]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
lhash/lhash.c: switch to Thread-Sanitizer-friendly primitives.
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/rand_drbg.h>
18 #include <openssl/ocsp.h>
19 #include <openssl/dh.h>
20 #include <openssl/engine.h>
21 #include <openssl/async.h>
22 #include <openssl/ct.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29 {
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34 }
35
36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53 }
54
55 static int ssl_undefined_function_4(SSL *ssl, int r)
56 {
57 (void)r;
58 return ssl_undefined_function(ssl);
59 }
60
61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63 {
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68 }
69
70 static int ssl_undefined_function_6(int r)
71 {
72 (void)r;
73 return ssl_undefined_function(NULL);
74 }
75
76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79 {
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88 }
89
90 SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103 };
104
105 struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115 };
116
117 static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121 } dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131 };
132
133 static int dane_ctx_enable(struct dane_ctx_st *dctx)
134 {
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170 }
171
172 static void dane_ctx_final(struct dane_ctx_st *dctx)
173 {
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180 }
181
182 static void tlsa_free(danetls_record *t)
183 {
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189 }
190
191 static void dane_final(SSL_DANE *dane)
192 {
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204 }
205
206 /*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209 static int ssl_dane_dup(SSL *to, SSL *from)
210 {
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236 }
237
238 static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240 {
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281 }
282
283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284 {
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288 }
289
290 static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned const char *data, size_t dlen)
294 {
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457 }
458
459 /*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463 static int ssl_check_allowed_versions(int min_version, int max_version)
464 {
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488 #ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491 #endif
492 #ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495 #endif
496 /* Done massaging versions; do the check. */
497 if (0
498 #ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501 #endif
502 #ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505 #endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514 #ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517 #endif
518 #ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521 #endif
522 #ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525 #endif
526 #ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529 #endif
530 #ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533 #endif
534 #ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537 #endif
538 #ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541 #endif
542 #ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545 #endif
546 /* Done massaging versions; do the check. */
547 if (0
548 #ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550 #endif
551 #ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553 #endif
554 #ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556 #endif
557 #ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562 #endif
563 )
564 return 0;
565 }
566 return 1;
567 }
568
569 static void clear_ciphers(SSL *s)
570 {
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575 }
576
577 int SSL_clear(SSL *s)
578 {
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593 s->hello_retry_request = 0;
594 s->sent_tickets = 0;
595
596 s->error = 0;
597 s->hit = 0;
598 s->shutdown = 0;
599
600 if (s->renegotiate) {
601 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
602 return 0;
603 }
604
605 ossl_statem_clear(s);
606
607 s->version = s->method->version;
608 s->client_version = s->version;
609 s->rwstate = SSL_NOTHING;
610
611 BUF_MEM_free(s->init_buf);
612 s->init_buf = NULL;
613 clear_ciphers(s);
614 s->first_packet = 0;
615
616 s->key_update = SSL_KEY_UPDATE_NONE;
617
618 EVP_MD_CTX_free(s->pha_dgst);
619 s->pha_dgst = NULL;
620
621 /* Reset DANE verification result state */
622 s->dane.mdpth = -1;
623 s->dane.pdpth = -1;
624 X509_free(s->dane.mcert);
625 s->dane.mcert = NULL;
626 s->dane.mtlsa = NULL;
627
628 /* Clear the verification result peername */
629 X509_VERIFY_PARAM_move_peername(s->param, NULL);
630
631 /*
632 * Check to see if we were changed into a different method, if so, revert
633 * back.
634 */
635 if (s->method != s->ctx->method) {
636 s->method->ssl_free(s);
637 s->method = s->ctx->method;
638 if (!s->method->ssl_new(s))
639 return 0;
640 } else {
641 if (!s->method->ssl_clear(s))
642 return 0;
643 }
644
645 RECORD_LAYER_clear(&s->rlayer);
646
647 return 1;
648 }
649
650 /** Used to change an SSL_CTXs default SSL method type */
651 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
652 {
653 STACK_OF(SSL_CIPHER) *sk;
654
655 ctx->method = meth;
656
657 sk = ssl_create_cipher_list(ctx->method,
658 ctx->tls13_ciphersuites,
659 &(ctx->cipher_list),
660 &(ctx->cipher_list_by_id),
661 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
662 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
663 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
664 return 0;
665 }
666 return 1;
667 }
668
669 SSL *SSL_new(SSL_CTX *ctx)
670 {
671 SSL *s;
672
673 if (ctx == NULL) {
674 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
675 return NULL;
676 }
677 if (ctx->method == NULL) {
678 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
679 return NULL;
680 }
681
682 s = OPENSSL_zalloc(sizeof(*s));
683 if (s == NULL)
684 goto err;
685
686 s->references = 1;
687 s->lock = CRYPTO_THREAD_lock_new();
688 if (s->lock == NULL) {
689 OPENSSL_free(s);
690 s = NULL;
691 goto err;
692 }
693
694 RECORD_LAYER_init(&s->rlayer, s);
695
696 s->options = ctx->options;
697 s->dane.flags = ctx->dane.flags;
698 s->min_proto_version = ctx->min_proto_version;
699 s->max_proto_version = ctx->max_proto_version;
700 s->mode = ctx->mode;
701 s->max_cert_list = ctx->max_cert_list;
702 s->max_early_data = ctx->max_early_data;
703 s->recv_max_early_data = ctx->recv_max_early_data;
704 s->num_tickets = ctx->num_tickets;
705
706 /* Shallow copy of the ciphersuites stack */
707 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
708 if (s->tls13_ciphersuites == NULL)
709 goto err;
710
711 /*
712 * Earlier library versions used to copy the pointer to the CERT, not
713 * its contents; only when setting new parameters for the per-SSL
714 * copy, ssl_cert_new would be called (and the direct reference to
715 * the per-SSL_CTX settings would be lost, but those still were
716 * indirectly accessed for various purposes, and for that reason they
717 * used to be known as s->ctx->default_cert). Now we don't look at the
718 * SSL_CTX's CERT after having duplicated it once.
719 */
720 s->cert = ssl_cert_dup(ctx->cert);
721 if (s->cert == NULL)
722 goto err;
723
724 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
725 s->msg_callback = ctx->msg_callback;
726 s->msg_callback_arg = ctx->msg_callback_arg;
727 s->verify_mode = ctx->verify_mode;
728 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
729 s->record_padding_cb = ctx->record_padding_cb;
730 s->record_padding_arg = ctx->record_padding_arg;
731 s->block_padding = ctx->block_padding;
732 s->sid_ctx_length = ctx->sid_ctx_length;
733 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
734 goto err;
735 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
736 s->verify_callback = ctx->default_verify_callback;
737 s->generate_session_id = ctx->generate_session_id;
738
739 s->param = X509_VERIFY_PARAM_new();
740 if (s->param == NULL)
741 goto err;
742 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
743 s->quiet_shutdown = ctx->quiet_shutdown;
744
745 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
746 s->max_send_fragment = ctx->max_send_fragment;
747 s->split_send_fragment = ctx->split_send_fragment;
748 s->max_pipelines = ctx->max_pipelines;
749 if (s->max_pipelines > 1)
750 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
751 if (ctx->default_read_buf_len > 0)
752 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
753
754 SSL_CTX_up_ref(ctx);
755 s->ctx = ctx;
756 s->ext.debug_cb = 0;
757 s->ext.debug_arg = NULL;
758 s->ext.ticket_expected = 0;
759 s->ext.status_type = ctx->ext.status_type;
760 s->ext.status_expected = 0;
761 s->ext.ocsp.ids = NULL;
762 s->ext.ocsp.exts = NULL;
763 s->ext.ocsp.resp = NULL;
764 s->ext.ocsp.resp_len = 0;
765 SSL_CTX_up_ref(ctx);
766 s->session_ctx = ctx;
767 #ifndef OPENSSL_NO_EC
768 if (ctx->ext.ecpointformats) {
769 s->ext.ecpointformats =
770 OPENSSL_memdup(ctx->ext.ecpointformats,
771 ctx->ext.ecpointformats_len);
772 if (!s->ext.ecpointformats)
773 goto err;
774 s->ext.ecpointformats_len =
775 ctx->ext.ecpointformats_len;
776 }
777 if (ctx->ext.supportedgroups) {
778 s->ext.supportedgroups =
779 OPENSSL_memdup(ctx->ext.supportedgroups,
780 ctx->ext.supportedgroups_len
781 * sizeof(*ctx->ext.supportedgroups));
782 if (!s->ext.supportedgroups)
783 goto err;
784 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
785 }
786 #endif
787 #ifndef OPENSSL_NO_NEXTPROTONEG
788 s->ext.npn = NULL;
789 #endif
790
791 if (s->ctx->ext.alpn) {
792 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
793 if (s->ext.alpn == NULL)
794 goto err;
795 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
796 s->ext.alpn_len = s->ctx->ext.alpn_len;
797 }
798
799 s->verified_chain = NULL;
800 s->verify_result = X509_V_OK;
801
802 s->default_passwd_callback = ctx->default_passwd_callback;
803 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
804
805 s->method = ctx->method;
806
807 s->key_update = SSL_KEY_UPDATE_NONE;
808
809 s->allow_early_data_cb = ctx->allow_early_data_cb;
810 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
811
812 if (!s->method->ssl_new(s))
813 goto err;
814
815 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
816
817 if (!SSL_clear(s))
818 goto err;
819
820 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
821 goto err;
822
823 #ifndef OPENSSL_NO_PSK
824 s->psk_client_callback = ctx->psk_client_callback;
825 s->psk_server_callback = ctx->psk_server_callback;
826 #endif
827 s->psk_find_session_cb = ctx->psk_find_session_cb;
828 s->psk_use_session_cb = ctx->psk_use_session_cb;
829
830 s->job = NULL;
831
832 #ifndef OPENSSL_NO_CT
833 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
834 ctx->ct_validation_callback_arg))
835 goto err;
836 #endif
837
838 return s;
839 err:
840 SSL_free(s);
841 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
842 return NULL;
843 }
844
845 int SSL_is_dtls(const SSL *s)
846 {
847 return SSL_IS_DTLS(s) ? 1 : 0;
848 }
849
850 int SSL_up_ref(SSL *s)
851 {
852 int i;
853
854 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
855 return 0;
856
857 REF_PRINT_COUNT("SSL", s);
858 REF_ASSERT_ISNT(i < 2);
859 return ((i > 1) ? 1 : 0);
860 }
861
862 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
863 unsigned int sid_ctx_len)
864 {
865 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
866 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
867 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
868 return 0;
869 }
870 ctx->sid_ctx_length = sid_ctx_len;
871 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
872
873 return 1;
874 }
875
876 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
877 unsigned int sid_ctx_len)
878 {
879 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
880 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
881 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
882 return 0;
883 }
884 ssl->sid_ctx_length = sid_ctx_len;
885 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
886
887 return 1;
888 }
889
890 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
891 {
892 CRYPTO_THREAD_write_lock(ctx->lock);
893 ctx->generate_session_id = cb;
894 CRYPTO_THREAD_unlock(ctx->lock);
895 return 1;
896 }
897
898 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
899 {
900 CRYPTO_THREAD_write_lock(ssl->lock);
901 ssl->generate_session_id = cb;
902 CRYPTO_THREAD_unlock(ssl->lock);
903 return 1;
904 }
905
906 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
907 unsigned int id_len)
908 {
909 /*
910 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
911 * we can "construct" a session to give us the desired check - i.e. to
912 * find if there's a session in the hash table that would conflict with
913 * any new session built out of this id/id_len and the ssl_version in use
914 * by this SSL.
915 */
916 SSL_SESSION r, *p;
917
918 if (id_len > sizeof(r.session_id))
919 return 0;
920
921 r.ssl_version = ssl->version;
922 r.session_id_length = id_len;
923 memcpy(r.session_id, id, id_len);
924
925 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
926 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
927 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
928 return (p != NULL);
929 }
930
931 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
932 {
933 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
934 }
935
936 int SSL_set_purpose(SSL *s, int purpose)
937 {
938 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
939 }
940
941 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
942 {
943 return X509_VERIFY_PARAM_set_trust(s->param, trust);
944 }
945
946 int SSL_set_trust(SSL *s, int trust)
947 {
948 return X509_VERIFY_PARAM_set_trust(s->param, trust);
949 }
950
951 int SSL_set1_host(SSL *s, const char *hostname)
952 {
953 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
954 }
955
956 int SSL_add1_host(SSL *s, const char *hostname)
957 {
958 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
959 }
960
961 void SSL_set_hostflags(SSL *s, unsigned int flags)
962 {
963 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
964 }
965
966 const char *SSL_get0_peername(SSL *s)
967 {
968 return X509_VERIFY_PARAM_get0_peername(s->param);
969 }
970
971 int SSL_CTX_dane_enable(SSL_CTX *ctx)
972 {
973 return dane_ctx_enable(&ctx->dane);
974 }
975
976 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
977 {
978 unsigned long orig = ctx->dane.flags;
979
980 ctx->dane.flags |= flags;
981 return orig;
982 }
983
984 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
985 {
986 unsigned long orig = ctx->dane.flags;
987
988 ctx->dane.flags &= ~flags;
989 return orig;
990 }
991
992 int SSL_dane_enable(SSL *s, const char *basedomain)
993 {
994 SSL_DANE *dane = &s->dane;
995
996 if (s->ctx->dane.mdmax == 0) {
997 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
998 return 0;
999 }
1000 if (dane->trecs != NULL) {
1001 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1002 return 0;
1003 }
1004
1005 /*
1006 * Default SNI name. This rejects empty names, while set1_host below
1007 * accepts them and disables host name checks. To avoid side-effects with
1008 * invalid input, set the SNI name first.
1009 */
1010 if (s->ext.hostname == NULL) {
1011 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1012 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1013 return -1;
1014 }
1015 }
1016
1017 /* Primary RFC6125 reference identifier */
1018 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1019 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1020 return -1;
1021 }
1022
1023 dane->mdpth = -1;
1024 dane->pdpth = -1;
1025 dane->dctx = &s->ctx->dane;
1026 dane->trecs = sk_danetls_record_new_null();
1027
1028 if (dane->trecs == NULL) {
1029 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1030 return -1;
1031 }
1032 return 1;
1033 }
1034
1035 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1036 {
1037 unsigned long orig = ssl->dane.flags;
1038
1039 ssl->dane.flags |= flags;
1040 return orig;
1041 }
1042
1043 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1044 {
1045 unsigned long orig = ssl->dane.flags;
1046
1047 ssl->dane.flags &= ~flags;
1048 return orig;
1049 }
1050
1051 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1052 {
1053 SSL_DANE *dane = &s->dane;
1054
1055 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1056 return -1;
1057 if (dane->mtlsa) {
1058 if (mcert)
1059 *mcert = dane->mcert;
1060 if (mspki)
1061 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1062 }
1063 return dane->mdpth;
1064 }
1065
1066 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1067 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1068 {
1069 SSL_DANE *dane = &s->dane;
1070
1071 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1072 return -1;
1073 if (dane->mtlsa) {
1074 if (usage)
1075 *usage = dane->mtlsa->usage;
1076 if (selector)
1077 *selector = dane->mtlsa->selector;
1078 if (mtype)
1079 *mtype = dane->mtlsa->mtype;
1080 if (data)
1081 *data = dane->mtlsa->data;
1082 if (dlen)
1083 *dlen = dane->mtlsa->dlen;
1084 }
1085 return dane->mdpth;
1086 }
1087
1088 SSL_DANE *SSL_get0_dane(SSL *s)
1089 {
1090 return &s->dane;
1091 }
1092
1093 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1094 uint8_t mtype, unsigned const char *data, size_t dlen)
1095 {
1096 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1097 }
1098
1099 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1100 uint8_t ord)
1101 {
1102 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1103 }
1104
1105 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1106 {
1107 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1108 }
1109
1110 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1111 {
1112 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1113 }
1114
1115 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1116 {
1117 return ctx->param;
1118 }
1119
1120 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1121 {
1122 return ssl->param;
1123 }
1124
1125 void SSL_certs_clear(SSL *s)
1126 {
1127 ssl_cert_clear_certs(s->cert);
1128 }
1129
1130 void SSL_free(SSL *s)
1131 {
1132 int i;
1133
1134 if (s == NULL)
1135 return;
1136 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1137 REF_PRINT_COUNT("SSL", s);
1138 if (i > 0)
1139 return;
1140 REF_ASSERT_ISNT(i < 0);
1141
1142 X509_VERIFY_PARAM_free(s->param);
1143 dane_final(&s->dane);
1144 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1145
1146 /* Ignore return value */
1147 ssl_free_wbio_buffer(s);
1148
1149 BIO_free_all(s->wbio);
1150 BIO_free_all(s->rbio);
1151
1152 BUF_MEM_free(s->init_buf);
1153
1154 /* add extra stuff */
1155 sk_SSL_CIPHER_free(s->cipher_list);
1156 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1157 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1158
1159 /* Make the next call work :-) */
1160 if (s->session != NULL) {
1161 ssl_clear_bad_session(s);
1162 SSL_SESSION_free(s->session);
1163 }
1164 SSL_SESSION_free(s->psksession);
1165 OPENSSL_free(s->psksession_id);
1166
1167 clear_ciphers(s);
1168
1169 ssl_cert_free(s->cert);
1170 /* Free up if allocated */
1171
1172 OPENSSL_free(s->ext.hostname);
1173 SSL_CTX_free(s->session_ctx);
1174 #ifndef OPENSSL_NO_EC
1175 OPENSSL_free(s->ext.ecpointformats);
1176 OPENSSL_free(s->ext.supportedgroups);
1177 #endif /* OPENSSL_NO_EC */
1178 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1179 #ifndef OPENSSL_NO_OCSP
1180 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1181 #endif
1182 #ifndef OPENSSL_NO_CT
1183 SCT_LIST_free(s->scts);
1184 OPENSSL_free(s->ext.scts);
1185 #endif
1186 OPENSSL_free(s->ext.ocsp.resp);
1187 OPENSSL_free(s->ext.alpn);
1188 OPENSSL_free(s->ext.tls13_cookie);
1189 OPENSSL_free(s->clienthello);
1190 OPENSSL_free(s->pha_context);
1191 EVP_MD_CTX_free(s->pha_dgst);
1192
1193 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1194
1195 sk_X509_pop_free(s->verified_chain, X509_free);
1196
1197 if (s->method != NULL)
1198 s->method->ssl_free(s);
1199
1200 RECORD_LAYER_release(&s->rlayer);
1201
1202 SSL_CTX_free(s->ctx);
1203
1204 ASYNC_WAIT_CTX_free(s->waitctx);
1205
1206 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1207 OPENSSL_free(s->ext.npn);
1208 #endif
1209
1210 #ifndef OPENSSL_NO_SRTP
1211 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1212 #endif
1213
1214 CRYPTO_THREAD_lock_free(s->lock);
1215
1216 OPENSSL_free(s);
1217 }
1218
1219 void SSL_set0_rbio(SSL *s, BIO *rbio)
1220 {
1221 BIO_free_all(s->rbio);
1222 s->rbio = rbio;
1223 }
1224
1225 void SSL_set0_wbio(SSL *s, BIO *wbio)
1226 {
1227 /*
1228 * If the output buffering BIO is still in place, remove it
1229 */
1230 if (s->bbio != NULL)
1231 s->wbio = BIO_pop(s->wbio);
1232
1233 BIO_free_all(s->wbio);
1234 s->wbio = wbio;
1235
1236 /* Re-attach |bbio| to the new |wbio|. */
1237 if (s->bbio != NULL)
1238 s->wbio = BIO_push(s->bbio, s->wbio);
1239 }
1240
1241 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1242 {
1243 /*
1244 * For historical reasons, this function has many different cases in
1245 * ownership handling.
