content_type, const void *buf,
4619 size_t len, SSL *ssl, void *arg))
4620 {
4621 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4622 }
4623
4624 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4625 int (*cb) (SSL *ssl,
4626 int
4627 is_forward_secure))
4628 {
4629 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4630 (void (*)(void))cb);
4631 }
4632
4633 void SSL_set_not_resumable_session_callback(SSL *ssl,
4634 int (*cb) (SSL *ssl,
4635 int is_forward_secure))
4636 {
4637 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4638 (void (*)(void))cb);
4639 }
4640
4641 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4642 size_t (*cb) (SSL *ssl, int type,
4643 size_t len, void *arg))
4644 {
4645 ctx->record_padding_cb = cb;
4646 }
4647
4648 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4649 {
4650 ctx->record_padding_arg = arg;
4651 }
4652
4653 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4654 {
4655 return ctx->record_padding_arg;
4656 }
4657
4658 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4659 {
4660 /* block size of 0 or 1 is basically no padding */
4661 if (block_size == 1)
4662 ctx->block_padding = 0;
4663 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4664 ctx->block_padding = block_size;
4665 else
4666 return 0;
4667 return 1;
4668 }
4669
4670 int SSL_set_record_padding_callback(SSL *ssl,
4671 size_t (*cb) (SSL *ssl, int type,
4672 size_t len, void *arg))
4673 {
4674 BIO *b;
4675
4676 b = SSL_get_wbio(ssl);
4677 if (b == NULL || !BIO_get_ktls_send(b)) {
4678 ssl->record_padding_cb = cb;
4679 return 1;
4680 }
4681 return 0;
4682 }
4683
4684 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4685 {
4686 ssl->record_padding_arg = arg;
4687 }
4688
4689 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4690 {
4691 return ssl->record_padding_arg;
4692 }
4693
4694 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4695 {
4696 /* block size of 0 or 1 is basically no padding */
4697 if (block_size == 1)
4698 ssl->block_padding = 0;
4699 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4700 ssl->block_padding = block_size;
4701 else
4702 return 0;
4703 return 1;
4704 }
4705
4706 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4707 {
4708 s->num_tickets = num_tickets;
4709
4710 return 1;
4711 }
4712
4713 size_t SSL_get_num_tickets(const SSL *s)
4714 {
4715 return s->num_tickets;
4716 }
4717
4718 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4719 {
4720 ctx->num_tickets = num_tickets;
4721
4722 return 1;
4723 }
4724
4725 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4726 {
4727 return ctx->num_tickets;
4728 }
4729
4730 /*
4731 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4732 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4733 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4734 * Returns the newly allocated ctx;
4735 */
4736
4737 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4738 {
4739 ssl_clear_hash_ctx(hash);
4740 *hash = EVP_MD_CTX_new();
4741 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4742 EVP_MD_CTX_free(*hash);
4743 *hash = NULL;
4744 return NULL;
4745 }
4746 return *hash;
4747 }
4748
4749 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4750 {
4751
4752 EVP_MD_CTX_free(*hash);
4753 *hash = NULL;
4754 }
4755
4756 /* Retrieve handshake hashes */
4757 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4758 size_t *hashlen)
4759 {
4760 EVP_MD_CTX *ctx = NULL;
4761 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4762 int hashleni = EVP_MD_CTX_get_size(hdgst);
4763 int ret = 0;
4764
4765 if (hashleni < 0 || (size_t)hashleni > outlen) {
4766 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4767 goto err;
4768 }
4769
4770 ctx = EVP_MD_CTX_new();
4771 if (ctx == NULL) {
4772 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4773 goto err;
4774 }
4775
4776 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4777 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4778 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
4779 goto err;
4780 }
4781
4782 *hashlen = hashleni;
4783
4784 ret = 1;
4785 err:
4786 EVP_MD_CTX_free(ctx);
4787 return ret;
4788 }
4789
4790 int SSL_session_reused(const SSL *s)
4791 {
4792 return s->hit;
4793 }
4794
4795 int SSL_is_server(const SSL *s)
4796 {
4797 return s->server;
4798 }
4799
4800 #ifndef OPENSSL_NO_DEPRECATED_1_1_0
