]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Consistent formatting for sizeof(foo)
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/dh.h>
19 #include <openssl/engine.h>
20 #include <openssl/async.h>
21 #include <openssl/ct.h>
22 #include "internal/cryptlib.h"
23 #include "internal/rand.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 SSL3_ENC_METHOD ssl3_undef_enc_method = {
29 /*
30 * evil casts, but these functions are only called if there's a library
31 * bug
32 */
33 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
34 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
35 ssl_undefined_function,
36 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
37 ssl_undefined_function,
38 (int (*)(SSL *, int))ssl_undefined_function,
39 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
40 ssl_undefined_function,
41 NULL, /* client_finished_label */
42 0, /* client_finished_label_len */
43 NULL, /* server_finished_label */
44 0, /* server_finished_label_len */
45 (int (*)(int))ssl_undefined_function,
46 (int (*)(SSL *, unsigned char *, size_t, const char *,
47 size_t, const unsigned char *, size_t,
48 int use_context))ssl_undefined_function,
49 };
50
51 struct ssl_async_args {
52 SSL *s;
53 void *buf;
54 size_t num;
55 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
56 union {
57 int (*func_read) (SSL *, void *, size_t, size_t *);
58 int (*func_write) (SSL *, const void *, size_t, size_t *);
59 int (*func_other) (SSL *);
60 } f;
61 };
62
63 static const struct {
64 uint8_t mtype;
65 uint8_t ord;
66 int nid;
67 } dane_mds[] = {
68 {
69 DANETLS_MATCHING_FULL, 0, NID_undef
70 },
71 {
72 DANETLS_MATCHING_2256, 1, NID_sha256
73 },
74 {
75 DANETLS_MATCHING_2512, 2, NID_sha512
76 },
77 };
78
79 static int dane_ctx_enable(struct dane_ctx_st *dctx)
80 {
81 const EVP_MD **mdevp;
82 uint8_t *mdord;
83 uint8_t mdmax = DANETLS_MATCHING_LAST;
84 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
85 size_t i;
86
87 if (dctx->mdevp != NULL)
88 return 1;
89
90 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
91 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
92
93 if (mdord == NULL || mdevp == NULL) {
94 OPENSSL_free(mdord);
95 OPENSSL_free(mdevp);
96 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
97 return 0;
98 }
99
100 /* Install default entries */
101 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
102 const EVP_MD *md;
103
104 if (dane_mds[i].nid == NID_undef ||
105 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
106 continue;
107 mdevp[dane_mds[i].mtype] = md;
108 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
109 }
110
111 dctx->mdevp = mdevp;
112 dctx->mdord = mdord;
113 dctx->mdmax = mdmax;
114
115 return 1;
116 }
117
118 static void dane_ctx_final(struct dane_ctx_st *dctx)
119 {
120 OPENSSL_free(dctx->mdevp);
121 dctx->mdevp = NULL;
122
123 OPENSSL_free(dctx->mdord);
124 dctx->mdord = NULL;
125 dctx->mdmax = 0;
126 }
127
128 static void tlsa_free(danetls_record *t)
129 {
130 if (t == NULL)
131 return;
132 OPENSSL_free(t->data);
133 EVP_PKEY_free(t->spki);
134 OPENSSL_free(t);
135 }
136
137 static void dane_final(SSL_DANE *dane)
138 {
139 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
140 dane->trecs = NULL;
141
142 sk_X509_pop_free(dane->certs, X509_free);
143 dane->certs = NULL;
144
145 X509_free(dane->mcert);
146 dane->mcert = NULL;
147 dane->mtlsa = NULL;
148 dane->mdpth = -1;
149 dane->pdpth = -1;
150 }
151
152 /*
153 * dane_copy - Copy dane configuration, sans verification state.
154 */
155 static int ssl_dane_dup(SSL *to, SSL *from)
156 {
157 int num;
158 int i;
159
160 if (!DANETLS_ENABLED(&from->dane))
161 return 1;
162
163 num = sk_danetls_record_num(from->dane.trecs);
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173
174 for (i = 0; i < num; ++i) {
175 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
176
177 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
178 t->data, t->dlen) <= 0)
179 return 0;
180 }
181 return 1;
182 }
183
184 static int dane_mtype_set(struct dane_ctx_st *dctx,
185 const EVP_MD *md, uint8_t mtype, uint8_t ord)
186 {
187 int i;
188
189 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
190 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
191 return 0;
192 }
193
194 if (mtype > dctx->mdmax) {
195 const EVP_MD **mdevp;
196 uint8_t *mdord;
197 int n = ((int)mtype) + 1;
198
199 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
200 if (mdevp == NULL) {
201 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
202 return -1;
203 }
204 dctx->mdevp = mdevp;
205
206 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
207 if (mdord == NULL) {
208 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
209 return -1;
210 }
211 dctx->mdord = mdord;
212
213 /* Zero-fill any gaps */
214 for (i = dctx->mdmax + 1; i < mtype; ++i) {
215 mdevp[i] = NULL;
216 mdord[i] = 0;
217 }
218
219 dctx->mdmax = mtype;
220 }
221
222 dctx->mdevp[mtype] = md;
223 /* Coerce ordinal of disabled matching types to 0 */
224 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
225
226 return 1;
227 }
228
229 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
230 {
231 if (mtype > dane->dctx->mdmax)
232 return NULL;
233 return dane->dctx->mdevp[mtype];
234 }
235
236 static int dane_tlsa_add(SSL_DANE *dane,
237 uint8_t usage,
238 uint8_t selector,
239 uint8_t mtype, unsigned char *data, size_t dlen)
240 {
241 danetls_record *t;
242 const EVP_MD *md = NULL;
243 int ilen = (int)dlen;
244 int i;
245 int num;
246
247 if (dane->trecs == NULL) {
248 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
249 return -1;
250 }
251
252 if (ilen < 0 || dlen != (size_t)ilen) {
253 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
254 return 0;
255 }
256
257 if (usage > DANETLS_USAGE_LAST) {
258 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
259 return 0;
260 }
261
262 if (selector > DANETLS_SELECTOR_LAST) {
263 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
264 return 0;
265 }
266
267 if (mtype != DANETLS_MATCHING_FULL) {
268 md = tlsa_md_get(dane, mtype);
269 if (md == NULL) {
270 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
271 return 0;
272 }
273 }
274
275 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
276 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
277 return 0;
278 }
279 if (!data) {
280 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
281 return 0;
282 }
283
284 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
285 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
286 return -1;
287 }
288
289 t->usage = usage;
290 t->selector = selector;
291 t->mtype = mtype;
292 t->data = OPENSSL_malloc(dlen);
293 if (t->data == NULL) {
294 tlsa_free(t);
295 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
296 return -1;
297 }
298 memcpy(t->data, data, dlen);
299 t->dlen = dlen;
300
301 /* Validate and cache full certificate or public key */
302 if (mtype == DANETLS_MATCHING_FULL) {
303 const unsigned char *p = data;
304 X509 *cert = NULL;
305 EVP_PKEY *pkey = NULL;
306
307 switch (selector) {
308 case DANETLS_SELECTOR_CERT:
309 if (!d2i_X509(&cert, &p, ilen) || p < data ||
310 dlen != (size_t)(p - data)) {
311 tlsa_free(t);
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
313 return 0;
314 }
315 if (X509_get0_pubkey(cert) == NULL) {
316 tlsa_free(t);
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
318 return 0;
319 }
320
321 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
322 X509_free(cert);
323 break;
324 }
325
326 /*
327 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
328 * records that contain full certificates of trust-anchors that are
329 * not present in the wire chain. For usage PKIX-TA(0), we augment
330 * the chain with untrusted Full(0) certificates from DNS, in case
331 * they are missing from the chain.
332 */
333 if ((dane->certs == NULL &&
334 (dane->certs = sk_X509_new_null()) == NULL) ||
335 !sk_X509_push(dane->certs, cert)) {
336 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
337 X509_free(cert);
338 tlsa_free(t);
339 return -1;
340 }
341 break;
342
343 case DANETLS_SELECTOR_SPKI:
344 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
345 dlen != (size_t)(p - data)) {
346 tlsa_free(t);
347 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
348 return 0;
349 }
350
351 /*
352 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
353 * records that contain full bare keys of trust-anchors that are
354 * not present in the wire chain.
355 */
356 if (usage == DANETLS_USAGE_DANE_TA)
357 t->spki = pkey;
358 else
359 EVP_PKEY_free(pkey);
360 break;
361 }
362 }
363
364 /*-
365 * Find the right insertion point for the new record.
366 *
367 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
368 * they can be processed first, as they require no chain building, and no
369 * expiration or hostname checks. Because DANE-EE(3) is numerically
370 * largest, this is accomplished via descending sort by "usage".
371 *
372 * We also sort in descending order by matching ordinal to simplify
373 * the implementation of digest agility in the verification code.
374 *
375 * The choice of order for the selector is not significant, so we
376 * use the same descending order for consistency.
377 */
378 num = sk_danetls_record_num(dane->trecs);
379 for (i = 0; i < num; ++i) {
380 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
381
382 if (rec->usage > usage)
383 continue;
384 if (rec->usage < usage)
385 break;
386 if (rec->selector > selector)
387 continue;
388 if (rec->selector < selector)
389 break;
390 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
391 continue;
392 break;
393 }
394
395 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
396 tlsa_free(t);
397 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
398 return -1;
399 }
400 dane->umask |= DANETLS_USAGE_BIT(usage);
401
402 return 1;
403 }
404
405 /*
406 * Return 0 if there is only one version configured and it was disabled
407 * at configure time. Return 1 otherwise.
408 */
409 static int ssl_check_allowed_versions(int min_version, int max_version)
410 {
411 int minisdtls = 0, maxisdtls = 0;
412
413 /* Figure out if we're doing DTLS versions or TLS versions */
414 if (min_version == DTLS1_BAD_VER
415 || min_version >> 8 == DTLS1_VERSION_MAJOR)
416 minisdtls = 1;
417 if (max_version == DTLS1_BAD_VER
418 || max_version >> 8 == DTLS1_VERSION_MAJOR)
419 maxisdtls = 1;
420 /* A wildcard version of 0 could be DTLS or TLS. */
421 if ((minisdtls && !maxisdtls && max_version != 0)
422 || (maxisdtls && !minisdtls && min_version != 0)) {
423 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
424 return 0;
425 }
426
427 if (minisdtls || maxisdtls) {
428 /* Do DTLS version checks. */
429 if (min_version == 0)
430 /* Ignore DTLS1_BAD_VER */
431 min_version = DTLS1_VERSION;
432 if (max_version == 0)
433 max_version = DTLS1_2_VERSION;
434 #ifdef OPENSSL_NO_DTLS1_2
435 if (max_version == DTLS1_2_VERSION)
436 max_version = DTLS1_VERSION;
437 #endif
438 #ifdef OPENSSL_NO_DTLS1
439 if (min_version == DTLS1_VERSION)
440 min_version = DTLS1_2_VERSION;
441 #endif
442 /* Done massaging versions; do the check. */
443 if (0
444 #ifdef OPENSSL_NO_DTLS1
445 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
446 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
447 #endif
448 #ifdef OPENSSL_NO_DTLS1_2
449 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
450 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
451 #endif
452 )
453 return 0;
454 } else {
455 /* Regular TLS version checks. */
456 if (min_version == 0)
457 min_version = SSL3_VERSION;
458 if (max_version == 0)
459 max_version = TLS1_3_VERSION;
460 #ifdef OPENSSL_NO_TLS1_3
461 if (max_version == TLS1_3_VERSION)
462 max_version = TLS1_2_VERSION;
463 #endif
464 #ifdef OPENSSL_NO_TLS1_2
465 if (max_version == TLS1_2_VERSION)
466 max_version = TLS1_1_VERSION;
467 #endif
468 #ifdef OPENSSL_NO_TLS1_1
469 if (max_version == TLS1_1_VERSION)
470 max_version = TLS1_VERSION;
471 #endif
472 #ifdef OPENSSL_NO_TLS1
473 if (max_version == TLS1_VERSION)
474 max_version = SSL3_VERSION;
475 #endif
476 #ifdef OPENSSL_NO_SSL3
477 if (min_version == SSL3_VERSION)
478 min_version = TLS1_VERSION;
479 #endif
480 #ifdef OPENSSL_NO_TLS1
481 if (min_version == TLS1_VERSION)
482 min_version = TLS1_1_VERSION;
483 #endif
484 #ifdef OPENSSL_NO_TLS1_1
485 if (min_version == TLS1_1_VERSION)
486 min_version = TLS1_2_VERSION;
487 #endif
488 #ifdef OPENSSL_NO_TLS1_2
489 if (min_version == TLS1_2_VERSION)
490 min_version = TLS1_3_VERSION;
491 #endif
492 /* Done massaging versions; do the check. */
493 if (0
494 #ifdef OPENSSL_NO_SSL3
495 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
496 #endif
497 #ifdef OPENSSL_NO_TLS1
498 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
499 #endif
500 #ifdef OPENSSL_NO_TLS1_1
501 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
502 #endif
503 #ifdef OPENSSL_NO_TLS1_2
504 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
505 #endif
506 #ifdef OPENSSL_NO_TLS1_3
507 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
508 #endif
509 )
510 return 0;
511 }
512 return 1;
513 }
514
515 static void clear_ciphers(SSL *s)
516 {
517 /* clear the current cipher */
518 ssl_clear_cipher_ctx(s);
519 ssl_clear_hash_ctx(&s->read_hash);
520 ssl_clear_hash_ctx(&s->write_hash);
521 }
522
523 int SSL_clear(SSL *s)
524 {
525 if (s->method == NULL) {
526 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
527 return 0;
528 }
529
530 if (ssl_clear_bad_session(s)) {
531 SSL_SESSION_free(s->session);
532 s->session = NULL;
533 }
534 SSL_SESSION_free(s->psksession);
535 s->psksession = NULL;
536 OPENSSL_free(s->psksession_id);
537 s->psksession_id = NULL;
538 s->psksession_id_len = 0;
539
540 s->error = 0;
541 s->hit = 0;
542 s->shutdown = 0;
543
544 if (s->renegotiate) {
545 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
546 return 0;
547 }
548
549 ossl_statem_clear(s);
550
551 s->version = s->method->version;
552 s->client_version = s->version;
553 s->rwstate = SSL_NOTHING;
554
555 BUF_MEM_free(s->init_buf);
556 s->init_buf = NULL;
557 clear_ciphers(s);
558 s->first_packet = 0;
559
560 s->key_update = SSL_KEY_UPDATE_NONE;
561
562 /* Reset DANE verification result state */
563 s->dane.mdpth = -1;
564 s->dane.pdpth = -1;
565 X509_free(s->dane.mcert);
566 s->dane.mcert = NULL;
567 s->dane.mtlsa = NULL;
568
569 /* Clear the verification result peername */
570 X509_VERIFY_PARAM_move_peername(s->param, NULL);
571
572 /*
573 * Check to see if we were changed into a different method, if so, revert
574 * back.
575 */
576 if (s->method != s->ctx->method) {
577 s->method->ssl_free(s);
578 s->method = s->ctx->method;
579 if (!s->method->ssl_new(s))
580 return 0;
581 } else {
582 if (!s->method->ssl_clear(s))
583 return 0;
584 }
585
586 RECORD_LAYER_clear(&s->rlayer);
587
588 return 1;
589 }
590
591 /** Used to change an SSL_CTXs default SSL method type */
592 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
593 {
594 STACK_OF(SSL_CIPHER) *sk;
595
596 ctx->method = meth;
597
598 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
599 &(ctx->cipher_list_by_id),
600 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
601 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
602 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
603 return 0;
604 }
605 return 1;
606 }
607
608 SSL *SSL_new(SSL_CTX *ctx)
609 {
610 SSL *s;
611
612 if (ctx == NULL) {
613 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
614 return NULL;
615 }
616 if (ctx->method == NULL) {
617 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
618 return NULL;
619 }
620
621 s = OPENSSL_zalloc(sizeof(*s));
622 if (s == NULL)
623 goto err;
624
625 s->references = 1;
626 s->lock = CRYPTO_THREAD_lock_new();
627 if (s->lock == NULL) {
628 OPENSSL_free(s);
629 s = NULL;
630 goto err;
631 }
632
633 /*
634 * If not using the standard RAND (say for fuzzing), then don't use a
635 * chained DRBG.
636 */
637 if (RAND_get_rand_method() == RAND_OpenSSL()) {
638 s->drbg =
639 RAND_DRBG_new(RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF,
640 RAND_DRBG_get0_global());
641 if (s->drbg == NULL
642 || RAND_DRBG_instantiate(s->drbg,
643 (const unsigned char *) SSL_version_str,
644 sizeof(SSL_version_str) - 1) == 0)
645 goto err;
646 }
647
648 RECORD_LAYER_init(&s->rlayer, s);
649
650 s->options = ctx->options;
651 s->dane.flags = ctx->dane.flags;
652 s->min_proto_version = ctx->min_proto_version;
653 s->max_proto_version = ctx->max_proto_version;
654 s->mode = ctx->mode;
655 s->max_cert_list = ctx->max_cert_list;
656 s->max_early_data = ctx->max_early_data;
657
658 /*
659 * Earlier library versions used to copy the pointer to the CERT, not
660 * its contents; only when setting new parameters for the per-SSL
661 * copy, ssl_cert_new would be called (and the direct reference to
662 * the per-SSL_CTX settings would be lost, but those still were
663 * indirectly accessed for various purposes, and for that reason they
664 * used to be known as s->ctx->default_cert). Now we don't look at the
665 * SSL_CTX's CERT after having duplicated it once.
