]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Whitespace and indent fixes
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/dh.h>
19 #include <openssl/engine.h>
20 #include <openssl/async.h>
21 #include <openssl/ct.h>
22 #include "internal/cryptlib.h"
23 #include "internal/rand.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 SSL3_ENC_METHOD ssl3_undef_enc_method = {
29 /*
30 * evil casts, but these functions are only called if there's a library
31 * bug
32 */
33 (int (*)(SSL *, SSL3_RECORD *, size_t, int))ssl_undefined_function,
34 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
35 ssl_undefined_function,
36 (int (*)(SSL *, unsigned char *, unsigned char *, size_t, size_t *))
37 ssl_undefined_function,
38 (int (*)(SSL *, int))ssl_undefined_function,
39 (size_t (*)(SSL *, const char *, size_t, unsigned char *))
40 ssl_undefined_function,
41 NULL, /* client_finished_label */
42 0, /* client_finished_label_len */
43 NULL, /* server_finished_label */
44 0, /* server_finished_label_len */
45 (int (*)(int))ssl_undefined_function,
46 (int (*)(SSL *, unsigned char *, size_t, const char *,
47 size_t, const unsigned char *, size_t,
48 int use_context))ssl_undefined_function,
49 };
50
51 struct ssl_async_args {
52 SSL *s;
53 void *buf;
54 size_t num;
55 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
56 union {
57 int (*func_read) (SSL *, void *, size_t, size_t *);
58 int (*func_write) (SSL *, const void *, size_t, size_t *);
59 int (*func_other) (SSL *);
60 } f;
61 };
62
63 static const struct {
64 uint8_t mtype;
65 uint8_t ord;
66 int nid;
67 } dane_mds[] = {
68 {
69 DANETLS_MATCHING_FULL, 0, NID_undef
70 },
71 {
72 DANETLS_MATCHING_2256, 1, NID_sha256
73 },
74 {
75 DANETLS_MATCHING_2512, 2, NID_sha512
76 },
77 };
78
79 static int dane_ctx_enable(struct dane_ctx_st *dctx)
80 {
81 const EVP_MD **mdevp;
82 uint8_t *mdord;
83 uint8_t mdmax = DANETLS_MATCHING_LAST;
84 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
85 size_t i;
86
87 if (dctx->mdevp != NULL)
88 return 1;
89
90 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
91 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
92
93 if (mdord == NULL || mdevp == NULL) {
94 OPENSSL_free(mdord);
95 OPENSSL_free(mdevp);
96 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
97 return 0;
98 }
99
100 /* Install default entries */
101 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
102 const EVP_MD *md;
103
104 if (dane_mds[i].nid == NID_undef ||
105 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
106 continue;
107 mdevp[dane_mds[i].mtype] = md;
108 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
109 }
110
111 dctx->mdevp = mdevp;
112 dctx->mdord = mdord;
113 dctx->mdmax = mdmax;
114
115 return 1;
116 }
117
118 static void dane_ctx_final(struct dane_ctx_st *dctx)
119 {
120 OPENSSL_free(dctx->mdevp);
121 dctx->mdevp = NULL;
122
123 OPENSSL_free(dctx->mdord);
124 dctx->mdord = NULL;
125 dctx->mdmax = 0;
126 }
127
128 static void tlsa_free(danetls_record *t)
129 {
130 if (t == NULL)
131 return;
132 OPENSSL_free(t->data);
133 EVP_PKEY_free(t->spki);
134 OPENSSL_free(t);
135 }
136
137 static void dane_final(SSL_DANE *dane)
138 {
139 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
140 dane->trecs = NULL;
141
142 sk_X509_pop_free(dane->certs, X509_free);
143 dane->certs = NULL;
144
145 X509_free(dane->mcert);
146 dane->mcert = NULL;
147 dane->mtlsa = NULL;
148 dane->mdpth = -1;
149 dane->pdpth = -1;
150 }
151
152 /*
153 * dane_copy - Copy dane configuration, sans verification state.
154 */
155 static int ssl_dane_dup(SSL *to, SSL *from)
156 {
157 int num;
158 int i;
159
160 if (!DANETLS_ENABLED(&from->dane))
161 return 1;
162
163 num = sk_danetls_record_num(from->dane.trecs);
164 dane_final(&to->dane);
165 to->dane.flags = from->dane.flags;
166 to->dane.dctx = &to->ctx->dane;
167 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
168
169 if (to->dane.trecs == NULL) {
170 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
171 return 0;
172 }
173
174 for (i = 0; i < num; ++i) {
175 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
176
177 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
178 t->data, t->dlen) <= 0)
179 return 0;
180 }
181 return 1;
182 }
183
184 static int dane_mtype_set(struct dane_ctx_st *dctx,
185 const EVP_MD *md, uint8_t mtype, uint8_t ord)
186 {
187 int i;
188
189 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
190 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
191 return 0;
192 }
193
194 if (mtype > dctx->mdmax) {
195 const EVP_MD **mdevp;
196 uint8_t *mdord;
197 int n = ((int)mtype) + 1;
198
199 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
200 if (mdevp == NULL) {
201 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
202 return -1;
203 }
204 dctx->mdevp = mdevp;
205
206 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
207 if (mdord == NULL) {
208 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
209 return -1;
210 }
211 dctx->mdord = mdord;
212
213 /* Zero-fill any gaps */
214 for (i = dctx->mdmax + 1; i < mtype; ++i) {
215 mdevp[i] = NULL;
216 mdord[i] = 0;
217 }
218
219 dctx->mdmax = mtype;
220 }
221
222 dctx->mdevp[mtype] = md;
223 /* Coerce ordinal of disabled matching types to 0 */
224 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
225
226 return 1;
227 }
228
229 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
230 {
231 if (mtype > dane->dctx->mdmax)
232 return NULL;
233 return dane->dctx->mdevp[mtype];
234 }
235
236 static int dane_tlsa_add(SSL_DANE *dane,
237 uint8_t usage,
238 uint8_t selector,
239 uint8_t mtype, unsigned char *data, size_t dlen)
240 {
241 danetls_record *t;
242 const EVP_MD *md = NULL;
243 int ilen = (int)dlen;
244 int i;
245 int num;
246
247 if (dane->trecs == NULL) {
248 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
249 return -1;
250 }
251
252 if (ilen < 0 || dlen != (size_t)ilen) {
253 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
254 return 0;
255 }
256
257 if (usage > DANETLS_USAGE_LAST) {
258 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
259 return 0;
260 }
261
262 if (selector > DANETLS_SELECTOR_LAST) {
263 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
264 return 0;
265 }
266
267 if (mtype != DANETLS_MATCHING_FULL) {
268 md = tlsa_md_get(dane, mtype);
269 if (md == NULL) {
270 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
271 return 0;
272 }
273 }
274
275 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
276 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
277 return 0;
278 }
279 if (!data) {
280 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
281 return 0;
282 }
283
284 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
285 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
286 return -1;
287 }
288
289 t->usage = usage;
290 t->selector = selector;
291 t->mtype = mtype;
292 t->data = OPENSSL_malloc(dlen);
293 if (t->data == NULL) {
294 tlsa_free(t);
295 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
296 return -1;
297 }
298 memcpy(t->data, data, dlen);
299 t->dlen = dlen;
300
301 /* Validate and cache full certificate or public key */
302 if (mtype == DANETLS_MATCHING_FULL) {
303 const unsigned char *p = data;
304 X509 *cert = NULL;
305 EVP_PKEY *pkey = NULL;
306
307 switch (selector) {
308 case DANETLS_SELECTOR_CERT:
309 if (!d2i_X509(&cert, &p, ilen) || p < data ||
310 dlen != (size_t)(p - data)) {
311 tlsa_free(t);
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
313 return 0;
314 }
315 if (X509_get0_pubkey(cert) == NULL) {
316 tlsa_free(t);
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
318 return 0;
319 }
320
321 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
322 X509_free(cert);
323 break;
324 }
325
326 /*
327 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
328 * records that contain full certificates of trust-anchors that are
329 * not present in the wire chain. For usage PKIX-TA(0), we augment
330 * the chain with untrusted Full(0) certificates from DNS, in case
331 * they are missing from the chain.
332 */
333 if ((dane->certs == NULL &&
334 (dane->certs = sk_X509_new_null()) == NULL) ||
335 !sk_X509_push(dane->certs, cert)) {
336 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
337 X509_free(cert);
338 tlsa_free(t);
339 return -1;
340 }
341 break;
342
343 case DANETLS_SELECTOR_SPKI:
344 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
345 dlen != (size_t)(p - data)) {
346 tlsa_free(t);
347 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
348 return 0;
349 }
350
351 /*
352 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
353 * records that contain full bare keys of trust-anchors that are
354 * not present in the wire chain.
355 */
356 if (usage == DANETLS_USAGE_DANE_TA)
357 t->spki = pkey;
358 else
359 EVP_PKEY_free(pkey);
360 break;
361 }
362 }
363
364 /*-
365 * Find the right insertion point for the new record.
366 *
367 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
368 * they can be processed first, as they require no chain building, and no
369 * expiration or hostname checks. Because DANE-EE(3) is numerically
370 * largest, this is accomplished via descending sort by "usage".
371 *
372 * We also sort in descending order by matching ordinal to simplify
373 * the implementation of digest agility in the verification code.
374 *
375 * The choice of order for the selector is not significant, so we
376 * use the same descending order for consistency.
377 */
378 num = sk_danetls_record_num(dane->trecs);
379 for (i = 0; i < num; ++i) {
380 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
381
382 if (rec->usage > usage)
383 continue;
384 if (rec->usage < usage)
385 break;
386 if (rec->selector > selector)
387 continue;
388 if (rec->selector < selector)
389 break;
390 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
391 continue;
392 break;
393 }
394
395 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
396 tlsa_free(t);
397 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
398 return -1;
399 }
400 dane->umask |= DANETLS_USAGE_BIT(usage);
401
402 return 1;
403 }
404
405 /*
406 * Return 0 if there is only one version configured and it was disabled
407 * at configure time. Return 1 otherwise.
408 */
409 static int ssl_check_allowed_versions(int min_version, int max_version)
410 {
411 int minisdtls = 0, maxisdtls = 0;
412
413 /* Figure out if we're doing DTLS versions or TLS versions */
414 if (min_version == DTLS1_BAD_VER
415 || min_version >> 8 == DTLS1_VERSION_MAJOR)
416 minisdtls = 1;
417 if (max_version == DTLS1_BAD_VER
418 || max_version >> 8 == DTLS1_VERSION_MAJOR)
419 maxisdtls = 1;
420 /* A wildcard version of 0 could be DTLS or TLS. */
421 if ((minisdtls && !maxisdtls && max_version != 0)
422 || (maxisdtls && !minisdtls && min_version != 0)) {
423 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
424 return 0;
425 }
426
427 if (minisdtls || maxisdtls) {
428 /* Do DTLS version checks. */
429 if (min_version == 0)
430 /* Ignore DTLS1_BAD_VER */
431 min_version = DTLS1_VERSION;
432 if (max_version == 0)
433 max_version = DTLS1_2_VERSION;
434 #ifdef OPENSSL_NO_DTLS1_2
435 if (max_version == DTLS1_2_VERSION)
436 max_version = DTLS1_VERSION;
437 #endif
438 #ifdef OPENSSL_NO_DTLS1
439 if (min_version == DTLS1_VERSION)
440 min_version = DTLS1_2_VERSION;
441 #endif
442 /* Done massaging versions; do the check. */
443 if (0
444 #ifdef OPENSSL_NO_DTLS1
445 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
446 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
447 #endif
448 #ifdef OPENSSL_NO_DTLS1_2
449 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
450 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
451 #endif
452 )
453 return 0;
454 } else {
455 /* Regular TLS version checks. */
456 if (min_version == 0)
457 min_version = SSL3_VERSION;
458 if (max_version == 0)
459 max_version = TLS1_3_VERSION;
460 #ifdef OPENSSL_NO_TLS1_3
461 if (max_version == TLS1_3_VERSION)
462 max_version = TLS1_2_VERSION;
463 #endif
464 #ifdef OPENSSL_NO_TLS1_2
465 if (max_version == TLS1_2_VERSION)
466 max_version = TLS1_1_VERSION;
467 #endif
468 #ifdef OPENSSL_NO_TLS1_1
469 if (max_version == TLS1_1_VERSION)
470 max_version = TLS1_VERSION;
471 #endif
472 #ifdef OPENSSL_NO_TLS1
473 if (max_version == TLS1_VERSION)
474 max_version = SSL3_VERSION;
475 #endif
476 #ifdef OPENSSL_NO_SSL3
477 if (min_version == SSL3_VERSION)
478 min_version = TLS1_VERSION;
479 #endif
480 #ifdef OPENSSL_NO_TLS1
481 if (min_version == TLS1_VERSION)
482 min_version = TLS1_1_VERSION;
483 #endif
484 #ifdef OPENSSL_NO_TLS1_1
485 if (min_version == TLS1_1_VERSION)
486 min_version = TLS1_2_VERSION;
487 #endif
488 #ifdef OPENSSL_NO_TLS1_2
489 if (min_version == TLS1_2_VERSION)
490 min_version = TLS1_3_VERSION;
491 #endif
492 /* Done massaging versions; do the check. */
493 if (0
494 #ifdef OPENSSL_NO_SSL3
495 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
496 #endif
497 #ifdef OPENSSL_NO_TLS1
498 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
499 #endif
500 #ifdef OPENSSL_NO_TLS1_1
501 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
502 #endif
503 #ifdef OPENSSL_NO_TLS1_2
504 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
505 #endif
506 #ifdef OPENSSL_NO_TLS1_3
507 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
508 #endif
509 )
510 return 0;
511 }
512 return 1;
513 }
514
515 static void clear_ciphers(SSL *s)
516 {
517 /* clear the current cipher */
518 ssl_clear_cipher_ctx(s);
519 ssl_clear_hash_ctx(&s->read_hash);
520 ssl_clear_hash_ctx(&s->write_hash);
521 }
522
523 int SSL_clear(SSL *s)
524 {
525 if (s->method == NULL) {
526 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
527 return 0;
528 }
529
530 if (ssl_clear_bad_session(s)) {
531 SSL_SESSION_free(s->session);
532 s->session = NULL;
533 }
534 SSL_SESSION_free(s->psksession);
535 s->psksession = NULL;
536 OPENSSL_free(s->psksession_id);
537 s->psksession_id = NULL;
538 s->psksession_id_len = 0;
539
540 s->error = 0;
541 s->hit = 0;
542 s->shutdown = 0;
543
544 if (s->renegotiate) {
545 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
546 return 0;
547 }
548
549 ossl_statem_clear(s);
550
551 s->version = s->method->version;
552 s->client_version = s->version;
553 s->rwstate = SSL_NOTHING;
554
555 BUF_MEM_free(s->init_buf);
556 s->init_buf = NULL;
557 clear_ciphers(s);
558 s->first_packet = 0;
559
560 s->key_update = SSL_KEY_UPDATE_NONE;
561
562 /* Reset DANE verification result state */
563 s->dane.mdpth = -1;
564 s->dane.pdpth = -1;
565 X509_free(s->dane.mcert);
566 s->dane.mcert = NULL;
567 s->dane.mtlsa = NULL;
568
569 /* Clear the verification result peername */
570 X509_VERIFY_PARAM_move_peername(s->param, NULL);
571
572 /*
573 * Check to see if we were changed into a different method, if so, revert
574 * back.
575 */
576 if (s->method != s->ctx->method) {
577 s->method->ssl_free(s);
578 s->method = s->ctx->method;
579 if (!s->method->ssl_new(s))
580 return 0;
581 } else {
582 if (!s->method->ssl_clear(s))
583 return 0;
584 }
585
586 RECORD_LAYER_clear(&s->rlayer);
587
588 return 1;
589 }
590
591 /** Used to change an SSL_CTXs default SSL method type */
592 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
593 {
594 STACK_OF(SSL_CIPHER) *sk;
595
596 ctx->method = meth;
597
598 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
599 &(ctx->cipher_list_by_id),
600 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
601 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
602 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
603 return 0;
604 }
605 return 1;
606 }
607
608 SSL *SSL_new(SSL_CTX *ctx)
609 {
610 SSL *s;
611
612 if (ctx == NULL) {
613 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
614 return NULL;
615 }
616 if (ctx->method == NULL) {
617 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
618 return NULL;
619 }
620
621 s = OPENSSL_zalloc(sizeof(*s));
622 if (s == NULL)
623 goto err;
624
625 s->references = 1;
626 s->lock = CRYPTO_THREAD_lock_new();
627 if (s->lock == NULL) {
628 OPENSSL_free(s);
629 s = NULL;
630 goto err;
631 }
632
633 /*
634 * If not using the standard RAND (say for fuzzing), then don't use a
635 * chained DRBG.