4801 void SSL_set_debug(SSL *s, int debug)
4802 {
4803 /* Old function was do-nothing anyway... */
4804 (void)s;
4805 (void)debug;
4806 }
4807 #endif
4808
4809 void SSL_set_security_level(SSL *s, int level)
4810 {
4811 s->cert->sec_level = level;
4812 }
4813
4814 int SSL_get_security_level(const SSL *s)
4815 {
4816 return s->cert->sec_level;
4817 }
4818
4819 void SSL_set_security_callback(SSL *s,
4820 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4821 int op, int bits, int nid,
4822 void *other, void *ex))
4823 {
4824 s->cert->sec_cb = cb;
4825 }
4826
4827 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4828 const SSL_CTX *ctx, int op,
4829 int bits, int nid, void *other,
4830 void *ex) {
4831 return s->cert->sec_cb;
4832 }
4833
4834 void SSL_set0_security_ex_data(SSL *s, void *ex)
4835 {
4836 s->cert->sec_ex = ex;
4837 }
4838
4839 void *SSL_get0_security_ex_data(const SSL *s)
4840 {
4841 return s->cert->sec_ex;
4842 }
4843
4844 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4845 {
4846 ctx->cert->sec_level = level;
4847 }
4848
4849 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4850 {
4851 return ctx->cert->sec_level;
4852 }
4853
4854 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4855 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4856 int op, int bits, int nid,
4857 void *other, void *ex))
4858 {
4859 ctx->cert->sec_cb = cb;
4860 }
4861
4862 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4863 const SSL_CTX *ctx,
4864 int op, int bits,
4865 int nid,
4866 void *other,
4867 void *ex) {
4868 return ctx->cert->sec_cb;
4869 }
4870
4871 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4872 {
4873 ctx->cert->sec_ex = ex;
4874 }
4875
4876 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4877 {
4878 return ctx->cert->sec_ex;
4879 }
4880
4881 uint64_t SSL_CTX_get_options(const SSL_CTX *ctx)
4882 {
4883 return ctx->options;
4884 }
4885
4886 uint64_t SSL_get_options(const SSL *s)
4887 {
4888 return s->options;
4889 }
4890
4891 uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op)
4892 {
4893 return ctx->options |= op;
4894 }
4895
4896 uint64_t SSL_set_options(SSL *s, uint64_t op)
4897 {
4898 return s->options |= op;
4899 }
4900
4901 uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op)
4902 {
4903 return ctx->options &= ~op;
4904 }
4905
4906 uint64_t SSL_clear_options(SSL *s, uint64_t op)
4907 {
4908 return s->options &= ~op;
4909 }
4910
4911 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4912 {
4913 return s->verified_chain;
4914 }
4915
4916 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4917
4918 #ifndef OPENSSL_NO_CT
4919
4920 /*
4921 * Moves SCTs from the |src| stack to the |dst| stack.
4922 * The source of each SCT will be set to |origin|.
4923 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4924 * the caller.
4925 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4926 */
4927 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4928 sct_source_t origin)
4929 {
4930 int scts_moved = 0;
4931 SCT *sct = NULL;
4932
4933 if (*dst == NULL) {
4934 *dst = sk_SCT_new_null();
4935 if (*dst == NULL) {
4936 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
4937 goto err;
4938 }
4939 }
4940
4941 while ((sct = sk_SCT_pop(src)) != NULL) {
4942 if (SCT_set_source(sct, origin) != 1)
4943 goto err;
4944
4945 if (sk_SCT_push(*dst, sct) <= 0)
4946 goto err;
4947 scts_moved += 1;
4948 }
4949
4950 return scts_moved;
4951 err:
4952 if (sct != NULL)
4953 sk_SCT_push(src, sct); /* Put the SCT back */
4954 return -1;
4955 }
4956
4957 /*
4958 * Look for data collected during ServerHello and parse if found.
4959 * Returns the number of SCTs extracted.
4960 */
4961 static int ct_extract_tls_extension_scts(SSL *s)
4962 {
4963 int scts_extracted = 0;
4964
4965 if (s->ext.scts != NULL) {
4966 const unsigned char *p = s->ext.scts;
4967 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4968
4969 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4970
4971 SCT_LIST_free(scts);
4972 }
4973
4974 return scts_extracted;
4975 }
4976
4977 /*
4978 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4979 * contains an SCT X509 extension. They will be stored in |s->scts|.
4980 * Returns:
4981 * - The number of SCTs extracted, assuming an OCSP response exists.
4982 * - 0 if no OCSP response exists or it contains no SCTs.
4983 * - A negative integer if an error occurs.
