]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Update the TLSv1.3 secrets test vectors for draft-19
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 * ECC cipher suite support in OpenSSL originally developed by
13 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
14 */
15 /* ====================================================================
16 * Copyright 2005 Nokia. All rights reserved.
17 *
18 * The portions of the attached software ("Contribution") is developed by
19 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
20 * license.
21 *
22 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
23 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
24 * support (see RFC 4279) to OpenSSL.
25 *
26 * No patent licenses or other rights except those expressly stated in
27 * the OpenSSL open source license shall be deemed granted or received
28 * expressly, by implication, estoppel, or otherwise.
29 *
30 * No assurances are provided by Nokia that the Contribution does not
31 * infringe the patent or other intellectual property rights of any third
32 * party or that the license provides you with all the necessary rights
33 * to make use of the Contribution.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
36 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
37 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
38 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
39 * OTHERWISE.
40 */
41
42 #include <assert.h>
43 #include <stdio.h>
44 #include "ssl_locl.h"
45 #include <openssl/objects.h>
46 #include <openssl/lhash.h>
47 #include <openssl/x509v3.h>
48 #include <openssl/rand.h>
49 #include <openssl/ocsp.h>
50 #include <openssl/dh.h>
51 #include <openssl/engine.h>
52 #include <openssl/async.h>
53 #include <openssl/ct.h>
54
55 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
56
57 SSL3_ENC_METHOD ssl3_undef_enc_method = {
58 /*
59 * evil casts, but these functions are only called if there's a library
60 * bug
61 */
62 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
63 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
64 ssl_undefined_function,
65 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
66 ssl_undefined_function,
67 (int (*)(SSL *, int))ssl_undefined_function,
68 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
69 ssl_undefined_function,
70 NULL, /* client_finished_label */
71 0, /* client_finished_label_len */
72 NULL, /* server_finished_label */
73 0, /* server_finished_label_len */
74 (int (*)(int))ssl_undefined_function,
75 (int (*)(SSL *, unsigned char *, size_t, const char *,
76 size_t, const unsigned char *, size_t,
77 int use_context))ssl_undefined_function,
78 };
79
80 struct ssl_async_args {
81 SSL *s;
82 void *buf;
83 size_t num;
84 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
85 union {
86 int (*func_read) (SSL *, void *, size_t, size_t *);
87 int (*func_write) (SSL *, const void *, size_t, size_t *);
88 int (*func_other) (SSL *);
89 } f;
90 };
91
92 static const struct {
93 uint8_t mtype;
94 uint8_t ord;
95 int nid;
96 } dane_mds[] = {
97 {
98 DANETLS_MATCHING_FULL, 0, NID_undef
99 },
100 {
101 DANETLS_MATCHING_2256, 1, NID_sha256
102 },
103 {
104 DANETLS_MATCHING_2512, 2, NID_sha512
105 },
106 };
107
108 static int ssl_write_early_finish(SSL *s);
109
110 static int dane_ctx_enable(struct dane_ctx_st *dctx)
111 {
112 const EVP_MD **mdevp;
113 uint8_t *mdord;
114 uint8_t mdmax = DANETLS_MATCHING_LAST;
115 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
116 size_t i;
117
118 if (dctx->mdevp != NULL)
119 return 1;
120
121 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
122 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
123
124 if (mdord == NULL || mdevp == NULL) {
125 OPENSSL_free(mdord);
126 OPENSSL_free(mdevp);
127 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
128 return 0;
129 }
130
131 /* Install default entries */
132 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
133 const EVP_MD *md;
134
135 if (dane_mds[i].nid == NID_undef ||
136 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
137 continue;
138 mdevp[dane_mds[i].mtype] = md;
139 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
140 }
141
142 dctx->mdevp = mdevp;
143 dctx->mdord = mdord;
144 dctx->mdmax = mdmax;
145
146 return 1;
147 }
148
149 static void dane_ctx_final(struct dane_ctx_st *dctx)
150 {
151 OPENSSL_free(dctx->mdevp);
152 dctx->mdevp = NULL;
153
154 OPENSSL_free(dctx->mdord);
155 dctx->mdord = NULL;
156 dctx->mdmax = 0;
157 }
158
159 static void tlsa_free(danetls_record *t)
160 {
161 if (t == NULL)
162 return;
163 OPENSSL_free(t->data);
164 EVP_PKEY_free(t->spki);
165 OPENSSL_free(t);
166 }
167
168 static void dane_final(SSL_DANE *dane)
169 {
170 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
171 dane->trecs = NULL;
172
173 sk_X509_pop_free(dane->certs, X509_free);
174 dane->certs = NULL;
175
176 X509_free(dane->mcert);
177 dane->mcert = NULL;
178 dane->mtlsa = NULL;
179 dane->mdpth = -1;
180 dane->pdpth = -1;
181 }
182
183 /*
184 * dane_copy - Copy dane configuration, sans verification state.
185 */
186 static int ssl_dane_dup(SSL *to, SSL *from)
187 {
188 int num;
189 int i;
190
191 if (!DANETLS_ENABLED(&from->dane))
192 return 1;
193
194 dane_final(&to->dane);
195 to->dane.flags = from->dane.flags;
196 to->dane.dctx = &to->ctx->dane;
197 to->dane.trecs = sk_danetls_record_new_null();
198
199 if (to->dane.trecs == NULL) {
200 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
201 return 0;
202 }
203
204 num = sk_danetls_record_num(from->dane.trecs);
205 for (i = 0; i < num; ++i) {
206 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
207
208 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
209 t->data, t->dlen) <= 0)
210 return 0;
211 }
212 return 1;
213 }
214
215 static int dane_mtype_set(struct dane_ctx_st *dctx,
216 const EVP_MD *md, uint8_t mtype, uint8_t ord)
217 {
218 int i;
219
220 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
221 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
222 return 0;
223 }
224
225 if (mtype > dctx->mdmax) {
226 const EVP_MD **mdevp;
227 uint8_t *mdord;
228 int n = ((int)mtype) + 1;
229
230 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
231 if (mdevp == NULL) {
232 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
233 return -1;
234 }
235 dctx->mdevp = mdevp;
236
237 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
238 if (mdord == NULL) {
239 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
240 return -1;
241 }
242 dctx->mdord = mdord;
243
244 /* Zero-fill any gaps */
245 for (i = dctx->mdmax + 1; i < mtype; ++i) {
246 mdevp[i] = NULL;
247 mdord[i] = 0;
248 }
249
250 dctx->mdmax = mtype;
251 }
252
253 dctx->mdevp[mtype] = md;
254 /* Coerce ordinal of disabled matching types to 0 */
255 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
256
257 return 1;
258 }
259
260 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
261 {
262 if (mtype > dane->dctx->mdmax)
263 return NULL;
264 return dane->dctx->mdevp[mtype];
265 }
266
267 static int dane_tlsa_add(SSL_DANE *dane,
268 uint8_t usage,
269 uint8_t selector,
270 uint8_t mtype, unsigned char *data, size_t dlen)
271 {
272 danetls_record *t;
273 const EVP_MD *md = NULL;
274 int ilen = (int)dlen;
275 int i;
276 int num;
277
278 if (dane->trecs == NULL) {
279 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
280 return -1;
281 }
282
283 if (ilen < 0 || dlen != (size_t)ilen) {
284 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
285 return 0;
286 }
287
288 if (usage > DANETLS_USAGE_LAST) {
289 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
290 return 0;
291 }
292
293 if (selector > DANETLS_SELECTOR_LAST) {
294 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
295 return 0;
296 }
297
298 if (mtype != DANETLS_MATCHING_FULL) {
299 md = tlsa_md_get(dane, mtype);
300 if (md == NULL) {
301 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
302 return 0;
303 }
304 }
305
306 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
308 return 0;
309 }
310 if (!data) {
311 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
312 return 0;
313 }
314
315 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
316 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
317 return -1;
318 }
319
320 t->usage = usage;
321 t->selector = selector;
322 t->mtype = mtype;
323 t->data = OPENSSL_malloc(dlen);
324 if (t->data == NULL) {
325 tlsa_free(t);
326 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
327 return -1;
328 }
329 memcpy(t->data, data, dlen);
330 t->dlen = dlen;
331
332 /* Validate and cache full certificate or public key */
333 if (mtype == DANETLS_MATCHING_FULL) {
334 const unsigned char *p = data;
335 X509 *cert = NULL;
336 EVP_PKEY *pkey = NULL;
337
338 switch (selector) {
339 case DANETLS_SELECTOR_CERT:
340 if (!d2i_X509(&cert, &p, ilen) || p < data ||
341 dlen != (size_t)(p - data)) {
342 tlsa_free(t);
343 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
344 return 0;
345 }
346 if (X509_get0_pubkey(cert) == NULL) {
347 tlsa_free(t);
348 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
349 return 0;
350 }
351
352 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
353 X509_free(cert);
354 break;
355 }
356
357 /*
358 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
359 * records that contain full certificates of trust-anchors that are
360 * not present in the wire chain. For usage PKIX-TA(0), we augment
361 * the chain with untrusted Full(0) certificates from DNS, in case
362 * they are missing from the chain.
363 */
364 if ((dane->certs == NULL &&
365 (dane->certs = sk_X509_new_null()) == NULL) ||
366 !sk_X509_push(dane->certs, cert)) {
367 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
368 X509_free(cert);
369 tlsa_free(t);
370 return -1;
371 }
372 break;
373
374 case DANETLS_SELECTOR_SPKI:
375 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
376 dlen != (size_t)(p - data)) {
377 tlsa_free(t);
378 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
379 return 0;
380 }
381
382 /*
383 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
384 * records that contain full bare keys of trust-anchors that are
385 * not present in the wire chain.
386 */
387 if (usage == DANETLS_USAGE_DANE_TA)
388 t->spki = pkey;
389 else
390 EVP_PKEY_free(pkey);
391 break;
392 }
393 }
394
395 /*-
396 * Find the right insertion point for the new record.
397 *
398 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
399 * they can be processed first, as they require no chain building, and no
400 * expiration or hostname checks. Because DANE-EE(3) is numerically
401 * largest, this is accomplished via descending sort by "usage".
402 *
403 * We also sort in descending order by matching ordinal to simplify
404 * the implementation of digest agility in the verification code.
405 *
406 * The choice of order for the selector is not significant, so we
407 * use the same descending order for consistency.
408 */
409 num = sk_danetls_record_num(dane->trecs);
410 for (i = 0; i < num; ++i) {
411 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
412
413 if (rec->usage > usage)
414 continue;
415 if (rec->usage < usage)
416 break;
417 if (rec->selector > selector)
418 continue;
419 if (rec->selector < selector)
420 break;
421 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
422 continue;
423 break;
424 }
425
426 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
427 tlsa_free(t);
428 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
429 return -1;
430 }
431 dane->umask |= DANETLS_USAGE_BIT(usage);
432
433 return 1;
434 }
435
436 static void clear_ciphers(SSL *s)
437 {
438 /* clear the current cipher */
439 ssl_clear_cipher_ctx(s);
440 ssl_clear_hash_ctx(&s->read_hash);
441 ssl_clear_hash_ctx(&s->write_hash);
442 }
443
444 int SSL_clear(SSL *s)
445 {
446 if (s->method == NULL) {
447 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
448 return (0);
449 }
450
451 if (ssl_clear_bad_session(s)) {
452 SSL_SESSION_free(s->session);
453 s->session = NULL;
454 }
455
456 s->error = 0;
457 s->hit = 0;
458 s->shutdown = 0;
459
460 if (s->renegotiate) {
461 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
462 return 0;
463 }
464
465 ossl_statem_clear(s);
466
467 s->version = s->method->version;
468 s->client_version = s->version;
469 s->rwstate = SSL_NOTHING;
470
471 BUF_MEM_free(s->init_buf);
472 s->init_buf = NULL;
473 clear_ciphers(s);
474 s->first_packet = 0;
475
476 s->key_update = SSL_KEY_UPDATE_NONE;
477
478 /* Reset DANE verification result state */
479 s->dane.mdpth = -1;
480 s->dane.pdpth = -1;
481 X509_free(s->dane.mcert);
482 s->dane.mcert = NULL;
483 s->dane.mtlsa = NULL;
484
485 /* Clear the verification result peername */
486 X509_VERIFY_PARAM_move_peername(s->param, NULL);
487
488 /*
489 * Check to see if we were changed into a different method, if so, revert
490 * back if we are not doing session-id reuse.
491 */
492 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
493 && (s->method != s->ctx->method)) {
494 s->method->ssl_free(s);
495 s->method = s->ctx->method;
496 if (!s->method->ssl_new(s))
497 return (0);
498 } else
499 s->method->ssl_clear(s);
500
501 RECORD_LAYER_clear(&s->rlayer);
502
503 return (1);
504 }
505
506 /** Used to change an SSL_CTXs default SSL method type */
507 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
508 {
509 STACK_OF(SSL_CIPHER) *sk;
510
511 ctx->method = meth;
512
513 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
514 &(ctx->cipher_list_by_id),
515 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
516 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
517 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
518 return (0);
519 }
520 return (1);
521 }
522
523 SSL *SSL_new(SSL_CTX *ctx)
524 {
525 SSL *s;
526
527 if (ctx == NULL) {
528 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
529 return (NULL);
530 }
531 if (ctx->method == NULL) {
532 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
533 return (NULL);
534 }
535
536 s = OPENSSL_zalloc(sizeof(*s));
537 if (s == NULL)
538 goto err;
539
540 s->lock = CRYPTO_THREAD_lock_new();
541 if (s->lock == NULL) {
542 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
543 OPENSSL_free(s);
544 return NULL;
545 }
546
547 RECORD_LAYER_init(&s->rlayer, s);
548
549 s->options = ctx->options;
550 s->dane.flags = ctx->dane.flags;
551 s->min_proto_version = ctx->min_proto_version;
552 s->max_proto_version = ctx->max_proto_version;
553 s->mode = ctx->mode;
554 s->max_cert_list = ctx->max_cert_list;
555 s->references = 1;
556 s->max_early_data = ctx->max_early_data;
557
558 /*
559 * Earlier library versions used to copy the pointer to the CERT, not
560 * its contents; only when setting new parameters for the per-SSL
561 * copy, ssl_cert_new would be called (and the direct reference to
562 * the per-SSL_CTX settings would be lost, but those still were
563 * indirectly accessed for various purposes, and for that reason they
564 * used to be known as s->ctx->default_cert). Now we don't look at the
565 * SSL_CTX's CERT after having duplicated it once.