666 */
667 s->cert = ssl_cert_dup(ctx->cert);
668 if (s->cert == NULL)
669 goto err;
670
671 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
672 s->msg_callback = ctx->msg_callback;
673 s->msg_callback_arg = ctx->msg_callback_arg;
674 s->verify_mode = ctx->verify_mode;
675 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
676 s->record_padding_cb = ctx->record_padding_cb;
677 s->record_padding_arg = ctx->record_padding_arg;
678 s->block_padding = ctx->block_padding;
679 s->sid_ctx_length = ctx->sid_ctx_length;
680 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
681 goto err;
682 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
683 s->verify_callback = ctx->default_verify_callback;
684 s->generate_session_id = ctx->generate_session_id;
685
686 s->param = X509_VERIFY_PARAM_new();
687 if (s->param == NULL)
688 goto err;
689 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
690 s->quiet_shutdown = ctx->quiet_shutdown;
691
692 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
693 s->max_send_fragment = ctx->max_send_fragment;
694 s->split_send_fragment = ctx->split_send_fragment;
695 s->max_pipelines = ctx->max_pipelines;
696 if (s->max_pipelines > 1)
697 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
698 if (ctx->default_read_buf_len > 0)
699 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
700
701 SSL_CTX_up_ref(ctx);
702 s->ctx = ctx;
703 s->ext.debug_cb = 0;
704 s->ext.debug_arg = NULL;
705 s->ext.ticket_expected = 0;
706 s->ext.status_type = ctx->ext.status_type;
707 s->ext.status_expected = 0;
708 s->ext.ocsp.ids = NULL;
709 s->ext.ocsp.exts = NULL;
710 s->ext.ocsp.resp = NULL;
711 s->ext.ocsp.resp_len = 0;
712 SSL_CTX_up_ref(ctx);
713 s->session_ctx = ctx;
714 #ifndef OPENSSL_NO_EC
715 if (ctx->ext.ecpointformats) {
716 s->ext.ecpointformats =
717 OPENSSL_memdup(ctx->ext.ecpointformats,
718 ctx->ext.ecpointformats_len);
719 if (!s->ext.ecpointformats)
720 goto err;
721 s->ext.ecpointformats_len =
722 ctx->ext.ecpointformats_len;
723 }
724 if (ctx->ext.supportedgroups) {
725 s->ext.supportedgroups =
726 OPENSSL_memdup(ctx->ext.supportedgroups,
727 ctx->ext.supportedgroups_len
728 * sizeof(*ctx->ext.supportedgroups));
729 if (!s->ext.supportedgroups)
730 goto err;
731 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
732 }
733 #endif
734 #ifndef OPENSSL_NO_NEXTPROTONEG
735 s->ext.npn = NULL;
736 #endif
737
738 if (s->ctx->ext.alpn) {
739 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
740 if (s->ext.alpn == NULL)
741 goto err;
742 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
743 s->ext.alpn_len = s->ctx->ext.alpn_len;
744 }
745
746 s->verified_chain = NULL;
747 s->verify_result = X509_V_OK;
748
749 s->default_passwd_callback = ctx->default_passwd_callback;
750 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
751
752 s->method = ctx->method;
753
754 s->key_update = SSL_KEY_UPDATE_NONE;
755
756 if (!s->method->ssl_new(s))
757 goto err;
758
759 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
760
761 if (!SSL_clear(s))
762 goto err;
763
764 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
765 goto err;
766
767 #ifndef OPENSSL_NO_PSK
768 s->psk_client_callback = ctx->psk_client_callback;
769 s->psk_server_callback = ctx->psk_server_callback;
770 #endif
771 s->psk_find_session_cb = ctx->psk_find_session_cb;
772 s->psk_use_session_cb = ctx->psk_use_session_cb;
773
774 s->job = NULL;
775
776 #ifndef OPENSSL_NO_CT
777 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
778 ctx->ct_validation_callback_arg))
779 goto err;
780 #endif
781
782 return s;
783 err:
784 SSL_free(s);
785 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
786 return NULL;
787 }
788
789 int SSL_is_dtls(const SSL *s)
790 {
791 return SSL_IS_DTLS(s) ? 1 : 0;
792 }
793
794 int SSL_up_ref(SSL *s)
795 {
796 int i;
797
798 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
799 return 0;
800
801 REF_PRINT_COUNT("SSL", s);
802 REF_ASSERT_ISNT(i < 2);
803 return ((i > 1) ? 1 : 0);
804 }
805
806 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
807 unsigned int sid_ctx_len)
808 {
809 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
810 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
811 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
812 return 0;
813 }
814 ctx->sid_ctx_length = sid_ctx_len;
815 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
816
817 return 1;
818 }
819
820 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
821 unsigned int sid_ctx_len)
822 {
823 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
824 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
825 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
826 return 0;
827 }
828 ssl->sid_ctx_length = sid_ctx_len;
829 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
830
831 return 1;
832 }
833
834 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
835 {
836 CRYPTO_THREAD_write_lock(ctx->lock);
837 ctx->generate_session_id = cb;
838 CRYPTO_THREAD_unlock(ctx->lock);
839 return 1;
840 }
841
842 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
843 {
844 CRYPTO_THREAD_write_lock(ssl->lock);
845 ssl->generate_session_id = cb;
846 CRYPTO_THREAD_unlock(ssl->lock);
847 return 1;
848 }
849
850 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
851 unsigned int id_len)
852 {
853 /*
854 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
855 * we can "construct" a session to give us the desired check - i.e. to
856 * find if there's a session in the hash table that would conflict with
857 * any new session built out of this id/id_len and the ssl_version in use
858 * by this SSL.
859 */
860 SSL_SESSION r, *p;
861
862 if (id_len > sizeof(r.session_id))
863 return 0;
864
865 r.ssl_version = ssl->version;
866 r.session_id_length = id_len;
867 memcpy(r.session_id, id, id_len);
868
869 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
870 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
871 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
872 return (p != NULL);
873 }
874
875 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
876 {
877 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
878 }
879
880 int SSL_set_purpose(SSL *s, int purpose)
881 {
882 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
883 }
884
885 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
886 {
887 return X509_VERIFY_PARAM_set_trust(s->param, trust);
888 }
889
890 int SSL_set_trust(SSL *s, int trust)
891 {
892 return X509_VERIFY_PARAM_set_trust(s->param, trust);
893 }
894
895 int SSL_set1_host(SSL *s, const char *hostname)
896 {
897 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
898 }
899
900 int SSL_add1_host(SSL *s, const char *hostname)
901 {
902 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
903 }
904
905 void SSL_set_hostflags(SSL *s, unsigned int flags)
906 {
907 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
908 }
909
910 const char *SSL_get0_peername(SSL *s)
911 {
912 return X509_VERIFY_PARAM_get0_peername(s->param);
913 }
914
915 int SSL_CTX_dane_enable(SSL_CTX *ctx)
916 {
917 return dane_ctx_enable(&ctx->dane);
918 }
919
920 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
921 {
922 unsigned long orig = ctx->dane.flags;
923
924 ctx->dane.flags |= flags;
925 return orig;
926 }
927
928 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
929 {
930 unsigned long orig = ctx->dane.flags;
931
932 ctx->dane.flags &= ~flags;
933 return orig;
934 }
935
936 int SSL_dane_enable(SSL *s, const char *basedomain)
937 {
938 SSL_DANE *dane = &s->dane;
939
940 if (s->ctx->dane.mdmax == 0) {
941 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
942 return 0;
943 }
944 if (dane->trecs != NULL) {
945 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
946 return 0;
947 }
948
949 /*
950 * Default SNI name. This rejects empty names, while set1_host below
951 * accepts them and disables host name checks. To avoid side-effects with
952 * invalid input, set the SNI name first.
953 */
954 if (s->ext.hostname == NULL) {
955 if (!SSL_set_tlsext_host_name(s, basedomain)) {
956 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
957 return -1;
958 }
959 }
960
961 /* Primary RFC6125 reference identifier */
962 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
963 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
964 return -1;
965 }
966
967 dane->mdpth = -1;
968 dane->pdpth = -1;
969 dane->dctx = &s->ctx->dane;
970 dane->trecs = sk_danetls_record_new_null();
971
972 if (dane->trecs == NULL) {
973 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
974 return -1;
975 }
976 return 1;
977 }
978
979 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
980 {
981 unsigned long orig = ssl->dane.flags;
982
983 ssl->dane.flags |= flags;
984 return orig;
985 }
986
987 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
988 {
989 unsigned long orig = ssl->dane.flags;
990
991 ssl->dane.flags &= ~flags;
992 return orig;
993 }
994
995 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
996 {
997 SSL_DANE *dane = &s->dane;
998
999 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1000 return -1;
1001 if (dane->mtlsa) {
1002 if (mcert)
1003 *mcert = dane->mcert;
1004 if (mspki)
1005 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1006 }
1007 return dane->mdpth;
1008 }
1009
1010 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1011 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1012 {
1013 SSL_DANE *dane = &s->dane;
1014
1015 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1016 return -1;
1017 if (dane->mtlsa) {
1018 if (usage)
1019 *usage = dane->mtlsa->usage;
1020 if (selector)
1021 *selector = dane->mtlsa->selector;
1022 if (mtype)
1023 *mtype = dane->mtlsa->mtype;
1024 if (data)
1025 *data = dane->mtlsa->data;
1026 if (dlen)
1027 *dlen = dane->mtlsa->dlen;
1028 }
1029 return dane->mdpth;
1030 }
1031
1032 SSL_DANE *SSL_get0_dane(SSL *s)
1033 {
1034 return &s->dane;
1035 }
1036
1037 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1038 uint8_t mtype, unsigned char *data, size_t dlen)
1039 {
1040 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1041 }
1042
1043 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1044 uint8_t ord)
1045 {
1046 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1047 }
1048
1049 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1050 {
1051 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1052 }
1053
1054 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1055 {
1056 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1057 }
1058
1059 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1060 {
1061 return ctx->param;
1062 }
1063
1064 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1065 {
1066 return ssl->param;
1067 }
1068
1069 void SSL_certs_clear(SSL *s)
1070 {
1071 ssl_cert_clear_certs(s->cert);
1072 }
1073
1074 void SSL_free(SSL *s)
1075 {
1076 int i;
1077
1078 if (s == NULL)
1079 return;
1080
1081 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1082 REF_PRINT_COUNT("SSL", s);
1083 if (i > 0)
1084 return;
1085 REF_ASSERT_ISNT(i < 0);
1086
1087 X509_VERIFY_PARAM_free(s->param);
1088 dane_final(&s->dane);
1089 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1090
1091 /* Ignore return value */
1092 ssl_free_wbio_buffer(s);
1093
1094 BIO_free_all(s->wbio);
1095 BIO_free_all(s->rbio);
1096
1097 BUF_MEM_free(s->init_buf);
1098
1099 /* add extra stuff */
1100 sk_SSL_CIPHER_free(s->cipher_list);
1101 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1102
1103 /* Make the next call work :-) */
1104 if (s->session != NULL) {
1105 ssl_clear_bad_session(s);
1106 SSL_SESSION_free(s->session);
1107 }
1108 SSL_SESSION_free(s->psksession);
1109 OPENSSL_free(s->psksession_id);
1110
1111 clear_ciphers(s);
1112
1113 ssl_cert_free(s->cert);
1114 /* Free up if allocated */
1115
1116 OPENSSL_free(s->ext.hostname);
1117 SSL_CTX_free(s->session_ctx);
1118 #ifndef OPENSSL_NO_EC
1119 OPENSSL_free(s->ext.ecpointformats);
1120 OPENSSL_free(s->ext.supportedgroups);
1121 #endif /* OPENSSL_NO_EC */
1122 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1123 #ifndef OPENSSL_NO_OCSP
1124 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1125 #endif
1126 #ifndef OPENSSL_NO_CT
1127 SCT_LIST_free(s->scts);
1128 OPENSSL_free(s->ext.scts);
1129 #endif
1130 OPENSSL_free(s->ext.ocsp.resp);
1131 OPENSSL_free(s->ext.alpn);
1132 OPENSSL_free(s->ext.tls13_cookie);
1133 OPENSSL_free(s->clienthello);
1134
1135 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1136
1137 sk_X509_pop_free(s->verified_chain, X509_free);
1138
1139 if (s->method != NULL)
1140 s->method->ssl_free(s);
1141
1142 RECORD_LAYER_release(&s->rlayer);
1143
1144 SSL_CTX_free(s->ctx);
1145
1146 ASYNC_WAIT_CTX_free(s->waitctx);
1147
1148 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1149 OPENSSL_free(s->ext.npn);
1150 #endif
1151
1152 #ifndef OPENSSL_NO_SRTP
1153 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1154 #endif
1155
1156 RAND_DRBG_free(s->drbg);
1157 CRYPTO_THREAD_lock_free(s->lock);
1158
1159 OPENSSL_free(s);
1160 }
1161
1162 void SSL_set0_rbio(SSL *s, BIO *rbio)
1163 {
1164 BIO_free_all(s->rbio);
1165 s->rbio = rbio;
1166 }
1167
1168 void SSL_set0_wbio(SSL *s, BIO *wbio)
1169 {
1170 /*
1171 * If the output buffering BIO is still in place, remove it
1172 */
1173 if (s->bbio != NULL)
1174 s->wbio = BIO_pop(s->wbio);
1175
1176 BIO_free_all(s->wbio);
1177 s->wbio = wbio;
1178
1179 /* Re-attach |bbio| to the new |wbio|. */
1180 if (s->bbio != NULL)
1181 s->wbio = BIO_push(s->bbio, s->wbio);
1182 }
1183
1184 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1185 {
1186 /*
1187 * For historical reasons, this function has many different cases in
1188 * ownership handling.
1189 */
1190
1191 /* If nothing has changed, do nothing */
1192 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1193 return;
1194
1195 /*
1196 * If the two arguments are equal then one fewer reference is granted by the
1197 * caller than we want to take
1198 */
1199 if (rbio != NULL && rbio == wbio)
1200 BIO_up_ref(rbio);
1201
1202 /*
1203 * If only the wbio is changed only adopt one reference.
1204 */
1205 if (rbio == SSL_get_rbio(s)) {
1206 SSL_set0_wbio(s, wbio);
1207 return;
1208 }
1209 /*
1210 * There is an asymmetry here for historical reasons. If only the rbio is
1211 * changed AND the rbio and wbio were originally different, then we only
1212 * adopt one reference.
1213 */
1214 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1215 SSL_set0_rbio(s, rbio);
1216 return;
1217 }
1218
1219 /* Otherwise, adopt both references. */
1220 SSL_set0_rbio(s, rbio);
1221 SSL_set0_wbio(s, wbio);
1222 }
1223
1224 BIO *SSL_get_rbio(const SSL *s)
1225 {
1226 return s->rbio;
1227 }
1228
1229 BIO *SSL_get_wbio(const SSL *s)
1230 {
1231 if (s->bbio != NULL) {
1232 /*
1233 * If |bbio| is active, the true caller-configured BIO is its
1234 * |next_bio|.