4984 */
4985 static int ct_extract_ocsp_response_scts(SSL *s)
4986 {
4987 # ifndef OPENSSL_NO_OCSP
4988 int scts_extracted = 0;
4989 const unsigned char *p;
4990 OCSP_BASICRESP *br = NULL;
4991 OCSP_RESPONSE *rsp = NULL;
4992 STACK_OF(SCT) *scts = NULL;
4993 int i;
4994
4995 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4996 goto err;
4997
4998 p = s->ext.ocsp.resp;
4999 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
5000 if (rsp == NULL)
5001 goto err;
5002
5003 br = OCSP_response_get1_basic(rsp);
5004 if (br == NULL)
5005 goto err;
5006
5007 for (i = 0; i < OCSP_resp_count(br); ++i) {
5008 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
5009
5010 if (single == NULL)
5011 continue;
5012
5013 scts =
5014 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
5015 scts_extracted =
5016 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
5017 if (scts_extracted < 0)
5018 goto err;
5019 }
5020 err:
5021 SCT_LIST_free(scts);
5022 OCSP_BASICRESP_free(br);
5023 OCSP_RESPONSE_free(rsp);
5024 return scts_extracted;
5025 # else
5026 /* Behave as if no OCSP response exists */
5027 return 0;
5028 # endif
5029 }
5030
5031 /*
5032 * Attempts to extract SCTs from the peer certificate.
5033 * Return the number of SCTs extracted, or a negative integer if an error
5034 * occurs.
5035 */
5036 static int ct_extract_x509v3_extension_scts(SSL *s)
5037 {
5038 int scts_extracted = 0;
5039 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5040
5041 if (cert != NULL) {
5042 STACK_OF(SCT) *scts =
5043 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
5044
5045 scts_extracted =
5046 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
5047
5048 SCT_LIST_free(scts);
5049 }
5050
5051 return scts_extracted;
5052 }
5053
5054 /*
5055 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
5056 * response (if it exists) and X509v3 extensions in the certificate.
5057 * Returns NULL if an error occurs.
5058 */
5059 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
5060 {
5061 if (!s->scts_parsed) {
5062 if (ct_extract_tls_extension_scts(s) < 0 ||
5063 ct_extract_ocsp_response_scts(s) < 0 ||
5064 ct_extract_x509v3_extension_scts(s) < 0)
5065 goto err;
5066
5067 s->scts_parsed = 1;
5068 }
5069 return s->scts;
5070 err:
5071 return NULL;
5072 }
5073
5074 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
5075 const STACK_OF(SCT) *scts, void *unused_arg)
5076 {
5077 return 1;
5078 }
5079
5080 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
5081 const STACK_OF(SCT) *scts, void *unused_arg)
5082 {
5083 int count = scts != NULL ? sk_SCT_num(scts) : 0;
5084 int i;
5085
5086 for (i = 0; i < count; ++i) {
5087 SCT *sct = sk_SCT_value(scts, i);
5088 int status = SCT_get_validation_status(sct);
5089
5090 if (status == SCT_VALIDATION_STATUS_VALID)
5091 return 1;
5092 }
5093 ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS);
5094 return 0;
5095 }
5096
5097 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
5098 void *arg)
5099 {
5100 /*
5101 * Since code exists that uses the custom extension handler for CT, look
5102 * for this and throw an error if they have already registered to use CT.
5103 */
5104 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
5105 TLSEXT_TYPE_signed_certificate_timestamp))
5106 {
5107 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5108 return 0;
5109 }
5110
5111 if (callback != NULL) {
5112 /*
5113 * If we are validating CT, then we MUST accept SCTs served via OCSP
5114 */
5115 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
5116 return 0;
5117 }
5118
5119 s->ct_validation_callback = callback;
5120 s->ct_validation_callback_arg = arg;
5121
5122 return 1;
5123 }
5124
5125 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
5126 ssl_ct_validation_cb callback, void *arg)
5127 {
5128 /*
5129 * Since code exists that uses the custom extension handler for CT, look for
5130 * this and throw an error if they have already registered to use CT.
5131 */
5132 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
5133 TLSEXT_TYPE_signed_certificate_timestamp))
5134 {
5135 ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
5136 return 0;
5137 }
5138
5139 ctx->ct_validation_callback = callback;
5140 ctx->ct_validation_callback_arg = arg;
5141 return 1;
5142 }
5143
5144 int SSL_ct_is_enabled(const SSL *s)
5145 {
5146 return s->ct_validation_callback != NULL;
5147 }
5148
5149 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
5150 {
5151 return ctx->ct_validation_callback != NULL;
5152 }
5153
5154 int ssl_validate_ct(SSL *s)
5155 {
5156 int ret = 0;
5157 X509 *cert = s->session != NULL ? s->session->peer : NULL;
5158 X509 *issuer;
5159 SSL_DANE *dane = &s->dane;
5160 CT_POLICY_EVAL_CTX *ctx = NULL;
5161 const STACK_OF(SCT) *scts;
5162
5163 /*
5164 * If no callback is set, the peer is anonymous, or its chain is invalid,
5165 * skip SCT validation - just return success. Applications that continue
5166 * handshakes without certificates, with unverified chains, or pinned leaf
5167 * certificates are outside the scope of the WebPKI and CT.