566 */
567 s->cert = ssl_cert_dup(ctx->cert);
568 if (s->cert == NULL)
569 goto err;
570
571 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
572 s->msg_callback = ctx->msg_callback;
573 s->msg_callback_arg = ctx->msg_callback_arg;
574 s->verify_mode = ctx->verify_mode;
575 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
576 s->sid_ctx_length = ctx->sid_ctx_length;
577 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
578 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
579 s->verify_callback = ctx->default_verify_callback;
580 s->generate_session_id = ctx->generate_session_id;
581
582 s->param = X509_VERIFY_PARAM_new();
583 if (s->param == NULL)
584 goto err;
585 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
586 s->quiet_shutdown = ctx->quiet_shutdown;
587 s->max_send_fragment = ctx->max_send_fragment;
588 s->split_send_fragment = ctx->split_send_fragment;
589 s->max_pipelines = ctx->max_pipelines;
590 if (s->max_pipelines > 1)
591 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
592 if (ctx->default_read_buf_len > 0)
593 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
594
595 SSL_CTX_up_ref(ctx);
596 s->ctx = ctx;
597 s->ext.debug_cb = 0;
598 s->ext.debug_arg = NULL;
599 s->ext.ticket_expected = 0;
600 s->ext.status_type = ctx->ext.status_type;
601 s->ext.status_expected = 0;
602 s->ext.ocsp.ids = NULL;
603 s->ext.ocsp.exts = NULL;
604 s->ext.ocsp.resp = NULL;
605 s->ext.ocsp.resp_len = 0;
606 SSL_CTX_up_ref(ctx);
607 s->session_ctx = ctx;
608 #ifndef OPENSSL_NO_EC
609 if (ctx->ext.ecpointformats) {
610 s->ext.ecpointformats =
611 OPENSSL_memdup(ctx->ext.ecpointformats,
612 ctx->ext.ecpointformats_len);
613 if (!s->ext.ecpointformats)
614 goto err;
615 s->ext.ecpointformats_len =
616 ctx->ext.ecpointformats_len;
617 }
618 if (ctx->ext.supportedgroups) {
619 s->ext.supportedgroups =
620 OPENSSL_memdup(ctx->ext.supportedgroups,
621 ctx->ext.supportedgroups_len);
622 if (!s->ext.supportedgroups)
623 goto err;
624 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
625 }
626 #endif
627 #ifndef OPENSSL_NO_NEXTPROTONEG
628 s->ext.npn = NULL;
629 #endif
630
631 if (s->ctx->ext.alpn) {
632 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
633 if (s->ext.alpn == NULL)
634 goto err;
635 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
636 s->ext.alpn_len = s->ctx->ext.alpn_len;
637 }
638
639 s->verified_chain = NULL;
640 s->verify_result = X509_V_OK;
641
642 s->default_passwd_callback = ctx->default_passwd_callback;
643 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
644
645 s->method = ctx->method;
646
647 s->key_update = SSL_KEY_UPDATE_NONE;
648
649 if (!s->method->ssl_new(s))
650 goto err;
651
652 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
653
654 if (!SSL_clear(s))
655 goto err;
656
657 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
658 goto err;
659
660 #ifndef OPENSSL_NO_PSK
661 s->psk_client_callback = ctx->psk_client_callback;
662 s->psk_server_callback = ctx->psk_server_callback;
663 #endif
664
665 s->job = NULL;
666
667 #ifndef OPENSSL_NO_CT
668 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
669 ctx->ct_validation_callback_arg))
670 goto err;
671 #endif
672
673 return s;
674 err:
675 SSL_free(s);
676 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
677 return NULL;
678 }
679
680 int SSL_is_dtls(const SSL *s)
681 {
682 return SSL_IS_DTLS(s) ? 1 : 0;
683 }
684
685 int SSL_up_ref(SSL *s)
686 {
687 int i;
688
689 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
690 return 0;
691
692 REF_PRINT_COUNT("SSL", s);
693 REF_ASSERT_ISNT(i < 2);
694 return ((i > 1) ? 1 : 0);
695 }
696
697 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
698 unsigned int sid_ctx_len)
699 {
700 if (sid_ctx_len > sizeof ctx->sid_ctx) {
701 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
702 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
703 return 0;
704 }
705 ctx->sid_ctx_length = sid_ctx_len;
706 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
707
708 return 1;
709 }
710
711 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
712 unsigned int sid_ctx_len)
713 {
714 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
715 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
716 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
717 return 0;
718 }
719 ssl->sid_ctx_length = sid_ctx_len;
720 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
721
722 return 1;
723 }
724
725 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
726 {
727 CRYPTO_THREAD_write_lock(ctx->lock);
728 ctx->generate_session_id = cb;
729 CRYPTO_THREAD_unlock(ctx->lock);
730 return 1;
731 }
732
733 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
734 {
735 CRYPTO_THREAD_write_lock(ssl->lock);
736 ssl->generate_session_id = cb;
737 CRYPTO_THREAD_unlock(ssl->lock);
738 return 1;
739 }
740
741 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
742 unsigned int id_len)
743 {
744 /*
745 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
746 * we can "construct" a session to give us the desired check - ie. to
747 * find if there's a session in the hash table that would conflict with
748 * any new session built out of this id/id_len and the ssl_version in use
749 * by this SSL.
750 */
751 SSL_SESSION r, *p;
752
753 if (id_len > sizeof r.session_id)
754 return 0;
755
756 r.ssl_version = ssl->version;
757 r.session_id_length = id_len;
758 memcpy(r.session_id, id, id_len);
759
760 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
761 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
762 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
763 return (p != NULL);
764 }
765
766 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
767 {
768 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
769 }
770
771 int SSL_set_purpose(SSL *s, int purpose)
772 {
773 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
774 }
775
776 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
777 {
778 return X509_VERIFY_PARAM_set_trust(s->param, trust);
779 }
780
781 int SSL_set_trust(SSL *s, int trust)
782 {
783 return X509_VERIFY_PARAM_set_trust(s->param, trust);
784 }
785
786 int SSL_set1_host(SSL *s, const char *hostname)
787 {
788 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
789 }
790
791 int SSL_add1_host(SSL *s, const char *hostname)
792 {
793 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
794 }
795
796 void SSL_set_hostflags(SSL *s, unsigned int flags)
797 {
798 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
799 }
800
801 const char *SSL_get0_peername(SSL *s)
802 {
803 return X509_VERIFY_PARAM_get0_peername(s->param);
804 }
805
806 int SSL_CTX_dane_enable(SSL_CTX *ctx)
807 {
808 return dane_ctx_enable(&ctx->dane);
809 }
810
811 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
812 {
813 unsigned long orig = ctx->dane.flags;
814
815 ctx->dane.flags |= flags;
816 return orig;
817 }
818
819 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
820 {
821 unsigned long orig = ctx->dane.flags;
822
823 ctx->dane.flags &= ~flags;
824 return orig;
825 }
826
827 int SSL_dane_enable(SSL *s, const char *basedomain)
828 {
829 SSL_DANE *dane = &s->dane;
830
831 if (s->ctx->dane.mdmax == 0) {
832 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
833 return 0;
834 }
835 if (dane->trecs != NULL) {
836 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
837 return 0;
838 }
839
840 /*
841 * Default SNI name. This rejects empty names, while set1_host below
842 * accepts them and disables host name checks. To avoid side-effects with
843 * invalid input, set the SNI name first.
844 */
845 if (s->ext.hostname == NULL) {
846 if (!SSL_set_tlsext_host_name(s, basedomain)) {
847 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
848 return -1;
849 }
850 }
851
852 /* Primary RFC6125 reference identifier */
853 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
854 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
855 return -1;
856 }
857
858 dane->mdpth = -1;
859 dane->pdpth = -1;
860 dane->dctx = &s->ctx->dane;
861 dane->trecs = sk_danetls_record_new_null();
862
863 if (dane->trecs == NULL) {
864 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
865 return -1;
866 }
867 return 1;
868 }
869
870 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
871 {
872 unsigned long orig = ssl->dane.flags;
873
874 ssl->dane.flags |= flags;
875 return orig;
876 }
877
878 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
879 {
880 unsigned long orig = ssl->dane.flags;
881
882 ssl->dane.flags &= ~flags;
883 return orig;
884 }
885
886 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
887 {
888 SSL_DANE *dane = &s->dane;
889
890 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
891 return -1;
892 if (dane->mtlsa) {
893 if (mcert)
894 *mcert = dane->mcert;
895 if (mspki)
896 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
897 }
898 return dane->mdpth;
899 }
900
901 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
902 uint8_t *mtype, unsigned const char **data, size_t *dlen)
903 {
904 SSL_DANE *dane = &s->dane;
905
906 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
907 return -1;
908 if (dane->mtlsa) {
909 if (usage)
910 *usage = dane->mtlsa->usage;
911 if (selector)
912 *selector = dane->mtlsa->selector;
913 if (mtype)
914 *mtype = dane->mtlsa->mtype;
915 if (data)
916 *data = dane->mtlsa->data;
917 if (dlen)
918 *dlen = dane->mtlsa->dlen;
919 }
920 return dane->mdpth;
921 }
922
923 SSL_DANE *SSL_get0_dane(SSL *s)
924 {
925 return &s->dane;
926 }
927
928 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
929 uint8_t mtype, unsigned char *data, size_t dlen)
930 {
931 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
932 }
933
934 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
935 uint8_t ord)
936 {
937 return dane_mtype_set(&ctx->dane, md, mtype, ord);
938 }
939
940 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
941 {
942 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
943 }
944
945 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
946 {
947 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
948 }
949
950 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
951 {
952 return ctx->param;
953 }
954
955 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
956 {
957 return ssl->param;
958 }
959
960 void SSL_certs_clear(SSL *s)
961 {
962 ssl_cert_clear_certs(s->cert);
963 }
964
965 void SSL_free(SSL *s)
966 {
967 int i;
968
969 if (s == NULL)
970 return;
971
972 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
973 REF_PRINT_COUNT("SSL", s);
974 if (i > 0)
975 return;
976 REF_ASSERT_ISNT(i < 0);
977
978 X509_VERIFY_PARAM_free(s->param);
979 dane_final(&s->dane);
980 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
981
982 ssl_free_wbio_buffer(s);
983
984 BIO_free_all(s->wbio);
985 BIO_free_all(s->rbio);
986
987 BUF_MEM_free(s->init_buf);
988
989 /* add extra stuff */
990 sk_SSL_CIPHER_free(s->cipher_list);
991 sk_SSL_CIPHER_free(s->cipher_list_by_id);
992
993 /* Make the next call work :-) */
994 if (s->session != NULL) {
995 ssl_clear_bad_session(s);
996 SSL_SESSION_free(s->session);
997 }
998
999 clear_ciphers(s);
1000
1001 ssl_cert_free(s->cert);
1002 /* Free up if allocated */
1003
1004 OPENSSL_free(s->ext.hostname);
1005 SSL_CTX_free(s->session_ctx);
1006 #ifndef OPENSSL_NO_EC
1007 OPENSSL_free(s->ext.ecpointformats);
1008 OPENSSL_free(s->ext.supportedgroups);
1009 #endif /* OPENSSL_NO_EC */
1010 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1011 #ifndef OPENSSL_NO_OCSP
1012 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1013 #endif
1014 #ifndef OPENSSL_NO_CT
1015 SCT_LIST_free(s->scts);
1016 OPENSSL_free(s->ext.scts);
1017 #endif
1018 OPENSSL_free(s->ext.ocsp.resp);
1019 OPENSSL_free(s->ext.alpn);
1020 OPENSSL_free(s->ext.tls13_cookie);
1021 OPENSSL_free(s->clienthello);
1022
1023 sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
1024
1025 sk_X509_pop_free(s->verified_chain, X509_free);
1026
1027 if (s->method != NULL)
1028 s->method->ssl_free(s);
1029
1030 RECORD_LAYER_release(&s->rlayer);
1031
1032 SSL_CTX_free(s->ctx);
1033
1034 ASYNC_WAIT_CTX_free(s->waitctx);
1035
1036 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1037 OPENSSL_free(s->ext.npn);
1038 #endif
1039
1040 #ifndef OPENSSL_NO_SRTP
1041 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1042 #endif
1043
1044 CRYPTO_THREAD_lock_free(s->lock);
1045
1046 OPENSSL_free(s);
1047 }
1048
1049 void SSL_set0_rbio(SSL *s, BIO *rbio)
1050 {
1051 BIO_free_all(s->rbio);
1052 s->rbio = rbio;
1053 }
1054
1055 void SSL_set0_wbio(SSL *s, BIO *wbio)
1056 {
1057 /*
1058 * If the output buffering BIO is still in place, remove it
1059 */
1060 if (s->bbio != NULL)
1061 s->wbio = BIO_pop(s->wbio);
1062
1063 BIO_free_all(s->wbio);
1064 s->wbio = wbio;
1065
1066 /* Re-attach |bbio| to the new |wbio|. */
1067 if (s->bbio != NULL)
1068 s->wbio = BIO_push(s->bbio, s->wbio);
1069 }
1070
1071 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1072 {
1073 /*
1074 * For historical reasons, this function has many different cases in
1075 * ownership handling.
1076 */
1077
1078 /* If nothing has changed, do nothing */
1079 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1080 return;
1081
1082 /*
1083 * If the two arguments are equal then one fewer reference is granted by the
1084 * caller than we want to take
1085 */
1086 if (rbio != NULL && rbio == wbio)
1087 BIO_up_ref(rbio);
1088
1089 /*
1090 * If only the wbio is changed only adopt one reference.
1091 */
1092 if (rbio == SSL_get_rbio(s)) {
1093 SSL_set0_wbio(s, wbio);
1094 return;
1095 }
1096 /*
1097 * There is an asymmetry here for historical reasons. If only the rbio is
1098 * changed AND the rbio and wbio were originally different, then we only
1099 * adopt one reference.
1100 */
1101 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1102 SSL_set0_rbio(s, rbio);
1103 return;
1104 }
1105
1106 /* Otherwise, adopt both references. */
1107 SSL_set0_rbio(s, rbio);
1108 SSL_set0_wbio(s, wbio);
1109 }
1110
1111 BIO *SSL_get_rbio(const SSL *s)
1112 {
1113 return s->rbio;
1114 }
1115
1116 BIO *SSL_get_wbio(const SSL *s)
1117 {
1118 if (s->bbio != NULL) {
1119 /*
1120 * If |bbio| is active, the true caller-configured BIO is its
1121 * |next_bio|.
1122 */
1123 return BIO_next(s->bbio);
1124 }
1125 return s->wbio;
1126 }
1127
1128 int SSL_get_fd(const SSL *s)
1129 {
1130 return SSL_get_rfd(s);
1131 }
1132
1133 int SSL_get_rfd(const SSL *s)
1134 {
1135 int ret = -1;
1136 BIO *b, *r;
1137
1138 b = SSL_get_rbio(s);
1139 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1140 if (r != NULL)
1141 BIO_get_fd(r, &ret);
1142 return (ret);
1143 }
1144
1145 int SSL_get_wfd(const SSL *s)
1146 {
1147 int ret = -1;
1148 BIO *b, *r;
1149
1150 b = SSL_get_wbio(s);
1151 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1152 if (r != NULL)
1153 BIO_get_fd(r, &ret);
1154 return (ret);
1155 }
1156
1157 #ifndef OPENSSL_NO_SOCK
1158 int SSL_set_fd(SSL *s, int fd)
1159 {
1160 int ret = 0;
1161 BIO *bio = NULL;
1162
1163 bio = BIO_new(BIO_s_socket());
1164
1165 if (bio == NULL) {
1166 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1167 goto err;
1168 }
1169 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1170 SSL_set_bio(s, bio, bio);
1171 ret = 1;
1172 err:
1173 return (ret);
1174 }
1175
1176 int SSL_set_wfd(SSL *s, int fd)
1177 {
1178 BIO *rbio = SSL_get_rbio(s);
1179
1180 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1181 || (int)BIO_get_fd(rbio, NULL) != fd) {
1182 BIO *bio = BIO_new(BIO_s_socket());
1183
1184 if (bio == NULL) {
1185 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1186 return 0;
1187 }
1188 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1189 SSL_set0_wbio(s, bio);
1190 } else {
1191 BIO_up_ref(rbio);
1192 SSL_set0_wbio(s, rbio);
1193 }
1194 return 1;
1195 }
1196
1197 int SSL_set_rfd(SSL *s, int fd)
1198 {
1199 BIO *wbio = SSL_get_wbio(s);
1200
1201 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1202 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1203 BIO *bio = BIO_new(BIO_s_socket());
1204
1205 if (bio == NULL) {
1206 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1207 return 0;
1208 }
1209 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1210 SSL_set0_rbio(s, bio);
1211 } else {
1212 BIO_up_ref(wbio);
1213 SSL_set0_rbio(s, wbio);
1214 }
1215
1216 return 1;
1217 }
1218 #endif
1219
1220 /* return length of latest Finished message we sent, copy to 'buf' */
1221 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1222 {
1223 size_t ret = 0;
1224
1225 if (s->s3 != NULL) {
1226 ret = s->s3->tmp.finish_md_len;
1227 if (count > ret)
1228 count = ret;
1229 memcpy(buf, s->s3->tmp.finish_md, count);
1230 }
1231 return ret;
1232 }
1233
1234 /* return length of latest Finished message we expected, copy to 'buf' */
1235 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1236 {
1237 size_t ret = 0;
1238
1239 if (s->s3 != NULL) {
1240 ret = s->s3->tmp.peer_finish_md_len;
1241 if (count > ret)
1242 count = ret;
1243 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1244 }
1245 return ret;
1246 }
1247
1248 int SSL_get_verify_mode(const SSL *s)
1249 {
1250 return (s->verify_mode);
1251 }
1252
1253 int SSL_get_verify_depth(const SSL *s)
1254 {
1255 return X509_VERIFY_PARAM_get_depth(s->param);
1256 }
1257
1258 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1259 return (s->verify_callback);
1260 }
1261
1262 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1263 {
1264 return (ctx->verify_mode);
1265 }
1266
1267 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1268 {
1269 return X509_VERIFY_PARAM_get_depth(ctx->param);
1270 }
1271
1272 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1273 return (ctx->default_verify_callback);
1274 }
1275
1276 void SSL_set_verify(SSL *s, int mode,
1277 int (*callback) (int ok, X509_STORE_CTX *ctx))
1278 {
1279 s->verify_mode = mode;
1280 if (callback != NULL)
1281 s->verify_callback = callback;
1282 }
1283
1284 void SSL_set_verify_depth(SSL *s, int depth)
1285 {
1286 X509_VERIFY_PARAM_set_depth(s->param, depth);
1287 }
1288
1289 void SSL_set_read_ahead(SSL *s, int yes)
1290 {
1291 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1292 }
1293
1294 int SSL_get_read_ahead(const SSL *s)
1295 {
1296 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1297 }
1298
1299 int SSL_pending(const SSL *s)
1300 {
1301 size_t pending = s->method->ssl_pending(s);
1302
1303 /*
1304 * SSL_pending cannot work properly if read-ahead is enabled
1305 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1306 * impossible to fix since SSL_pending cannot report errors that may be
1307 * observed while scanning the new data. (Note that SSL_pending() is
1308 * often used as a boolean value, so we'd better not return -1.)