1246 */
1247
1248 /* If nothing has changed, do nothing */
1249 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1250 return;
1251
1252 /*
1253 * If the two arguments are equal then one fewer reference is granted by the
1254 * caller than we want to take
1255 */
1256 if (rbio != NULL && rbio == wbio)
1257 BIO_up_ref(rbio);
1258
1259 /*
1260 * If only the wbio is changed only adopt one reference.
1261 */
1262 if (rbio == SSL_get_rbio(s)) {
1263 SSL_set0_wbio(s, wbio);
1264 return;
1265 }
1266 /*
1267 * There is an asymmetry here for historical reasons. If only the rbio is
1268 * changed AND the rbio and wbio were originally different, then we only
1269 * adopt one reference.
1270 */
1271 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1272 SSL_set0_rbio(s, rbio);
1273 return;
1274 }
1275
1276 /* Otherwise, adopt both references. */
1277 SSL_set0_rbio(s, rbio);
1278 SSL_set0_wbio(s, wbio);
1279 }
1280
1281 BIO *SSL_get_rbio(const SSL *s)
1282 {
1283 return s->rbio;
1284 }
1285
1286 BIO *SSL_get_wbio(const SSL *s)
1287 {
1288 if (s->bbio != NULL) {
1289 /*
1290 * If |bbio| is active, the true caller-configured BIO is its
1291 * |next_bio|.
1292 */
1293 return BIO_next(s->bbio);
1294 }
1295 return s->wbio;
1296 }
1297
1298 int SSL_get_fd(const SSL *s)
1299 {
1300 return SSL_get_rfd(s);
1301 }
1302
1303 int SSL_get_rfd(const SSL *s)
1304 {
1305 int ret = -1;
1306 BIO *b, *r;
1307
1308 b = SSL_get_rbio(s);
1309 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1310 if (r != NULL)
1311 BIO_get_fd(r, &ret);
1312 return ret;
1313 }
1314
1315 int SSL_get_wfd(const SSL *s)
1316 {
1317 int ret = -1;
1318 BIO *b, *r;
1319
1320 b = SSL_get_wbio(s);
1321 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1322 if (r != NULL)
1323 BIO_get_fd(r, &ret);
1324 return ret;
1325 }
1326
1327 #ifndef OPENSSL_NO_SOCK
1328 int SSL_set_fd(SSL *s, int fd)
1329 {
1330 int ret = 0;
1331 BIO *bio = NULL;
1332
1333 bio = BIO_new(BIO_s_socket());
1334
1335 if (bio == NULL) {
1336 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1337 goto err;
1338 }
1339 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1340 SSL_set_bio(s, bio, bio);
1341 ret = 1;
1342 err:
1343 return ret;
1344 }
1345
1346 int SSL_set_wfd(SSL *s, int fd)
1347 {
1348 BIO *rbio = SSL_get_rbio(s);
1349
1350 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1351 || (int)BIO_get_fd(rbio, NULL) != fd) {
1352 BIO *bio = BIO_new(BIO_s_socket());
1353
1354 if (bio == NULL) {
1355 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1356 return 0;
1357 }
1358 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1359 SSL_set0_wbio(s, bio);
1360 } else {
1361 BIO_up_ref(rbio);
1362 SSL_set0_wbio(s, rbio);
1363 }
1364 return 1;
1365 }
1366
1367 int SSL_set_rfd(SSL *s, int fd)
1368 {
1369 BIO *wbio = SSL_get_wbio(s);
1370
1371 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1372 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1373 BIO *bio = BIO_new(BIO_s_socket());
1374
1375 if (bio == NULL) {
1376 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1377 return 0;
1378 }
1379 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1380 SSL_set0_rbio(s, bio);
1381 } else {
1382 BIO_up_ref(wbio);
1383 SSL_set0_rbio(s, wbio);
1384 }
1385
1386 return 1;
1387 }
1388 #endif
1389
1390 /* return length of latest Finished message we sent, copy to 'buf' */
1391 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1392 {
1393 size_t ret = 0;
1394
1395 if (s->s3 != NULL) {
1396 ret = s->s3->tmp.finish_md_len;
1397 if (count > ret)
1398 count = ret;
1399 memcpy(buf, s->s3->tmp.finish_md, count);
1400 }
1401 return ret;
1402 }
1403
1404 /* return length of latest Finished message we expected, copy to 'buf' */
1405 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1406 {
1407 size_t ret = 0;
1408
1409 if (s->s3 != NULL) {
1410 ret = s->s3->tmp.peer_finish_md_len;
1411 if (count > ret)
1412 count = ret;
1413 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1414 }
1415 return ret;
1416 }
1417
1418 int SSL_get_verify_mode(const SSL *s)
1419 {
1420 return s->verify_mode;
1421 }
1422
1423 int SSL_get_verify_depth(const SSL *s)
1424 {
1425 return X509_VERIFY_PARAM_get_depth(s->param);
1426 }
1427
1428 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1429 return s->verify_callback;
1430 }
1431
1432 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1433 {
1434 return ctx->verify_mode;
1435 }
1436
1437 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1438 {
1439 return X509_VERIFY_PARAM_get_depth(ctx->param);
1440 }
1441
1442 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1443 return ctx->default_verify_callback;
1444 }
1445
1446 void SSL_set_verify(SSL *s, int mode,
1447 int (*callback) (int ok, X509_STORE_CTX *ctx))
1448 {
1449 s->verify_mode = mode;
1450 if (callback != NULL)
1451 s->verify_callback = callback;
1452 }
1453
1454 void SSL_set_verify_depth(SSL *s, int depth)
1455 {
1456 X509_VERIFY_PARAM_set_depth(s->param, depth);
1457 }
1458
1459 void SSL_set_read_ahead(SSL *s, int yes)
1460 {
1461 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1462 }
1463
1464 int SSL_get_read_ahead(const SSL *s)
1465 {
1466 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1467 }
1468
1469 int SSL_pending(const SSL *s)
1470 {
1471 size_t pending = s->method->ssl_pending(s);
1472
1473 /*
1474 * SSL_pending cannot work properly if read-ahead is enabled
1475 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1476 * impossible to fix since SSL_pending cannot report errors that may be
1477 * observed while scanning the new data. (Note that SSL_pending() is
1478 * often used as a boolean value, so we'd better not return -1.)
1479 *
1480 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1481 * we just return INT_MAX.
1482 */
1483 return pending < INT_MAX ? (int)pending : INT_MAX;
1484 }
1485
1486 int SSL_has_pending(const SSL *s)
1487 {
1488 /*
1489 * Similar to SSL_pending() but returns a 1 to indicate that we have
1490 * unprocessed data available or 0 otherwise (as opposed to the number of
1491 * bytes available). Unlike SSL_pending() this will take into account
1492 * read_ahead data. A 1 return simply indicates that we have unprocessed
1493 * data. That data may not result in any application data, or we may fail
1494 * to parse the records for some reason.
1495 */
1496 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1497 return 1;
1498
1499 return RECORD_LAYER_read_pending(&s->rlayer);
1500 }
1501
1502 X509 *SSL_get_peer_certificate(const SSL *s)
1503 {
1504 X509 *r;
1505
1506 if ((s == NULL) || (s->session == NULL))
1507 r = NULL;
1508 else
1509 r = s->session->peer;
1510
1511 if (r == NULL)
1512 return r;
1513
1514 X509_up_ref(r);
1515
1516 return r;
1517 }
1518
1519 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1520 {
1521 STACK_OF(X509) *r;
1522
1523 if ((s == NULL) || (s->session == NULL))
1524 r = NULL;
1525 else
1526 r = s->session->peer_chain;
1527
1528 /*
1529 * If we are a client, cert_chain includes the peer's own certificate; if
1530 * we are a server, it does not.
1531 */
1532
1533 return r;
1534 }
1535
1536 /*
1537 * Now in theory, since the calling process own 't' it should be safe to
1538 * modify. We need to be able to read f without being hassled
1539 */
1540 int SSL_copy_session_id(SSL *t, const SSL *f)
1541 {
1542 int i;
1543 /* Do we need to to SSL locking? */
1544 if (!SSL_set_session(t, SSL_get_session(f))) {
1545 return 0;
1546 }
1547
1548 /*
1549 * what if we are setup for one protocol version but want to talk another
1550 */
1551 if (t->method != f->method) {
1552 t->method->ssl_free(t);
1553 t->method = f->method;
1554 if (t->method->ssl_new(t) == 0)
1555 return 0;
1556 }
1557
1558 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1559 ssl_cert_free(t->cert);
1560 t->cert = f->cert;
1561 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1562 return 0;
1563 }
1564
1565 return 1;
1566 }
1567
1568 /* Fix this so it checks all the valid key/cert options */
1569 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1570 {
1571 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1572 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1573 return 0;
1574 }
1575 if (ctx->cert->key->privatekey == NULL) {
1576 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1577 return 0;
1578 }
1579 return X509_check_private_key
1580 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1581 }
1582
1583 /* Fix this function so that it takes an optional type parameter */
1584 int SSL_check_private_key(const SSL *ssl)
1585 {
1586 if (ssl == NULL) {
1587 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1588 return 0;
1589 }
1590 if (ssl->cert->key->x509 == NULL) {
1591 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1592 return 0;
1593 }
1594 if (ssl->cert->key->privatekey == NULL) {
1595 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1596 return 0;
1597 }
1598 return X509_check_private_key(ssl->cert->key->x509,
1599 ssl->cert->key->privatekey);
1600 }
1601
1602 int SSL_waiting_for_async(SSL *s)
1603 {
1604 if (s->job)
1605 return 1;
1606
1607 return 0;
1608 }
1609
1610 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1611 {
1612 ASYNC_WAIT_CTX *ctx = s->waitctx;
1613
1614 if (ctx == NULL)
1615 return 0;
1616 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1617 }
1618
1619 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1620 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1621 {
1622 ASYNC_WAIT_CTX *ctx = s->waitctx;
1623
1624 if (ctx == NULL)
1625 return 0;
1626 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1627 numdelfds);
1628 }
1629
1630 int SSL_accept(SSL *s)
1631 {
1632 if (s->handshake_func == NULL) {
1633 /* Not properly initialized yet */
1634 SSL_set_accept_state(s);
1635 }
1636
1637 return SSL_do_handshake(s);
1638 }
1639
1640 int SSL_connect(SSL *s)
1641 {
1642 if (s->handshake_func == NULL) {
1643 /* Not properly initialized yet */
1644 SSL_set_connect_state(s);
1645 }
1646
1647 return SSL_do_handshake(s);
1648 }
1649
1650 long SSL_get_default_timeout(const SSL *s)
1651 {
1652 return s->method->get_timeout();
1653 }
1654
1655 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1656 int (*func) (void *))
1657 {
1658 int ret;
1659 if (s->waitctx == NULL) {
1660 s->waitctx = ASYNC_WAIT_CTX_new();
1661 if (s->waitctx == NULL)
1662 return -1;
1663 }
1664 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1665 sizeof(struct ssl_async_args))) {
1666 case ASYNC_ERR:
1667 s->rwstate = SSL_NOTHING;
1668 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1669 return -1;
1670 case ASYNC_PAUSE:
1671 s->rwstate = SSL_ASYNC_PAUSED;
1672 return -1;
1673 case ASYNC_NO_JOBS:
1674 s->rwstate = SSL_ASYNC_NO_JOBS;
1675 return -1;
1676 case ASYNC_FINISH:
1677 s->job = NULL;
1678 return ret;
1679 default:
1680 s->rwstate = SSL_NOTHING;
1681 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1682 /* Shouldn't happen */
1683 return -1;
1684 }
1685 }
1686
1687 static int ssl_io_intern(void *vargs)
1688 {
1689 struct ssl_async_args *args;
1690 SSL *s;
1691 void *buf;
1692 size_t num;
1693
1694 args = (struct ssl_async_args *)vargs;
1695 s = args->s;
1696 buf = args->buf;
1697 num = args->num;
1698 switch (args->type) {
1699 case READFUNC:
1700 return args->f.func_read(s, buf, num, &s->asyncrw);
1701 case WRITEFUNC:
1702 return args->f.func_write(s, buf, num, &s->asyncrw);
1703 case OTHERFUNC:
1704 return args->f.func_other(s);
1705 }
1706 return -1;
1707 }
1708
1709 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1710 {
1711 if (s->handshake_func == NULL) {
1712 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1713 return -1;
1714 }
1715
1716 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1717 s->rwstate = SSL_NOTHING;
1718 return 0;
1719 }
1720
1721 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1722 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1723 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1724 return 0;
1725 }
1726 /*
1727 * If we are a client and haven't received the ServerHello etc then we
1728 * better do that
1729 */
1730 ossl_statem_check_finish_init(s, 0);
1731
1732 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1733 struct ssl_async_args args;
1734 int ret;
1735
1736 args.s = s;
1737 args.buf = buf;
1738 args.num = num;
1739 args.type = READFUNC;
1740 args.f.func_read = s->method->ssl_read;
1741
1742 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1743 *readbytes = s->asyncrw;
1744 return ret;
1745 } else {
1746 return s->method->ssl_read(s, buf, num, readbytes);
1747 }
1748 }
1749
1750 int SSL_read(SSL *s, void *buf, int num)
1751 {
1752 int ret;
1753 size_t readbytes;
1754
1755 if (num < 0) {
1756 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1757 return -1;
1758 }
1759
1760 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1761
1762 /*
1763 * The cast is safe here because ret should be <= INT_MAX because num is
1764 * <= INT_MAX
1765 */
1766 if (ret > 0)
1767 ret = (int)readbytes;
1768
1769 return ret;
1770 }
1771
1772 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1773 {
1774 int ret = ssl_read_internal(s, buf, num, readbytes);
1775
1776 if (ret < 0)
1777 ret = 0;
1778 return ret;
1779 }
1780
1781 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1782 {
1783 int ret;
1784
1785 if (!s->server) {
1786 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1787 return SSL_READ_EARLY_DATA_ERROR;
1788 }
1789
1790 switch (s->early_data_state) {
1791 case SSL_EARLY_DATA_NONE:
1792 if (!SSL_in_before(s)) {
1793 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1794 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1795 return SSL_READ_EARLY_DATA_ERROR;
1796 }
1797 /* fall through */
1798
1799 case SSL_EARLY_DATA_ACCEPT_RETRY:
1800 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1801 ret = SSL_accept(s);
1802 if (ret <= 0) {
1803 /* NBIO or error */
1804 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1805 return SSL_READ_EARLY_DATA_ERROR;
1806 }
1807 /* fall through */
1808
1809 case SSL_EARLY_DATA_READ_RETRY:
1810 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1811 s->early_data_state = SSL_EARLY_DATA_READING;
1812 ret = SSL_read_ex(s, buf, num, readbytes);
1813 /*
1814 * State machine will update early_data_state to
1815 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1816 * message
1817 */
1818 if (ret > 0 || (ret <= 0 && s->early_data_state
1819 != SSL_EARLY_DATA_FINISHED_READING)) {
1820 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1821 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1822 : SSL_READ_EARLY_DATA_ERROR;
1823 }
1824 } else {
1825 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1826 }
1827 *readbytes = 0;
1828 return SSL_READ_EARLY_DATA_FINISH;
1829
1830 default:
1831 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1832 return SSL_READ_EARLY_DATA_ERROR;
1833 }
1834 }
1835
1836 int SSL_get_early_data_status(const SSL *s)
1837 {
1838 return s->ext.early_data;
1839 }
1840
1841 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1842 {
1843 if (s->handshake_func == NULL) {
1844 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1845 return -1;
1846 }
1847
1848 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1849 return 0;
1850 }
1851 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1852 struct ssl_async_args args;
1853 int ret;
1854
1855 args.s = s;
1856 args.buf = buf;
1857 args.num = num;
1858 args.type = READFUNC;
1859 args.f.func_read = s->method->ssl_peek;
1860
1861 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1862 *readbytes = s->asyncrw;
1863 return ret;
1864 } else {
1865 return s->method->ssl_peek(s, buf, num, readbytes);
1866 }
1867 }
1868
1869 int SSL_peek(SSL *s, void *buf, int num)
1870 {
1871 int ret;
1872 size_t readbytes;
1873
1874 if (num < 0) {
1875 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1876 return -1;
1877 }
1878
1879 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1880
1881 /*
1882 * The cast is safe here because ret should be <= INT_MAX because num is
1883 * <= INT_MAX
1884 */
1885 if (ret > 0)
1886 ret = (int)readbytes;
1887
1888 return ret;
1889 }
1890
1891
1892 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1893 {
1894 int ret = ssl_peek_internal(s, buf, num, readbytes);
1895
1896 if (ret < 0)
1897 ret = 0;
1898 return ret;
1899 }
1900
1901 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1902 {
1903 if (s->handshake_func == NULL) {
1904 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1905 return -1;
1906 }
1907
1908 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1909 s->rwstate = SSL_NOTHING;
1910 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1911 return -1;
1912 }
1913
1914 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1915 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1916 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1917 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1918 return 0;