5168 *
5169 * The above exclusions notwithstanding the vast majority of peers will
5170 * have rather ordinary certificate chains validated by typical
5171 * applications that perform certificate verification and therefore will
5172 * process SCTs when enabled.
5173 */
5174 if (s->ct_validation_callback == NULL || cert == NULL ||
5175 s->verify_result != X509_V_OK ||
5176 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5177 return 1;
5178
5179 /*
5180 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5181 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5182 */
5183 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5184 switch (dane->mtlsa->usage) {
5185 case DANETLS_USAGE_DANE_TA:
5186 case DANETLS_USAGE_DANE_EE:
5187 return 1;
5188 }
5189 }
5190
5191 ctx = CT_POLICY_EVAL_CTX_new_ex(s->ctx->libctx, s->ctx->propq);
5192 if (ctx == NULL) {
5193 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5194 goto end;
5195 }
5196
5197 issuer = sk_X509_value(s->verified_chain, 1);
5198 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5199 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5200 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5201 CT_POLICY_EVAL_CTX_set_time(
5202 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5203
5204 scts = SSL_get0_peer_scts(s);
5205
5206 /*
5207 * This function returns success (> 0) only when all the SCTs are valid, 0
5208 * when some are invalid, and < 0 on various internal errors (out of
5209 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5210 * reason to abort the handshake, that decision is up to the callback.
5211 * Therefore, we error out only in the unexpected case that the return
5212 * value is negative.
5213 *
5214 * XXX: One might well argue that the return value of this function is an
5215 * unfortunate design choice. Its job is only to determine the validation
5216 * status of each of the provided SCTs. So long as it correctly separates
5217 * the wheat from the chaff it should return success. Failure in this case
5218 * ought to correspond to an inability to carry out its duties.
5219 */
5220 if (SCT_LIST_validate(scts, ctx) < 0) {
5221 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED);
5222 goto end;
5223 }
5224
5225 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5226 if (ret < 0)
5227 ret = 0; /* This function returns 0 on failure */
5228 if (!ret)
5229 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED);
5230
5231 end:
5232 CT_POLICY_EVAL_CTX_free(ctx);
5233 /*
5234 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5235 * failure return code here. Also the application may wish the complete
5236 * the handshake, and then disconnect cleanly at a higher layer, after
5237 * checking the verification status of the completed connection.
5238 *
5239 * We therefore force a certificate verification failure which will be
5240 * visible via SSL_get_verify_result() and cached as part of any resumed
5241 * session.
5242 *
5243 * Note: the permissive callback is for information gathering only, always
5244 * returns success, and does not affect verification status. Only the
5245 * strict callback or a custom application-specified callback can trigger
5246 * connection failure or record a verification error.