1309 *
1310 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1311 * we just return INT_MAX.
1312 */
1313 return pending < INT_MAX ? (int)pending : INT_MAX;
1314 }
1315
1316 int SSL_has_pending(const SSL *s)
1317 {
1318 /*
1319 * Similar to SSL_pending() but returns a 1 to indicate that we have
1320 * unprocessed data available or 0 otherwise (as opposed to the number of
1321 * bytes available). Unlike SSL_pending() this will take into account
1322 * read_ahead data. A 1 return simply indicates that we have unprocessed
1323 * data. That data may not result in any application data, or we may fail
1324 * to parse the records for some reason.
1325 */
1326 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1327 return 1;
1328
1329 return RECORD_LAYER_read_pending(&s->rlayer);
1330 }
1331
1332 X509 *SSL_get_peer_certificate(const SSL *s)
1333 {
1334 X509 *r;
1335
1336 if ((s == NULL) || (s->session == NULL))
1337 r = NULL;
1338 else
1339 r = s->session->peer;
1340
1341 if (r == NULL)
1342 return (r);
1343
1344 X509_up_ref(r);
1345
1346 return (r);
1347 }
1348
1349 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1350 {
1351 STACK_OF(X509) *r;
1352
1353 if ((s == NULL) || (s->session == NULL))
1354 r = NULL;
1355 else
1356 r = s->session->peer_chain;
1357
1358 /*
1359 * If we are a client, cert_chain includes the peer's own certificate; if
1360 * we are a server, it does not.
1361 */
1362
1363 return (r);
1364 }
1365
1366 /*
1367 * Now in theory, since the calling process own 't' it should be safe to
1368 * modify. We need to be able to read f without being hassled
1369 */
1370 int SSL_copy_session_id(SSL *t, const SSL *f)
1371 {
1372 int i;
1373 /* Do we need to to SSL locking? */
1374 if (!SSL_set_session(t, SSL_get_session(f))) {
1375 return 0;
1376 }
1377
1378 /*
1379 * what if we are setup for one protocol version but want to talk another
1380 */
1381 if (t->method != f->method) {
1382 t->method->ssl_free(t);
1383 t->method = f->method;
1384 if (t->method->ssl_new(t) == 0)
1385 return 0;
1386 }
1387
1388 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1389 ssl_cert_free(t->cert);
1390 t->cert = f->cert;
1391 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1392 return 0;
1393 }
1394
1395 return 1;
1396 }
1397
1398 /* Fix this so it checks all the valid key/cert options */
1399 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1400 {
1401 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1402 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1403 return (0);
1404 }
1405 if (ctx->cert->key->privatekey == NULL) {
1406 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1407 return (0);
1408 }
1409 return (X509_check_private_key
1410 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1411 }
1412
1413 /* Fix this function so that it takes an optional type parameter */
1414 int SSL_check_private_key(const SSL *ssl)
1415 {
1416 if (ssl == NULL) {
1417 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1418 return (0);
1419 }
1420 if (ssl->cert->key->x509 == NULL) {
1421 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1422 return (0);
1423 }
1424 if (ssl->cert->key->privatekey == NULL) {
1425 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1426 return (0);
1427 }
1428 return (X509_check_private_key(ssl->cert->key->x509,
1429 ssl->cert->key->privatekey));
1430 }
1431
1432 int SSL_waiting_for_async(SSL *s)
1433 {
1434 if (s->job)
1435 return 1;
1436
1437 return 0;
1438 }
1439
1440 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1441 {
1442 ASYNC_WAIT_CTX *ctx = s->waitctx;
1443
1444 if (ctx == NULL)
1445 return 0;
1446 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1447 }
1448
1449 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1450 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1451 {
1452 ASYNC_WAIT_CTX *ctx = s->waitctx;
1453
1454 if (ctx == NULL)
1455 return 0;
1456 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1457 numdelfds);
1458 }
1459
1460 int SSL_accept(SSL *s)
1461 {
1462 if (s->handshake_func == NULL) {
1463 /* Not properly initialized yet */
1464 SSL_set_accept_state(s);
1465 }
1466
1467 return SSL_do_handshake(s);
1468 }
1469
1470 int SSL_connect(SSL *s)
1471 {
1472 if (s->handshake_func == NULL) {
1473 /* Not properly initialized yet */
1474 SSL_set_connect_state(s);
1475 }
1476
1477 return SSL_do_handshake(s);
1478 }
1479
1480 long SSL_get_default_timeout(const SSL *s)
1481 {
1482 return (s->method->get_timeout());
1483 }
1484
1485 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1486 int (*func) (void *))
1487 {
1488 int ret;
1489 if (s->waitctx == NULL) {
1490 s->waitctx = ASYNC_WAIT_CTX_new();
1491 if (s->waitctx == NULL)
1492 return -1;
1493 }
1494 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1495 sizeof(struct ssl_async_args))) {
1496 case ASYNC_ERR:
1497 s->rwstate = SSL_NOTHING;
1498 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1499 return -1;
1500 case ASYNC_PAUSE:
1501 s->rwstate = SSL_ASYNC_PAUSED;
1502 return -1;
1503 case ASYNC_NO_JOBS:
1504 s->rwstate = SSL_ASYNC_NO_JOBS;
1505 return -1;
1506 case ASYNC_FINISH:
1507 s->job = NULL;
1508 return ret;
1509 default:
1510 s->rwstate = SSL_NOTHING;
1511 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1512 /* Shouldn't happen */
1513 return -1;
1514 }
1515 }
1516
1517 static int ssl_io_intern(void *vargs)
1518 {
1519 struct ssl_async_args *args;
1520 SSL *s;
1521 void *buf;
1522 size_t num;
1523
1524 args = (struct ssl_async_args *)vargs;
1525 s = args->s;
1526 buf = args->buf;
1527 num = args->num;
1528 switch (args->type) {
1529 case READFUNC:
1530 return args->f.func_read(s, buf, num, &s->asyncrw);
1531 case WRITEFUNC:
1532 return args->f.func_write(s, buf, num, &s->asyncrw);
1533 case OTHERFUNC:
1534 return args->f.func_other(s);
1535 }
1536 return -1;
1537 }
1538
1539 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1540 {
1541 if (s->handshake_func == NULL) {
1542 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1543 return -1;
1544 }
1545
1546 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1547 s->rwstate = SSL_NOTHING;
1548 return 0;
1549 }
1550
1551 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1552 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1553 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1554 return 0;
1555 }
1556 /*
1557 * If we are a client and haven't received the ServerHello etc then we
1558 * better do that
1559 */
1560 ossl_statem_check_finish_init(s, 0);
1561
1562 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1563 struct ssl_async_args args;
1564 int ret;
1565
1566 args.s = s;
1567 args.buf = buf;
1568 args.num = num;
1569 args.type = READFUNC;
1570 args.f.func_read = s->method->ssl_read;
1571
1572 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1573 *readbytes = s->asyncrw;
1574 return ret;
1575 } else {
1576 return s->method->ssl_read(s, buf, num, readbytes);
1577 }
1578 }
1579
1580 int SSL_read(SSL *s, void *buf, int num)
1581 {
1582 int ret;
1583 size_t readbytes;
1584
1585 if (num < 0) {
1586 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1587 return -1;
1588 }
1589
1590 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1591
1592 /*
1593 * The cast is safe here because ret should be <= INT_MAX because num is
1594 * <= INT_MAX
1595 */
1596 if (ret > 0)
1597 ret = (int)readbytes;
1598
1599 return ret;
1600 }
1601
1602 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1603 {
1604 int ret = ssl_read_internal(s, buf, num, readbytes);
1605
1606 if (ret < 0)
1607 ret = 0;
1608 return ret;
1609 }
1610
1611 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1612 {
1613 int ret;
1614
1615 if (!s->server) {
1616 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1617 return SSL_READ_EARLY_DATA_ERROR;
1618 }
1619
1620 switch (s->early_data_state) {
1621 case SSL_EARLY_DATA_NONE:
1622 if (!SSL_in_before(s)) {
1623 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1624 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1625 return SSL_READ_EARLY_DATA_ERROR;
1626 }
1627 /* fall through */
1628
1629 case SSL_EARLY_DATA_ACCEPT_RETRY:
1630 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1631 ret = SSL_accept(s);
1632 if (ret <= 0) {
1633 /* NBIO or error */
1634 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1635 return SSL_READ_EARLY_DATA_ERROR;
1636 }
1637 /* fall through */
1638
1639 case SSL_EARLY_DATA_READ_RETRY:
1640 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1641 s->early_data_state = SSL_EARLY_DATA_READING;
1642 ret = SSL_read_ex(s, buf, num, readbytes);
1643 /*
1644 * Record layer will call ssl_end_of_early_data_seen() if we see
1645 * that alert - which updates the early_data_state to
1646 * SSL_EARLY_DATA_FINISHED_READING
1647 */
1648 if (ret > 0 || (ret <= 0 && s->early_data_state
1649 != SSL_EARLY_DATA_FINISHED_READING)) {
1650 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1651 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1652 : SSL_READ_EARLY_DATA_ERROR;
1653 }
1654 } else {
1655 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1656 }
1657 *readbytes = 0;
1658 return SSL_READ_EARLY_DATA_FINISH;
1659
1660 default:
1661 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1662 return SSL_READ_EARLY_DATA_ERROR;
1663 }
1664 }
1665
1666 int ssl_end_of_early_data_seen(SSL *s)
1667 {
1668 if (s->early_data_state == SSL_EARLY_DATA_READING
1669 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1670 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1671 ossl_statem_finish_early_data(s);
1672 return 1;
1673 }
1674
1675 return 0;
1676 }
1677
1678 int SSL_get_early_data_status(const SSL *s)
1679 {
1680 return s->ext.early_data;
1681 }
1682
1683 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1684 {
1685 if (s->handshake_func == NULL) {
1686 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1687 return -1;
1688 }
1689
1690 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1691 return 0;
1692 }
1693 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1694 struct ssl_async_args args;
1695 int ret;
1696
1697 args.s = s;
1698 args.buf = buf;
1699 args.num = num;
1700 args.type = READFUNC;
1701 args.f.func_read = s->method->ssl_peek;
1702
1703 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1704 *readbytes = s->asyncrw;
1705 return ret;
1706 } else {
1707 return s->method->ssl_peek(s, buf, num, readbytes);
1708 }
1709 }
1710
1711 int SSL_peek(SSL *s, void *buf, int num)
1712 {
1713 int ret;
1714 size_t readbytes;
1715
1716 if (num < 0) {
1717 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1718 return -1;
1719 }
1720
1721 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1722
1723 /*
1724 * The cast is safe here because ret should be <= INT_MAX because num is
1725 * <= INT_MAX
1726 */
1727 if (ret > 0)
1728 ret = (int)readbytes;
1729
1730 return ret;
1731 }
1732
1733
1734 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1735 {
1736 int ret = ssl_peek_internal(s, buf, num, readbytes);
1737
1738 if (ret < 0)
1739 ret = 0;
1740 return ret;
1741 }
1742
1743 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1744 {
1745 if (s->handshake_func == NULL) {
1746 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1747 return -1;
1748 }
1749
1750 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1751 s->rwstate = SSL_NOTHING;
1752 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1753 return -1;
1754 }
1755
1756 if (s->early_data_state == SSL_EARLY_DATA_WRITE_RETRY) {
1757 /*
1758 * We're still writing early data. We need to stop that so we can write
1759 * normal data
1760 */
1761 if (!ssl_write_early_finish(s))
1762 return 0;
1763 } else if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1764 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1765 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1766 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1767 return 0;
1768 }
1769 /* If we are a client and haven't sent the Finished we better do that */
1770 ossl_statem_check_finish_init(s, 1);
1771
1772 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1773 int ret;
1774 struct ssl_async_args args;
1775
1776 args.s = s;
1777 args.buf = (void *)buf;
1778 args.num = num;
1779 args.type = WRITEFUNC;
1780 args.f.func_write = s->method->ssl_write;
1781
1782 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1783 *written = s->asyncrw;
1784 return ret;
1785 } else {
1786 return s->method->ssl_write(s, buf, num, written);
1787 }
1788 }
1789
1790 int SSL_write(SSL *s, const void *buf, int num)
1791 {
1792 int ret;
1793 size_t written;
1794
1795 if (num < 0) {
1796 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1797 return -1;
1798 }
1799
1800 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1801
1802 /*
1803 * The cast is safe here because ret should be <= INT_MAX because num is
1804 * <= INT_MAX
1805 */
1806 if (ret > 0)
1807 ret = (int)written;
1808
1809 return ret;
1810 }
1811
1812 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1813 {
1814 int ret = ssl_write_internal(s, buf, num, written);
1815
1816 if (ret < 0)
1817 ret = 0;
1818 return ret;
1819 }
1820
1821 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1822 {
1823 int ret;
1824
1825 switch (s->early_data_state) {
1826 case SSL_EARLY_DATA_NONE:
1827 if (s->server
1828 || !SSL_in_before(s)
1829 || s->session == NULL
1830 || s->session->ext.max_early_data == 0) {
1831 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1832 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1833 return 0;
1834 }
1835 /* fall through */
1836
1837 case SSL_EARLY_DATA_CONNECT_RETRY:
1838 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1839 ret = SSL_connect(s);
1840 if (ret <= 0) {
1841 /* NBIO or error */
1842 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1843 return 0;
1844 }
1845 /* fall through */
1846
1847 case SSL_EARLY_DATA_WRITE_RETRY:
1848 s->early_data_state = SSL_EARLY_DATA_WRITING;
1849 ret = SSL_write_ex(s, buf, num, written);
1850 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1851 return ret;
1852
1853 case SSL_EARLY_DATA_READ_RETRY:
1854 /* We are a server writing to an unauthenticated client */
1855 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1856 ret = SSL_write_ex(s, buf, num, written);
1857 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1858 return ret;
1859
1860 default:
1861 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1862 return 0;
1863 }
1864 }
1865
1866 static int ssl_write_early_finish(SSL *s)
1867 {
1868 int ret;
1869
1870 if (s->early_data_state != SSL_EARLY_DATA_WRITE_RETRY) {
1871 SSLerr(SSL_F_SSL_WRITE_EARLY_FINISH, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1872 return 0;
1873 }
1874
1875 s->early_data_state = SSL_EARLY_DATA_WRITING;
1876 ret = ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_END_OF_EARLY_DATA);
1877 if (ret <= 0) {
1878 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1879 return 0;
1880 }
1881 s->early_data_state = SSL_EARLY_DATA_FINISHED_WRITING;
1882 /*
1883 * We set the enc_write_ctx back to NULL because we may end up writing
1884 * in cleartext again if we get a HelloRetryRequest from the server.
1885 */
1886 EVP_CIPHER_CTX_free(s->enc_write_ctx);
1887 s->enc_write_ctx = NULL;
1888 ossl_statem_set_in_init(s, 1);
1889 return 1;
1890 }
1891
1892 int SSL_shutdown(SSL *s)
1893 {
1894 /*
1895 * Note that this function behaves differently from what one might
1896 * expect. Return values are 0 for no success (yet), 1 for success; but
1897 * calling it once is usually not enough, even if blocking I/O is used
1898 * (see ssl3_shutdown).
