]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Add master DRBG for reseeding
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/dh.h>
19 #include <openssl/engine.h>
20 #include <openssl/async.h>
21 #include <openssl/ct.h>
22 #include "internal/cryptlib.h"
23 #include "internal/rand.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29 {
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34 }
35
36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53 }
54
55 static int ssl_undefined_function_4(SSL *ssl, int r)
56 {
57 (void)r;
58 return ssl_undefined_function(ssl);
59 }
60
61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63 {
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68 }
69
70 static int ssl_undefined_function_6(int r)
71 {
72 (void)r;
73 return ssl_undefined_function(NULL);
74 }
75
76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79 {
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88 }
89
90 SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103 };
104
105 struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115 };
116
117 static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121 } dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131 };
132
133 static int dane_ctx_enable(struct dane_ctx_st *dctx)
134 {
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170 }
171
172 static void dane_ctx_final(struct dane_ctx_st *dctx)
173 {
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180 }
181
182 static void tlsa_free(danetls_record *t)
183 {
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189 }
190
191 static void dane_final(SSL_DANE *dane)
192 {
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204 }
205
206 /*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209 static int ssl_dane_dup(SSL *to, SSL *from)
210 {
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236 }
237
238 static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240 {
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281 }
282
283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284 {
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288 }
289
290 static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned char *data, size_t dlen)
294 {
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457 }
458
459 /*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463 static int ssl_check_allowed_versions(int min_version, int max_version)
464 {
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488 #ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491 #endif
492 #ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495 #endif
496 /* Done massaging versions; do the check. */
497 if (0
498 #ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501 #endif
502 #ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505 #endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514 #ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517 #endif
518 #ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521 #endif
522 #ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525 #endif
526 #ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529 #endif
530 #ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533 #endif
534 #ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537 #endif
538 #ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541 #endif
542 #ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545 #endif
546 /* Done massaging versions; do the check. */
547 if (0
548 #ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550 #endif
551 #ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553 #endif
554 #ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556 #endif
557 #ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562 #endif
563 )
564 return 0;
565 }
566 return 1;
567 }
568
569 static void clear_ciphers(SSL *s)
570 {
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575 }
576
577 int SSL_clear(SSL *s)
578 {
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593
594 s->error = 0;
595 s->hit = 0;
596 s->shutdown = 0;
597
598 if (s->renegotiate) {
599 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
600 return 0;
601 }
602
603 ossl_statem_clear(s);
604
605 s->version = s->method->version;
606 s->client_version = s->version;
607 s->rwstate = SSL_NOTHING;
608
609 BUF_MEM_free(s->init_buf);
610 s->init_buf = NULL;
611 clear_ciphers(s);
612 s->first_packet = 0;
613
614 s->key_update = SSL_KEY_UPDATE_NONE;
615
616 /* Reset DANE verification result state */
617 s->dane.mdpth = -1;
618 s->dane.pdpth = -1;
619 X509_free(s->dane.mcert);
620 s->dane.mcert = NULL;
621 s->dane.mtlsa = NULL;
622
623 /* Clear the verification result peername */
624 X509_VERIFY_PARAM_move_peername(s->param, NULL);
625
626 /*
627 * Check to see if we were changed into a different method, if so, revert
628 * back.
629 */
630 if (s->method != s->ctx->method) {
631 s->method->ssl_free(s);
632 s->method = s->ctx->method;
633 if (!s->method->ssl_new(s))
634 return 0;
635 } else {
636 if (!s->method->ssl_clear(s))
637 return 0;
638 }
639
640 RECORD_LAYER_clear(&s->rlayer);
641
642 return 1;
643 }
644
645 /** Used to change an SSL_CTXs default SSL method type */
646 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
647 {
648 STACK_OF(SSL_CIPHER) *sk;
649
650 ctx->method = meth;
651
652 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
653 &(ctx->cipher_list_by_id),
654 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
655 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
656 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
657 return 0;
658 }
659 return 1;
660 }
661
662 SSL *SSL_new(SSL_CTX *ctx)
663 {
664 SSL *s;
665
666 if (ctx == NULL) {
667 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
668 return NULL;
669 }
670 if (ctx->method == NULL) {
671 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
672 return NULL;
673 }
674
675 s = OPENSSL_zalloc(sizeof(*s));
676 if (s == NULL)
677 goto err;
678
679 s->references = 1;
680 s->lock = CRYPTO_THREAD_lock_new();
681 if (s->lock == NULL) {
682 OPENSSL_free(s);
683 s = NULL;
684 goto err;
685 }
686
687 /*
688 * If not using the standard RAND (say for fuzzing), then don't use a
689 * chained DRBG.
690 */
691 if (RAND_get_rand_method() == RAND_OpenSSL()) {
692 s->drbg =
693 RAND_DRBG_new(RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF,
694 RAND_DRBG_get0_public());
695 if (s->drbg == NULL
696 || RAND_DRBG_instantiate(s->drbg,
697 (const unsigned char *) SSL_version_str,
698 sizeof(SSL_version_str) - 1) == 0)
699 goto err;
700 }
701
702 RECORD_LAYER_init(&s->rlayer, s);
703
704 s->options = ctx->options;
705 s->dane.flags = ctx->dane.flags;
706 s->min_proto_version = ctx->min_proto_version;
707 s->max_proto_version = ctx->max_proto_version;
708 s->mode = ctx->mode;
709 s->max_cert_list = ctx->max_cert_list;
710 s->max_early_data = ctx->max_early_data;
711
712 /*
713 * Earlier library versions used to copy the pointer to the CERT, not
714 * its contents; only when setting new parameters for the per-SSL
715 * copy, ssl_cert_new would be called (and the direct reference to
716 * the per-SSL_CTX settings would be lost, but those still were
717 * indirectly accessed for various purposes, and for that reason they
718 * used to be known as s->ctx->default_cert). Now we don't look at the
719 * SSL_CTX's CERT after having duplicated it once.
720 */
721 s->cert = ssl_cert_dup(ctx->cert);
722 if (s->cert == NULL)
723 goto err;
724
725 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
726 s->msg_callback = ctx->msg_callback;
727 s->msg_callback_arg = ctx->msg_callback_arg;
728 s->verify_mode = ctx->verify_mode;
729 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
730 s->record_padding_cb = ctx->record_padding_cb;
731 s->record_padding_arg = ctx->record_padding_arg;
732 s->block_padding = ctx->block_padding;
733 s->sid_ctx_length = ctx->sid_ctx_length;
734 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
735 goto err;
736 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
737 s->verify_callback = ctx->default_verify_callback;
738 s->generate_session_id = ctx->generate_session_id;
739
740 s->param = X509_VERIFY_PARAM_new();
741 if (s->param == NULL)
742 goto err;
743 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
744 s->quiet_shutdown = ctx->quiet_shutdown;
745
746 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
747 s->max_send_fragment = ctx->max_send_fragment;
748 s->split_send_fragment = ctx->split_send_fragment;
749 s->max_pipelines = ctx->max_pipelines;
750 if (s->max_pipelines > 1)
751 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
752 if (ctx->default_read_buf_len > 0)
753 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
754
755 SSL_CTX_up_ref(ctx);
756 s->ctx = ctx;
757 s->ext.debug_cb = 0;
758 s->ext.debug_arg = NULL;
759 s->ext.ticket_expected = 0;
760 s->ext.status_type = ctx->ext.status_type;
761 s->ext.status_expected = 0;
762 s->ext.ocsp.ids = NULL;
763 s->ext.ocsp.exts = NULL;
764 s->ext.ocsp.resp = NULL;
765 s->ext.ocsp.resp_len = 0;
766 SSL_CTX_up_ref(ctx);
767 s->session_ctx = ctx;
768 #ifndef OPENSSL_NO_EC
769 if (ctx->ext.ecpointformats) {
770 s->ext.ecpointformats =
771 OPENSSL_memdup(ctx->ext.ecpointformats,
772 ctx->ext.ecpointformats_len);
773 if (!s->ext.ecpointformats)
774 goto err;
775 s->ext.ecpointformats_len =
776 ctx->ext.ecpointformats_len;
777 }
778 if (ctx->ext.supportedgroups) {
779 s->ext.supportedgroups =
780 OPENSSL_memdup(ctx->ext.supportedgroups,
781 ctx->ext.supportedgroups_len
782 * sizeof(*ctx->ext.supportedgroups));
783 if (!s->ext.supportedgroups)
784 goto err;
785 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
786 }
787 #endif
788 #ifndef OPENSSL_NO_NEXTPROTONEG
789 s->ext.npn = NULL;
790 #endif
791
792 if (s->ctx->ext.alpn) {
793 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
794 if (s->ext.alpn == NULL)
795 goto err;
796 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
797 s->ext.alpn_len = s->ctx->ext.alpn_len;
798 }
799
800 s->verified_chain = NULL;
801 s->verify_result = X509_V_OK;
802
803 s->default_passwd_callback = ctx->default_passwd_callback;
804 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
805
806 s->method = ctx->method;
807
808 s->key_update = SSL_KEY_UPDATE_NONE;
809
810 if (!s->method->ssl_new(s))
811 goto err;
812
813 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
814
815 if (!SSL_clear(s))
816 goto err;
817
818 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
819 goto err;
820
821 #ifndef OPENSSL_NO_PSK
822 s->psk_client_callback = ctx->psk_client_callback;
823 s->psk_server_callback = ctx->psk_server_callback;
824 #endif
825 s->psk_find_session_cb = ctx->psk_find_session_cb;
826 s->psk_use_session_cb = ctx->psk_use_session_cb;
827
828 s->job = NULL;
829
830 #ifndef OPENSSL_NO_CT
831 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
832 ctx->ct_validation_callback_arg))
833 goto err;
834 #endif
835
836 return s;
837 err:
838 SSL_free(s);
839 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
840 return NULL;
841 }
842
843 int SSL_is_dtls(const SSL *s)
844 {
845 return SSL_IS_DTLS(s) ? 1 : 0;
846 }
847
848 int SSL_up_ref(SSL *s)
849 {
850 int i;
851
852 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
853 return 0;
854
855 REF_PRINT_COUNT("SSL", s);
856 REF_ASSERT_ISNT(i < 2);
857 return ((i > 1) ? 1 : 0);
858 }
859
860 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
861 unsigned int sid_ctx_len)
862 {
863 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
864 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
865 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
866 return 0;
867 }
868 ctx->sid_ctx_length = sid_ctx_len;
869 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
870
871 return 1;
872 }
873
874 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
875 unsigned int sid_ctx_len)
876 {
877 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
878 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
879 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
880 return 0;
881 }
882 ssl->sid_ctx_length = sid_ctx_len;
883 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
884
885 return 1;
886 }
887
888 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
889 {
890 CRYPTO_THREAD_write_lock(ctx->lock);
891 ctx->generate_session_id = cb;
892 CRYPTO_THREAD_unlock(ctx->lock);
893 return 1;
894 }
895
896 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
897 {
898 CRYPTO_THREAD_write_lock(ssl->lock);
899 ssl->generate_session_id = cb;
900 CRYPTO_THREAD_unlock(ssl->lock);
901 return 1;
902 }
903
904 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
905 unsigned int id_len)
906 {
907 /*
908 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
909 * we can "construct" a session to give us the desired check - i.e. to
910 * find if there's a session in the hash table that would conflict with
911 * any new session built out of this id/id_len and the ssl_version in use
912 * by this SSL.
913 */
914 SSL_SESSION r, *p;
915
916 if (id_len > sizeof(r.session_id))
917 return 0;
918
919 r.ssl_version = ssl->version;
920 r.session_id_length = id_len;
921 memcpy(r.session_id, id, id_len);
922
923 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
924 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
925 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
926 return (p != NULL);
927 }
928
929 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
930 {
931 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
932 }
933
934 int SSL_set_purpose(SSL *s, int purpose)
935 {
936 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
937 }
938
939 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
940 {
941 return X509_VERIFY_PARAM_set_trust(s->param, trust);
942 }
943
944 int SSL_set_trust(SSL *s, int trust)
945 {
946 return X509_VERIFY_PARAM_set_trust(s->param, trust);
947 }
948
949 int SSL_set1_host(SSL *s, const char *hostname)
950 {
951 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
952 }
953
954 int SSL_add1_host(SSL *s, const char *hostname)
955 {
956 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
957 }
958
959 void SSL_set_hostflags(SSL *s, unsigned int flags)
960 {
961 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
962 }
963
964 const char *SSL_get0_peername(SSL *s)
965 {
966 return X509_VERIFY_PARAM_get0_peername(s->param);
967 }
968
969 int SSL_CTX_dane_enable(SSL_CTX *ctx)
970 {
971 return dane_ctx_enable(&ctx->dane);
972 }
973
974 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
975 {
976 unsigned long orig = ctx->dane.flags;
977
978 ctx->dane.flags |= flags;
979 return orig;
980 }
981
982 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
983 {
984 unsigned long orig = ctx->dane.flags;
985
986 ctx->dane.flags &= ~flags;
987 return orig;
988 }
989
990 int SSL_dane_enable(SSL *s, const char *basedomain)
991 {
992 SSL_DANE *dane = &s->dane;
993
994 if (s->ctx->dane.mdmax == 0) {
995 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
996 return 0;
997 }
998 if (dane->trecs != NULL) {
999 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1000 return 0;
1001 }
1002
1003 /*
1004 * Default SNI name. This rejects empty names, while set1_host below
1005 * accepts them and disables host name checks. To avoid side-effects with
1006 * invalid input, set the SNI name first.