1919 }
1920 /* If we are a client and haven't sent the Finished we better do that */
1921 ossl_statem_check_finish_init(s, 1);
1922
1923 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1924 int ret;
1925 struct ssl_async_args args;
1926
1927 args.s = s;
1928 args.buf = (void *)buf;
1929 args.num = num;
1930 args.type = WRITEFUNC;
1931 args.f.func_write = s->method->ssl_write;
1932
1933 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1934 *written = s->asyncrw;
1935 return ret;
1936 } else {
1937 return s->method->ssl_write(s, buf, num, written);
1938 }
1939 }
1940
1941 int SSL_write(SSL *s, const void *buf, int num)
1942 {
1943 int ret;
1944 size_t written;
1945
1946 if (num < 0) {
1947 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1948 return -1;
1949 }
1950
1951 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1952
1953 /*
1954 * The cast is safe here because ret should be <= INT_MAX because num is
1955 * <= INT_MAX
1956 */
1957 if (ret > 0)
1958 ret = (int)written;
1959
1960 return ret;
1961 }
1962
1963 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1964 {
1965 int ret = ssl_write_internal(s, buf, num, written);
1966
1967 if (ret < 0)
1968 ret = 0;
1969 return ret;
1970 }
1971
1972 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1973 {
1974 int ret, early_data_state;
1975 size_t writtmp;
1976 uint32_t partialwrite;
1977
1978 switch (s->early_data_state) {
1979 case SSL_EARLY_DATA_NONE:
1980 if (s->server
1981 || !SSL_in_before(s)
1982 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1983 && (s->psk_use_session_cb == NULL))) {
1984 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1985 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1986 return 0;
1987 }
1988 /* fall through */
1989
1990 case SSL_EARLY_DATA_CONNECT_RETRY:
1991 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1992 ret = SSL_connect(s);
1993 if (ret <= 0) {
1994 /* NBIO or error */
1995 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1996 return 0;
1997 }
1998 /* fall through */
1999
2000 case SSL_EARLY_DATA_WRITE_RETRY:
2001 s->early_data_state = SSL_EARLY_DATA_WRITING;
2002 /*
2003 * We disable partial write for early data because we don't keep track
2004 * of how many bytes we've written between the SSL_write_ex() call and
2005 * the flush if the flush needs to be retried)
2006 */
2007 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2008 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2009 ret = SSL_write_ex(s, buf, num, &writtmp);
2010 s->mode |= partialwrite;
2011 if (!ret) {
2012 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2013 return ret;
2014 }
2015 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2016 /* fall through */
2017
2018 case SSL_EARLY_DATA_WRITE_FLUSH:
2019 /* The buffering BIO is still in place so we need to flush it */
2020 if (statem_flush(s) != 1)
2021 return 0;
2022 *written = num;
2023 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2024 return 1;
2025
2026 case SSL_EARLY_DATA_FINISHED_READING:
2027 case SSL_EARLY_DATA_READ_RETRY:
2028 early_data_state = s->early_data_state;
2029 /* We are a server writing to an unauthenticated client */
2030 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2031 ret = SSL_write_ex(s, buf, num, written);
2032 /* The buffering BIO is still in place */
2033 if (ret)
2034 (void)BIO_flush(s->wbio);
2035 s->early_data_state = early_data_state;
2036 return ret;
2037
2038 default:
2039 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2040 return 0;
2041 }
2042 }
2043
2044 int SSL_shutdown(SSL *s)
2045 {
2046 /*
2047 * Note that this function behaves differently from what one might
2048 * expect. Return values are 0 for no success (yet), 1 for success; but
2049 * calling it once is usually not enough, even if blocking I/O is used
2050 * (see ssl3_shutdown).
2051 */
2052
2053 if (s->handshake_func == NULL) {
2054 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2055 return -1;
2056 }
2057
2058 if (!SSL_in_init(s)) {
2059 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2060 struct ssl_async_args args;
2061
2062 args.s = s;
2063 args.type = OTHERFUNC;
2064 args.f.func_other = s->method->ssl_shutdown;
2065
2066 return ssl_start_async_job(s, &args, ssl_io_intern);
2067 } else {
2068 return s->method->ssl_shutdown(s);
2069 }
2070 } else {
2071 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2072 return -1;
2073 }
2074 }
2075
2076 int SSL_key_update(SSL *s, int updatetype)
2077 {
2078 /*
2079 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2080 * negotiated, and that it is appropriate to call SSL_key_update() instead
2081 * of SSL_renegotiate().
2082 */
2083 if (!SSL_IS_TLS13(s)) {
2084 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2085 return 0;
2086 }
2087
2088 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2089 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2090 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2091 return 0;
2092 }
2093
2094 if (!SSL_is_init_finished(s)) {
2095 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2096 return 0;
2097 }
2098
2099 ossl_statem_set_in_init(s, 1);
2100 s->key_update = updatetype;
2101 return 1;
2102 }
2103
2104 int SSL_get_key_update_type(SSL *s)
2105 {
2106 return s->key_update;
2107 }
2108
2109 int SSL_renegotiate(SSL *s)
2110 {
2111 if (SSL_IS_TLS13(s)) {
2112 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2113 return 0;
2114 }
2115
2116 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2117 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2118 return 0;
2119 }
2120
2121 s->renegotiate = 1;
2122 s->new_session = 1;
2123
2124 return s->method->ssl_renegotiate(s);
2125 }
2126
2127 int SSL_renegotiate_abbreviated(SSL *s)
2128 {
2129 if (SSL_IS_TLS13(s)) {
2130 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2131 return 0;
2132 }
2133
2134 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2135 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2136 return 0;
2137 }
2138
2139 s->renegotiate = 1;
2140 s->new_session = 0;
2141
2142 return s->method->ssl_renegotiate(s);
2143 }
2144
2145 int SSL_renegotiate_pending(SSL *s)
2146 {
2147 /*
2148 * becomes true when negotiation is requested; false again once a
2149 * handshake has finished
2150 */
2151 return (s->renegotiate != 0);
2152 }
2153
2154 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2155 {
2156 long l;
2157
2158 switch (cmd) {
2159 case SSL_CTRL_GET_READ_AHEAD:
2160 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2161 case SSL_CTRL_SET_READ_AHEAD:
2162 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2163 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2164 return l;
2165
2166 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2167 s->msg_callback_arg = parg;
2168 return 1;
2169
2170 case SSL_CTRL_MODE:
2171 return (s->mode |= larg);
2172 case SSL_CTRL_CLEAR_MODE:
2173 return (s->mode &= ~larg);
2174 case SSL_CTRL_GET_MAX_CERT_LIST:
2175 return (long)s->max_cert_list;
2176 case SSL_CTRL_SET_MAX_CERT_LIST:
2177 if (larg < 0)
2178 return 0;
2179 l = (long)s->max_cert_list;
2180 s->max_cert_list = (size_t)larg;
2181 return l;
2182 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2183 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2184 return 0;
2185 s->max_send_fragment = larg;
2186 if (s->max_send_fragment < s->split_send_fragment)
2187 s->split_send_fragment = s->max_send_fragment;
2188 return 1;
2189 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2190 if ((size_t)larg > s->max_send_fragment || larg == 0)
2191 return 0;
2192 s->split_send_fragment = larg;
2193 return 1;
2194 case SSL_CTRL_SET_MAX_PIPELINES:
2195 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2196 return 0;
2197 s->max_pipelines = larg;
2198 if (larg > 1)
2199 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2200 return 1;
2201 case SSL_CTRL_GET_RI_SUPPORT:
2202 if (s->s3)
2203 return s->s3->send_connection_binding;
2204 else
2205 return 0;
2206 case SSL_CTRL_CERT_FLAGS:
2207 return (s->cert->cert_flags |= larg);
2208 case SSL_CTRL_CLEAR_CERT_FLAGS:
2209 return (s->cert->cert_flags &= ~larg);
2210
2211 case SSL_CTRL_GET_RAW_CIPHERLIST:
2212 if (parg) {
2213 if (s->s3->tmp.ciphers_raw == NULL)
2214 return 0;
2215 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2216 return (int)s->s3->tmp.ciphers_rawlen;
2217 } else {
2218 return TLS_CIPHER_LEN;
2219 }
2220 case SSL_CTRL_GET_EXTMS_SUPPORT:
2221 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2222 return -1;
2223 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2224 return 1;
2225 else
2226 return 0;
2227 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2228 return ssl_check_allowed_versions(larg, s->max_proto_version)
2229 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2230 &s->min_proto_version);
2231 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2232 return s->min_proto_version;
2233 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2234 return ssl_check_allowed_versions(s->min_proto_version, larg)
2235 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2236 &s->max_proto_version);
2237 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2238 return s->max_proto_version;
2239 default:
2240 return s->method->ssl_ctrl(s, cmd, larg, parg);
2241 }
2242 }
2243
2244 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2245 {
2246 switch (cmd) {
2247 case SSL_CTRL_SET_MSG_CALLBACK:
2248 s->msg_callback = (void (*)
2249 (int write_p, int version, int content_type,
2250 const void *buf, size_t len, SSL *ssl,
2251 void *arg))(fp);
2252 return 1;
2253
2254 default:
2255 return s->method->ssl_callback_ctrl(s, cmd, fp);
2256 }
2257 }
2258
2259 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2260 {
2261 return ctx->sessions;
2262 }
2263
2264 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2265 {
2266 long l;
2267 int i;
2268 /* For some cases with ctx == NULL perform syntax checks */
2269 if (ctx == NULL) {
2270 switch (cmd) {
2271 #ifndef OPENSSL_NO_EC
2272 case SSL_CTRL_SET_GROUPS_LIST:
2273 return tls1_set_groups_list(NULL, NULL, parg);
2274 #endif
2275 case SSL_CTRL_SET_SIGALGS_LIST:
2276 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2277 return tls1_set_sigalgs_list(NULL, parg, 0);
2278 default:
2279 return 0;
2280 }
2281 }
2282
2283 switch (cmd) {
2284 case SSL_CTRL_GET_READ_AHEAD:
2285 return ctx->read_ahead;
2286 case SSL_CTRL_SET_READ_AHEAD:
2287 l = ctx->read_ahead;
2288 ctx->read_ahead = larg;
2289 return l;
2290
2291 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2292 ctx->msg_callback_arg = parg;
2293 return 1;
2294
2295 case SSL_CTRL_GET_MAX_CERT_LIST:
2296 return (long)ctx->max_cert_list;
2297 case SSL_CTRL_SET_MAX_CERT_LIST:
2298 if (larg < 0)
2299 return 0;
2300 l = (long)ctx->max_cert_list;
2301 ctx->max_cert_list = (size_t)larg;
2302 return l;
2303
2304 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2305 if (larg < 0)
2306 return 0;
2307 l = (long)ctx->session_cache_size;
2308 ctx->session_cache_size = (size_t)larg;
2309 return l;
2310 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2311 return (long)ctx->session_cache_size;
2312 case SSL_CTRL_SET_SESS_CACHE_MODE:
2313 l = ctx->session_cache_mode;
2314 ctx->session_cache_mode = larg;
2315 return l;
2316 case SSL_CTRL_GET_SESS_CACHE_MODE:
2317 return ctx->session_cache_mode;
2318
2319 case SSL_CTRL_SESS_NUMBER:
2320 return lh_SSL_SESSION_num_items(ctx->sessions);
2321 case SSL_CTRL_SESS_CONNECT:
2322 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2323 ? i : 0;
2324 case SSL_CTRL_SESS_CONNECT_GOOD:
2325 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2326 ? i : 0;
2327 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2328 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2329 ctx->lock)
2330 ? i : 0;
2331 case SSL_CTRL_SESS_ACCEPT:
2332 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2333 ? i : 0;
2334 case SSL_CTRL_SESS_ACCEPT_GOOD:
2335 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2336 ? i : 0;
2337 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2338 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2339 ctx->lock)
2340 ? i : 0;
2341 case SSL_CTRL_SESS_HIT:
2342 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2343 ? i : 0;
2344 case SSL_CTRL_SESS_CB_HIT:
2345 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2346 ? i : 0;
2347 case SSL_CTRL_SESS_MISSES:
2348 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2349 ? i : 0;
2350 case SSL_CTRL_SESS_TIMEOUTS:
2351 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2352 ? i : 0;
2353 case SSL_CTRL_SESS_CACHE_FULL:
2354 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2355 ? i : 0;
2356 case SSL_CTRL_MODE:
2357 return (ctx->mode |= larg);
2358 case SSL_CTRL_CLEAR_MODE:
2359 return (ctx->mode &= ~larg);
2360 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2361 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2362 return 0;
2363 ctx->max_send_fragment = larg;
2364 if (ctx->max_send_fragment < ctx->split_send_fragment)
2365 ctx->split_send_fragment = ctx->max_send_fragment;
2366 return 1;
2367 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2368 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2369 return 0;
2370 ctx->split_send_fragment = larg;
2371 return 1;
2372 case SSL_CTRL_SET_MAX_PIPELINES:
2373 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2374 return 0;
2375 ctx->max_pipelines = larg;
2376 return 1;
2377 case SSL_CTRL_CERT_FLAGS:
2378 return (ctx->cert->cert_flags |= larg);
2379 case SSL_CTRL_CLEAR_CERT_FLAGS:
2380 return (ctx->cert->cert_flags &= ~larg);
2381 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2382 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2383 && ssl_set_version_bound(ctx->method->version, (int)larg,
2384 &ctx->min_proto_version);
2385 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2386 return ctx->min_proto_version;
2387 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2388 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2389 && ssl_set_version_bound(ctx->method->version, (int)larg,
2390 &ctx->max_proto_version);
2391 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2392 return ctx->max_proto_version;
2393 default:
2394 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2395 }
2396 }
2397
2398 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2399 {
2400 switch (cmd) {
2401 case SSL_CTRL_SET_MSG_CALLBACK:
2402 ctx->msg_callback = (void (*)
2403 (int write_p, int version, int content_type,
2404 const void *buf, size_t len, SSL *ssl,
2405 void *arg))(fp);
2406 return 1;
2407
2408 default:
2409 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2410 }
2411 }
2412
2413 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2414 {
2415 if (a->id > b->id)
2416 return 1;
2417 if (a->id < b->id)
2418 return -1;
2419 return 0;
2420 }
2421
2422 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2423 const SSL_CIPHER *const *bp)
2424 {
2425 if ((*ap)->id > (*bp)->id)
2426 return 1;
2427 if ((*ap)->id < (*bp)->id)
2428 return -1;
2429 return 0;
2430 }
2431
2432 /** return a STACK of the ciphers available for the SSL and in order of
2433 * preference */
2434 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2435 {
2436 if (s != NULL) {
2437 if (s->cipher_list != NULL) {
2438 return s->cipher_list;
2439 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2440 return s->ctx->cipher_list;
2441 }
2442 }
2443 return NULL;
2444 }
2445
2446 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2447 {
2448 if ((s == NULL) || (s->session == NULL) || !s->server)
2449 return NULL;
2450 return s->session->ciphers;
2451 }
2452
2453 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2454 {
2455 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2456 int i;
2457
2458 ciphers = SSL_get_ciphers(s);
2459 if (!ciphers)
2460 return NULL;
2461 if (!ssl_set_client_disabled(s))
2462 return NULL;
2463 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2464 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2465 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2466 if (!sk)
2467 sk = sk_SSL_CIPHER_new_null();
2468 if (!sk)
2469 return NULL;
2470 if (!sk_SSL_CIPHER_push(sk, c)) {
2471 sk_SSL_CIPHER_free(sk);
2472 return NULL;
2473 }
2474 }
2475 }
2476 return sk;
2477 }
2478
2479 /** return a STACK of the ciphers available for the SSL and in order of
2480 * algorithm id */
2481 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2482 {
2483 if (s != NULL) {
2484 if (s->cipher_list_by_id != NULL) {
2485 return s->cipher_list_by_id;
2486 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2487 return s->ctx->cipher_list_by_id;
2488 }
2489 }
2490 return NULL;
2491 }
2492
2493 /** The old interface to get the same thing as SSL_get_ciphers() */
2494 const char *SSL_get_cipher_list(const SSL *s, int n)
2495 {