5247 */
5248 if (ret <= 0)
5249 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5250 return ret;
5251 }
5252
5253 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5254 {
5255 switch (validation_mode) {
5256 default:
5257 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5258 return 0;
5259 case SSL_CT_VALIDATION_PERMISSIVE:
5260 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5261 case SSL_CT_VALIDATION_STRICT:
5262 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5263 }
5264 }
5265
5266 int SSL_enable_ct(SSL *s, int validation_mode)
5267 {
5268 switch (validation_mode) {
5269 default:
5270 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE);
5271 return 0;
5272 case SSL_CT_VALIDATION_PERMISSIVE:
5273 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5274 case SSL_CT_VALIDATION_STRICT:
5275 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5276 }
5277 }
5278
5279 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5280 {
5281 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5282 }
5283
5284 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5285 {
5286 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5287 }
5288
5289 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5290 {
5291 CTLOG_STORE_free(ctx->ctlog_store);
5292 ctx->ctlog_store = logs;
5293 }
5294
5295 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5296 {
5297 return ctx->ctlog_store;
5298 }
5299
5300 #endif /* OPENSSL_NO_CT */
5301
5302 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5303 void *arg)
5304 {
5305 c->client_hello_cb = cb;
5306 c->client_hello_cb_arg = arg;
5307 }
5308
5309 int SSL_client_hello_isv2(SSL *s)
5310 {
5311 if (s->clienthello == NULL)
5312 return 0;
5313 return s->clienthello->isv2;
5314 }
5315
5316 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5317 {
5318 if (s->clienthello == NULL)
5319 return 0;
5320 return s->clienthello->legacy_version;
5321 }
5322
5323 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5324 {
5325 if (s->clienthello == NULL)
5326 return 0;
5327 if (out != NULL)
5328 *out = s->clienthello->random;
5329 return SSL3_RANDOM_SIZE;
5330 }
5331
5332 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5333 {
5334 if (s->clienthello == NULL)
5335 return 0;
5336 if (out != NULL)
5337 *out = s->clienthello->session_id;
5338 return s->clienthello->session_id_len;
5339 }
5340
5341 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5342 {
5343 if (s->clienthello == NULL)
5344 return 0;
5345 if (out != NULL)
5346 *out = PACKET_data(&s->clienthello->ciphersuites);
5347 return PACKET_remaining(&s->clienthello->ciphersuites);
5348 }
5349
5350 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5351 {
5352 if (s->clienthello == NULL)
5353 return 0;
5354 if (out != NULL)
5355 *out = s->clienthello->compressions;
5356 return s->clienthello->compressions_len;
5357 }
5358
5359 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5360 {
5361 RAW_EXTENSION *ext;
5362 int *present;
5363 size_t num = 0, i;
5364
5365 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5366 return 0;
5367 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5368 ext = s->clienthello->pre_proc_exts + i;
5369 if (ext->present)
5370 num++;
5371 }
5372 if (num == 0) {
5373 *out = NULL;
5374 *outlen = 0;
5375 return 1;
5376 }
5377 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5378 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5379 return 0;
5380 }
5381 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5382 ext = s->clienthello->pre_proc_exts + i;
5383 if (ext->present) {
5384 if (ext->received_order >= num)
5385 goto err;
5386 present[ext->received_order] = ext->type;
5387 }
5388 }
5389 *out = present;
5390 *outlen = num;
5391 return 1;
5392 err:
5393 OPENSSL_free(present);
5394 return 0;
5395 }
5396
5397 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5398 size_t *outlen)
5399 {
5400 size_t i;
5401 RAW_EXTENSION *r;
5402
5403 if (s->clienthello == NULL)
5404 return 0;
5405 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5406 r = s->clienthello->pre_proc_exts + i;
5407 if (r->present && r->type == type) {
5408 if (out != NULL)
5409 *out = PACKET_data(&r->data);
5410 if (outlen != NULL)
5411 *outlen = PACKET_remaining(&r->data);
5412 return 1;
5413 }
5414 }
5415 return 0;
5416 }
5417
5418 int SSL_free_buffers(SSL *ssl)
5419 {
5420 RECORD_LAYER *rl = &ssl->rlayer;
5421
5422 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5423 return 0;
5424
5425 RECORD_LAYER_release(rl);
5426 return 1;
5427 }
5428
5429 int SSL_alloc_buffers(SSL *ssl)
5430 {
5431 return ssl3_setup_buffers(ssl);
5432 }
5433
5434 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5435 {
5436 ctx->keylog_callback = cb;
5437 }
5438
5439 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5440 {
5441 return ctx->keylog_callback;
5442 }
5443
5444 static int nss_keylog_int(const char *prefix,
5445 SSL *ssl,
5446 const uint8_t *parameter_1,
5447 size_t parameter_1_len,
5448 const uint8_t *parameter_2,
5449 size_t parameter_2_len)
5450 {
5451 char *out = NULL;
5452 char *cursor = NULL;
5453 size_t out_len = 0;
5454 size_t i;
5455 size_t prefix_len;
5456
5457 if (ssl->ctx->keylog_callback == NULL)
5458 return 1;
5459
5460 /*
5461 * Our output buffer will contain the following strings, rendered with
5462 * space characters in between, terminated by a NULL character: first the
5463 * prefix, then the first parameter, then the second parameter. The
5464 * meaning of each parameter depends on the specific key material being
5465 * logged. Note that the first and second parameters are encoded in
5466 * hexadecimal, so we need a buffer that is twice their lengths.