1007 */
1008 if (s->ext.hostname == NULL) {
1009 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1010 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1011 return -1;
1012 }
1013 }
1014
1015 /* Primary RFC6125 reference identifier */
1016 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1017 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1018 return -1;
1019 }
1020
1021 dane->mdpth = -1;
1022 dane->pdpth = -1;
1023 dane->dctx = &s->ctx->dane;
1024 dane->trecs = sk_danetls_record_new_null();
1025
1026 if (dane->trecs == NULL) {
1027 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1028 return -1;
1029 }
1030 return 1;
1031 }
1032
1033 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1034 {
1035 unsigned long orig = ssl->dane.flags;
1036
1037 ssl->dane.flags |= flags;
1038 return orig;
1039 }
1040
1041 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1042 {
1043 unsigned long orig = ssl->dane.flags;
1044
1045 ssl->dane.flags &= ~flags;
1046 return orig;
1047 }
1048
1049 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1050 {
1051 SSL_DANE *dane = &s->dane;
1052
1053 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1054 return -1;
1055 if (dane->mtlsa) {
1056 if (mcert)
1057 *mcert = dane->mcert;
1058 if (mspki)
1059 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1060 }
1061 return dane->mdpth;
1062 }
1063
1064 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1065 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1066 {
1067 SSL_DANE *dane = &s->dane;
1068
1069 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1070 return -1;
1071 if (dane->mtlsa) {
1072 if (usage)
1073 *usage = dane->mtlsa->usage;
1074 if (selector)
1075 *selector = dane->mtlsa->selector;
1076 if (mtype)
1077 *mtype = dane->mtlsa->mtype;
1078 if (data)
1079 *data = dane->mtlsa->data;
1080 if (dlen)
1081 *dlen = dane->mtlsa->dlen;
1082 }
1083 return dane->mdpth;
1084 }
1085
1086 SSL_DANE *SSL_get0_dane(SSL *s)
1087 {
1088 return &s->dane;
1089 }
1090
1091 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1092 uint8_t mtype, unsigned char *data, size_t dlen)
1093 {
1094 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1095 }
1096
1097 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1098 uint8_t ord)
1099 {
1100 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1101 }
1102
1103 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1104 {
1105 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1106 }
1107
1108 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1109 {
1110 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1111 }
1112
1113 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1114 {
1115 return ctx->param;
1116 }
1117
1118 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1119 {
1120 return ssl->param;
1121 }
1122
1123 void SSL_certs_clear(SSL *s)
1124 {
1125 ssl_cert_clear_certs(s->cert);
1126 }
1127
1128 void SSL_free(SSL *s)
1129 {
1130 int i;
1131
1132 if (s == NULL)
1133 return;
1134
1135 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1136 REF_PRINT_COUNT("SSL", s);
1137 if (i > 0)
1138 return;
1139 REF_ASSERT_ISNT(i < 0);
1140
1141 X509_VERIFY_PARAM_free(s->param);
1142 dane_final(&s->dane);
1143 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1144
1145 /* Ignore return value */
1146 ssl_free_wbio_buffer(s);
1147
1148 BIO_free_all(s->wbio);
1149 BIO_free_all(s->rbio);
1150
1151 BUF_MEM_free(s->init_buf);
1152
1153 /* add extra stuff */
1154 sk_SSL_CIPHER_free(s->cipher_list);
1155 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1156
1157 /* Make the next call work :-) */
1158 if (s->session != NULL) {
1159 ssl_clear_bad_session(s);
1160 SSL_SESSION_free(s->session);
1161 }
1162 SSL_SESSION_free(s->psksession);
1163 OPENSSL_free(s->psksession_id);
1164
1165 clear_ciphers(s);
1166
1167 ssl_cert_free(s->cert);
1168 /* Free up if allocated */
1169
1170 OPENSSL_free(s->ext.hostname);
1171 SSL_CTX_free(s->session_ctx);
1172 #ifndef OPENSSL_NO_EC
1173 OPENSSL_free(s->ext.ecpointformats);
1174 OPENSSL_free(s->ext.supportedgroups);
1175 #endif /* OPENSSL_NO_EC */
1176 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1177 #ifndef OPENSSL_NO_OCSP
1178 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1179 #endif
1180 #ifndef OPENSSL_NO_CT
1181 SCT_LIST_free(s->scts);
1182 OPENSSL_free(s->ext.scts);
1183 #endif
1184 OPENSSL_free(s->ext.ocsp.resp);
1185 OPENSSL_free(s->ext.alpn);
1186 OPENSSL_free(s->ext.tls13_cookie);
1187 OPENSSL_free(s->clienthello);
1188
1189 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1190
1191 sk_X509_pop_free(s->verified_chain, X509_free);
1192
1193 if (s->method != NULL)
1194 s->method->ssl_free(s);
1195
1196 RECORD_LAYER_release(&s->rlayer);
1197
1198 SSL_CTX_free(s->ctx);
1199
1200 ASYNC_WAIT_CTX_free(s->waitctx);
1201
1202 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1203 OPENSSL_free(s->ext.npn);
1204 #endif
1205
1206 #ifndef OPENSSL_NO_SRTP
1207 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1208 #endif
1209
1210 RAND_DRBG_free(s->drbg);
1211 CRYPTO_THREAD_lock_free(s->lock);
1212
1213 OPENSSL_free(s);
1214 }
1215
1216 void SSL_set0_rbio(SSL *s, BIO *rbio)
1217 {
1218 BIO_free_all(s->rbio);
1219 s->rbio = rbio;
1220 }
1221
1222 void SSL_set0_wbio(SSL *s, BIO *wbio)
1223 {
1224 /*
1225 * If the output buffering BIO is still in place, remove it
1226 */
1227 if (s->bbio != NULL)
1228 s->wbio = BIO_pop(s->wbio);
1229
1230 BIO_free_all(s->wbio);
1231 s->wbio = wbio;
1232
1233 /* Re-attach |bbio| to the new |wbio|. */
1234 if (s->bbio != NULL)
1235 s->wbio = BIO_push(s->bbio, s->wbio);
1236 }
1237
1238 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1239 {
1240 /*
1241 * For historical reasons, this function has many different cases in
1242 * ownership handling.
1243 */
1244
1245 /* If nothing has changed, do nothing */
1246 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1247 return;
1248
1249 /*
1250 * If the two arguments are equal then one fewer reference is granted by the
1251 * caller than we want to take
1252 */
1253 if (rbio != NULL && rbio == wbio)
1254 BIO_up_ref(rbio);
1255
1256 /*
1257 * If only the wbio is changed only adopt one reference.
1258 */
1259 if (rbio == SSL_get_rbio(s)) {
1260 SSL_set0_wbio(s, wbio);
1261 return;
1262 }
1263 /*
1264 * There is an asymmetry here for historical reasons. If only the rbio is
1265 * changed AND the rbio and wbio were originally different, then we only
1266 * adopt one reference.
1267 */
1268 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1269 SSL_set0_rbio(s, rbio);
1270 return;
1271 }
1272
1273 /* Otherwise, adopt both references. */
1274 SSL_set0_rbio(s, rbio);
1275 SSL_set0_wbio(s, wbio);
1276 }
1277
1278 BIO *SSL_get_rbio(const SSL *s)
1279 {
1280 return s->rbio;
1281 }
1282
1283 BIO *SSL_get_wbio(const SSL *s)
1284 {
1285 if (s->bbio != NULL) {
1286 /*
1287 * If |bbio| is active, the true caller-configured BIO is its
1288 * |next_bio|.
1289 */
1290 return BIO_next(s->bbio);
1291 }
1292 return s->wbio;
1293 }
1294
1295 int SSL_get_fd(const SSL *s)
1296 {
1297 return SSL_get_rfd(s);
1298 }
1299
1300 int SSL_get_rfd(const SSL *s)
1301 {
1302 int ret = -1;
1303 BIO *b, *r;
1304
1305 b = SSL_get_rbio(s);
1306 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1307 if (r != NULL)
1308 BIO_get_fd(r, &ret);
1309 return ret;
1310 }
1311
1312 int SSL_get_wfd(const SSL *s)
1313 {
1314 int ret = -1;
1315 BIO *b, *r;
1316
1317 b = SSL_get_wbio(s);
1318 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1319 if (r != NULL)
1320 BIO_get_fd(r, &ret);
1321 return ret;
1322 }
1323
1324 #ifndef OPENSSL_NO_SOCK
1325 int SSL_set_fd(SSL *s, int fd)
1326 {
1327 int ret = 0;
1328 BIO *bio = NULL;
1329
1330 bio = BIO_new(BIO_s_socket());
1331
1332 if (bio == NULL) {
1333 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1334 goto err;
1335 }
1336 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1337 SSL_set_bio(s, bio, bio);
1338 ret = 1;
1339 err:
1340 return ret;
1341 }
1342
1343 int SSL_set_wfd(SSL *s, int fd)
1344 {
1345 BIO *rbio = SSL_get_rbio(s);
1346
1347 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1348 || (int)BIO_get_fd(rbio, NULL) != fd) {
1349 BIO *bio = BIO_new(BIO_s_socket());
1350
1351 if (bio == NULL) {
1352 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1353 return 0;
1354 }
1355 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1356 SSL_set0_wbio(s, bio);
1357 } else {
1358 BIO_up_ref(rbio);
1359 SSL_set0_wbio(s, rbio);
1360 }
1361 return 1;
1362 }
1363
1364 int SSL_set_rfd(SSL *s, int fd)
1365 {
1366 BIO *wbio = SSL_get_wbio(s);
1367
1368 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1369 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1370 BIO *bio = BIO_new(BIO_s_socket());
1371
1372 if (bio == NULL) {
1373 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1374 return 0;
1375 }
1376 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1377 SSL_set0_rbio(s, bio);
1378 } else {
1379 BIO_up_ref(wbio);
1380 SSL_set0_rbio(s, wbio);
1381 }
1382
1383 return 1;
1384 }
1385 #endif
1386
1387 /* return length of latest Finished message we sent, copy to 'buf' */
1388 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1389 {
1390 size_t ret = 0;
1391
1392 if (s->s3 != NULL) {
1393 ret = s->s3->tmp.finish_md_len;
1394 if (count > ret)
1395 count = ret;
1396 memcpy(buf, s->s3->tmp.finish_md, count);
1397 }
1398 return ret;
1399 }
1400
1401 /* return length of latest Finished message we expected, copy to 'buf' */
1402 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1403 {
1404 size_t ret = 0;
1405
1406 if (s->s3 != NULL) {
1407 ret = s->s3->tmp.peer_finish_md_len;
1408 if (count > ret)
1409 count = ret;
1410 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1411 }
1412 return ret;
1413 }
1414
1415 int SSL_get_verify_mode(const SSL *s)
1416 {
1417 return s->verify_mode;
1418 }
1419
1420 int SSL_get_verify_depth(const SSL *s)
1421 {
1422 return X509_VERIFY_PARAM_get_depth(s->param);
1423 }
1424
1425 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1426 return s->verify_callback;
1427 }
1428
1429 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1430 {
1431 return ctx->verify_mode;
1432 }
1433
1434 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1435 {
1436 return X509_VERIFY_PARAM_get_depth(ctx->param);
1437 }
1438
1439 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1440 return ctx->default_verify_callback;
1441 }
1442
1443 void SSL_set_verify(SSL *s, int mode,
1444 int (*callback) (int ok, X509_STORE_CTX *ctx))
1445 {
1446 s->verify_mode = mode;
1447 if (callback != NULL)
1448 s->verify_callback = callback;
1449 }
1450
1451 void SSL_set_verify_depth(SSL *s, int depth)
1452 {
1453 X509_VERIFY_PARAM_set_depth(s->param, depth);
1454 }
1455
1456 void SSL_set_read_ahead(SSL *s, int yes)
1457 {
1458 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1459 }
1460
1461 int SSL_get_read_ahead(const SSL *s)
1462 {
1463 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1464 }
1465
1466 int SSL_pending(const SSL *s)
1467 {
1468 size_t pending = s->method->ssl_pending(s);
1469
1470 /*
1471 * SSL_pending cannot work properly if read-ahead is enabled
1472 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1473 * impossible to fix since SSL_pending cannot report errors that may be
1474 * observed while scanning the new data. (Note that SSL_pending() is
1475 * often used as a boolean value, so we'd better not return -1.)
1476 *
1477 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1478 * we just return INT_MAX.
1479 */
1480 return pending < INT_MAX ? (int)pending : INT_MAX;
1481 }
1482
1483 int SSL_has_pending(const SSL *s)
1484 {
1485 /*
1486 * Similar to SSL_pending() but returns a 1 to indicate that we have
1487 * unprocessed data available or 0 otherwise (as opposed to the number of
1488 * bytes available). Unlike SSL_pending() this will take into account
1489 * read_ahead data. A 1 return simply indicates that we have unprocessed
1490 * data. That data may not result in any application data, or we may fail
1491 * to parse the records for some reason.
1492 */
1493 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1494 return 1;
1495
1496 return RECORD_LAYER_read_pending(&s->rlayer);
1497 }
1498
1499 X509 *SSL_get_peer_certificate(const SSL *s)
1500 {
1501 X509 *r;
1502
1503 if ((s == NULL) || (s->session == NULL))
1504 r = NULL;
1505 else
1506 r = s->session->peer;
1507
1508 if (r == NULL)
1509 return r;
1510
1511 X509_up_ref(r);
1512
1513 return r;
1514 }
1515
1516 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1517 {
1518 STACK_OF(X509) *r;
1519
1520 if ((s == NULL) || (s->session == NULL))
1521 r = NULL;
1522 else
1523 r = s->session->peer_chain;
1524
1525 /*
1526 * If we are a client, cert_chain includes the peer's own certificate; if
1527 * we are a server, it does not.