636 */
637 if (RAND_get_rand_method() == RAND_OpenSSL()) {
638 s->drbg =
639 RAND_DRBG_new(RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF,
640 RAND_DRBG_get0_global());
641 if (s->drbg == NULL
642 || RAND_DRBG_instantiate(s->drbg,
643 (const unsigned char *) SSL_version_str,
644 sizeof(SSL_version_str) - 1) == 0)
645 goto err;
646 }
647
648 RECORD_LAYER_init(&s->rlayer, s);
649
650 s->options = ctx->options;
651 s->dane.flags = ctx->dane.flags;
652 s->min_proto_version = ctx->min_proto_version;
653 s->max_proto_version = ctx->max_proto_version;
654 s->mode = ctx->mode;
655 s->max_cert_list = ctx->max_cert_list;
656 s->max_early_data = ctx->max_early_data;
657
658 /*
659 * Earlier library versions used to copy the pointer to the CERT, not
660 * its contents; only when setting new parameters for the per-SSL
661 * copy, ssl_cert_new would be called (and the direct reference to
662 * the per-SSL_CTX settings would be lost, but those still were
663 * indirectly accessed for various purposes, and for that reason they
664 * used to be known as s->ctx->default_cert). Now we don't look at the
665 * SSL_CTX's CERT after having duplicated it once.
666 */
667 s->cert = ssl_cert_dup(ctx->cert);
668 if (s->cert == NULL)
669 goto err;
670
671 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
672 s->msg_callback = ctx->msg_callback;
673 s->msg_callback_arg = ctx->msg_callback_arg;
674 s->verify_mode = ctx->verify_mode;
675 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
676 s->record_padding_cb = ctx->record_padding_cb;
677 s->record_padding_arg = ctx->record_padding_arg;
678 s->block_padding = ctx->block_padding;
679 s->sid_ctx_length = ctx->sid_ctx_length;
680 if (!ossl_assert(s->sid_ctx_length <= sizeof s->sid_ctx))
681 goto err;
682 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
683 s->verify_callback = ctx->default_verify_callback;
684 s->generate_session_id = ctx->generate_session_id;
685
686 s->param = X509_VERIFY_PARAM_new();
687 if (s->param == NULL)
688 goto err;
689 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
690 s->quiet_shutdown = ctx->quiet_shutdown;
691 s->max_send_fragment = ctx->max_send_fragment;
692 s->split_send_fragment = ctx->split_send_fragment;
693 s->max_pipelines = ctx->max_pipelines;
694 if (s->max_pipelines > 1)
695 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
696 if (ctx->default_read_buf_len > 0)
697 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
698
699 SSL_CTX_up_ref(ctx);
700 s->ctx = ctx;
701 s->ext.debug_cb = 0;
702 s->ext.debug_arg = NULL;
703 s->ext.ticket_expected = 0;
704 s->ext.status_type = ctx->ext.status_type;
705 s->ext.status_expected = 0;
706 s->ext.ocsp.ids = NULL;
707 s->ext.ocsp.exts = NULL;
708 s->ext.ocsp.resp = NULL;
709 s->ext.ocsp.resp_len = 0;
710 SSL_CTX_up_ref(ctx);
711 s->session_ctx = ctx;
712 #ifndef OPENSSL_NO_EC
713 if (ctx->ext.ecpointformats) {
714 s->ext.ecpointformats =
715 OPENSSL_memdup(ctx->ext.ecpointformats,
716 ctx->ext.ecpointformats_len);
717 if (!s->ext.ecpointformats)
718 goto err;
719 s->ext.ecpointformats_len =
720 ctx->ext.ecpointformats_len;
721 }
722 if (ctx->ext.supportedgroups) {
723 s->ext.supportedgroups =
724 OPENSSL_memdup(ctx->ext.supportedgroups,
725 ctx->ext.supportedgroups_len
726 * sizeof(*ctx->ext.supportedgroups));
727 if (!s->ext.supportedgroups)
728 goto err;
729 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
730 }
731 #endif
732 #ifndef OPENSSL_NO_NEXTPROTONEG
733 s->ext.npn = NULL;
734 #endif
735
736 if (s->ctx->ext.alpn) {
737 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
738 if (s->ext.alpn == NULL)
739 goto err;
740 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
741 s->ext.alpn_len = s->ctx->ext.alpn_len;
742 }
743
744 s->verified_chain = NULL;
745 s->verify_result = X509_V_OK;
746
747 s->default_passwd_callback = ctx->default_passwd_callback;
748 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
749
750 s->method = ctx->method;
751
752 s->key_update = SSL_KEY_UPDATE_NONE;
753
754 if (!s->method->ssl_new(s))
755 goto err;
756
757 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
758
759 if (!SSL_clear(s))
760 goto err;
761
762 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
763 goto err;
764
765 #ifndef OPENSSL_NO_PSK
766 s->psk_client_callback = ctx->psk_client_callback;
767 s->psk_server_callback = ctx->psk_server_callback;
768 #endif
769 s->psk_find_session_cb = ctx->psk_find_session_cb;
770 s->psk_use_session_cb = ctx->psk_use_session_cb;
771
772 s->job = NULL;
773
774 #ifndef OPENSSL_NO_CT
775 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
776 ctx->ct_validation_callback_arg))
777 goto err;
778 #endif
779
780 return s;
781 err:
782 SSL_free(s);
783 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
784 return NULL;
785 }
786
787 int SSL_is_dtls(const SSL *s)
788 {
789 return SSL_IS_DTLS(s) ? 1 : 0;
790 }
791
792 int SSL_up_ref(SSL *s)
793 {
794 int i;
795
796 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
797 return 0;
798
799 REF_PRINT_COUNT("SSL", s);
800 REF_ASSERT_ISNT(i < 2);
801 return ((i > 1) ? 1 : 0);
802 }
803
804 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
805 unsigned int sid_ctx_len)
806 {
807 if (sid_ctx_len > sizeof ctx->sid_ctx) {
808 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
809 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
810 return 0;
811 }
812 ctx->sid_ctx_length = sid_ctx_len;
813 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
814
815 return 1;
816 }
817
818 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
819 unsigned int sid_ctx_len)
820 {
821 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
822 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
823 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
824 return 0;
825 }
826 ssl->sid_ctx_length = sid_ctx_len;
827 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
828
829 return 1;
830 }
831
832 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
833 {
834 CRYPTO_THREAD_write_lock(ctx->lock);
835 ctx->generate_session_id = cb;
836 CRYPTO_THREAD_unlock(ctx->lock);
837 return 1;
838 }
839
840 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
841 {
842 CRYPTO_THREAD_write_lock(ssl->lock);
843 ssl->generate_session_id = cb;
844 CRYPTO_THREAD_unlock(ssl->lock);
845 return 1;
846 }
847
848 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
849 unsigned int id_len)
850 {
851 /*
852 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
853 * we can "construct" a session to give us the desired check - i.e. to
854 * find if there's a session in the hash table that would conflict with
855 * any new session built out of this id/id_len and the ssl_version in use
856 * by this SSL.
857 */
858 SSL_SESSION r, *p;
859
860 if (id_len > sizeof r.session_id)
861 return 0;
862
863 r.ssl_version = ssl->version;
864 r.session_id_length = id_len;
865 memcpy(r.session_id, id, id_len);
866
867 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
868 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
869 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
870 return (p != NULL);
871 }
872
873 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
874 {
875 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
876 }
877
878 int SSL_set_purpose(SSL *s, int purpose)
879 {
880 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
881 }
882
883 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
884 {
885 return X509_VERIFY_PARAM_set_trust(s->param, trust);
886 }
887
888 int SSL_set_trust(SSL *s, int trust)
889 {
890 return X509_VERIFY_PARAM_set_trust(s->param, trust);
891 }
892
893 int SSL_set1_host(SSL *s, const char *hostname)
894 {
895 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
896 }
897
898 int SSL_add1_host(SSL *s, const char *hostname)
899 {
900 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
901 }
902
903 void SSL_set_hostflags(SSL *s, unsigned int flags)
904 {
905 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
906 }
907
908 const char *SSL_get0_peername(SSL *s)
909 {
910 return X509_VERIFY_PARAM_get0_peername(s->param);
911 }
912
913 int SSL_CTX_dane_enable(SSL_CTX *ctx)
914 {
915 return dane_ctx_enable(&ctx->dane);
916 }
917
918 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
919 {
920 unsigned long orig = ctx->dane.flags;
921
922 ctx->dane.flags |= flags;
923 return orig;
924 }
925
926 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
927 {
928 unsigned long orig = ctx->dane.flags;
929
930 ctx->dane.flags &= ~flags;
931 return orig;
932 }
933
934 int SSL_dane_enable(SSL *s, const char *basedomain)
935 {
936 SSL_DANE *dane = &s->dane;
937
938 if (s->ctx->dane.mdmax == 0) {
939 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
940 return 0;
941 }
942 if (dane->trecs != NULL) {
943 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
944 return 0;
945 }
946
947 /*
948 * Default SNI name. This rejects empty names, while set1_host below
949 * accepts them and disables host name checks. To avoid side-effects with
950 * invalid input, set the SNI name first.
951 */
952 if (s->ext.hostname == NULL) {
953 if (!SSL_set_tlsext_host_name(s, basedomain)) {
954 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
955 return -1;
956 }
957 }
958
959 /* Primary RFC6125 reference identifier */
960 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
961 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
962 return -1;
963 }
964
965 dane->mdpth = -1;
966 dane->pdpth = -1;
967 dane->dctx = &s->ctx->dane;
968 dane->trecs = sk_danetls_record_new_null();
969
970 if (dane->trecs == NULL) {
971 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
972 return -1;
973 }
974 return 1;
975 }
976
977 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
978 {
979 unsigned long orig = ssl->dane.flags;
980
981 ssl->dane.flags |= flags;
982 return orig;
983 }
984
985 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
986 {
987 unsigned long orig = ssl->dane.flags;
988
989 ssl->dane.flags &= ~flags;
990 return orig;
991 }
992
993 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
994 {
995 SSL_DANE *dane = &s->dane;
996
997 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
998 return -1;
999 if (dane->mtlsa) {
1000 if (mcert)
1001 *mcert = dane->mcert;
1002 if (mspki)
1003 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1004 }
1005 return dane->mdpth;
1006 }
1007
1008 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1009 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1010 {
1011 SSL_DANE *dane = &s->dane;
1012
1013 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1014 return -1;
1015 if (dane->mtlsa) {
1016 if (usage)
1017 *usage = dane->mtlsa->usage;
1018 if (selector)
1019 *selector = dane->mtlsa->selector;
1020 if (mtype)
1021 *mtype = dane->mtlsa->mtype;
1022 if (data)
1023 *data = dane->mtlsa->data;
1024 if (dlen)
1025 *dlen = dane->mtlsa->dlen;
1026 }
1027 return dane->mdpth;
1028 }
1029
1030 SSL_DANE *SSL_get0_dane(SSL *s)
1031 {
1032 return &s->dane;
1033 }
1034
1035 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1036 uint8_t mtype, unsigned char *data, size_t dlen)
1037 {
1038 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1039 }
1040
1041 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1042 uint8_t ord)
1043 {
1044 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1045 }
1046
1047 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1048 {
1049 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1050 }
1051
1052 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1053 {
1054 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1055 }
1056
1057 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1058 {
1059 return ctx->param;
1060 }
1061
1062 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1063 {
1064 return ssl->param;
1065 }
1066
1067 void SSL_certs_clear(SSL *s)
1068 {
1069 ssl_cert_clear_certs(s->cert);
1070 }
1071
1072 void SSL_free(SSL *s)
1073 {
1074 int i;
1075
1076 if (s == NULL)
1077 return;
1078
1079 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1080 REF_PRINT_COUNT("SSL", s);
1081 if (i > 0)
1082 return;
1083 REF_ASSERT_ISNT(i < 0);
1084
1085 X509_VERIFY_PARAM_free(s->param);
1086 dane_final(&s->dane);
1087 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1088
1089 /* Ignore return value */
1090 ssl_free_wbio_buffer(s);
1091
1092 BIO_free_all(s->wbio);
1093 BIO_free_all(s->rbio);
1094
1095 BUF_MEM_free(s->init_buf);
1096
1097 /* add extra stuff */
1098 sk_SSL_CIPHER_free(s->cipher_list);
1099 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1100
1101 /* Make the next call work :-) */
1102 if (s->session != NULL) {
1103 ssl_clear_bad_session(s);
1104 SSL_SESSION_free(s->session);
1105 }
1106 SSL_SESSION_free(s->psksession);
1107 OPENSSL_free(s->psksession_id);
1108
1109 clear_ciphers(s);
1110
1111 ssl_cert_free(s->cert);
1112 /* Free up if allocated */
1113
1114 OPENSSL_free(s->ext.hostname);
1115 SSL_CTX_free(s->session_ctx);
1116 #ifndef OPENSSL_NO_EC
1117 OPENSSL_free(s->ext.ecpointformats);
1118 OPENSSL_free(s->ext.supportedgroups);
1119 #endif /* OPENSSL_NO_EC */
1120 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1121 #ifndef OPENSSL_NO_OCSP
1122 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1123 #endif
1124 #ifndef OPENSSL_NO_CT
1125 SCT_LIST_free(s->scts);
1126 OPENSSL_free(s->ext.scts);
1127 #endif
1128 OPENSSL_free(s->ext.ocsp.resp);
1129 OPENSSL_free(s->ext.alpn);
1130 OPENSSL_free(s->ext.tls13_cookie);
1131 OPENSSL_free(s->clienthello);
1132
1133 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1134
1135 sk_X509_pop_free(s->verified_chain, X509_free);
1136
1137 if (s->method != NULL)
1138 s->method->ssl_free(s);
1139
1140 RECORD_LAYER_release(&s->rlayer);
1141
1142 SSL_CTX_free(s->ctx);
1143
1144 ASYNC_WAIT_CTX_free(s->waitctx);
1145
1146 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1147 OPENSSL_free(s->ext.npn);
1148 #endif
1149
1150 #ifndef OPENSSL_NO_SRTP
1151 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1152 #endif
1153
1154 RAND_DRBG_free(s->drbg);
1155 CRYPTO_THREAD_lock_free(s->lock);
1156
1157 OPENSSL_free(s);
1158 }
1159
1160 void SSL_set0_rbio(SSL *s, BIO *rbio)
1161 {
1162 BIO_free_all(s->rbio);
1163 s->rbio = rbio;
1164 }
1165
1166 void SSL_set0_wbio(SSL *s, BIO *wbio)
1167 {
1168 /*
1169 * If the output buffering BIO is still in place, remove it
1170 */
1171 if (s->bbio != NULL)
1172 s->wbio = BIO_pop(s->wbio);
1173
1174 BIO_free_all(s->wbio);
1175 s->wbio = wbio;
1176
1177 /* Re-attach |bbio| to the new |wbio|. */
1178 if (s->bbio != NULL)
1179 s->wbio = BIO_push(s->bbio, s->wbio);
1180 }
1181
1182 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1183 {
1184 /*
1185 * For historical reasons, this function has many different cases in
1186 * ownership handling.
1187 */
1188
1189 /* If nothing has changed, do nothing */
1190 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1191 return;
1192
1193 /*
1194 * If the two arguments are equal then one fewer reference is granted by the
1195 * caller than we want to take
1196 */
1197 if (rbio != NULL && rbio == wbio)
1198 BIO_up_ref(rbio);
1199
1200 /*
1201 * If only the wbio is changed only adopt one reference.
1202 */
1203 if (rbio == SSL_get_rbio(s)) {
1204 SSL_set0_wbio(s, wbio);
1205 return;
1206 }
1207 /*
1208 * There is an asymmetry here for historical reasons. If only the rbio is
1209 * changed AND the rbio and wbio were originally different, then we only
1210 * adopt one reference.
1211 */
1212 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1213 SSL_set0_rbio(s, rbio);
1214 return;
1215 }
1216
1217 /* Otherwise, adopt both references. */
1218 SSL_set0_rbio(s, rbio);
1219 SSL_set0_wbio(s, wbio);
1220 }
1221
1222 BIO *SSL_get_rbio(const SSL *s)
1223 {
1224 return s->rbio;
1225 }
1226
1227 BIO *SSL_get_wbio(const SSL *s)
1228 {
1229 if (s->bbio != NULL) {
1230 /*
1231 * If |bbio| is active, the true caller-configured BIO is its
1232 * |next_bio|.