5467 */
5468 prefix_len = strlen(prefix);
5469 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5470 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5471 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5472 return 0;
5473 }
5474
5475 strcpy(cursor, prefix);
5476 cursor += prefix_len;
5477 *cursor++ = ' ';
5478
5479 for (i = 0; i < parameter_1_len; i++) {
5480 sprintf(cursor, "%02x", parameter_1[i]);
5481 cursor += 2;
5482 }
5483 *cursor++ = ' ';
5484
5485 for (i = 0; i < parameter_2_len; i++) {
5486 sprintf(cursor, "%02x", parameter_2[i]);
5487 cursor += 2;
5488 }
5489 *cursor = '\0';
5490
5491 ssl->ctx->keylog_callback(ssl, (const char *)out);
5492 OPENSSL_clear_free(out, out_len);
5493 return 1;
5494
5495 }
5496
5497 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5498 const uint8_t *encrypted_premaster,
5499 size_t encrypted_premaster_len,
5500 const uint8_t *premaster,
5501 size_t premaster_len)
5502 {
5503 if (encrypted_premaster_len < 8) {
5504 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5505 return 0;
5506 }
5507
5508 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5509 return nss_keylog_int("RSA",
5510 ssl,
5511 encrypted_premaster,
5512 8,
5513 premaster,
5514 premaster_len);
5515 }
5516
5517 int ssl_log_secret(SSL *ssl,
5518 const char *label,
5519 const uint8_t *secret,
5520 size_t secret_len)
5521 {
5522 return nss_keylog_int(label,
5523 ssl,
5524 ssl->s3.client_random,
5525 SSL3_RANDOM_SIZE,
5526 secret,
5527 secret_len);
5528 }
5529
5530 #define SSLV2_CIPHER_LEN 3
5531
5532 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5533 {
5534 int n;
5535
5536 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5537
5538 if (PACKET_remaining(cipher_suites) == 0) {
5539 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5540 return 0;
5541 }
5542
5543 if (PACKET_remaining(cipher_suites) % n != 0) {
5544 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5545 return 0;
5546 }
5547
5548 OPENSSL_free(s->s3.tmp.ciphers_raw);
5549 s->s3.tmp.ciphers_raw = NULL;
5550 s->s3.tmp.ciphers_rawlen = 0;
5551
5552 if (sslv2format) {
5553 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5554 PACKET sslv2ciphers = *cipher_suites;
5555 unsigned int leadbyte;
5556 unsigned char *raw;
5557
5558 /*
5559 * We store the raw ciphers list in SSLv3+ format so we need to do some
5560 * preprocessing to convert the list first. If there are any SSLv2 only
5561 * ciphersuites with a non-zero leading byte then we are going to
5562 * slightly over allocate because we won't store those. But that isn't a
5563 * problem.
5564 */
5565 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5566 s->s3.tmp.ciphers_raw = raw;
5567 if (raw == NULL) {
5568 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5569 return 0;
5570 }
5571 for (s->s3.tmp.ciphers_rawlen = 0;
5572 PACKET_remaining(&sslv2ciphers) > 0;
5573 raw += TLS_CIPHER_LEN) {
5574 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5575 || (leadbyte == 0
5576 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5577 TLS_CIPHER_LEN))
5578 || (leadbyte != 0
5579 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5580 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET);
5581 OPENSSL_free(s->s3.tmp.ciphers_raw);
5582 s->s3.tmp.ciphers_raw = NULL;
5583 s->s3.tmp.ciphers_rawlen = 0;
5584 return 0;
5585 }
5586 if (leadbyte == 0)
5587 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5588 }
5589 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5590 &s->s3.tmp.ciphers_rawlen)) {
5591 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
5592 return 0;
5593 }
5594 return 1;
5595 }
5596
5597 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5598 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5599 STACK_OF(SSL_CIPHER) **scsvs)
5600 {
5601 PACKET pkt;
5602
5603 if (!PACKET_buf_init(&pkt, bytes, len))
5604 return 0;
5605 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5606 }
5607
5608 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5609 STACK_OF(SSL_CIPHER) **skp,
5610 STACK_OF(SSL_CIPHER) **scsvs_out,
5611 int sslv2format, int fatal)
5612 {
5613 const SSL_CIPHER *c;
5614 STACK_OF(SSL_CIPHER) *sk = NULL;
5615 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5616 int n;
5617 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5618 unsigned char cipher[SSLV2_CIPHER_LEN];
5619
5620 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5621
5622 if (PACKET_remaining(cipher_suites) == 0) {
5623 if (fatal)
5624 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED);
5625 else
5626 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED);
5627 return 0;
5628 }
5629
5630 if (PACKET_remaining(cipher_suites) % n != 0) {
5631 if (fatal)