1528 */
1529
1530 return r;
1531 }
1532
1533 /*
1534 * Now in theory, since the calling process own 't' it should be safe to
1535 * modify. We need to be able to read f without being hassled
1536 */
1537 int SSL_copy_session_id(SSL *t, const SSL *f)
1538 {
1539 int i;
1540 /* Do we need to to SSL locking? */
1541 if (!SSL_set_session(t, SSL_get_session(f))) {
1542 return 0;
1543 }
1544
1545 /*
1546 * what if we are setup for one protocol version but want to talk another
1547 */
1548 if (t->method != f->method) {
1549 t->method->ssl_free(t);
1550 t->method = f->method;
1551 if (t->method->ssl_new(t) == 0)
1552 return 0;
1553 }
1554
1555 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1556 ssl_cert_free(t->cert);
1557 t->cert = f->cert;
1558 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1559 return 0;
1560 }
1561
1562 return 1;
1563 }
1564
1565 /* Fix this so it checks all the valid key/cert options */
1566 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1567 {
1568 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1569 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1570 return 0;
1571 }
1572 if (ctx->cert->key->privatekey == NULL) {
1573 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1574 return 0;
1575 }
1576 return X509_check_private_key
1577 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1578 }
1579
1580 /* Fix this function so that it takes an optional type parameter */
1581 int SSL_check_private_key(const SSL *ssl)
1582 {
1583 if (ssl == NULL) {
1584 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1585 return 0;
1586 }
1587 if (ssl->cert->key->x509 == NULL) {
1588 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1589 return 0;
1590 }
1591 if (ssl->cert->key->privatekey == NULL) {
1592 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1593 return 0;
1594 }
1595 return X509_check_private_key(ssl->cert->key->x509,
1596 ssl->cert->key->privatekey);
1597 }
1598
1599 int SSL_waiting_for_async(SSL *s)
1600 {
1601 if (s->job)
1602 return 1;
1603
1604 return 0;
1605 }
1606
1607 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1608 {
1609 ASYNC_WAIT_CTX *ctx = s->waitctx;
1610
1611 if (ctx == NULL)
1612 return 0;
1613 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1614 }
1615
1616 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1617 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1618 {
1619 ASYNC_WAIT_CTX *ctx = s->waitctx;
1620
1621 if (ctx == NULL)
1622 return 0;
1623 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1624 numdelfds);
1625 }
1626
1627 int SSL_accept(SSL *s)
1628 {
1629 if (s->handshake_func == NULL) {
1630 /* Not properly initialized yet */
1631 SSL_set_accept_state(s);
1632 }
1633
1634 return SSL_do_handshake(s);
1635 }
1636
1637 int SSL_connect(SSL *s)
1638 {
1639 if (s->handshake_func == NULL) {
1640 /* Not properly initialized yet */
1641 SSL_set_connect_state(s);
1642 }
1643
1644 return SSL_do_handshake(s);
1645 }
1646
1647 long SSL_get_default_timeout(const SSL *s)
1648 {
1649 return s->method->get_timeout();
1650 }
1651
1652 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1653 int (*func) (void *))
1654 {
1655 int ret;
1656 if (s->waitctx == NULL) {
1657 s->waitctx = ASYNC_WAIT_CTX_new();
1658 if (s->waitctx == NULL)
1659 return -1;
1660 }
1661 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1662 sizeof(struct ssl_async_args))) {
1663 case ASYNC_ERR:
1664 s->rwstate = SSL_NOTHING;
1665 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1666 return -1;
1667 case ASYNC_PAUSE:
1668 s->rwstate = SSL_ASYNC_PAUSED;
1669 return -1;
1670 case ASYNC_NO_JOBS:
1671 s->rwstate = SSL_ASYNC_NO_JOBS;
1672 return -1;
1673 case ASYNC_FINISH:
1674 s->job = NULL;
1675 return ret;
1676 default:
1677 s->rwstate = SSL_NOTHING;
1678 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1679 /* Shouldn't happen */
1680 return -1;
1681 }
1682 }
1683
1684 static int ssl_io_intern(void *vargs)
1685 {
1686 struct ssl_async_args *args;
1687 SSL *s;
1688 void *buf;
1689 size_t num;
1690
1691 args = (struct ssl_async_args *)vargs;
1692 s = args->s;
1693 buf = args->buf;
1694 num = args->num;
1695 switch (args->type) {
1696 case READFUNC:
1697 return args->f.func_read(s, buf, num, &s->asyncrw);
1698 case WRITEFUNC:
1699 return args->f.func_write(s, buf, num, &s->asyncrw);
1700 case OTHERFUNC:
1701 return args->f.func_other(s);
1702 }
1703 return -1;
1704 }
1705
1706 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1707 {
1708 if (s->handshake_func == NULL) {
1709 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1710 return -1;
1711 }
1712
1713 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1714 s->rwstate = SSL_NOTHING;
1715 return 0;
1716 }
1717
1718 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1719 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1720 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1721 return 0;
1722 }
1723 /*
1724 * If we are a client and haven't received the ServerHello etc then we
1725 * better do that
1726 */
1727 ossl_statem_check_finish_init(s, 0);
1728
1729 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1730 struct ssl_async_args args;
1731 int ret;
1732
1733 args.s = s;
1734 args.buf = buf;
1735 args.num = num;
1736 args.type = READFUNC;
1737 args.f.func_read = s->method->ssl_read;
1738
1739 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1740 *readbytes = s->asyncrw;
1741 return ret;
1742 } else {
1743 return s->method->ssl_read(s, buf, num, readbytes);
1744 }
1745 }
1746
1747 int SSL_read(SSL *s, void *buf, int num)
1748 {
1749 int ret;
1750 size_t readbytes;
1751
1752 if (num < 0) {
1753 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1754 return -1;
1755 }
1756
1757 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1758
1759 /*
1760 * The cast is safe here because ret should be <= INT_MAX because num is
1761 * <= INT_MAX
1762 */
1763 if (ret > 0)
1764 ret = (int)readbytes;
1765
1766 return ret;
1767 }
1768
1769 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1770 {
1771 int ret = ssl_read_internal(s, buf, num, readbytes);
1772
1773 if (ret < 0)
1774 ret = 0;
1775 return ret;
1776 }
1777
1778 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1779 {
1780 int ret;
1781
1782 if (!s->server) {
1783 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1784 return SSL_READ_EARLY_DATA_ERROR;
1785 }
1786
1787 switch (s->early_data_state) {
1788 case SSL_EARLY_DATA_NONE:
1789 if (!SSL_in_before(s)) {
1790 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1791 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1792 return SSL_READ_EARLY_DATA_ERROR;
1793 }
1794 /* fall through */
1795
1796 case SSL_EARLY_DATA_ACCEPT_RETRY:
1797 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1798 ret = SSL_accept(s);
1799 if (ret <= 0) {
1800 /* NBIO or error */
1801 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1802 return SSL_READ_EARLY_DATA_ERROR;
1803 }
1804 /* fall through */
1805
1806 case SSL_EARLY_DATA_READ_RETRY:
1807 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1808 s->early_data_state = SSL_EARLY_DATA_READING;
1809 ret = SSL_read_ex(s, buf, num, readbytes);
1810 /*
1811 * State machine will update early_data_state to
1812 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1813 * message
1814 */
1815 if (ret > 0 || (ret <= 0 && s->early_data_state
1816 != SSL_EARLY_DATA_FINISHED_READING)) {
1817 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1818 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1819 : SSL_READ_EARLY_DATA_ERROR;
1820 }
1821 } else {
1822 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1823 }
1824 *readbytes = 0;
1825 return SSL_READ_EARLY_DATA_FINISH;
1826
1827 default:
1828 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1829 return SSL_READ_EARLY_DATA_ERROR;
1830 }
1831 }
1832
1833 int SSL_get_early_data_status(const SSL *s)
1834 {
1835 return s->ext.early_data;
1836 }
1837
1838 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1839 {
1840 if (s->handshake_func == NULL) {
1841 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1842 return -1;
1843 }
1844
1845 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1846 return 0;
1847 }
1848 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1849 struct ssl_async_args args;
1850 int ret;
1851
1852 args.s = s;
1853 args.buf = buf;
1854 args.num = num;
1855 args.type = READFUNC;
1856 args.f.func_read = s->method->ssl_peek;
1857
1858 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1859 *readbytes = s->asyncrw;
1860 return ret;
1861 } else {
1862 return s->method->ssl_peek(s, buf, num, readbytes);
1863 }
1864 }
1865
1866 int SSL_peek(SSL *s, void *buf, int num)
1867 {
1868 int ret;
1869 size_t readbytes;
1870
1871 if (num < 0) {
1872 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1873 return -1;
1874 }
1875
1876 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1877
1878 /*
1879 * The cast is safe here because ret should be <= INT_MAX because num is
1880 * <= INT_MAX
1881 */
1882 if (ret > 0)
1883 ret = (int)readbytes;
1884
1885 return ret;
1886 }
1887
1888
1889 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1890 {
1891 int ret = ssl_peek_internal(s, buf, num, readbytes);
1892
1893 if (ret < 0)
1894 ret = 0;
1895 return ret;
1896 }
1897
1898 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1899 {
1900 if (s->handshake_func == NULL) {
1901 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1902 return -1;
1903 }
1904
1905 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1906 s->rwstate = SSL_NOTHING;
1907 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1908 return -1;
1909 }
1910
1911 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1912 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1913 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1914 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1915 return 0;
1916 }
1917 /* If we are a client and haven't sent the Finished we better do that */
1918 ossl_statem_check_finish_init(s, 1);
1919
1920 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1921 int ret;
1922 struct ssl_async_args args;
1923
1924 args.s = s;
1925 args.buf = (void *)buf;
1926 args.num = num;
1927 args.type = WRITEFUNC;
1928 args.f.func_write = s->method->ssl_write;
1929
1930 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1931 *written = s->asyncrw;
1932 return ret;
1933 } else {
1934 return s->method->ssl_write(s, buf, num, written);
1935 }
1936 }
1937
1938 int SSL_write(SSL *s, const void *buf, int num)
1939 {
1940 int ret;
1941 size_t written;
1942
1943 if (num < 0) {
1944 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1945 return -1;
1946 }
1947
1948 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1949
1950 /*
1951 * The cast is safe here because ret should be <= INT_MAX because num is
1952 * <= INT_MAX
1953 */
1954 if (ret > 0)
1955 ret = (int)written;
1956
1957 return ret;
1958 }
1959
1960 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1961 {
1962 int ret = ssl_write_internal(s, buf, num, written);
1963
1964 if (ret < 0)
1965 ret = 0;
1966 return ret;
1967 }
1968
1969 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1970 {
1971 int ret, early_data_state;
1972
1973 switch (s->early_data_state) {
1974 case SSL_EARLY_DATA_NONE:
1975 if (s->server
1976 || !SSL_in_before(s)
1977 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1978 && (s->psk_use_session_cb == NULL))) {
1979 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1980 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1981 return 0;
1982 }
1983 /* fall through */
1984
1985 case SSL_EARLY_DATA_CONNECT_RETRY:
1986 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1987 ret = SSL_connect(s);
1988 if (ret <= 0) {
1989 /* NBIO or error */
1990 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1991 return 0;
1992 }
1993 /* fall through */
1994
1995 case SSL_EARLY_DATA_WRITE_RETRY:
1996 s->early_data_state = SSL_EARLY_DATA_WRITING;
1997 ret = SSL_write_ex(s, buf, num, written);
1998 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1999 return ret;
2000
2001 case SSL_EARLY_DATA_FINISHED_READING:
2002 case SSL_EARLY_DATA_READ_RETRY:
2003 early_data_state = s->early_data_state;
2004 /* We are a server writing to an unauthenticated client */
2005 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2006 ret = SSL_write_ex(s, buf, num, written);
2007 s->early_data_state = early_data_state;
2008 return ret;
2009
2010 default:
2011 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2012 return 0;
2013 }
2014 }
2015
2016 int SSL_shutdown(SSL *s)
2017 {
2018 /*
2019 * Note that this function behaves differently from what one might
2020 * expect. Return values are 0 for no success (yet), 1 for success; but
2021 * calling it once is usually not enough, even if blocking I/O is used
2022 * (see ssl3_shutdown).
2023 */
2024
2025 if (s->handshake_func == NULL) {
2026 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2027 return -1;
2028 }
2029
2030 if (!SSL_in_init(s)) {
2031 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2032 struct ssl_async_args args;
2033
2034 args.s = s;
2035 args.type = OTHERFUNC;
2036 args.f.func_other = s->method->ssl_shutdown;
2037
2038 return ssl_start_async_job(s, &args, ssl_io_intern);
2039 } else {
2040 return s->method->ssl_shutdown(s);
2041 }
2042 } else {
2043 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2044 return -1;
2045 }
2046 }
2047
2048 int SSL_key_update(SSL *s, int updatetype)
2049 {
2050 /*
2051 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2052 * negotiated, and that it is appropriate to call SSL_key_update() instead
2053 * of SSL_renegotiate().
2054 */
2055 if (!SSL_IS_TLS13(s)) {
2056 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2057 return 0;
2058 }
2059
2060 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2061 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2062 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2063 return 0;
2064 }
2065
2066 if (!SSL_is_init_finished(s)) {
2067 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2068 return 0;
2069 }
2070
2071 ossl_statem_set_in_init(s, 1);
2072 s->key_update = updatetype;
2073 return 1;
2074 }
2075
2076 int SSL_get_key_update_type(SSL *s)
2077 {
2078 return s->key_update;
2079 }
2080
2081 int SSL_renegotiate(SSL *s)
2082 {
2083 if (SSL_IS_TLS13(s)) {
2084 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2085 return 0;
2086 }
2087
2088 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2089 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2090 return 0;
2091 }
2092
2093 s->renegotiate = 1;
2094 s->new_session = 1;
2095
2096 return s->method->ssl_renegotiate(s);
2097 }
2098
2099 int SSL_renegotiate_abbreviated(SSL *s)
2100 {
2101 if (SSL_IS_TLS13(s)) {
2102 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2103 return 0;
2104 }
2105
2106 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2107 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2108 return 0;
2109 }
2110
2111 s->renegotiate = 1;
2112 s->new_session = 0;
2113
2114 return s->method->ssl_renegotiate(s);
2115 }
2116
2117 int SSL_renegotiate_pending(SSL *s)
2118 {
2119 /*
2120 * becomes true when negotiation is requested; false again once a
2121 * handshake has finished
2122 */
2123 return (s->renegotiate != 0);
2124 }
2125
2126 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2127 {
2128 long l;
2129
2130 switch (cmd) {
2131 case SSL_CTRL_GET_READ_AHEAD:
2132 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2133 case SSL_CTRL_SET_READ_AHEAD:
2134 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2135 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2136 return l;
2137
2138 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2139 s->msg_callback_arg = parg;
2140 return 1;
2141
2142 case SSL_CTRL_MODE:
2143 return (s->mode |= larg);
2144 case SSL_CTRL_CLEAR_MODE:
2145 return (s->mode &= ~larg);
2146 case SSL_CTRL_GET_MAX_CERT_LIST:
2147 return (long)s->max_cert_list;
2148 case SSL_CTRL_SET_MAX_CERT_LIST:
2149 if (larg < 0)
2150 return 0;
2151 l = (long)s->max_cert_list;
2152 s->max_cert_list = (size_t)larg;
2153 return l;
2154 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2155 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2156 return 0;
2157 s->max_send_fragment = larg;
2158 if (s->max_send_fragment < s->split_send_fragment)
2159 s->split_send_fragment = s->max_send_fragment;
2160 return 1;
2161 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2162 if ((size_t)larg > s->max_send_fragment || larg == 0)
2163 return 0;
2164 s->split_send_fragment = larg;
2165 return 1;
2166 case SSL_CTRL_SET_MAX_PIPELINES:
2167 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2168 return 0;
2169 s->max_pipelines = larg;
2170 if (larg > 1)
2171 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2172 return 1;
2173 case SSL_CTRL_GET_RI_SUPPORT:
2174 if (s->s3)
2175 return s->s3->send_connection_binding;
2176 else
2177 return 0;
2178 case SSL_CTRL_CERT_FLAGS:
2179 return (s->cert->cert_flags |= larg);
2180 case SSL_CTRL_CLEAR_CERT_FLAGS:
2181 return (s->cert->cert_flags &= ~larg);
2182
2183 case SSL_CTRL_GET_RAW_CIPHERLIST:
2184 if (parg) {
2185 if (s->s3->tmp.ciphers_raw == NULL)
2186 return 0;
2187 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2188 return (int)s->s3->tmp.ciphers_rawlen;
2189 } else {
2190 return TLS_CIPHER_LEN;
2191 }
2192 case SSL_CTRL_GET_EXTMS_SUPPORT:
2193 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2194 return -1;
2195 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2196 return 1;
2197 else
2198 return 0;
2199 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2200 return ssl_check_allowed_versions(larg, s->max_proto_version)
2201 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2202 &s->min_proto_version);
2203 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2204 return s->min_proto_version;
2205 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2206 return ssl_check_allowed_versions(s->min_proto_version, larg)
2207 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2208 &s->max_proto_version);
2209 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2210 return s->max_proto_version;
2211 default:
2212 return s->method->ssl_ctrl(s, cmd, larg, parg);
2213 }
2214 }
2215
2216 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2217 {
2218 switch (cmd) {
2219 case SSL_CTRL_SET_MSG_CALLBACK:
2220 s->msg_callback = (void (*)
2221 (int write_p, int version, int content_type,
2222 const void *buf, size_t len, SSL *ssl,
2223 void *arg))(fp);
2224 return 1;
2225
2226 default:
2227 return s->method->ssl_callback_ctrl(s, cmd, fp);
2228 }
2229 }
2230
2231 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2232 {