1233 */
1234 return BIO_next(s->bbio);
1235 }
1236 return s->wbio;
1237 }
1238
1239 int SSL_get_fd(const SSL *s)
1240 {
1241 return SSL_get_rfd(s);
1242 }
1243
1244 int SSL_get_rfd(const SSL *s)
1245 {
1246 int ret = -1;
1247 BIO *b, *r;
1248
1249 b = SSL_get_rbio(s);
1250 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1251 if (r != NULL)
1252 BIO_get_fd(r, &ret);
1253 return ret;
1254 }
1255
1256 int SSL_get_wfd(const SSL *s)
1257 {
1258 int ret = -1;
1259 BIO *b, *r;
1260
1261 b = SSL_get_wbio(s);
1262 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1263 if (r != NULL)
1264 BIO_get_fd(r, &ret);
1265 return ret;
1266 }
1267
1268 #ifndef OPENSSL_NO_SOCK
1269 int SSL_set_fd(SSL *s, int fd)
1270 {
1271 int ret = 0;
1272 BIO *bio = NULL;
1273
1274 bio = BIO_new(BIO_s_socket());
1275
1276 if (bio == NULL) {
1277 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1278 goto err;
1279 }
1280 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1281 SSL_set_bio(s, bio, bio);
1282 ret = 1;
1283 err:
1284 return ret;
1285 }
1286
1287 int SSL_set_wfd(SSL *s, int fd)
1288 {
1289 BIO *rbio = SSL_get_rbio(s);
1290
1291 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1292 || (int)BIO_get_fd(rbio, NULL) != fd) {
1293 BIO *bio = BIO_new(BIO_s_socket());
1294
1295 if (bio == NULL) {
1296 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1297 return 0;
1298 }
1299 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1300 SSL_set0_wbio(s, bio);
1301 } else {
1302 BIO_up_ref(rbio);
1303 SSL_set0_wbio(s, rbio);
1304 }
1305 return 1;
1306 }
1307
1308 int SSL_set_rfd(SSL *s, int fd)
1309 {
1310 BIO *wbio = SSL_get_wbio(s);
1311
1312 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1313 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1314 BIO *bio = BIO_new(BIO_s_socket());
1315
1316 if (bio == NULL) {
1317 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1318 return 0;
1319 }
1320 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1321 SSL_set0_rbio(s, bio);
1322 } else {
1323 BIO_up_ref(wbio);
1324 SSL_set0_rbio(s, wbio);
1325 }
1326
1327 return 1;
1328 }
1329 #endif
1330
1331 /* return length of latest Finished message we sent, copy to 'buf' */
1332 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1333 {
1334 size_t ret = 0;
1335
1336 if (s->s3 != NULL) {
1337 ret = s->s3->tmp.finish_md_len;
1338 if (count > ret)
1339 count = ret;
1340 memcpy(buf, s->s3->tmp.finish_md, count);
1341 }
1342 return ret;
1343 }
1344
1345 /* return length of latest Finished message we expected, copy to 'buf' */
1346 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1347 {
1348 size_t ret = 0;
1349
1350 if (s->s3 != NULL) {
1351 ret = s->s3->tmp.peer_finish_md_len;
1352 if (count > ret)
1353 count = ret;
1354 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1355 }
1356 return ret;
1357 }
1358
1359 int SSL_get_verify_mode(const SSL *s)
1360 {
1361 return s->verify_mode;
1362 }
1363
1364 int SSL_get_verify_depth(const SSL *s)
1365 {
1366 return X509_VERIFY_PARAM_get_depth(s->param);
1367 }
1368
1369 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1370 return s->verify_callback;
1371 }
1372
1373 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1374 {
1375 return ctx->verify_mode;
1376 }
1377
1378 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1379 {
1380 return X509_VERIFY_PARAM_get_depth(ctx->param);
1381 }
1382
1383 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1384 return ctx->default_verify_callback;
1385 }
1386
1387 void SSL_set_verify(SSL *s, int mode,
1388 int (*callback) (int ok, X509_STORE_CTX *ctx))
1389 {
1390 s->verify_mode = mode;
1391 if (callback != NULL)
1392 s->verify_callback = callback;
1393 }
1394
1395 void SSL_set_verify_depth(SSL *s, int depth)
1396 {
1397 X509_VERIFY_PARAM_set_depth(s->param, depth);
1398 }
1399
1400 void SSL_set_read_ahead(SSL *s, int yes)
1401 {
1402 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1403 }
1404
1405 int SSL_get_read_ahead(const SSL *s)
1406 {
1407 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1408 }
1409
1410 int SSL_pending(const SSL *s)
1411 {
1412 size_t pending = s->method->ssl_pending(s);
1413
1414 /*
1415 * SSL_pending cannot work properly if read-ahead is enabled
1416 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1417 * impossible to fix since SSL_pending cannot report errors that may be
1418 * observed while scanning the new data. (Note that SSL_pending() is
1419 * often used as a boolean value, so we'd better not return -1.)
1420 *
1421 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1422 * we just return INT_MAX.
1423 */
1424 return pending < INT_MAX ? (int)pending : INT_MAX;
1425 }
1426
1427 int SSL_has_pending(const SSL *s)
1428 {
1429 /*
1430 * Similar to SSL_pending() but returns a 1 to indicate that we have
1431 * unprocessed data available or 0 otherwise (as opposed to the number of
1432 * bytes available). Unlike SSL_pending() this will take into account
1433 * read_ahead data. A 1 return simply indicates that we have unprocessed
1434 * data. That data may not result in any application data, or we may fail
1435 * to parse the records for some reason.
1436 */
1437 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1438 return 1;
1439
1440 return RECORD_LAYER_read_pending(&s->rlayer);
1441 }
1442
1443 X509 *SSL_get_peer_certificate(const SSL *s)
1444 {
1445 X509 *r;
1446
1447 if ((s == NULL) || (s->session == NULL))
1448 r = NULL;
1449 else
1450 r = s->session->peer;
1451
1452 if (r == NULL)
1453 return r;
1454
1455 X509_up_ref(r);
1456
1457 return r;
1458 }
1459
1460 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1461 {
1462 STACK_OF(X509) *r;
1463
1464 if ((s == NULL) || (s->session == NULL))
1465 r = NULL;
1466 else
1467 r = s->session->peer_chain;
1468
1469 /*
1470 * If we are a client, cert_chain includes the peer's own certificate; if
1471 * we are a server, it does not.
1472 */
1473
1474 return r;
1475 }
1476
1477 /*
1478 * Now in theory, since the calling process own 't' it should be safe to
1479 * modify. We need to be able to read f without being hassled
1480 */
1481 int SSL_copy_session_id(SSL *t, const SSL *f)
1482 {
1483 int i;
1484 /* Do we need to to SSL locking? */
1485 if (!SSL_set_session(t, SSL_get_session(f))) {
1486 return 0;
1487 }
1488
1489 /*
1490 * what if we are setup for one protocol version but want to talk another
1491 */
1492 if (t->method != f->method) {
1493 t->method->ssl_free(t);
1494 t->method = f->method;
1495 if (t->method->ssl_new(t) == 0)
1496 return 0;
1497 }
1498
1499 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1500 ssl_cert_free(t->cert);
1501 t->cert = f->cert;
1502 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1503 return 0;
1504 }
1505
1506 return 1;
1507 }
1508
1509 /* Fix this so it checks all the valid key/cert options */
1510 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1511 {
1512 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1513 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1514 return 0;
1515 }
1516 if (ctx->cert->key->privatekey == NULL) {
1517 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1518 return 0;
1519 }
1520 return X509_check_private_key
1521 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1522 }
1523
1524 /* Fix this function so that it takes an optional type parameter */
1525 int SSL_check_private_key(const SSL *ssl)
1526 {
1527 if (ssl == NULL) {
1528 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1529 return 0;
1530 }
1531 if (ssl->cert->key->x509 == NULL) {
1532 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1533 return 0;
1534 }
1535 if (ssl->cert->key->privatekey == NULL) {
1536 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1537 return 0;
1538 }
1539 return X509_check_private_key(ssl->cert->key->x509,
1540 ssl->cert->key->privatekey);
1541 }
1542
1543 int SSL_waiting_for_async(SSL *s)
1544 {
1545 if (s->job)
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1552 {
1553 ASYNC_WAIT_CTX *ctx = s->waitctx;
1554
1555 if (ctx == NULL)
1556 return 0;
1557 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1558 }
1559
1560 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1561 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1562 {
1563 ASYNC_WAIT_CTX *ctx = s->waitctx;
1564
1565 if (ctx == NULL)
1566 return 0;
1567 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1568 numdelfds);
1569 }
1570
1571 int SSL_accept(SSL *s)
1572 {
1573 if (s->handshake_func == NULL) {
1574 /* Not properly initialized yet */
1575 SSL_set_accept_state(s);
1576 }
1577
1578 return SSL_do_handshake(s);
1579 }
1580
1581 int SSL_connect(SSL *s)
1582 {
1583 if (s->handshake_func == NULL) {
1584 /* Not properly initialized yet */
1585 SSL_set_connect_state(s);
1586 }
1587
1588 return SSL_do_handshake(s);
1589 }
1590
1591 long SSL_get_default_timeout(const SSL *s)
1592 {
1593 return s->method->get_timeout();
1594 }
1595
1596 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1597 int (*func) (void *))
1598 {
1599 int ret;
1600 if (s->waitctx == NULL) {
1601 s->waitctx = ASYNC_WAIT_CTX_new();
1602 if (s->waitctx == NULL)
1603 return -1;
1604 }
1605 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1606 sizeof(struct ssl_async_args))) {
1607 case ASYNC_ERR:
1608 s->rwstate = SSL_NOTHING;
1609 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1610 return -1;
1611 case ASYNC_PAUSE:
1612 s->rwstate = SSL_ASYNC_PAUSED;
1613 return -1;
1614 case ASYNC_NO_JOBS:
1615 s->rwstate = SSL_ASYNC_NO_JOBS;
1616 return -1;
1617 case ASYNC_FINISH:
1618 s->job = NULL;
1619 return ret;
1620 default:
1621 s->rwstate = SSL_NOTHING;
1622 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1623 /* Shouldn't happen */
1624 return -1;
1625 }
1626 }
1627
1628 static int ssl_io_intern(void *vargs)
1629 {
1630 struct ssl_async_args *args;
1631 SSL *s;
1632 void *buf;
1633 size_t num;
1634
1635 args = (struct ssl_async_args *)vargs;
1636 s = args->s;
1637 buf = args->buf;
1638 num = args->num;
1639 switch (args->type) {
1640 case READFUNC:
1641 return args->f.func_read(s, buf, num, &s->asyncrw);
1642 case WRITEFUNC:
1643 return args->f.func_write(s, buf, num, &s->asyncrw);
1644 case OTHERFUNC:
1645 return args->f.func_other(s);
1646 }
1647 return -1;
1648 }
1649
1650 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1651 {
1652 if (s->handshake_func == NULL) {
1653 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1654 return -1;
1655 }
1656
1657 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1658 s->rwstate = SSL_NOTHING;
1659 return 0;
1660 }
1661
1662 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1663 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1664 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1665 return 0;
1666 }
1667 /*
1668 * If we are a client and haven't received the ServerHello etc then we
1669 * better do that
1670 */
1671 ossl_statem_check_finish_init(s, 0);
1672
1673 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1674 struct ssl_async_args args;
1675 int ret;
1676
1677 args.s = s;
1678 args.buf = buf;
1679 args.num = num;
1680 args.type = READFUNC;
1681 args.f.func_read = s->method->ssl_read;
1682
1683 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1684 *readbytes = s->asyncrw;
1685 return ret;
1686 } else {
1687 return s->method->ssl_read(s, buf, num, readbytes);
1688 }
1689 }
1690
1691 int SSL_read(SSL *s, void *buf, int num)
1692 {
1693 int ret;
1694 size_t readbytes;
1695
1696 if (num < 0) {
1697 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1698 return -1;
1699 }
1700
1701 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1702
1703 /*
1704 * The cast is safe here because ret should be <= INT_MAX because num is
1705 * <= INT_MAX
1706 */
1707 if (ret > 0)
1708 ret = (int)readbytes;
1709
1710 return ret;
1711 }
1712
1713 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1714 {
1715 int ret = ssl_read_internal(s, buf, num, readbytes);
1716
1717 if (ret < 0)
1718 ret = 0;
1719 return ret;
1720 }
1721
1722 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1723 {
1724 int ret;
1725
1726 if (!s->server) {
1727 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1728 return SSL_READ_EARLY_DATA_ERROR;
1729 }
1730
1731 switch (s->early_data_state) {
1732 case SSL_EARLY_DATA_NONE:
1733 if (!SSL_in_before(s)) {
1734 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1735 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1736 return SSL_READ_EARLY_DATA_ERROR;
1737 }
1738 /* fall through */
1739
1740 case SSL_EARLY_DATA_ACCEPT_RETRY:
1741 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1742 ret = SSL_accept(s);
1743 if (ret <= 0) {
1744 /* NBIO or error */
1745 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1746 return SSL_READ_EARLY_DATA_ERROR;
1747 }
1748 /* fall through */
1749
1750 case SSL_EARLY_DATA_READ_RETRY:
1751 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1752 s->early_data_state = SSL_EARLY_DATA_READING;
1753 ret = SSL_read_ex(s, buf, num, readbytes);
1754 /*
1755 * State machine will update early_data_state to
1756 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1757 * message
1758 */
1759 if (ret > 0 || (ret <= 0 && s->early_data_state
1760 != SSL_EARLY_DATA_FINISHED_READING)) {
1761 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1762 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1763 : SSL_READ_EARLY_DATA_ERROR;
1764 }
1765 } else {
1766 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1767 }
1768 *readbytes = 0;
1769 return SSL_READ_EARLY_DATA_FINISH;
1770
1771 default:
1772 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1773 return SSL_READ_EARLY_DATA_ERROR;
1774 }
1775 }
1776
1777 int SSL_get_early_data_status(const SSL *s)
1778 {
1779 return s->ext.early_data;
1780 }
1781
1782 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1783 {
1784 if (s->handshake_func == NULL) {
1785 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1786 return -1;
1787 }
1788
1789 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1790 return 0;
1791 }
1792 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1793 struct ssl_async_args args;
1794 int ret;
1795
1796 args.s = s;
1797 args.buf = buf;
1798 args.num = num;
1799 args.type = READFUNC;
1800 args.f.func_read = s->method->ssl_peek;
1801
1802 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1803 *readbytes = s->asyncrw;
1804 return ret;
1805 } else {
1806 return s->method->ssl_peek(s, buf, num, readbytes);
1807 }
1808 }
1809
1810 int SSL_peek(SSL *s, void *buf, int num)
1811 {
1812 int ret;
1813 size_t readbytes;
1814
1815 if (num < 0) {
1816 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1817 return -1;
1818 }
1819
1820 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1821
1822 /*
1823 * The cast is safe here because ret should be <= INT_MAX because num is
1824 * <= INT_MAX
1825 */
1826 if (ret > 0)
1827 ret = (int)readbytes;
1828
1829 return ret;
1830 }
1831
1832
1833 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1834 {
1835 int ret = ssl_peek_internal(s, buf, num, readbytes);
1836
1837 if (ret < 0)
1838 ret = 0;
1839 return ret;
1840 }
1841
1842 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1843 {
1844 if (s->handshake_func == NULL) {
1845 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1846 return -1;
1847 }
1848
1849 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1850 s->rwstate = SSL_NOTHING;
1851 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1852 return -1;
1853 }
1854
1855 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1856 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1857 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1858 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1859 return 0;
1860 }
1861 /* If we are a client and haven't sent the Finished we better do that */
1862 ossl_statem_check_finish_init(s, 1);
1863
1864 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1865 int ret;
1866 struct ssl_async_args args;
1867
1868 args.s = s;
1869 args.buf = (void *)buf;
1870 args.num = num;
1871 args.type = WRITEFUNC;
1872 args.f.func_write = s->method->ssl_write;
1873
1874 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1875 *written = s->asyncrw;
1876 return ret;
1877 } else {
1878 return s->method->ssl_write(s, buf, num, written);
1879 }
1880 }
1881
1882 int SSL_write(SSL *s, const void *buf, int num)
1883 {
1884 int ret;
1885 size_t written;
1886
1887 if (num < 0) {
1888 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1889 return -1;
1890 }
1891
1892 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1893
1894 /*
1895 * The cast is safe here because ret should be <= INT_MAX because num is
1896 * <= INT_MAX
1897 */
1898 if (ret > 0)
1899 ret = (int)written;
1900
1901 return ret;
1902 }
1903
1904 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1905 {
1906 int ret = ssl_write_internal(s, buf, num, written);
1907
1908 if (ret < 0)
1909 ret = 0;
1910 return ret;
1911 }
1912
1913 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1914 {
1915 int ret, early_data_state;
1916
1917 switch (s->early_data_state) {
1918 case SSL_EARLY_DATA_NONE:
1919 if (s->server
1920 || !SSL_in_before(s)
1921 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1922 && (s->psk_use_session_cb == NULL))) {
1923 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1924 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1925 return 0;
1926 }
1927 /* fall through */
1928
1929 case SSL_EARLY_DATA_CONNECT_RETRY:
1930 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1931 ret = SSL_connect(s);
1932 if (ret <= 0) {
1933 /* NBIO or error */
1934 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1935 return 0;
1936 }
1937 /* fall through */
1938
1939 case SSL_EARLY_DATA_WRITE_RETRY:
1940 s->early_data_state = SSL_EARLY_DATA_WRITING;
1941 ret = SSL_write_ex(s, buf, num, written);
1942 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
1943 return ret;
1944
1945 case SSL_EARLY_DATA_FINISHED_READING:
1946 case SSL_EARLY_DATA_READ_RETRY:
1947 early_data_state = s->early_data_state;
1948 /* We are a server writing to an unauthenticated client */
1949 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
1950 ret = SSL_write_ex(s, buf, num, written);
1951 s->early_data_state = early_data_state;
1952 return ret;
1953
1954 default:
1955 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1956 return 0;
1957 }
1958 }
1959
1960 int SSL_shutdown(SSL *s)
1961 {
1962 /*
1963 * Note that this function behaves differently from what one might
1964 * expect. Return values are 0 for no success (yet), 1 for success; but
1965 * calling it once is usually not enough, even if blocking I/O is used
1966 * (see ssl3_shutdown).