2496 const SSL_CIPHER *c;
2497 STACK_OF(SSL_CIPHER) *sk;
2498
2499 if (s == NULL)
2500 return NULL;
2501 sk = SSL_get_ciphers(s);
2502 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2503 return NULL;
2504 c = sk_SSL_CIPHER_value(sk, n);
2505 if (c == NULL)
2506 return NULL;
2507 return c->name;
2508 }
2509
2510 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2511 * preference */
2512 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2513 {
2514 if (ctx != NULL)
2515 return ctx->cipher_list;
2516 return NULL;
2517 }
2518
2519 /** specify the ciphers to be used by default by the SSL_CTX */
2520 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2521 {
2522 STACK_OF(SSL_CIPHER) *sk;
2523
2524 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2525 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2526 ctx->cert);
2527 /*
2528 * ssl_create_cipher_list may return an empty stack if it was unable to
2529 * find a cipher matching the given rule string (for example if the rule
2530 * string specifies a cipher which has been disabled). This is not an
2531 * error as far as ssl_create_cipher_list is concerned, and hence
2532 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2533 */
2534 if (sk == NULL)
2535 return 0;
2536 else if (sk_SSL_CIPHER_num(sk) == 0) {
2537 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2538 return 0;
2539 }
2540 return 1;
2541 }
2542
2543 /** specify the ciphers to be used by the SSL */
2544 int SSL_set_cipher_list(SSL *s, const char *str)
2545 {
2546 STACK_OF(SSL_CIPHER) *sk;
2547
2548 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2549 &s->cipher_list, &s->cipher_list_by_id, str,
2550 s->cert);
2551 /* see comment in SSL_CTX_set_cipher_list */
2552 if (sk == NULL)
2553 return 0;
2554 else if (sk_SSL_CIPHER_num(sk) == 0) {
2555 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2556 return 0;
2557 }
2558 return 1;
2559 }
2560
2561 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2562 {
2563 char *p;
2564 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2565 const SSL_CIPHER *c;
2566 int i;
2567
2568 if (!s->server
2569 || s->session == NULL
2570 || s->session->ciphers == NULL
2571 || size < 2)
2572 return NULL;
2573
2574 p = buf;
2575 clntsk = s->session->ciphers;
2576 srvrsk = SSL_get_ciphers(s);
2577 if (clntsk == NULL || srvrsk == NULL)
2578 return NULL;
2579
2580 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2581 return NULL;
2582
2583 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2584 int n;
2585
2586 c = sk_SSL_CIPHER_value(clntsk, i);
2587 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2588 continue;
2589
2590 n = strlen(c->name);
2591 if (n + 1 > size) {
2592 if (p != buf)
2593 --p;
2594 *p = '\0';
2595 return buf;
2596 }
2597 strcpy(p, c->name);
2598 p += n;
2599 *(p++) = ':';
2600 size -= n + 1;
2601 }
2602 p[-1] = '\0';
2603 return buf;
2604 }
2605
2606 /** return a servername extension value if provided in Client Hello, or NULL.
2607 * So far, only host_name types are defined (RFC 3546).
2608 */
2609
2610 const char *SSL_get_servername(const SSL *s, const int type)
2611 {
2612 if (type != TLSEXT_NAMETYPE_host_name)
2613 return NULL;
2614
2615 /*
2616 * TODO(OpenSSL1.2) clean up this compat mess. This API is
2617 * currently a mix of "what did I configure" and "what did the
2618 * peer send" and "what was actually negotiated"; we should have
2619 * a clear distinction amongst those three.
2620 */
2621 if (SSL_in_init(s)) {
2622 if (s->hit)
2623 return s->session->ext.hostname;
2624 return s->ext.hostname;
2625 }
2626 return (s->session != NULL && s->ext.hostname == NULL) ?
2627 s->session->ext.hostname : s->ext.hostname;
2628 }
2629
2630 int SSL_get_servername_type(const SSL *s)
2631 {
2632 if (s->session
2633 && (!s->ext.hostname ? s->session->
2634 ext.hostname : s->ext.hostname))
2635 return TLSEXT_NAMETYPE_host_name;
2636 return -1;
2637 }
2638
2639 /*
2640 * SSL_select_next_proto implements the standard protocol selection. It is
2641 * expected that this function is called from the callback set by
2642 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2643 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2644 * not included in the length. A byte string of length 0 is invalid. No byte
2645 * string may be truncated. The current, but experimental algorithm for
2646 * selecting the protocol is: 1) If the server doesn't support NPN then this
2647 * is indicated to the callback. In this case, the client application has to
2648 * abort the connection or have a default application level protocol. 2) If
2649 * the server supports NPN, but advertises an empty list then the client
2650 * selects the first protocol in its list, but indicates via the API that this
2651 * fallback case was enacted. 3) Otherwise, the client finds the first
2652 * protocol in the server's list that it supports and selects this protocol.
2653 * This is because it's assumed that the server has better information about
2654 * which protocol a client should use. 4) If the client doesn't support any
2655 * of the server's advertised protocols, then this is treated the same as
2656 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2657 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2658 */
2659 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2660 const unsigned char *server,
2661 unsigned int server_len,
2662 const unsigned char *client, unsigned int client_len)
2663 {
2664 unsigned int i, j;
2665 const unsigned char *result;
2666 int status = OPENSSL_NPN_UNSUPPORTED;
2667
2668 /*
2669 * For each protocol in server preference order, see if we support it.
2670 */
2671 for (i = 0; i < server_len;) {
2672 for (j = 0; j < client_len;) {
2673 if (server[i] == client[j] &&
2674 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2675 /* We found a match */
2676 result = &server[i];
2677 status = OPENSSL_NPN_NEGOTIATED;
2678 goto found;
2679 }
2680 j += client[j];
2681 j++;
2682 }
2683 i += server[i];
2684 i++;
2685 }
2686
2687 /* There's no overlap between our protocols and the server's list. */
2688 result = client;
2689 status = OPENSSL_NPN_NO_OVERLAP;
2690
2691 found:
2692 *out = (unsigned char *)result + 1;
2693 *outlen = result[0];
2694 return status;
2695 }
2696
2697 #ifndef OPENSSL_NO_NEXTPROTONEG
2698 /*
2699 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2700 * client's requested protocol for this connection and returns 0. If the
2701 * client didn't request any protocol, then *data is set to NULL. Note that
2702 * the client can request any protocol it chooses. The value returned from
2703 * this function need not be a member of the list of supported protocols
2704 * provided by the callback.
2705 */
2706 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2707 unsigned *len)
2708 {
2709 *data = s->ext.npn;
2710 if (!*data) {
2711 *len = 0;
2712 } else {
2713 *len = (unsigned int)s->ext.npn_len;
2714 }
2715 }
2716
2717 /*
2718 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2719 * a TLS server needs a list of supported protocols for Next Protocol
2720 * Negotiation. The returned list must be in wire format. The list is
2721 * returned by setting |out| to point to it and |outlen| to its length. This
2722 * memory will not be modified, but one should assume that the SSL* keeps a
2723 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2724 * wishes to advertise. Otherwise, no such extension will be included in the
2725 * ServerHello.
2726 */
2727 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2728 SSL_CTX_npn_advertised_cb_func cb,
2729 void *arg)
2730 {
2731 ctx->ext.npn_advertised_cb = cb;
2732 ctx->ext.npn_advertised_cb_arg = arg;
2733 }
2734
2735 /*
2736 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2737 * client needs to select a protocol from the server's provided list. |out|
2738 * must be set to point to the selected protocol (which may be within |in|).
2739 * The length of the protocol name must be written into |outlen|. The
2740 * server's advertised protocols are provided in |in| and |inlen|. The
2741 * callback can assume that |in| is syntactically valid. The client must
2742 * select a protocol. It is fatal to the connection if this callback returns
2743 * a value other than SSL_TLSEXT_ERR_OK.
2744 */
2745 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2746 SSL_CTX_npn_select_cb_func cb,
2747 void *arg)
2748 {
2749 ctx->ext.npn_select_cb = cb;
2750 ctx->ext.npn_select_cb_arg = arg;
2751 }
2752 #endif
2753
2754 /*
2755 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2756 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2757 * length-prefixed strings). Returns 0 on success.
2758 */
2759 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2760 unsigned int protos_len)
2761 {
2762 OPENSSL_free(ctx->ext.alpn);
2763 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2764 if (ctx->ext.alpn == NULL) {
2765 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2766 return 1;
2767 }
2768 ctx->ext.alpn_len = protos_len;
2769
2770 return 0;
2771 }
2772
2773 /*
2774 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2775 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2776 * length-prefixed strings). Returns 0 on success.
2777 */
2778 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2779 unsigned int protos_len)
2780 {
2781 OPENSSL_free(ssl->ext.alpn);
2782 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2783 if (ssl->ext.alpn == NULL) {
2784 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2785 return 1;
2786 }
2787 ssl->ext.alpn_len = protos_len;
2788
2789 return 0;
2790 }
2791
2792 /*
2793 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2794 * called during ClientHello processing in order to select an ALPN protocol
2795 * from the client's list of offered protocols.
2796 */
2797 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2798 SSL_CTX_alpn_select_cb_func cb,
2799 void *arg)
2800 {
2801 ctx->ext.alpn_select_cb = cb;
2802 ctx->ext.alpn_select_cb_arg = arg;
2803 }
2804
2805 /*
2806 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2807 * On return it sets |*data| to point to |*len| bytes of protocol name
2808 * (not including the leading length-prefix byte). If the server didn't
2809 * respond with a negotiated protocol then |*len| will be zero.
2810 */
2811 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2812 unsigned int *len)
2813 {
2814 *data = NULL;
2815 if (ssl->s3)
2816 *data = ssl->s3->alpn_selected;
2817 if (*data == NULL)
2818 *len = 0;
2819 else
2820 *len = (unsigned int)ssl->s3->alpn_selected_len;
2821 }
2822
2823 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2824 const char *label, size_t llen,
2825 const unsigned char *context, size_t contextlen,
2826 int use_context)
2827 {
2828 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2829 return -1;
2830
2831 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2832 llen, context,
2833 contextlen, use_context);
2834 }
2835
2836 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2837 const char *label, size_t llen,
2838 const unsigned char *context,
2839 size_t contextlen)
2840 {
2841 if (s->version != TLS1_3_VERSION)
2842 return 0;
2843
2844 return tls13_export_keying_material_early(s, out, olen, label, llen,
2845 context, contextlen);
2846 }
2847
2848 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2849 {
2850 const unsigned char *session_id = a->session_id;
2851 unsigned long l;
2852 unsigned char tmp_storage[4];
2853
2854 if (a->session_id_length < sizeof(tmp_storage)) {
2855 memset(tmp_storage, 0, sizeof(tmp_storage));
2856 memcpy(tmp_storage, a->session_id, a->session_id_length);
2857 session_id = tmp_storage;
2858 }
2859
2860 l = (unsigned long)
2861 ((unsigned long)session_id[0]) |
2862 ((unsigned long)session_id[1] << 8L) |
2863 ((unsigned long)session_id[2] << 16L) |
2864 ((unsigned long)session_id[3] << 24L);
2865 return l;
2866 }
2867
2868 /*
2869 * NB: If this function (or indeed the hash function which uses a sort of
2870 * coarser function than this one) is changed, ensure
2871 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2872 * being able to construct an SSL_SESSION that will collide with any existing
2873 * session with a matching session ID.
2874 */
2875 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2876 {
2877 if (a->ssl_version != b->ssl_version)
2878 return 1;
2879 if (a->session_id_length != b->session_id_length)
2880 return 1;
2881 return memcmp(a->session_id, b->session_id, a->session_id_length);
2882 }
2883
2884 /*
2885 * These wrapper functions should remain rather than redeclaring
2886 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2887 * variable. The reason is that the functions aren't static, they're exposed
2888 * via ssl.h.
2889 */
2890
2891 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2892 {
2893 SSL_CTX *ret = NULL;
2894
2895 if (meth == NULL) {
2896 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2897 return NULL;
2898 }
2899
2900 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2901 return NULL;
2902
2903 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2904 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2905 goto err;
2906 }
2907 ret = OPENSSL_zalloc(sizeof(*ret));
2908 if (ret == NULL)
2909 goto err;
2910
2911 ret->method = meth;
2912 ret->min_proto_version = 0;
2913 ret->max_proto_version = 0;
2914 ret->mode = SSL_MODE_AUTO_RETRY;
2915 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2916 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2917 /* We take the system default. */
2918 ret->session_timeout = meth->get_timeout();
2919 ret->references = 1;
2920 ret->lock = CRYPTO_THREAD_lock_new();
2921 if (ret->lock == NULL) {
2922 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2923 OPENSSL_free(ret);
2924 return NULL;
2925 }
2926 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2927 ret->verify_mode = SSL_VERIFY_NONE;
2928 if ((ret->cert = ssl_cert_new()) == NULL)
2929 goto err;
2930
2931 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2932 if (ret->sessions == NULL)
2933 goto err;
2934 ret->cert_store = X509_STORE_new();
2935 if (ret->cert_store == NULL)
2936 goto err;
2937 #ifndef OPENSSL_NO_CT
2938 ret->ctlog_store = CTLOG_STORE_new();
2939 if (ret->ctlog_store == NULL)
2940 goto err;
2941 #endif
2942
2943 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES))
2944 goto err;
2945
2946 if (!ssl_create_cipher_list(ret->method,
2947 ret->tls13_ciphersuites,
2948 &ret->cipher_list, &ret->cipher_list_by_id,
2949 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2950 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2951 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2952 goto err2;
2953 }
2954
2955 ret->param = X509_VERIFY_PARAM_new();
2956 if (ret->param == NULL)
2957 goto err;
2958
2959 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2960 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2961 goto err2;
2962 }
2963 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2964 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2965 goto err2;
2966 }
2967
2968 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2969 goto err;
2970
2971 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2972 goto err;
2973
2974 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
2975 goto err;
2976
2977 /* No compression for DTLS */
2978 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2979 ret->comp_methods = SSL_COMP_get_compression_methods();
2980
2981 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2982 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2983
2984 /* Setup RFC5077 ticket keys */
2985 if ((RAND_bytes(ret->ext.tick_key_name,
2986 sizeof(ret->ext.tick_key_name)) <= 0)
2987 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key,
2988 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
2989 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key,
2990 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
2991 ret->options |= SSL_OP_NO_TICKET;
2992
2993 if (RAND_priv_bytes(ret->ext.cookie_hmac_key,
2994 sizeof(ret->ext.cookie_hmac_key)) <= 0)
2995 goto err;
2996
2997 #ifndef OPENSSL_NO_SRP
2998 if (!SSL_CTX_SRP_CTX_init(ret))
2999 goto err;
3000 #endif
3001 #ifndef OPENSSL_NO_ENGINE
3002 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3003 # define eng_strx(x) #x
3004 # define eng_str(x) eng_strx(x)
3005 /* Use specific client engine automatically... ignore errors */
3006 {
3007 ENGINE *eng;
3008 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3009 if (!eng) {
3010 ERR_clear_error();
3011 ENGINE_load_builtin_engines();
3012 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3013 }
3014 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3015 ERR_clear_error();
3016 }
3017 # endif
3018 #endif
3019 /*
3020 * Default is to connect to non-RI servers. When RI is more widely
3021 * deployed might change this.