1235 */
1236 return BIO_next(s->bbio);
1237 }
1238 return s->wbio;
1239 }
1240
1241 int SSL_get_fd(const SSL *s)
1242 {
1243 return SSL_get_rfd(s);
1244 }
1245
1246 int SSL_get_rfd(const SSL *s)
1247 {
1248 int ret = -1;
1249 BIO *b, *r;
1250
1251 b = SSL_get_rbio(s);
1252 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1253 if (r != NULL)
1254 BIO_get_fd(r, &ret);
1255 return ret;
1256 }
1257
1258 int SSL_get_wfd(const SSL *s)
1259 {
1260 int ret = -1;
1261 BIO *b, *r;
1262
1263 b = SSL_get_wbio(s);
1264 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1265 if (r != NULL)
1266 BIO_get_fd(r, &ret);
1267 return ret;
1268 }
1269
1270 #ifndef OPENSSL_NO_SOCK
1271 int SSL_set_fd(SSL *s, int fd)
1272 {
1273 int ret = 0;
1274 BIO *bio = NULL;
1275
1276 bio = BIO_new(BIO_s_socket());
1277
1278 if (bio == NULL) {
1279 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1280 goto err;
1281 }
1282 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1283 SSL_set_bio(s, bio, bio);
1284 ret = 1;
1285 err:
1286 return ret;
1287 }
1288
1289 int SSL_set_wfd(SSL *s, int fd)
1290 {
1291 BIO *rbio = SSL_get_rbio(s);
1292
1293 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1294 || (int)BIO_get_fd(rbio, NULL) != fd) {
1295 BIO *bio = BIO_new(BIO_s_socket());
1296
1297 if (bio == NULL) {
1298 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1299 return 0;
1300 }
1301 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1302 SSL_set0_wbio(s, bio);
1303 } else {
1304 BIO_up_ref(rbio);
1305 SSL_set0_wbio(s, rbio);
1306 }
1307 return 1;
1308 }
1309
1310 int SSL_set_rfd(SSL *s, int fd)
1311 {
1312 BIO *wbio = SSL_get_wbio(s);
1313
1314 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1315 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1316 BIO *bio = BIO_new(BIO_s_socket());
1317
1318 if (bio == NULL) {
1319 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1320 return 0;
1321 }
1322 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1323 SSL_set0_rbio(s, bio);
1324 } else {
1325 BIO_up_ref(wbio);
1326 SSL_set0_rbio(s, wbio);
1327 }
1328
1329 return 1;
1330 }
1331 #endif
1332
1333 /* return length of latest Finished message we sent, copy to 'buf' */
1334 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1335 {
1336 size_t ret = 0;
1337
1338 if (s->s3 != NULL) {
1339 ret = s->s3->tmp.finish_md_len;
1340 if (count > ret)
1341 count = ret;
1342 memcpy(buf, s->s3->tmp.finish_md, count);
1343 }
1344 return ret;
1345 }
1346
1347 /* return length of latest Finished message we expected, copy to 'buf' */
1348 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1349 {
1350 size_t ret = 0;
1351
1352 if (s->s3 != NULL) {
1353 ret = s->s3->tmp.peer_finish_md_len;
1354 if (count > ret)
1355 count = ret;
1356 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1357 }
1358 return ret;
1359 }
1360
1361 int SSL_get_verify_mode(const SSL *s)
1362 {
1363 return s->verify_mode;
1364 }
1365
1366 int SSL_get_verify_depth(const SSL *s)
1367 {
1368 return X509_VERIFY_PARAM_get_depth(s->param);
1369 }
1370
1371 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1372 return s->verify_callback;
1373 }
1374
1375 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1376 {
1377 return ctx->verify_mode;
1378 }
1379
1380 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1381 {
1382 return X509_VERIFY_PARAM_get_depth(ctx->param);
1383 }
1384
1385 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1386 return ctx->default_verify_callback;
1387 }
1388
1389 void SSL_set_verify(SSL *s, int mode,
1390 int (*callback) (int ok, X509_STORE_CTX *ctx))
1391 {
1392 s->verify_mode = mode;
1393 if (callback != NULL)
1394 s->verify_callback = callback;
1395 }
1396
1397 void SSL_set_verify_depth(SSL *s, int depth)
1398 {
1399 X509_VERIFY_PARAM_set_depth(s->param, depth);
1400 }
1401
1402 void SSL_set_read_ahead(SSL *s, int yes)
1403 {
1404 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1405 }
1406
1407 int SSL_get_read_ahead(const SSL *s)
1408 {
1409 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1410 }
1411
1412 int SSL_pending(const SSL *s)
1413 {
1414 size_t pending = s->method->ssl_pending(s);
1415
1416 /*
1417 * SSL_pending cannot work properly if read-ahead is enabled
1418 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1419 * impossible to fix since SSL_pending cannot report errors that may be
1420 * observed while scanning the new data. (Note that SSL_pending() is
1421 * often used as a boolean value, so we'd better not return -1.)
1422 *
1423 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1424 * we just return INT_MAX.
1425 */
1426 return pending < INT_MAX ? (int)pending : INT_MAX;
1427 }
1428
1429 int SSL_has_pending(const SSL *s)
1430 {
1431 /*
1432 * Similar to SSL_pending() but returns a 1 to indicate that we have
1433 * unprocessed data available or 0 otherwise (as opposed to the number of
1434 * bytes available). Unlike SSL_pending() this will take into account
1435 * read_ahead data. A 1 return simply indicates that we have unprocessed
1436 * data. That data may not result in any application data, or we may fail
1437 * to parse the records for some reason.
1438 */
1439 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1440 return 1;
1441
1442 return RECORD_LAYER_read_pending(&s->rlayer);
1443 }
1444
1445 X509 *SSL_get_peer_certificate(const SSL *s)
1446 {
1447 X509 *r;
1448
1449 if ((s == NULL) || (s->session == NULL))
1450 r = NULL;
1451 else
1452 r = s->session->peer;
1453
1454 if (r == NULL)
1455 return r;
1456
1457 X509_up_ref(r);
1458
1459 return r;
1460 }
1461
1462 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1463 {
1464 STACK_OF(X509) *r;
1465
1466 if ((s == NULL) || (s->session == NULL))
1467 r = NULL;
1468 else
1469 r = s->session->peer_chain;
1470
1471 /*
1472 * If we are a client, cert_chain includes the peer's own certificate; if
1473 * we are a server, it does not.
1474 */
1475
1476 return r;
1477 }
1478
1479 /*
1480 * Now in theory, since the calling process own 't' it should be safe to
1481 * modify. We need to be able to read f without being hassled
1482 */
1483 int SSL_copy_session_id(SSL *t, const SSL *f)
1484 {
1485 int i;
1486 /* Do we need to to SSL locking? */
1487 if (!SSL_set_session(t, SSL_get_session(f))) {
1488 return 0;
1489 }
1490
1491 /*
1492 * what if we are setup for one protocol version but want to talk another
1493 */
1494 if (t->method != f->method) {
1495 t->method->ssl_free(t);
1496 t->method = f->method;
1497 if (t->method->ssl_new(t) == 0)
1498 return 0;
1499 }
1500
1501 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1502 ssl_cert_free(t->cert);
1503 t->cert = f->cert;
1504 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1505 return 0;
1506 }
1507
1508 return 1;
1509 }
1510
1511 /* Fix this so it checks all the valid key/cert options */
1512 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1513 {
1514 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1515 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1516 return 0;
1517 }
1518 if (ctx->cert->key->privatekey == NULL) {
1519 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1520 return 0;
1521 }
1522 return X509_check_private_key
1523 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1524 }
1525
1526 /* Fix this function so that it takes an optional type parameter */
1527 int SSL_check_private_key(const SSL *ssl)
1528 {
1529 if (ssl == NULL) {
1530 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1531 return 0;
1532 }
1533 if (ssl->cert->key->x509 == NULL) {
1534 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1535 return 0;
1536 }
1537 if (ssl->cert->key->privatekey == NULL) {
1538 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1539 return 0;
1540 }
1541 return X509_check_private_key(ssl->cert->key->x509,
1542 ssl->cert->key->privatekey);
1543 }
1544
1545 int SSL_waiting_for_async(SSL *s)
1546 {
1547 if (s->job)
1548 return 1;
1549
1550 return 0;
1551 }
1552
1553 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1554 {
1555 ASYNC_WAIT_CTX *ctx = s->waitctx;
1556
1557 if (ctx == NULL)
1558 return 0;
1559 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1560 }
1561
1562 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1563 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1564 {
1565 ASYNC_WAIT_CTX *ctx = s->waitctx;
1566
1567 if (ctx == NULL)
1568 return 0;
1569 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1570 numdelfds);
1571 }
1572
1573 int SSL_accept(SSL *s)
1574 {
1575 if (s->handshake_func == NULL) {
1576 /* Not properly initialized yet */
1577 SSL_set_accept_state(s);
1578 }
1579
1580 return SSL_do_handshake(s);
1581 }
1582
1583 int SSL_connect(SSL *s)
1584 {
1585 if (s->handshake_func == NULL) {
1586 /* Not properly initialized yet */
1587 SSL_set_connect_state(s);
1588 }
1589
1590 return SSL_do_handshake(s);
1591 }
1592
1593 long SSL_get_default_timeout(const SSL *s)
1594 {
1595 return s->method->get_timeout();
1596 }
1597
1598 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1599 int (*func) (void *))
1600 {
1601 int ret;
1602 if (s->waitctx == NULL) {
1603 s->waitctx = ASYNC_WAIT_CTX_new();
1604 if (s->waitctx == NULL)
1605 return -1;
1606 }
1607 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1608 sizeof(struct ssl_async_args))) {
1609 case ASYNC_ERR:
1610 s->rwstate = SSL_NOTHING;
1611 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1612 return -1;
1613 case ASYNC_PAUSE:
1614 s->rwstate = SSL_ASYNC_PAUSED;
1615 return -1;
1616 case ASYNC_NO_JOBS:
1617 s->rwstate = SSL_ASYNC_NO_JOBS;
1618 return -1;
1619 case ASYNC_FINISH:
1620 s->job = NULL;
1621 return ret;
1622 default:
1623 s->rwstate = SSL_NOTHING;
1624 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1625 /* Shouldn't happen */
1626 return -1;
1627 }
1628 }
1629
1630 static int ssl_io_intern(void *vargs)
1631 {
1632 struct ssl_async_args *args;
1633 SSL *s;
1634 void *buf;
1635 size_t num;
1636
1637 args = (struct ssl_async_args *)vargs;
1638 s = args->s;
1639 buf = args->buf;
1640 num = args->num;
1641 switch (args->type) {
1642 case READFUNC:
1643 return args->f.func_read(s, buf, num, &s->asyncrw);
1644 case WRITEFUNC:
1645 return args->f.func_write(s, buf, num, &s->asyncrw);
1646 case OTHERFUNC:
1647 return args->f.func_other(s);
1648 }
1649 return -1;
1650 }
1651
1652 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1653 {
1654 if (s->handshake_func == NULL) {
1655 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1656 return -1;
1657 }
1658
1659 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1660 s->rwstate = SSL_NOTHING;
1661 return 0;
1662 }
1663
1664 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1665 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1666 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1667 return 0;
1668 }
1669 /*
1670 * If we are a client and haven't received the ServerHello etc then we
1671 * better do that
1672 */
1673 ossl_statem_check_finish_init(s, 0);
1674
1675 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1676 struct ssl_async_args args;
1677 int ret;
1678
1679 args.s = s;
1680 args.buf = buf;
1681 args.num = num;
1682 args.type = READFUNC;
1683 args.f.func_read = s->method->ssl_read;
1684
1685 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1686 *readbytes = s->asyncrw;
1687 return ret;
1688 } else {
1689 return s->method->ssl_read(s, buf, num, readbytes);
1690 }
1691 }
1692
1693 int SSL_read(SSL *s, void *buf, int num)
1694 {
1695 int ret;
1696 size_t readbytes;
1697
1698 if (num < 0) {
1699 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1700 return -1;
1701 }
1702
1703 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1704
1705 /*
1706 * The cast is safe here because ret should be <= INT_MAX because num is
1707 * <= INT_MAX
1708 */
1709 if (ret > 0)
1710 ret = (int)readbytes;
1711
1712 return ret;
1713 }
1714
1715 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1716 {
1717 int ret = ssl_read_internal(s, buf, num, readbytes);
1718
1719 if (ret < 0)
1720 ret = 0;
1721 return ret;
1722 }
1723
1724 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1725 {
1726 int ret;
1727
1728 if (!s->server) {
1729 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1730 return SSL_READ_EARLY_DATA_ERROR;
1731 }
1732
1733 switch (s->early_data_state) {
1734 case SSL_EARLY_DATA_NONE:
1735 if (!SSL_in_before(s)) {
1736 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1737 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1738 return SSL_READ_EARLY_DATA_ERROR;
1739 }
1740 /* fall through */
1741
1742 case SSL_EARLY_DATA_ACCEPT_RETRY:
1743 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1744 ret = SSL_accept(s);
1745 if (ret <= 0) {
1746 /* NBIO or error */
1747 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1748 return SSL_READ_EARLY_DATA_ERROR;
1749 }
1750 /* fall through */
1751
1752 case SSL_EARLY_DATA_READ_RETRY:
1753 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1754 s->early_data_state = SSL_EARLY_DATA_READING;
1755 ret = SSL_read_ex(s, buf, num, readbytes);
1756 /*
1757 * State machine will update early_data_state to
1758 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1759 * message
1760 */
1761 if (ret > 0 || (ret <= 0 && s->early_data_state
1762 != SSL_EARLY_DATA_FINISHED_READING)) {
1763 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1764 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1765 : SSL_READ_EARLY_DATA_ERROR;
1766 }
1767 } else {
1768 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1769 }
1770 *readbytes = 0;
1771 return SSL_READ_EARLY_DATA_FINISH;
1772
1773 default:
1774 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1775 return SSL_READ_EARLY_DATA_ERROR;
1776 }
1777 }
1778
1779 int SSL_get_early_data_status(const SSL *s)
1780 {
1781 return s->ext.early_data;
1782 }
1783
1784 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1785 {
1786 if (s->handshake_func == NULL) {
1787 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1788 return -1;
1789 }
1790
1791 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1792 return 0;
1793 }
1794 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1795 struct ssl_async_args args;
1796 int ret;
1797
1798 args.s = s;
1799 args.buf = buf;
1800 args.num = num;
1801 args.type = READFUNC;
1802 args.f.func_read = s->method->ssl_peek;
1803
1804 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1805 *readbytes = s->asyncrw;
1806 return ret;
1807 } else {
1808 return s->method->ssl_peek(s, buf, num, readbytes);
1809 }
1810 }
1811
1812 int SSL_peek(SSL *s, void *buf, int num)
1813 {
1814 int ret;
1815 size_t readbytes;
1816
1817 if (num < 0) {
1818 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1819 return -1;
1820 }
1821
1822 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1823
1824 /*
1825 * The cast is safe here because ret should be <= INT_MAX because num is
1826 * <= INT_MAX
1827 */
1828 if (ret > 0)
1829 ret = (int)readbytes;
1830
1831 return ret;
1832 }
1833
1834
1835 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1836 {
1837 int ret = ssl_peek_internal(s, buf, num, readbytes);
1838
1839 if (ret < 0)
1840 ret = 0;
1841 return ret;
1842 }
1843
1844 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1845 {
1846 if (s->handshake_func == NULL) {
1847 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1848 return -1;
1849 }
1850
1851 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1852 s->rwstate = SSL_NOTHING;
1853 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1854 return -1;
1855 }
1856
1857 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1858 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1859 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1860 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1861 return 0;
1862 }
1863 /* If we are a client and haven't sent the Finished we better do that */
1864 ossl_statem_check_finish_init(s, 1);
1865
1866 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1867 int ret;
1868 struct ssl_async_args args;
1869
1870 args.s = s;
1871 args.buf = (void *)buf;
1872 args.num = num;
1873 args.type = WRITEFUNC;
1874 args.f.func_write = s->method->ssl_write;
1875
1876 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1877 *written = s->asyncrw;
1878 return ret;
1879 } else {
1880 return s->method->ssl_write(s, buf, num, written);
1881 }
1882 }
1883
1884 int SSL_write(SSL *s, const void *buf, int num)
1885 {
1886 int ret;
1887 size_t written;
1888
1889 if (num < 0) {
1890 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1891 return -1;
1892 }
1893
1894 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1895
1896 /*
1897 * The cast is safe here because ret should be <= INT_MAX because num is
1898 * <= INT_MAX
1899 */
1900 if (ret > 0)
1901 ret = (int)written;
1902
1903 return ret;
1904 }
1905
1906 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1907 {
1908 int ret = ssl_write_internal(s, buf, num, written);
1909
1910 if (ret < 0)
1911 ret = 0;
1912 return ret;
1913 }
1914
1915 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1916 {
1917 int ret, early_data_state;
1918
1919 switch (s->early_data_state) {
1920 case SSL_EARLY_DATA_NONE:
1921 if (s->server
1922 || !SSL_in_before(s)
1923 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1924 && (s->psk_use_session_cb == NULL))) {
1925 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1926 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1927 return 0;
1928 }
1929 /* fall through */
1930
1931 case SSL_EARLY_DATA_CONNECT_RETRY:
1932 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1933 ret = SSL_connect(s);
1934 if (ret <= 0) {
1935 /* NBIO or error */
1936 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1937 return 0;
1938 }
1939 /* fall through */
1940
1941 case SSL_EARLY_DATA_WRITE_RETRY:
1942 s->early_data_state = SSL_EARLY_DATA_WRITING;
1943 ret = SSL_write_ex(s, buf, num, written);
1944 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1945 return ret;
1946
1947 case SSL_EARLY_DATA_FINISHED_READING:
1948 case SSL_EARLY_DATA_READ_RETRY:
1949 early_data_state = s->early_data_state;
1950 /* We are a server writing to an unauthenticated client */
1951 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1952 ret = SSL_write_ex(s, buf, num, written);
1953 s->early_data_state = early_data_state;
1954 return ret;
1955
1956 default:
1957 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1958 return 0;
1959 }
1960 }
1961
1962 int SSL_shutdown(SSL *s)
1963 {
1964 /*
1965 * Note that this function behaves differently from what one might
1966 * expect. Return values are 0 for no success (yet), 1 for success; but
1967 * calling it once is usually not enough, even if blocking I/O is used
1968 * (see ssl3_shutdown).
1969 */
1970
1971 if (s->handshake_func == NULL) {
1972 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1973 return -1;
1974 }
1975
1976 if (!SSL_in_init(s)) {
1977 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1978 struct ssl_async_args args;
1979
1980 args.s = s;
1981 args.type = OTHERFUNC;
1982 args.f.func_other = s->method->ssl_shutdown;
1983
1984 return ssl_start_async_job(s, &args, ssl_io_intern);
1985 } else {
1986 return s->method->ssl_shutdown(s);
1987 }
1988 } else {
1989 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1990 return -1;
1991 }
1992 }
1993
1994 int SSL_key_update(SSL *s, int updatetype)
1995 {
1996 /*
1997 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1998 * negotiated, and that it is appropriate to call SSL_key_update() instead
1999 * of SSL_renegotiate().