5632 SSLfatal(s, SSL_AD_DECODE_ERROR,
5633 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5634 else
5635 ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5636 return 0;
5637 }
5638
5639 sk = sk_SSL_CIPHER_new_null();
5640 scsvs = sk_SSL_CIPHER_new_null();
5641 if (sk == NULL || scsvs == NULL) {
5642 if (fatal)
5643 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5644 else
5645 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5646 goto err;
5647 }
5648
5649 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5650 /*
5651 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5652 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5653 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5654 */
5655 if (sslv2format && cipher[0] != '\0')
5656 continue;
5657
5658 /* For SSLv2-compat, ignore leading 0-byte. */
5659 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5660 if (c != NULL) {
5661 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5662 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5663 if (fatal)
5664 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
5665 else
5666 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
5667 goto err;
5668 }
5669 }
5670 }
5671 if (PACKET_remaining(cipher_suites) > 0) {
5672 if (fatal)
5673 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH);
5674 else
5675 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
5676 goto err;
5677 }
5678
5679 if (skp != NULL)
5680 *skp = sk;
5681 else
5682 sk_SSL_CIPHER_free(sk);
5683 if (scsvs_out != NULL)
5684 *scsvs_out = scsvs;
5685 else
5686 sk_SSL_CIPHER_free(scsvs);
5687 return 1;
5688 err:
5689 sk_SSL_CIPHER_free(sk);
5690 sk_SSL_CIPHER_free(scsvs);
5691 return 0;
5692 }
5693
5694 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5695 {
5696 ctx->max_early_data = max_early_data;
5697
5698 return 1;
5699 }
5700
5701 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5702 {
5703 return ctx->max_early_data;
5704 }
5705
5706 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5707 {
5708 s->max_early_data = max_early_data;
5709
5710 return 1;
5711 }
5712
5713 uint32_t SSL_get_max_early_data(const SSL *s)
5714 {
5715 return s->max_early_data;
5716 }
5717
5718 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5719 {
5720 ctx->recv_max_early_data = recv_max_early_data;
5721
5722 return 1;
5723 }
5724
5725 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5726 {
5727 return ctx->recv_max_early_data;
5728 }
5729
5730 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5731 {
5732 s->recv_max_early_data = recv_max_early_data;
5733
5734 return 1;
5735 }
5736
5737 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5738 {
5739 return s->recv_max_early_data;
5740 }
5741
5742 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5743 {
5744 /* Return any active Max Fragment Len extension */
5745 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5746 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5747
5748 /* return current SSL connection setting */
5749 return ssl->max_send_fragment;
5750 }
5751
5752 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5753 {
5754 /* Return a value regarding an active Max Fragment Len extension */
5755 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5756 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5757 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5758
5759 /* else limit |split_send_fragment| to current |max_send_fragment| */
5760 if (ssl->split_send_fragment > ssl->max_send_fragment)
5761 return ssl->max_send_fragment;
5762
5763 /* return current SSL connection setting */
5764 return ssl->split_send_fragment;
5765 }
5766
5767 int SSL_stateless(SSL *s)
5768 {
5769 int ret;
5770
5771 /* Ensure there is no state left over from a previous invocation */
5772 if (!SSL_clear(s))
5773 return 0;
5774
5775 ERR_clear_error();
5776
5777 s->s3.flags |= TLS1_FLAGS_STATELESS;
5778 ret = SSL_accept(s);
5779 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5780
5781 if (ret > 0 && s->ext.cookieok)
5782 return 1;
5783
5784 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5785 return 0;
5786
5787 return -1;
5788 }
5789
5790 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5791 {
5792 ctx->pha_enabled = val;
5793 }
5794
5795 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5796 {
5797 ssl->pha_enabled = val;
5798 }
5799
5800 int SSL_verify_client_post_handshake(SSL *ssl)
5801 {
5802 if (!SSL_IS_TLS13(ssl)) {
5803 ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION);
5804 return 0;
5805 }
5806 if (!ssl->server) {
5807 ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER);
5808 return 0;
5809 }
5810
5811 if (!SSL_is_init_finished(ssl)) {
5812 ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT);