3022 */
3023 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3024 /*
3025 * Disable compression by default to prevent CRIME. Applications can
3026 * re-enable compression by configuring
3027 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3028 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3029 * middlebox compatibility by default. This may be disabled by default in
3030 * a later OpenSSL version.
3031 */
3032 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3033
3034 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3035
3036 /*
3037 * We cannot usefully set a default max_early_data here (which gets
3038 * propagated in SSL_new(), for the following reason: setting the
3039 * SSL field causes tls_construct_stoc_early_data() to tell the
3040 * client that early data will be accepted when constructing a TLS 1.3
3041 * session ticket, and the client will accordingly send us early data
3042 * when using that ticket (if the client has early data to send).
3043 * However, in order for the early data to actually be consumed by
3044 * the application, the application must also have calls to
3045 * SSL_read_early_data(); otherwise we'll just skip past the early data
3046 * and ignore it. So, since the application must add calls to
3047 * SSL_read_early_data(), we also require them to add
3048 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3049 * eliminating the bandwidth-wasting early data in the case described
3050 * above.
3051 */
3052 ret->max_early_data = 0;
3053
3054 /*
3055 * Default recv_max_early_data is a fully loaded single record. Could be
3056 * split across multiple records in practice. We set this differently to
3057 * max_early_data so that, in the default case, we do not advertise any
3058 * support for early_data, but if a client were to send us some (e.g.
3059 * because of an old, stale ticket) then we will tolerate it and skip over
3060 * it.
3061 */
3062 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3063
3064 /* By default we send two session tickets automatically in TLSv1.3 */
3065 ret->num_tickets = 2;
3066
3067 ssl_ctx_system_config(ret);
3068
3069 return ret;
3070 err:
3071 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3072 err2:
3073 SSL_CTX_free(ret);
3074 return NULL;
3075 }
3076
3077 int SSL_CTX_up_ref(SSL_CTX *ctx)
3078 {
3079 int i;
3080
3081 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3082 return 0;
3083
3084 REF_PRINT_COUNT("SSL_CTX", ctx);
3085 REF_ASSERT_ISNT(i < 2);
3086 return ((i > 1) ? 1 : 0);
3087 }
3088
3089 void SSL_CTX_free(SSL_CTX *a)
3090 {
3091 int i;
3092
3093 if (a == NULL)
3094 return;
3095
3096 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3097 REF_PRINT_COUNT("SSL_CTX", a);
3098 if (i > 0)
3099 return;
3100 REF_ASSERT_ISNT(i < 0);
3101
3102 X509_VERIFY_PARAM_free(a->param);
3103 dane_ctx_final(&a->dane);
3104
3105 /*
3106 * Free internal session cache. However: the remove_cb() may reference
3107 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3108 * after the sessions were flushed.
3109 * As the ex_data handling routines might also touch the session cache,
3110 * the most secure solution seems to be: empty (flush) the cache, then
3111 * free ex_data, then finally free the cache.
3112 * (See ticket [openssl.org #212].)
3113 */
3114 if (a->sessions != NULL)
3115 SSL_CTX_flush_sessions(a, 0);
3116
3117 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3118 lh_SSL_SESSION_free(a->sessions);
3119 X509_STORE_free(a->cert_store);
3120 #ifndef OPENSSL_NO_CT
3121 CTLOG_STORE_free(a->ctlog_store);
3122 #endif
3123 sk_SSL_CIPHER_free(a->cipher_list);
3124 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3125 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3126 ssl_cert_free(a->cert);
3127 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3128 sk_X509_pop_free(a->extra_certs, X509_free);
3129 a->comp_methods = NULL;
3130 #ifndef OPENSSL_NO_SRTP
3131 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3132 #endif
3133 #ifndef OPENSSL_NO_SRP
3134 SSL_CTX_SRP_CTX_free(a);
3135 #endif
3136 #ifndef OPENSSL_NO_ENGINE
3137 ENGINE_finish(a->client_cert_engine);
3138 #endif
3139
3140 #ifndef OPENSSL_NO_EC
3141 OPENSSL_free(a->ext.ecpointformats);
3142 OPENSSL_free(a->ext.supportedgroups);
3143 #endif
3144 OPENSSL_free(a->ext.alpn);
3145 OPENSSL_secure_free(a->ext.secure);
3146
3147 CRYPTO_THREAD_lock_free(a->lock);
3148
3149 OPENSSL_free(a);
3150 }
3151
3152 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3153 {
3154 ctx->default_passwd_callback = cb;
3155 }
3156
3157 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3158 {
3159 ctx->default_passwd_callback_userdata = u;
3160 }
3161
3162 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3163 {
3164 return ctx->default_passwd_callback;
3165 }
3166
3167 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3168 {
3169 return ctx->default_passwd_callback_userdata;
3170 }
3171
3172 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3173 {
3174 s->default_passwd_callback = cb;
3175 }
3176
3177 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3178 {
3179 s->default_passwd_callback_userdata = u;
3180 }
3181
3182 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3183 {
3184 return s->default_passwd_callback;
3185 }
3186
3187 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3188 {
3189 return s->default_passwd_callback_userdata;
3190 }
3191
3192 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3193 int (*cb) (X509_STORE_CTX *, void *),
3194 void *arg)
3195 {
3196 ctx->app_verify_callback = cb;
3197 ctx->app_verify_arg = arg;
3198 }
3199
3200 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3201 int (*cb) (int, X509_STORE_CTX *))
3202 {
3203 ctx->verify_mode = mode;
3204 ctx->default_verify_callback = cb;
3205 }
3206
3207 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3208 {
3209 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3210 }
3211
3212 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3213 {
3214 ssl_cert_set_cert_cb(c->cert, cb, arg);
3215 }
3216
3217 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3218 {
3219 ssl_cert_set_cert_cb(s->cert, cb, arg);
3220 }
3221
3222 void ssl_set_masks(SSL *s)
3223 {
3224 CERT *c = s->cert;
3225 uint32_t *pvalid = s->s3->tmp.valid_flags;
3226 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3227 unsigned long mask_k, mask_a;
3228 #ifndef OPENSSL_NO_EC
3229 int have_ecc_cert, ecdsa_ok;
3230 #endif
3231 if (c == NULL)
3232 return;
3233
3234 #ifndef OPENSSL_NO_DH
3235 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3236 #else
3237 dh_tmp = 0;
3238 #endif
3239
3240 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3241 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3242 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3243 #ifndef OPENSSL_NO_EC
3244 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3245 #endif
3246 mask_k = 0;
3247 mask_a = 0;
3248
3249 #ifdef CIPHER_DEBUG
3250 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3251 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3252 #endif
3253
3254 #ifndef OPENSSL_NO_GOST
3255 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3256 mask_k |= SSL_kGOST;
3257 mask_a |= SSL_aGOST12;
3258 }
3259 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3260 mask_k |= SSL_kGOST;
3261 mask_a |= SSL_aGOST12;
3262 }
3263 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3264 mask_k |= SSL_kGOST;
3265 mask_a |= SSL_aGOST01;
3266 }
3267 #endif
3268
3269 if (rsa_enc)
3270 mask_k |= SSL_kRSA;
3271
3272 if (dh_tmp)
3273 mask_k |= SSL_kDHE;
3274
3275 /*
3276 * If we only have an RSA-PSS certificate allow RSA authentication
3277 * if TLS 1.2 and peer supports it.
3278 */
3279
3280 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3281 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3282 && TLS1_get_version(s) == TLS1_2_VERSION))
3283 mask_a |= SSL_aRSA;
3284
3285 if (dsa_sign) {
3286 mask_a |= SSL_aDSS;
3287 }
3288
3289 mask_a |= SSL_aNULL;
3290
3291 /*
3292 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3293 * depending on the key usage extension.
3294 */
3295 #ifndef OPENSSL_NO_EC
3296 if (have_ecc_cert) {
3297 uint32_t ex_kusage;
3298 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3299 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3300 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3301 ecdsa_ok = 0;
3302 if (ecdsa_ok)
3303 mask_a |= SSL_aECDSA;
3304 }
3305 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3306 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3307 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3308 && TLS1_get_version(s) == TLS1_2_VERSION)
3309 mask_a |= SSL_aECDSA;
3310
3311 /* Allow Ed448 for TLS 1.2 if peer supports it */
3312 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3313 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3314 && TLS1_get_version(s) == TLS1_2_VERSION)
3315 mask_a |= SSL_aECDSA;
3316 #endif
3317
3318 #ifndef OPENSSL_NO_EC
3319 mask_k |= SSL_kECDHE;
3320 #endif
3321
3322 #ifndef OPENSSL_NO_PSK
3323 mask_k |= SSL_kPSK;
3324 mask_a |= SSL_aPSK;
3325 if (mask_k & SSL_kRSA)
3326 mask_k |= SSL_kRSAPSK;
3327 if (mask_k & SSL_kDHE)
3328 mask_k |= SSL_kDHEPSK;
3329 if (mask_k & SSL_kECDHE)
3330 mask_k |= SSL_kECDHEPSK;
3331 #endif
3332
3333 s->s3->tmp.mask_k = mask_k;
3334 s->s3->tmp.mask_a = mask_a;
3335 }
3336
3337 #ifndef OPENSSL_NO_EC
3338
3339 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3340 {
3341 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3342 /* key usage, if present, must allow signing */
3343 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3344 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3345 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3346 return 0;
3347 }
3348 }
3349 return 1; /* all checks are ok */
3350 }
3351
3352 #endif
3353
3354 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3355 size_t *serverinfo_length)
3356 {
3357 CERT_PKEY *cpk = s->s3->tmp.cert;
3358 *serverinfo_length = 0;
3359
3360 if (cpk == NULL || cpk->serverinfo == NULL)
3361 return 0;
3362
3363 *serverinfo = cpk->serverinfo;
3364 *serverinfo_length = cpk->serverinfo_length;
3365 return 1;
3366 }
3367
3368 void ssl_update_cache(SSL *s, int mode)
3369 {
3370 int i;
3371
3372 /*
3373 * If the session_id_length is 0, we are not supposed to cache it, and it
3374 * would be rather hard to do anyway :-)
3375 */
3376 if (s->session->session_id_length == 0)
3377 return;
3378
3379 /*
3380 * If sid_ctx_length is 0 there is no specific application context
3381 * associated with this session, so when we try to resume it and
3382 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3383 * indication that this is actually a session for the proper application
3384 * context, and the *handshake* will fail, not just the resumption attempt.
3385 * Do not cache (on the server) these sessions that are not resumable
3386 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3387 */
3388 if (s->server && s->session->sid_ctx_length == 0
3389 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3390 return;
3391
3392 i = s->session_ctx->session_cache_mode;
3393 if ((i & mode) != 0
3394 && (!s->hit || SSL_IS_TLS13(s))) {
3395 /*
3396 * Add the session to the internal cache. In server side TLSv1.3 we
3397 * normally don't do this because by default it's a full stateless ticket
3398 * with only a dummy session id so there is no reason to cache it,
3399 * unless:
3400 * - we are doing early_data, in which case we cache so that we can
3401 * detect replays
3402 * - the application has set a remove_session_cb so needs to know about
3403 * session timeout events
3404 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3405 */
3406 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3407 && (!SSL_IS_TLS13(s)
3408 || !s->server
3409 || (s->max_early_data > 0
3410 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3411 || s->session_ctx->remove_session_cb != NULL
3412 || (s->options & SSL_OP_NO_TICKET) != 0))
3413 SSL_CTX_add_session(s->session_ctx, s->session);
3414
3415 /*
3416 * Add the session to the external cache. We do this even in server side
3417 * TLSv1.3 without early data because some applications just want to
3418 * know about the creation of a session and aren't doing a full cache.
3419 */
3420 if (s->session_ctx->new_session_cb != NULL) {
3421 SSL_SESSION_up_ref(s->session);
3422 if (!s->session_ctx->new_session_cb(s, s->session))
3423 SSL_SESSION_free(s->session);
3424 }
3425 }
3426
3427 /* auto flush every 255 connections */
3428 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3429 int *stat, val;
3430 if (mode & SSL_SESS_CACHE_CLIENT)
3431 stat = &s->session_ctx->stats.sess_connect_good;
3432 else
3433 stat = &s->session_ctx->stats.sess_accept_good;
3434 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3435 && (val & 0xff) == 0xff)
3436 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3437 }
3438 }
3439
3440 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3441 {
3442 return ctx->method;
3443 }
3444
3445 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3446 {
3447 return s->method;
3448 }
3449
3450 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3451 {
3452 int ret = 1;
3453
3454 if (s->method != meth) {
3455 const SSL_METHOD *sm = s->method;
3456 int (*hf) (SSL *) = s->handshake_func;
3457
3458 if (sm->version == meth->version)
3459 s->method = meth;
3460 else {
3461 sm->ssl_free(s);
3462 s->method = meth;
3463 ret = s->method->ssl_new(s);
3464 }
3465
3466 if (hf == sm->ssl_connect)
3467 s->handshake_func = meth->ssl_connect;
3468 else if (hf == sm->ssl_accept)
3469 s->handshake_func = meth->ssl_accept;
3470 }
3471 return ret;
3472 }
3473
3474 int SSL_get_error(const SSL *s, int i)
3475 {
3476 int reason;
3477 unsigned long l;
3478 BIO *bio;
3479
3480 if (i > 0)
3481 return SSL_ERROR_NONE;
3482
3483 /*
3484 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3485 * where we do encode the error
3486 */
3487 if ((l = ERR_peek_error()) != 0) {
3488 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3489 return SSL_ERROR_SYSCALL;
3490 else
3491 return SSL_ERROR_SSL;
3492 }
3493
3494 if (SSL_want_read(s)) {
3495 bio = SSL_get_rbio(s);
3496 if (BIO_should_read(bio))
3497 return SSL_ERROR_WANT_READ;
3498 else if (BIO_should_write(bio))
3499 /*
3500 * This one doesn't make too much sense ... We never try to write
3501 * to the rbio, and an application program where rbio and wbio
3502 * are separate couldn't even know what it should wait for.
3503 * However if we ever set s->rwstate incorrectly (so that we have
3504 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3505 * wbio *are* the same, this test works around that bug; so it
3506 * might be safer to keep it.