1899 */
1900
1901 if (s->handshake_func == NULL) {
1902 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1903 return -1;
1904 }
1905
1906 if (!SSL_in_init(s)) {
1907 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1908 struct ssl_async_args args;
1909
1910 args.s = s;
1911 args.type = OTHERFUNC;
1912 args.f.func_other = s->method->ssl_shutdown;
1913
1914 return ssl_start_async_job(s, &args, ssl_io_intern);
1915 } else {
1916 return s->method->ssl_shutdown(s);
1917 }
1918 } else {
1919 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1920 return -1;
1921 }
1922 }
1923
1924 int SSL_key_update(SSL *s, int updatetype)
1925 {
1926 /*
1927 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1928 * negotiated, and that it is appropriate to call SSL_key_update() instead
1929 * of SSL_renegotiate().
1930 */
1931 if (!SSL_IS_TLS13(s)) {
1932 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
1933 return 0;
1934 }
1935
1936 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
1937 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
1938 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
1939 return 0;
1940 }
1941
1942 if (!SSL_is_init_finished(s)) {
1943 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
1944 return 0;
1945 }
1946
1947 ossl_statem_set_in_init(s, 1);
1948 s->key_update = updatetype;
1949 return 1;
1950 }
1951
1952 int SSL_get_key_update_type(SSL *s)
1953 {
1954 return s->key_update;
1955 }
1956
1957 int SSL_renegotiate(SSL *s)
1958 {
1959 if (SSL_IS_TLS13(s)) {
1960 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
1961 return 0;
1962 }
1963
1964 if (s->renegotiate == 0)
1965 s->renegotiate = 1;
1966
1967 s->new_session = 1;
1968
1969 return (s->method->ssl_renegotiate(s));
1970 }
1971
1972 int SSL_renegotiate_abbreviated(SSL *s)
1973 {
1974 if (SSL_IS_TLS13(s))
1975 return 0;
1976
1977 if (s->renegotiate == 0)
1978 s->renegotiate = 1;
1979
1980 s->new_session = 0;
1981
1982 return (s->method->ssl_renegotiate(s));
1983 }
1984
1985 int SSL_renegotiate_pending(SSL *s)
1986 {
1987 /*
1988 * becomes true when negotiation is requested; false again once a
1989 * handshake has finished
1990 */
1991 return (s->renegotiate != 0);
1992 }
1993
1994 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1995 {
1996 long l;
1997
1998 switch (cmd) {
1999 case SSL_CTRL_GET_READ_AHEAD:
2000 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
2001 case SSL_CTRL_SET_READ_AHEAD:
2002 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2003 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2004 return (l);
2005
2006 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2007 s->msg_callback_arg = parg;
2008 return 1;
2009
2010 case SSL_CTRL_MODE:
2011 return (s->mode |= larg);
2012 case SSL_CTRL_CLEAR_MODE:
2013 return (s->mode &= ~larg);
2014 case SSL_CTRL_GET_MAX_CERT_LIST:
2015 return (long)(s->max_cert_list);
2016 case SSL_CTRL_SET_MAX_CERT_LIST:
2017 if (larg < 0)
2018 return 0;
2019 l = (long)s->max_cert_list;
2020 s->max_cert_list = (size_t)larg;
2021 return l;
2022 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2023 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2024 return 0;
2025 s->max_send_fragment = larg;
2026 if (s->max_send_fragment < s->split_send_fragment)
2027 s->split_send_fragment = s->max_send_fragment;
2028 return 1;
2029 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2030 if ((size_t)larg > s->max_send_fragment || larg == 0)
2031 return 0;
2032 s->split_send_fragment = larg;
2033 return 1;
2034 case SSL_CTRL_SET_MAX_PIPELINES:
2035 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2036 return 0;
2037 s->max_pipelines = larg;
2038 if (larg > 1)
2039 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2040 return 1;
2041 case SSL_CTRL_GET_RI_SUPPORT:
2042 if (s->s3)
2043 return s->s3->send_connection_binding;
2044 else
2045 return 0;
2046 case SSL_CTRL_CERT_FLAGS:
2047 return (s->cert->cert_flags |= larg);
2048 case SSL_CTRL_CLEAR_CERT_FLAGS:
2049 return (s->cert->cert_flags &= ~larg);
2050
2051 case SSL_CTRL_GET_RAW_CIPHERLIST:
2052 if (parg) {
2053 if (s->s3->tmp.ciphers_raw == NULL)
2054 return 0;
2055 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2056 return (int)s->s3->tmp.ciphers_rawlen;
2057 } else {
2058 return TLS_CIPHER_LEN;
2059 }
2060 case SSL_CTRL_GET_EXTMS_SUPPORT:
2061 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2062 return -1;
2063 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2064 return 1;
2065 else
2066 return 0;
2067 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2068 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2069 &s->min_proto_version);
2070 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2071 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
2072 &s->max_proto_version);
2073 default:
2074 return (s->method->ssl_ctrl(s, cmd, larg, parg));
2075 }
2076 }
2077
2078 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2079 {
2080 switch (cmd) {
2081 case SSL_CTRL_SET_MSG_CALLBACK:
2082 s->msg_callback = (void (*)
2083 (int write_p, int version, int content_type,
2084 const void *buf, size_t len, SSL *ssl,
2085 void *arg))(fp);
2086 return 1;
2087
2088 default:
2089 return (s->method->ssl_callback_ctrl(s, cmd, fp));
2090 }
2091 }
2092
2093 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2094 {
2095 return ctx->sessions;
2096 }
2097
2098 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2099 {
2100 long l;
2101 /* For some cases with ctx == NULL perform syntax checks */
2102 if (ctx == NULL) {
2103 switch (cmd) {
2104 #ifndef OPENSSL_NO_EC
2105 case SSL_CTRL_SET_GROUPS_LIST:
2106 return tls1_set_groups_list(NULL, NULL, parg);
2107 #endif
2108 case SSL_CTRL_SET_SIGALGS_LIST:
2109 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2110 return tls1_set_sigalgs_list(NULL, parg, 0);
2111 default:
2112 return 0;
2113 }
2114 }
2115
2116 switch (cmd) {
2117 case SSL_CTRL_GET_READ_AHEAD:
2118 return (ctx->read_ahead);
2119 case SSL_CTRL_SET_READ_AHEAD:
2120 l = ctx->read_ahead;
2121 ctx->read_ahead = larg;
2122 return (l);
2123
2124 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2125 ctx->msg_callback_arg = parg;
2126 return 1;
2127
2128 case SSL_CTRL_GET_MAX_CERT_LIST:
2129 return (long)(ctx->max_cert_list);
2130 case SSL_CTRL_SET_MAX_CERT_LIST:
2131 if (larg < 0)
2132 return 0;
2133 l = (long)ctx->max_cert_list;
2134 ctx->max_cert_list = (size_t)larg;
2135 return l;
2136
2137 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2138 if (larg < 0)
2139 return 0;
2140 l = (long)ctx->session_cache_size;
2141 ctx->session_cache_size = (size_t)larg;
2142 return l;
2143 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2144 return (long)(ctx->session_cache_size);
2145 case SSL_CTRL_SET_SESS_CACHE_MODE:
2146 l = ctx->session_cache_mode;
2147 ctx->session_cache_mode = larg;
2148 return (l);
2149 case SSL_CTRL_GET_SESS_CACHE_MODE:
2150 return (ctx->session_cache_mode);
2151
2152 case SSL_CTRL_SESS_NUMBER:
2153 return (lh_SSL_SESSION_num_items(ctx->sessions));
2154 case SSL_CTRL_SESS_CONNECT:
2155 return (ctx->stats.sess_connect);
2156 case SSL_CTRL_SESS_CONNECT_GOOD:
2157 return (ctx->stats.sess_connect_good);
2158 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2159 return (ctx->stats.sess_connect_renegotiate);
2160 case SSL_CTRL_SESS_ACCEPT:
2161 return (ctx->stats.sess_accept);
2162 case SSL_CTRL_SESS_ACCEPT_GOOD:
2163 return (ctx->stats.sess_accept_good);
2164 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2165 return (ctx->stats.sess_accept_renegotiate);
2166 case SSL_CTRL_SESS_HIT:
2167 return (ctx->stats.sess_hit);
2168 case SSL_CTRL_SESS_CB_HIT:
2169 return (ctx->stats.sess_cb_hit);
2170 case SSL_CTRL_SESS_MISSES:
2171 return (ctx->stats.sess_miss);
2172 case SSL_CTRL_SESS_TIMEOUTS:
2173 return (ctx->stats.sess_timeout);
2174 case SSL_CTRL_SESS_CACHE_FULL:
2175 return (ctx->stats.sess_cache_full);
2176 case SSL_CTRL_MODE:
2177 return (ctx->mode |= larg);
2178 case SSL_CTRL_CLEAR_MODE:
2179 return (ctx->mode &= ~larg);
2180 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2181 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2182 return 0;
2183 ctx->max_send_fragment = larg;
2184 if (ctx->max_send_fragment < ctx->split_send_fragment)
2185 ctx->split_send_fragment = ctx->max_send_fragment;
2186 return 1;
2187 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2188 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2189 return 0;
2190 ctx->split_send_fragment = larg;
2191 return 1;
2192 case SSL_CTRL_SET_MAX_PIPELINES:
2193 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2194 return 0;
2195 ctx->max_pipelines = larg;
2196 return 1;
2197 case SSL_CTRL_CERT_FLAGS:
2198 return (ctx->cert->cert_flags |= larg);
2199 case SSL_CTRL_CLEAR_CERT_FLAGS:
2200 return (ctx->cert->cert_flags &= ~larg);
2201 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2202 return ssl_set_version_bound(ctx->method->version, (int)larg,
2203 &ctx->min_proto_version);
2204 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2205 return ssl_set_version_bound(ctx->method->version, (int)larg,
2206 &ctx->max_proto_version);
2207 default:
2208 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
2209 }
2210 }
2211
2212 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2213 {
2214 switch (cmd) {
2215 case SSL_CTRL_SET_MSG_CALLBACK:
2216 ctx->msg_callback = (void (*)
2217 (int write_p, int version, int content_type,
2218 const void *buf, size_t len, SSL *ssl,
2219 void *arg))(fp);
2220 return 1;
2221
2222 default:
2223 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
2224 }
2225 }
2226
2227 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2228 {
2229 if (a->id > b->id)
2230 return 1;
2231 if (a->id < b->id)
2232 return -1;
2233 return 0;
2234 }
2235
2236 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2237 const SSL_CIPHER *const *bp)
2238 {
2239 if ((*ap)->id > (*bp)->id)
2240 return 1;
2241 if ((*ap)->id < (*bp)->id)
2242 return -1;
2243 return 0;
2244 }
2245
2246 /** return a STACK of the ciphers available for the SSL and in order of
2247 * preference */
2248 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2249 {
2250 if (s != NULL) {
2251 if (s->cipher_list != NULL) {
2252 return (s->cipher_list);
2253 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2254 return (s->ctx->cipher_list);
2255 }
2256 }
2257 return (NULL);
2258 }
2259
2260 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2261 {
2262 if ((s == NULL) || (s->session == NULL) || !s->server)
2263 return NULL;
2264 return s->session->ciphers;
2265 }
2266
2267 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2268 {
2269 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2270 int i;
2271 ciphers = SSL_get_ciphers(s);
2272 if (!ciphers)
2273 return NULL;
2274 ssl_set_client_disabled(s);
2275 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2276 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2277 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
2278 if (!sk)
2279 sk = sk_SSL_CIPHER_new_null();
2280 if (!sk)
2281 return NULL;
2282 if (!sk_SSL_CIPHER_push(sk, c)) {
2283 sk_SSL_CIPHER_free(sk);
2284 return NULL;
2285 }
2286 }
2287 }
2288 return sk;
2289 }
2290
2291 /** return a STACK of the ciphers available for the SSL and in order of
2292 * algorithm id */
2293 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2294 {
2295 if (s != NULL) {
2296 if (s->cipher_list_by_id != NULL) {
2297 return (s->cipher_list_by_id);
2298 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2299 return (s->ctx->cipher_list_by_id);
2300 }
2301 }
2302 return (NULL);
2303 }
2304
2305 /** The old interface to get the same thing as SSL_get_ciphers() */
2306 const char *SSL_get_cipher_list(const SSL *s, int n)
2307 {
2308 const SSL_CIPHER *c;
2309 STACK_OF(SSL_CIPHER) *sk;
2310
2311 if (s == NULL)
2312 return (NULL);
2313 sk = SSL_get_ciphers(s);
2314 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2315 return (NULL);
2316 c = sk_SSL_CIPHER_value(sk, n);
2317 if (c == NULL)
2318 return (NULL);
2319 return (c->name);
2320 }
2321
2322 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2323 * preference */
2324 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2325 {
2326 if (ctx != NULL)
2327 return ctx->cipher_list;
2328 return NULL;
2329 }
2330
2331 /** specify the ciphers to be used by default by the SSL_CTX */
2332 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2333 {
2334 STACK_OF(SSL_CIPHER) *sk;
2335
2336 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2337 &ctx->cipher_list_by_id, str, ctx->cert);
2338 /*
2339 * ssl_create_cipher_list may return an empty stack if it was unable to
2340 * find a cipher matching the given rule string (for example if the rule
2341 * string specifies a cipher which has been disabled). This is not an
2342 * error as far as ssl_create_cipher_list is concerned, and hence
2343 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2344 */
2345 if (sk == NULL)
2346 return 0;
2347 else if (sk_SSL_CIPHER_num(sk) == 0) {
2348 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2349 return 0;
2350 }
2351 return 1;
2352 }
2353
2354 /** specify the ciphers to be used by the SSL */
2355 int SSL_set_cipher_list(SSL *s, const char *str)
2356 {
2357 STACK_OF(SSL_CIPHER) *sk;
2358
2359 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2360 &s->cipher_list_by_id, str, s->cert);
2361 /* see comment in SSL_CTX_set_cipher_list */
2362 if (sk == NULL)
2363 return 0;
2364 else if (sk_SSL_CIPHER_num(sk) == 0) {
2365 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2366 return 0;
2367 }
2368 return 1;
2369 }
2370
2371 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2372 {
2373 char *p;
2374 STACK_OF(SSL_CIPHER) *sk;
2375 const SSL_CIPHER *c;
2376 int i;
2377
2378 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2379 return (NULL);
2380
2381 p = buf;
2382 sk = s->session->ciphers;
2383
2384 if (sk_SSL_CIPHER_num(sk) == 0)
2385 return NULL;
2386
2387 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2388 int n;
2389
2390 c = sk_SSL_CIPHER_value(sk, i);
2391 n = strlen(c->name);
2392 if (n + 1 > len) {
2393 if (p != buf)
2394 --p;
2395 *p = '\0';
2396 return buf;
2397 }
2398 memcpy(p, c->name, n + 1);
2399 p += n;
2400 *(p++) = ':';
2401 len -= n + 1;
2402 }
2403 p[-1] = '\0';
2404 return (buf);
2405 }
2406
2407 /** return a servername extension value if provided in Client Hello, or NULL.
2408 * So far, only host_name types are defined (RFC 3546).
2409 */
2410
2411 const char *SSL_get_servername(const SSL *s, const int type)
2412 {
2413 if (type != TLSEXT_NAMETYPE_host_name)
2414 return NULL;
2415
2416 return s->session && !s->ext.hostname ?
2417 s->session->ext.hostname : s->ext.hostname;
2418 }
2419
2420 int SSL_get_servername_type(const SSL *s)
2421 {
2422 if (s->session
2423 && (!s->ext.hostname ? s->session->
2424 ext.hostname : s->ext.hostname))
2425 return TLSEXT_NAMETYPE_host_name;
2426 return -1;
2427 }
2428
2429 /*
2430 * SSL_select_next_proto implements the standard protocol selection. It is
2431 * expected that this function is called from the callback set by
2432 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2433 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2434 * not included in the length. A byte string of length 0 is invalid. No byte
2435 * string may be truncated. The current, but experimental algorithm for
2436 * selecting the protocol is: 1) If the server doesn't support NPN then this
2437 * is indicated to the callback. In this case, the client application has to
2438 * abort the connection or have a default application level protocol. 2) If
2439 * the server supports NPN, but advertises an empty list then the client
2440 * selects the first protocol in its list, but indicates via the API that this
2441 * fallback case was enacted. 3) Otherwise, the client finds the first
2442 * protocol in the server's list that it supports and selects this protocol.