2000 */
2001 if (!SSL_IS_TLS13(s)) {
2002 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2003 return 0;
2004 }
2005
2006 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2007 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2008 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2009 return 0;
2010 }
2011
2012 if (!SSL_is_init_finished(s)) {
2013 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2014 return 0;
2015 }
2016
2017 ossl_statem_set_in_init(s, 1);
2018 s->key_update = updatetype;
2019 return 1;
2020 }
2021
2022 int SSL_get_key_update_type(SSL *s)
2023 {
2024 return s->key_update;
2025 }
2026
2027 int SSL_renegotiate(SSL *s)
2028 {
2029 if (SSL_IS_TLS13(s)) {
2030 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2031 return 0;
2032 }
2033
2034 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2035 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2036 return 0;
2037 }
2038
2039 s->renegotiate = 1;
2040 s->new_session = 1;
2041
2042 return s->method->ssl_renegotiate(s);
2043 }
2044
2045 int SSL_renegotiate_abbreviated(SSL *s)
2046 {
2047 if (SSL_IS_TLS13(s)) {
2048 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2049 return 0;
2050 }
2051
2052 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2053 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2054 return 0;
2055 }
2056
2057 s->renegotiate = 1;
2058 s->new_session = 0;
2059
2060 return s->method->ssl_renegotiate(s);
2061 }
2062
2063 int SSL_renegotiate_pending(SSL *s)
2064 {
2065 /*
2066 * becomes true when negotiation is requested; false again once a
2067 * handshake has finished
2068 */
2069 return (s->renegotiate != 0);
2070 }
2071
2072 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2073 {
2074 long l;
2075
2076 switch (cmd) {
2077 case SSL_CTRL_GET_READ_AHEAD:
2078 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2079 case SSL_CTRL_SET_READ_AHEAD:
2080 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2081 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2082 return l;
2083
2084 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2085 s->msg_callback_arg = parg;
2086 return 1;
2087
2088 case SSL_CTRL_MODE:
2089 return (s->mode |= larg);
2090 case SSL_CTRL_CLEAR_MODE:
2091 return (s->mode &= ~larg);
2092 case SSL_CTRL_GET_MAX_CERT_LIST:
2093 return (long)s->max_cert_list;
2094 case SSL_CTRL_SET_MAX_CERT_LIST:
2095 if (larg < 0)
2096 return 0;
2097 l = (long)s->max_cert_list;
2098 s->max_cert_list = (size_t)larg;
2099 return l;
2100 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2101 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2102 return 0;
2103 s->max_send_fragment = larg;
2104 if (s->max_send_fragment < s->split_send_fragment)
2105 s->split_send_fragment = s->max_send_fragment;
2106 return 1;
2107 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2108 if ((size_t)larg > s->max_send_fragment || larg == 0)
2109 return 0;
2110 s->split_send_fragment = larg;
2111 return 1;
2112 case SSL_CTRL_SET_MAX_PIPELINES:
2113 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2114 return 0;
2115 s->max_pipelines = larg;
2116 if (larg > 1)
2117 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2118 return 1;
2119 case SSL_CTRL_GET_RI_SUPPORT:
2120 if (s->s3)
2121 return s->s3->send_connection_binding;
2122 else
2123 return 0;
2124 case SSL_CTRL_CERT_FLAGS:
2125 return (s->cert->cert_flags |= larg);
2126 case SSL_CTRL_CLEAR_CERT_FLAGS:
2127 return (s->cert->cert_flags &= ~larg);
2128
2129 case SSL_CTRL_GET_RAW_CIPHERLIST:
2130 if (parg) {
2131 if (s->s3->tmp.ciphers_raw == NULL)
2132 return 0;
2133 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2134 return (int)s->s3->tmp.ciphers_rawlen;
2135 } else {
2136 return TLS_CIPHER_LEN;
2137 }
2138 case SSL_CTRL_GET_EXTMS_SUPPORT:
2139 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2140 return -1;
2141 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2142 return 1;
2143 else
2144 return 0;
2145 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2146 return ssl_check_allowed_versions(larg, s->max_proto_version)
2147 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2148 &s->min_proto_version);
2149 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2150 return s->min_proto_version;
2151 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2152 return ssl_check_allowed_versions(s->min_proto_version, larg)
2153 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2154 &s->max_proto_version);
2155 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2156 return s->max_proto_version;
2157 default:
2158 return s->method->ssl_ctrl(s, cmd, larg, parg);
2159 }
2160 }
2161
2162 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2163 {
2164 switch (cmd) {
2165 case SSL_CTRL_SET_MSG_CALLBACK:
2166 s->msg_callback = (void (*)
2167 (int write_p, int version, int content_type,
2168 const void *buf, size_t len, SSL *ssl,
2169 void *arg))(fp);
2170 return 1;
2171
2172 default:
2173 return s->method->ssl_callback_ctrl(s, cmd, fp);
2174 }
2175 }
2176
2177 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2178 {
2179 return ctx->sessions;
2180 }
2181
2182 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2183 {
2184 long l;
2185 int i;
2186 /* For some cases with ctx == NULL perform syntax checks */
2187 if (ctx == NULL) {
2188 switch (cmd) {
2189 #ifndef OPENSSL_NO_EC
2190 case SSL_CTRL_SET_GROUPS_LIST:
2191 return tls1_set_groups_list(NULL, NULL, parg);
2192 #endif
2193 case SSL_CTRL_SET_SIGALGS_LIST:
2194 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2195 return tls1_set_sigalgs_list(NULL, parg, 0);
2196 default:
2197 return 0;
2198 }
2199 }
2200
2201 switch (cmd) {
2202 case SSL_CTRL_GET_READ_AHEAD:
2203 return ctx->read_ahead;
2204 case SSL_CTRL_SET_READ_AHEAD:
2205 l = ctx->read_ahead;
2206 ctx->read_ahead = larg;
2207 return l;
2208
2209 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2210 ctx->msg_callback_arg = parg;
2211 return 1;
2212
2213 case SSL_CTRL_GET_MAX_CERT_LIST:
2214 return (long)ctx->max_cert_list;
2215 case SSL_CTRL_SET_MAX_CERT_LIST:
2216 if (larg < 0)
2217 return 0;
2218 l = (long)ctx->max_cert_list;
2219 ctx->max_cert_list = (size_t)larg;
2220 return l;
2221
2222 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2223 if (larg < 0)
2224 return 0;
2225 l = (long)ctx->session_cache_size;
2226 ctx->session_cache_size = (size_t)larg;
2227 return l;
2228 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2229 return (long)ctx->session_cache_size;
2230 case SSL_CTRL_SET_SESS_CACHE_MODE:
2231 l = ctx->session_cache_mode;
2232 ctx->session_cache_mode = larg;
2233 return l;
2234 case SSL_CTRL_GET_SESS_CACHE_MODE:
2235 return ctx->session_cache_mode;
2236
2237 case SSL_CTRL_SESS_NUMBER:
2238 return lh_SSL_SESSION_num_items(ctx->sessions);
2239 case SSL_CTRL_SESS_CONNECT:
2240 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2241 ? i : 0;
2242 case SSL_CTRL_SESS_CONNECT_GOOD:
2243 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2244 ? i : 0;
2245 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2246 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2247 ctx->lock)
2248 ? i : 0;
2249 case SSL_CTRL_SESS_ACCEPT:
2250 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2251 ? i : 0;
2252 case SSL_CTRL_SESS_ACCEPT_GOOD:
2253 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2254 ? i : 0;
2255 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2256 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2257 ctx->lock)
2258 ? i : 0;
2259 case SSL_CTRL_SESS_HIT:
2260 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2261 ? i : 0;
2262 case SSL_CTRL_SESS_CB_HIT:
2263 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2264 ? i : 0;
2265 case SSL_CTRL_SESS_MISSES:
2266 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2267 ? i : 0;
2268 case SSL_CTRL_SESS_TIMEOUTS:
2269 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2270 ? i : 0;
2271 case SSL_CTRL_SESS_CACHE_FULL:
2272 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2273 ? i : 0;
2274 case SSL_CTRL_MODE:
2275 return (ctx->mode |= larg);
2276 case SSL_CTRL_CLEAR_MODE:
2277 return (ctx->mode &= ~larg);
2278 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2279 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2280 return 0;
2281 ctx->max_send_fragment = larg;
2282 if (ctx->max_send_fragment < ctx->split_send_fragment)
2283 ctx->split_send_fragment = ctx->max_send_fragment;
2284 return 1;
2285 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2286 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2287 return 0;
2288 ctx->split_send_fragment = larg;
2289 return 1;
2290 case SSL_CTRL_SET_MAX_PIPELINES:
2291 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2292 return 0;
2293 ctx->max_pipelines = larg;
2294 return 1;
2295 case SSL_CTRL_CERT_FLAGS:
2296 return (ctx->cert->cert_flags |= larg);
2297 case SSL_CTRL_CLEAR_CERT_FLAGS:
2298 return (ctx->cert->cert_flags &= ~larg);
2299 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2300 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2301 && ssl_set_version_bound(ctx->method->version, (int)larg,
2302 &ctx->min_proto_version);
2303 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2304 return ctx->min_proto_version;
2305 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2306 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2307 && ssl_set_version_bound(ctx->method->version, (int)larg,
2308 &ctx->max_proto_version);
2309 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2310 return ctx->max_proto_version;
2311 default:
2312 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2313 }
2314 }
2315
2316 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2317 {
2318 switch (cmd) {
2319 case SSL_CTRL_SET_MSG_CALLBACK:
2320 ctx->msg_callback = (void (*)
2321 (int write_p, int version, int content_type,
2322 const void *buf, size_t len, SSL *ssl,
2323 void *arg))(fp);
2324 return 1;
2325
2326 default:
2327 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2328 }
2329 }
2330
2331 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2332 {
2333 if (a->id > b->id)
2334 return 1;
2335 if (a->id < b->id)
2336 return -1;
2337 return 0;
2338 }
2339
2340 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2341 const SSL_CIPHER *const *bp)
2342 {
2343 if ((*ap)->id > (*bp)->id)
2344 return 1;
2345 if ((*ap)->id < (*bp)->id)
2346 return -1;
2347 return 0;
2348 }
2349
2350 /** return a STACK of the ciphers available for the SSL and in order of
2351 * preference */
2352 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2353 {
2354 if (s != NULL) {
2355 if (s->cipher_list != NULL) {
2356 return s->cipher_list;
2357 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2358 return s->ctx->cipher_list;
2359 }
2360 }
2361 return NULL;
2362 }
2363
2364 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2365 {
2366 if ((s == NULL) || (s->session == NULL) || !s->server)
2367 return NULL;
2368 return s->session->ciphers;
2369 }
2370
2371 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2372 {
2373 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2374 int i;
2375 ciphers = SSL_get_ciphers(s);
2376 if (!ciphers)
2377 return NULL;
2378 ssl_set_client_disabled(s);
2379 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2380 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2381 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2382 if (!sk)
2383 sk = sk_SSL_CIPHER_new_null();
2384 if (!sk)
2385 return NULL;
2386 if (!sk_SSL_CIPHER_push(sk, c)) {
2387 sk_SSL_CIPHER_free(sk);
2388 return NULL;
2389 }
2390 }
2391 }
2392 return sk;
2393 }
2394
2395 /** return a STACK of the ciphers available for the SSL and in order of
2396 * algorithm id */
2397 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2398 {
2399 if (s != NULL) {
2400 if (s->cipher_list_by_id != NULL) {
2401 return s->cipher_list_by_id;
2402 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2403 return s->ctx->cipher_list_by_id;
2404 }
2405 }
2406 return NULL;
2407 }
2408
2409 /** The old interface to get the same thing as SSL_get_ciphers() */
2410 const char *SSL_get_cipher_list(const SSL *s, int n)
2411 {
2412 const SSL_CIPHER *c;
2413 STACK_OF(SSL_CIPHER) *sk;
2414
2415 if (s == NULL)
2416 return NULL;
2417 sk = SSL_get_ciphers(s);
2418 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2419 return NULL;
2420 c = sk_SSL_CIPHER_value(sk, n);
2421 if (c == NULL)
2422 return NULL;
2423 return c->name;
2424 }
2425
2426 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2427 * preference */
2428 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2429 {
2430 if (ctx != NULL)
2431 return ctx->cipher_list;
2432 return NULL;
2433 }
2434
2435 /** specify the ciphers to be used by default by the SSL_CTX */
2436 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2437 {
2438 STACK_OF(SSL_CIPHER) *sk;
2439
2440 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2441 &ctx->cipher_list_by_id, str, ctx->cert);
2442 /*
2443 * ssl_create_cipher_list may return an empty stack if it was unable to
2444 * find a cipher matching the given rule string (for example if the rule
2445 * string specifies a cipher which has been disabled). This is not an
2446 * error as far as ssl_create_cipher_list is concerned, and hence
2447 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2448 */
2449 if (sk == NULL)
2450 return 0;
2451 else if (sk_SSL_CIPHER_num(sk) == 0) {
2452 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2453 return 0;
2454 }
2455 return 1;
2456 }
2457
2458 /** specify the ciphers to be used by the SSL */
2459 int SSL_set_cipher_list(SSL *s, const char *str)
2460 {
2461 STACK_OF(SSL_CIPHER) *sk;
2462
2463 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2464 &s->cipher_list_by_id, str, s->cert);
2465 /* see comment in SSL_CTX_set_cipher_list */
2466 if (sk == NULL)
2467 return 0;
2468 else if (sk_SSL_CIPHER_num(sk) == 0) {
2469 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2470 return 0;
2471 }
2472 return 1;
2473 }
2474
2475 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2476 {
2477 char *p;
2478 STACK_OF(SSL_CIPHER) *sk;
2479 const SSL_CIPHER *c;
2480 int i;
2481
2482 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2483 return NULL;
2484
2485 p = buf;
2486 sk = s->session->ciphers;
2487
2488 if (sk_SSL_CIPHER_num(sk) == 0)
2489 return NULL;
2490
2491 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2492 int n;
2493
2494 c = sk_SSL_CIPHER_value(sk, i);
2495 n = strlen(c->name);
2496 if (n + 1 > len) {
2497 if (p != buf)
2498 --p;
2499 *p = '\0';
2500 return buf;
2501 }
2502 strcpy(p, c->name);
2503 p += n;
2504 *(p++) = ':';
2505 len -= n + 1;
2506 }
2507 p[-1] = '\0';
2508 return buf;
2509 }
2510
2511 /** return a servername extension value if provided in Client Hello, or NULL.
2512 * So far, only host_name types are defined (RFC 3546).
2513 */
2514
2515 const char *SSL_get_servername(const SSL *s, const int type)
2516 {
2517 if (type != TLSEXT_NAMETYPE_host_name)
2518 return NULL;
2519
2520 return s->session && !s->ext.hostname ?
2521 s->session->ext.hostname : s->ext.hostname;
2522 }
2523
2524 int SSL_get_servername_type(const SSL *s)
2525 {
2526 if (s->session
2527 && (!s->ext.hostname ? s->session->
2528 ext.hostname : s->ext.hostname))
2529 return TLSEXT_NAMETYPE_host_name;
2530 return -1;
2531 }
2532
2533 /*
2534 * SSL_select_next_proto implements the standard protocol selection. It is
2535 * expected that this function is called from the callback set by
2536 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2537 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2538 * not included in the length. A byte string of length 0 is invalid. No byte
2539 * string may be truncated. The current, but experimental algorithm for
2540 * selecting the protocol is: 1) If the server doesn't support NPN then this
2541 * is indicated to the callback. In this case, the client application has to
2542 * abort the connection or have a default application level protocol. 2) If
2543 * the server supports NPN, but advertises an empty list then the client
2544 * selects the first protocol in its list, but indicates via the API that this
2545 * fallback case was enacted. 3) Otherwise, the client finds the first
2546 * protocol in the server's list that it supports and selects this protocol.
2547 * This is because it's assumed that the server has better information about
2548 * which protocol a client should use. 4) If the client doesn't support any
2549 * of the server's advertised protocols, then this is treated the same as
2550 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2551 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2552 */
2553 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2554 const unsigned char *server,
2555 unsigned int server_len,
2556 const unsigned char *client, unsigned int client_len)
2557 {
2558 unsigned int i, j;
2559 const unsigned char *result;
2560 int status = OPENSSL_NPN_UNSUPPORTED;
2561
2562 /*
2563 * For each protocol in server preference order, see if we support it.
2564 */
2565 for (i = 0; i < server_len;) {
2566 for (j = 0; j < client_len;) {
2567 if (server[i] == client[j] &&
2568 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2569 /* We found a match */
2570 result = &server[i];
2571 status = OPENSSL_NPN_NEGOTIATED;
2572 goto found;
2573 }
2574 j += client[j];
2575 j++;
2576 }
2577 i += server[i];
2578 i++;
2579 }
2580
2581 /* There's no overlap between our protocols and the server's list. */
2582 result = client;
2583 status = OPENSSL_NPN_NO_OVERLAP;
2584
2585 found:
2586 *out = (unsigned char *)result + 1;
2587 *outlen = result[0];
2588 return status;
2589 }
2590
2591 #ifndef OPENSSL_NO_NEXTPROTONEG
2592 /*
2593 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2594 * client's requested protocol for this connection and returns 0. If the
2595 * client didn't request any protocol, then *data is set to NULL. Note that
2596 * the client can request any protocol it chooses. The value returned from
2597 * this function need not be a member of the list of supported protocols
2598 * provided by the callback.