2233 return ctx->sessions;
2234 }
2235
2236 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2237 {
2238 long l;
2239 int i;
2240 /* For some cases with ctx == NULL perform syntax checks */
2241 if (ctx == NULL) {
2242 switch (cmd) {
2243 #ifndef OPENSSL_NO_EC
2244 case SSL_CTRL_SET_GROUPS_LIST:
2245 return tls1_set_groups_list(NULL, NULL, parg);
2246 #endif
2247 case SSL_CTRL_SET_SIGALGS_LIST:
2248 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2249 return tls1_set_sigalgs_list(NULL, parg, 0);
2250 default:
2251 return 0;
2252 }
2253 }
2254
2255 switch (cmd) {
2256 case SSL_CTRL_GET_READ_AHEAD:
2257 return ctx->read_ahead;
2258 case SSL_CTRL_SET_READ_AHEAD:
2259 l = ctx->read_ahead;
2260 ctx->read_ahead = larg;
2261 return l;
2262
2263 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2264 ctx->msg_callback_arg = parg;
2265 return 1;
2266
2267 case SSL_CTRL_GET_MAX_CERT_LIST:
2268 return (long)ctx->max_cert_list;
2269 case SSL_CTRL_SET_MAX_CERT_LIST:
2270 if (larg < 0)
2271 return 0;
2272 l = (long)ctx->max_cert_list;
2273 ctx->max_cert_list = (size_t)larg;
2274 return l;
2275
2276 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2277 if (larg < 0)
2278 return 0;
2279 l = (long)ctx->session_cache_size;
2280 ctx->session_cache_size = (size_t)larg;
2281 return l;
2282 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2283 return (long)ctx->session_cache_size;
2284 case SSL_CTRL_SET_SESS_CACHE_MODE:
2285 l = ctx->session_cache_mode;
2286 ctx->session_cache_mode = larg;
2287 return l;
2288 case SSL_CTRL_GET_SESS_CACHE_MODE:
2289 return ctx->session_cache_mode;
2290
2291 case SSL_CTRL_SESS_NUMBER:
2292 return lh_SSL_SESSION_num_items(ctx->sessions);
2293 case SSL_CTRL_SESS_CONNECT:
2294 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2295 ? i : 0;
2296 case SSL_CTRL_SESS_CONNECT_GOOD:
2297 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2298 ? i : 0;
2299 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2300 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2301 ctx->lock)
2302 ? i : 0;
2303 case SSL_CTRL_SESS_ACCEPT:
2304 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2305 ? i : 0;
2306 case SSL_CTRL_SESS_ACCEPT_GOOD:
2307 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2308 ? i : 0;
2309 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2310 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2311 ctx->lock)
2312 ? i : 0;
2313 case SSL_CTRL_SESS_HIT:
2314 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2315 ? i : 0;
2316 case SSL_CTRL_SESS_CB_HIT:
2317 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2318 ? i : 0;
2319 case SSL_CTRL_SESS_MISSES:
2320 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2321 ? i : 0;
2322 case SSL_CTRL_SESS_TIMEOUTS:
2323 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2324 ? i : 0;
2325 case SSL_CTRL_SESS_CACHE_FULL:
2326 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2327 ? i : 0;
2328 case SSL_CTRL_MODE:
2329 return (ctx->mode |= larg);
2330 case SSL_CTRL_CLEAR_MODE:
2331 return (ctx->mode &= ~larg);
2332 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2333 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2334 return 0;
2335 ctx->max_send_fragment = larg;
2336 if (ctx->max_send_fragment < ctx->split_send_fragment)
2337 ctx->split_send_fragment = ctx->max_send_fragment;
2338 return 1;
2339 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2340 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2341 return 0;
2342 ctx->split_send_fragment = larg;
2343 return 1;
2344 case SSL_CTRL_SET_MAX_PIPELINES:
2345 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2346 return 0;
2347 ctx->max_pipelines = larg;
2348 return 1;
2349 case SSL_CTRL_CERT_FLAGS:
2350 return (ctx->cert->cert_flags |= larg);
2351 case SSL_CTRL_CLEAR_CERT_FLAGS:
2352 return (ctx->cert->cert_flags &= ~larg);
2353 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2354 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2355 && ssl_set_version_bound(ctx->method->version, (int)larg,
2356 &ctx->min_proto_version);
2357 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2358 return ctx->min_proto_version;
2359 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2360 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2361 && ssl_set_version_bound(ctx->method->version, (int)larg,
2362 &ctx->max_proto_version);
2363 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2364 return ctx->max_proto_version;
2365 default:
2366 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2367 }
2368 }
2369
2370 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2371 {
2372 switch (cmd) {
2373 case SSL_CTRL_SET_MSG_CALLBACK:
2374 ctx->msg_callback = (void (*)
2375 (int write_p, int version, int content_type,
2376 const void *buf, size_t len, SSL *ssl,
2377 void *arg))(fp);
2378 return 1;
2379
2380 default:
2381 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2382 }
2383 }
2384
2385 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2386 {
2387 if (a->id > b->id)
2388 return 1;
2389 if (a->id < b->id)
2390 return -1;
2391 return 0;
2392 }
2393
2394 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2395 const SSL_CIPHER *const *bp)
2396 {
2397 if ((*ap)->id > (*bp)->id)
2398 return 1;
2399 if ((*ap)->id < (*bp)->id)
2400 return -1;
2401 return 0;
2402 }
2403
2404 /** return a STACK of the ciphers available for the SSL and in order of
2405 * preference */
2406 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2407 {
2408 if (s != NULL) {
2409 if (s->cipher_list != NULL) {
2410 return s->cipher_list;
2411 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2412 return s->ctx->cipher_list;
2413 }
2414 }
2415 return NULL;
2416 }
2417
2418 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2419 {
2420 if ((s == NULL) || (s->session == NULL) || !s->server)
2421 return NULL;
2422 return s->session->ciphers;
2423 }
2424
2425 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2426 {
2427 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2428 int i;
2429 ciphers = SSL_get_ciphers(s);
2430 if (!ciphers)
2431 return NULL;
2432 ssl_set_client_disabled(s);
2433 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2434 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2435 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2436 if (!sk)
2437 sk = sk_SSL_CIPHER_new_null();
2438 if (!sk)
2439 return NULL;
2440 if (!sk_SSL_CIPHER_push(sk, c)) {
2441 sk_SSL_CIPHER_free(sk);
2442 return NULL;
2443 }
2444 }
2445 }
2446 return sk;
2447 }
2448
2449 /** return a STACK of the ciphers available for the SSL and in order of
2450 * algorithm id */
2451 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2452 {
2453 if (s != NULL) {
2454 if (s->cipher_list_by_id != NULL) {
2455 return s->cipher_list_by_id;
2456 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2457 return s->ctx->cipher_list_by_id;
2458 }
2459 }
2460 return NULL;
2461 }
2462
2463 /** The old interface to get the same thing as SSL_get_ciphers() */
2464 const char *SSL_get_cipher_list(const SSL *s, int n)
2465 {
2466 const SSL_CIPHER *c;
2467 STACK_OF(SSL_CIPHER) *sk;
2468
2469 if (s == NULL)
2470 return NULL;
2471 sk = SSL_get_ciphers(s);
2472 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2473 return NULL;
2474 c = sk_SSL_CIPHER_value(sk, n);
2475 if (c == NULL)
2476 return NULL;
2477 return c->name;
2478 }
2479
2480 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2481 * preference */
2482 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2483 {
2484 if (ctx != NULL)
2485 return ctx->cipher_list;
2486 return NULL;
2487 }
2488
2489 /** specify the ciphers to be used by default by the SSL_CTX */
2490 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2491 {
2492 STACK_OF(SSL_CIPHER) *sk;
2493
2494 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2495 &ctx->cipher_list_by_id, str, ctx->cert);
2496 /*
2497 * ssl_create_cipher_list may return an empty stack if it was unable to
2498 * find a cipher matching the given rule string (for example if the rule
2499 * string specifies a cipher which has been disabled). This is not an
2500 * error as far as ssl_create_cipher_list is concerned, and hence
2501 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2502 */
2503 if (sk == NULL)
2504 return 0;
2505 else if (sk_SSL_CIPHER_num(sk) == 0) {
2506 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2507 return 0;
2508 }
2509 return 1;
2510 }
2511
2512 /** specify the ciphers to be used by the SSL */
2513 int SSL_set_cipher_list(SSL *s, const char *str)
2514 {
2515 STACK_OF(SSL_CIPHER) *sk;
2516
2517 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2518 &s->cipher_list_by_id, str, s->cert);
2519 /* see comment in SSL_CTX_set_cipher_list */
2520 if (sk == NULL)
2521 return 0;
2522 else if (sk_SSL_CIPHER_num(sk) == 0) {
2523 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2524 return 0;
2525 }
2526 return 1;
2527 }
2528
2529 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2530 {
2531 char *p;
2532 STACK_OF(SSL_CIPHER) *sk;
2533 const SSL_CIPHER *c;
2534 int i;
2535
2536 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2537 return NULL;
2538
2539 p = buf;
2540 sk = s->session->ciphers;
2541
2542 if (sk_SSL_CIPHER_num(sk) == 0)
2543 return NULL;
2544
2545 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2546 int n;
2547
2548 c = sk_SSL_CIPHER_value(sk, i);
2549 n = strlen(c->name);
2550 if (n + 1 > len) {
2551 if (p != buf)
2552 --p;
2553 *p = '\0';
2554 return buf;
2555 }
2556 strcpy(p, c->name);
2557 p += n;
2558 *(p++) = ':';
2559 len -= n + 1;
2560 }
2561 p[-1] = '\0';
2562 return buf;
2563 }
2564
2565 /** return a servername extension value if provided in Client Hello, or NULL.
2566 * So far, only host_name types are defined (RFC 3546).
2567 */
2568
2569 const char *SSL_get_servername(const SSL *s, const int type)
2570 {
2571 if (type != TLSEXT_NAMETYPE_host_name)
2572 return NULL;
2573
2574 return s->session && !s->ext.hostname ?
2575 s->session->ext.hostname : s->ext.hostname;
2576 }
2577
2578 int SSL_get_servername_type(const SSL *s)
2579 {
2580 if (s->session
2581 && (!s->ext.hostname ? s->session->
2582 ext.hostname : s->ext.hostname))
2583 return TLSEXT_NAMETYPE_host_name;
2584 return -1;
2585 }
2586
2587 /*
2588 * SSL_select_next_proto implements the standard protocol selection. It is
2589 * expected that this function is called from the callback set by
2590 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2591 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2592 * not included in the length. A byte string of length 0 is invalid. No byte
2593 * string may be truncated. The current, but experimental algorithm for
2594 * selecting the protocol is: 1) If the server doesn't support NPN then this
2595 * is indicated to the callback. In this case, the client application has to
2596 * abort the connection or have a default application level protocol. 2) If
2597 * the server supports NPN, but advertises an empty list then the client
2598 * selects the first protocol in its list, but indicates via the API that this
2599 * fallback case was enacted. 3) Otherwise, the client finds the first
2600 * protocol in the server's list that it supports and selects this protocol.
2601 * This is because it's assumed that the server has better information about
2602 * which protocol a client should use. 4) If the client doesn't support any
2603 * of the server's advertised protocols, then this is treated the same as
2604 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2605 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2606 */
2607 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2608 const unsigned char *server,
2609 unsigned int server_len,
2610 const unsigned char *client, unsigned int client_len)
2611 {
2612 unsigned int i, j;
2613 const unsigned char *result;
2614 int status = OPENSSL_NPN_UNSUPPORTED;
2615
2616 /*
2617 * For each protocol in server preference order, see if we support it.
2618 */
2619 for (i = 0; i < server_len;) {
2620 for (j = 0; j < client_len;) {
2621 if (server[i] == client[j] &&
2622 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2623 /* We found a match */
2624 result = &server[i];
2625 status = OPENSSL_NPN_NEGOTIATED;
2626 goto found;
2627 }
2628 j += client[j];
2629 j++;
2630 }
2631 i += server[i];
2632 i++;
2633 }
2634
2635 /* There's no overlap between our protocols and the server's list. */
2636 result = client;
2637 status = OPENSSL_NPN_NO_OVERLAP;
2638
2639 found:
2640 *out = (unsigned char *)result + 1;
2641 *outlen = result[0];
2642 return status;
2643 }
2644
2645 #ifndef OPENSSL_NO_NEXTPROTONEG
2646 /*
2647 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2648 * client's requested protocol for this connection and returns 0. If the
2649 * client didn't request any protocol, then *data is set to NULL. Note that
2650 * the client can request any protocol it chooses. The value returned from
2651 * this function need not be a member of the list of supported protocols
2652 * provided by the callback.
2653 */
2654 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2655 unsigned *len)
2656 {
2657 *data = s->ext.npn;
2658 if (!*data) {
2659 *len = 0;
2660 } else {
2661 *len = (unsigned int)s->ext.npn_len;
2662 }
2663 }
2664
2665 /*
2666 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2667 * a TLS server needs a list of supported protocols for Next Protocol
2668 * Negotiation. The returned list must be in wire format. The list is
2669 * returned by setting |out| to point to it and |outlen| to its length. This
2670 * memory will not be modified, but one should assume that the SSL* keeps a
2671 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2672 * wishes to advertise. Otherwise, no such extension will be included in the
2673 * ServerHello.
2674 */
2675 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2676 SSL_CTX_npn_advertised_cb_func cb,
2677 void *arg)
2678 {
2679 ctx->ext.npn_advertised_cb = cb;
2680 ctx->ext.npn_advertised_cb_arg = arg;
2681 }
2682
2683 /*
2684 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2685 * client needs to select a protocol from the server's provided list. |out|
2686 * must be set to point to the selected protocol (which may be within |in|).
2687 * The length of the protocol name must be written into |outlen|. The
2688 * server's advertised protocols are provided in |in| and |inlen|. The
2689 * callback can assume that |in| is syntactically valid. The client must
2690 * select a protocol. It is fatal to the connection if this callback returns
2691 * a value other than SSL_TLSEXT_ERR_OK.
2692 */
2693 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2694 SSL_CTX_npn_select_cb_func cb,
2695 void *arg)
2696 {
2697 ctx->ext.npn_select_cb = cb;
2698 ctx->ext.npn_select_cb_arg = arg;
2699 }
2700 #endif
2701
2702 /*
2703 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2704 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2705 * length-prefixed strings). Returns 0 on success.
2706 */
2707 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2708 unsigned int protos_len)
2709 {
2710 OPENSSL_free(ctx->ext.alpn);
2711 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2712 if (ctx->ext.alpn == NULL) {
2713 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2714 return 1;
2715 }
2716 ctx->ext.alpn_len = protos_len;
2717
2718 return 0;
2719 }
2720
2721 /*
2722 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2723 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2724 * length-prefixed strings). Returns 0 on success.
2725 */
2726 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2727 unsigned int protos_len)
2728 {
2729 OPENSSL_free(ssl->ext.alpn);
2730 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2731 if (ssl->ext.alpn == NULL) {
2732 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2733 return 1;
2734 }
2735 ssl->ext.alpn_len = protos_len;
2736
2737 return 0;
2738 }
2739
2740 /*
2741 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2742 * called during ClientHello processing in order to select an ALPN protocol
2743 * from the client's list of offered protocols.
2744 */
2745 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2746 SSL_CTX_alpn_select_cb_func cb,
2747 void *arg)
2748 {
2749 ctx->ext.alpn_select_cb = cb;
2750 ctx->ext.alpn_select_cb_arg = arg;
2751 }
2752
2753 /*
2754 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2755 * On return it sets |*data| to point to |*len| bytes of protocol name
2756 * (not including the leading length-prefix byte). If the server didn't
2757 * respond with a negotiated protocol then |*len| will be zero.
2758 */
2759 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2760 unsigned int *len)
2761 {
2762 *data = NULL;
2763 if (ssl->s3)
2764 *data = ssl->s3->alpn_selected;
2765 if (*data == NULL)
2766 *len = 0;
2767 else
2768 *len = (unsigned int)ssl->s3->alpn_selected_len;
2769 }
2770
2771 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2772 const char *label, size_t llen,
2773 const unsigned char *context, size_t contextlen,
2774 int use_context)
2775 {
2776 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2777 return -1;
2778
2779 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2780 llen, context,
2781 contextlen, use_context);
2782 }
2783
2784 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2785 {
2786 const unsigned char *session_id = a->session_id;
2787 unsigned long l;
2788 unsigned char tmp_storage[4];
2789
2790 if (a->session_id_length < sizeof(tmp_storage)) {
2791 memset(tmp_storage, 0, sizeof(tmp_storage));
2792 memcpy(tmp_storage, a->session_id, a->session_id_length);
2793 session_id = tmp_storage;
2794 }
2795
2796 l = (unsigned long)
2797 ((unsigned long)session_id[0]) |
2798 ((unsigned long)session_id[1] << 8L) |
2799 ((unsigned long)session_id[2] << 16L) |
2800 ((unsigned long)session_id[3] << 24L);
2801 return l;
2802 }
2803
2804 /*
2805 * NB: If this function (or indeed the hash function which uses a sort of
2806 * coarser function than this one) is changed, ensure
2807 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2808 * being able to construct an SSL_SESSION that will collide with any existing
2809 * session with a matching session ID.
2810 */
2811 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2812 {
2813 if (a->ssl_version != b->ssl_version)
2814 return 1;
2815 if (a->session_id_length != b->session_id_length)
2816 return 1;
2817 return memcmp(a->session_id, b->session_id, a->session_id_length);
2818 }
2819
2820 /*
2821 * These wrapper functions should remain rather than redeclaring
2822 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2823 * variable. The reason is that the functions aren't static, they're exposed
2824 * via ssl.h.