2443 * This is because it's assumed that the server has better information about
2444 * which protocol a client should use. 4) If the client doesn't support any
2445 * of the server's advertised protocols, then this is treated the same as
2446 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2447 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2448 */
2449 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2450 const unsigned char *server,
2451 unsigned int server_len,
2452 const unsigned char *client, unsigned int client_len)
2453 {
2454 unsigned int i, j;
2455 const unsigned char *result;
2456 int status = OPENSSL_NPN_UNSUPPORTED;
2457
2458 /*
2459 * For each protocol in server preference order, see if we support it.
2460 */
2461 for (i = 0; i < server_len;) {
2462 for (j = 0; j < client_len;) {
2463 if (server[i] == client[j] &&
2464 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2465 /* We found a match */
2466 result = &server[i];
2467 status = OPENSSL_NPN_NEGOTIATED;
2468 goto found;
2469 }
2470 j += client[j];
2471 j++;
2472 }
2473 i += server[i];
2474 i++;
2475 }
2476
2477 /* There's no overlap between our protocols and the server's list. */
2478 result = client;
2479 status = OPENSSL_NPN_NO_OVERLAP;
2480
2481 found:
2482 *out = (unsigned char *)result + 1;
2483 *outlen = result[0];
2484 return status;
2485 }
2486
2487 #ifndef OPENSSL_NO_NEXTPROTONEG
2488 /*
2489 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2490 * client's requested protocol for this connection and returns 0. If the
2491 * client didn't request any protocol, then *data is set to NULL. Note that
2492 * the client can request any protocol it chooses. The value returned from
2493 * this function need not be a member of the list of supported protocols
2494 * provided by the callback.
2495 */
2496 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2497 unsigned *len)
2498 {
2499 *data = s->ext.npn;
2500 if (!*data) {
2501 *len = 0;
2502 } else {
2503 *len = (unsigned int)s->ext.npn_len;
2504 }
2505 }
2506
2507 /*
2508 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2509 * a TLS server needs a list of supported protocols for Next Protocol
2510 * Negotiation. The returned list must be in wire format. The list is
2511 * returned by setting |out| to point to it and |outlen| to its length. This
2512 * memory will not be modified, but one should assume that the SSL* keeps a
2513 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2514 * wishes to advertise. Otherwise, no such extension will be included in the
2515 * ServerHello.
2516 */
2517 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2518 SSL_CTX_npn_advertised_cb_func cb,
2519 void *arg)
2520 {
2521 ctx->ext.npn_advertised_cb = cb;
2522 ctx->ext.npn_advertised_cb_arg = arg;
2523 }
2524
2525 /*
2526 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2527 * client needs to select a protocol from the server's provided list. |out|
2528 * must be set to point to the selected protocol (which may be within |in|).
2529 * The length of the protocol name must be written into |outlen|. The
2530 * server's advertised protocols are provided in |in| and |inlen|. The
2531 * callback can assume that |in| is syntactically valid. The client must
2532 * select a protocol. It is fatal to the connection if this callback returns
2533 * a value other than SSL_TLSEXT_ERR_OK.
2534 */
2535 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2536 SSL_CTX_npn_select_cb_func cb,
2537 void *arg)
2538 {
2539 ctx->ext.npn_select_cb = cb;
2540 ctx->ext.npn_select_cb_arg = arg;
2541 }
2542 #endif
2543
2544 /*
2545 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2546 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2547 * length-prefixed strings). Returns 0 on success.
2548 */
2549 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2550 unsigned int protos_len)
2551 {
2552 OPENSSL_free(ctx->ext.alpn);
2553 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2554 if (ctx->ext.alpn == NULL) {
2555 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2556 return 1;
2557 }
2558 ctx->ext.alpn_len = protos_len;
2559
2560 return 0;
2561 }
2562
2563 /*
2564 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2565 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2566 * length-prefixed strings). Returns 0 on success.
2567 */
2568 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2569 unsigned int protos_len)
2570 {
2571 OPENSSL_free(ssl->ext.alpn);
2572 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2573 if (ssl->ext.alpn == NULL) {
2574 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2575 return 1;
2576 }
2577 ssl->ext.alpn_len = protos_len;
2578
2579 return 0;
2580 }
2581
2582 /*
2583 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2584 * called during ClientHello processing in order to select an ALPN protocol
2585 * from the client's list of offered protocols.
2586 */
2587 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2588 SSL_CTX_alpn_select_cb_func cb,
2589 void *arg)
2590 {
2591 ctx->ext.alpn_select_cb = cb;
2592 ctx->ext.alpn_select_cb_arg = arg;
2593 }
2594
2595 /*
2596 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
2597 * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
2598 * (not including the leading length-prefix byte). If the server didn't
2599 * respond with a negotiated protocol then |*len| will be zero.
2600 */
2601 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2602 unsigned int *len)
2603 {
2604 *data = NULL;
2605 if (ssl->s3)
2606 *data = ssl->s3->alpn_selected;
2607 if (*data == NULL)
2608 *len = 0;
2609 else
2610 *len = (unsigned int)ssl->s3->alpn_selected_len;
2611 }
2612
2613 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2614 const char *label, size_t llen,
2615 const unsigned char *p, size_t plen,
2616 int use_context)
2617 {
2618 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2619 return -1;
2620
2621 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2622 llen, p, plen,
2623 use_context);
2624 }
2625
2626 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2627 {
2628 const unsigned char *session_id = a->session_id;
2629 unsigned long l;
2630 unsigned char tmp_storage[4];
2631
2632 if (a->session_id_length < sizeof(tmp_storage)) {
2633 memset(tmp_storage, 0, sizeof(tmp_storage));
2634 memcpy(tmp_storage, a->session_id, a->session_id_length);
2635 session_id = tmp_storage;
2636 }
2637
2638 l = (unsigned long)
2639 ((unsigned long)session_id[0]) |
2640 ((unsigned long)session_id[1] << 8L) |
2641 ((unsigned long)session_id[2] << 16L) |
2642 ((unsigned long)session_id[3] << 24L);
2643 return (l);
2644 }
2645
2646 /*
2647 * NB: If this function (or indeed the hash function which uses a sort of
2648 * coarser function than this one) is changed, ensure
2649 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2650 * being able to construct an SSL_SESSION that will collide with any existing
2651 * session with a matching session ID.
2652 */
2653 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2654 {
2655 if (a->ssl_version != b->ssl_version)
2656 return (1);
2657 if (a->session_id_length != b->session_id_length)
2658 return (1);
2659 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2660 }
2661
2662 /*
2663 * These wrapper functions should remain rather than redeclaring
2664 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2665 * variable. The reason is that the functions aren't static, they're exposed
2666 * via ssl.h.
2667 */
2668
2669 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2670 {
2671 SSL_CTX *ret = NULL;
2672
2673 if (meth == NULL) {
2674 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2675 return (NULL);
2676 }
2677
2678 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2679 return NULL;
2680
2681 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2682 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2683 goto err;
2684 }
2685 ret = OPENSSL_zalloc(sizeof(*ret));
2686 if (ret == NULL)
2687 goto err;
2688
2689 ret->method = meth;
2690 ret->min_proto_version = 0;
2691 ret->max_proto_version = 0;
2692 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2693 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2694 /* We take the system default. */
2695 ret->session_timeout = meth->get_timeout();
2696 ret->references = 1;
2697 ret->lock = CRYPTO_THREAD_lock_new();
2698 if (ret->lock == NULL) {
2699 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2700 OPENSSL_free(ret);
2701 return NULL;
2702 }
2703 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2704 ret->verify_mode = SSL_VERIFY_NONE;
2705 if ((ret->cert = ssl_cert_new()) == NULL)
2706 goto err;
2707
2708 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2709 if (ret->sessions == NULL)
2710 goto err;
2711 ret->cert_store = X509_STORE_new();
2712 if (ret->cert_store == NULL)
2713 goto err;
2714 #ifndef OPENSSL_NO_CT
2715 ret->ctlog_store = CTLOG_STORE_new();
2716 if (ret->ctlog_store == NULL)
2717 goto err;
2718 #endif
2719 if (!ssl_create_cipher_list(ret->method,
2720 &ret->cipher_list, &ret->cipher_list_by_id,
2721 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2722 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2723 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2724 goto err2;
2725 }
2726
2727 ret->param = X509_VERIFY_PARAM_new();
2728 if (ret->param == NULL)
2729 goto err;
2730
2731 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2732 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2733 goto err2;
2734 }
2735 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2736 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2737 goto err2;
2738 }
2739
2740 if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
2741 goto err;
2742
2743 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2744 goto err;
2745
2746 /* No compression for DTLS */
2747 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2748 ret->comp_methods = SSL_COMP_get_compression_methods();
2749
2750 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2751 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2752
2753 /* Setup RFC5077 ticket keys */
2754 if ((RAND_bytes(ret->ext.tick_key_name,
2755 sizeof(ret->ext.tick_key_name)) <= 0)
2756 || (RAND_bytes(ret->ext.tick_hmac_key,
2757 sizeof(ret->ext.tick_hmac_key)) <= 0)
2758 || (RAND_bytes(ret->ext.tick_aes_key,
2759 sizeof(ret->ext.tick_aes_key)) <= 0))
2760 ret->options |= SSL_OP_NO_TICKET;
2761
2762 #ifndef OPENSSL_NO_SRP
2763 if (!SSL_CTX_SRP_CTX_init(ret))
2764 goto err;
2765 #endif
2766 #ifndef OPENSSL_NO_ENGINE
2767 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2768 # define eng_strx(x) #x
2769 # define eng_str(x) eng_strx(x)
2770 /* Use specific client engine automatically... ignore errors */
2771 {
2772 ENGINE *eng;
2773 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2774 if (!eng) {
2775 ERR_clear_error();
2776 ENGINE_load_builtin_engines();
2777 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2778 }
2779 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2780 ERR_clear_error();
2781 }
2782 # endif
2783 #endif
2784 /*
2785 * Default is to connect to non-RI servers. When RI is more widely
2786 * deployed might change this.
2787 */
2788 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2789 /*
2790 * Disable compression by default to prevent CRIME. Applications can
2791 * re-enable compression by configuring
2792 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2793 * or by using the SSL_CONF library.
2794 */
2795 ret->options |= SSL_OP_NO_COMPRESSION;
2796
2797 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2798
2799 /*
2800 * Default max early data is a fully loaded single record. Could be split
2801 * across multiple records in practice
2802 */
2803 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2804
2805 return ret;
2806 err:
2807 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2808 err2:
2809 SSL_CTX_free(ret);
2810 return NULL;
2811 }
2812
2813 int SSL_CTX_up_ref(SSL_CTX *ctx)
2814 {
2815 int i;
2816
2817 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2818 return 0;
2819
2820 REF_PRINT_COUNT("SSL_CTX", ctx);
2821 REF_ASSERT_ISNT(i < 2);
2822 return ((i > 1) ? 1 : 0);
2823 }
2824
2825 void SSL_CTX_free(SSL_CTX *a)
2826 {
2827 int i;
2828
2829 if (a == NULL)
2830 return;
2831
2832 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2833 REF_PRINT_COUNT("SSL_CTX", a);
2834 if (i > 0)
2835 return;
2836 REF_ASSERT_ISNT(i < 0);
2837
2838 X509_VERIFY_PARAM_free(a->param);
2839 dane_ctx_final(&a->dane);
2840
2841 /*
2842 * Free internal session cache. However: the remove_cb() may reference
2843 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2844 * after the sessions were flushed.
2845 * As the ex_data handling routines might also touch the session cache,
2846 * the most secure solution seems to be: empty (flush) the cache, then
2847 * free ex_data, then finally free the cache.
2848 * (See ticket [openssl.org #212].)
2849 */
2850 if (a->sessions != NULL)
2851 SSL_CTX_flush_sessions(a, 0);
2852
2853 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2854 lh_SSL_SESSION_free(a->sessions);
2855 X509_STORE_free(a->cert_store);
2856 #ifndef OPENSSL_NO_CT
2857 CTLOG_STORE_free(a->ctlog_store);
2858 #endif
2859 sk_SSL_CIPHER_free(a->cipher_list);
2860 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2861 ssl_cert_free(a->cert);
2862 sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
2863 sk_X509_pop_free(a->extra_certs, X509_free);
2864 a->comp_methods = NULL;
2865 #ifndef OPENSSL_NO_SRTP
2866 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2867 #endif
2868 #ifndef OPENSSL_NO_SRP
2869 SSL_CTX_SRP_CTX_free(a);
2870 #endif
2871 #ifndef OPENSSL_NO_ENGINE
2872 ENGINE_finish(a->client_cert_engine);
2873 #endif
2874
2875 #ifndef OPENSSL_NO_EC
2876 OPENSSL_free(a->ext.ecpointformats);
2877 OPENSSL_free(a->ext.supportedgroups);
2878 #endif
2879 OPENSSL_free(a->ext.alpn);
2880
2881 CRYPTO_THREAD_lock_free(a->lock);
2882
2883 OPENSSL_free(a);
2884 }
2885
2886 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2887 {
2888 ctx->default_passwd_callback = cb;
2889 }
2890
2891 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2892 {
2893 ctx->default_passwd_callback_userdata = u;
2894 }
2895
2896 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2897 {
2898 return ctx->default_passwd_callback;
2899 }
2900
2901 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2902 {
2903 return ctx->default_passwd_callback_userdata;
2904 }
2905
2906 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2907 {
2908 s->default_passwd_callback = cb;
2909 }
2910
2911 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2912 {
2913 s->default_passwd_callback_userdata = u;
2914 }
2915
2916 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
2917 {
2918 return s->default_passwd_callback;
2919 }
2920
2921 void *SSL_get_default_passwd_cb_userdata(SSL *s)
2922 {
2923 return s->default_passwd_callback_userdata;
2924 }
2925
2926 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2927 int (*cb) (X509_STORE_CTX *, void *),
2928 void *arg)
2929 {
2930 ctx->app_verify_callback = cb;
2931 ctx->app_verify_arg = arg;
2932 }
2933
2934 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2935 int (*cb) (int, X509_STORE_CTX *))
2936 {
2937 ctx->verify_mode = mode;
2938 ctx->default_verify_callback = cb;
2939 }
2940
2941 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2942 {
2943 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2944 }
2945
2946 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
2947 {
2948 ssl_cert_set_cert_cb(c->cert, cb, arg);
2949 }
2950
2951 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2952 {
2953 ssl_cert_set_cert_cb(s->cert, cb, arg);
2954 }
2955
2956 void ssl_set_masks(SSL *s)
2957 {
2958 CERT *c = s->cert;
2959 uint32_t *pvalid = s->s3->tmp.valid_flags;
2960 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2961 unsigned long mask_k, mask_a;
2962 #ifndef OPENSSL_NO_EC
2963 int have_ecc_cert, ecdsa_ok;
2964 #endif
2965 if (c == NULL)
2966 return;
2967
2968 #ifndef OPENSSL_NO_DH
2969 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2970 #else
2971 dh_tmp = 0;
2972 #endif
2973
2974 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2975 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
2976 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
2977 #ifndef OPENSSL_NO_EC
2978 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2979 #endif
2980 mask_k = 0;
2981 mask_a = 0;
2982
2983 #ifdef CIPHER_DEBUG
2984 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2985 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2986 #endif
2987
2988 #ifndef OPENSSL_NO_GOST
2989 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2990 mask_k |= SSL_kGOST;
2991 mask_a |= SSL_aGOST12;
2992 }
2993 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2994 mask_k |= SSL_kGOST;
2995 mask_a |= SSL_aGOST12;
2996 }
2997 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2998 mask_k |= SSL_kGOST;
2999 mask_a |= SSL_aGOST01;
3000 }
3001 #endif
3002
3003 if (rsa_enc)
3004 mask_k |= SSL_kRSA;
3005
3006 if (dh_tmp)
3007 mask_k |= SSL_kDHE;
3008
3009 if (rsa_enc || rsa_sign) {
3010 mask_a |= SSL_aRSA;
3011 }
3012
3013 if (dsa_sign) {
3014 mask_a |= SSL_aDSS;
3015 }
3016
3017 mask_a |= SSL_aNULL;
3018
3019 /*
3020 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3021 * depending on the key usage extension.