2599 */
2600 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2601 unsigned *len)
2602 {
2603 *data = s->ext.npn;
2604 if (!*data) {
2605 *len = 0;
2606 } else {
2607 *len = (unsigned int)s->ext.npn_len;
2608 }
2609 }
2610
2611 /*
2612 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2613 * a TLS server needs a list of supported protocols for Next Protocol
2614 * Negotiation. The returned list must be in wire format. The list is
2615 * returned by setting |out| to point to it and |outlen| to its length. This
2616 * memory will not be modified, but one should assume that the SSL* keeps a
2617 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2618 * wishes to advertise. Otherwise, no such extension will be included in the
2619 * ServerHello.
2620 */
2621 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2622 SSL_CTX_npn_advertised_cb_func cb,
2623 void *arg)
2624 {
2625 ctx->ext.npn_advertised_cb = cb;
2626 ctx->ext.npn_advertised_cb_arg = arg;
2627 }
2628
2629 /*
2630 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2631 * client needs to select a protocol from the server's provided list. |out|
2632 * must be set to point to the selected protocol (which may be within |in|).
2633 * The length of the protocol name must be written into |outlen|. The
2634 * server's advertised protocols are provided in |in| and |inlen|. The
2635 * callback can assume that |in| is syntactically valid. The client must
2636 * select a protocol. It is fatal to the connection if this callback returns
2637 * a value other than SSL_TLSEXT_ERR_OK.
2638 */
2639 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2640 SSL_CTX_npn_select_cb_func cb,
2641 void *arg)
2642 {
2643 ctx->ext.npn_select_cb = cb;
2644 ctx->ext.npn_select_cb_arg = arg;
2645 }
2646 #endif
2647
2648 /*
2649 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2650 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2651 * length-prefixed strings). Returns 0 on success.
2652 */
2653 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2654 unsigned int protos_len)
2655 {
2656 OPENSSL_free(ctx->ext.alpn);
2657 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2658 if (ctx->ext.alpn == NULL) {
2659 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2660 return 1;
2661 }
2662 ctx->ext.alpn_len = protos_len;
2663
2664 return 0;
2665 }
2666
2667 /*
2668 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2669 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2670 * length-prefixed strings). Returns 0 on success.
2671 */
2672 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2673 unsigned int protos_len)
2674 {
2675 OPENSSL_free(ssl->ext.alpn);
2676 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2677 if (ssl->ext.alpn == NULL) {
2678 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2679 return 1;
2680 }
2681 ssl->ext.alpn_len = protos_len;
2682
2683 return 0;
2684 }
2685
2686 /*
2687 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2688 * called during ClientHello processing in order to select an ALPN protocol
2689 * from the client's list of offered protocols.
2690 */
2691 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2692 SSL_CTX_alpn_select_cb_func cb,
2693 void *arg)
2694 {
2695 ctx->ext.alpn_select_cb = cb;
2696 ctx->ext.alpn_select_cb_arg = arg;
2697 }
2698
2699 /*
2700 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2701 * On return it sets |*data| to point to |*len| bytes of protocol name
2702 * (not including the leading length-prefix byte). If the server didn't
2703 * respond with a negotiated protocol then |*len| will be zero.
2704 */
2705 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2706 unsigned int *len)
2707 {
2708 *data = NULL;
2709 if (ssl->s3)
2710 *data = ssl->s3->alpn_selected;
2711 if (*data == NULL)
2712 *len = 0;
2713 else
2714 *len = (unsigned int)ssl->s3->alpn_selected_len;
2715 }
2716
2717 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2718 const char *label, size_t llen,
2719 const unsigned char *context, size_t contextlen,
2720 int use_context)
2721 {
2722 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2723 return -1;
2724
2725 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2726 llen, context,
2727 contextlen, use_context);
2728 }
2729
2730 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2731 {
2732 const unsigned char *session_id = a->session_id;
2733 unsigned long l;
2734 unsigned char tmp_storage[4];
2735
2736 if (a->session_id_length < sizeof(tmp_storage)) {
2737 memset(tmp_storage, 0, sizeof(tmp_storage));
2738 memcpy(tmp_storage, a->session_id, a->session_id_length);
2739 session_id = tmp_storage;
2740 }
2741
2742 l = (unsigned long)
2743 ((unsigned long)session_id[0]) |
2744 ((unsigned long)session_id[1] << 8L) |
2745 ((unsigned long)session_id[2] << 16L) |
2746 ((unsigned long)session_id[3] << 24L);
2747 return l;
2748 }
2749
2750 /*
2751 * NB: If this function (or indeed the hash function which uses a sort of
2752 * coarser function than this one) is changed, ensure
2753 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2754 * being able to construct an SSL_SESSION that will collide with any existing
2755 * session with a matching session ID.
2756 */
2757 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2758 {
2759 if (a->ssl_version != b->ssl_version)
2760 return 1;
2761 if (a->session_id_length != b->session_id_length)
2762 return 1;
2763 return memcmp(a->session_id, b->session_id, a->session_id_length);
2764 }
2765
2766 /*
2767 * These wrapper functions should remain rather than redeclaring
2768 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2769 * variable. The reason is that the functions aren't static, they're exposed
2770 * via ssl.h.
2771 */
2772
2773 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2774 {
2775 SSL_CTX *ret = NULL;
2776
2777 if (meth == NULL) {
2778 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2779 return NULL;
2780 }
2781
2782 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2783 return NULL;
2784
2785 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2786 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2787 goto err;
2788 }
2789 ret = OPENSSL_zalloc(sizeof(*ret));
2790 if (ret == NULL)
2791 goto err;
2792
2793 ret->method = meth;
2794 ret->min_proto_version = 0;
2795 ret->max_proto_version = 0;
2796 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2797 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2798 /* We take the system default. */
2799 ret->session_timeout = meth->get_timeout();
2800 ret->references = 1;
2801 ret->lock = CRYPTO_THREAD_lock_new();
2802 if (ret->lock == NULL) {
2803 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2804 OPENSSL_free(ret);
2805 return NULL;
2806 }
2807 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2808 ret->verify_mode = SSL_VERIFY_NONE;
2809 if ((ret->cert = ssl_cert_new()) == NULL)
2810 goto err;
2811
2812 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2813 if (ret->sessions == NULL)
2814 goto err;
2815 ret->cert_store = X509_STORE_new();
2816 if (ret->cert_store == NULL)
2817 goto err;
2818 #ifndef OPENSSL_NO_CT
2819 ret->ctlog_store = CTLOG_STORE_new();
2820 if (ret->ctlog_store == NULL)
2821 goto err;
2822 #endif
2823 if (!ssl_create_cipher_list(ret->method,
2824 &ret->cipher_list, &ret->cipher_list_by_id,
2825 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2826 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2827 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2828 goto err2;
2829 }
2830
2831 ret->param = X509_VERIFY_PARAM_new();
2832 if (ret->param == NULL)
2833 goto err;
2834
2835 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2836 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2837 goto err2;
2838 }
2839 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2840 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2841 goto err2;
2842 }
2843
2844 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2845 goto err;
2846
2847 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2848 goto err;
2849
2850 /* No compression for DTLS */
2851 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2852 ret->comp_methods = SSL_COMP_get_compression_methods();
2853
2854 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2855 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2856
2857 /* Setup RFC5077 ticket keys */
2858 if ((RAND_bytes(ret->ext.tick_key_name,
2859 sizeof(ret->ext.tick_key_name)) <= 0)
2860 || (RAND_bytes(ret->ext.tick_hmac_key,
2861 sizeof(ret->ext.tick_hmac_key)) <= 0)
2862 || (RAND_bytes(ret->ext.tick_aes_key,
2863 sizeof(ret->ext.tick_aes_key)) <= 0))
2864 ret->options |= SSL_OP_NO_TICKET;
2865
2866 #ifndef OPENSSL_NO_SRP
2867 if (!SSL_CTX_SRP_CTX_init(ret))
2868 goto err;
2869 #endif
2870 #ifndef OPENSSL_NO_ENGINE
2871 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2872 # define eng_strx(x) #x
2873 # define eng_str(x) eng_strx(x)
2874 /* Use specific client engine automatically... ignore errors */
2875 {
2876 ENGINE *eng;
2877 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2878 if (!eng) {
2879 ERR_clear_error();
2880 ENGINE_load_builtin_engines();
2881 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2882 }
2883 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2884 ERR_clear_error();
2885 }
2886 # endif
2887 #endif
2888 /*
2889 * Default is to connect to non-RI servers. When RI is more widely
2890 * deployed might change this.
2891 */
2892 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2893 /*
2894 * Disable compression by default to prevent CRIME. Applications can
2895 * re-enable compression by configuring
2896 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2897 * or by using the SSL_CONF library.
2898 */
2899 ret->options |= SSL_OP_NO_COMPRESSION;
2900
2901 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2902
2903 /*
2904 * Default max early data is a fully loaded single record. Could be split
2905 * across multiple records in practice
2906 */
2907 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2908
2909 return ret;
2910 err:
2911 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2912 err2:
2913 SSL_CTX_free(ret);
2914 return NULL;
2915 }
2916
2917 int SSL_CTX_up_ref(SSL_CTX *ctx)
2918 {
2919 int i;
2920
2921 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2922 return 0;
2923
2924 REF_PRINT_COUNT("SSL_CTX", ctx);
2925 REF_ASSERT_ISNT(i < 2);
2926 return ((i > 1) ? 1 : 0);
2927 }
2928
2929 void SSL_CTX_free(SSL_CTX *a)
2930 {
2931 int i;
2932
2933 if (a == NULL)
2934 return;
2935
2936 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2937 REF_PRINT_COUNT("SSL_CTX", a);
2938 if (i > 0)
2939 return;
2940 REF_ASSERT_ISNT(i < 0);
2941
2942 X509_VERIFY_PARAM_free(a->param);
2943 dane_ctx_final(&a->dane);
2944
2945 /*
2946 * Free internal session cache. However: the remove_cb() may reference
2947 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2948 * after the sessions were flushed.
2949 * As the ex_data handling routines might also touch the session cache,
2950 * the most secure solution seems to be: empty (flush) the cache, then
2951 * free ex_data, then finally free the cache.
2952 * (See ticket [openssl.org #212].)
2953 */
2954 if (a->sessions != NULL)
2955 SSL_CTX_flush_sessions(a, 0);
2956
2957 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2958 lh_SSL_SESSION_free(a->sessions);
2959 X509_STORE_free(a->cert_store);
2960 #ifndef OPENSSL_NO_CT
2961 CTLOG_STORE_free(a->ctlog_store);
2962 #endif
2963 sk_SSL_CIPHER_free(a->cipher_list);
2964 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2965 ssl_cert_free(a->cert);
2966 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2967 sk_X509_pop_free(a->extra_certs, X509_free);
2968 a->comp_methods = NULL;
2969 #ifndef OPENSSL_NO_SRTP
2970 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2971 #endif
2972 #ifndef OPENSSL_NO_SRP
2973 SSL_CTX_SRP_CTX_free(a);
2974 #endif
2975 #ifndef OPENSSL_NO_ENGINE
2976 ENGINE_finish(a->client_cert_engine);
2977 #endif
2978
2979 #ifndef OPENSSL_NO_EC
2980 OPENSSL_free(a->ext.ecpointformats);
2981 OPENSSL_free(a->ext.supportedgroups);
2982 #endif
2983 OPENSSL_free(a->ext.alpn);
2984
2985 CRYPTO_THREAD_lock_free(a->lock);
2986
2987 OPENSSL_free(a);
2988 }
2989
2990 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2991 {
2992 ctx->default_passwd_callback = cb;
2993 }
2994
2995 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2996 {
2997 ctx->default_passwd_callback_userdata = u;
2998 }
2999
3000 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3001 {
3002 return ctx->default_passwd_callback;
3003 }
3004
3005 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3006 {
3007 return ctx->default_passwd_callback_userdata;
3008 }
3009
3010 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3011 {
3012 s->default_passwd_callback = cb;
3013 }
3014
3015 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3016 {
3017 s->default_passwd_callback_userdata = u;
3018 }
3019
3020 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3021 {
3022 return s->default_passwd_callback;
3023 }
3024
3025 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3026 {
3027 return s->default_passwd_callback_userdata;
3028 }
3029
3030 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3031 int (*cb) (X509_STORE_CTX *, void *),
3032 void *arg)
3033 {
3034 ctx->app_verify_callback = cb;
3035 ctx->app_verify_arg = arg;
3036 }
3037
3038 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3039 int (*cb) (int, X509_STORE_CTX *))
3040 {
3041 ctx->verify_mode = mode;
3042 ctx->default_verify_callback = cb;
3043 }
3044
3045 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3046 {
3047 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3048 }
3049
3050 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3051 {
3052 ssl_cert_set_cert_cb(c->cert, cb, arg);
3053 }
3054
3055 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3056 {
3057 ssl_cert_set_cert_cb(s->cert, cb, arg);
3058 }
3059
3060 void ssl_set_masks(SSL *s)
3061 {
3062 CERT *c = s->cert;
3063 uint32_t *pvalid = s->s3->tmp.valid_flags;
3064 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3065 unsigned long mask_k, mask_a;
3066 #ifndef OPENSSL_NO_EC
3067 int have_ecc_cert, ecdsa_ok;
3068 #endif
3069 if (c == NULL)
3070 return;
3071
3072 #ifndef OPENSSL_NO_DH
3073 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3074 #else
3075 dh_tmp = 0;
3076 #endif
3077
3078 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3079 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3080 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3081 #ifndef OPENSSL_NO_EC
3082 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3083 #endif
3084 mask_k = 0;
3085 mask_a = 0;
3086
3087 #ifdef CIPHER_DEBUG
3088 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3089 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3090 #endif
3091
3092 #ifndef OPENSSL_NO_GOST
3093 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3094 mask_k |= SSL_kGOST;
3095 mask_a |= SSL_aGOST12;
3096 }
3097 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3098 mask_k |= SSL_kGOST;
3099 mask_a |= SSL_aGOST12;
3100 }
3101 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3102 mask_k |= SSL_kGOST;
3103 mask_a |= SSL_aGOST01;
3104 }
3105 #endif
3106
3107 if (rsa_enc)
3108 mask_k |= SSL_kRSA;
3109
3110 if (dh_tmp)
3111 mask_k |= SSL_kDHE;
3112
3113 /*
3114 * If we only have an RSA-PSS certificate allow RSA authentication
3115 * if TLS 1.2 and peer supports it.
3116 */
3117
3118 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3119 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3120 && TLS1_get_version(s) == TLS1_2_VERSION))
3121 mask_a |= SSL_aRSA;
3122
3123 if (dsa_sign) {
3124 mask_a |= SSL_aDSS;
3125 }
3126
3127 mask_a |= SSL_aNULL;
3128
3129 /*
3130 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3131 * depending on the key usage extension.