5813 return 0;
5814 }
5815
5816 switch (ssl->post_handshake_auth) {
5817 case SSL_PHA_NONE:
5818 ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED);
5819 return 0;
5820 default:
5821 case SSL_PHA_EXT_SENT:
5822 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
5823 return 0;
5824 case SSL_PHA_EXT_RECEIVED:
5825 break;
5826 case SSL_PHA_REQUEST_PENDING:
5827 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING);
5828 return 0;
5829 case SSL_PHA_REQUESTED:
5830 ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT);
5831 return 0;
5832 }
5833
5834 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5835
5836 /* checks verify_mode and algorithm_auth */
5837 if (!send_certificate_request(ssl)) {
5838 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5839 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG);
5840 return 0;
5841 }
5842
5843 ossl_statem_set_in_init(ssl, 1);
5844 return 1;
5845 }
5846
5847 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5848 SSL_CTX_generate_session_ticket_fn gen_cb,
5849 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5850 void *arg)
5851 {
5852 ctx->generate_ticket_cb = gen_cb;
5853 ctx->decrypt_ticket_cb = dec_cb;
5854 ctx->ticket_cb_data = arg;
5855 return 1;
5856 }
5857
5858 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5859 SSL_allow_early_data_cb_fn cb,
5860 void *arg)
5861 {
5862 ctx->allow_early_data_cb = cb;
5863 ctx->allow_early_data_cb_data = arg;
5864 }
5865
5866 void SSL_set_allow_early_data_cb(SSL *s,
5867 SSL_allow_early_data_cb_fn cb,
5868 void *arg)
5869 {
5870 s->allow_early_data_cb = cb;
5871 s->allow_early_data_cb_data = arg;
5872 }
5873
5874 const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx,
5875 int nid,
5876 const char *properties)
5877 {
5878 const EVP_CIPHER *ciph;
5879
5880 ciph = tls_get_cipher_from_engine(nid);
5881 if (ciph != NULL)
5882 return ciph;
5883
5884 /*
5885 * If there is no engine cipher then we do an explicit fetch. This may fail
5886 * and that could be ok
5887 */
5888 ERR_set_mark();
5889 ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties);
5890 ERR_pop_to_mark();
5891 return ciph;
5892 }
5893
5894
5895 int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher)
5896 {
5897 /* Don't up-ref an implicit EVP_CIPHER */
5898 if (EVP_CIPHER_get0_provider(cipher) == NULL)
5899 return 1;
5900
5901 /*
5902 * The cipher was explicitly fetched and therefore it is safe to cast
5903 * away the const
5904 */
5905 return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher);
5906 }
5907
5908 void ssl_evp_cipher_free(const EVP_CIPHER *cipher)
5909 {
5910 if (cipher == NULL)
5911 return;
5912
5913 if (EVP_CIPHER_get0_provider(cipher) != NULL) {
5914 /*
5915 * The cipher was explicitly fetched and therefore it is safe to cast
5916 * away the const
5917 */
5918 EVP_CIPHER_free((EVP_CIPHER *)cipher);
5919 }
5920 }
5921
5922 const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx,
5923 int nid,
5924 const char *properties)
5925 {
5926 const EVP_MD *md;
5927
5928 md = tls_get_digest_from_engine(nid);
5929 if (md != NULL)
5930 return md;
5931
5932 /* Otherwise we do an explicit fetch */
5933 ERR_set_mark();
5934 md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties);
5935 ERR_pop_to_mark();
5936 return md;
5937 }
5938
5939 int ssl_evp_md_up_ref(const EVP_MD *md)
5940 {
5941 /* Don't up-ref an implicit EVP_MD */
5942 if (EVP_MD_get0_provider(md) == NULL)
5943 return 1;
5944
5945 /*
5946 * The digest was explicitly fetched and therefore it is safe to cast
5947 * away the const
5948 */
5949 return EVP_MD_up_ref((EVP_MD *)md);
5950 }
5951
5952 void ssl_evp_md_free(const EVP_MD *md)
5953 {
5954 if (md == NULL)
5955 return;
5956
5957 if (EVP_MD_get0_provider(md) != NULL) {
5958 /*
5959 * The digest was explicitly fetched and therefore it is safe to cast
5960 * away the const
5961 */
5962 EVP_MD_free((EVP_MD *)md);
5963 }
5964 }
5965
5966 int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey)
5967 {
5968 if (!ssl_security(s, SSL_SECOP_TMP_DH,
5969 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
5970 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
5971 EVP_PKEY_free(dhpkey);
5972 return 0;
5973 }
5974 EVP_PKEY_free(s->cert->dh_tmp);
5975 s->cert->dh_tmp = dhpkey;
5976 return 1;
5977 }
5978
5979 int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey)
5980 {
5981 if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH,
5982 EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) {
5983 ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL);
5984 EVP_PKEY_free(dhpkey);
5985 return 0;
5986 }
5987 EVP_PKEY_free(ctx->cert->dh_tmp);
5988 ctx->cert->dh_tmp = dhpkey;
5989 return 1;
5990 }