2825 */
2826
2827 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2828 {
2829 SSL_CTX *ret = NULL;
2830
2831 if (meth == NULL) {
2832 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2833 return NULL;
2834 }
2835
2836 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2837 return NULL;
2838
2839 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2840 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2841 goto err;
2842 }
2843 ret = OPENSSL_zalloc(sizeof(*ret));
2844 if (ret == NULL)
2845 goto err;
2846
2847 ret->method = meth;
2848 ret->min_proto_version = 0;
2849 ret->max_proto_version = 0;
2850 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2851 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2852 /* We take the system default. */
2853 ret->session_timeout = meth->get_timeout();
2854 ret->references = 1;
2855 ret->lock = CRYPTO_THREAD_lock_new();
2856 if (ret->lock == NULL) {
2857 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2858 OPENSSL_free(ret);
2859 return NULL;
2860 }
2861 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2862 ret->verify_mode = SSL_VERIFY_NONE;
2863 if ((ret->cert = ssl_cert_new()) == NULL)
2864 goto err;
2865
2866 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2867 if (ret->sessions == NULL)
2868 goto err;
2869 ret->cert_store = X509_STORE_new();
2870 if (ret->cert_store == NULL)
2871 goto err;
2872 #ifndef OPENSSL_NO_CT
2873 ret->ctlog_store = CTLOG_STORE_new();
2874 if (ret->ctlog_store == NULL)
2875 goto err;
2876 #endif
2877 if (!ssl_create_cipher_list(ret->method,
2878 &ret->cipher_list, &ret->cipher_list_by_id,
2879 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2880 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2881 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2882 goto err2;
2883 }
2884
2885 ret->param = X509_VERIFY_PARAM_new();
2886 if (ret->param == NULL)
2887 goto err;
2888
2889 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2890 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2891 goto err2;
2892 }
2893 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2894 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2895 goto err2;
2896 }
2897
2898 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2899 goto err;
2900
2901 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2902 goto err;
2903
2904 /* No compression for DTLS */
2905 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2906 ret->comp_methods = SSL_COMP_get_compression_methods();
2907
2908 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2909 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2910
2911 /* Setup RFC5077 ticket keys */
2912 if ((RAND_bytes(ret->ext.tick_key_name,
2913 sizeof(ret->ext.tick_key_name)) <= 0)
2914 || (RAND_bytes(ret->ext.tick_hmac_key,
2915 sizeof(ret->ext.tick_hmac_key)) <= 0)
2916 || (RAND_bytes(ret->ext.tick_aes_key,
2917 sizeof(ret->ext.tick_aes_key)) <= 0))
2918 ret->options |= SSL_OP_NO_TICKET;
2919
2920 #ifndef OPENSSL_NO_SRP
2921 if (!SSL_CTX_SRP_CTX_init(ret))
2922 goto err;
2923 #endif
2924 #ifndef OPENSSL_NO_ENGINE
2925 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2926 # define eng_strx(x) #x
2927 # define eng_str(x) eng_strx(x)
2928 /* Use specific client engine automatically... ignore errors */
2929 {
2930 ENGINE *eng;
2931 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2932 if (!eng) {
2933 ERR_clear_error();
2934 ENGINE_load_builtin_engines();
2935 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2936 }
2937 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2938 ERR_clear_error();
2939 }
2940 # endif
2941 #endif
2942 /*
2943 * Default is to connect to non-RI servers. When RI is more widely
2944 * deployed might change this.
2945 */
2946 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2947 /*
2948 * Disable compression by default to prevent CRIME. Applications can
2949 * re-enable compression by configuring
2950 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2951 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
2952 * middlebox compatibility by default. This may be disabled by default in
2953 * a later OpenSSL version.
2954 */
2955 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
2956
2957 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2958
2959 /*
2960 * Default max early data is a fully loaded single record. Could be split
2961 * across multiple records in practice
2962 */
2963 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2964
2965 return ret;
2966 err:
2967 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2968 err2:
2969 SSL_CTX_free(ret);
2970 return NULL;
2971 }
2972
2973 int SSL_CTX_up_ref(SSL_CTX *ctx)
2974 {
2975 int i;
2976
2977 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2978 return 0;
2979
2980 REF_PRINT_COUNT("SSL_CTX", ctx);
2981 REF_ASSERT_ISNT(i < 2);
2982 return ((i > 1) ? 1 : 0);
2983 }
2984
2985 void SSL_CTX_free(SSL_CTX *a)
2986 {
2987 int i;
2988
2989 if (a == NULL)
2990 return;
2991
2992 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2993 REF_PRINT_COUNT("SSL_CTX", a);
2994 if (i > 0)
2995 return;
2996 REF_ASSERT_ISNT(i < 0);
2997
2998 X509_VERIFY_PARAM_free(a->param);
2999 dane_ctx_final(&a->dane);
3000
3001 /*
3002 * Free internal session cache. However: the remove_cb() may reference
3003 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3004 * after the sessions were flushed.
3005 * As the ex_data handling routines might also touch the session cache,
3006 * the most secure solution seems to be: empty (flush) the cache, then
3007 * free ex_data, then finally free the cache.
3008 * (See ticket [openssl.org #212].)
3009 */
3010 if (a->sessions != NULL)
3011 SSL_CTX_flush_sessions(a, 0);
3012
3013 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3014 lh_SSL_SESSION_free(a->sessions);
3015 X509_STORE_free(a->cert_store);
3016 #ifndef OPENSSL_NO_CT
3017 CTLOG_STORE_free(a->ctlog_store);
3018 #endif
3019 sk_SSL_CIPHER_free(a->cipher_list);
3020 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3021 ssl_cert_free(a->cert);
3022 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3023 sk_X509_pop_free(a->extra_certs, X509_free);
3024 a->comp_methods = NULL;
3025 #ifndef OPENSSL_NO_SRTP
3026 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3027 #endif
3028 #ifndef OPENSSL_NO_SRP
3029 SSL_CTX_SRP_CTX_free(a);
3030 #endif
3031 #ifndef OPENSSL_NO_ENGINE
3032 ENGINE_finish(a->client_cert_engine);
3033 #endif
3034
3035 #ifndef OPENSSL_NO_EC
3036 OPENSSL_free(a->ext.ecpointformats);
3037 OPENSSL_free(a->ext.supportedgroups);
3038 #endif
3039 OPENSSL_free(a->ext.alpn);
3040
3041 CRYPTO_THREAD_lock_free(a->lock);
3042
3043 OPENSSL_free(a);
3044 }
3045
3046 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3047 {
3048 ctx->default_passwd_callback = cb;
3049 }
3050
3051 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3052 {
3053 ctx->default_passwd_callback_userdata = u;
3054 }
3055
3056 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3057 {
3058 return ctx->default_passwd_callback;
3059 }
3060
3061 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3062 {
3063 return ctx->default_passwd_callback_userdata;
3064 }
3065
3066 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3067 {
3068 s->default_passwd_callback = cb;
3069 }
3070
3071 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3072 {
3073 s->default_passwd_callback_userdata = u;
3074 }
3075
3076 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3077 {
3078 return s->default_passwd_callback;
3079 }
3080
3081 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3082 {
3083 return s->default_passwd_callback_userdata;
3084 }
3085
3086 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3087 int (*cb) (X509_STORE_CTX *, void *),
3088 void *arg)
3089 {
3090 ctx->app_verify_callback = cb;
3091 ctx->app_verify_arg = arg;
3092 }
3093
3094 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3095 int (*cb) (int, X509_STORE_CTX *))
3096 {
3097 ctx->verify_mode = mode;
3098 ctx->default_verify_callback = cb;
3099 }
3100
3101 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3102 {
3103 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3104 }
3105
3106 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3107 {
3108 ssl_cert_set_cert_cb(c->cert, cb, arg);
3109 }
3110
3111 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3112 {
3113 ssl_cert_set_cert_cb(s->cert, cb, arg);
3114 }
3115
3116 void ssl_set_masks(SSL *s)
3117 {
3118 CERT *c = s->cert;
3119 uint32_t *pvalid = s->s3->tmp.valid_flags;
3120 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3121 unsigned long mask_k, mask_a;
3122 #ifndef OPENSSL_NO_EC
3123 int have_ecc_cert, ecdsa_ok;
3124 #endif
3125 if (c == NULL)
3126 return;
3127
3128 #ifndef OPENSSL_NO_DH
3129 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3130 #else
3131 dh_tmp = 0;
3132 #endif
3133
3134 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3135 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3136 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3137 #ifndef OPENSSL_NO_EC
3138 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3139 #endif
3140 mask_k = 0;
3141 mask_a = 0;
3142
3143 #ifdef CIPHER_DEBUG
3144 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3145 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3146 #endif
3147
3148 #ifndef OPENSSL_NO_GOST
3149 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3150 mask_k |= SSL_kGOST;
3151 mask_a |= SSL_aGOST12;
3152 }
3153 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3154 mask_k |= SSL_kGOST;
3155 mask_a |= SSL_aGOST12;
3156 }
3157 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3158 mask_k |= SSL_kGOST;
3159 mask_a |= SSL_aGOST01;
3160 }
3161 #endif
3162
3163 if (rsa_enc)
3164 mask_k |= SSL_kRSA;
3165
3166 if (dh_tmp)
3167 mask_k |= SSL_kDHE;
3168
3169 /*
3170 * If we only have an RSA-PSS certificate allow RSA authentication
3171 * if TLS 1.2 and peer supports it.
3172 */
3173
3174 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3175 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3176 && TLS1_get_version(s) == TLS1_2_VERSION))
3177 mask_a |= SSL_aRSA;
3178
3179 if (dsa_sign) {
3180 mask_a |= SSL_aDSS;
3181 }
3182
3183 mask_a |= SSL_aNULL;
3184
3185 /*
3186 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3187 * depending on the key usage extension.
3188 */
3189 #ifndef OPENSSL_NO_EC
3190 if (have_ecc_cert) {
3191 uint32_t ex_kusage;
3192 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3193 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3194 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3195 ecdsa_ok = 0;
3196 if (ecdsa_ok)
3197 mask_a |= SSL_aECDSA;
3198 }
3199 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3200 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3201 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3202 && TLS1_get_version(s) == TLS1_2_VERSION)
3203 mask_a |= SSL_aECDSA;
3204 #endif
3205
3206 #ifndef OPENSSL_NO_EC
3207 mask_k |= SSL_kECDHE;
3208 #endif
3209
3210 #ifndef OPENSSL_NO_PSK
3211 mask_k |= SSL_kPSK;
3212 mask_a |= SSL_aPSK;
3213 if (mask_k & SSL_kRSA)
3214 mask_k |= SSL_kRSAPSK;
3215 if (mask_k & SSL_kDHE)
3216 mask_k |= SSL_kDHEPSK;
3217 if (mask_k & SSL_kECDHE)
3218 mask_k |= SSL_kECDHEPSK;
3219 #endif
3220
3221 s->s3->tmp.mask_k = mask_k;
3222 s->s3->tmp.mask_a = mask_a;
3223 }
3224
3225 #ifndef OPENSSL_NO_EC
3226
3227 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3228 {
3229 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3230 /* key usage, if present, must allow signing */
3231 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3232 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3233 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3234 return 0;
3235 }
3236 }
3237 return 1; /* all checks are ok */
3238 }
3239
3240 #endif
3241
3242 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3243 size_t *serverinfo_length)
3244 {
3245 CERT_PKEY *cpk = s->s3->tmp.cert;
3246 *serverinfo_length = 0;
3247
3248 if (cpk == NULL || cpk->serverinfo == NULL)
3249 return 0;
3250
3251 *serverinfo = cpk->serverinfo;
3252 *serverinfo_length = cpk->serverinfo_length;
3253 return 1;
3254 }
3255
3256 void ssl_update_cache(SSL *s, int mode)
3257 {
3258 int i;
3259
3260 /*
3261 * If the session_id_length is 0, we are not supposed to cache it, and it
3262 * would be rather hard to do anyway :-)
3263 */
3264 if (s->session->session_id_length == 0)
3265 return;
3266
3267 i = s->session_ctx->session_cache_mode;
3268 if ((i & mode) != 0
3269 && (!s->hit || SSL_IS_TLS13(s))
3270 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3271 || SSL_CTX_add_session(s->session_ctx, s->session))
3272 && s->session_ctx->new_session_cb != NULL) {
3273 SSL_SESSION_up_ref(s->session);
3274 if (!s->session_ctx->new_session_cb(s, s->session))
3275 SSL_SESSION_free(s->session);
3276 }
3277
3278 /* auto flush every 255 connections */
3279 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3280 int *stat, val;
3281 if (mode & SSL_SESS_CACHE_CLIENT)
3282 stat = &s->session_ctx->stats.sess_connect_good;
3283 else
3284 stat = &s->session_ctx->stats.sess_accept_good;
3285 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3286 && (val & 0xff) == 0xff)
3287 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3288 }
3289 }
3290
3291 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3292 {
3293 return ctx->method;
3294 }
3295
3296 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3297 {
3298 return s->method;
3299 }
3300
3301 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3302 {
3303 int ret = 1;
3304
3305 if (s->method != meth) {
3306 const SSL_METHOD *sm = s->method;
3307 int (*hf) (SSL *) = s->handshake_func;
3308
3309 if (sm->version == meth->version)
3310 s->method = meth;
3311 else {
3312 sm->ssl_free(s);
3313 s->method = meth;
3314 ret = s->method->ssl_new(s);
3315 }
3316
3317 if (hf == sm->ssl_connect)
3318 s->handshake_func = meth->ssl_connect;
3319 else if (hf == sm->ssl_accept)
3320 s->handshake_func = meth->ssl_accept;
3321 }
3322 return ret;
3323 }
3324
3325 int SSL_get_error(const SSL *s, int i)
3326 {
3327 int reason;
3328 unsigned long l;
3329 BIO *bio;
3330
3331 if (i > 0)
3332 return SSL_ERROR_NONE;
3333
3334 /*
3335 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3336 * where we do encode the error
3337 */
3338 if ((l = ERR_peek_error()) != 0) {
3339 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3340 return SSL_ERROR_SYSCALL;
3341 else
3342 return SSL_ERROR_SSL;
3343 }
3344
3345 if (SSL_want_read(s)) {
3346 bio = SSL_get_rbio(s);
3347 if (BIO_should_read(bio))
3348 return SSL_ERROR_WANT_READ;
3349 else if (BIO_should_write(bio))
3350 /*
3351 * This one doesn't make too much sense ... We never try to write
3352 * to the rbio, and an application program where rbio and wbio
3353 * are separate couldn't even know what it should wait for.
3354 * However if we ever set s->rwstate incorrectly (so that we have
3355 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3356 * wbio *are* the same, this test works around that bug; so it
3357 * might be safer to keep it.