3132 */
3133 #ifndef OPENSSL_NO_EC
3134 if (have_ecc_cert) {
3135 uint32_t ex_kusage;
3136 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3137 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3138 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3139 ecdsa_ok = 0;
3140 if (ecdsa_ok)
3141 mask_a |= SSL_aECDSA;
3142 }
3143 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3144 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3145 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3146 && TLS1_get_version(s) == TLS1_2_VERSION)
3147 mask_a |= SSL_aECDSA;
3148 #endif
3149
3150 #ifndef OPENSSL_NO_EC
3151 mask_k |= SSL_kECDHE;
3152 #endif
3153
3154 #ifndef OPENSSL_NO_PSK
3155 mask_k |= SSL_kPSK;
3156 mask_a |= SSL_aPSK;
3157 if (mask_k & SSL_kRSA)
3158 mask_k |= SSL_kRSAPSK;
3159 if (mask_k & SSL_kDHE)
3160 mask_k |= SSL_kDHEPSK;
3161 if (mask_k & SSL_kECDHE)
3162 mask_k |= SSL_kECDHEPSK;
3163 #endif
3164
3165 s->s3->tmp.mask_k = mask_k;
3166 s->s3->tmp.mask_a = mask_a;
3167 }
3168
3169 #ifndef OPENSSL_NO_EC
3170
3171 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3172 {
3173 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3174 /* key usage, if present, must allow signing */
3175 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3176 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3177 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3178 return 0;
3179 }
3180 }
3181 return 1; /* all checks are ok */
3182 }
3183
3184 #endif
3185
3186 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3187 size_t *serverinfo_length)
3188 {
3189 CERT_PKEY *cpk = s->s3->tmp.cert;
3190 *serverinfo_length = 0;
3191
3192 if (cpk == NULL || cpk->serverinfo == NULL)
3193 return 0;
3194
3195 *serverinfo = cpk->serverinfo;
3196 *serverinfo_length = cpk->serverinfo_length;
3197 return 1;
3198 }
3199
3200 void ssl_update_cache(SSL *s, int mode)
3201 {
3202 int i;
3203
3204 /*
3205 * If the session_id_length is 0, we are not supposed to cache it, and it
3206 * would be rather hard to do anyway :-)
3207 */
3208 if (s->session->session_id_length == 0)
3209 return;
3210
3211 i = s->session_ctx->session_cache_mode;
3212 if ((i & mode) != 0
3213 && (!s->hit || SSL_IS_TLS13(s))
3214 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3215 || SSL_CTX_add_session(s->session_ctx, s->session))
3216 && s->session_ctx->new_session_cb != NULL) {
3217 SSL_SESSION_up_ref(s->session);
3218 if (!s->session_ctx->new_session_cb(s, s->session))
3219 SSL_SESSION_free(s->session);
3220 }
3221
3222 /* auto flush every 255 connections */
3223 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3224 int *stat, val;
3225 if (mode & SSL_SESS_CACHE_CLIENT)
3226 stat = &s->session_ctx->stats.sess_connect_good;
3227 else
3228 stat = &s->session_ctx->stats.sess_accept_good;
3229 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3230 && (val & 0xff) == 0xff)
3231 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3232 }
3233 }
3234
3235 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3236 {
3237 return ctx->method;
3238 }
3239
3240 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3241 {
3242 return s->method;
3243 }
3244
3245 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3246 {
3247 int ret = 1;
3248
3249 if (s->method != meth) {
3250 const SSL_METHOD *sm = s->method;
3251 int (*hf) (SSL *) = s->handshake_func;
3252
3253 if (sm->version == meth->version)
3254 s->method = meth;
3255 else {
3256 sm->ssl_free(s);
3257 s->method = meth;
3258 ret = s->method->ssl_new(s);
3259 }
3260
3261 if (hf == sm->ssl_connect)
3262 s->handshake_func = meth->ssl_connect;
3263 else if (hf == sm->ssl_accept)
3264 s->handshake_func = meth->ssl_accept;
3265 }
3266 return ret;
3267 }
3268
3269 int SSL_get_error(const SSL *s, int i)
3270 {
3271 int reason;
3272 unsigned long l;
3273 BIO *bio;
3274
3275 if (i > 0)
3276 return SSL_ERROR_NONE;
3277
3278 /*
3279 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3280 * where we do encode the error
3281 */
3282 if ((l = ERR_peek_error()) != 0) {
3283 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3284 return SSL_ERROR_SYSCALL;
3285 else
3286 return SSL_ERROR_SSL;
3287 }
3288
3289 if (SSL_want_read(s)) {
3290 bio = SSL_get_rbio(s);
3291 if (BIO_should_read(bio))
3292 return SSL_ERROR_WANT_READ;
3293 else if (BIO_should_write(bio))
3294 /*
3295 * This one doesn't make too much sense ... We never try to write
3296 * to the rbio, and an application program where rbio and wbio
3297 * are separate couldn't even know what it should wait for.
3298 * However if we ever set s->rwstate incorrectly (so that we have
3299 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3300 * wbio *are* the same, this test works around that bug; so it
3301 * might be safer to keep it.
3302 */
3303 return SSL_ERROR_WANT_WRITE;
3304 else if (BIO_should_io_special(bio)) {
3305 reason = BIO_get_retry_reason(bio);
3306 if (reason == BIO_RR_CONNECT)
3307 return SSL_ERROR_WANT_CONNECT;
3308 else if (reason == BIO_RR_ACCEPT)
3309 return SSL_ERROR_WANT_ACCEPT;
3310 else
3311 return SSL_ERROR_SYSCALL; /* unknown */
3312 }
3313 }
3314
3315 if (SSL_want_write(s)) {
3316 /* Access wbio directly - in order to use the buffered bio if present */
3317 bio = s->wbio;
3318 if (BIO_should_write(bio))
3319 return SSL_ERROR_WANT_WRITE;
3320 else if (BIO_should_read(bio))
3321 /*
3322 * See above (SSL_want_read(s) with BIO_should_write(bio))
3323 */
3324 return SSL_ERROR_WANT_READ;
3325 else if (BIO_should_io_special(bio)) {
3326 reason = BIO_get_retry_reason(bio);
3327 if (reason == BIO_RR_CONNECT)
3328 return SSL_ERROR_WANT_CONNECT;
3329 else if (reason == BIO_RR_ACCEPT)
3330 return SSL_ERROR_WANT_ACCEPT;
3331 else
3332 return SSL_ERROR_SYSCALL;
3333 }
3334 }
3335 if (SSL_want_x509_lookup(s))
3336 return SSL_ERROR_WANT_X509_LOOKUP;
3337 if (SSL_want_async(s))
3338 return SSL_ERROR_WANT_ASYNC;
3339 if (SSL_want_async_job(s))
3340 return SSL_ERROR_WANT_ASYNC_JOB;
3341 if (SSL_want_client_hello_cb(s))
3342 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3343
3344 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3345 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3346 return SSL_ERROR_ZERO_RETURN;
3347
3348 return SSL_ERROR_SYSCALL;
3349 }
3350
3351 static int ssl_do_handshake_intern(void *vargs)
3352 {
3353 struct ssl_async_args *args;
3354 SSL *s;
3355
3356 args = (struct ssl_async_args *)vargs;
3357 s = args->s;
3358
3359 return s->handshake_func(s);
3360 }
3361
3362 int SSL_do_handshake(SSL *s)
3363 {
3364 int ret = 1;
3365
3366 if (s->handshake_func == NULL) {
3367 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3368 return -1;
3369 }
3370
3371 ossl_statem_check_finish_init(s, -1);
3372
3373 s->method->ssl_renegotiate_check(s, 0);
3374
3375 if (SSL_is_server(s)) {
3376 /* clear SNI settings at server-side */
3377 OPENSSL_free(s->ext.hostname);
3378 s->ext.hostname = NULL;
3379 }
3380
3381 if (SSL_in_init(s) || SSL_in_before(s)) {
3382 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3383 struct ssl_async_args args;
3384
3385 args.s = s;
3386
3387 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3388 } else {
3389 ret = s->handshake_func(s);
3390 }
3391 }
3392 return ret;
3393 }
3394
3395 void SSL_set_accept_state(SSL *s)
3396 {
3397 s->server = 1;
3398 s->shutdown = 0;
3399 ossl_statem_clear(s);
3400 s->handshake_func = s->method->ssl_accept;
3401 clear_ciphers(s);
3402 }
3403
3404 void SSL_set_connect_state(SSL *s)
3405 {
3406 s->server = 0;
3407 s->shutdown = 0;
3408 ossl_statem_clear(s);
3409 s->handshake_func = s->method->ssl_connect;
3410 clear_ciphers(s);
3411 }
3412
3413 int ssl_undefined_function(SSL *s)
3414 {
3415 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3416 return 0;
3417 }
3418
3419 int ssl_undefined_void_function(void)
3420 {
3421 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3422 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3423 return 0;
3424 }
3425
3426 int ssl_undefined_const_function(const SSL *s)
3427 {
3428 return 0;
3429 }
3430
3431 const SSL_METHOD *ssl_bad_method(int ver)
3432 {
3433 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3434 return NULL;
3435 }
3436
3437 const char *ssl_protocol_to_string(int version)
3438 {
3439 switch(version)
3440 {
3441 case TLS1_3_VERSION:
3442 return "TLSv1.3";
3443
3444 case TLS1_2_VERSION:
3445 return "TLSv1.2";
3446
3447 case TLS1_1_VERSION:
3448 return "TLSv1.1";
3449
3450 case TLS1_VERSION:
3451 return "TLSv1";
3452
3453 case SSL3_VERSION:
3454 return "SSLv3";
3455
3456 case DTLS1_BAD_VER:
3457 return "DTLSv0.9";
3458
3459 case DTLS1_VERSION:
3460 return "DTLSv1";
3461
3462 case DTLS1_2_VERSION:
3463 return "DTLSv1.2";
3464
3465 default:
3466 return "unknown";
3467 }
3468 }
3469
3470 const char *SSL_get_version(const SSL *s)
3471 {
3472 return ssl_protocol_to_string(s->version);
3473 }
3474
3475 SSL *SSL_dup(SSL *s)
3476 {
3477 STACK_OF(X509_NAME) *sk;
3478 X509_NAME *xn;
3479 SSL *ret;
3480 int i;
3481
3482 /* If we're not quiescent, just up_ref! */
3483 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3484 CRYPTO_UP_REF(&s->references, &i, s->lock);
3485 return s;
3486 }
3487
3488 /*
3489 * Otherwise, copy configuration state, and session if set.
3490 */
3491 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3492 return NULL;
3493
3494 if (s->session != NULL) {
3495 /*
3496 * Arranges to share the same session via up_ref. This "copies"
3497 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3498 */
3499 if (!SSL_copy_session_id(ret, s))
3500 goto err;
3501 } else {
3502 /*
3503 * No session has been established yet, so we have to expect that
3504 * s->cert or ret->cert will be changed later -- they should not both
3505 * point to the same object, and thus we can't use
3506 * SSL_copy_session_id.
3507 */
3508 if (!SSL_set_ssl_method(ret, s->method))
3509 goto err;
3510
3511 if (s->cert != NULL) {
3512 ssl_cert_free(ret->cert);
3513 ret->cert = ssl_cert_dup(s->cert);
3514 if (ret->cert == NULL)
3515 goto err;
3516 }
3517
3518 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3519 (int)s->sid_ctx_length))
3520 goto err;
3521 }
3522
3523 if (!ssl_dane_dup(ret, s))
3524 goto err;
3525 ret->version = s->version;
3526 ret->options = s->options;
3527 ret->mode = s->mode;
3528 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3529 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3530 ret->msg_callback = s->msg_callback;
3531 ret->msg_callback_arg = s->msg_callback_arg;
3532 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3533 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3534 ret->generate_session_id = s->generate_session_id;
3535
3536 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3537
3538 /* copy app data, a little dangerous perhaps */
3539 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3540 goto err;
3541
3542 /* setup rbio, and wbio */
3543 if (s->rbio != NULL) {
3544 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3545 goto err;
3546 }
3547 if (s->wbio != NULL) {
3548 if (s->wbio != s->rbio) {
3549 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3550 goto err;
3551 } else {
3552 BIO_up_ref(ret->rbio);
3553 ret->wbio = ret->rbio;
3554 }
3555 }
3556
3557 ret->server = s->server;
3558 if (s->handshake_func) {
3559 if (s->server)
3560 SSL_set_accept_state(ret);
3561 else
3562 SSL_set_connect_state(ret);
3563 }
3564 ret->shutdown = s->shutdown;
3565 ret->hit = s->hit;
3566
3567 ret->default_passwd_callback = s->default_passwd_callback;
3568 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3569
3570 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3571
3572 /* dup the cipher_list and cipher_list_by_id stacks */
3573 if (s->cipher_list != NULL) {
3574 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3575 goto err;
3576 }
3577 if (s->cipher_list_by_id != NULL)
3578 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3579 == NULL)
3580 goto err;
3581
3582 /* Dup the client_CA list */
3583 if (s->ca_names != NULL) {
3584 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3585 goto err;
3586 ret->ca_names = sk;
3587 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3588 xn = sk_X509_NAME_value(sk, i);
3589 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3590 X509_NAME_free(xn);
3591 goto err;
3592 }
3593 }
3594 }
3595 return ret;
3596
3597 err:
3598 SSL_free(ret);
3599 return NULL;
3600 }
3601
3602 void ssl_clear_cipher_ctx(SSL *s)
3603 {
3604 if (s->enc_read_ctx != NULL) {
3605 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3606 s->enc_read_ctx = NULL;
3607 }
3608 if (s->enc_write_ctx != NULL) {
3609 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3610 s->enc_write_ctx = NULL;
3611 }
3612 #ifndef OPENSSL_NO_COMP
3613 COMP_CTX_free(s->expand);
3614 s->expand = NULL;
3615 COMP_CTX_free(s->compress);
3616 s->compress = NULL;
3617 #endif
3618 }
3619
3620 X509 *SSL_get_certificate(const SSL *s)
3621 {
3622 if (s->cert != NULL)
3623 return s->cert->key->x509;
3624 else
3625 return NULL;
3626 }
3627
3628 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3629 {
3630 if (s->cert != NULL)
3631 return s->cert->key->privatekey;
3632 else
3633 return NULL;
3634 }
3635
3636 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3637 {
3638 if (ctx->cert != NULL)
3639 return ctx->cert->key->x509;
3640 else
3641 return NULL;
3642 }
3643
3644 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3645 {
3646 if (ctx->cert != NULL)
3647 return ctx->cert->key->privatekey;
3648 else
3649 return NULL;
3650 }
3651
3652 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3653 {
3654 if ((s->session != NULL) && (s->session->cipher != NULL))
3655 return s->session->cipher;
3656 return NULL;
3657 }
3658
3659 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3660 {
3661 return s->s3->tmp.new_cipher;
3662 }
3663
3664 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3665 {
3666 #ifndef OPENSSL_NO_COMP
3667 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3668 #else
3669 return NULL;
3670 #endif
3671 }
3672
3673 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3674 {
3675 #ifndef OPENSSL_NO_COMP
3676 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3677 #else
3678 return NULL;
3679 #endif
3680 }
3681
3682 int ssl_init_wbio_buffer(SSL *s)
3683 {
3684 BIO *bbio;
3685
3686 if (s->bbio != NULL) {
3687 /* Already buffered. */
3688 return 1;
3689 }
3690
3691 bbio = BIO_new(BIO_f_buffer());
3692 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3693 BIO_free(bbio);
3694 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3695 return 0;
3696 }
3697 s->bbio = bbio;
3698 s->wbio = BIO_push(bbio, s->wbio);
3699
3700 return 1;
3701 }
3702
3703 int ssl_free_wbio_buffer(SSL *s)
3704 {
3705 /* callers ensure s is never null */
3706 if (s->bbio == NULL)
3707 return 1;
3708
3709 s->wbio = BIO_pop(s->wbio);
3710 if (!ossl_assert(s->wbio != NULL))
3711 return 0;
3712 BIO_free(s->bbio);
3713 s->bbio = NULL;
3714
3715 return 1;
3716 }
3717
3718 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3719 {
3720 ctx->quiet_shutdown = mode;
3721 }
3722
3723 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3724 {
3725 return ctx->quiet_shutdown;
3726 }
3727
3728 void SSL_set_quiet_shutdown(SSL *s, int mode)
3729 {
3730 s->quiet_shutdown = mode;
3731 }
3732
3733 int SSL_get_quiet_shutdown(const SSL *s)
3734 {
3735 return s->quiet_shutdown;
3736 }
3737
3738 void SSL_set_shutdown(SSL *s, int mode)
3739 {
3740 s->shutdown = mode;
3741 }
3742
3743 int SSL_get_shutdown(const SSL *s)
3744 {
3745 return s->shutdown;
3746 }
3747
3748 int SSL_version(const SSL *s)
3749 {
3750 return s->version;
3751 }
3752
3753 int SSL_client_version(const SSL *s)
3754 {
3755 return s->client_version;
3756 }
3757
3758 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3759 {
3760 return ssl->ctx;
3761 }
3762
3763 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3764 {
3765 CERT *new_cert;
3766 if (ssl->ctx == ctx)
3767 return ssl->ctx;
3768 if (ctx == NULL)
3769 ctx = ssl->session_ctx;
3770 new_cert = ssl_cert_dup(ctx->cert);
3771 if (new_cert == NULL) {
3772 return NULL;
3773 }
3774
3775 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3776 ssl_cert_free(new_cert);
3777 return NULL;
3778 }
3779
3780 ssl_cert_free(ssl->cert);
3781 ssl->cert = new_cert;
3782
3783 /*
3784 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3785 * so setter APIs must prevent invalid lengths from entering the system.
3786 */
3787 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3788 return NULL;
3789
3790 /*
3791 * If the session ID context matches that of the parent SSL_CTX,
3792 * inherit it from the new SSL_CTX as well. If however the context does
3793 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3794 * leave it unchanged.
3795 */
3796 if ((ssl->ctx != NULL) &&
3797 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3798 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3799 ssl->sid_ctx_length = ctx->sid_ctx_length;
3800 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3801 }
3802
3803 SSL_CTX_up_ref(ctx);
3804 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3805 ssl->ctx = ctx;
3806
3807 return ssl->ctx;
3808 }
3809
3810 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3811 {
3812 return X509_STORE_set_default_paths(ctx->cert_store);
3813 }
3814
3815 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3816 {
3817 X509_LOOKUP *lookup;
3818
3819 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3820 if (lookup == NULL)
3821 return 0;
3822 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3823
3824 /* Clear any errors if the default directory does not exist */
3825 ERR_clear_error();
3826
3827 return 1;
3828 }
3829
3830 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3831 {
3832 X509_LOOKUP *lookup;
3833
3834 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3835 if (lookup == NULL)
3836 return 0;
3837
3838 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3839
3840 /* Clear any errors if the default file does not exist */
3841 ERR_clear_error();
3842
3843 return 1;
3844 }
3845
3846 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3847 const char *CApath)
3848 {
3849 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
3850 }
3851
3852 void SSL_set_info_callback(SSL *ssl,
3853 void (*cb) (const SSL *ssl, int type, int val))
3854 {
3855 ssl->info_callback = cb;
3856 }
3857
3858 /*
3859 * One compiler (Diab DCC) doesn't like argument names in returned function
3860 * pointer.