1967 */
1968
1969 if (s->handshake_func == NULL) {
1970 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1971 return -1;
1972 }
1973
1974 if (!SSL_in_init(s)) {
1975 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1976 struct ssl_async_args args;
1977
1978 args.s = s;
1979 args.type = OTHERFUNC;
1980 args.f.func_other = s->method->ssl_shutdown;
1981
1982 return ssl_start_async_job(s, &args, ssl_io_intern);
1983 } else {
1984 return s->method->ssl_shutdown(s);
1985 }
1986 } else {
1987 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1988 return -1;
1989 }
1990 }
1991
1992 int SSL_key_update(SSL *s, int updatetype)
1993 {
1994 /*
1995 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
1996 * negotiated, and that it is appropriate to call SSL_key_update() instead
1997 * of SSL_renegotiate().
1998 */
1999 if (!SSL_IS_TLS13(s)) {
2000 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2001 return 0;
2002 }
2003
2004 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2005 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2006 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2007 return 0;
2008 }
2009
2010 if (!SSL_is_init_finished(s)) {
2011 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2012 return 0;
2013 }
2014
2015 ossl_statem_set_in_init(s, 1);
2016 s->key_update = updatetype;
2017 return 1;
2018 }
2019
2020 int SSL_get_key_update_type(SSL *s)
2021 {
2022 return s->key_update;
2023 }
2024
2025 int SSL_renegotiate(SSL *s)
2026 {
2027 if (SSL_IS_TLS13(s)) {
2028 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2029 return 0;
2030 }
2031
2032 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2033 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2034 return 0;
2035 }
2036
2037 s->renegotiate = 1;
2038 s->new_session = 1;
2039
2040 return s->method->ssl_renegotiate(s);
2041 }
2042
2043 int SSL_renegotiate_abbreviated(SSL *s)
2044 {
2045 if (SSL_IS_TLS13(s)) {
2046 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2047 return 0;
2048 }
2049
2050 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2051 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2052 return 0;
2053 }
2054
2055 s->renegotiate = 1;
2056 s->new_session = 0;
2057
2058 return s->method->ssl_renegotiate(s);
2059 }
2060
2061 int SSL_renegotiate_pending(SSL *s)
2062 {
2063 /*
2064 * becomes true when negotiation is requested; false again once a
2065 * handshake has finished
2066 */
2067 return (s->renegotiate != 0);
2068 }
2069
2070 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2071 {
2072 long l;
2073
2074 switch (cmd) {
2075 case SSL_CTRL_GET_READ_AHEAD:
2076 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2077 case SSL_CTRL_SET_READ_AHEAD:
2078 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2079 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2080 return l;
2081
2082 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2083 s->msg_callback_arg = parg;
2084 return 1;
2085
2086 case SSL_CTRL_MODE:
2087 return (s->mode |= larg);
2088 case SSL_CTRL_CLEAR_MODE:
2089 return (s->mode &= ~larg);
2090 case SSL_CTRL_GET_MAX_CERT_LIST:
2091 return (long)s->max_cert_list;
2092 case SSL_CTRL_SET_MAX_CERT_LIST:
2093 if (larg < 0)
2094 return 0;
2095 l = (long)s->max_cert_list;
2096 s->max_cert_list = (size_t)larg;
2097 return l;
2098 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2099 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2100 return 0;
2101 s->max_send_fragment = larg;
2102 if (s->max_send_fragment < s->split_send_fragment)
2103 s->split_send_fragment = s->max_send_fragment;
2104 return 1;
2105 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2106 if ((size_t)larg > s->max_send_fragment || larg == 0)
2107 return 0;
2108 s->split_send_fragment = larg;
2109 return 1;
2110 case SSL_CTRL_SET_MAX_PIPELINES:
2111 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2112 return 0;
2113 s->max_pipelines = larg;
2114 if (larg > 1)
2115 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2116 return 1;
2117 case SSL_CTRL_GET_RI_SUPPORT:
2118 if (s->s3)
2119 return s->s3->send_connection_binding;
2120 else
2121 return 0;
2122 case SSL_CTRL_CERT_FLAGS:
2123 return (s->cert->cert_flags |= larg);
2124 case SSL_CTRL_CLEAR_CERT_FLAGS:
2125 return (s->cert->cert_flags &= ~larg);
2126
2127 case SSL_CTRL_GET_RAW_CIPHERLIST:
2128 if (parg) {
2129 if (s->s3->tmp.ciphers_raw == NULL)
2130 return 0;
2131 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2132 return (int)s->s3->tmp.ciphers_rawlen;
2133 } else {
2134 return TLS_CIPHER_LEN;
2135 }
2136 case SSL_CTRL_GET_EXTMS_SUPPORT:
2137 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2138 return -1;
2139 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2140 return 1;
2141 else
2142 return 0;
2143 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2144 return ssl_check_allowed_versions(larg, s->max_proto_version)
2145 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2146 &s->min_proto_version);
2147 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2148 return s->min_proto_version;
2149 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2150 return ssl_check_allowed_versions(s->min_proto_version, larg)
2151 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2152 &s->max_proto_version);
2153 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2154 return s->max_proto_version;
2155 default:
2156 return s->method->ssl_ctrl(s, cmd, larg, parg);
2157 }
2158 }
2159
2160 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2161 {
2162 switch (cmd) {
2163 case SSL_CTRL_SET_MSG_CALLBACK:
2164 s->msg_callback = (void (*)
2165 (int write_p, int version, int content_type,
2166 const void *buf, size_t len, SSL *ssl,
2167 void *arg))(fp);
2168 return 1;
2169
2170 default:
2171 return s->method->ssl_callback_ctrl(s, cmd, fp);
2172 }
2173 }
2174
2175 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2176 {
2177 return ctx->sessions;
2178 }
2179
2180 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2181 {
2182 long l;
2183 /* For some cases with ctx == NULL perform syntax checks */
2184 if (ctx == NULL) {
2185 switch (cmd) {
2186 #ifndef OPENSSL_NO_EC
2187 case SSL_CTRL_SET_GROUPS_LIST:
2188 return tls1_set_groups_list(NULL, NULL, parg);
2189 #endif
2190 case SSL_CTRL_SET_SIGALGS_LIST:
2191 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2192 return tls1_set_sigalgs_list(NULL, parg, 0);
2193 default:
2194 return 0;
2195 }
2196 }
2197
2198 switch (cmd) {
2199 case SSL_CTRL_GET_READ_AHEAD:
2200 return ctx->read_ahead;
2201 case SSL_CTRL_SET_READ_AHEAD:
2202 l = ctx->read_ahead;
2203 ctx->read_ahead = larg;
2204 return l;
2205
2206 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2207 ctx->msg_callback_arg = parg;
2208 return 1;
2209
2210 case SSL_CTRL_GET_MAX_CERT_LIST:
2211 return (long)ctx->max_cert_list;
2212 case SSL_CTRL_SET_MAX_CERT_LIST:
2213 if (larg < 0)
2214 return 0;
2215 l = (long)ctx->max_cert_list;
2216 ctx->max_cert_list = (size_t)larg;
2217 return l;
2218
2219 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2220 if (larg < 0)
2221 return 0;
2222 l = (long)ctx->session_cache_size;
2223 ctx->session_cache_size = (size_t)larg;
2224 return l;
2225 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2226 return (long)ctx->session_cache_size;
2227 case SSL_CTRL_SET_SESS_CACHE_MODE:
2228 l = ctx->session_cache_mode;
2229 ctx->session_cache_mode = larg;
2230 return l;
2231 case SSL_CTRL_GET_SESS_CACHE_MODE:
2232 return ctx->session_cache_mode;
2233
2234 case SSL_CTRL_SESS_NUMBER:
2235 return lh_SSL_SESSION_num_items(ctx->sessions);
2236 case SSL_CTRL_SESS_CONNECT:
2237 return ctx->stats.sess_connect;
2238 case SSL_CTRL_SESS_CONNECT_GOOD:
2239 return ctx->stats.sess_connect_good;
2240 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2241 return ctx->stats.sess_connect_renegotiate;
2242 case SSL_CTRL_SESS_ACCEPT:
2243 return ctx->stats.sess_accept;
2244 case SSL_CTRL_SESS_ACCEPT_GOOD:
2245 return ctx->stats.sess_accept_good;
2246 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2247 return ctx->stats.sess_accept_renegotiate;
2248 case SSL_CTRL_SESS_HIT:
2249 return ctx->stats.sess_hit;
2250 case SSL_CTRL_SESS_CB_HIT:
2251 return ctx->stats.sess_cb_hit;
2252 case SSL_CTRL_SESS_MISSES:
2253 return ctx->stats.sess_miss;
2254 case SSL_CTRL_SESS_TIMEOUTS:
2255 return ctx->stats.sess_timeout;
2256 case SSL_CTRL_SESS_CACHE_FULL:
2257 return ctx->stats.sess_cache_full;
2258 case SSL_CTRL_MODE:
2259 return (ctx->mode |= larg);
2260 case SSL_CTRL_CLEAR_MODE:
2261 return (ctx->mode &= ~larg);
2262 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2263 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2264 return 0;
2265 ctx->max_send_fragment = larg;
2266 if (ctx->max_send_fragment < ctx->split_send_fragment)
2267 ctx->split_send_fragment = ctx->max_send_fragment;
2268 return 1;
2269 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2270 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2271 return 0;
2272 ctx->split_send_fragment = larg;
2273 return 1;
2274 case SSL_CTRL_SET_MAX_PIPELINES:
2275 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2276 return 0;
2277 ctx->max_pipelines = larg;
2278 return 1;
2279 case SSL_CTRL_CERT_FLAGS:
2280 return (ctx->cert->cert_flags |= larg);
2281 case SSL_CTRL_CLEAR_CERT_FLAGS:
2282 return (ctx->cert->cert_flags &= ~larg);
2283 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2284 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2285 && ssl_set_version_bound(ctx->method->version, (int)larg,
2286 &ctx->min_proto_version);
2287 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2288 return ctx->min_proto_version;
2289 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2290 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2291 && ssl_set_version_bound(ctx->method->version, (int)larg,
2292 &ctx->max_proto_version);
2293 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2294 return ctx->max_proto_version;
2295 default:
2296 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2297 }
2298 }
2299
2300 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2301 {
2302 switch (cmd) {
2303 case SSL_CTRL_SET_MSG_CALLBACK:
2304 ctx->msg_callback = (void (*)
2305 (int write_p, int version, int content_type,
2306 const void *buf, size_t len, SSL *ssl,
2307 void *arg))(fp);
2308 return 1;
2309
2310 default:
2311 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2312 }
2313 }
2314
2315 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2316 {
2317 if (a->id > b->id)
2318 return 1;
2319 if (a->id < b->id)
2320 return -1;
2321 return 0;
2322 }
2323
2324 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2325 const SSL_CIPHER *const *bp)
2326 {
2327 if ((*ap)->id > (*bp)->id)
2328 return 1;
2329 if ((*ap)->id < (*bp)->id)
2330 return -1;
2331 return 0;
2332 }
2333
2334 /** return a STACK of the ciphers available for the SSL and in order of
2335 * preference */
2336 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2337 {
2338 if (s != NULL) {
2339 if (s->cipher_list != NULL) {
2340 return s->cipher_list;
2341 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2342 return s->ctx->cipher_list;
2343 }
2344 }
2345 return NULL;
2346 }
2347
2348 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2349 {
2350 if ((s == NULL) || (s->session == NULL) || !s->server)
2351 return NULL;
2352 return s->session->ciphers;
2353 }
2354
2355 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2356 {
2357 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2358 int i;
2359 ciphers = SSL_get_ciphers(s);
2360 if (!ciphers)
2361 return NULL;
2362 ssl_set_client_disabled(s);
2363 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2364 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2365 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2366 if (!sk)
2367 sk = sk_SSL_CIPHER_new_null();
2368 if (!sk)
2369 return NULL;
2370 if (!sk_SSL_CIPHER_push(sk, c)) {
2371 sk_SSL_CIPHER_free(sk);
2372 return NULL;
2373 }
2374 }
2375 }
2376 return sk;
2377 }
2378
2379 /** return a STACK of the ciphers available for the SSL and in order of
2380 * algorithm id */
2381 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2382 {
2383 if (s != NULL) {
2384 if (s->cipher_list_by_id != NULL) {
2385 return s->cipher_list_by_id;
2386 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2387 return s->ctx->cipher_list_by_id;
2388 }
2389 }
2390 return NULL;
2391 }
2392
2393 /** The old interface to get the same thing as SSL_get_ciphers() */
2394 const char *SSL_get_cipher_list(const SSL *s, int n)
2395 {
2396 const SSL_CIPHER *c;
2397 STACK_OF(SSL_CIPHER) *sk;
2398
2399 if (s == NULL)
2400 return NULL;
2401 sk = SSL_get_ciphers(s);
2402 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2403 return NULL;
2404 c = sk_SSL_CIPHER_value(sk, n);
2405 if (c == NULL)
2406 return NULL;
2407 return c->name;
2408 }
2409
2410 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2411 * preference */
2412 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2413 {
2414 if (ctx != NULL)
2415 return ctx->cipher_list;
2416 return NULL;
2417 }
2418
2419 /** specify the ciphers to be used by default by the SSL_CTX */
2420 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2421 {
2422 STACK_OF(SSL_CIPHER) *sk;
2423
2424 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2425 &ctx->cipher_list_by_id, str, ctx->cert);
2426 /*
2427 * ssl_create_cipher_list may return an empty stack if it was unable to
2428 * find a cipher matching the given rule string (for example if the rule
2429 * string specifies a cipher which has been disabled). This is not an
2430 * error as far as ssl_create_cipher_list is concerned, and hence
2431 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2432 */
2433 if (sk == NULL)
2434 return 0;
2435 else if (sk_SSL_CIPHER_num(sk) == 0) {
2436 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2437 return 0;
2438 }
2439 return 1;
2440 }
2441
2442 /** specify the ciphers to be used by the SSL */
2443 int SSL_set_cipher_list(SSL *s, const char *str)
2444 {
2445 STACK_OF(SSL_CIPHER) *sk;
2446
2447 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2448 &s->cipher_list_by_id, str, s->cert);
2449 /* see comment in SSL_CTX_set_cipher_list */
2450 if (sk == NULL)
2451 return 0;
2452 else if (sk_SSL_CIPHER_num(sk) == 0) {
2453 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2454 return 0;
2455 }
2456 return 1;
2457 }
2458
2459 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2460 {
2461 char *p;
2462 STACK_OF(SSL_CIPHER) *sk;
2463 const SSL_CIPHER *c;
2464 int i;
2465
2466 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2467 return NULL;
2468
2469 p = buf;
2470 sk = s->session->ciphers;
2471
2472 if (sk_SSL_CIPHER_num(sk) == 0)
2473 return NULL;
2474
2475 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2476 int n;
2477
2478 c = sk_SSL_CIPHER_value(sk, i);
2479 n = strlen(c->name);
2480 if (n + 1 > len) {
2481 if (p != buf)
2482 --p;
2483 *p = '\0';
2484 return buf;
2485 }
2486 strcpy(p, c->name);
2487 p += n;
2488 *(p++) = ':';
2489 len -= n + 1;
2490 }
2491 p[-1] = '\0';
2492 return buf;
2493 }
2494
2495 /** return a servername extension value if provided in Client Hello, or NULL.
2496 * So far, only host_name types are defined (RFC 3546).
2497 */
2498
2499 const char *SSL_get_servername(const SSL *s, const int type)
2500 {
2501 if (type != TLSEXT_NAMETYPE_host_name)
2502 return NULL;
2503
2504 return s->session && !s->ext.hostname ?