3022 */
3023 #ifndef OPENSSL_NO_EC
3024 if (have_ecc_cert) {
3025 uint32_t ex_kusage;
3026 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3027 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3028 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3029 ecdsa_ok = 0;
3030 if (ecdsa_ok)
3031 mask_a |= SSL_aECDSA;
3032 }
3033 #endif
3034
3035 #ifndef OPENSSL_NO_EC
3036 mask_k |= SSL_kECDHE;
3037 #endif
3038
3039 #ifndef OPENSSL_NO_PSK
3040 mask_k |= SSL_kPSK;
3041 mask_a |= SSL_aPSK;
3042 if (mask_k & SSL_kRSA)
3043 mask_k |= SSL_kRSAPSK;
3044 if (mask_k & SSL_kDHE)
3045 mask_k |= SSL_kDHEPSK;
3046 if (mask_k & SSL_kECDHE)
3047 mask_k |= SSL_kECDHEPSK;
3048 #endif
3049
3050 s->s3->tmp.mask_k = mask_k;
3051 s->s3->tmp.mask_a = mask_a;
3052 }
3053
3054 #ifndef OPENSSL_NO_EC
3055
3056 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3057 {
3058 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3059 /* key usage, if present, must allow signing */
3060 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3061 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3062 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3063 return 0;
3064 }
3065 }
3066 return 1; /* all checks are ok */
3067 }
3068
3069 #endif
3070
3071 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3072 size_t *serverinfo_length)
3073 {
3074 CERT_PKEY *cpk = s->s3->tmp.cert;
3075 *serverinfo_length = 0;
3076
3077 if (cpk == NULL || cpk->serverinfo == NULL)
3078 return 0;
3079
3080 *serverinfo = cpk->serverinfo;
3081 *serverinfo_length = cpk->serverinfo_length;
3082 return 1;
3083 }
3084
3085 void ssl_update_cache(SSL *s, int mode)
3086 {
3087 int i;
3088
3089 /*
3090 * If the session_id_length is 0, we are not supposed to cache it, and it
3091 * would be rather hard to do anyway :-)
3092 */
3093 if (s->session->session_id_length == 0)
3094 return;
3095
3096 i = s->session_ctx->session_cache_mode;
3097 if ((i & mode) && (!s->hit)
3098 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
3099 || SSL_CTX_add_session(s->session_ctx, s->session))
3100 && (s->session_ctx->new_session_cb != NULL)) {
3101 SSL_SESSION_up_ref(s->session);
3102 if (!s->session_ctx->new_session_cb(s, s->session))
3103 SSL_SESSION_free(s->session);
3104 }
3105
3106 /* auto flush every 255 connections */
3107 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3108 if ((((mode & SSL_SESS_CACHE_CLIENT)
3109 ? s->session_ctx->stats.sess_connect_good
3110 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3111 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3112 }
3113 }
3114 }
3115
3116 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3117 {
3118 return ctx->method;
3119 }
3120
3121 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3122 {
3123 return (s->method);
3124 }
3125
3126 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3127 {
3128 int ret = 1;
3129
3130 if (s->method != meth) {
3131 const SSL_METHOD *sm = s->method;
3132 int (*hf) (SSL *) = s->handshake_func;
3133
3134 if (sm->version == meth->version)
3135 s->method = meth;
3136 else {
3137 sm->ssl_free(s);
3138 s->method = meth;
3139 ret = s->method->ssl_new(s);
3140 }
3141
3142 if (hf == sm->ssl_connect)
3143 s->handshake_func = meth->ssl_connect;
3144 else if (hf == sm->ssl_accept)
3145 s->handshake_func = meth->ssl_accept;
3146 }
3147 return (ret);
3148 }
3149
3150 int SSL_get_error(const SSL *s, int i)
3151 {
3152 int reason;
3153 unsigned long l;
3154 BIO *bio;
3155
3156 if (i > 0)
3157 return (SSL_ERROR_NONE);
3158
3159 /*
3160 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3161 * where we do encode the error
3162 */
3163 if ((l = ERR_peek_error()) != 0) {
3164 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3165 return (SSL_ERROR_SYSCALL);
3166 else
3167 return (SSL_ERROR_SSL);
3168 }
3169
3170 if (SSL_want_read(s)) {
3171 bio = SSL_get_rbio(s);
3172 if (BIO_should_read(bio))
3173 return (SSL_ERROR_WANT_READ);
3174 else if (BIO_should_write(bio))
3175 /*
3176 * This one doesn't make too much sense ... We never try to write
3177 * to the rbio, and an application program where rbio and wbio
3178 * are separate couldn't even know what it should wait for.
3179 * However if we ever set s->rwstate incorrectly (so that we have
3180 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3181 * wbio *are* the same, this test works around that bug; so it
3182 * might be safer to keep it.
3183 */
3184 return (SSL_ERROR_WANT_WRITE);
3185 else if (BIO_should_io_special(bio)) {
3186 reason = BIO_get_retry_reason(bio);
3187 if (reason == BIO_RR_CONNECT)
3188 return (SSL_ERROR_WANT_CONNECT);
3189 else if (reason == BIO_RR_ACCEPT)
3190 return (SSL_ERROR_WANT_ACCEPT);
3191 else
3192 return (SSL_ERROR_SYSCALL); /* unknown */
3193 }
3194 }
3195
3196 if (SSL_want_write(s)) {
3197 /*
3198 * Access wbio directly - in order to use the buffered bio if
3199 * present
3200 */
3201 bio = s->wbio;
3202 if (BIO_should_write(bio))
3203 return (SSL_ERROR_WANT_WRITE);
3204 else if (BIO_should_read(bio))
3205 /*
3206 * See above (SSL_want_read(s) with BIO_should_write(bio))
3207 */
3208 return (SSL_ERROR_WANT_READ);
3209 else if (BIO_should_io_special(bio)) {
3210 reason = BIO_get_retry_reason(bio);
3211 if (reason == BIO_RR_CONNECT)
3212 return (SSL_ERROR_WANT_CONNECT);
3213 else if (reason == BIO_RR_ACCEPT)
3214 return (SSL_ERROR_WANT_ACCEPT);
3215 else
3216 return (SSL_ERROR_SYSCALL);
3217 }
3218 }
3219 if (SSL_want_x509_lookup(s))
3220 return (SSL_ERROR_WANT_X509_LOOKUP);
3221 if (SSL_want_async(s))
3222 return SSL_ERROR_WANT_ASYNC;
3223 if (SSL_want_async_job(s))
3224 return SSL_ERROR_WANT_ASYNC_JOB;
3225 if (SSL_want_early(s))
3226 return SSL_ERROR_WANT_EARLY;
3227
3228 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3229 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3230 return (SSL_ERROR_ZERO_RETURN);
3231
3232 return (SSL_ERROR_SYSCALL);
3233 }
3234
3235 static int ssl_do_handshake_intern(void *vargs)
3236 {
3237 struct ssl_async_args *args;
3238 SSL *s;
3239
3240 args = (struct ssl_async_args *)vargs;
3241 s = args->s;
3242
3243 return s->handshake_func(s);
3244 }
3245
3246 int SSL_do_handshake(SSL *s)
3247 {
3248 int ret = 1;
3249
3250 if (s->handshake_func == NULL) {
3251 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3252 return -1;
3253 }
3254
3255 if (s->early_data_state == SSL_EARLY_DATA_WRITE_RETRY) {
3256 int edfin;
3257
3258 edfin = ssl_write_early_finish(s);
3259 if (edfin <= 0)
3260 return edfin;
3261 }
3262 ossl_statem_check_finish_init(s, -1);
3263
3264 s->method->ssl_renegotiate_check(s, 0);
3265
3266 if (SSL_in_init(s) || SSL_in_before(s)) {
3267 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3268 struct ssl_async_args args;
3269
3270 args.s = s;
3271
3272 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3273 } else {
3274 ret = s->handshake_func(s);
3275 }
3276 }
3277 return ret;
3278 }
3279
3280 void SSL_set_accept_state(SSL *s)
3281 {
3282 s->server = 1;
3283 s->shutdown = 0;
3284 ossl_statem_clear(s);
3285 s->handshake_func = s->method->ssl_accept;
3286 clear_ciphers(s);
3287 }
3288
3289 void SSL_set_connect_state(SSL *s)
3290 {
3291 s->server = 0;
3292 s->shutdown = 0;
3293 ossl_statem_clear(s);
3294 s->handshake_func = s->method->ssl_connect;
3295 clear_ciphers(s);
3296 }
3297
3298 int ssl_undefined_function(SSL *s)
3299 {
3300 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3301 return (0);
3302 }
3303
3304 int ssl_undefined_void_function(void)
3305 {
3306 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3307 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3308 return (0);
3309 }
3310
3311 int ssl_undefined_const_function(const SSL *s)
3312 {
3313 return (0);
3314 }
3315
3316 const SSL_METHOD *ssl_bad_method(int ver)
3317 {
3318 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3319 return (NULL);
3320 }
3321
3322 const char *ssl_protocol_to_string(int version)
3323 {
3324 switch(version)
3325 {
3326 case TLS1_3_VERSION:
3327 return "TLSv1.3";
3328
3329 case TLS1_2_VERSION:
3330 return "TLSv1.2";
3331
3332 case TLS1_1_VERSION:
3333 return "TLSv1.1";
3334
3335 case TLS1_VERSION:
3336 return "TLSv1";
3337
3338 case SSL3_VERSION:
3339 return "SSLv3";
3340
3341 case DTLS1_BAD_VER:
3342 return "DTLSv0.9";
3343
3344 case DTLS1_VERSION:
3345 return "DTLSv1";
3346
3347 case DTLS1_2_VERSION:
3348 return "DTLSv1.2";
3349
3350 default:
3351 return "unknown";
3352 }
3353 }
3354
3355 const char *SSL_get_version(const SSL *s)
3356 {
3357 return ssl_protocol_to_string(s->version);
3358 }
3359
3360 SSL *SSL_dup(SSL *s)
3361 {
3362 STACK_OF(X509_NAME) *sk;
3363 X509_NAME *xn;
3364 SSL *ret;
3365 int i;
3366
3367 /* If we're not quiescent, just up_ref! */
3368 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3369 CRYPTO_UP_REF(&s->references, &i, s->lock);
3370 return s;
3371 }
3372
3373 /*
3374 * Otherwise, copy configuration state, and session if set.
3375 */
3376 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3377 return (NULL);
3378
3379 if (s->session != NULL) {
3380 /*
3381 * Arranges to share the same session via up_ref. This "copies"
3382 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3383 */
3384 if (!SSL_copy_session_id(ret, s))
3385 goto err;
3386 } else {
3387 /*
3388 * No session has been established yet, so we have to expect that
3389 * s->cert or ret->cert will be changed later -- they should not both
3390 * point to the same object, and thus we can't use
3391 * SSL_copy_session_id.
3392 */
3393 if (!SSL_set_ssl_method(ret, s->method))
3394 goto err;
3395
3396 if (s->cert != NULL) {
3397 ssl_cert_free(ret->cert);
3398 ret->cert = ssl_cert_dup(s->cert);
3399 if (ret->cert == NULL)
3400 goto err;
3401 }
3402
3403 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3404 (int)s->sid_ctx_length))
3405 goto err;
3406 }
3407
3408 if (!ssl_dane_dup(ret, s))
3409 goto err;
3410 ret->version = s->version;
3411 ret->options = s->options;
3412 ret->mode = s->mode;
3413 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3414 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3415 ret->msg_callback = s->msg_callback;
3416 ret->msg_callback_arg = s->msg_callback_arg;
3417 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3418 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3419 ret->generate_session_id = s->generate_session_id;
3420
3421 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3422
3423 /* copy app data, a little dangerous perhaps */
3424 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3425 goto err;
3426
3427 /* setup rbio, and wbio */
3428 if (s->rbio != NULL) {
3429 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3430 goto err;
3431 }
3432 if (s->wbio != NULL) {
3433 if (s->wbio != s->rbio) {
3434 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3435 goto err;
3436 } else {
3437 BIO_up_ref(ret->rbio);
3438 ret->wbio = ret->rbio;
3439 }
3440 }
3441
3442 ret->server = s->server;
3443 if (s->handshake_func) {
3444 if (s->server)
3445 SSL_set_accept_state(ret);
3446 else
3447 SSL_set_connect_state(ret);
3448 }
3449 ret->shutdown = s->shutdown;
3450 ret->hit = s->hit;
3451
3452 ret->default_passwd_callback = s->default_passwd_callback;
3453 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3454
3455 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3456
3457 /* dup the cipher_list and cipher_list_by_id stacks */
3458 if (s->cipher_list != NULL) {
3459 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3460 goto err;
3461 }
3462 if (s->cipher_list_by_id != NULL)
3463 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3464 == NULL)
3465 goto err;
3466
3467 /* Dup the client_CA list */
3468 if (s->client_CA != NULL) {
3469 if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
3470 goto err;
3471 ret->client_CA = sk;
3472 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3473 xn = sk_X509_NAME_value(sk, i);
3474 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3475 X509_NAME_free(xn);
3476 goto err;
3477 }
3478 }
3479 }
3480 return ret;
3481
3482 err:
3483 SSL_free(ret);
3484 return NULL;
3485 }
3486
3487 void ssl_clear_cipher_ctx(SSL *s)
3488 {
3489 if (s->enc_read_ctx != NULL) {
3490 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3491 s->enc_read_ctx = NULL;
3492 }
3493 if (s->enc_write_ctx != NULL) {
3494 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3495 s->enc_write_ctx = NULL;
3496 }
3497 #ifndef OPENSSL_NO_COMP
3498 COMP_CTX_free(s->expand);
3499 s->expand = NULL;
3500 COMP_CTX_free(s->compress);
3501 s->compress = NULL;
3502 #endif
3503 }
3504
3505 X509 *SSL_get_certificate(const SSL *s)
3506 {
3507 if (s->cert != NULL)
3508 return (s->cert->key->x509);
3509 else
3510 return (NULL);
3511 }
3512
3513 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3514 {
3515 if (s->cert != NULL)
3516 return (s->cert->key->privatekey);
3517 else
3518 return (NULL);
3519 }
3520
3521 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3522 {
3523 if (ctx->cert != NULL)
3524 return ctx->cert->key->x509;
3525 else
3526 return NULL;
3527 }
3528
3529 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3530 {
3531 if (ctx->cert != NULL)
3532 return ctx->cert->key->privatekey;
3533 else
3534 return NULL;
3535 }
3536
3537 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3538 {
3539 if ((s->session != NULL) && (s->session->cipher != NULL))
3540 return (s->session->cipher);
3541 return (NULL);
3542 }
3543
3544 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3545 {
3546 #ifndef OPENSSL_NO_COMP
3547 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3548 #else
3549 return NULL;
3550 #endif
3551 }
3552
3553 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3554 {
3555 #ifndef OPENSSL_NO_COMP
3556 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3557 #else
3558 return NULL;
3559 #endif
3560 }
3561
3562 int ssl_init_wbio_buffer(SSL *s)
3563 {
3564 BIO *bbio;
3565
3566 if (s->bbio != NULL) {
3567 /* Already buffered. */
3568 return 1;
3569 }
3570
3571 bbio = BIO_new(BIO_f_buffer());
3572 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3573 BIO_free(bbio);
3574 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3575 return 0;
3576 }
3577 s->bbio = bbio;
3578 s->wbio = BIO_push(bbio, s->wbio);
3579
3580 return 1;
3581 }
3582
3583 void ssl_free_wbio_buffer(SSL *s)
3584 {
3585 /* callers ensure s is never null */
3586 if (s->bbio == NULL)
3587 return;
3588
3589 s->wbio = BIO_pop(s->wbio);
3590 assert(s->wbio != NULL);
3591 BIO_free(s->bbio);
3592 s->bbio = NULL;
3593 }
3594
3595 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3596 {
3597 ctx->quiet_shutdown = mode;
3598 }
3599
3600 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3601 {
3602 return (ctx->quiet_shutdown);
3603 }
3604
3605 void SSL_set_quiet_shutdown(SSL *s, int mode)
3606 {
3607 s->quiet_shutdown = mode;
3608 }
3609
3610 int SSL_get_quiet_shutdown(const SSL *s)
3611 {
3612 return (s->quiet_shutdown);
3613 }
3614
3615 void SSL_set_shutdown(SSL *s, int mode)
3616 {
3617 s->shutdown = mode;
3618 }
3619
3620 int SSL_get_shutdown(const SSL *s)
3621 {
3622 return s->shutdown;
3623 }
3624
3625 int SSL_version(const SSL *s)
3626 {
3627 return s->version;
3628 }
3629
3630 int SSL_client_version(const SSL *s)
3631 {
3632 return s->client_version;
3633 }
3634
3635 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3636 {
3637 return ssl->ctx;
3638 }
3639
3640 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3641 {
3642 CERT *new_cert;
3643 if (ssl->ctx == ctx)
3644 return ssl->ctx;
3645 if (ctx == NULL)
3646 ctx = ssl->session_ctx;
3647 new_cert = ssl_cert_dup(ctx->cert);
3648 if (new_cert == NULL) {
3649 return NULL;
3650 }
3651 ssl_cert_free(ssl->cert);
3652 ssl->cert = new_cert;
3653
3654 /*
3655 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3656 * so setter APIs must prevent invalid lengths from entering the system.