3507 */
3508 return SSL_ERROR_WANT_WRITE;
3509 else if (BIO_should_io_special(bio)) {
3510 reason = BIO_get_retry_reason(bio);
3511 if (reason == BIO_RR_CONNECT)
3512 return SSL_ERROR_WANT_CONNECT;
3513 else if (reason == BIO_RR_ACCEPT)
3514 return SSL_ERROR_WANT_ACCEPT;
3515 else
3516 return SSL_ERROR_SYSCALL; /* unknown */
3517 }
3518 }
3519
3520 if (SSL_want_write(s)) {
3521 /* Access wbio directly - in order to use the buffered bio if present */
3522 bio = s->wbio;
3523 if (BIO_should_write(bio))
3524 return SSL_ERROR_WANT_WRITE;
3525 else if (BIO_should_read(bio))
3526 /*
3527 * See above (SSL_want_read(s) with BIO_should_write(bio))
3528 */
3529 return SSL_ERROR_WANT_READ;
3530 else if (BIO_should_io_special(bio)) {
3531 reason = BIO_get_retry_reason(bio);
3532 if (reason == BIO_RR_CONNECT)
3533 return SSL_ERROR_WANT_CONNECT;
3534 else if (reason == BIO_RR_ACCEPT)
3535 return SSL_ERROR_WANT_ACCEPT;
3536 else
3537 return SSL_ERROR_SYSCALL;
3538 }
3539 }
3540 if (SSL_want_x509_lookup(s))
3541 return SSL_ERROR_WANT_X509_LOOKUP;
3542 if (SSL_want_async(s))
3543 return SSL_ERROR_WANT_ASYNC;
3544 if (SSL_want_async_job(s))
3545 return SSL_ERROR_WANT_ASYNC_JOB;
3546 if (SSL_want_client_hello_cb(s))
3547 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3548
3549 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3550 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3551 return SSL_ERROR_ZERO_RETURN;
3552
3553 return SSL_ERROR_SYSCALL;
3554 }
3555
3556 static int ssl_do_handshake_intern(void *vargs)
3557 {
3558 struct ssl_async_args *args;
3559 SSL *s;
3560
3561 args = (struct ssl_async_args *)vargs;
3562 s = args->s;
3563
3564 return s->handshake_func(s);
3565 }
3566
3567 int SSL_do_handshake(SSL *s)
3568 {
3569 int ret = 1;
3570
3571 if (s->handshake_func == NULL) {
3572 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3573 return -1;
3574 }
3575
3576 ossl_statem_check_finish_init(s, -1);
3577
3578 s->method->ssl_renegotiate_check(s, 0);
3579
3580 if (SSL_is_server(s)) {
3581 /* clear SNI settings at server-side */
3582 OPENSSL_free(s->ext.hostname);
3583 s->ext.hostname = NULL;
3584 }
3585
3586 if (SSL_in_init(s) || SSL_in_before(s)) {
3587 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3588 struct ssl_async_args args;
3589
3590 args.s = s;
3591
3592 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3593 } else {
3594 ret = s->handshake_func(s);
3595 }
3596 }
3597 return ret;
3598 }
3599
3600 void SSL_set_accept_state(SSL *s)
3601 {
3602 s->server = 1;
3603 s->shutdown = 0;
3604 ossl_statem_clear(s);
3605 s->handshake_func = s->method->ssl_accept;
3606 clear_ciphers(s);
3607 }
3608
3609 void SSL_set_connect_state(SSL *s)
3610 {
3611 s->server = 0;
3612 s->shutdown = 0;
3613 ossl_statem_clear(s);
3614 s->handshake_func = s->method->ssl_connect;
3615 clear_ciphers(s);
3616 }
3617
3618 int ssl_undefined_function(SSL *s)
3619 {
3620 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3621 return 0;
3622 }
3623
3624 int ssl_undefined_void_function(void)
3625 {
3626 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3627 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3628 return 0;
3629 }
3630
3631 int ssl_undefined_const_function(const SSL *s)
3632 {
3633 return 0;
3634 }
3635
3636 const SSL_METHOD *ssl_bad_method(int ver)
3637 {
3638 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3639 return NULL;
3640 }
3641
3642 const char *ssl_protocol_to_string(int version)
3643 {
3644 switch(version)
3645 {
3646 case TLS1_3_VERSION:
3647 return "TLSv1.3";
3648
3649 case TLS1_2_VERSION:
3650 return "TLSv1.2";
3651
3652 case TLS1_1_VERSION:
3653 return "TLSv1.1";
3654
3655 case TLS1_VERSION:
3656 return "TLSv1";
3657
3658 case SSL3_VERSION:
3659 return "SSLv3";
3660
3661 case DTLS1_BAD_VER:
3662 return "DTLSv0.9";
3663
3664 case DTLS1_VERSION:
3665 return "DTLSv1";
3666
3667 case DTLS1_2_VERSION:
3668 return "DTLSv1.2";
3669
3670 default:
3671 return "unknown";
3672 }
3673 }
3674
3675 const char *SSL_get_version(const SSL *s)
3676 {
3677 return ssl_protocol_to_string(s->version);
3678 }
3679
3680 SSL *SSL_dup(SSL *s)
3681 {
3682 STACK_OF(X509_NAME) *sk;
3683 X509_NAME *xn;
3684 SSL *ret;
3685 int i;
3686
3687 /* If we're not quiescent, just up_ref! */
3688 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3689 CRYPTO_UP_REF(&s->references, &i, s->lock);
3690 return s;
3691 }
3692
3693 /*
3694 * Otherwise, copy configuration state, and session if set.
3695 */
3696 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3697 return NULL;
3698
3699 if (s->session != NULL) {
3700 /*
3701 * Arranges to share the same session via up_ref. This "copies"
3702 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3703 */
3704 if (!SSL_copy_session_id(ret, s))
3705 goto err;
3706 } else {
3707 /*
3708 * No session has been established yet, so we have to expect that
3709 * s->cert or ret->cert will be changed later -- they should not both
3710 * point to the same object, and thus we can't use
3711 * SSL_copy_session_id.
3712 */
3713 if (!SSL_set_ssl_method(ret, s->method))
3714 goto err;
3715
3716 if (s->cert != NULL) {
3717 ssl_cert_free(ret->cert);
3718 ret->cert = ssl_cert_dup(s->cert);
3719 if (ret->cert == NULL)
3720 goto err;
3721 }
3722
3723 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3724 (int)s->sid_ctx_length))
3725 goto err;
3726 }
3727
3728 if (!ssl_dane_dup(ret, s))
3729 goto err;
3730 ret->version = s->version;
3731 ret->options = s->options;
3732 ret->mode = s->mode;
3733 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3734 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3735 ret->msg_callback = s->msg_callback;
3736 ret->msg_callback_arg = s->msg_callback_arg;
3737 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3738 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3739 ret->generate_session_id = s->generate_session_id;
3740
3741 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3742
3743 /* copy app data, a little dangerous perhaps */
3744 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3745 goto err;
3746
3747 /* setup rbio, and wbio */
3748 if (s->rbio != NULL) {
3749 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3750 goto err;
3751 }
3752 if (s->wbio != NULL) {
3753 if (s->wbio != s->rbio) {
3754 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3755 goto err;
3756 } else {
3757 BIO_up_ref(ret->rbio);
3758 ret->wbio = ret->rbio;
3759 }
3760 }
3761
3762 ret->server = s->server;
3763 if (s->handshake_func) {
3764 if (s->server)
3765 SSL_set_accept_state(ret);
3766 else
3767 SSL_set_connect_state(ret);
3768 }
3769 ret->shutdown = s->shutdown;
3770 ret->hit = s->hit;
3771
3772 ret->default_passwd_callback = s->default_passwd_callback;
3773 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3774
3775 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3776
3777 /* dup the cipher_list and cipher_list_by_id stacks */
3778 if (s->cipher_list != NULL) {
3779 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3780 goto err;
3781 }
3782 if (s->cipher_list_by_id != NULL)
3783 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3784 == NULL)
3785 goto err;
3786
3787 /* Dup the client_CA list */
3788 if (s->ca_names != NULL) {
3789 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3790 goto err;
3791 ret->ca_names = sk;
3792 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3793 xn = sk_X509_NAME_value(sk, i);
3794 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3795 X509_NAME_free(xn);
3796 goto err;
3797 }
3798 }
3799 }
3800 return ret;
3801
3802 err:
3803 SSL_free(ret);
3804 return NULL;
3805 }
3806
3807 void ssl_clear_cipher_ctx(SSL *s)
3808 {
3809 if (s->enc_read_ctx != NULL) {
3810 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3811 s->enc_read_ctx = NULL;
3812 }
3813 if (s->enc_write_ctx != NULL) {
3814 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3815 s->enc_write_ctx = NULL;
3816 }
3817 #ifndef OPENSSL_NO_COMP
3818 COMP_CTX_free(s->expand);
3819 s->expand = NULL;
3820 COMP_CTX_free(s->compress);
3821 s->compress = NULL;
3822 #endif
3823 }
3824
3825 X509 *SSL_get_certificate(const SSL *s)
3826 {
3827 if (s->cert != NULL)
3828 return s->cert->key->x509;
3829 else
3830 return NULL;
3831 }
3832
3833 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3834 {
3835 if (s->cert != NULL)
3836 return s->cert->key->privatekey;
3837 else
3838 return NULL;
3839 }
3840
3841 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3842 {
3843 if (ctx->cert != NULL)
3844 return ctx->cert->key->x509;
3845 else
3846 return NULL;
3847 }
3848
3849 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3850 {
3851 if (ctx->cert != NULL)
3852 return ctx->cert->key->privatekey;
3853 else
3854 return NULL;
3855 }
3856
3857 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3858 {
3859 if ((s->session != NULL) && (s->session->cipher != NULL))
3860 return s->session->cipher;
3861 return NULL;
3862 }
3863
3864 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3865 {
3866 return s->s3->tmp.new_cipher;
3867 }
3868
3869 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3870 {
3871 #ifndef OPENSSL_NO_COMP
3872 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3873 #else
3874 return NULL;
3875 #endif
3876 }
3877
3878 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3879 {
3880 #ifndef OPENSSL_NO_COMP
3881 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3882 #else
3883 return NULL;
3884 #endif
3885 }
3886
3887 int ssl_init_wbio_buffer(SSL *s)
3888 {
3889 BIO *bbio;
3890
3891 if (s->bbio != NULL) {
3892 /* Already buffered. */
3893 return 1;
3894 }
3895
3896 bbio = BIO_new(BIO_f_buffer());
3897 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3898 BIO_free(bbio);
3899 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3900 return 0;
3901 }
3902 s->bbio = bbio;
3903 s->wbio = BIO_push(bbio, s->wbio);
3904
3905 return 1;
3906 }
3907
3908 int ssl_free_wbio_buffer(SSL *s)
3909 {
3910 /* callers ensure s is never null */
3911 if (s->bbio == NULL)
3912 return 1;
3913
3914 s->wbio = BIO_pop(s->wbio);
3915 BIO_free(s->bbio);
3916 s->bbio = NULL;
3917
3918 return 1;
3919 }
3920
3921 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3922 {
3923 ctx->quiet_shutdown = mode;
3924 }
3925
3926 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3927 {
3928 return ctx->quiet_shutdown;
3929 }
3930
3931 void SSL_set_quiet_shutdown(SSL *s, int mode)
3932 {
3933 s->quiet_shutdown = mode;
3934 }
3935
3936 int SSL_get_quiet_shutdown(const SSL *s)
3937 {
3938 return s->quiet_shutdown;
3939 }
3940
3941 void SSL_set_shutdown(SSL *s, int mode)
3942 {
3943 s->shutdown = mode;
3944 }
3945
3946 int SSL_get_shutdown(const SSL *s)
3947 {
3948 return s->shutdown;
3949 }
3950
3951 int SSL_version(const SSL *s)
3952 {
3953 return s->version;
3954 }
3955
3956 int SSL_client_version(const SSL *s)
3957 {
3958 return s->client_version;
3959 }
3960
3961 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3962 {
3963 return ssl->ctx;
3964 }
3965
3966 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3967 {
3968 CERT *new_cert;
3969 if (ssl->ctx == ctx)
3970 return ssl->ctx;
3971 if (ctx == NULL)
3972 ctx = ssl->session_ctx;
3973 new_cert = ssl_cert_dup(ctx->cert);
3974 if (new_cert == NULL) {
3975 return NULL;
3976 }
3977
3978 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3979 ssl_cert_free(new_cert);
3980 return NULL;
3981 }
3982
3983 ssl_cert_free(ssl->cert);
3984 ssl->cert = new_cert;
3985
3986 /*
3987 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3988 * so setter APIs must prevent invalid lengths from entering the system.
3989 */
3990 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3991 return NULL;
3992
3993 /*
3994 * If the session ID context matches that of the parent SSL_CTX,
3995 * inherit it from the new SSL_CTX as well. If however the context does
3996 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3997 * leave it unchanged.
3998 */
3999 if ((ssl->ctx != NULL) &&
4000 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4001 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4002 ssl->sid_ctx_length = ctx->sid_ctx_length;
4003 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4004 }
4005
4006 SSL_CTX_up_ref(ctx);
4007 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4008 ssl->ctx = ctx;
4009
4010 return ssl->ctx;
4011 }
4012
4013 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4014 {
4015 return X509_STORE_set_default_paths(ctx->cert_store);
4016 }
4017
4018 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4019 {
4020 X509_LOOKUP *lookup;
4021
4022 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4023 if (lookup == NULL)
4024 return 0;
4025 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4026
4027 /* Clear any errors if the default directory does not exist */
4028 ERR_clear_error();
4029
4030 return 1;
4031 }
4032
4033 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4034 {
4035 X509_LOOKUP *lookup;
4036
4037 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4038 if (lookup == NULL)
4039 return 0;
4040
4041 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4042
4043 /* Clear any errors if the default file does not exist */
4044 ERR_clear_error();
4045
4046 return 1;
4047 }
4048
4049 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4050 const char *CApath)
4051 {
4052 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4053 }
4054
4055 void SSL_set_info_callback(SSL *ssl,
4056 void (*cb) (const SSL *ssl, int type, int val))
4057 {
4058 ssl->info_callback = cb;
4059 }
4060
4061 /*
4062 * One compiler (Diab DCC) doesn't like argument names in returned function
4063 * pointer.
4064 */
4065 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4066 int /* type */ ,
4067 int /* val */ ) {
4068 return ssl->info_callback;
4069 }
4070
4071 void SSL_set_verify_result(SSL *ssl, long arg)
4072 {
4073 ssl->verify_result = arg;
4074 }
4075
4076 long SSL_get_verify_result(const SSL *ssl)
4077 {
4078 return ssl->verify_result;
4079 }
4080
4081 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4082 {
4083 if (outlen == 0)
4084 return sizeof(ssl->s3->client_random);
4085 if (outlen > sizeof(ssl->s3->client_random))
4086 outlen = sizeof(ssl->s3->client_random);
4087 memcpy(out, ssl->s3->client_random, outlen);
4088 return outlen;
4089 }
4090
4091 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4092 {
4093 if (outlen == 0)
4094 return sizeof(ssl->s3->server_random);
4095 if (outlen > sizeof(ssl->s3->server_random))
4096 outlen = sizeof(ssl->s3->server_random);
4097 memcpy(out, ssl->s3->server_random, outlen);
4098 return outlen;
4099 }
4100
4101 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4102 unsigned char *out, size_t outlen)
4103 {
4104 if (outlen == 0)
4105 return session->master_key_length;
4106 if (outlen > session->master_key_length)
4107 outlen = session->master_key_length;
4108 memcpy(out, session->master_key, outlen);
4109 return outlen;
4110 }
4111
4112 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4113 size_t len)
4114 {
4115 if (len > sizeof(sess->master_key))
4116 return 0;
4117
4118 memcpy(sess->master_key, in, len);
4119 sess->master_key_length = len;
4120 return 1;
4121 }
4122
4123
4124 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4125 {
4126 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4127 }
4128
4129 void *SSL_get_ex_data(const SSL *s, int idx)
4130 {
4131 return CRYPTO_get_ex_data(&s->ex_data, idx);
4132 }
4133
4134 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4135 {
4136 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4137 }
4138
4139 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4140 {
4141 return CRYPTO_get_ex_data(&s->ex_data, idx);
4142 }
4143
4144 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4145 {
4146 return ctx->cert_store;
4147 }
4148
4149 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4150 {
4151 X509_STORE_free(ctx->cert_store);
4152 ctx->cert_store = store;
4153 }
4154
4155 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4156 {
4157 if (store != NULL)
4158 X509_STORE_up_ref(store);
4159 SSL_CTX_set_cert_store(ctx, store);
4160 }
4161
4162 int SSL_want(const SSL *s)
4163 {
4164 return s->rwstate;
4165 }
4166
4167 /**
4168 * \brief Set the callback for generating temporary DH keys.
4169 * \param ctx the SSL context.