2505 s->session->ext.hostname : s->ext.hostname;
2506 }
2507
2508 int SSL_get_servername_type(const SSL *s)
2509 {
2510 if (s->session
2511 && (!s->ext.hostname ? s->session->
2512 ext.hostname : s->ext.hostname))
2513 return TLSEXT_NAMETYPE_host_name;
2514 return -1;
2515 }
2516
2517 /*
2518 * SSL_select_next_proto implements the standard protocol selection. It is
2519 * expected that this function is called from the callback set by
2520 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2521 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2522 * not included in the length. A byte string of length 0 is invalid. No byte
2523 * string may be truncated. The current, but experimental algorithm for
2524 * selecting the protocol is: 1) If the server doesn't support NPN then this
2525 * is indicated to the callback. In this case, the client application has to
2526 * abort the connection or have a default application level protocol. 2) If
2527 * the server supports NPN, but advertises an empty list then the client
2528 * selects the first protocol in its list, but indicates via the API that this
2529 * fallback case was enacted. 3) Otherwise, the client finds the first
2530 * protocol in the server's list that it supports and selects this protocol.
2531 * This is because it's assumed that the server has better information about
2532 * which protocol a client should use. 4) If the client doesn't support any
2533 * of the server's advertised protocols, then this is treated the same as
2534 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2535 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2536 */
2537 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2538 const unsigned char *server,
2539 unsigned int server_len,
2540 const unsigned char *client, unsigned int client_len)
2541 {
2542 unsigned int i, j;
2543 const unsigned char *result;
2544 int status = OPENSSL_NPN_UNSUPPORTED;
2545
2546 /*
2547 * For each protocol in server preference order, see if we support it.
2548 */
2549 for (i = 0; i < server_len;) {
2550 for (j = 0; j < client_len;) {
2551 if (server[i] == client[j] &&
2552 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2553 /* We found a match */
2554 result = &server[i];
2555 status = OPENSSL_NPN_NEGOTIATED;
2556 goto found;
2557 }
2558 j += client[j];
2559 j++;
2560 }
2561 i += server[i];
2562 i++;
2563 }
2564
2565 /* There's no overlap between our protocols and the server's list. */
2566 result = client;
2567 status = OPENSSL_NPN_NO_OVERLAP;
2568
2569 found:
2570 *out = (unsigned char *)result + 1;
2571 *outlen = result[0];
2572 return status;
2573 }
2574
2575 #ifndef OPENSSL_NO_NEXTPROTONEG
2576 /*
2577 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2578 * client's requested protocol for this connection and returns 0. If the
2579 * client didn't request any protocol, then *data is set to NULL. Note that
2580 * the client can request any protocol it chooses. The value returned from
2581 * this function need not be a member of the list of supported protocols
2582 * provided by the callback.
2583 */
2584 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2585 unsigned *len)
2586 {
2587 *data = s->ext.npn;
2588 if (!*data) {
2589 *len = 0;
2590 } else {
2591 *len = (unsigned int)s->ext.npn_len;
2592 }
2593 }
2594
2595 /*
2596 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2597 * a TLS server needs a list of supported protocols for Next Protocol
2598 * Negotiation. The returned list must be in wire format. The list is
2599 * returned by setting |out| to point to it and |outlen| to its length. This
2600 * memory will not be modified, but one should assume that the SSL* keeps a
2601 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2602 * wishes to advertise. Otherwise, no such extension will be included in the
2603 * ServerHello.
2604 */
2605 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2606 SSL_CTX_npn_advertised_cb_func cb,
2607 void *arg)
2608 {
2609 ctx->ext.npn_advertised_cb = cb;
2610 ctx->ext.npn_advertised_cb_arg = arg;
2611 }
2612
2613 /*
2614 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2615 * client needs to select a protocol from the server's provided list. |out|
2616 * must be set to point to the selected protocol (which may be within |in|).
2617 * The length of the protocol name must be written into |outlen|. The
2618 * server's advertised protocols are provided in |in| and |inlen|. The
2619 * callback can assume that |in| is syntactically valid. The client must
2620 * select a protocol. It is fatal to the connection if this callback returns
2621 * a value other than SSL_TLSEXT_ERR_OK.
2622 */
2623 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2624 SSL_CTX_npn_select_cb_func cb,
2625 void *arg)
2626 {
2627 ctx->ext.npn_select_cb = cb;
2628 ctx->ext.npn_select_cb_arg = arg;
2629 }
2630 #endif
2631
2632 /*
2633 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2634 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2635 * length-prefixed strings). Returns 0 on success.
2636 */
2637 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2638 unsigned int protos_len)
2639 {
2640 OPENSSL_free(ctx->ext.alpn);
2641 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2642 if (ctx->ext.alpn == NULL) {
2643 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2644 return 1;
2645 }
2646 ctx->ext.alpn_len = protos_len;
2647
2648 return 0;
2649 }
2650
2651 /*
2652 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2653 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2654 * length-prefixed strings). Returns 0 on success.
2655 */
2656 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2657 unsigned int protos_len)
2658 {
2659 OPENSSL_free(ssl->ext.alpn);
2660 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2661 if (ssl->ext.alpn == NULL) {
2662 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2663 return 1;
2664 }
2665 ssl->ext.alpn_len = protos_len;
2666
2667 return 0;
2668 }
2669
2670 /*
2671 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2672 * called during ClientHello processing in order to select an ALPN protocol
2673 * from the client's list of offered protocols.
2674 */
2675 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2676 SSL_CTX_alpn_select_cb_func cb,
2677 void *arg)
2678 {
2679 ctx->ext.alpn_select_cb = cb;
2680 ctx->ext.alpn_select_cb_arg = arg;
2681 }
2682
2683 /*
2684 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2685 * On return it sets |*data| to point to |*len| bytes of protocol name
2686 * (not including the leading length-prefix byte). If the server didn't
2687 * respond with a negotiated protocol then |*len| will be zero.
2688 */
2689 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2690 unsigned int *len)
2691 {
2692 *data = NULL;
2693 if (ssl->s3)
2694 *data = ssl->s3->alpn_selected;
2695 if (*data == NULL)
2696 *len = 0;
2697 else
2698 *len = (unsigned int)ssl->s3->alpn_selected_len;
2699 }
2700
2701 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2702 const char *label, size_t llen,
2703 const unsigned char *context, size_t contextlen,
2704 int use_context)
2705 {
2706 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2707 return -1;
2708
2709 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2710 llen, context,
2711 contextlen, use_context);
2712 }
2713
2714 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2715 {
2716 const unsigned char *session_id = a->session_id;
2717 unsigned long l;
2718 unsigned char tmp_storage[4];
2719
2720 if (a->session_id_length < sizeof(tmp_storage)) {
2721 memset(tmp_storage, 0, sizeof(tmp_storage));
2722 memcpy(tmp_storage, a->session_id, a->session_id_length);
2723 session_id = tmp_storage;
2724 }
2725
2726 l = (unsigned long)
2727 ((unsigned long)session_id[0]) |
2728 ((unsigned long)session_id[1] << 8L) |
2729 ((unsigned long)session_id[2] << 16L) |
2730 ((unsigned long)session_id[3] << 24L);
2731 return l;
2732 }
2733
2734 /*
2735 * NB: If this function (or indeed the hash function which uses a sort of
2736 * coarser function than this one) is changed, ensure
2737 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2738 * being able to construct an SSL_SESSION that will collide with any existing
2739 * session with a matching session ID.
2740 */
2741 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2742 {
2743 if (a->ssl_version != b->ssl_version)
2744 return 1;
2745 if (a->session_id_length != b->session_id_length)
2746 return 1;
2747 return memcmp(a->session_id, b->session_id, a->session_id_length);
2748 }
2749
2750 /*
2751 * These wrapper functions should remain rather than redeclaring
2752 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2753 * variable. The reason is that the functions aren't static, they're exposed
2754 * via ssl.h.
2755 */
2756
2757 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2758 {
2759 SSL_CTX *ret = NULL;
2760
2761 if (meth == NULL) {
2762 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2763 return NULL;
2764 }
2765
2766 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2767 return NULL;
2768
2769 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2770 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2771 goto err;
2772 }
2773 ret = OPENSSL_zalloc(sizeof(*ret));
2774 if (ret == NULL)
2775 goto err;
2776
2777 ret->method = meth;
2778 ret->min_proto_version = 0;
2779 ret->max_proto_version = 0;
2780 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2781 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2782 /* We take the system default. */
2783 ret->session_timeout = meth->get_timeout();
2784 ret->references = 1;
2785 ret->lock = CRYPTO_THREAD_lock_new();
2786 if (ret->lock == NULL) {
2787 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2788 OPENSSL_free(ret);
2789 return NULL;
2790 }
2791 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2792 ret->verify_mode = SSL_VERIFY_NONE;
2793 if ((ret->cert = ssl_cert_new()) == NULL)
2794 goto err;
2795
2796 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2797 if (ret->sessions == NULL)
2798 goto err;
2799 ret->cert_store = X509_STORE_new();
2800 if (ret->cert_store == NULL)
2801 goto err;
2802 #ifndef OPENSSL_NO_CT
2803 ret->ctlog_store = CTLOG_STORE_new();
2804 if (ret->ctlog_store == NULL)
2805 goto err;
2806 #endif
2807 if (!ssl_create_cipher_list(ret->method,
2808 &ret->cipher_list, &ret->cipher_list_by_id,
2809 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2810 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2811 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2812 goto err2;
2813 }
2814
2815 ret->param = X509_VERIFY_PARAM_new();
2816 if (ret->param == NULL)
2817 goto err;
2818
2819 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2820 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2821 goto err2;
2822 }
2823 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2824 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2825 goto err2;
2826 }
2827
2828 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2829 goto err;
2830
2831 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2832 goto err;
2833
2834 /* No compression for DTLS */
2835 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2836 ret->comp_methods = SSL_COMP_get_compression_methods();
2837
2838 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2839 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2840
2841 /* Setup RFC5077 ticket keys */
2842 if ((RAND_bytes(ret->ext.tick_key_name,
2843 sizeof(ret->ext.tick_key_name)) <= 0)
2844 || (RAND_bytes(ret->ext.tick_hmac_key,
2845 sizeof(ret->ext.tick_hmac_key)) <= 0)
2846 || (RAND_bytes(ret->ext.tick_aes_key,
2847 sizeof(ret->ext.tick_aes_key)) <= 0))
2848 ret->options |= SSL_OP_NO_TICKET;
2849
2850 #ifndef OPENSSL_NO_SRP
2851 if (!SSL_CTX_SRP_CTX_init(ret))
2852 goto err;
2853 #endif
2854 #ifndef OPENSSL_NO_ENGINE
2855 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2856 # define eng_strx(x) #x
2857 # define eng_str(x) eng_strx(x)
2858 /* Use specific client engine automatically... ignore errors */
2859 {
2860 ENGINE *eng;
2861 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2862 if (!eng) {
2863 ERR_clear_error();
2864 ENGINE_load_builtin_engines();
2865 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2866 }
2867 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2868 ERR_clear_error();
2869 }
2870 # endif
2871 #endif
2872 /*
2873 * Default is to connect to non-RI servers. When RI is more widely
2874 * deployed might change this.
2875 */
2876 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2877 /*
2878 * Disable compression by default to prevent CRIME. Applications can
2879 * re-enable compression by configuring
2880 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2881 * or by using the SSL_CONF library.
2882 */
2883 ret->options |= SSL_OP_NO_COMPRESSION;
2884
2885 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2886
2887 /*
2888 * Default max early data is a fully loaded single record. Could be split
2889 * across multiple records in practice
2890 */
2891 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2892
2893 return ret;
2894 err:
2895 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2896 err2:
2897 SSL_CTX_free(ret);
2898 return NULL;
2899 }
2900
2901 int SSL_CTX_up_ref(SSL_CTX *ctx)
2902 {
2903 int i;
2904
2905 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
2906 return 0;
2907
2908 REF_PRINT_COUNT("SSL_CTX", ctx);
2909 REF_ASSERT_ISNT(i < 2);
2910 return ((i > 1) ? 1 : 0);
2911 }
2912
2913 void SSL_CTX_free(SSL_CTX *a)
2914 {
2915 int i;
2916
2917 if (a == NULL)
2918 return;
2919
2920 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
2921 REF_PRINT_COUNT("SSL_CTX", a);
2922 if (i > 0)
2923 return;
2924 REF_ASSERT_ISNT(i < 0);
2925
2926 X509_VERIFY_PARAM_free(a->param);
2927 dane_ctx_final(&a->dane);
2928
2929 /*
2930 * Free internal session cache. However: the remove_cb() may reference
2931 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2932 * after the sessions were flushed.
2933 * As the ex_data handling routines might also touch the session cache,
2934 * the most secure solution seems to be: empty (flush) the cache, then
2935 * free ex_data, then finally free the cache.
2936 * (See ticket [openssl.org #212].)
2937 */
2938 if (a->sessions != NULL)
2939 SSL_CTX_flush_sessions(a, 0);
2940
2941 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2942 lh_SSL_SESSION_free(a->sessions);
2943 X509_STORE_free(a->cert_store);
2944 #ifndef OPENSSL_NO_CT
2945 CTLOG_STORE_free(a->ctlog_store);
2946 #endif
2947 sk_SSL_CIPHER_free(a->cipher_list);
2948 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2949 ssl_cert_free(a->cert);
2950 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
2951 sk_X509_pop_free(a->extra_certs, X509_free);
2952 a->comp_methods = NULL;
2953 #ifndef OPENSSL_NO_SRTP
2954 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2955 #endif
2956 #ifndef OPENSSL_NO_SRP
2957 SSL_CTX_SRP_CTX_free(a);
2958 #endif
2959 #ifndef OPENSSL_NO_ENGINE
2960 ENGINE_finish(a->client_cert_engine);
2961 #endif
2962
2963 #ifndef OPENSSL_NO_EC
2964 OPENSSL_free(a->ext.ecpointformats);
2965 OPENSSL_free(a->ext.supportedgroups);
2966 #endif
2967 OPENSSL_free(a->ext.alpn);
2968
2969 CRYPTO_THREAD_lock_free(a->lock);
2970
2971 OPENSSL_free(a);
2972 }
2973
2974 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2975 {
2976 ctx->default_passwd_callback = cb;
2977 }
2978
2979 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2980 {
2981 ctx->default_passwd_callback_userdata = u;
2982 }
2983
2984 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2985 {
2986 return ctx->default_passwd_callback;
2987 }
2988
2989 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2990 {
2991 return ctx->default_passwd_callback_userdata;
2992 }
2993
2994 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2995 {
2996 s->default_passwd_callback = cb;
2997 }
2998
2999 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3000 {
3001 s->default_passwd_callback_userdata = u;
3002 }
3003
3004 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3005 {
3006 return s->default_passwd_callback;
3007 }
3008
3009 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3010 {
3011 return s->default_passwd_callback_userdata;
3012 }
3013
3014 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3015 int (*cb) (X509_STORE_CTX *, void *),
3016 void *arg)
3017 {
3018 ctx->app_verify_callback = cb;
3019 ctx->app_verify_arg = arg;
3020 }
3021
3022 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3023 int (*cb) (int, X509_STORE_CTX *))
3024 {
3025 ctx->verify_mode = mode;
3026 ctx->default_verify_callback = cb;
3027 }
3028
3029 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3030 {
3031 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3032 }
3033
3034 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3035 {
3036 ssl_cert_set_cert_cb(c->cert, cb, arg);
3037 }
3038
3039 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3040 {
3041 ssl_cert_set_cert_cb(s->cert, cb, arg);
3042 }
3043
3044 void ssl_set_masks(SSL *s)
3045 {
3046 CERT *c = s->cert;
3047 uint32_t *pvalid = s->s3->tmp.valid_flags;
3048 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3049 unsigned long mask_k, mask_a;
3050 #ifndef OPENSSL_NO_EC
3051 int have_ecc_cert, ecdsa_ok;
3052 #endif
3053 if (c == NULL)
3054 return;
3055
3056 #ifndef OPENSSL_NO_DH
3057 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3058 #else
3059 dh_tmp = 0;
3060 #endif
3061
3062 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3063 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3064 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3065 #ifndef OPENSSL_NO_EC
3066 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3067 #endif
3068 mask_k = 0;
3069 mask_a = 0;
3070
3071 #ifdef CIPHER_DEBUG
3072 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3073 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3074 #endif
3075
3076 #ifndef OPENSSL_NO_GOST
3077 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3078 mask_k |= SSL_kGOST;
3079 mask_a |= SSL_aGOST12;
3080 }
3081 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3082 mask_k |= SSL_kGOST;
3083 mask_a |= SSL_aGOST12;
3084 }
3085 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3086 mask_k |= SSL_kGOST;
3087 mask_a |= SSL_aGOST01;
3088 }
3089 #endif
3090
3091 if (rsa_enc)
3092 mask_k |= SSL_kRSA;
3093
3094 if (dh_tmp)
3095 mask_k |= SSL_kDHE;
3096
3097 /*
3098 * If we only have an RSA-PSS certificate allow RSA authentication
3099 * if TLS 1.2 and peer supports it.