3358 */
3359 return SSL_ERROR_WANT_WRITE;
3360 else if (BIO_should_io_special(bio)) {
3361 reason = BIO_get_retry_reason(bio);
3362 if (reason == BIO_RR_CONNECT)
3363 return SSL_ERROR_WANT_CONNECT;
3364 else if (reason == BIO_RR_ACCEPT)
3365 return SSL_ERROR_WANT_ACCEPT;
3366 else
3367 return SSL_ERROR_SYSCALL; /* unknown */
3368 }
3369 }
3370
3371 if (SSL_want_write(s)) {
3372 /* Access wbio directly - in order to use the buffered bio if present */
3373 bio = s->wbio;
3374 if (BIO_should_write(bio))
3375 return SSL_ERROR_WANT_WRITE;
3376 else if (BIO_should_read(bio))
3377 /*
3378 * See above (SSL_want_read(s) with BIO_should_write(bio))
3379 */
3380 return SSL_ERROR_WANT_READ;
3381 else if (BIO_should_io_special(bio)) {
3382 reason = BIO_get_retry_reason(bio);
3383 if (reason == BIO_RR_CONNECT)
3384 return SSL_ERROR_WANT_CONNECT;
3385 else if (reason == BIO_RR_ACCEPT)
3386 return SSL_ERROR_WANT_ACCEPT;
3387 else
3388 return SSL_ERROR_SYSCALL;
3389 }
3390 }
3391 if (SSL_want_x509_lookup(s))
3392 return SSL_ERROR_WANT_X509_LOOKUP;
3393 if (SSL_want_async(s))
3394 return SSL_ERROR_WANT_ASYNC;
3395 if (SSL_want_async_job(s))
3396 return SSL_ERROR_WANT_ASYNC_JOB;
3397 if (SSL_want_client_hello_cb(s))
3398 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3399
3400 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3401 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3402 return SSL_ERROR_ZERO_RETURN;
3403
3404 return SSL_ERROR_SYSCALL;
3405 }
3406
3407 static int ssl_do_handshake_intern(void *vargs)
3408 {
3409 struct ssl_async_args *args;
3410 SSL *s;
3411
3412 args = (struct ssl_async_args *)vargs;
3413 s = args->s;
3414
3415 return s->handshake_func(s);
3416 }
3417
3418 int SSL_do_handshake(SSL *s)
3419 {
3420 int ret = 1;
3421
3422 if (s->handshake_func == NULL) {
3423 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3424 return -1;
3425 }
3426
3427 ossl_statem_check_finish_init(s, -1);
3428
3429 s->method->ssl_renegotiate_check(s, 0);
3430
3431 if (SSL_is_server(s)) {
3432 /* clear SNI settings at server-side */
3433 OPENSSL_free(s->ext.hostname);
3434 s->ext.hostname = NULL;
3435 }
3436
3437 if (SSL_in_init(s) || SSL_in_before(s)) {
3438 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3439 struct ssl_async_args args;
3440
3441 args.s = s;
3442
3443 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3444 } else {
3445 ret = s->handshake_func(s);
3446 }
3447 }
3448 return ret;
3449 }
3450
3451 void SSL_set_accept_state(SSL *s)
3452 {
3453 s->server = 1;
3454 s->shutdown = 0;
3455 ossl_statem_clear(s);
3456 s->handshake_func = s->method->ssl_accept;
3457 clear_ciphers(s);
3458 }
3459
3460 void SSL_set_connect_state(SSL *s)
3461 {
3462 s->server = 0;
3463 s->shutdown = 0;
3464 ossl_statem_clear(s);
3465 s->handshake_func = s->method->ssl_connect;
3466 clear_ciphers(s);
3467 }
3468
3469 int ssl_undefined_function(SSL *s)
3470 {
3471 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3472 return 0;
3473 }
3474
3475 int ssl_undefined_void_function(void)
3476 {
3477 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3478 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3479 return 0;
3480 }
3481
3482 int ssl_undefined_const_function(const SSL *s)
3483 {
3484 return 0;
3485 }
3486
3487 const SSL_METHOD *ssl_bad_method(int ver)
3488 {
3489 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3490 return NULL;
3491 }
3492
3493 const char *ssl_protocol_to_string(int version)
3494 {
3495 switch(version)
3496 {
3497 case TLS1_3_VERSION:
3498 return "TLSv1.3";
3499
3500 case TLS1_2_VERSION:
3501 return "TLSv1.2";
3502
3503 case TLS1_1_VERSION:
3504 return "TLSv1.1";
3505
3506 case TLS1_VERSION:
3507 return "TLSv1";
3508
3509 case SSL3_VERSION:
3510 return "SSLv3";
3511
3512 case DTLS1_BAD_VER:
3513 return "DTLSv0.9";
3514
3515 case DTLS1_VERSION:
3516 return "DTLSv1";
3517
3518 case DTLS1_2_VERSION:
3519 return "DTLSv1.2";
3520
3521 default:
3522 return "unknown";
3523 }
3524 }
3525
3526 const char *SSL_get_version(const SSL *s)
3527 {
3528 return ssl_protocol_to_string(s->version);
3529 }
3530
3531 SSL *SSL_dup(SSL *s)
3532 {
3533 STACK_OF(X509_NAME) *sk;
3534 X509_NAME *xn;
3535 SSL *ret;
3536 int i;
3537
3538 /* If we're not quiescent, just up_ref! */
3539 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3540 CRYPTO_UP_REF(&s->references, &i, s->lock);
3541 return s;
3542 }
3543
3544 /*
3545 * Otherwise, copy configuration state, and session if set.
3546 */
3547 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3548 return NULL;
3549
3550 if (s->session != NULL) {
3551 /*
3552 * Arranges to share the same session via up_ref. This "copies"
3553 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3554 */
3555 if (!SSL_copy_session_id(ret, s))
3556 goto err;
3557 } else {
3558 /*
3559 * No session has been established yet, so we have to expect that
3560 * s->cert or ret->cert will be changed later -- they should not both
3561 * point to the same object, and thus we can't use
3562 * SSL_copy_session_id.
3563 */
3564 if (!SSL_set_ssl_method(ret, s->method))
3565 goto err;
3566
3567 if (s->cert != NULL) {
3568 ssl_cert_free(ret->cert);
3569 ret->cert = ssl_cert_dup(s->cert);
3570 if (ret->cert == NULL)
3571 goto err;
3572 }
3573
3574 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3575 (int)s->sid_ctx_length))
3576 goto err;
3577 }
3578
3579 if (!ssl_dane_dup(ret, s))
3580 goto err;
3581 ret->version = s->version;
3582 ret->options = s->options;
3583 ret->mode = s->mode;
3584 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3585 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3586 ret->msg_callback = s->msg_callback;
3587 ret->msg_callback_arg = s->msg_callback_arg;
3588 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3589 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3590 ret->generate_session_id = s->generate_session_id;
3591
3592 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3593
3594 /* copy app data, a little dangerous perhaps */
3595 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3596 goto err;
3597
3598 /* setup rbio, and wbio */
3599 if (s->rbio != NULL) {
3600 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3601 goto err;
3602 }
3603 if (s->wbio != NULL) {
3604 if (s->wbio != s->rbio) {
3605 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3606 goto err;
3607 } else {
3608 BIO_up_ref(ret->rbio);
3609 ret->wbio = ret->rbio;
3610 }
3611 }
3612
3613 ret->server = s->server;
3614 if (s->handshake_func) {
3615 if (s->server)
3616 SSL_set_accept_state(ret);
3617 else
3618 SSL_set_connect_state(ret);
3619 }
3620 ret->shutdown = s->shutdown;
3621 ret->hit = s->hit;
3622
3623 ret->default_passwd_callback = s->default_passwd_callback;
3624 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3625
3626 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3627
3628 /* dup the cipher_list and cipher_list_by_id stacks */
3629 if (s->cipher_list != NULL) {
3630 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3631 goto err;
3632 }
3633 if (s->cipher_list_by_id != NULL)
3634 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3635 == NULL)
3636 goto err;
3637
3638 /* Dup the client_CA list */
3639 if (s->ca_names != NULL) {
3640 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3641 goto err;
3642 ret->ca_names = sk;
3643 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3644 xn = sk_X509_NAME_value(sk, i);
3645 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3646 X509_NAME_free(xn);
3647 goto err;
3648 }
3649 }
3650 }
3651 return ret;
3652
3653 err:
3654 SSL_free(ret);
3655 return NULL;
3656 }
3657
3658 void ssl_clear_cipher_ctx(SSL *s)
3659 {
3660 if (s->enc_read_ctx != NULL) {
3661 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3662 s->enc_read_ctx = NULL;
3663 }
3664 if (s->enc_write_ctx != NULL) {
3665 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3666 s->enc_write_ctx = NULL;
3667 }
3668 #ifndef OPENSSL_NO_COMP
3669 COMP_CTX_free(s->expand);
3670 s->expand = NULL;
3671 COMP_CTX_free(s->compress);
3672 s->compress = NULL;
3673 #endif
3674 }
3675
3676 X509 *SSL_get_certificate(const SSL *s)
3677 {
3678 if (s->cert != NULL)
3679 return s->cert->key->x509;
3680 else
3681 return NULL;
3682 }
3683
3684 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3685 {
3686 if (s->cert != NULL)
3687 return s->cert->key->privatekey;
3688 else
3689 return NULL;
3690 }
3691
3692 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3693 {
3694 if (ctx->cert != NULL)
3695 return ctx->cert->key->x509;
3696 else
3697 return NULL;
3698 }
3699
3700 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3701 {
3702 if (ctx->cert != NULL)
3703 return ctx->cert->key->privatekey;
3704 else
3705 return NULL;
3706 }
3707
3708 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3709 {
3710 if ((s->session != NULL) && (s->session->cipher != NULL))
3711 return s->session->cipher;
3712 return NULL;
3713 }
3714
3715 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3716 {
3717 return s->s3->tmp.new_cipher;
3718 }
3719
3720 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3721 {
3722 #ifndef OPENSSL_NO_COMP
3723 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3724 #else
3725 return NULL;
3726 #endif
3727 }
3728
3729 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3730 {
3731 #ifndef OPENSSL_NO_COMP
3732 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3733 #else
3734 return NULL;
3735 #endif
3736 }
3737
3738 int ssl_init_wbio_buffer(SSL *s)
3739 {
3740 BIO *bbio;
3741
3742 if (s->bbio != NULL) {
3743 /* Already buffered. */
3744 return 1;
3745 }
3746
3747 bbio = BIO_new(BIO_f_buffer());
3748 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3749 BIO_free(bbio);
3750 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3751 return 0;
3752 }
3753 s->bbio = bbio;
3754 s->wbio = BIO_push(bbio, s->wbio);
3755
3756 return 1;
3757 }
3758
3759 int ssl_free_wbio_buffer(SSL *s)
3760 {
3761 /* callers ensure s is never null */
3762 if (s->bbio == NULL)
3763 return 1;
3764
3765 s->wbio = BIO_pop(s->wbio);
3766 if (!ossl_assert(s->wbio != NULL))
3767 return 0;
3768 BIO_free(s->bbio);
3769 s->bbio = NULL;
3770
3771 return 1;
3772 }
3773
3774 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3775 {
3776 ctx->quiet_shutdown = mode;
3777 }
3778
3779 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3780 {
3781 return ctx->quiet_shutdown;
3782 }
3783
3784 void SSL_set_quiet_shutdown(SSL *s, int mode)
3785 {
3786 s->quiet_shutdown = mode;
3787 }
3788
3789 int SSL_get_quiet_shutdown(const SSL *s)
3790 {
3791 return s->quiet_shutdown;
3792 }
3793
3794 void SSL_set_shutdown(SSL *s, int mode)
3795 {
3796 s->shutdown = mode;
3797 }
3798
3799 int SSL_get_shutdown(const SSL *s)
3800 {
3801 return s->shutdown;
3802 }
3803
3804 int SSL_version(const SSL *s)
3805 {
3806 return s->version;
3807 }
3808
3809 int SSL_client_version(const SSL *s)
3810 {
3811 return s->client_version;
3812 }
3813
3814 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3815 {
3816 return ssl->ctx;
3817 }
3818
3819 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3820 {
3821 CERT *new_cert;
3822 if (ssl->ctx == ctx)
3823 return ssl->ctx;
3824 if (ctx == NULL)
3825 ctx = ssl->session_ctx;
3826 new_cert = ssl_cert_dup(ctx->cert);
3827 if (new_cert == NULL) {
3828 return NULL;
3829 }
3830
3831 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3832 ssl_cert_free(new_cert);
3833 return NULL;
3834 }
3835
3836 ssl_cert_free(ssl->cert);
3837 ssl->cert = new_cert;
3838
3839 /*
3840 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3841 * so setter APIs must prevent invalid lengths from entering the system.
3842 */
3843 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3844 return NULL;
3845
3846 /*
3847 * If the session ID context matches that of the parent SSL_CTX,
3848 * inherit it from the new SSL_CTX as well. If however the context does
3849 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3850 * leave it unchanged.
3851 */
3852 if ((ssl->ctx != NULL) &&
3853 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3854 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3855 ssl->sid_ctx_length = ctx->sid_ctx_length;
3856 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3857 }
3858
3859 SSL_CTX_up_ref(ctx);
3860 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3861 ssl->ctx = ctx;
3862
3863 return ssl->ctx;
3864 }
3865
3866 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3867 {
3868 return X509_STORE_set_default_paths(ctx->cert_store);
3869 }
3870
3871 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3872 {
3873 X509_LOOKUP *lookup;
3874
3875 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3876 if (lookup == NULL)
3877 return 0;
3878 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3879
3880 /* Clear any errors if the default directory does not exist */
3881 ERR_clear_error();
3882
3883 return 1;
3884 }
3885
3886 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3887 {
3888 X509_LOOKUP *lookup;
3889
3890 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3891 if (lookup == NULL)
3892 return 0;
3893
3894 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3895
3896 /* Clear any errors if the default file does not exist */
3897 ERR_clear_error();
3898
3899 return 1;
3900 }
3901
3902 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3903 const char *CApath)
3904 {
3905 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
3906 }
3907
3908 void SSL_set_info_callback(SSL *ssl,
3909 void (*cb) (const SSL *ssl, int type, int val))
3910 {
3911 ssl->info_callback = cb;
3912 }
3913
3914 /*
3915 * One compiler (Diab DCC) doesn't like argument names in returned function
3916 * pointer.
3917 */
3918 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3919 int /* type */ ,
3920 int /* val */ ) {
3921 return ssl->info_callback;
3922 }
3923
3924 void SSL_set_verify_result(SSL *ssl, long arg)
3925 {
3926 ssl->verify_result = arg;
3927 }
3928
3929 long SSL_get_verify_result(const SSL *ssl)
3930 {
3931 return ssl->verify_result;
3932 }
3933
3934 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3935 {
3936 if (outlen == 0)
3937 return sizeof(ssl->s3->client_random);
3938 if (outlen > sizeof(ssl->s3->client_random))
3939 outlen = sizeof(ssl->s3->client_random);
3940 memcpy(out, ssl->s3->client_random, outlen);
3941 return outlen;
3942 }
3943
3944 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3945 {
3946 if (outlen == 0)
3947 return sizeof(ssl->s3->server_random);
3948 if (outlen > sizeof(ssl->s3->server_random))
3949 outlen = sizeof(ssl->s3->server_random);
3950 memcpy(out, ssl->s3->server_random, outlen);
3951 return outlen;
3952 }
3953
3954 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3955 unsigned char *out, size_t outlen)
3956 {
3957 if (outlen == 0)
3958 return session->master_key_length;
3959 if (outlen > session->master_key_length)
3960 outlen = session->master_key_length;
3961 memcpy(out, session->master_key, outlen);
3962 return outlen;
3963 }
3964
3965 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3966 size_t len)
3967 {
3968 if (len > sizeof(sess->master_key))
3969 return 0;
3970
3971 memcpy(sess->master_key, in, len);
3972 sess->master_key_length = len;
3973 return 1;
3974 }
3975
3976
3977 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3978 {
3979 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3980 }
3981
3982 void *SSL_get_ex_data(const SSL *s, int idx)
3983 {
3984 return CRYPTO_get_ex_data(&s->ex_data, idx);
3985 }
3986
3987 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3988 {
3989 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3990 }
3991
3992 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3993 {
3994 return CRYPTO_get_ex_data(&s->ex_data, idx);
3995 }
3996
3997 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3998 {
3999 return ctx->cert_store;
4000 }
4001
4002 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4003 {
4004 X509_STORE_free(ctx->cert_store);
4005 ctx->cert_store = store;
4006 }
4007
4008 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4009 {
4010 if (store != NULL)
4011 X509_STORE_up_ref(store);
4012 SSL_CTX_set_cert_store(ctx, store);
4013 }
4014
4015 int SSL_want(const SSL *s)
4016 {
4017 return s->rwstate;
4018 }
4019
4020 /**
4021 * \brief Set the callback for generating temporary DH keys.
4022 * \param ctx the SSL context.