4170 * \param dh the callback
4171 */
4172
4173 #ifndef OPENSSL_NO_DH
4174 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4175 DH *(*dh) (SSL *ssl, int is_export,
4176 int keylength))
4177 {
4178 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4179 }
4180
4181 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4182 int keylength))
4183 {
4184 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4185 }
4186 #endif
4187
4188 #ifndef OPENSSL_NO_PSK
4189 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4190 {
4191 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4192 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4193 return 0;
4194 }
4195 OPENSSL_free(ctx->cert->psk_identity_hint);
4196 if (identity_hint != NULL) {
4197 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4198 if (ctx->cert->psk_identity_hint == NULL)
4199 return 0;
4200 } else
4201 ctx->cert->psk_identity_hint = NULL;
4202 return 1;
4203 }
4204
4205 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4206 {
4207 if (s == NULL)
4208 return 0;
4209
4210 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4211 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4212 return 0;
4213 }
4214 OPENSSL_free(s->cert->psk_identity_hint);
4215 if (identity_hint != NULL) {
4216 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4217 if (s->cert->psk_identity_hint == NULL)
4218 return 0;
4219 } else
4220 s->cert->psk_identity_hint = NULL;
4221 return 1;
4222 }
4223
4224 const char *SSL_get_psk_identity_hint(const SSL *s)
4225 {
4226 if (s == NULL || s->session == NULL)
4227 return NULL;
4228 return s->session->psk_identity_hint;
4229 }
4230
4231 const char *SSL_get_psk_identity(const SSL *s)
4232 {
4233 if (s == NULL || s->session == NULL)
4234 return NULL;
4235 return s->session->psk_identity;
4236 }
4237
4238 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4239 {
4240 s->psk_client_callback = cb;
4241 }
4242
4243 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4244 {
4245 ctx->psk_client_callback = cb;
4246 }
4247
4248 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4249 {
4250 s->psk_server_callback = cb;
4251 }
4252
4253 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4254 {
4255 ctx->psk_server_callback = cb;
4256 }
4257 #endif
4258
4259 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4260 {
4261 s->psk_find_session_cb = cb;
4262 }
4263
4264 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4265 SSL_psk_find_session_cb_func cb)
4266 {
4267 ctx->psk_find_session_cb = cb;
4268 }
4269
4270 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4271 {
4272 s->psk_use_session_cb = cb;
4273 }
4274
4275 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4276 SSL_psk_use_session_cb_func cb)
4277 {
4278 ctx->psk_use_session_cb = cb;
4279 }
4280
4281 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4282 void (*cb) (int write_p, int version,
4283 int content_type, const void *buf,
4284 size_t len, SSL *ssl, void *arg))
4285 {
4286 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4287 }
4288
4289 void SSL_set_msg_callback(SSL *ssl,
4290 void (*cb) (int write_p, int version,
4291 int content_type, const void *buf,
4292 size_t len, SSL *ssl, void *arg))
4293 {
4294 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4295 }
4296
4297 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4298 int (*cb) (SSL *ssl,
4299 int
4300 is_forward_secure))
4301 {
4302 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4303 (void (*)(void))cb);
4304 }
4305
4306 void SSL_set_not_resumable_session_callback(SSL *ssl,
4307 int (*cb) (SSL *ssl,
4308 int is_forward_secure))
4309 {
4310 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4311 (void (*)(void))cb);
4312 }
4313
4314 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4315 size_t (*cb) (SSL *ssl, int type,
4316 size_t len, void *arg))
4317 {
4318 ctx->record_padding_cb = cb;
4319 }
4320
4321 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4322 {
4323 ctx->record_padding_arg = arg;
4324 }
4325
4326 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4327 {
4328 return ctx->record_padding_arg;
4329 }
4330
4331 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4332 {
4333 /* block size of 0 or 1 is basically no padding */
4334 if (block_size == 1)
4335 ctx->block_padding = 0;
4336 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4337 ctx->block_padding = block_size;
4338 else
4339 return 0;
4340 return 1;
4341 }
4342
4343 void SSL_set_record_padding_callback(SSL *ssl,
4344 size_t (*cb) (SSL *ssl, int type,
4345 size_t len, void *arg))
4346 {
4347 ssl->record_padding_cb = cb;
4348 }
4349
4350 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4351 {
4352 ssl->record_padding_arg = arg;
4353 }
4354
4355 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4356 {
4357 return ssl->record_padding_arg;
4358 }
4359
4360 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4361 {
4362 /* block size of 0 or 1 is basically no padding */
4363 if (block_size == 1)
4364 ssl->block_padding = 0;
4365 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4366 ssl->block_padding = block_size;
4367 else
4368 return 0;
4369 return 1;
4370 }
4371
4372 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4373 {
4374 s->num_tickets = num_tickets;
4375
4376 return 1;
4377 }
4378
4379 size_t SSL_get_num_tickets(SSL *s)
4380 {
4381 return s->num_tickets;
4382 }
4383
4384 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4385 {
4386 ctx->num_tickets = num_tickets;
4387
4388 return 1;
4389 }
4390
4391 size_t SSL_CTX_get_num_tickets(SSL_CTX *ctx)
4392 {
4393 return ctx->num_tickets;
4394 }
4395
4396 /*
4397 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4398 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4399 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4400 * Returns the newly allocated ctx;
4401 */
4402
4403 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4404 {
4405 ssl_clear_hash_ctx(hash);
4406 *hash = EVP_MD_CTX_new();
4407 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4408 EVP_MD_CTX_free(*hash);
4409 *hash = NULL;
4410 return NULL;
4411 }
4412 return *hash;
4413 }
4414
4415 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4416 {
4417
4418 EVP_MD_CTX_free(*hash);
4419 *hash = NULL;
4420 }
4421
4422 /* Retrieve handshake hashes */
4423 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4424 size_t *hashlen)
4425 {
4426 EVP_MD_CTX *ctx = NULL;
4427 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4428 int hashleni = EVP_MD_CTX_size(hdgst);
4429 int ret = 0;
4430
4431 if (hashleni < 0 || (size_t)hashleni > outlen) {
4432 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4433 ERR_R_INTERNAL_ERROR);
4434 goto err;
4435 }
4436
4437 ctx = EVP_MD_CTX_new();
4438 if (ctx == NULL)
4439 goto err;
4440
4441 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4442 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4443 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4444 ERR_R_INTERNAL_ERROR);
4445 goto err;
4446 }
4447
4448 *hashlen = hashleni;
4449
4450 ret = 1;
4451 err:
4452 EVP_MD_CTX_free(ctx);
4453 return ret;
4454 }
4455
4456 int SSL_session_reused(SSL *s)
4457 {
4458 return s->hit;
4459 }
4460
4461 int SSL_is_server(const SSL *s)
4462 {
4463 return s->server;
4464 }
4465
4466 #if OPENSSL_API_COMPAT < 0x10100000L
4467 void SSL_set_debug(SSL *s, int debug)
4468 {
4469 /* Old function was do-nothing anyway... */
4470 (void)s;
4471 (void)debug;
4472 }
4473 #endif
4474
4475 void SSL_set_security_level(SSL *s, int level)
4476 {
4477 s->cert->sec_level = level;
4478 }
4479
4480 int SSL_get_security_level(const SSL *s)
4481 {
4482 return s->cert->sec_level;
4483 }
4484
4485 void SSL_set_security_callback(SSL *s,
4486 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4487 int op, int bits, int nid,
4488 void *other, void *ex))
4489 {
4490 s->cert->sec_cb = cb;
4491 }
4492
4493 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4494 const SSL_CTX *ctx, int op,
4495 int bits, int nid, void *other,
4496 void *ex) {
4497 return s->cert->sec_cb;
4498 }
4499
4500 void SSL_set0_security_ex_data(SSL *s, void *ex)
4501 {
4502 s->cert->sec_ex = ex;
4503 }
4504
4505 void *SSL_get0_security_ex_data(const SSL *s)
4506 {
4507 return s->cert->sec_ex;
4508 }
4509
4510 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4511 {
4512 ctx->cert->sec_level = level;
4513 }
4514
4515 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4516 {
4517 return ctx->cert->sec_level;
4518 }
4519
4520 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4521 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4522 int op, int bits, int nid,
4523 void *other, void *ex))
4524 {
4525 ctx->cert->sec_cb = cb;
4526 }
4527
4528 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4529 const SSL_CTX *ctx,
4530 int op, int bits,
4531 int nid,
4532 void *other,
4533 void *ex) {
4534 return ctx->cert->sec_cb;
4535 }
4536
4537 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4538 {
4539 ctx->cert->sec_ex = ex;
4540 }
4541
4542 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4543 {
4544 return ctx->cert->sec_ex;
4545 }
4546
4547 /*
4548 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4549 * can return unsigned long, instead of the generic long return value from the
4550 * control interface.
4551 */
4552 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4553 {
4554 return ctx->options;
4555 }
4556
4557 unsigned long SSL_get_options(const SSL *s)
4558 {
4559 return s->options;
4560 }
4561
4562 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4563 {
4564 return ctx->options |= op;
4565 }
4566
4567 unsigned long SSL_set_options(SSL *s, unsigned long op)
4568 {
4569 return s->options |= op;
4570 }
4571
4572 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4573 {
4574 return ctx->options &= ~op;
4575 }
4576
4577 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4578 {
4579 return s->options &= ~op;
4580 }
4581
4582 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4583 {
4584 return s->verified_chain;
4585 }
4586
4587 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4588
4589 #ifndef OPENSSL_NO_CT
4590
4591 /*
4592 * Moves SCTs from the |src| stack to the |dst| stack.
4593 * The source of each SCT will be set to |origin|.
4594 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4595 * the caller.
4596 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4597 */
4598 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4599 sct_source_t origin)
4600 {
4601 int scts_moved = 0;
4602 SCT *sct = NULL;
4603
4604 if (*dst == NULL) {
4605 *dst = sk_SCT_new_null();
4606 if (*dst == NULL) {
4607 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4608 goto err;
4609 }
4610 }
4611
4612 while ((sct = sk_SCT_pop(src)) != NULL) {
4613 if (SCT_set_source(sct, origin) != 1)
4614 goto err;
4615
4616 if (sk_SCT_push(*dst, sct) <= 0)
4617 goto err;
4618 scts_moved += 1;
4619 }
4620
4621 return scts_moved;
4622 err:
4623 if (sct != NULL)
4624 sk_SCT_push(src, sct); /* Put the SCT back */
4625 return -1;
4626 }
4627
4628 /*
4629 * Look for data collected during ServerHello and parse if found.
4630 * Returns the number of SCTs extracted.
4631 */
4632 static int ct_extract_tls_extension_scts(SSL *s)
4633 {
4634 int scts_extracted = 0;
4635
4636 if (s->ext.scts != NULL) {
4637 const unsigned char *p = s->ext.scts;
4638 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4639
4640 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4641
4642 SCT_LIST_free(scts);
4643 }
4644
4645 return scts_extracted;
4646 }
4647
4648 /*
4649 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4650 * contains an SCT X509 extension. They will be stored in |s->scts|.
4651 * Returns:
4652 * - The number of SCTs extracted, assuming an OCSP response exists.
4653 * - 0 if no OCSP response exists or it contains no SCTs.
4654 * - A negative integer if an error occurs.
4655 */
4656 static int ct_extract_ocsp_response_scts(SSL *s)
4657 {
4658 # ifndef OPENSSL_NO_OCSP
4659 int scts_extracted = 0;
4660 const unsigned char *p;
4661 OCSP_BASICRESP *br = NULL;
4662 OCSP_RESPONSE *rsp = NULL;
4663 STACK_OF(SCT) *scts = NULL;
4664 int i;
4665
4666 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4667 goto err;
4668
4669 p = s->ext.ocsp.resp;
4670 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4671 if (rsp == NULL)
4672 goto err;
4673
4674 br = OCSP_response_get1_basic(rsp);
4675 if (br == NULL)
4676 goto err;
4677
4678 for (i = 0; i < OCSP_resp_count(br); ++i) {
4679 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4680
4681 if (single == NULL)
4682 continue;
4683
4684 scts =
4685 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4686 scts_extracted =
4687 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4688 if (scts_extracted < 0)
4689 goto err;
4690 }
4691 err:
4692 SCT_LIST_free(scts);
4693 OCSP_BASICRESP_free(br);
4694 OCSP_RESPONSE_free(rsp);
4695 return scts_extracted;
4696 # else
4697 /* Behave as if no OCSP response exists */
4698 return 0;
4699 # endif
4700 }
4701
4702 /*
4703 * Attempts to extract SCTs from the peer certificate.
4704 * Return the number of SCTs extracted, or a negative integer if an error
4705 * occurs.
4706 */
4707 static int ct_extract_x509v3_extension_scts(SSL *s)
4708 {
4709 int scts_extracted = 0;
4710 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4711
4712 if (cert != NULL) {
4713 STACK_OF(SCT) *scts =
4714 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4715
4716 scts_extracted =
4717 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4718
4719 SCT_LIST_free(scts);
4720 }
4721
4722 return scts_extracted;
4723 }
4724
4725 /*
4726 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4727 * response (if it exists) and X509v3 extensions in the certificate.
4728 * Returns NULL if an error occurs.
4729 */
4730 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4731 {
4732 if (!s->scts_parsed) {
4733 if (ct_extract_tls_extension_scts(s) < 0 ||
4734 ct_extract_ocsp_response_scts(s) < 0 ||
4735 ct_extract_x509v3_extension_scts(s) < 0)
4736 goto err;
4737
4738 s->scts_parsed = 1;
4739 }
4740 return s->scts;
4741 err:
4742 return NULL;
4743 }
4744
4745 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4746 const STACK_OF(SCT) *scts, void *unused_arg)
4747 {
4748 return 1;
4749 }
4750
4751 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4752 const STACK_OF(SCT) *scts, void *unused_arg)
4753 {
4754 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4755 int i;
4756
4757 for (i = 0; i < count; ++i) {
4758 SCT *sct = sk_SCT_value(scts, i);
4759 int status = SCT_get_validation_status(sct);
4760
4761 if (status == SCT_VALIDATION_STATUS_VALID)
4762 return 1;
4763 }
4764 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4765 return 0;
4766 }
4767
4768 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4769 void *arg)
4770 {
4771 /*
4772 * Since code exists that uses the custom extension handler for CT, look
4773 * for this and throw an error if they have already registered to use CT.
4774 */
4775 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4776 TLSEXT_TYPE_signed_certificate_timestamp))
4777 {
4778 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4779 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4780 return 0;
4781 }
4782
4783 if (callback != NULL) {
4784 /*
4785 * If we are validating CT, then we MUST accept SCTs served via OCSP
4786 */
4787 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4788 return 0;
4789 }
4790
4791 s->ct_validation_callback = callback;
4792 s->ct_validation_callback_arg = arg;
4793
4794 return 1;
4795 }
4796
4797 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4798 ssl_ct_validation_cb callback, void *arg)
4799 {
4800 /*
4801 * Since code exists that uses the custom extension handler for CT, look for
4802 * this and throw an error if they have already registered to use CT.
4803 */
4804 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4805 TLSEXT_TYPE_signed_certificate_timestamp))
4806 {
4807 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4808 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4809 return 0;
4810 }
4811
4812 ctx->ct_validation_callback = callback;
4813 ctx->ct_validation_callback_arg = arg;
4814 return 1;
4815 }
4816
4817 int SSL_ct_is_enabled(const SSL *s)
4818 {
4819 return s->ct_validation_callback != NULL;
4820 }
4821
4822 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4823 {
4824 return ctx->ct_validation_callback != NULL;
4825 }
4826
4827 int ssl_validate_ct(SSL *s)
4828 {
4829 int ret = 0;
4830 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4831 X509 *issuer;
4832 SSL_DANE *dane = &s->dane;
4833 CT_POLICY_EVAL_CTX *ctx = NULL;
4834 const STACK_OF(SCT) *scts;
4835
4836 /*
4837 * If no callback is set, the peer is anonymous, or its chain is invalid,
4838 * skip SCT validation - just return success. Applications that continue
4839 * handshakes without certificates, with unverified chains, or pinned leaf
4840 * certificates are outside the scope of the WebPKI and CT.
4841 *
4842 * The above exclusions notwithstanding the vast majority of peers will
4843 * have rather ordinary certificate chains validated by typical
4844 * applications that perform certificate verification and therefore will
4845 * process SCTs when enabled.
4846 */
4847 if (s->ct_validation_callback == NULL || cert == NULL ||
4848 s->verify_result != X509_V_OK ||
4849 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4850 return 1;
4851
4852 /*
4853 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4854 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4855 */
4856 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4857 switch (dane->mtlsa->usage) {
4858 case DANETLS_USAGE_DANE_TA:
4859 case DANETLS_USAGE_DANE_EE:
4860 return 1;
4861 }
4862 }
4863
4864 ctx = CT_POLICY_EVAL_CTX_new();
4865 if (ctx == NULL) {
4866 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4867 ERR_R_MALLOC_FAILURE);
4868 goto end;
4869 }
4870
4871 issuer = sk_X509_value(s->verified_chain, 1);
4872 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4873 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4874 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4875 CT_POLICY_EVAL_CTX_set_time(
4876 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4877
4878 scts = SSL_get0_peer_scts(s);
4879
4880 /*
4881 * This function returns success (> 0) only when all the SCTs are valid, 0
4882 * when some are invalid, and < 0 on various internal errors (out of
4883 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4884 * reason to abort the handshake, that decision is up to the callback.
4885 * Therefore, we error out only in the unexpected case that the return
4886 * value is negative.
4887 *
4888 * XXX: One might well argue that the return value of this function is an
4889 * unfortunate design choice. Its job is only to determine the validation
4890 * status of each of the provided SCTs. So long as it correctly separates
4891 * the wheat from the chaff it should return success. Failure in this case
4892 * ought to correspond to an inability to carry out its duties.