3100 */
3101
3102 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3103 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3104 && TLS1_get_version(s) == TLS1_2_VERSION))
3105 mask_a |= SSL_aRSA;
3106
3107 if (dsa_sign) {
3108 mask_a |= SSL_aDSS;
3109 }
3110
3111 mask_a |= SSL_aNULL;
3112
3113 /*
3114 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3115 * depending on the key usage extension.
3116 */
3117 #ifndef OPENSSL_NO_EC
3118 if (have_ecc_cert) {
3119 uint32_t ex_kusage;
3120 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3121 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3122 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3123 ecdsa_ok = 0;
3124 if (ecdsa_ok)
3125 mask_a |= SSL_aECDSA;
3126 }
3127 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3128 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3129 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3130 && TLS1_get_version(s) == TLS1_2_VERSION)
3131 mask_a |= SSL_aECDSA;
3132 #endif
3133
3134 #ifndef OPENSSL_NO_EC
3135 mask_k |= SSL_kECDHE;
3136 #endif
3137
3138 #ifndef OPENSSL_NO_PSK
3139 mask_k |= SSL_kPSK;
3140 mask_a |= SSL_aPSK;
3141 if (mask_k & SSL_kRSA)
3142 mask_k |= SSL_kRSAPSK;
3143 if (mask_k & SSL_kDHE)
3144 mask_k |= SSL_kDHEPSK;
3145 if (mask_k & SSL_kECDHE)
3146 mask_k |= SSL_kECDHEPSK;
3147 #endif
3148
3149 s->s3->tmp.mask_k = mask_k;
3150 s->s3->tmp.mask_a = mask_a;
3151 }
3152
3153 #ifndef OPENSSL_NO_EC
3154
3155 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3156 {
3157 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3158 /* key usage, if present, must allow signing */
3159 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3160 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3161 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3162 return 0;
3163 }
3164 }
3165 return 1; /* all checks are ok */
3166 }
3167
3168 #endif
3169
3170 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3171 size_t *serverinfo_length)
3172 {
3173 CERT_PKEY *cpk = s->s3->tmp.cert;
3174 *serverinfo_length = 0;
3175
3176 if (cpk == NULL || cpk->serverinfo == NULL)
3177 return 0;
3178
3179 *serverinfo = cpk->serverinfo;
3180 *serverinfo_length = cpk->serverinfo_length;
3181 return 1;
3182 }
3183
3184 void ssl_update_cache(SSL *s, int mode)
3185 {
3186 int i;
3187
3188 /*
3189 * If the session_id_length is 0, we are not supposed to cache it, and it
3190 * would be rather hard to do anyway :-)
3191 */
3192 if (s->session->session_id_length == 0)
3193 return;
3194
3195 i = s->session_ctx->session_cache_mode;
3196 if ((i & mode) != 0
3197 && (!s->hit || SSL_IS_TLS13(s))
3198 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3199 || SSL_CTX_add_session(s->session_ctx, s->session))
3200 && s->session_ctx->new_session_cb != NULL) {
3201 SSL_SESSION_up_ref(s->session);
3202 if (!s->session_ctx->new_session_cb(s, s->session))
3203 SSL_SESSION_free(s->session);
3204 }
3205
3206 /* auto flush every 255 connections */
3207 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3208 if ((((mode & SSL_SESS_CACHE_CLIENT)
3209 ? s->session_ctx->stats.sess_connect_good
3210 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
3211 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3212 }
3213 }
3214 }
3215
3216 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3217 {
3218 return ctx->method;
3219 }
3220
3221 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3222 {
3223 return s->method;
3224 }
3225
3226 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3227 {
3228 int ret = 1;
3229
3230 if (s->method != meth) {
3231 const SSL_METHOD *sm = s->method;
3232 int (*hf) (SSL *) = s->handshake_func;
3233
3234 if (sm->version == meth->version)
3235 s->method = meth;
3236 else {
3237 sm->ssl_free(s);
3238 s->method = meth;
3239 ret = s->method->ssl_new(s);
3240 }
3241
3242 if (hf == sm->ssl_connect)
3243 s->handshake_func = meth->ssl_connect;
3244 else if (hf == sm->ssl_accept)
3245 s->handshake_func = meth->ssl_accept;
3246 }
3247 return ret;
3248 }
3249
3250 int SSL_get_error(const SSL *s, int i)
3251 {
3252 int reason;
3253 unsigned long l;
3254 BIO *bio;
3255
3256 if (i > 0)
3257 return SSL_ERROR_NONE;
3258
3259 /*
3260 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3261 * where we do encode the error
3262 */
3263 if ((l = ERR_peek_error()) != 0) {
3264 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3265 return SSL_ERROR_SYSCALL;
3266 else
3267 return SSL_ERROR_SSL;
3268 }
3269
3270 if (SSL_want_read(s)) {
3271 bio = SSL_get_rbio(s);
3272 if (BIO_should_read(bio))
3273 return SSL_ERROR_WANT_READ;
3274 else if (BIO_should_write(bio))
3275 /*
3276 * This one doesn't make too much sense ... We never try to write
3277 * to the rbio, and an application program where rbio and wbio
3278 * are separate couldn't even know what it should wait for.
3279 * However if we ever set s->rwstate incorrectly (so that we have
3280 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3281 * wbio *are* the same, this test works around that bug; so it
3282 * might be safer to keep it.
3283 */
3284 return SSL_ERROR_WANT_WRITE;
3285 else if (BIO_should_io_special(bio)) {
3286 reason = BIO_get_retry_reason(bio);
3287 if (reason == BIO_RR_CONNECT)
3288 return SSL_ERROR_WANT_CONNECT;
3289 else if (reason == BIO_RR_ACCEPT)
3290 return SSL_ERROR_WANT_ACCEPT;
3291 else
3292 return SSL_ERROR_SYSCALL; /* unknown */
3293 }
3294 }
3295
3296 if (SSL_want_write(s)) {
3297 /* Access wbio directly - in order to use the buffered bio if present */
3298 bio = s->wbio;
3299 if (BIO_should_write(bio))
3300 return SSL_ERROR_WANT_WRITE;
3301 else if (BIO_should_read(bio))
3302 /*
3303 * See above (SSL_want_read(s) with BIO_should_write(bio))
3304 */
3305 return SSL_ERROR_WANT_READ;
3306 else if (BIO_should_io_special(bio)) {
3307 reason = BIO_get_retry_reason(bio);
3308 if (reason == BIO_RR_CONNECT)
3309 return SSL_ERROR_WANT_CONNECT;
3310 else if (reason == BIO_RR_ACCEPT)
3311 return SSL_ERROR_WANT_ACCEPT;
3312 else
3313 return SSL_ERROR_SYSCALL;
3314 }
3315 }
3316 if (SSL_want_x509_lookup(s))
3317 return SSL_ERROR_WANT_X509_LOOKUP;
3318 if (SSL_want_async(s))
3319 return SSL_ERROR_WANT_ASYNC;
3320 if (SSL_want_async_job(s))
3321 return SSL_ERROR_WANT_ASYNC_JOB;
3322 if (SSL_want_client_hello_cb(s))
3323 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3324
3325 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3326 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3327 return SSL_ERROR_ZERO_RETURN;
3328
3329 return SSL_ERROR_SYSCALL;
3330 }
3331
3332 static int ssl_do_handshake_intern(void *vargs)
3333 {
3334 struct ssl_async_args *args;
3335 SSL *s;
3336
3337 args = (struct ssl_async_args *)vargs;
3338 s = args->s;
3339
3340 return s->handshake_func(s);
3341 }
3342
3343 int SSL_do_handshake(SSL *s)
3344 {
3345 int ret = 1;
3346
3347 if (s->handshake_func == NULL) {
3348 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3349 return -1;
3350 }
3351
3352 ossl_statem_check_finish_init(s, -1);
3353
3354 s->method->ssl_renegotiate_check(s, 0);
3355
3356 if (SSL_is_server(s)) {
3357 /* clear SNI settings at server-side */
3358 OPENSSL_free(s->ext.hostname);
3359 s->ext.hostname = NULL;
3360 }
3361
3362 if (SSL_in_init(s) || SSL_in_before(s)) {
3363 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3364 struct ssl_async_args args;
3365
3366 args.s = s;
3367
3368 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3369 } else {
3370 ret = s->handshake_func(s);
3371 }
3372 }
3373 return ret;
3374 }
3375
3376 void SSL_set_accept_state(SSL *s)
3377 {
3378 s->server = 1;
3379 s->shutdown = 0;
3380 ossl_statem_clear(s);
3381 s->handshake_func = s->method->ssl_accept;
3382 clear_ciphers(s);
3383 }
3384
3385 void SSL_set_connect_state(SSL *s)
3386 {
3387 s->server = 0;
3388 s->shutdown = 0;
3389 ossl_statem_clear(s);
3390 s->handshake_func = s->method->ssl_connect;
3391 clear_ciphers(s);
3392 }
3393
3394 int ssl_undefined_function(SSL *s)
3395 {
3396 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3397 return 0;
3398 }
3399
3400 int ssl_undefined_void_function(void)
3401 {
3402 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3403 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3404 return 0;
3405 }
3406
3407 int ssl_undefined_const_function(const SSL *s)
3408 {
3409 return 0;
3410 }
3411
3412 const SSL_METHOD *ssl_bad_method(int ver)
3413 {
3414 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3415 return NULL;
3416 }
3417
3418 const char *ssl_protocol_to_string(int version)
3419 {
3420 switch(version)
3421 {
3422 case TLS1_3_VERSION:
3423 return "TLSv1.3";
3424
3425 case TLS1_2_VERSION:
3426 return "TLSv1.2";
3427
3428 case TLS1_1_VERSION:
3429 return "TLSv1.1";
3430
3431 case TLS1_VERSION:
3432 return "TLSv1";
3433
3434 case SSL3_VERSION:
3435 return "SSLv3";
3436
3437 case DTLS1_BAD_VER:
3438 return "DTLSv0.9";
3439
3440 case DTLS1_VERSION:
3441 return "DTLSv1";
3442
3443 case DTLS1_2_VERSION:
3444 return "DTLSv1.2";
3445
3446 default:
3447 return "unknown";
3448 }
3449 }
3450
3451 const char *SSL_get_version(const SSL *s)
3452 {
3453 return ssl_protocol_to_string(s->version);
3454 }
3455
3456 SSL *SSL_dup(SSL *s)
3457 {
3458 STACK_OF(X509_NAME) *sk;
3459 X509_NAME *xn;
3460 SSL *ret;
3461 int i;
3462
3463 /* If we're not quiescent, just up_ref! */
3464 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3465 CRYPTO_UP_REF(&s->references, &i, s->lock);
3466 return s;
3467 }
3468
3469 /*
3470 * Otherwise, copy configuration state, and session if set.
3471 */
3472 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3473 return NULL;
3474
3475 if (s->session != NULL) {
3476 /*
3477 * Arranges to share the same session via up_ref. This "copies"
3478 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3479 */
3480 if (!SSL_copy_session_id(ret, s))
3481 goto err;
3482 } else {
3483 /*
3484 * No session has been established yet, so we have to expect that
3485 * s->cert or ret->cert will be changed later -- they should not both
3486 * point to the same object, and thus we can't use
3487 * SSL_copy_session_id.
3488 */
3489 if (!SSL_set_ssl_method(ret, s->method))
3490 goto err;
3491
3492 if (s->cert != NULL) {
3493 ssl_cert_free(ret->cert);
3494 ret->cert = ssl_cert_dup(s->cert);
3495 if (ret->cert == NULL)
3496 goto err;
3497 }
3498
3499 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3500 (int)s->sid_ctx_length))
3501 goto err;
3502 }
3503
3504 if (!ssl_dane_dup(ret, s))
3505 goto err;
3506 ret->version = s->version;
3507 ret->options = s->options;
3508 ret->mode = s->mode;
3509 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3510 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3511 ret->msg_callback = s->msg_callback;
3512 ret->msg_callback_arg = s->msg_callback_arg;
3513 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3514 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3515 ret->generate_session_id = s->generate_session_id;
3516
3517 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3518
3519 /* copy app data, a little dangerous perhaps */
3520 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3521 goto err;
3522
3523 /* setup rbio, and wbio */
3524 if (s->rbio != NULL) {
3525 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3526 goto err;
3527 }
3528 if (s->wbio != NULL) {
3529 if (s->wbio != s->rbio) {
3530 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3531 goto err;
3532 } else {
3533 BIO_up_ref(ret->rbio);
3534 ret->wbio = ret->rbio;
3535 }
3536 }
3537
3538 ret->server = s->server;
3539 if (s->handshake_func) {
3540 if (s->server)
3541 SSL_set_accept_state(ret);
3542 else
3543 SSL_set_connect_state(ret);
3544 }
3545 ret->shutdown = s->shutdown;
3546 ret->hit = s->hit;
3547
3548 ret->default_passwd_callback = s->default_passwd_callback;
3549 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3550
3551 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3552
3553 /* dup the cipher_list and cipher_list_by_id stacks */
3554 if (s->cipher_list != NULL) {
3555 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3556 goto err;
3557 }
3558 if (s->cipher_list_by_id != NULL)
3559 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3560 == NULL)
3561 goto err;
3562
3563 /* Dup the client_CA list */
3564 if (s->ca_names != NULL) {
3565 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3566 goto err;
3567 ret->ca_names = sk;
3568 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3569 xn = sk_X509_NAME_value(sk, i);
3570 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3571 X509_NAME_free(xn);
3572 goto err;
3573 }
3574 }
3575 }
3576 return ret;
3577
3578 err:
3579 SSL_free(ret);
3580 return NULL;
3581 }
3582
3583 void ssl_clear_cipher_ctx(SSL *s)
3584 {
3585 if (s->enc_read_ctx != NULL) {
3586 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3587 s->enc_read_ctx = NULL;
3588 }
3589 if (s->enc_write_ctx != NULL) {
3590 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3591 s->enc_write_ctx = NULL;
3592 }
3593 #ifndef OPENSSL_NO_COMP
3594 COMP_CTX_free(s->expand);
3595 s->expand = NULL;
3596 COMP_CTX_free(s->compress);
3597 s->compress = NULL;
3598 #endif
3599 }
3600
3601 X509 *SSL_get_certificate(const SSL *s)
3602 {
3603 if (s->cert != NULL)
3604 return s->cert->key->x509;
3605 else
3606 return NULL;
3607 }
3608
3609 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3610 {
3611 if (s->cert != NULL)
3612 return s->cert->key->privatekey;
3613 else
3614 return NULL;
3615 }
3616
3617 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3618 {
3619 if (ctx->cert != NULL)
3620 return ctx->cert->key->x509;
3621 else
3622 return NULL;
3623 }
3624
3625 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3626 {
3627 if (ctx->cert != NULL)
3628 return ctx->cert->key->privatekey;
3629 else
3630 return NULL;
3631 }
3632
3633 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3634 {
3635 if ((s->session != NULL) && (s->session->cipher != NULL))
3636 return s->session->cipher;
3637 return NULL;
3638 }
3639
3640 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3641 {
3642 return s->s3->tmp.new_cipher;
3643 }
3644
3645 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3646 {
3647 #ifndef OPENSSL_NO_COMP
3648 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3649 #else
3650 return NULL;
3651 #endif
3652 }
3653
3654 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3655 {
3656 #ifndef OPENSSL_NO_COMP
3657 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3658 #else
3659 return NULL;
3660 #endif
3661 }
3662
3663 int ssl_init_wbio_buffer(SSL *s)
3664 {
3665 BIO *bbio;
3666
3667 if (s->bbio != NULL) {
3668 /* Already buffered. */
3669 return 1;
3670 }
3671
3672 bbio = BIO_new(BIO_f_buffer());
3673 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3674 BIO_free(bbio);
3675 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3676 return 0;
3677 }
3678 s->bbio = bbio;
3679 s->wbio = BIO_push(bbio, s->wbio);
3680
3681 return 1;
3682 }
3683
3684 int ssl_free_wbio_buffer(SSL *s)
3685 {
3686 /* callers ensure s is never null */
3687 if (s->bbio == NULL)
3688 return 1;
3689
3690 s->wbio = BIO_pop(s->wbio);
3691 if (!ossl_assert(s->wbio != NULL))
3692 return 0;
3693 BIO_free(s->bbio);
3694 s->bbio = NULL;
3695
3696 return 1;
3697 }
3698
3699 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3700 {
3701 ctx->quiet_shutdown = mode;
3702 }
3703
3704 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3705 {
3706 return ctx->quiet_shutdown;
3707 }
3708
3709 void SSL_set_quiet_shutdown(SSL *s, int mode)
3710 {
3711 s->quiet_shutdown = mode;
3712 }
3713
3714 int SSL_get_quiet_shutdown(const SSL *s)
3715 {
3716 return s->quiet_shutdown;
3717 }
3718
3719 void SSL_set_shutdown(SSL *s, int mode)
3720 {
3721 s->shutdown = mode;
3722 }
3723
3724 int SSL_get_shutdown(const SSL *s)
3725 {
3726 return s->shutdown;
3727 }
3728
3729 int SSL_version(const SSL *s)
3730 {
3731 return s->version;
3732 }
3733
3734 int SSL_client_version(const SSL *s)
3735 {
3736 return s->client_version;
3737 }
3738
3739 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3740 {
3741 return ssl->ctx;
3742 }
3743
3744 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3745 {
3746 CERT *new_cert;
3747 if (ssl->ctx == ctx)
3748 return ssl->ctx;
3749 if (ctx == NULL)
3750 ctx = ssl->session_ctx;
3751 new_cert = ssl_cert_dup(ctx->cert);
3752 if (new_cert == NULL) {
3753 return NULL;
3754 }
3755
3756 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3757 ssl_cert_free(new_cert);
3758 return NULL;
3759 }
3760
3761 ssl_cert_free(ssl->cert);
3762 ssl->cert = new_cert;
3763
3764 /*
3765 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3766 * so setter APIs must prevent invalid lengths from entering the system.