4023 * \param dh the callback
4024 */
4025
4026 #ifndef OPENSSL_NO_DH
4027 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4028 DH *(*dh) (SSL *ssl, int is_export,
4029 int keylength))
4030 {
4031 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4032 }
4033
4034 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4035 int keylength))
4036 {
4037 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4038 }
4039 #endif
4040
4041 #ifndef OPENSSL_NO_PSK
4042 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4043 {
4044 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4045 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4046 return 0;
4047 }
4048 OPENSSL_free(ctx->cert->psk_identity_hint);
4049 if (identity_hint != NULL) {
4050 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4051 if (ctx->cert->psk_identity_hint == NULL)
4052 return 0;
4053 } else
4054 ctx->cert->psk_identity_hint = NULL;
4055 return 1;
4056 }
4057
4058 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4059 {
4060 if (s == NULL)
4061 return 0;
4062
4063 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4064 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4065 return 0;
4066 }
4067 OPENSSL_free(s->cert->psk_identity_hint);
4068 if (identity_hint != NULL) {
4069 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4070 if (s->cert->psk_identity_hint == NULL)
4071 return 0;
4072 } else
4073 s->cert->psk_identity_hint = NULL;
4074 return 1;
4075 }
4076
4077 const char *SSL_get_psk_identity_hint(const SSL *s)
4078 {
4079 if (s == NULL || s->session == NULL)
4080 return NULL;
4081 return s->session->psk_identity_hint;
4082 }
4083
4084 const char *SSL_get_psk_identity(const SSL *s)
4085 {
4086 if (s == NULL || s->session == NULL)
4087 return NULL;
4088 return s->session->psk_identity;
4089 }
4090
4091 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4092 {
4093 s->psk_client_callback = cb;
4094 }
4095
4096 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4097 {
4098 ctx->psk_client_callback = cb;
4099 }
4100
4101 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4102 {
4103 s->psk_server_callback = cb;
4104 }
4105
4106 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4107 {
4108 ctx->psk_server_callback = cb;
4109 }
4110 #endif
4111
4112 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4113 {
4114 s->psk_find_session_cb = cb;
4115 }
4116
4117 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4118 SSL_psk_find_session_cb_func cb)
4119 {
4120 ctx->psk_find_session_cb = cb;
4121 }
4122
4123 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4124 {
4125 s->psk_use_session_cb = cb;
4126 }
4127
4128 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4129 SSL_psk_use_session_cb_func cb)
4130 {
4131 ctx->psk_use_session_cb = cb;
4132 }
4133
4134 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4135 void (*cb) (int write_p, int version,
4136 int content_type, const void *buf,
4137 size_t len, SSL *ssl, void *arg))
4138 {
4139 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4140 }
4141
4142 void SSL_set_msg_callback(SSL *ssl,
4143 void (*cb) (int write_p, int version,
4144 int content_type, const void *buf,
4145 size_t len, SSL *ssl, void *arg))
4146 {
4147 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4148 }
4149
4150 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4151 int (*cb) (SSL *ssl,
4152 int
4153 is_forward_secure))
4154 {
4155 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4156 (void (*)(void))cb);
4157 }
4158
4159 void SSL_set_not_resumable_session_callback(SSL *ssl,
4160 int (*cb) (SSL *ssl,
4161 int is_forward_secure))
4162 {
4163 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4164 (void (*)(void))cb);
4165 }
4166
4167 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4168 size_t (*cb) (SSL *ssl, int type,
4169 size_t len, void *arg))
4170 {
4171 ctx->record_padding_cb = cb;
4172 }
4173
4174 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4175 {
4176 ctx->record_padding_arg = arg;
4177 }
4178
4179 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4180 {
4181 return ctx->record_padding_arg;
4182 }
4183
4184 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4185 {
4186 /* block size of 0 or 1 is basically no padding */
4187 if (block_size == 1)
4188 ctx->block_padding = 0;
4189 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4190 ctx->block_padding = block_size;
4191 else
4192 return 0;
4193 return 1;
4194 }
4195
4196 void SSL_set_record_padding_callback(SSL *ssl,
4197 size_t (*cb) (SSL *ssl, int type,
4198 size_t len, void *arg))
4199 {
4200 ssl->record_padding_cb = cb;
4201 }
4202
4203 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4204 {
4205 ssl->record_padding_arg = arg;
4206 }
4207
4208 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4209 {
4210 return ssl->record_padding_arg;
4211 }
4212
4213 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4214 {
4215 /* block size of 0 or 1 is basically no padding */
4216 if (block_size == 1)
4217 ssl->block_padding = 0;
4218 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4219 ssl->block_padding = block_size;
4220 else
4221 return 0;
4222 return 1;
4223 }
4224
4225 /*
4226 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4227 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4228 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4229 * Returns the newly allocated ctx;
4230 */
4231
4232 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4233 {
4234 ssl_clear_hash_ctx(hash);
4235 *hash = EVP_MD_CTX_new();
4236 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4237 EVP_MD_CTX_free(*hash);
4238 *hash = NULL;
4239 return NULL;
4240 }
4241 return *hash;
4242 }
4243
4244 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4245 {
4246
4247 EVP_MD_CTX_free(*hash);
4248 *hash = NULL;
4249 }
4250
4251 /* Retrieve handshake hashes */
4252 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4253 size_t *hashlen)
4254 {
4255 EVP_MD_CTX *ctx = NULL;
4256 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4257 int hashleni = EVP_MD_CTX_size(hdgst);
4258 int ret = 0;
4259
4260 if (hashleni < 0 || (size_t)hashleni > outlen) {
4261 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4262 ERR_R_INTERNAL_ERROR);
4263 goto err;
4264 }
4265
4266 ctx = EVP_MD_CTX_new();
4267 if (ctx == NULL)
4268 goto err;
4269
4270 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4271 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4272 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4273 ERR_R_INTERNAL_ERROR);
4274 goto err;
4275 }
4276
4277 *hashlen = hashleni;
4278
4279 ret = 1;
4280 err:
4281 EVP_MD_CTX_free(ctx);
4282 return ret;
4283 }
4284
4285 int SSL_session_reused(SSL *s)
4286 {
4287 return s->hit;
4288 }
4289
4290 int SSL_is_server(const SSL *s)
4291 {
4292 return s->server;
4293 }
4294
4295 #if OPENSSL_API_COMPAT < 0x10100000L
4296 void SSL_set_debug(SSL *s, int debug)
4297 {
4298 /* Old function was do-nothing anyway... */
4299 (void)s;
4300 (void)debug;
4301 }
4302 #endif
4303
4304 void SSL_set_security_level(SSL *s, int level)
4305 {
4306 s->cert->sec_level = level;
4307 }
4308
4309 int SSL_get_security_level(const SSL *s)
4310 {
4311 return s->cert->sec_level;
4312 }
4313
4314 void SSL_set_security_callback(SSL *s,
4315 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4316 int op, int bits, int nid,
4317 void *other, void *ex))
4318 {
4319 s->cert->sec_cb = cb;
4320 }
4321
4322 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4323 const SSL_CTX *ctx, int op,
4324 int bits, int nid, void *other,
4325 void *ex) {
4326 return s->cert->sec_cb;
4327 }
4328
4329 void SSL_set0_security_ex_data(SSL *s, void *ex)
4330 {
4331 s->cert->sec_ex = ex;
4332 }
4333
4334 void *SSL_get0_security_ex_data(const SSL *s)
4335 {
4336 return s->cert->sec_ex;
4337 }
4338
4339 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4340 {
4341 ctx->cert->sec_level = level;
4342 }
4343
4344 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4345 {
4346 return ctx->cert->sec_level;
4347 }
4348
4349 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4350 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4351 int op, int bits, int nid,
4352 void *other, void *ex))
4353 {
4354 ctx->cert->sec_cb = cb;
4355 }
4356
4357 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4358 const SSL_CTX *ctx,
4359 int op, int bits,
4360 int nid,
4361 void *other,
4362 void *ex) {
4363 return ctx->cert->sec_cb;
4364 }
4365
4366 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4367 {
4368 ctx->cert->sec_ex = ex;
4369 }
4370
4371 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4372 {
4373 return ctx->cert->sec_ex;
4374 }
4375
4376 /*
4377 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4378 * can return unsigned long, instead of the generic long return value from the
4379 * control interface.
4380 */
4381 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4382 {
4383 return ctx->options;
4384 }
4385
4386 unsigned long SSL_get_options(const SSL *s)
4387 {
4388 return s->options;
4389 }
4390
4391 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4392 {
4393 return ctx->options |= op;
4394 }
4395
4396 unsigned long SSL_set_options(SSL *s, unsigned long op)
4397 {
4398 return s->options |= op;
4399 }
4400
4401 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4402 {
4403 return ctx->options &= ~op;
4404 }
4405
4406 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4407 {
4408 return s->options &= ~op;
4409 }
4410
4411 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4412 {
4413 return s->verified_chain;
4414 }
4415
4416 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4417
4418 #ifndef OPENSSL_NO_CT
4419
4420 /*
4421 * Moves SCTs from the |src| stack to the |dst| stack.
4422 * The source of each SCT will be set to |origin|.
4423 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4424 * the caller.
4425 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4426 */
4427 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4428 sct_source_t origin)
4429 {
4430 int scts_moved = 0;
4431 SCT *sct = NULL;
4432
4433 if (*dst == NULL) {
4434 *dst = sk_SCT_new_null();
4435 if (*dst == NULL) {
4436 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4437 goto err;
4438 }
4439 }
4440
4441 while ((sct = sk_SCT_pop(src)) != NULL) {
4442 if (SCT_set_source(sct, origin) != 1)
4443 goto err;
4444
4445 if (sk_SCT_push(*dst, sct) <= 0)
4446 goto err;
4447 scts_moved += 1;
4448 }
4449
4450 return scts_moved;
4451 err:
4452 if (sct != NULL)
4453 sk_SCT_push(src, sct); /* Put the SCT back */
4454 return -1;
4455 }
4456
4457 /*
4458 * Look for data collected during ServerHello and parse if found.
4459 * Returns the number of SCTs extracted.
4460 */
4461 static int ct_extract_tls_extension_scts(SSL *s)
4462 {
4463 int scts_extracted = 0;
4464
4465 if (s->ext.scts != NULL) {
4466 const unsigned char *p = s->ext.scts;
4467 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4468
4469 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4470
4471 SCT_LIST_free(scts);
4472 }
4473
4474 return scts_extracted;
4475 }
4476
4477 /*
4478 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4479 * contains an SCT X509 extension. They will be stored in |s->scts|.
4480 * Returns:
4481 * - The number of SCTs extracted, assuming an OCSP response exists.
4482 * - 0 if no OCSP response exists or it contains no SCTs.
4483 * - A negative integer if an error occurs.
4484 */
4485 static int ct_extract_ocsp_response_scts(SSL *s)
4486 {
4487 # ifndef OPENSSL_NO_OCSP
4488 int scts_extracted = 0;
4489 const unsigned char *p;
4490 OCSP_BASICRESP *br = NULL;
4491 OCSP_RESPONSE *rsp = NULL;
4492 STACK_OF(SCT) *scts = NULL;
4493 int i;
4494
4495 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4496 goto err;
4497
4498 p = s->ext.ocsp.resp;
4499 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4500 if (rsp == NULL)
4501 goto err;
4502
4503 br = OCSP_response_get1_basic(rsp);
4504 if (br == NULL)
4505 goto err;
4506
4507 for (i = 0; i < OCSP_resp_count(br); ++i) {
4508 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4509
4510 if (single == NULL)
4511 continue;
4512
4513 scts =
4514 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4515 scts_extracted =
4516 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4517 if (scts_extracted < 0)
4518 goto err;
4519 }
4520 err:
4521 SCT_LIST_free(scts);
4522 OCSP_BASICRESP_free(br);
4523 OCSP_RESPONSE_free(rsp);
4524 return scts_extracted;
4525 # else
4526 /* Behave as if no OCSP response exists */
4527 return 0;
4528 # endif
4529 }
4530
4531 /*
4532 * Attempts to extract SCTs from the peer certificate.
4533 * Return the number of SCTs extracted, or a negative integer if an error
4534 * occurs.
4535 */
4536 static int ct_extract_x509v3_extension_scts(SSL *s)
4537 {
4538 int scts_extracted = 0;
4539 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4540
4541 if (cert != NULL) {
4542 STACK_OF(SCT) *scts =
4543 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4544
4545 scts_extracted =
4546 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4547
4548 SCT_LIST_free(scts);
4549 }
4550
4551 return scts_extracted;
4552 }
4553
4554 /*
4555 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4556 * response (if it exists) and X509v3 extensions in the certificate.
4557 * Returns NULL if an error occurs.
4558 */
4559 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4560 {
4561 if (!s->scts_parsed) {
4562 if (ct_extract_tls_extension_scts(s) < 0 ||
4563 ct_extract_ocsp_response_scts(s) < 0 ||
4564 ct_extract_x509v3_extension_scts(s) < 0)
4565 goto err;
4566
4567 s->scts_parsed = 1;
4568 }
4569 return s->scts;
4570 err:
4571 return NULL;
4572 }
4573
4574 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4575 const STACK_OF(SCT) *scts, void *unused_arg)
4576 {
4577 return 1;
4578 }
4579
4580 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4581 const STACK_OF(SCT) *scts, void *unused_arg)
4582 {
4583 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4584 int i;
4585
4586 for (i = 0; i < count; ++i) {
4587 SCT *sct = sk_SCT_value(scts, i);
4588 int status = SCT_get_validation_status(sct);
4589
4590 if (status == SCT_VALIDATION_STATUS_VALID)
4591 return 1;
4592 }
4593 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4594 return 0;
4595 }
4596
4597 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4598 void *arg)
4599 {
4600 /*
4601 * Since code exists that uses the custom extension handler for CT, look
4602 * for this and throw an error if they have already registered to use CT.
4603 */
4604 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4605 TLSEXT_TYPE_signed_certificate_timestamp))
4606 {
4607 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4608 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4609 return 0;
4610 }
4611
4612 if (callback != NULL) {
4613 /*
4614 * If we are validating CT, then we MUST accept SCTs served via OCSP
4615 */
4616 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4617 return 0;
4618 }
4619
4620 s->ct_validation_callback = callback;
4621 s->ct_validation_callback_arg = arg;
4622
4623 return 1;
4624 }
4625
4626 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4627 ssl_ct_validation_cb callback, void *arg)
4628 {
4629 /*
4630 * Since code exists that uses the custom extension handler for CT, look for
4631 * this and throw an error if they have already registered to use CT.
4632 */
4633 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4634 TLSEXT_TYPE_signed_certificate_timestamp))
4635 {
4636 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4637 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4638 return 0;
4639 }
4640
4641 ctx->ct_validation_callback = callback;
4642 ctx->ct_validation_callback_arg = arg;
4643 return 1;
4644 }
4645
4646 int SSL_ct_is_enabled(const SSL *s)
4647 {
4648 return s->ct_validation_callback != NULL;
4649 }
4650
4651 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4652 {
4653 return ctx->ct_validation_callback != NULL;
4654 }
4655
4656 int ssl_validate_ct(SSL *s)
4657 {
4658 int ret = 0;
4659 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4660 X509 *issuer;
4661 SSL_DANE *dane = &s->dane;
4662 CT_POLICY_EVAL_CTX *ctx = NULL;
4663 const STACK_OF(SCT) *scts;
4664
4665 /*
4666 * If no callback is set, the peer is anonymous, or its chain is invalid,
4667 * skip SCT validation - just return success. Applications that continue
4668 * handshakes without certificates, with unverified chains, or pinned leaf
4669 * certificates are outside the scope of the WebPKI and CT.
4670 *
4671 * The above exclusions notwithstanding the vast majority of peers will
4672 * have rather ordinary certificate chains validated by typical
4673 * applications that perform certificate verification and therefore will
4674 * process SCTs when enabled.