4893 */
4894 if (SCT_LIST_validate(scts, ctx) < 0) {
4895 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4896 SSL_R_SCT_VERIFICATION_FAILED);
4897 goto end;
4898 }
4899
4900 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4901 if (ret < 0)
4902 ret = 0; /* This function returns 0 on failure */
4903 if (!ret)
4904 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4905 SSL_R_CALLBACK_FAILED);
4906
4907 end:
4908 CT_POLICY_EVAL_CTX_free(ctx);
4909 /*
4910 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4911 * failure return code here. Also the application may wish the complete
4912 * the handshake, and then disconnect cleanly at a higher layer, after
4913 * checking the verification status of the completed connection.
4914 *
4915 * We therefore force a certificate verification failure which will be
4916 * visible via SSL_get_verify_result() and cached as part of any resumed
4917 * session.
4918 *
4919 * Note: the permissive callback is for information gathering only, always
4920 * returns success, and does not affect verification status. Only the
4921 * strict callback or a custom application-specified callback can trigger
4922 * connection failure or record a verification error.
4923 */
4924 if (ret <= 0)
4925 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4926 return ret;
4927 }
4928
4929 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4930 {
4931 switch (validation_mode) {
4932 default:
4933 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4934 return 0;
4935 case SSL_CT_VALIDATION_PERMISSIVE:
4936 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4937 case SSL_CT_VALIDATION_STRICT:
4938 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4939 }
4940 }
4941
4942 int SSL_enable_ct(SSL *s, int validation_mode)
4943 {
4944 switch (validation_mode) {
4945 default:
4946 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4947 return 0;
4948 case SSL_CT_VALIDATION_PERMISSIVE:
4949 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4950 case SSL_CT_VALIDATION_STRICT:
4951 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4952 }
4953 }
4954
4955 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4956 {
4957 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4958 }
4959
4960 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4961 {
4962 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4963 }
4964
4965 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4966 {
4967 CTLOG_STORE_free(ctx->ctlog_store);
4968 ctx->ctlog_store = logs;
4969 }
4970
4971 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4972 {
4973 return ctx->ctlog_store;
4974 }
4975
4976 #endif /* OPENSSL_NO_CT */
4977
4978 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4979 void *arg)
4980 {
4981 c->client_hello_cb = cb;
4982 c->client_hello_cb_arg = arg;
4983 }
4984
4985 int SSL_client_hello_isv2(SSL *s)
4986 {
4987 if (s->clienthello == NULL)
4988 return 0;
4989 return s->clienthello->isv2;
4990 }
4991
4992 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4993 {
4994 if (s->clienthello == NULL)
4995 return 0;
4996 return s->clienthello->legacy_version;
4997 }
4998
4999 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5000 {
5001 if (s->clienthello == NULL)
5002 return 0;
5003 if (out != NULL)
5004 *out = s->clienthello->random;
5005 return SSL3_RANDOM_SIZE;
5006 }
5007
5008 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5009 {
5010 if (s->clienthello == NULL)
5011 return 0;
5012 if (out != NULL)
5013 *out = s->clienthello->session_id;
5014 return s->clienthello->session_id_len;
5015 }
5016
5017 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5018 {
5019 if (s->clienthello == NULL)
5020 return 0;
5021 if (out != NULL)
5022 *out = PACKET_data(&s->clienthello->ciphersuites);
5023 return PACKET_remaining(&s->clienthello->ciphersuites);
5024 }
5025
5026 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5027 {
5028 if (s->clienthello == NULL)
5029 return 0;
5030 if (out != NULL)
5031 *out = s->clienthello->compressions;
5032 return s->clienthello->compressions_len;
5033 }
5034
5035 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5036 {
5037 RAW_EXTENSION *ext;
5038 int *present;
5039 size_t num = 0, i;
5040
5041 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5042 return 0;
5043 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5044 ext = s->clienthello->pre_proc_exts + i;
5045 if (ext->present)
5046 num++;
5047 }
5048 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5049 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5050 ERR_R_MALLOC_FAILURE);
5051 return 0;
5052 }
5053 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5054 ext = s->clienthello->pre_proc_exts + i;
5055 if (ext->present) {
5056 if (ext->received_order >= num)
5057 goto err;
5058 present[ext->received_order] = ext->type;
5059 }
5060 }
5061 *out = present;
5062 *outlen = num;
5063 return 1;
5064 err:
5065 OPENSSL_free(present);
5066 return 0;
5067 }
5068
5069 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5070 size_t *outlen)
5071 {
5072 size_t i;
5073 RAW_EXTENSION *r;
5074
5075 if (s->clienthello == NULL)
5076 return 0;
5077 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5078 r = s->clienthello->pre_proc_exts + i;
5079 if (r->present && r->type == type) {
5080 if (out != NULL)
5081 *out = PACKET_data(&r->data);
5082 if (outlen != NULL)
5083 *outlen = PACKET_remaining(&r->data);
5084 return 1;
5085 }
5086 }
5087 return 0;
5088 }
5089
5090 int SSL_free_buffers(SSL *ssl)
5091 {
5092 RECORD_LAYER *rl = &ssl->rlayer;
5093
5094 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5095 return 0;
5096
5097 RECORD_LAYER_release(rl);
5098 return 1;
5099 }
5100
5101 int SSL_alloc_buffers(SSL *ssl)
5102 {
5103 return ssl3_setup_buffers(ssl);
5104 }
5105
5106 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5107 {
5108 ctx->keylog_callback = cb;
5109 }
5110
5111 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5112 {
5113 return ctx->keylog_callback;
5114 }
5115
5116 static int nss_keylog_int(const char *prefix,
5117 SSL *ssl,
5118 const uint8_t *parameter_1,
5119 size_t parameter_1_len,
5120 const uint8_t *parameter_2,
5121 size_t parameter_2_len)
5122 {
5123 char *out = NULL;
5124 char *cursor = NULL;
5125 size_t out_len = 0;
5126 size_t i;
5127 size_t prefix_len;
5128
5129 if (ssl->ctx->keylog_callback == NULL) return 1;
5130
5131 /*
5132 * Our output buffer will contain the following strings, rendered with
5133 * space characters in between, terminated by a NULL character: first the
5134 * prefix, then the first parameter, then the second parameter. The
5135 * meaning of each parameter depends on the specific key material being
5136 * logged. Note that the first and second parameters are encoded in
5137 * hexadecimal, so we need a buffer that is twice their lengths.
5138 */
5139 prefix_len = strlen(prefix);
5140 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
5141 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5142 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5143 ERR_R_MALLOC_FAILURE);
5144 return 0;
5145 }
5146
5147 strcpy(cursor, prefix);
5148 cursor += prefix_len;
5149 *cursor++ = ' ';
5150
5151 for (i = 0; i < parameter_1_len; i++) {
5152 sprintf(cursor, "%02x", parameter_1[i]);
5153 cursor += 2;
5154 }
5155 *cursor++ = ' ';
5156
5157 for (i = 0; i < parameter_2_len; i++) {
5158 sprintf(cursor, "%02x", parameter_2[i]);
5159 cursor += 2;
5160 }
5161 *cursor = '\0';
5162
5163 ssl->ctx->keylog_callback(ssl, (const char *)out);
5164 OPENSSL_free(out);
5165 return 1;
5166
5167 }
5168
5169 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5170 const uint8_t *encrypted_premaster,
5171 size_t encrypted_premaster_len,
5172 const uint8_t *premaster,
5173 size_t premaster_len)
5174 {
5175 if (encrypted_premaster_len < 8) {
5176 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5177 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5178 return 0;
5179 }
5180
5181 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5182 return nss_keylog_int("RSA",
5183 ssl,
5184 encrypted_premaster,
5185 8,
5186 premaster,
5187 premaster_len);
5188 }
5189
5190 int ssl_log_secret(SSL *ssl,
5191 const char *label,
5192 const uint8_t *secret,
5193 size_t secret_len)
5194 {
5195 return nss_keylog_int(label,
5196 ssl,
5197 ssl->s3->client_random,
5198 SSL3_RANDOM_SIZE,
5199 secret,
5200 secret_len);
5201 }
5202
5203 #define SSLV2_CIPHER_LEN 3
5204
5205 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5206 {
5207 int n;
5208
5209 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5210
5211 if (PACKET_remaining(cipher_suites) == 0) {
5212 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5213 SSL_R_NO_CIPHERS_SPECIFIED);
5214 return 0;
5215 }
5216
5217 if (PACKET_remaining(cipher_suites) % n != 0) {
5218 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5219 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5220 return 0;
5221 }
5222
5223 OPENSSL_free(s->s3->tmp.ciphers_raw);
5224 s->s3->tmp.ciphers_raw = NULL;
5225 s->s3->tmp.ciphers_rawlen = 0;
5226
5227 if (sslv2format) {
5228 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5229 PACKET sslv2ciphers = *cipher_suites;
5230 unsigned int leadbyte;
5231 unsigned char *raw;
5232
5233 /*
5234 * We store the raw ciphers list in SSLv3+ format so we need to do some
5235 * preprocessing to convert the list first. If there are any SSLv2 only
5236 * ciphersuites with a non-zero leading byte then we are going to
5237 * slightly over allocate because we won't store those. But that isn't a
5238 * problem.
5239 */
5240 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5241 s->s3->tmp.ciphers_raw = raw;
5242 if (raw == NULL) {
5243 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5244 ERR_R_MALLOC_FAILURE);
5245 return 0;
5246 }
5247 for (s->s3->tmp.ciphers_rawlen = 0;
5248 PACKET_remaining(&sslv2ciphers) > 0;
5249 raw += TLS_CIPHER_LEN) {
5250 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5251 || (leadbyte == 0
5252 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5253 TLS_CIPHER_LEN))
5254 || (leadbyte != 0
5255 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5256 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5257 SSL_R_BAD_PACKET);
5258 OPENSSL_free(s->s3->tmp.ciphers_raw);
5259 s->s3->tmp.ciphers_raw = NULL;
5260 s->s3->tmp.ciphers_rawlen = 0;
5261 return 0;
5262 }
5263 if (leadbyte == 0)
5264 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5265 }
5266 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5267 &s->s3->tmp.ciphers_rawlen)) {
5268 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5269 ERR_R_INTERNAL_ERROR);
5270 return 0;
5271 }
5272 return 1;
5273 }
5274
5275 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5276 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5277 STACK_OF(SSL_CIPHER) **scsvs)
5278 {
5279 PACKET pkt;
5280
5281 if (!PACKET_buf_init(&pkt, bytes, len))
5282 return 0;
5283 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5284 }
5285
5286 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5287 STACK_OF(SSL_CIPHER) **skp,
5288 STACK_OF(SSL_CIPHER) **scsvs_out,
5289 int sslv2format, int fatal)
5290 {
5291 const SSL_CIPHER *c;
5292 STACK_OF(SSL_CIPHER) *sk = NULL;
5293 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5294 int n;
5295 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5296 unsigned char cipher[SSLV2_CIPHER_LEN];
5297
5298 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5299
5300 if (PACKET_remaining(cipher_suites) == 0) {
5301 if (fatal)
5302 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5303 SSL_R_NO_CIPHERS_SPECIFIED);
5304 else
5305 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5306 return 0;
5307 }
5308
5309 if (PACKET_remaining(cipher_suites) % n != 0) {
5310 if (fatal)
5311 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5312 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5313 else
5314 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5315 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5316 return 0;
5317 }
5318
5319 sk = sk_SSL_CIPHER_new_null();
5320 scsvs = sk_SSL_CIPHER_new_null();
5321 if (sk == NULL || scsvs == NULL) {
5322 if (fatal)
5323 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5324 ERR_R_MALLOC_FAILURE);
5325 else
5326 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5327 goto err;
5328 }
5329
5330 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5331 /*
5332 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5333 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5334 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5335 */
5336 if (sslv2format && cipher[0] != '\0')
5337 continue;
5338
5339 /* For SSLv2-compat, ignore leading 0-byte. */
5340 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5341 if (c != NULL) {
5342 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5343 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5344 if (fatal)
5345 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5346 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5347 else
5348 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5349 goto err;
5350 }
5351 }
5352 }
5353 if (PACKET_remaining(cipher_suites) > 0) {
5354 if (fatal)
5355 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5356 SSL_R_BAD_LENGTH);
5357 else
5358 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5359 goto err;
5360 }
5361
5362 if (skp != NULL)
5363 *skp = sk;
5364 else
5365 sk_SSL_CIPHER_free(sk);
5366 if (scsvs_out != NULL)
5367 *scsvs_out = scsvs;
5368 else
5369 sk_SSL_CIPHER_free(scsvs);
5370 return 1;
5371 err:
5372 sk_SSL_CIPHER_free(sk);
5373 sk_SSL_CIPHER_free(scsvs);
5374 return 0;
5375 }
5376
5377 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5378 {
5379 ctx->max_early_data = max_early_data;
5380
5381 return 1;
5382 }
5383
5384 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5385 {
5386 return ctx->max_early_data;
5387 }
5388
5389 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5390 {
5391 s->max_early_data = max_early_data;
5392
5393 return 1;
5394 }
5395
5396 uint32_t SSL_get_max_early_data(const SSL *s)
5397 {
5398 return s->max_early_data;
5399 }
5400
5401 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5402 {
5403 ctx->recv_max_early_data = recv_max_early_data;
5404
5405 return 1;
5406 }
5407
5408 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5409 {
5410 return ctx->recv_max_early_data;
5411 }
5412
5413 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5414 {
5415 s->recv_max_early_data = recv_max_early_data;
5416
5417 return 1;
5418 }
5419
5420 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5421 {
5422 return s->recv_max_early_data;
5423 }
5424
5425 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5426 {
5427 /* Return any active Max Fragment Len extension */
5428 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5429 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5430
5431 /* return current SSL connection setting */
5432 return ssl->max_send_fragment;
5433 }
5434
5435 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5436 {
5437 /* Return a value regarding an active Max Fragment Len extension */
5438 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5439 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5440 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5441
5442 /* else limit |split_send_fragment| to current |max_send_fragment| */
5443 if (ssl->split_send_fragment > ssl->max_send_fragment)
5444 return ssl->max_send_fragment;
5445
5446 /* return current SSL connection setting */
5447 return ssl->split_send_fragment;
5448 }
5449
5450 int SSL_stateless(SSL *s)
5451 {
5452 int ret;
5453
5454 /* Ensure there is no state left over from a previous invocation */
5455 if (!SSL_clear(s))
5456 return 0;
5457
5458 ERR_clear_error();
5459
5460 s->s3->flags |= TLS1_FLAGS_STATELESS;
5461 ret = SSL_accept(s);
5462 s->s3->flags &= ~TLS1_FLAGS_STATELESS;
5463
5464 if (ret > 0 && s->ext.cookieok)
5465 return 1;
5466
5467 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5468 return 0;
5469
5470 return -1;
5471 }
5472
5473 void SSL_force_post_handshake_auth(SSL *ssl)
5474 {
5475 ssl->pha_forced = 1;
5476 }
5477
5478 int SSL_verify_client_post_handshake(SSL *ssl)
5479 {
5480 if (!SSL_IS_TLS13(ssl)) {
5481 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5482 return 0;
5483 }
5484 if (!ssl->server) {
5485 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5486 return 0;
5487 }
5488
5489 if (!SSL_is_init_finished(ssl)) {
5490 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5491 return 0;
5492 }
5493
5494 switch (ssl->post_handshake_auth) {
5495 case SSL_PHA_NONE:
5496 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5497 return 0;
5498 default:
5499 case SSL_PHA_EXT_SENT:
5500 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5501 return 0;
5502 case SSL_PHA_EXT_RECEIVED:
5503 break;
5504 case SSL_PHA_REQUEST_PENDING:
5505 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5506 return 0;
5507 case SSL_PHA_REQUESTED:
5508 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5509 return 0;
5510 }
5511
5512 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5513
5514 /* checks verify_mode and algorithm_auth */
5515 if (!send_certificate_request(ssl)) {
5516 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5517 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5518 return 0;
5519 }
5520
5521 ossl_statem_set_in_init(ssl, 1);
5522 return 1;
5523 }
5524
5525 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5526 SSL_CTX_generate_session_ticket_fn gen_cb,
5527 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5528 void *arg)
5529 {
5530 ctx->generate_ticket_cb = gen_cb;
5531 ctx->decrypt_ticket_cb = dec_cb;
5532 ctx->ticket_cb_data = arg;
5533 return 1;
5534 }
5535
5536 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5537 SSL_allow_early_data_cb_fn cb,
5538 void *arg)
5539 {
5540 ctx->allow_early_data_cb = cb;
5541 ctx->allow_early_data_cb_data = arg;
5542 }
5543
5544 void SSL_set_allow_early_data_cb(SSL *s,
5545 SSL_allow_early_data_cb_fn cb,
5546 void *arg)
5547 {
5548 s->allow_early_data_cb = cb;
5549 s->allow_early_data_cb_data = arg;
5550 }