3767 */
3768 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3769 return NULL;
3770
3771 /*
3772 * If the session ID context matches that of the parent SSL_CTX,
3773 * inherit it from the new SSL_CTX as well. If however the context does
3774 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3775 * leave it unchanged.
3776 */
3777 if ((ssl->ctx != NULL) &&
3778 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3779 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3780 ssl->sid_ctx_length = ctx->sid_ctx_length;
3781 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3782 }
3783
3784 SSL_CTX_up_ref(ctx);
3785 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3786 ssl->ctx = ctx;
3787
3788 return ssl->ctx;
3789 }
3790
3791 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3792 {
3793 return X509_STORE_set_default_paths(ctx->cert_store);
3794 }
3795
3796 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3797 {
3798 X509_LOOKUP *lookup;
3799
3800 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3801 if (lookup == NULL)
3802 return 0;
3803 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3804
3805 /* Clear any errors if the default directory does not exist */
3806 ERR_clear_error();
3807
3808 return 1;
3809 }
3810
3811 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3812 {
3813 X509_LOOKUP *lookup;
3814
3815 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3816 if (lookup == NULL)
3817 return 0;
3818
3819 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3820
3821 /* Clear any errors if the default file does not exist */
3822 ERR_clear_error();
3823
3824 return 1;
3825 }
3826
3827 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3828 const char *CApath)
3829 {
3830 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
3831 }
3832
3833 void SSL_set_info_callback(SSL *ssl,
3834 void (*cb) (const SSL *ssl, int type, int val))
3835 {
3836 ssl->info_callback = cb;
3837 }
3838
3839 /*
3840 * One compiler (Diab DCC) doesn't like argument names in returned function
3841 * pointer.
3842 */
3843 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3844 int /* type */ ,
3845 int /* val */ ) {
3846 return ssl->info_callback;
3847 }
3848
3849 void SSL_set_verify_result(SSL *ssl, long arg)
3850 {
3851 ssl->verify_result = arg;
3852 }
3853
3854 long SSL_get_verify_result(const SSL *ssl)
3855 {
3856 return ssl->verify_result;
3857 }
3858
3859 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3860 {
3861 if (outlen == 0)
3862 return sizeof(ssl->s3->client_random);
3863 if (outlen > sizeof(ssl->s3->client_random))
3864 outlen = sizeof(ssl->s3->client_random);
3865 memcpy(out, ssl->s3->client_random, outlen);
3866 return outlen;
3867 }
3868
3869 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3870 {
3871 if (outlen == 0)
3872 return sizeof(ssl->s3->server_random);
3873 if (outlen > sizeof(ssl->s3->server_random))
3874 outlen = sizeof(ssl->s3->server_random);
3875 memcpy(out, ssl->s3->server_random, outlen);
3876 return outlen;
3877 }
3878
3879 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3880 unsigned char *out, size_t outlen)
3881 {
3882 if (outlen == 0)
3883 return session->master_key_length;
3884 if (outlen > session->master_key_length)
3885 outlen = session->master_key_length;
3886 memcpy(out, session->master_key, outlen);
3887 return outlen;
3888 }
3889
3890 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3891 size_t len)
3892 {
3893 if (len > sizeof(sess->master_key))
3894 return 0;
3895
3896 memcpy(sess->master_key, in, len);
3897 sess->master_key_length = len;
3898 return 1;
3899 }
3900
3901
3902 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3903 {
3904 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3905 }
3906
3907 void *SSL_get_ex_data(const SSL *s, int idx)
3908 {
3909 return CRYPTO_get_ex_data(&s->ex_data, idx);
3910 }
3911
3912 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3913 {
3914 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
3915 }
3916
3917 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3918 {
3919 return CRYPTO_get_ex_data(&s->ex_data, idx);
3920 }
3921
3922 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3923 {
3924 return ctx->cert_store;
3925 }
3926
3927 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3928 {
3929 X509_STORE_free(ctx->cert_store);
3930 ctx->cert_store = store;
3931 }
3932
3933 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
3934 {
3935 if (store != NULL)
3936 X509_STORE_up_ref(store);
3937 SSL_CTX_set_cert_store(ctx, store);
3938 }
3939
3940 int SSL_want(const SSL *s)
3941 {
3942 return s->rwstate;
3943 }
3944
3945 /**
3946 * \brief Set the callback for generating temporary DH keys.
3947 * \param ctx the SSL context.
3948 * \param dh the callback
3949 */
3950
3951 #ifndef OPENSSL_NO_DH
3952 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3953 DH *(*dh) (SSL *ssl, int is_export,
3954 int keylength))
3955 {
3956 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3957 }
3958
3959 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3960 int keylength))
3961 {
3962 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3963 }
3964 #endif
3965
3966 #ifndef OPENSSL_NO_PSK
3967 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3968 {
3969 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3970 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3971 return 0;
3972 }
3973 OPENSSL_free(ctx->cert->psk_identity_hint);
3974 if (identity_hint != NULL) {
3975 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3976 if (ctx->cert->psk_identity_hint == NULL)
3977 return 0;
3978 } else
3979 ctx->cert->psk_identity_hint = NULL;
3980 return 1;
3981 }
3982
3983 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3984 {
3985 if (s == NULL)
3986 return 0;
3987
3988 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3989 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3990 return 0;
3991 }
3992 OPENSSL_free(s->cert->psk_identity_hint);
3993 if (identity_hint != NULL) {
3994 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3995 if (s->cert->psk_identity_hint == NULL)
3996 return 0;
3997 } else
3998 s->cert->psk_identity_hint = NULL;
3999 return 1;
4000 }
4001
4002 const char *SSL_get_psk_identity_hint(const SSL *s)
4003 {
4004 if (s == NULL || s->session == NULL)
4005 return NULL;
4006 return s->session->psk_identity_hint;
4007 }
4008
4009 const char *SSL_get_psk_identity(const SSL *s)
4010 {
4011 if (s == NULL || s->session == NULL)
4012 return NULL;
4013 return s->session->psk_identity;
4014 }
4015
4016 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4017 {
4018 s->psk_client_callback = cb;
4019 }
4020
4021 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4022 {
4023 ctx->psk_client_callback = cb;
4024 }
4025
4026 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4027 {
4028 s->psk_server_callback = cb;
4029 }
4030
4031 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4032 {
4033 ctx->psk_server_callback = cb;
4034 }
4035 #endif
4036
4037 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4038 {
4039 s->psk_find_session_cb = cb;
4040 }
4041
4042 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4043 SSL_psk_find_session_cb_func cb)
4044 {
4045 ctx->psk_find_session_cb = cb;
4046 }
4047
4048 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4049 {
4050 s->psk_use_session_cb = cb;
4051 }
4052
4053 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4054 SSL_psk_use_session_cb_func cb)
4055 {
4056 ctx->psk_use_session_cb = cb;
4057 }
4058
4059 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4060 void (*cb) (int write_p, int version,
4061 int content_type, const void *buf,
4062 size_t len, SSL *ssl, void *arg))
4063 {
4064 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4065 }
4066
4067 void SSL_set_msg_callback(SSL *ssl,
4068 void (*cb) (int write_p, int version,
4069 int content_type, const void *buf,
4070 size_t len, SSL *ssl, void *arg))
4071 {
4072 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4073 }
4074
4075 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4076 int (*cb) (SSL *ssl,
4077 int
4078 is_forward_secure))
4079 {
4080 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4081 (void (*)(void))cb);
4082 }
4083
4084 void SSL_set_not_resumable_session_callback(SSL *ssl,
4085 int (*cb) (SSL *ssl,
4086 int is_forward_secure))
4087 {
4088 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4089 (void (*)(void))cb);
4090 }
4091
4092 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4093 size_t (*cb) (SSL *ssl, int type,
4094 size_t len, void *arg))
4095 {
4096 ctx->record_padding_cb = cb;
4097 }
4098
4099 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4100 {
4101 ctx->record_padding_arg = arg;
4102 }
4103
4104 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4105 {
4106 return ctx->record_padding_arg;
4107 }
4108
4109 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4110 {
4111 /* block size of 0 or 1 is basically no padding */
4112 if (block_size == 1)
4113 ctx->block_padding = 0;
4114 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4115 ctx->block_padding = block_size;
4116 else
4117 return 0;
4118 return 1;
4119 }
4120
4121 void SSL_set_record_padding_callback(SSL *ssl,
4122 size_t (*cb) (SSL *ssl, int type,
4123 size_t len, void *arg))
4124 {
4125 ssl->record_padding_cb = cb;
4126 }
4127
4128 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4129 {
4130 ssl->record_padding_arg = arg;
4131 }
4132
4133 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4134 {
4135 return ssl->record_padding_arg;
4136 }
4137
4138 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4139 {
4140 /* block size of 0 or 1 is basically no padding */
4141 if (block_size == 1)
4142 ssl->block_padding = 0;
4143 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4144 ssl->block_padding = block_size;
4145 else
4146 return 0;
4147 return 1;
4148 }
4149
4150 /*
4151 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4152 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4153 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4154 * Returns the newly allocated ctx;
4155 */
4156
4157 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4158 {
4159 ssl_clear_hash_ctx(hash);
4160 *hash = EVP_MD_CTX_new();
4161 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4162 EVP_MD_CTX_free(*hash);
4163 *hash = NULL;
4164 return NULL;
4165 }
4166 return *hash;
4167 }
4168
4169 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4170 {
4171
4172 EVP_MD_CTX_free(*hash);
4173 *hash = NULL;
4174 }
4175
4176 /* Retrieve handshake hashes */
4177 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4178 size_t *hashlen)
4179 {
4180 EVP_MD_CTX *ctx = NULL;
4181 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4182 int hashleni = EVP_MD_CTX_size(hdgst);
4183 int ret = 0;
4184
4185 if (hashleni < 0 || (size_t)hashleni > outlen)
4186 goto err;
4187
4188 ctx = EVP_MD_CTX_new();
4189 if (ctx == NULL)
4190 goto err;
4191
4192 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4193 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
4194 goto err;
4195
4196 *hashlen = hashleni;
4197
4198 ret = 1;
4199 err:
4200 EVP_MD_CTX_free(ctx);
4201 return ret;
4202 }
4203
4204 int SSL_session_reused(SSL *s)
4205 {
4206 return s->hit;
4207 }
4208
4209 int SSL_is_server(const SSL *s)
4210 {
4211 return s->server;
4212 }
4213
4214 #if OPENSSL_API_COMPAT < 0x10100000L
4215 void SSL_set_debug(SSL *s, int debug)
4216 {
4217 /* Old function was do-nothing anyway... */
4218 (void)s;
4219 (void)debug;
4220 }
4221 #endif
4222
4223 void SSL_set_security_level(SSL *s, int level)
4224 {
4225 s->cert->sec_level = level;
4226 }
4227
4228 int SSL_get_security_level(const SSL *s)
4229 {
4230 return s->cert->sec_level;
4231 }
4232
4233 void SSL_set_security_callback(SSL *s,
4234 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4235 int op, int bits, int nid,
4236 void *other, void *ex))
4237 {
4238 s->cert->sec_cb = cb;
4239 }
4240
4241 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4242 const SSL_CTX *ctx, int op,
4243 int bits, int nid, void *other,
4244 void *ex) {
4245 return s->cert->sec_cb;
4246 }
4247
4248 void SSL_set0_security_ex_data(SSL *s, void *ex)
4249 {
4250 s->cert->sec_ex = ex;
4251 }
4252
4253 void *SSL_get0_security_ex_data(const SSL *s)
4254 {
4255 return s->cert->sec_ex;
4256 }
4257
4258 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4259 {
4260 ctx->cert->sec_level = level;
4261 }
4262
4263 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4264 {
4265 return ctx->cert->sec_level;
4266 }
4267
4268 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4269 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4270 int op, int bits, int nid,
4271 void *other, void *ex))
4272 {
4273 ctx->cert->sec_cb = cb;
4274 }
4275
4276 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4277 const SSL_CTX *ctx,
4278 int op, int bits,
4279 int nid,
4280 void *other,
4281 void *ex) {
4282 return ctx->cert->sec_cb;
4283 }
4284
4285 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4286 {
4287 ctx->cert->sec_ex = ex;
4288 }
4289
4290 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4291 {
4292 return ctx->cert->sec_ex;
4293 }
4294
4295 /*
4296 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4297 * can return unsigned long, instead of the generic long return value from the
4298 * control interface.
4299 */
4300 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4301 {
4302 return ctx->options;
4303 }
4304
4305 unsigned long SSL_get_options(const SSL *s)
4306 {
4307 return s->options;
4308 }
4309
4310 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4311 {
4312 return ctx->options |= op;
4313 }
4314
4315 unsigned long SSL_set_options(SSL *s, unsigned long op)
4316 {
4317 return s->options |= op;
4318 }
4319
4320 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4321 {
4322 return ctx->options &= ~op;
4323 }
4324
4325 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4326 {
4327 return s->options &= ~op;
4328 }
4329
4330 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4331 {
4332 return s->verified_chain;
4333 }
4334
4335 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4336
4337 #ifndef OPENSSL_NO_CT
4338
4339 /*
4340 * Moves SCTs from the |src| stack to the |dst| stack.
4341 * The source of each SCT will be set to |origin|.
4342 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4343 * the caller.
4344 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4345 */
4346 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4347 sct_source_t origin)
4348 {
4349 int scts_moved = 0;
4350 SCT *sct = NULL;
4351
4352 if (*dst == NULL) {
4353 *dst = sk_SCT_new_null();
4354 if (*dst == NULL) {
4355 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4356 goto err;
4357 }
4358 }
4359
4360 while ((sct = sk_SCT_pop(src)) != NULL) {
4361 if (SCT_set_source(sct, origin) != 1)
4362 goto err;
4363
4364 if (sk_SCT_push(*dst, sct) <= 0)
4365 goto err;
4366 scts_moved += 1;
4367 }
4368
4369 return scts_moved;
4370 err:
4371 if (sct != NULL)
4372 sk_SCT_push(src, sct); /* Put the SCT back */
4373 return -1;
4374 }
4375
4376 /*
4377 * Look for data collected during ServerHello and parse if found.
4378 * Returns the number of SCTs extracted.
4379 */
4380 static int ct_extract_tls_extension_scts(SSL *s)
4381 {
4382 int scts_extracted = 0;
4383
4384 if (s->ext.scts != NULL) {
4385 const unsigned char *p = s->ext.scts;
4386 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4387
4388 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4389
4390 SCT_LIST_free(scts);
4391 }
4392
4393 return scts_extracted;
4394 }
4395
4396 /*
4397 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4398 * contains an SCT X509 extension. They will be stored in |s->scts|.
4399 * Returns:
4400 * - The number of SCTs extracted, assuming an OCSP response exists.
4401 * - 0 if no OCSP response exists or it contains no SCTs.
4402 * - A negative integer if an error occurs.