4675 */
4676 if (s->ct_validation_callback == NULL || cert == NULL ||
4677 s->verify_result != X509_V_OK ||
4678 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4679 return 1;
4680
4681 /*
4682 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4683 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4684 */
4685 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4686 switch (dane->mtlsa->usage) {
4687 case DANETLS_USAGE_DANE_TA:
4688 case DANETLS_USAGE_DANE_EE:
4689 return 1;
4690 }
4691 }
4692
4693 ctx = CT_POLICY_EVAL_CTX_new();
4694 if (ctx == NULL) {
4695 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4696 ERR_R_MALLOC_FAILURE);
4697 goto end;
4698 }
4699
4700 issuer = sk_X509_value(s->verified_chain, 1);
4701 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4702 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4703 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4704 CT_POLICY_EVAL_CTX_set_time(
4705 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4706
4707 scts = SSL_get0_peer_scts(s);
4708
4709 /*
4710 * This function returns success (> 0) only when all the SCTs are valid, 0
4711 * when some are invalid, and < 0 on various internal errors (out of
4712 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4713 * reason to abort the handshake, that decision is up to the callback.
4714 * Therefore, we error out only in the unexpected case that the return
4715 * value is negative.
4716 *
4717 * XXX: One might well argue that the return value of this function is an
4718 * unfortunate design choice. Its job is only to determine the validation
4719 * status of each of the provided SCTs. So long as it correctly separates
4720 * the wheat from the chaff it should return success. Failure in this case
4721 * ought to correspond to an inability to carry out its duties.
4722 */
4723 if (SCT_LIST_validate(scts, ctx) < 0) {
4724 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4725 SSL_R_SCT_VERIFICATION_FAILED);
4726 goto end;
4727 }
4728
4729 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4730 if (ret < 0)
4731 ret = 0; /* This function returns 0 on failure */
4732 if (!ret)
4733 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4734 SSL_R_CALLBACK_FAILED);
4735
4736 end:
4737 CT_POLICY_EVAL_CTX_free(ctx);
4738 /*
4739 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4740 * failure return code here. Also the application may wish the complete
4741 * the handshake, and then disconnect cleanly at a higher layer, after
4742 * checking the verification status of the completed connection.
4743 *
4744 * We therefore force a certificate verification failure which will be
4745 * visible via SSL_get_verify_result() and cached as part of any resumed
4746 * session.
4747 *
4748 * Note: the permissive callback is for information gathering only, always
4749 * returns success, and does not affect verification status. Only the
4750 * strict callback or a custom application-specified callback can trigger
4751 * connection failure or record a verification error.
4752 */
4753 if (ret <= 0)
4754 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4755 return ret;
4756 }
4757
4758 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4759 {
4760 switch (validation_mode) {
4761 default:
4762 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4763 return 0;
4764 case SSL_CT_VALIDATION_PERMISSIVE:
4765 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4766 case SSL_CT_VALIDATION_STRICT:
4767 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4768 }
4769 }
4770
4771 int SSL_enable_ct(SSL *s, int validation_mode)
4772 {
4773 switch (validation_mode) {
4774 default:
4775 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4776 return 0;
4777 case SSL_CT_VALIDATION_PERMISSIVE:
4778 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4779 case SSL_CT_VALIDATION_STRICT:
4780 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4781 }
4782 }
4783
4784 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4785 {
4786 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4787 }
4788
4789 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4790 {
4791 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4792 }
4793
4794 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4795 {
4796 CTLOG_STORE_free(ctx->ctlog_store);
4797 ctx->ctlog_store = logs;
4798 }
4799
4800 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4801 {
4802 return ctx->ctlog_store;
4803 }
4804
4805 #endif /* OPENSSL_NO_CT */
4806
4807 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4808 void *arg)
4809 {
4810 c->client_hello_cb = cb;
4811 c->client_hello_cb_arg = arg;
4812 }
4813
4814 int SSL_client_hello_isv2(SSL *s)
4815 {
4816 if (s->clienthello == NULL)
4817 return 0;
4818 return s->clienthello->isv2;
4819 }
4820
4821 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4822 {
4823 if (s->clienthello == NULL)
4824 return 0;
4825 return s->clienthello->legacy_version;
4826 }
4827
4828 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4829 {
4830 if (s->clienthello == NULL)
4831 return 0;
4832 if (out != NULL)
4833 *out = s->clienthello->random;
4834 return SSL3_RANDOM_SIZE;
4835 }
4836
4837 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4838 {
4839 if (s->clienthello == NULL)
4840 return 0;
4841 if (out != NULL)
4842 *out = s->clienthello->session_id;
4843 return s->clienthello->session_id_len;
4844 }
4845
4846 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4847 {
4848 if (s->clienthello == NULL)
4849 return 0;
4850 if (out != NULL)
4851 *out = PACKET_data(&s->clienthello->ciphersuites);
4852 return PACKET_remaining(&s->clienthello->ciphersuites);
4853 }
4854
4855 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4856 {
4857 if (s->clienthello == NULL)
4858 return 0;
4859 if (out != NULL)
4860 *out = s->clienthello->compressions;
4861 return s->clienthello->compressions_len;
4862 }
4863
4864 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4865 {
4866 RAW_EXTENSION *ext;
4867 int *present;
4868 size_t num = 0, i;
4869
4870 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4871 return 0;
4872 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4873 ext = s->clienthello->pre_proc_exts + i;
4874 if (ext->present)
4875 num++;
4876 }
4877 present = OPENSSL_malloc(sizeof(*present) * num);
4878 if (present == NULL)
4879 return 0;
4880 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4881 ext = s->clienthello->pre_proc_exts + i;
4882 if (ext->present) {
4883 if (ext->received_order >= num)
4884 goto err;
4885 present[ext->received_order] = ext->type;
4886 }
4887 }
4888 *out = present;
4889 *outlen = num;
4890 return 1;
4891 err:
4892 OPENSSL_free(present);
4893 return 0;
4894 }
4895
4896 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4897 size_t *outlen)
4898 {
4899 size_t i;
4900 RAW_EXTENSION *r;
4901
4902 if (s->clienthello == NULL)
4903 return 0;
4904 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4905 r = s->clienthello->pre_proc_exts + i;
4906 if (r->present && r->type == type) {
4907 if (out != NULL)
4908 *out = PACKET_data(&r->data);
4909 if (outlen != NULL)
4910 *outlen = PACKET_remaining(&r->data);
4911 return 1;
4912 }
4913 }
4914 return 0;
4915 }
4916
4917 int SSL_free_buffers(SSL *ssl)
4918 {
4919 RECORD_LAYER *rl = &ssl->rlayer;
4920
4921 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4922 return 0;
4923
4924 RECORD_LAYER_release(rl);
4925 return 1;
4926 }
4927
4928 int SSL_alloc_buffers(SSL *ssl)
4929 {
4930 return ssl3_setup_buffers(ssl);
4931 }
4932
4933 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4934 {
4935 ctx->keylog_callback = cb;
4936 }
4937
4938 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4939 {
4940 return ctx->keylog_callback;
4941 }
4942
4943 static int nss_keylog_int(const char *prefix,
4944 SSL *ssl,
4945 const uint8_t *parameter_1,
4946 size_t parameter_1_len,
4947 const uint8_t *parameter_2,
4948 size_t parameter_2_len)
4949 {
4950 char *out = NULL;
4951 char *cursor = NULL;
4952 size_t out_len = 0;
4953 size_t i;
4954 size_t prefix_len;
4955
4956 if (ssl->ctx->keylog_callback == NULL) return 1;
4957
4958 /*
4959 * Our output buffer will contain the following strings, rendered with
4960 * space characters in between, terminated by a NULL character: first the
4961 * prefix, then the first parameter, then the second parameter. The
4962 * meaning of each parameter depends on the specific key material being
4963 * logged. Note that the first and second parameters are encoded in
4964 * hexadecimal, so we need a buffer that is twice their lengths.
4965 */
4966 prefix_len = strlen(prefix);
4967 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4968 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4969 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
4970 ERR_R_MALLOC_FAILURE);
4971 return 0;
4972 }
4973
4974 strcpy(cursor, prefix);
4975 cursor += prefix_len;
4976 *cursor++ = ' ';
4977
4978 for (i = 0; i < parameter_1_len; i++) {
4979 sprintf(cursor, "%02x", parameter_1[i]);
4980 cursor += 2;
4981 }
4982 *cursor++ = ' ';
4983
4984 for (i = 0; i < parameter_2_len; i++) {
4985 sprintf(cursor, "%02x", parameter_2[i]);
4986 cursor += 2;
4987 }
4988 *cursor = '\0';
4989
4990 ssl->ctx->keylog_callback(ssl, (const char *)out);
4991 OPENSSL_free(out);
4992 return 1;
4993
4994 }
4995
4996 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4997 const uint8_t *encrypted_premaster,
4998 size_t encrypted_premaster_len,
4999 const uint8_t *premaster,
5000 size_t premaster_len)
5001 {
5002 if (encrypted_premaster_len < 8) {
5003 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5004 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5005 return 0;
5006 }
5007
5008 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5009 return nss_keylog_int("RSA",
5010 ssl,
5011 encrypted_premaster,
5012 8,
5013 premaster,
5014 premaster_len);
5015 }
5016
5017 int ssl_log_secret(SSL *ssl,
5018 const char *label,
5019 const uint8_t *secret,
5020 size_t secret_len)
5021 {
5022 return nss_keylog_int(label,
5023 ssl,
5024 ssl->s3->client_random,
5025 SSL3_RANDOM_SIZE,
5026 secret,
5027 secret_len);
5028 }
5029
5030 #define SSLV2_CIPHER_LEN 3
5031
5032 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5033 {
5034 int n;
5035
5036 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5037
5038 if (PACKET_remaining(cipher_suites) == 0) {
5039 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5040 SSL_R_NO_CIPHERS_SPECIFIED);
5041 return 0;
5042 }
5043
5044 if (PACKET_remaining(cipher_suites) % n != 0) {
5045 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5046 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5047 return 0;
5048 }
5049
5050 OPENSSL_free(s->s3->tmp.ciphers_raw);
5051 s->s3->tmp.ciphers_raw = NULL;
5052 s->s3->tmp.ciphers_rawlen = 0;
5053
5054 if (sslv2format) {
5055 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5056 PACKET sslv2ciphers = *cipher_suites;
5057 unsigned int leadbyte;
5058 unsigned char *raw;
5059
5060 /*
5061 * We store the raw ciphers list in SSLv3+ format so we need to do some
5062 * preprocessing to convert the list first. If there are any SSLv2 only
5063 * ciphersuites with a non-zero leading byte then we are going to
5064 * slightly over allocate because we won't store those. But that isn't a
5065 * problem.
5066 */
5067 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5068 s->s3->tmp.ciphers_raw = raw;
5069 if (raw == NULL) {
5070 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5071 ERR_R_MALLOC_FAILURE);
5072 return 0;
5073 }
5074 for (s->s3->tmp.ciphers_rawlen = 0;
5075 PACKET_remaining(&sslv2ciphers) > 0;
5076 raw += TLS_CIPHER_LEN) {
5077 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5078 || (leadbyte == 0
5079 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5080 TLS_CIPHER_LEN))
5081 || (leadbyte != 0
5082 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5083 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5084 SSL_R_BAD_PACKET);
5085 OPENSSL_free(s->s3->tmp.ciphers_raw);
5086 s->s3->tmp.ciphers_raw = NULL;
5087 s->s3->tmp.ciphers_rawlen = 0;
5088 return 0;
5089 }
5090 if (leadbyte == 0)
5091 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5092 }
5093 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5094 &s->s3->tmp.ciphers_rawlen)) {
5095 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5096 ERR_R_INTERNAL_ERROR);
5097 return 0;
5098 }
5099 return 1;
5100 }
5101
5102 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5103 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5104 STACK_OF(SSL_CIPHER) **scsvs)
5105 {
5106 PACKET pkt;
5107
5108 if (!PACKET_buf_init(&pkt, bytes, len))
5109 return 0;
5110 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5111 }
5112
5113 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5114 STACK_OF(SSL_CIPHER) **skp,
5115 STACK_OF(SSL_CIPHER) **scsvs_out,
5116 int sslv2format, int fatal)
5117 {
5118 const SSL_CIPHER *c;
5119 STACK_OF(SSL_CIPHER) *sk = NULL;
5120 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5121 int n;
5122 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5123 unsigned char cipher[SSLV2_CIPHER_LEN];
5124
5125 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5126
5127 if (PACKET_remaining(cipher_suites) == 0) {
5128 if (fatal)
5129 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5130 SSL_R_NO_CIPHERS_SPECIFIED);
5131 else
5132 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5133 return 0;
5134 }
5135
5136 if (PACKET_remaining(cipher_suites) % n != 0) {
5137 if (fatal)
5138 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5139 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5140 else
5141 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5142 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5143 return 0;
5144 }
5145
5146 sk = sk_SSL_CIPHER_new_null();
5147 scsvs = sk_SSL_CIPHER_new_null();
5148 if (sk == NULL || scsvs == NULL) {
5149 if (fatal)
5150 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5151 ERR_R_MALLOC_FAILURE);
5152 else
5153 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5154 goto err;
5155 }
5156
5157 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5158 /*
5159 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5160 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5161 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5162 */
5163 if (sslv2format && cipher[0] != '\0')
5164 continue;
5165
5166 /* For SSLv2-compat, ignore leading 0-byte. */
5167 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5168 if (c != NULL) {
5169 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5170 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5171 if (fatal)
5172 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5173 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5174 else
5175 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5176 goto err;
5177 }
5178 }
5179 }
5180 if (PACKET_remaining(cipher_suites) > 0) {
5181 if (fatal)
5182 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5183 SSL_R_BAD_LENGTH);
5184 else
5185 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5186 goto err;
5187 }
5188
5189 if (skp != NULL)
5190 *skp = sk;
5191 else
5192 sk_SSL_CIPHER_free(sk);
5193 if (scsvs_out != NULL)
5194 *scsvs_out = scsvs;
5195 else
5196 sk_SSL_CIPHER_free(scsvs);
5197 return 1;
5198 err:
5199 sk_SSL_CIPHER_free(sk);
5200 sk_SSL_CIPHER_free(scsvs);
5201 return 0;
5202 }
5203
5204 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5205 {
5206 ctx->max_early_data = max_early_data;
5207
5208 return 1;
5209 }
5210
5211 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5212 {
5213 return ctx->max_early_data;
5214 }
5215
5216 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5217 {
5218 s->max_early_data = max_early_data;
5219
5220 return 1;
5221 }
5222
5223 uint32_t SSL_get_max_early_data(const SSL *s)
5224 {
5225 return s->max_early_data;
5226 }
5227
5228 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5229 {
5230 if (s->drbg != NULL) {
5231 /*
5232 * Currently, it's the duty of the caller to serialize the generate
5233 * requests to the DRBG. So formally we have to check whether
5234 * s->drbg->lock != NULL and take the lock if this is the case.
5235 * However, this DRBG is unique to a given SSL object, and we already
5236 * require that SSL objects are only accessed by a single thread at
5237 * a given time. Also, SSL DRBGs have no child DRBG, so there is
5238 * no risk that this DRBG is accessed by a child DRBG in parallel
5239 * for reseeding. As such, we can rely on the application's
5240 * serialization of SSL accesses for the needed concurrency protection
5241 * here.
5242 */
5243 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5244 }
5245 return RAND_bytes(rnd, (int)size);
5246 }
5247
5248 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5249 {
5250 /* Return any active Max Fragment Len extension */
5251 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5252 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5253
5254 /* return current SSL connection setting */
5255 return ssl->max_send_fragment;
5256 }
5257
5258 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5259 {
5260 /* Return a value regarding an active Max Fragment Len extension */
5261 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5262 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5263 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5264
5265 /* else limit |split_send_fragment| to current |max_send_fragment| */
5266 if (ssl->split_send_fragment > ssl->max_send_fragment)
5267 return ssl->max_send_fragment;
5268
5269 /* return current SSL connection setting */
5270 return ssl->split_send_fragment;
5271 }