3861 */
3862 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3863 int /* type */ ,
3864 int /* val */ ) {
3865 return ssl->info_callback;
3866 }
3867
3868 void SSL_set_verify_result(SSL *ssl, long arg)
3869 {
3870 ssl->verify_result = arg;
3871 }
3872
3873 long SSL_get_verify_result(const SSL *ssl)
3874 {
3875 return ssl->verify_result;
3876 }
3877
3878 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3879 {
3880 if (outlen == 0)
3881 return sizeof(ssl->s3->client_random);
3882 if (outlen > sizeof(ssl->s3->client_random))
3883 outlen = sizeof(ssl->s3->client_random);
3884 memcpy(out, ssl->s3->client_random, outlen);
3885 return outlen;
3886 }
3887
3888 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3889 {
3890 if (outlen == 0)
3891 return sizeof(ssl->s3->server_random);
3892 if (outlen > sizeof(ssl->s3->server_random))
3893 outlen = sizeof(ssl->s3->server_random);
3894 memcpy(out, ssl->s3->server_random, outlen);
3895 return outlen;
3896 }
3897
3898 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3899 unsigned char *out, size_t outlen)
3900 {
3901 if (outlen == 0)
3902 return session->master_key_length;
3903 if (outlen > session->master_key_length)
3904 outlen = session->master_key_length;
3905 memcpy(out, session->master_key, outlen);
3906 return outlen;
3907 }
3908
3909 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3910 size_t len)
3911 {
3912 if (len > sizeof(sess->master_key))
3913 return 0;
3914
3915 memcpy(sess->master_key, in, len);
3916 sess->master_key_length = len;
3917 return 1;
3918 }
3919
3920
3921 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3922 {
3923 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3924 }
3925
3926 void *SSL_get_ex_data(const SSL *s, int idx)
3927 {
3928 return CRYPTO_get_ex_data(&s->ex_data, idx);
3929 }
3930
3931 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3932 {
3933 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3934 }
3935
3936 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3937 {
3938 return CRYPTO_get_ex_data(&s->ex_data, idx);
3939 }
3940
3941 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3942 {
3943 return ctx->cert_store;
3944 }
3945
3946 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3947 {
3948 X509_STORE_free(ctx->cert_store);
3949 ctx->cert_store = store;
3950 }
3951
3952 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3953 {
3954 if (store != NULL)
3955 X509_STORE_up_ref(store);
3956 SSL_CTX_set_cert_store(ctx, store);
3957 }
3958
3959 int SSL_want(const SSL *s)
3960 {
3961 return s->rwstate;
3962 }
3963
3964 /**
3965 * \brief Set the callback for generating temporary DH keys.
3966 * \param ctx the SSL context.
3967 * \param dh the callback
3968 */
3969
3970 #ifndef OPENSSL_NO_DH
3971 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3972 DH *(*dh) (SSL *ssl, int is_export,
3973 int keylength))
3974 {
3975 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3976 }
3977
3978 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3979 int keylength))
3980 {
3981 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3982 }
3983 #endif
3984
3985 #ifndef OPENSSL_NO_PSK
3986 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3987 {
3988 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3989 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3990 return 0;
3991 }
3992 OPENSSL_free(ctx->cert->psk_identity_hint);
3993 if (identity_hint != NULL) {
3994 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3995 if (ctx->cert->psk_identity_hint == NULL)
3996 return 0;
3997 } else
3998 ctx->cert->psk_identity_hint = NULL;
3999 return 1;
4000 }
4001
4002 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4003 {
4004 if (s == NULL)
4005 return 0;
4006
4007 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4008 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4009 return 0;
4010 }
4011 OPENSSL_free(s->cert->psk_identity_hint);
4012 if (identity_hint != NULL) {
4013 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4014 if (s->cert->psk_identity_hint == NULL)
4015 return 0;
4016 } else
4017 s->cert->psk_identity_hint = NULL;
4018 return 1;
4019 }
4020
4021 const char *SSL_get_psk_identity_hint(const SSL *s)
4022 {
4023 if (s == NULL || s->session == NULL)
4024 return NULL;
4025 return s->session->psk_identity_hint;
4026 }
4027
4028 const char *SSL_get_psk_identity(const SSL *s)
4029 {
4030 if (s == NULL || s->session == NULL)
4031 return NULL;
4032 return s->session->psk_identity;
4033 }
4034
4035 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4036 {
4037 s->psk_client_callback = cb;
4038 }
4039
4040 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4041 {
4042 ctx->psk_client_callback = cb;
4043 }
4044
4045 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4046 {
4047 s->psk_server_callback = cb;
4048 }
4049
4050 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4051 {
4052 ctx->psk_server_callback = cb;
4053 }
4054 #endif
4055
4056 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4057 {
4058 s->psk_find_session_cb = cb;
4059 }
4060
4061 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4062 SSL_psk_find_session_cb_func cb)
4063 {
4064 ctx->psk_find_session_cb = cb;
4065 }
4066
4067 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4068 {
4069 s->psk_use_session_cb = cb;
4070 }
4071
4072 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4073 SSL_psk_use_session_cb_func cb)
4074 {
4075 ctx->psk_use_session_cb = cb;
4076 }
4077
4078 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4079 void (*cb) (int write_p, int version,
4080 int content_type, const void *buf,
4081 size_t len, SSL *ssl, void *arg))
4082 {
4083 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4084 }
4085
4086 void SSL_set_msg_callback(SSL *ssl,
4087 void (*cb) (int write_p, int version,
4088 int content_type, const void *buf,
4089 size_t len, SSL *ssl, void *arg))
4090 {
4091 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4092 }
4093
4094 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4095 int (*cb) (SSL *ssl,
4096 int
4097 is_forward_secure))
4098 {
4099 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4100 (void (*)(void))cb);
4101 }
4102
4103 void SSL_set_not_resumable_session_callback(SSL *ssl,
4104 int (*cb) (SSL *ssl,
4105 int is_forward_secure))
4106 {
4107 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4108 (void (*)(void))cb);
4109 }
4110
4111 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4112 size_t (*cb) (SSL *ssl, int type,
4113 size_t len, void *arg))
4114 {
4115 ctx->record_padding_cb = cb;
4116 }
4117
4118 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4119 {
4120 ctx->record_padding_arg = arg;
4121 }
4122
4123 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4124 {
4125 return ctx->record_padding_arg;
4126 }
4127
4128 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4129 {
4130 /* block size of 0 or 1 is basically no padding */
4131 if (block_size == 1)
4132 ctx->block_padding = 0;
4133 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4134 ctx->block_padding = block_size;
4135 else
4136 return 0;
4137 return 1;
4138 }
4139
4140 void SSL_set_record_padding_callback(SSL *ssl,
4141 size_t (*cb) (SSL *ssl, int type,
4142 size_t len, void *arg))
4143 {
4144 ssl->record_padding_cb = cb;
4145 }
4146
4147 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4148 {
4149 ssl->record_padding_arg = arg;
4150 }
4151
4152 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4153 {
4154 return ssl->record_padding_arg;
4155 }
4156
4157 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4158 {
4159 /* block size of 0 or 1 is basically no padding */
4160 if (block_size == 1)
4161 ssl->block_padding = 0;
4162 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4163 ssl->block_padding = block_size;
4164 else
4165 return 0;
4166 return 1;
4167 }
4168
4169 /*
4170 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4171 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4172 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4173 * Returns the newly allocated ctx;
4174 */
4175
4176 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4177 {
4178 ssl_clear_hash_ctx(hash);
4179 *hash = EVP_MD_CTX_new();
4180 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4181 EVP_MD_CTX_free(*hash);
4182 *hash = NULL;
4183 return NULL;
4184 }
4185 return *hash;
4186 }
4187
4188 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4189 {
4190
4191 EVP_MD_CTX_free(*hash);
4192 *hash = NULL;
4193 }
4194
4195 /* Retrieve handshake hashes */
4196 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4197 size_t *hashlen)
4198 {
4199 EVP_MD_CTX *ctx = NULL;
4200 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4201 int hashleni = EVP_MD_CTX_size(hdgst);
4202 int ret = 0;
4203
4204 if (hashleni < 0 || (size_t)hashleni > outlen) {
4205 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4206 ERR_R_INTERNAL_ERROR);
4207 goto err;
4208 }
4209
4210 ctx = EVP_MD_CTX_new();
4211 if (ctx == NULL)
4212 goto err;
4213
4214 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4215 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4216 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4217 ERR_R_INTERNAL_ERROR);
4218 goto err;
4219 }
4220
4221 *hashlen = hashleni;
4222
4223 ret = 1;
4224 err:
4225 EVP_MD_CTX_free(ctx);
4226 return ret;
4227 }
4228
4229 int SSL_session_reused(SSL *s)
4230 {
4231 return s->hit;
4232 }
4233
4234 int SSL_is_server(const SSL *s)
4235 {
4236 return s->server;
4237 }
4238
4239 #if OPENSSL_API_COMPAT < 0x10100000L
4240 void SSL_set_debug(SSL *s, int debug)
4241 {
4242 /* Old function was do-nothing anyway... */
4243 (void)s;
4244 (void)debug;
4245 }
4246 #endif
4247
4248 void SSL_set_security_level(SSL *s, int level)
4249 {
4250 s->cert->sec_level = level;
4251 }
4252
4253 int SSL_get_security_level(const SSL *s)
4254 {
4255 return s->cert->sec_level;
4256 }
4257
4258 void SSL_set_security_callback(SSL *s,
4259 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4260 int op, int bits, int nid,
4261 void *other, void *ex))
4262 {
4263 s->cert->sec_cb = cb;
4264 }
4265
4266 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4267 const SSL_CTX *ctx, int op,
4268 int bits, int nid, void *other,
4269 void *ex) {
4270 return s->cert->sec_cb;
4271 }
4272
4273 void SSL_set0_security_ex_data(SSL *s, void *ex)
4274 {
4275 s->cert->sec_ex = ex;
4276 }
4277
4278 void *SSL_get0_security_ex_data(const SSL *s)
4279 {
4280 return s->cert->sec_ex;
4281 }
4282
4283 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4284 {
4285 ctx->cert->sec_level = level;
4286 }
4287
4288 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4289 {
4290 return ctx->cert->sec_level;
4291 }
4292
4293 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4294 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4295 int op, int bits, int nid,
4296 void *other, void *ex))
4297 {
4298 ctx->cert->sec_cb = cb;
4299 }
4300
4301 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4302 const SSL_CTX *ctx,
4303 int op, int bits,
4304 int nid,
4305 void *other,
4306 void *ex) {
4307 return ctx->cert->sec_cb;
4308 }
4309
4310 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4311 {
4312 ctx->cert->sec_ex = ex;
4313 }
4314
4315 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4316 {
4317 return ctx->cert->sec_ex;
4318 }
4319
4320 /*
4321 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4322 * can return unsigned long, instead of the generic long return value from the
4323 * control interface.
4324 */
4325 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4326 {
4327 return ctx->options;
4328 }
4329
4330 unsigned long SSL_get_options(const SSL *s)
4331 {
4332 return s->options;
4333 }
4334
4335 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4336 {
4337 return ctx->options |= op;
4338 }
4339
4340 unsigned long SSL_set_options(SSL *s, unsigned long op)
4341 {
4342 return s->options |= op;
4343 }
4344
4345 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4346 {
4347 return ctx->options &= ~op;
4348 }
4349
4350 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4351 {
4352 return s->options &= ~op;
4353 }
4354
4355 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4356 {
4357 return s->verified_chain;
4358 }
4359
4360 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4361
4362 #ifndef OPENSSL_NO_CT
4363
4364 /*
4365 * Moves SCTs from the |src| stack to the |dst| stack.
4366 * The source of each SCT will be set to |origin|.
4367 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4368 * the caller.
4369 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4370 */
4371 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4372 sct_source_t origin)
4373 {
4374 int scts_moved = 0;
4375 SCT *sct = NULL;
4376
4377 if (*dst == NULL) {
4378 *dst = sk_SCT_new_null();
4379 if (*dst == NULL) {
4380 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4381 goto err;
4382 }
4383 }
4384
4385 while ((sct = sk_SCT_pop(src)) != NULL) {
4386 if (SCT_set_source(sct, origin) != 1)
4387 goto err;
4388
4389 if (sk_SCT_push(*dst, sct) <= 0)
4390 goto err;
4391 scts_moved += 1;
4392 }
4393
4394 return scts_moved;
4395 err:
4396 if (sct != NULL)
4397 sk_SCT_push(src, sct); /* Put the SCT back */
4398 return -1;
4399 }
4400
4401 /*
4402 * Look for data collected during ServerHello and parse if found.
4403 * Returns the number of SCTs extracted.
4404 */
4405 static int ct_extract_tls_extension_scts(SSL *s)
4406 {
4407 int scts_extracted = 0;
4408
4409 if (s->ext.scts != NULL) {
4410 const unsigned char *p = s->ext.scts;
4411 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4412
4413 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4414
4415 SCT_LIST_free(scts);
4416 }
4417
4418 return scts_extracted;
4419 }
4420
4421 /*
4422 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4423 * contains an SCT X509 extension. They will be stored in |s->scts|.
4424 * Returns:
4425 * - The number of SCTs extracted, assuming an OCSP response exists.
4426 * - 0 if no OCSP response exists or it contains no SCTs.
4427 * - A negative integer if an error occurs.
4428 */
4429 static int ct_extract_ocsp_response_scts(SSL *s)
4430 {
4431 # ifndef OPENSSL_NO_OCSP
4432 int scts_extracted = 0;
4433 const unsigned char *p;
4434 OCSP_BASICRESP *br = NULL;
4435 OCSP_RESPONSE *rsp = NULL;
4436 STACK_OF(SCT) *scts = NULL;
4437 int i;
4438
4439 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4440 goto err;
4441
4442 p = s->ext.ocsp.resp;
4443 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4444 if (rsp == NULL)
4445 goto err;
4446
4447 br = OCSP_response_get1_basic(rsp);
4448 if (br == NULL)
4449 goto err;
4450
4451 for (i = 0; i < OCSP_resp_count(br); ++i) {
4452 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4453
4454 if (single == NULL)
4455 continue;
4456
4457 scts =
4458 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4459 scts_extracted =
4460 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4461 if (scts_extracted < 0)
4462 goto err;
4463 }
4464 err:
4465 SCT_LIST_free(scts);
4466 OCSP_BASICRESP_free(br);
4467 OCSP_RESPONSE_free(rsp);
4468 return scts_extracted;
4469 # else
4470 /* Behave as if no OCSP response exists */
4471 return 0;
4472 # endif
4473 }
4474
4475 /*
4476 * Attempts to extract SCTs from the peer certificate.
4477 * Return the number of SCTs extracted, or a negative integer if an error
4478 * occurs.
4479 */
4480 static int ct_extract_x509v3_extension_scts(SSL *s)
4481 {
4482 int scts_extracted = 0;
4483 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4484
4485 if (cert != NULL) {
4486 STACK_OF(SCT) *scts =
4487 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4488
4489 scts_extracted =
4490 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4491
4492 SCT_LIST_free(scts);
4493 }
4494
4495 return scts_extracted;
4496 }
4497
4498 /*
4499 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4500 * response (if it exists) and X509v3 extensions in the certificate.
4501 * Returns NULL if an error occurs.
4502 */
4503 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4504 {
4505 if (!s->scts_parsed) {
4506 if (ct_extract_tls_extension_scts(s) < 0 ||
4507 ct_extract_ocsp_response_scts(s) < 0 ||
4508 ct_extract_x509v3_extension_scts(s) < 0)
4509 goto err;
4510
4511 s->scts_parsed = 1;
4512 }
4513 return s->scts;
4514 err:
4515 return NULL;
4516 }
4517
4518 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4519 const STACK_OF(SCT) *scts, void *unused_arg)
4520 {
4521 return 1;
4522 }
4523
4524 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4525 const STACK_OF(SCT) *scts, void *unused_arg)
4526 {
4527 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4528 int i;
4529
4530 for (i = 0; i < count; ++i) {
4531 SCT *sct = sk_SCT_value(scts, i);
4532 int status = SCT_get_validation_status(sct);
4533
4534 if (status == SCT_VALIDATION_STATUS_VALID)
4535 return 1;
4536 }
4537 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4538 return 0;
4539 }
4540
4541 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4542 void *arg)
4543 {
4544 /*
4545 * Since code exists that uses the custom extension handler for CT, look
4546 * for this and throw an error if they have already registered to use CT.
4547 */
4548 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4549 TLSEXT_TYPE_signed_certificate_timestamp))
4550 {
4551 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4552 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4553 return 0;
4554 }
4555
4556 if (callback != NULL) {
4557 /*
4558 * If we are validating CT, then we MUST accept SCTs served via OCSP
4559 */
4560 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4561 return 0;
4562 }
4563
4564 s->ct_validation_callback = callback;
4565 s->ct_validation_callback_arg = arg;
4566
4567 return 1;
4568 }
4569
4570 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4571 ssl_ct_validation_cb callback, void *arg)
4572 {
4573 /*
4574 * Since code exists that uses the custom extension handler for CT, look for
4575 * this and throw an error if they have already registered to use CT.