3657 */
3658 OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
3659
3660 /*
3661 * If the session ID context matches that of the parent SSL_CTX,
3662 * inherit it from the new SSL_CTX as well. If however the context does
3663 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3664 * leave it unchanged.
3665 */
3666 if ((ssl->ctx != NULL) &&
3667 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3668 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3669 ssl->sid_ctx_length = ctx->sid_ctx_length;
3670 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3671 }
3672
3673 SSL_CTX_up_ref(ctx);
3674 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3675 ssl->ctx = ctx;
3676
3677 return ssl->ctx;
3678 }
3679
3680 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3681 {
3682 return (X509_STORE_set_default_paths(ctx->cert_store));
3683 }
3684
3685 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3686 {
3687 X509_LOOKUP *lookup;
3688
3689 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3690 if (lookup == NULL)
3691 return 0;
3692 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3693
3694 /* Clear any errors if the default directory does not exist */
3695 ERR_clear_error();
3696
3697 return 1;
3698 }
3699
3700 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3701 {
3702 X509_LOOKUP *lookup;
3703
3704 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3705 if (lookup == NULL)
3706 return 0;
3707
3708 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3709
3710 /* Clear any errors if the default file does not exist */
3711 ERR_clear_error();
3712
3713 return 1;
3714 }
3715
3716 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3717 const char *CApath)
3718 {
3719 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3720 }
3721
3722 void SSL_set_info_callback(SSL *ssl,
3723 void (*cb) (const SSL *ssl, int type, int val))
3724 {
3725 ssl->info_callback = cb;
3726 }
3727
3728 /*
3729 * One compiler (Diab DCC) doesn't like argument names in returned function
3730 * pointer.
3731 */
3732 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3733 int /* type */ ,
3734 int /* val */ ) {
3735 return ssl->info_callback;
3736 }
3737
3738 void SSL_set_verify_result(SSL *ssl, long arg)
3739 {
3740 ssl->verify_result = arg;
3741 }
3742
3743 long SSL_get_verify_result(const SSL *ssl)
3744 {
3745 return (ssl->verify_result);
3746 }
3747
3748 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3749 {
3750 if (outlen == 0)
3751 return sizeof(ssl->s3->client_random);
3752 if (outlen > sizeof(ssl->s3->client_random))
3753 outlen = sizeof(ssl->s3->client_random);
3754 memcpy(out, ssl->s3->client_random, outlen);
3755 return outlen;
3756 }
3757
3758 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3759 {
3760 if (outlen == 0)
3761 return sizeof(ssl->s3->server_random);
3762 if (outlen > sizeof(ssl->s3->server_random))
3763 outlen = sizeof(ssl->s3->server_random);
3764 memcpy(out, ssl->s3->server_random, outlen);
3765 return outlen;
3766 }
3767
3768 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3769 unsigned char *out, size_t outlen)
3770 {
3771 if (outlen == 0)
3772 return session->master_key_length;
3773 if (outlen > session->master_key_length)
3774 outlen = session->master_key_length;
3775 memcpy(out, session->master_key, outlen);
3776 return outlen;
3777 }
3778
3779 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3780 {
3781 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3782 }
3783
3784 void *SSL_get_ex_data(const SSL *s, int idx)
3785 {
3786 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3787 }
3788
3789 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3790 {
3791 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3792 }
3793
3794 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3795 {
3796 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3797 }
3798
3799 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3800 {
3801 return (ctx->cert_store);
3802 }
3803
3804 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3805 {
3806 X509_STORE_free(ctx->cert_store);
3807 ctx->cert_store = store;
3808 }
3809
3810 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3811 {
3812 if (store != NULL)
3813 X509_STORE_up_ref(store);
3814 SSL_CTX_set_cert_store(ctx, store);
3815 }
3816
3817 int SSL_want(const SSL *s)
3818 {
3819 return (s->rwstate);
3820 }
3821
3822 /**
3823 * \brief Set the callback for generating temporary DH keys.
3824 * \param ctx the SSL context.
3825 * \param dh the callback
3826 */
3827
3828 #ifndef OPENSSL_NO_DH
3829 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3830 DH *(*dh) (SSL *ssl, int is_export,
3831 int keylength))
3832 {
3833 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3834 }
3835
3836 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3837 int keylength))
3838 {
3839 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3840 }
3841 #endif
3842
3843 #ifndef OPENSSL_NO_PSK
3844 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3845 {
3846 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3847 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3848 return 0;
3849 }
3850 OPENSSL_free(ctx->cert->psk_identity_hint);
3851 if (identity_hint != NULL) {
3852 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3853 if (ctx->cert->psk_identity_hint == NULL)
3854 return 0;
3855 } else
3856 ctx->cert->psk_identity_hint = NULL;
3857 return 1;
3858 }
3859
3860 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3861 {
3862 if (s == NULL)
3863 return 0;
3864
3865 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3866 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3867 return 0;
3868 }
3869 OPENSSL_free(s->cert->psk_identity_hint);
3870 if (identity_hint != NULL) {
3871 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3872 if (s->cert->psk_identity_hint == NULL)
3873 return 0;
3874 } else
3875 s->cert->psk_identity_hint = NULL;
3876 return 1;
3877 }
3878
3879 const char *SSL_get_psk_identity_hint(const SSL *s)
3880 {
3881 if (s == NULL || s->session == NULL)
3882 return NULL;
3883 return (s->session->psk_identity_hint);
3884 }
3885
3886 const char *SSL_get_psk_identity(const SSL *s)
3887 {
3888 if (s == NULL || s->session == NULL)
3889 return NULL;
3890 return (s->session->psk_identity);
3891 }
3892
3893 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
3894 {
3895 s->psk_client_callback = cb;
3896 }
3897
3898 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
3899 {
3900 ctx->psk_client_callback = cb;
3901 }
3902
3903 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
3904 {
3905 s->psk_server_callback = cb;
3906 }
3907
3908 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
3909 {
3910 ctx->psk_server_callback = cb;
3911 }
3912 #endif
3913
3914 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3915 void (*cb) (int write_p, int version,
3916 int content_type, const void *buf,
3917 size_t len, SSL *ssl, void *arg))
3918 {
3919 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3920 }
3921
3922 void SSL_set_msg_callback(SSL *ssl,
3923 void (*cb) (int write_p, int version,
3924 int content_type, const void *buf,
3925 size_t len, SSL *ssl, void *arg))
3926 {
3927 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3928 }
3929
3930 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3931 int (*cb) (SSL *ssl,
3932 int
3933 is_forward_secure))
3934 {
3935 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3936 (void (*)(void))cb);
3937 }
3938
3939 void SSL_set_not_resumable_session_callback(SSL *ssl,
3940 int (*cb) (SSL *ssl,
3941 int is_forward_secure))
3942 {
3943 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3944 (void (*)(void))cb);
3945 }
3946
3947 /*
3948 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3949 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
3950 * If EVP_MD pointer is passed, initializes ctx with this md.
3951 * Returns the newly allocated ctx;
3952 */
3953
3954 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3955 {
3956 ssl_clear_hash_ctx(hash);
3957 *hash = EVP_MD_CTX_new();
3958 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3959 EVP_MD_CTX_free(*hash);
3960 *hash = NULL;
3961 return NULL;
3962 }
3963 return *hash;
3964 }
3965
3966 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3967 {
3968
3969 EVP_MD_CTX_free(*hash);
3970 *hash = NULL;
3971 }
3972
3973 /* Retrieve handshake hashes */
3974 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
3975 size_t *hashlen)
3976 {
3977 EVP_MD_CTX *ctx = NULL;
3978 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3979 int hashleni = EVP_MD_CTX_size(hdgst);
3980 int ret = 0;
3981
3982 if (hashleni < 0 || (size_t)hashleni > outlen)
3983 goto err;
3984
3985 ctx = EVP_MD_CTX_new();
3986 if (ctx == NULL)
3987 goto err;
3988
3989 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3990 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3991 goto err;
3992
3993 *hashlen = hashleni;
3994
3995 ret = 1;
3996 err:
3997 EVP_MD_CTX_free(ctx);
3998 return ret;
3999 }
4000
4001 int SSL_session_reused(SSL *s)
4002 {
4003 return s->hit;
4004 }
4005
4006 int SSL_is_server(SSL *s)
4007 {
4008 return s->server;
4009 }
4010
4011 #if OPENSSL_API_COMPAT < 0x10100000L
4012 void SSL_set_debug(SSL *s, int debug)
4013 {
4014 /* Old function was do-nothing anyway... */
4015 (void)s;
4016 (void)debug;
4017 }
4018 #endif
4019
4020 void SSL_set_security_level(SSL *s, int level)
4021 {
4022 s->cert->sec_level = level;
4023 }
4024
4025 int SSL_get_security_level(const SSL *s)
4026 {
4027 return s->cert->sec_level;
4028 }
4029
4030 void SSL_set_security_callback(SSL *s,
4031 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4032 int op, int bits, int nid,
4033 void *other, void *ex))
4034 {
4035 s->cert->sec_cb = cb;
4036 }
4037
4038 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4039 const SSL_CTX *ctx, int op,
4040 int bits, int nid, void *other,
4041 void *ex) {
4042 return s->cert->sec_cb;
4043 }
4044
4045 void SSL_set0_security_ex_data(SSL *s, void *ex)
4046 {
4047 s->cert->sec_ex = ex;
4048 }
4049
4050 void *SSL_get0_security_ex_data(const SSL *s)
4051 {
4052 return s->cert->sec_ex;
4053 }
4054
4055 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4056 {
4057 ctx->cert->sec_level = level;
4058 }
4059
4060 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4061 {
4062 return ctx->cert->sec_level;
4063 }
4064
4065 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4066 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4067 int op, int bits, int nid,
4068 void *other, void *ex))
4069 {
4070 ctx->cert->sec_cb = cb;
4071 }
4072
4073 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4074 const SSL_CTX *ctx,
4075 int op, int bits,
4076 int nid,
4077 void *other,
4078 void *ex) {
4079 return ctx->cert->sec_cb;
4080 }
4081
4082 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4083 {
4084 ctx->cert->sec_ex = ex;
4085 }
4086
4087 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4088 {
4089 return ctx->cert->sec_ex;
4090 }
4091
4092 /*
4093 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4094 * can return unsigned long, instead of the generic long return value from the
4095 * control interface.
4096 */
4097 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4098 {
4099 return ctx->options;
4100 }
4101
4102 unsigned long SSL_get_options(const SSL *s)
4103 {
4104 return s->options;
4105 }
4106
4107 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4108 {
4109 return ctx->options |= op;
4110 }
4111
4112 unsigned long SSL_set_options(SSL *s, unsigned long op)
4113 {
4114 return s->options |= op;
4115 }
4116
4117 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4118 {
4119 return ctx->options &= ~op;
4120 }
4121
4122 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4123 {
4124 return s->options &= ~op;
4125 }
4126
4127 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4128 {
4129 return s->verified_chain;
4130 }
4131
4132 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4133
4134 #ifndef OPENSSL_NO_CT
4135
4136 /*
4137 * Moves SCTs from the |src| stack to the |dst| stack.
4138 * The source of each SCT will be set to |origin|.
4139 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4140 * the caller.
4141 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4142 */
4143 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4144 sct_source_t origin)
4145 {
4146 int scts_moved = 0;
4147 SCT *sct = NULL;
4148
4149 if (*dst == NULL) {
4150 *dst = sk_SCT_new_null();
4151 if (*dst == NULL) {
4152 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4153 goto err;
4154 }
4155 }
4156
4157 while ((sct = sk_SCT_pop(src)) != NULL) {
4158 if (SCT_set_source(sct, origin) != 1)
4159 goto err;
4160
4161 if (sk_SCT_push(*dst, sct) <= 0)
4162 goto err;
4163 scts_moved += 1;
4164 }
4165
4166 return scts_moved;
4167 err:
4168 if (sct != NULL)
4169 sk_SCT_push(src, sct); /* Put the SCT back */
4170 return -1;
4171 }
4172
4173 /*
4174 * Look for data collected during ServerHello and parse if found.
4175 * Returns the number of SCTs extracted.
4176 */
4177 static int ct_extract_tls_extension_scts(SSL *s)
4178 {
4179 int scts_extracted = 0;
4180
4181 if (s->ext.scts != NULL) {
4182 const unsigned char *p = s->ext.scts;
4183 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4184
4185 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4186
4187 SCT_LIST_free(scts);
4188 }
4189
4190 return scts_extracted;
4191 }
4192
4193 /*
4194 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4195 * contains an SCT X509 extension. They will be stored in |s->scts|.
4196 * Returns:
4197 * - The number of SCTs extracted, assuming an OCSP response exists.
4198 * - 0 if no OCSP response exists or it contains no SCTs.
4199 * - A negative integer if an error occurs.
4200 */
4201 static int ct_extract_ocsp_response_scts(SSL *s)
4202 {
4203 # ifndef OPENSSL_NO_OCSP
4204 int scts_extracted = 0;
4205 const unsigned char *p;
4206 OCSP_BASICRESP *br = NULL;
4207 OCSP_RESPONSE *rsp = NULL;
4208 STACK_OF(SCT) *scts = NULL;
4209 int i;
4210
4211 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4212 goto err;
4213
4214 p = s->ext.ocsp.resp;
4215 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4216 if (rsp == NULL)
4217 goto err;
4218
4219 br = OCSP_response_get1_basic(rsp);
4220 if (br == NULL)
4221 goto err;
4222
4223 for (i = 0; i < OCSP_resp_count(br); ++i) {
4224 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4225
4226 if (single == NULL)
4227 continue;
4228
4229 scts =
4230 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4231 scts_extracted =
4232 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4233 if (scts_extracted < 0)
4234 goto err;
4235 }
4236 err:
4237 SCT_LIST_free(scts);
4238 OCSP_BASICRESP_free(br);
4239 OCSP_RESPONSE_free(rsp);
4240 return scts_extracted;
4241 # else
4242 /* Behave as if no OCSP response exists */
4243 return 0;
4244 # endif
4245 }
4246
4247 /*
4248 * Attempts to extract SCTs from the peer certificate.
4249 * Return the number of SCTs extracted, or a negative integer if an error
4250 * occurs.
4251 */
4252 static int ct_extract_x509v3_extension_scts(SSL *s)
4253 {
4254 int scts_extracted = 0;
4255 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4256
4257 if (cert != NULL) {
4258 STACK_OF(SCT) *scts =
4259 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4260
4261 scts_extracted =
4262 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4263
4264 SCT_LIST_free(scts);
4265 }
4266
4267 return scts_extracted;
4268 }
4269
4270 /*
4271 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4272 * response (if it exists) and X509v3 extensions in the certificate.
4273 * Returns NULL if an error occurs.
4274 */
4275 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4276 {
4277 if (!s->scts_parsed) {
4278 if (ct_extract_tls_extension_scts(s) < 0 ||
4279 ct_extract_ocsp_response_scts(s) < 0 ||
4280 ct_extract_x509v3_extension_scts(s) < 0)
4281 goto err;
4282
4283 s->scts_parsed = 1;
4284 }
4285 return s->scts;
4286 err:
4287 return NULL;
4288 }
4289
4290 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4291 const STACK_OF(SCT) *scts, void *unused_arg)
4292 {
4293 return 1;
4294 }
4295
4296 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4297 const STACK_OF(SCT) *scts, void *unused_arg)
4298 {
4299 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4300 int i;
4301
4302 for (i = 0; i < count; ++i) {
4303 SCT *sct = sk_SCT_value(scts, i);
4304 int status = SCT_get_validation_status(sct);
4305
4306 if (status == SCT_VALIDATION_STATUS_VALID)
4307 return 1;
4308 }
4309 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4310 return 0;
4311 }
4312
4313 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4314 void *arg)
4315 {
4316 /*
4317 * Since code exists that uses the custom extension handler for CT, look
4318 * for this and throw an error if they have already registered to use CT.