4576 */
4577 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4578 TLSEXT_TYPE_signed_certificate_timestamp))
4579 {
4580 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4581 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4582 return 0;
4583 }
4584
4585 ctx->ct_validation_callback = callback;
4586 ctx->ct_validation_callback_arg = arg;
4587 return 1;
4588 }
4589
4590 int SSL_ct_is_enabled(const SSL *s)
4591 {
4592 return s->ct_validation_callback != NULL;
4593 }
4594
4595 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4596 {
4597 return ctx->ct_validation_callback != NULL;
4598 }
4599
4600 int ssl_validate_ct(SSL *s)
4601 {
4602 int ret = 0;
4603 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4604 X509 *issuer;
4605 SSL_DANE *dane = &s->dane;
4606 CT_POLICY_EVAL_CTX *ctx = NULL;
4607 const STACK_OF(SCT) *scts;
4608
4609 /*
4610 * If no callback is set, the peer is anonymous, or its chain is invalid,
4611 * skip SCT validation - just return success. Applications that continue
4612 * handshakes without certificates, with unverified chains, or pinned leaf
4613 * certificates are outside the scope of the WebPKI and CT.
4614 *
4615 * The above exclusions notwithstanding the vast majority of peers will
4616 * have rather ordinary certificate chains validated by typical
4617 * applications that perform certificate verification and therefore will
4618 * process SCTs when enabled.
4619 */
4620 if (s->ct_validation_callback == NULL || cert == NULL ||
4621 s->verify_result != X509_V_OK ||
4622 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4623 return 1;
4624
4625 /*
4626 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4627 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4628 */
4629 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4630 switch (dane->mtlsa->usage) {
4631 case DANETLS_USAGE_DANE_TA:
4632 case DANETLS_USAGE_DANE_EE:
4633 return 1;
4634 }
4635 }
4636
4637 ctx = CT_POLICY_EVAL_CTX_new();
4638 if (ctx == NULL) {
4639 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4640 ERR_R_MALLOC_FAILURE);
4641 goto end;
4642 }
4643
4644 issuer = sk_X509_value(s->verified_chain, 1);
4645 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4646 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4647 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4648 CT_POLICY_EVAL_CTX_set_time(
4649 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4650
4651 scts = SSL_get0_peer_scts(s);
4652
4653 /*
4654 * This function returns success (> 0) only when all the SCTs are valid, 0
4655 * when some are invalid, and < 0 on various internal errors (out of
4656 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4657 * reason to abort the handshake, that decision is up to the callback.
4658 * Therefore, we error out only in the unexpected case that the return
4659 * value is negative.
4660 *
4661 * XXX: One might well argue that the return value of this function is an
4662 * unfortunate design choice. Its job is only to determine the validation
4663 * status of each of the provided SCTs. So long as it correctly separates
4664 * the wheat from the chaff it should return success. Failure in this case
4665 * ought to correspond to an inability to carry out its duties.
4666 */
4667 if (SCT_LIST_validate(scts, ctx) < 0) {
4668 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4669 SSL_R_SCT_VERIFICATION_FAILED);
4670 goto end;
4671 }
4672
4673 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4674 if (ret < 0)
4675 ret = 0; /* This function returns 0 on failure */
4676 if (!ret)
4677 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4678 SSL_R_CALLBACK_FAILED);
4679
4680 end:
4681 CT_POLICY_EVAL_CTX_free(ctx);
4682 /*
4683 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4684 * failure return code here. Also the application may wish the complete
4685 * the handshake, and then disconnect cleanly at a higher layer, after
4686 * checking the verification status of the completed connection.
4687 *
4688 * We therefore force a certificate verification failure which will be
4689 * visible via SSL_get_verify_result() and cached as part of any resumed
4690 * session.
4691 *
4692 * Note: the permissive callback is for information gathering only, always
4693 * returns success, and does not affect verification status. Only the
4694 * strict callback or a custom application-specified callback can trigger
4695 * connection failure or record a verification error.
4696 */
4697 if (ret <= 0)
4698 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4699 return ret;
4700 }
4701
4702 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4703 {
4704 switch (validation_mode) {
4705 default:
4706 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4707 return 0;
4708 case SSL_CT_VALIDATION_PERMISSIVE:
4709 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4710 case SSL_CT_VALIDATION_STRICT:
4711 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4712 }
4713 }
4714
4715 int SSL_enable_ct(SSL *s, int validation_mode)
4716 {
4717 switch (validation_mode) {
4718 default:
4719 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4720 return 0;
4721 case SSL_CT_VALIDATION_PERMISSIVE:
4722 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4723 case SSL_CT_VALIDATION_STRICT:
4724 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4725 }
4726 }
4727
4728 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4729 {
4730 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4731 }
4732
4733 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4734 {
4735 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4736 }
4737
4738 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4739 {
4740 CTLOG_STORE_free(ctx->ctlog_store);
4741 ctx->ctlog_store = logs;
4742 }
4743
4744 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4745 {
4746 return ctx->ctlog_store;
4747 }
4748
4749 #endif /* OPENSSL_NO_CT */
4750
4751 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4752 void *arg)
4753 {
4754 c->client_hello_cb = cb;
4755 c->client_hello_cb_arg = arg;
4756 }
4757
4758 int SSL_client_hello_isv2(SSL *s)
4759 {
4760 if (s->clienthello == NULL)
4761 return 0;
4762 return s->clienthello->isv2;
4763 }
4764
4765 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4766 {
4767 if (s->clienthello == NULL)
4768 return 0;
4769 return s->clienthello->legacy_version;
4770 }
4771
4772 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4773 {
4774 if (s->clienthello == NULL)
4775 return 0;
4776 if (out != NULL)
4777 *out = s->clienthello->random;
4778 return SSL3_RANDOM_SIZE;
4779 }
4780
4781 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4782 {
4783 if (s->clienthello == NULL)
4784 return 0;
4785 if (out != NULL)
4786 *out = s->clienthello->session_id;
4787 return s->clienthello->session_id_len;
4788 }
4789
4790 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4791 {
4792 if (s->clienthello == NULL)
4793 return 0;
4794 if (out != NULL)
4795 *out = PACKET_data(&s->clienthello->ciphersuites);
4796 return PACKET_remaining(&s->clienthello->ciphersuites);
4797 }
4798
4799 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4800 {
4801 if (s->clienthello == NULL)
4802 return 0;
4803 if (out != NULL)
4804 *out = s->clienthello->compressions;
4805 return s->clienthello->compressions_len;
4806 }
4807
4808 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4809 {
4810 RAW_EXTENSION *ext;
4811 int *present;
4812 size_t num = 0, i;
4813
4814 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4815 return 0;
4816 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4817 ext = s->clienthello->pre_proc_exts + i;
4818 if (ext->present)
4819 num++;
4820 }
4821 present = OPENSSL_malloc(sizeof(*present) * num);
4822 if (present == NULL)
4823 return 0;
4824 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4825 ext = s->clienthello->pre_proc_exts + i;
4826 if (ext->present) {
4827 if (ext->received_order >= num)
4828 goto err;
4829 present[ext->received_order] = ext->type;
4830 }
4831 }
4832 *out = present;
4833 *outlen = num;
4834 return 1;
4835 err:
4836 OPENSSL_free(present);
4837 return 0;
4838 }
4839
4840 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4841 size_t *outlen)
4842 {
4843 size_t i;
4844 RAW_EXTENSION *r;
4845
4846 if (s->clienthello == NULL)
4847 return 0;
4848 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4849 r = s->clienthello->pre_proc_exts + i;
4850 if (r->present && r->type == type) {
4851 if (out != NULL)
4852 *out = PACKET_data(&r->data);
4853 if (outlen != NULL)
4854 *outlen = PACKET_remaining(&r->data);
4855 return 1;
4856 }
4857 }
4858 return 0;
4859 }
4860
4861 int SSL_free_buffers(SSL *ssl)
4862 {
4863 RECORD_LAYER *rl = &ssl->rlayer;
4864
4865 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4866 return 0;
4867
4868 RECORD_LAYER_release(rl);
4869 return 1;
4870 }
4871
4872 int SSL_alloc_buffers(SSL *ssl)
4873 {
4874 return ssl3_setup_buffers(ssl);
4875 }
4876
4877 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4878 {
4879 ctx->keylog_callback = cb;
4880 }
4881
4882 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4883 {
4884 return ctx->keylog_callback;
4885 }
4886
4887 static int nss_keylog_int(const char *prefix,
4888 SSL *ssl,
4889 const uint8_t *parameter_1,
4890 size_t parameter_1_len,
4891 const uint8_t *parameter_2,
4892 size_t parameter_2_len)
4893 {
4894 char *out = NULL;
4895 char *cursor = NULL;
4896 size_t out_len = 0;
4897 size_t i;
4898 size_t prefix_len;
4899
4900 if (ssl->ctx->keylog_callback == NULL) return 1;
4901
4902 /*
4903 * Our output buffer will contain the following strings, rendered with
4904 * space characters in between, terminated by a NULL character: first the
4905 * prefix, then the first parameter, then the second parameter. The
4906 * meaning of each parameter depends on the specific key material being
4907 * logged. Note that the first and second parameters are encoded in
4908 * hexadecimal, so we need a buffer that is twice their lengths.
4909 */
4910 prefix_len = strlen(prefix);
4911 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4912 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4913 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
4914 ERR_R_MALLOC_FAILURE);
4915 return 0;
4916 }
4917
4918 strcpy(cursor, prefix);
4919 cursor += prefix_len;
4920 *cursor++ = ' ';
4921
4922 for (i = 0; i < parameter_1_len; i++) {
4923 sprintf(cursor, "%02x", parameter_1[i]);
4924 cursor += 2;
4925 }
4926 *cursor++ = ' ';
4927
4928 for (i = 0; i < parameter_2_len; i++) {
4929 sprintf(cursor, "%02x", parameter_2[i]);
4930 cursor += 2;
4931 }
4932 *cursor = '\0';
4933
4934 ssl->ctx->keylog_callback(ssl, (const char *)out);
4935 OPENSSL_free(out);
4936 return 1;
4937
4938 }
4939
4940 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4941 const uint8_t *encrypted_premaster,
4942 size_t encrypted_premaster_len,
4943 const uint8_t *premaster,
4944 size_t premaster_len)
4945 {
4946 if (encrypted_premaster_len < 8) {
4947 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
4948 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4949 return 0;
4950 }
4951
4952 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4953 return nss_keylog_int("RSA",
4954 ssl,
4955 encrypted_premaster,
4956 8,
4957 premaster,
4958 premaster_len);
4959 }
4960
4961 int ssl_log_secret(SSL *ssl,
4962 const char *label,
4963 const uint8_t *secret,
4964 size_t secret_len)
4965 {
4966 return nss_keylog_int(label,
4967 ssl,
4968 ssl->s3->client_random,
4969 SSL3_RANDOM_SIZE,
4970 secret,
4971 secret_len);
4972 }
4973
4974 #define SSLV2_CIPHER_LEN 3
4975
4976 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
4977 {
4978 int n;
4979
4980 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4981
4982 if (PACKET_remaining(cipher_suites) == 0) {
4983 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
4984 SSL_R_NO_CIPHERS_SPECIFIED);
4985 return 0;
4986 }
4987
4988 if (PACKET_remaining(cipher_suites) % n != 0) {
4989 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
4990 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4991 return 0;
4992 }
4993
4994 OPENSSL_free(s->s3->tmp.ciphers_raw);
4995 s->s3->tmp.ciphers_raw = NULL;
4996 s->s3->tmp.ciphers_rawlen = 0;
4997
4998 if (sslv2format) {
4999 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5000 PACKET sslv2ciphers = *cipher_suites;
5001 unsigned int leadbyte;
5002 unsigned char *raw;
5003
5004 /*
5005 * We store the raw ciphers list in SSLv3+ format so we need to do some
5006 * preprocessing to convert the list first. If there are any SSLv2 only
5007 * ciphersuites with a non-zero leading byte then we are going to
5008 * slightly over allocate because we won't store those. But that isn't a
5009 * problem.
5010 */
5011 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5012 s->s3->tmp.ciphers_raw = raw;
5013 if (raw == NULL) {
5014 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5015 ERR_R_MALLOC_FAILURE);
5016 return 0;
5017 }
5018 for (s->s3->tmp.ciphers_rawlen = 0;
5019 PACKET_remaining(&sslv2ciphers) > 0;
5020 raw += TLS_CIPHER_LEN) {
5021 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5022 || (leadbyte == 0
5023 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5024 TLS_CIPHER_LEN))
5025 || (leadbyte != 0
5026 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5027 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5028 SSL_R_BAD_PACKET);
5029 OPENSSL_free(s->s3->tmp.ciphers_raw);
5030 s->s3->tmp.ciphers_raw = NULL;
5031 s->s3->tmp.ciphers_rawlen = 0;
5032 return 0;
5033 }
5034 if (leadbyte == 0)
5035 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5036 }
5037 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5038 &s->s3->tmp.ciphers_rawlen)) {
5039 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5040 ERR_R_INTERNAL_ERROR);
5041 return 0;
5042 }
5043 return 1;
5044 }
5045
5046 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5047 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5048 STACK_OF(SSL_CIPHER) **scsvs)
5049 {
5050 PACKET pkt;
5051
5052 if (!PACKET_buf_init(&pkt, bytes, len))
5053 return 0;
5054 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5055 }
5056
5057 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5058 STACK_OF(SSL_CIPHER) **skp,
5059 STACK_OF(SSL_CIPHER) **scsvs_out,
5060 int sslv2format, int fatal)
5061 {
5062 const SSL_CIPHER *c;
5063 STACK_OF(SSL_CIPHER) *sk = NULL;
5064 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5065 int n;
5066 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5067 unsigned char cipher[SSLV2_CIPHER_LEN];
5068
5069 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5070
5071 if (PACKET_remaining(cipher_suites) == 0) {
5072 if (fatal)
5073 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5074 SSL_R_NO_CIPHERS_SPECIFIED);
5075 else
5076 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5077 return 0;
5078 }
5079
5080 if (PACKET_remaining(cipher_suites) % n != 0) {
5081 if (fatal)
5082 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5083 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5084 else
5085 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5086 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5087 return 0;
5088 }
5089
5090 sk = sk_SSL_CIPHER_new_null();
5091 scsvs = sk_SSL_CIPHER_new_null();
5092 if (sk == NULL || scsvs == NULL) {
5093 if (fatal)
5094 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5095 ERR_R_MALLOC_FAILURE);
5096 else
5097 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5098 goto err;
5099 }
5100
5101 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5102 /*
5103 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5104 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5105 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5106 */
5107 if (sslv2format && cipher[0] != '\0')
5108 continue;
5109
5110 /* For SSLv2-compat, ignore leading 0-byte. */
5111 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5112 if (c != NULL) {
5113 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5114 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5115 if (fatal)
5116 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5117 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5118 else
5119 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5120 goto err;
5121 }
5122 }
5123 }
5124 if (PACKET_remaining(cipher_suites) > 0) {
5125 if (fatal)
5126 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5127 SSL_R_BAD_LENGTH);
5128 else
5129 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5130 goto err;
5131 }
5132
5133 if (skp != NULL)
5134 *skp = sk;
5135 else
5136 sk_SSL_CIPHER_free(sk);
5137 if (scsvs_out != NULL)
5138 *scsvs_out = scsvs;
5139 else
5140 sk_SSL_CIPHER_free(scsvs);
5141 return 1;
5142 err:
5143 sk_SSL_CIPHER_free(sk);
5144 sk_SSL_CIPHER_free(scsvs);
5145 return 0;
5146 }
5147
5148 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5149 {
5150 ctx->max_early_data = max_early_data;
5151
5152 return 1;
5153 }
5154
5155 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5156 {
5157 return ctx->max_early_data;
5158 }
5159
5160 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5161 {
5162 s->max_early_data = max_early_data;
5163
5164 return 1;
5165 }
5166
5167 uint32_t SSL_get_max_early_data(const SSL *s)
5168 {
5169 return s->max_early_data;
5170 }
5171
5172 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5173 {
5174 if (s->drbg != NULL) {
5175 /*
5176 * Currently, it's the duty of the caller to serialize the generate
5177 * requests to the DRBG. So formally we have to check whether
5178 * s->drbg->lock != NULL and take the lock if this is the case.
5179 * However, this DRBG is unique to a given SSL object, and we already
5180 * require that SSL objects are only accessed by a single thread at
5181 * a given time. Also, SSL DRBGs have no child DRBG, so there is
5182 * no risk that this DRBG is accessed by a child DRBG in parallel
5183 * for reseeding. As such, we can rely on the application's
5184 * serialization of SSL accesses for the needed concurrency protection
5185 * here.
5186 */
5187 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5188 }
5189 return RAND_bytes(rnd, (int)size);
5190 }
5191
5192 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5193 {
5194 /* Return any active Max Fragment Len extension */
5195 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5196 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5197
5198 /* return current SSL connection setting */
5199 return ssl->max_send_fragment;
5200 }
5201
5202 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5203 {
5204 /* Return a value regarding an active Max Fragment Len extension */
5205 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5206 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5207 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5208
5209 /* else limit |split_send_fragment| to current |max_send_fragment| */
5210 if (ssl->split_send_fragment > ssl->max_send_fragment)
5211 return ssl->max_send_fragment;
5212
5213 /* return current SSL connection setting */
5214 return ssl->split_send_fragment;
5215 }