4319 */
4320 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4321 TLSEXT_TYPE_signed_certificate_timestamp))
4322 {
4323 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4324 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4325 return 0;
4326 }
4327
4328 if (callback != NULL) {
4329 /*
4330 * If we are validating CT, then we MUST accept SCTs served via OCSP
4331 */
4332 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4333 return 0;
4334 }
4335
4336 s->ct_validation_callback = callback;
4337 s->ct_validation_callback_arg = arg;
4338
4339 return 1;
4340 }
4341
4342 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4343 ssl_ct_validation_cb callback, void *arg)
4344 {
4345 /*
4346 * Since code exists that uses the custom extension handler for CT, look for
4347 * this and throw an error if they have already registered to use CT.
4348 */
4349 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4350 TLSEXT_TYPE_signed_certificate_timestamp))
4351 {
4352 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4353 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4354 return 0;
4355 }
4356
4357 ctx->ct_validation_callback = callback;
4358 ctx->ct_validation_callback_arg = arg;
4359 return 1;
4360 }
4361
4362 int SSL_ct_is_enabled(const SSL *s)
4363 {
4364 return s->ct_validation_callback != NULL;
4365 }
4366
4367 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4368 {
4369 return ctx->ct_validation_callback != NULL;
4370 }
4371
4372 int ssl_validate_ct(SSL *s)
4373 {
4374 int ret = 0;
4375 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4376 X509 *issuer;
4377 SSL_DANE *dane = &s->dane;
4378 CT_POLICY_EVAL_CTX *ctx = NULL;
4379 const STACK_OF(SCT) *scts;
4380
4381 /*
4382 * If no callback is set, the peer is anonymous, or its chain is invalid,
4383 * skip SCT validation - just return success. Applications that continue
4384 * handshakes without certificates, with unverified chains, or pinned leaf
4385 * certificates are outside the scope of the WebPKI and CT.
4386 *
4387 * The above exclusions notwithstanding the vast majority of peers will
4388 * have rather ordinary certificate chains validated by typical
4389 * applications that perform certificate verification and therefore will
4390 * process SCTs when enabled.
4391 */
4392 if (s->ct_validation_callback == NULL || cert == NULL ||
4393 s->verify_result != X509_V_OK ||
4394 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4395 return 1;
4396
4397 /*
4398 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4399 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4400 */
4401 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4402 switch (dane->mtlsa->usage) {
4403 case DANETLS_USAGE_DANE_TA:
4404 case DANETLS_USAGE_DANE_EE:
4405 return 1;
4406 }
4407 }
4408
4409 ctx = CT_POLICY_EVAL_CTX_new();
4410 if (ctx == NULL) {
4411 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4412 goto end;
4413 }
4414
4415 issuer = sk_X509_value(s->verified_chain, 1);
4416 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4417 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4418 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4419 CT_POLICY_EVAL_CTX_set_time(ctx, SSL_SESSION_get_time(SSL_get0_session(s)));
4420
4421 scts = SSL_get0_peer_scts(s);
4422
4423 /*
4424 * This function returns success (> 0) only when all the SCTs are valid, 0
4425 * when some are invalid, and < 0 on various internal errors (out of
4426 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4427 * reason to abort the handshake, that decision is up to the callback.
4428 * Therefore, we error out only in the unexpected case that the return
4429 * value is negative.
4430 *
4431 * XXX: One might well argue that the return value of this function is an
4432 * unfortunate design choice. Its job is only to determine the validation
4433 * status of each of the provided SCTs. So long as it correctly separates
4434 * the wheat from the chaff it should return success. Failure in this case
4435 * ought to correspond to an inability to carry out its duties.
4436 */
4437 if (SCT_LIST_validate(scts, ctx) < 0) {
4438 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4439 goto end;
4440 }
4441
4442 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4443 if (ret < 0)
4444 ret = 0; /* This function returns 0 on failure */
4445
4446 end:
4447 CT_POLICY_EVAL_CTX_free(ctx);
4448 /*
4449 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4450 * failure return code here. Also the application may wish the complete
4451 * the handshake, and then disconnect cleanly at a higher layer, after
4452 * checking the verification status of the completed connection.
4453 *
4454 * We therefore force a certificate verification failure which will be
4455 * visible via SSL_get_verify_result() and cached as part of any resumed
4456 * session.
4457 *
4458 * Note: the permissive callback is for information gathering only, always
4459 * returns success, and does not affect verification status. Only the
4460 * strict callback or a custom application-specified callback can trigger
4461 * connection failure or record a verification error.
4462 */
4463 if (ret <= 0)
4464 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4465 return ret;
4466 }
4467
4468 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4469 {
4470 switch (validation_mode) {
4471 default:
4472 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4473 return 0;
4474 case SSL_CT_VALIDATION_PERMISSIVE:
4475 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4476 case SSL_CT_VALIDATION_STRICT:
4477 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4478 }
4479 }
4480
4481 int SSL_enable_ct(SSL *s, int validation_mode)
4482 {
4483 switch (validation_mode) {
4484 default:
4485 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4486 return 0;
4487 case SSL_CT_VALIDATION_PERMISSIVE:
4488 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4489 case SSL_CT_VALIDATION_STRICT:
4490 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4491 }
4492 }
4493
4494 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4495 {
4496 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4497 }
4498
4499 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4500 {
4501 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4502 }
4503
4504 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4505 {
4506 CTLOG_STORE_free(ctx->ctlog_store);
4507 ctx->ctlog_store = logs;
4508 }
4509
4510 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4511 {
4512 return ctx->ctlog_store;
4513 }
4514
4515 #endif /* OPENSSL_NO_CT */
4516
4517 void SSL_CTX_set_early_cb(SSL_CTX *c, SSL_early_cb_fn cb, void *arg)
4518 {
4519 c->early_cb = cb;
4520 c->early_cb_arg = arg;
4521 }
4522
4523 int SSL_early_isv2(SSL *s)
4524 {
4525 if (s->clienthello == NULL)
4526 return 0;
4527 return s->clienthello->isv2;
4528 }
4529
4530 unsigned int SSL_early_get0_legacy_version(SSL *s)
4531 {
4532 if (s->clienthello == NULL)
4533 return 0;
4534 return s->clienthello->legacy_version;
4535 }
4536
4537 size_t SSL_early_get0_random(SSL *s, const unsigned char **out)
4538 {
4539 if (s->clienthello == NULL)
4540 return 0;
4541 if (out != NULL)
4542 *out = s->clienthello->random;
4543 return SSL3_RANDOM_SIZE;
4544 }
4545
4546 size_t SSL_early_get0_session_id(SSL *s, const unsigned char **out)
4547 {
4548 if (s->clienthello == NULL)
4549 return 0;
4550 if (out != NULL)
4551 *out = s->clienthello->session_id;
4552 return s->clienthello->session_id_len;
4553 }
4554
4555 size_t SSL_early_get0_ciphers(SSL *s, const unsigned char **out)
4556 {
4557 if (s->clienthello == NULL)
4558 return 0;
4559 if (out != NULL)
4560 *out = PACKET_data(&s->clienthello->ciphersuites);
4561 return PACKET_remaining(&s->clienthello->ciphersuites);
4562 }
4563
4564 size_t SSL_early_get0_compression_methods(SSL *s, const unsigned char **out)
4565 {
4566 if (s->clienthello == NULL)
4567 return 0;
4568 if (out != NULL)
4569 *out = s->clienthello->compressions;
4570 return s->clienthello->compressions_len;
4571 }
4572
4573 int SSL_early_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4574 size_t *outlen)
4575 {
4576 size_t i;
4577 RAW_EXTENSION *r;
4578
4579 if (s->clienthello == NULL)
4580 return 0;
4581 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4582 r = s->clienthello->pre_proc_exts + i;
4583 if (r->present && r->type == type) {
4584 if (out != NULL)
4585 *out = PACKET_data(&r->data);
4586 if (outlen != NULL)
4587 *outlen = PACKET_remaining(&r->data);
4588 return 1;
4589 }
4590 }
4591 return 0;
4592 }
4593
4594 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4595 {
4596 ctx->keylog_callback = cb;
4597 }
4598
4599 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4600 {
4601 return ctx->keylog_callback;
4602 }
4603
4604 static int nss_keylog_int(const char *prefix,
4605 SSL *ssl,
4606 const uint8_t *parameter_1,
4607 size_t parameter_1_len,
4608 const uint8_t *parameter_2,
4609 size_t parameter_2_len)
4610 {
4611 char *out = NULL;
4612 char *cursor = NULL;
4613 size_t out_len = 0;
4614 size_t i;
4615 size_t prefix_len;
4616
4617 if (ssl->ctx->keylog_callback == NULL) return 1;
4618
4619 /*
4620 * Our output buffer will contain the following strings, rendered with
4621 * space characters in between, terminated by a NULL character: first the
4622 * prefix, then the first parameter, then the second parameter. The
4623 * meaning of each parameter depends on the specific key material being
4624 * logged. Note that the first and second parameters are encoded in
4625 * hexadecimal, so we need a buffer that is twice their lengths.
4626 */
4627 prefix_len = strlen(prefix);
4628 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4629 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4630 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4631 return 0;
4632 }
4633
4634 strcpy(cursor, prefix);
4635 cursor += prefix_len;
4636 *cursor++ = ' ';
4637
4638 for (i = 0; i < parameter_1_len; i++) {
4639 sprintf(cursor, "%02x", parameter_1[i]);
4640 cursor += 2;
4641 }
4642 *cursor++ = ' ';
4643
4644 for (i = 0; i < parameter_2_len; i++) {
4645 sprintf(cursor, "%02x", parameter_2[i]);
4646 cursor += 2;
4647 }
4648 *cursor = '\0';
4649
4650 ssl->ctx->keylog_callback(ssl, (const char *)out);
4651 OPENSSL_free(out);
4652 return 1;
4653
4654 }
4655
4656 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4657 const uint8_t *encrypted_premaster,
4658 size_t encrypted_premaster_len,
4659 const uint8_t *premaster,
4660 size_t premaster_len)
4661 {
4662 if (encrypted_premaster_len < 8) {
4663 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4664 return 0;
4665 }
4666
4667 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4668 return nss_keylog_int("RSA",
4669 ssl,
4670 encrypted_premaster,
4671 8,
4672 premaster,
4673 premaster_len);
4674 }
4675
4676 int ssl_log_secret(SSL *ssl,
4677 const char *label,
4678 const uint8_t *secret,
4679 size_t secret_len)
4680 {
4681 return nss_keylog_int(label,
4682 ssl,
4683 ssl->s3->client_random,
4684 SSL3_RANDOM_SIZE,
4685 secret,
4686 secret_len);
4687 }
4688
4689 #define SSLV2_CIPHER_LEN 3
4690
4691 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4692 int *al)
4693 {
4694 int n;
4695
4696 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4697
4698 if (PACKET_remaining(cipher_suites) == 0) {
4699 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4700 *al = SSL_AD_ILLEGAL_PARAMETER;
4701 return 0;
4702 }
4703
4704 if (PACKET_remaining(cipher_suites) % n != 0) {
4705 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4706 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4707 *al = SSL_AD_DECODE_ERROR;
4708 return 0;
4709 }
4710
4711 OPENSSL_free(s->s3->tmp.ciphers_raw);
4712 s->s3->tmp.ciphers_raw = NULL;
4713 s->s3->tmp.ciphers_rawlen = 0;
4714
4715 if (sslv2format) {
4716 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4717 PACKET sslv2ciphers = *cipher_suites;
4718 unsigned int leadbyte;
4719 unsigned char *raw;
4720
4721 /*
4722 * We store the raw ciphers list in SSLv3+ format so we need to do some
4723 * preprocessing to convert the list first. If there are any SSLv2 only
4724 * ciphersuites with a non-zero leading byte then we are going to
4725 * slightly over allocate because we won't store those. But that isn't a
4726 * problem.
4727 */
4728 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4729 s->s3->tmp.ciphers_raw = raw;
4730 if (raw == NULL) {
4731 *al = SSL_AD_INTERNAL_ERROR;
4732 goto err;
4733 }
4734 for (s->s3->tmp.ciphers_rawlen = 0;
4735 PACKET_remaining(&sslv2ciphers) > 0;
4736 raw += TLS_CIPHER_LEN) {
4737 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4738 || (leadbyte == 0
4739 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4740 TLS_CIPHER_LEN))
4741 || (leadbyte != 0
4742 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4743 *al = SSL_AD_INTERNAL_ERROR;
4744 OPENSSL_free(s->s3->tmp.ciphers_raw);
4745 s->s3->tmp.ciphers_raw = NULL;
4746 s->s3->tmp.ciphers_rawlen = 0;
4747 goto err;
4748 }
4749 if (leadbyte == 0)
4750 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
4751 }
4752 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
4753 &s->s3->tmp.ciphers_rawlen)) {
4754 *al = SSL_AD_INTERNAL_ERROR;
4755 goto err;
4756 }
4757 return 1;
4758 err:
4759 return 0;
4760 }
4761
4762 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
4763 int isv2format, STACK_OF(SSL_CIPHER) **sk,
4764 STACK_OF(SSL_CIPHER) **scsvs)
4765 {
4766 int alert;
4767 PACKET pkt;
4768
4769 if (!PACKET_buf_init(&pkt, bytes, len))
4770 return 0;
4771 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
4772 }
4773
4774 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
4775 STACK_OF(SSL_CIPHER) **skp,
4776 STACK_OF(SSL_CIPHER) **scsvs_out,
4777 int sslv2format, int *al)
4778 {
4779 const SSL_CIPHER *c;
4780 STACK_OF(SSL_CIPHER) *sk = NULL;
4781 STACK_OF(SSL_CIPHER) *scsvs = NULL;
4782 int n;
4783 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
4784 unsigned char cipher[SSLV2_CIPHER_LEN];
4785
4786 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4787
4788 if (PACKET_remaining(cipher_suites) == 0) {
4789 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
4790 *al = SSL_AD_ILLEGAL_PARAMETER;
4791 return 0;
4792 }
4793
4794 if (PACKET_remaining(cipher_suites) % n != 0) {
4795 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
4796 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4797 *al = SSL_AD_DECODE_ERROR;
4798 return 0;
4799 }
4800
4801 sk = sk_SSL_CIPHER_new_null();
4802 scsvs = sk_SSL_CIPHER_new_null();
4803 if (sk == NULL || scsvs == NULL) {
4804 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4805 *al = SSL_AD_INTERNAL_ERROR;
4806 goto err;
4807 }
4808
4809 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
4810 /*
4811 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
4812 * first byte set to zero, while true SSLv2 ciphers have a non-zero
4813 * first byte. We don't support any true SSLv2 ciphers, so skip them.
4814 */
4815 if (sslv2format && cipher[0] != '\0')
4816 continue;
4817
4818 /* For SSLv2-compat, ignore leading 0-byte. */
4819 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
4820 if (c != NULL) {
4821 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
4822 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
4823 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
4824 *al = SSL_AD_INTERNAL_ERROR;
4825 goto err;
4826 }
4827 }
4828 }
4829 if (PACKET_remaining(cipher_suites) > 0) {
4830 *al = SSL_AD_INTERNAL_ERROR;
4831 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_INTERNAL_ERROR);
4832 goto err;
4833 }
4834
4835 if (skp != NULL)
4836 *skp = sk;
4837 else
4838 sk_SSL_CIPHER_free(sk);
4839 if (scsvs_out != NULL)
4840 *scsvs_out = scsvs;
4841 else
4842 sk_SSL_CIPHER_free(scsvs);
4843 return 1;
4844 err:
4845 sk_SSL_CIPHER_free(sk);
4846 sk_SSL_CIPHER_free(scsvs);
4847 return 0;
4848 }
4849
4850 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
4851 {
4852 ctx->max_early_data = max_early_data;
4853
4854 return 1;
4855 }
4856
4857 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
4858 {
4859 return ctx->max_early_data;
4860 }
4861
4862 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
4863 {
4864 s->max_early_data = max_early_data;
4865
4866 return 1;
4867 }
4868
4869 uint32_t SSL_get_max_early_data(const SSL_CTX *s)
4870 {
4871 return s->max_early_data;
4872 }