4403 */
4404 static int ct_extract_ocsp_response_scts(SSL *s)
4405 {
4406 # ifndef OPENSSL_NO_OCSP
4407 int scts_extracted = 0;
4408 const unsigned char *p;
4409 OCSP_BASICRESP *br = NULL;
4410 OCSP_RESPONSE *rsp = NULL;
4411 STACK_OF(SCT) *scts = NULL;
4412 int i;
4413
4414 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4415 goto err;
4416
4417 p = s->ext.ocsp.resp;
4418 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4419 if (rsp == NULL)
4420 goto err;
4421
4422 br = OCSP_response_get1_basic(rsp);
4423 if (br == NULL)
4424 goto err;
4425
4426 for (i = 0; i < OCSP_resp_count(br); ++i) {
4427 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4428
4429 if (single == NULL)
4430 continue;
4431
4432 scts =
4433 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4434 scts_extracted =
4435 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4436 if (scts_extracted < 0)
4437 goto err;
4438 }
4439 err:
4440 SCT_LIST_free(scts);
4441 OCSP_BASICRESP_free(br);
4442 OCSP_RESPONSE_free(rsp);
4443 return scts_extracted;
4444 # else
4445 /* Behave as if no OCSP response exists */
4446 return 0;
4447 # endif
4448 }
4449
4450 /*
4451 * Attempts to extract SCTs from the peer certificate.
4452 * Return the number of SCTs extracted, or a negative integer if an error
4453 * occurs.
4454 */
4455 static int ct_extract_x509v3_extension_scts(SSL *s)
4456 {
4457 int scts_extracted = 0;
4458 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4459
4460 if (cert != NULL) {
4461 STACK_OF(SCT) *scts =
4462 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4463
4464 scts_extracted =
4465 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4466
4467 SCT_LIST_free(scts);
4468 }
4469
4470 return scts_extracted;
4471 }
4472
4473 /*
4474 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4475 * response (if it exists) and X509v3 extensions in the certificate.
4476 * Returns NULL if an error occurs.
4477 */
4478 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4479 {
4480 if (!s->scts_parsed) {
4481 if (ct_extract_tls_extension_scts(s) < 0 ||
4482 ct_extract_ocsp_response_scts(s) < 0 ||
4483 ct_extract_x509v3_extension_scts(s) < 0)
4484 goto err;
4485
4486 s->scts_parsed = 1;
4487 }
4488 return s->scts;
4489 err:
4490 return NULL;
4491 }
4492
4493 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4494 const STACK_OF(SCT) *scts, void *unused_arg)
4495 {
4496 return 1;
4497 }
4498
4499 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4500 const STACK_OF(SCT) *scts, void *unused_arg)
4501 {
4502 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4503 int i;
4504
4505 for (i = 0; i < count; ++i) {
4506 SCT *sct = sk_SCT_value(scts, i);
4507 int status = SCT_get_validation_status(sct);
4508
4509 if (status == SCT_VALIDATION_STATUS_VALID)
4510 return 1;
4511 }
4512 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4513 return 0;
4514 }
4515
4516 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4517 void *arg)
4518 {
4519 /*
4520 * Since code exists that uses the custom extension handler for CT, look
4521 * for this and throw an error if they have already registered to use CT.
4522 */
4523 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4524 TLSEXT_TYPE_signed_certificate_timestamp))
4525 {
4526 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4527 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4528 return 0;
4529 }
4530
4531 if (callback != NULL) {
4532 /*
4533 * If we are validating CT, then we MUST accept SCTs served via OCSP
4534 */
4535 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4536 return 0;
4537 }
4538
4539 s->ct_validation_callback = callback;
4540 s->ct_validation_callback_arg = arg;
4541
4542 return 1;
4543 }
4544
4545 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4546 ssl_ct_validation_cb callback, void *arg)
4547 {
4548 /*
4549 * Since code exists that uses the custom extension handler for CT, look for
4550 * this and throw an error if they have already registered to use CT.
4551 */
4552 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4553 TLSEXT_TYPE_signed_certificate_timestamp))
4554 {
4555 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4556 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4557 return 0;
4558 }
4559
4560 ctx->ct_validation_callback = callback;
4561 ctx->ct_validation_callback_arg = arg;
4562 return 1;
4563 }
4564
4565 int SSL_ct_is_enabled(const SSL *s)
4566 {
4567 return s->ct_validation_callback != NULL;
4568 }
4569
4570 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4571 {
4572 return ctx->ct_validation_callback != NULL;
4573 }
4574
4575 int ssl_validate_ct(SSL *s)
4576 {
4577 int ret = 0;
4578 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4579 X509 *issuer;
4580 SSL_DANE *dane = &s->dane;
4581 CT_POLICY_EVAL_CTX *ctx = NULL;
4582 const STACK_OF(SCT) *scts;
4583
4584 /*
4585 * If no callback is set, the peer is anonymous, or its chain is invalid,
4586 * skip SCT validation - just return success. Applications that continue
4587 * handshakes without certificates, with unverified chains, or pinned leaf
4588 * certificates are outside the scope of the WebPKI and CT.
4589 *
4590 * The above exclusions notwithstanding the vast majority of peers will
4591 * have rather ordinary certificate chains validated by typical
4592 * applications that perform certificate verification and therefore will
4593 * process SCTs when enabled.
4594 */
4595 if (s->ct_validation_callback == NULL || cert == NULL ||
4596 s->verify_result != X509_V_OK ||
4597 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4598 return 1;
4599
4600 /*
4601 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4602 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4603 */
4604 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4605 switch (dane->mtlsa->usage) {
4606 case DANETLS_USAGE_DANE_TA:
4607 case DANETLS_USAGE_DANE_EE:
4608 return 1;
4609 }
4610 }
4611
4612 ctx = CT_POLICY_EVAL_CTX_new();
4613 if (ctx == NULL) {
4614 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4615 goto end;
4616 }
4617
4618 issuer = sk_X509_value(s->verified_chain, 1);
4619 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4620 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4621 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4622 CT_POLICY_EVAL_CTX_set_time(
4623 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4624
4625 scts = SSL_get0_peer_scts(s);
4626
4627 /*
4628 * This function returns success (> 0) only when all the SCTs are valid, 0
4629 * when some are invalid, and < 0 on various internal errors (out of
4630 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4631 * reason to abort the handshake, that decision is up to the callback.
4632 * Therefore, we error out only in the unexpected case that the return
4633 * value is negative.
4634 *
4635 * XXX: One might well argue that the return value of this function is an
4636 * unfortunate design choice. Its job is only to determine the validation
4637 * status of each of the provided SCTs. So long as it correctly separates
4638 * the wheat from the chaff it should return success. Failure in this case
4639 * ought to correspond to an inability to carry out its duties.
4640 */
4641 if (SCT_LIST_validate(scts, ctx) < 0) {
4642 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4643 goto end;
4644 }
4645
4646 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4647 if (ret < 0)
4648 ret = 0; /* This function returns 0 on failure */
4649
4650 end:
4651 CT_POLICY_EVAL_CTX_free(ctx);
4652 /*
4653 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4654 * failure return code here. Also the application may wish the complete
4655 * the handshake, and then disconnect cleanly at a higher layer, after
4656 * checking the verification status of the completed connection.
4657 *
4658 * We therefore force a certificate verification failure which will be
4659 * visible via SSL_get_verify_result() and cached as part of any resumed
4660 * session.
4661 *
4662 * Note: the permissive callback is for information gathering only, always
4663 * returns success, and does not affect verification status. Only the
4664 * strict callback or a custom application-specified callback can trigger
4665 * connection failure or record a verification error.
4666 */
4667 if (ret <= 0)
4668 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4669 return ret;
4670 }
4671
4672 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4673 {
4674 switch (validation_mode) {
4675 default:
4676 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4677 return 0;
4678 case SSL_CT_VALIDATION_PERMISSIVE:
4679 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4680 case SSL_CT_VALIDATION_STRICT:
4681 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4682 }
4683 }
4684
4685 int SSL_enable_ct(SSL *s, int validation_mode)
4686 {
4687 switch (validation_mode) {
4688 default:
4689 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4690 return 0;
4691 case SSL_CT_VALIDATION_PERMISSIVE:
4692 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4693 case SSL_CT_VALIDATION_STRICT:
4694 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4695 }
4696 }
4697
4698 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4699 {
4700 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4701 }
4702
4703 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4704 {
4705 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4706 }
4707
4708 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4709 {
4710 CTLOG_STORE_free(ctx->ctlog_store);
4711 ctx->ctlog_store = logs;
4712 }
4713
4714 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4715 {
4716 return ctx->ctlog_store;
4717 }
4718
4719 #endif /* OPENSSL_NO_CT */
4720
4721 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4722 void *arg)
4723 {
4724 c->client_hello_cb = cb;
4725 c->client_hello_cb_arg = arg;
4726 }
4727
4728 int SSL_client_hello_isv2(SSL *s)
4729 {
4730 if (s->clienthello == NULL)
4731 return 0;
4732 return s->clienthello->isv2;
4733 }
4734
4735 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4736 {
4737 if (s->clienthello == NULL)
4738 return 0;
4739 return s->clienthello->legacy_version;
4740 }
4741
4742 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4743 {
4744 if (s->clienthello == NULL)
4745 return 0;
4746 if (out != NULL)
4747 *out = s->clienthello->random;
4748 return SSL3_RANDOM_SIZE;
4749 }
4750
4751 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4752 {
4753 if (s->clienthello == NULL)
4754 return 0;
4755 if (out != NULL)
4756 *out = s->clienthello->session_id;
4757 return s->clienthello->session_id_len;
4758 }
4759
4760 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4761 {
4762 if (s->clienthello == NULL)
4763 return 0;
4764 if (out != NULL)
4765 *out = PACKET_data(&s->clienthello->ciphersuites);
4766 return PACKET_remaining(&s->clienthello->ciphersuites);
4767 }
4768
4769 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4770 {
4771 if (s->clienthello == NULL)
4772 return 0;
4773 if (out != NULL)
4774 *out = s->clienthello->compressions;
4775 return s->clienthello->compressions_len;
4776 }
4777
4778 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4779 {
4780 RAW_EXTENSION *ext;
4781 int *present;
4782 size_t num = 0, i;
4783
4784 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4785 return 0;
4786 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4787 ext = s->clienthello->pre_proc_exts + i;
4788 if (ext->present)
4789 num++;
4790 }
4791 present = OPENSSL_malloc(sizeof(*present) * num);
4792 if (present == NULL)
4793 return 0;
4794 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4795 ext = s->clienthello->pre_proc_exts + i;
4796 if (ext->present) {
4797 if (ext->received_order >= num)
4798 goto err;
4799 present[ext->received_order] = ext->type;
4800 }
4801 }
4802 *out = present;
4803 *outlen = num;
4804 return 1;
4805 err:
4806 OPENSSL_free(present);
4807 return 0;
4808 }
4809
4810 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4811 size_t *outlen)
4812 {
4813 size_t i;
4814 RAW_EXTENSION *r;
4815
4816 if (s->clienthello == NULL)
4817 return 0;
4818 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4819 r = s->clienthello->pre_proc_exts + i;
4820 if (r->present && r->type == type) {
4821 if (out != NULL)
4822 *out = PACKET_data(&r->data);
4823 if (outlen != NULL)
4824 *outlen = PACKET_remaining(&r->data);
4825 return 1;
4826 }
4827 }
4828 return 0;
4829 }
4830
4831 int SSL_free_buffers(SSL *ssl)
4832 {
4833 RECORD_LAYER *rl = &ssl->rlayer;
4834
4835 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4836 return 0;
4837
4838 RECORD_LAYER_release(rl);
4839 return 1;
4840 }
4841
4842 int SSL_alloc_buffers(SSL *ssl)
4843 {
4844 return ssl3_setup_buffers(ssl);
4845 }
4846
4847 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4848 {
4849 ctx->keylog_callback = cb;
4850 }
4851
4852 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4853 {
4854 return ctx->keylog_callback;
4855 }
4856
4857 static int nss_keylog_int(const char *prefix,
4858 SSL *ssl,
4859 const uint8_t *parameter_1,
4860 size_t parameter_1_len,
4861 const uint8_t *parameter_2,
4862 size_t parameter_2_len)
4863 {
4864 char *out = NULL;
4865 char *cursor = NULL;
4866 size_t out_len = 0;
4867 size_t i;
4868 size_t prefix_len;
4869
4870 if (ssl->ctx->keylog_callback == NULL) return 1;
4871
4872 /*
4873 * Our output buffer will contain the following strings, rendered with
4874 * space characters in between, terminated by a NULL character: first the
4875 * prefix, then the first parameter, then the second parameter. The
4876 * meaning of each parameter depends on the specific key material being
4877 * logged. Note that the first and second parameters are encoded in
4878 * hexadecimal, so we need a buffer that is twice their lengths.
4879 */
4880 prefix_len = strlen(prefix);
4881 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4882 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4883 SSLerr(SSL_F_NSS_KEYLOG_INT, ERR_R_MALLOC_FAILURE);
4884 return 0;
4885 }
4886
4887 strcpy(cursor, prefix);
4888 cursor += prefix_len;
4889 *cursor++ = ' ';
4890
4891 for (i = 0; i < parameter_1_len; i++) {
4892 sprintf(cursor, "%02x", parameter_1[i]);
4893 cursor += 2;
4894 }
4895 *cursor++ = ' ';
4896
4897 for (i = 0; i < parameter_2_len; i++) {
4898 sprintf(cursor, "%02x", parameter_2[i]);
4899 cursor += 2;
4900 }
4901 *cursor = '\0';
4902
4903 ssl->ctx->keylog_callback(ssl, (const char *)out);
4904 OPENSSL_free(out);
4905 return 1;
4906
4907 }
4908
4909 int ssl_log_rsa_client_key_exchange(SSL *ssl,
4910 const uint8_t *encrypted_premaster,
4911 size_t encrypted_premaster_len,
4912 const uint8_t *premaster,
4913 size_t premaster_len)
4914 {
4915 if (encrypted_premaster_len < 8) {
4916 SSLerr(SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
4917 return 0;
4918 }
4919
4920 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
4921 return nss_keylog_int("RSA",
4922 ssl,
4923 encrypted_premaster,
4924 8,
4925 premaster,
4926 premaster_len);
4927 }
4928
4929 int ssl_log_secret(SSL *ssl,
4930 const char *label,
4931 const uint8_t *secret,
4932 size_t secret_len)
4933 {
4934 return nss_keylog_int(label,
4935 ssl,
4936 ssl->s3->client_random,
4937 SSL3_RANDOM_SIZE,
4938 secret,
4939 secret_len);
4940 }
4941
4942 #define SSLV2_CIPHER_LEN 3
4943
4944 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format,
4945 int *al)
4946 {
4947 int n;
4948
4949 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
4950
4951 if (PACKET_remaining(cipher_suites) == 0) {
4952 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST, SSL_R_NO_CIPHERS_SPECIFIED);
4953 *al = SSL_AD_ILLEGAL_PARAMETER;
4954 return 0;
4955 }
4956
4957 if (PACKET_remaining(cipher_suites) % n != 0) {
4958 SSLerr(SSL_F_SSL_CACHE_CIPHERLIST,
4959 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
4960 *al = SSL_AD_DECODE_ERROR;
4961 return 0;
4962 }
4963
4964 OPENSSL_free(s->s3->tmp.ciphers_raw);
4965 s->s3->tmp.ciphers_raw = NULL;
4966 s->s3->tmp.ciphers_rawlen = 0;
4967
4968 if (sslv2format) {
4969 size_t numciphers = PACKET_remaining(cipher_suites) / n;
4970 PACKET sslv2ciphers = *cipher_suites;
4971 unsigned int leadbyte;
4972 unsigned char *raw;
4973
4974 /*
4975 * We store the raw ciphers list in SSLv3+ format so we need to do some
4976 * preprocessing to convert the list first. If there are any SSLv2 only
4977 * ciphersuites with a non-zero leading byte then we are going to
4978 * slightly over allocate because we won't store those. But that isn't a
4979 * problem.
4980 */
4981 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
4982 s->s3->tmp.ciphers_raw = raw;
4983 if (raw == NULL) {
4984 *al = SSL_AD_INTERNAL_ERROR;
4985 goto err;
4986 }
4987 for (s->s3->tmp.ciphers_rawlen = 0;
4988 PACKET_remaining(&sslv2ciphers) > 0;
4989 raw += TLS_CIPHER_LEN) {
4990 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
4991 || (leadbyte == 0
4992 && !PACKET_copy_bytes(&sslv2ciphers, raw,
4993 TLS_CIPHER_LEN))
4994 || (leadbyte != 0
4995 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
4996 *al = SSL_AD_DECODE_ERROR;
4997 OPENSSL_free(s->s3->tmp.ciphers_raw);
4998 s->s3->tmp.ciphers_raw = NULL;
4999 s->s3->tmp.ciphers_rawlen = 0;
5000 goto err;
5001 }
5002 if (leadbyte == 0)
5003 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5004 }
5005 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5006 &s->s3->tmp.ciphers_rawlen)) {
5007 *al = SSL_AD_INTERNAL_ERROR;
5008 goto err;
5009 }
5010 return 1;
5011 err:
5012 return 0;
5013 }
5014
5015 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5016 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5017 STACK_OF(SSL_CIPHER) **scsvs)
5018 {
5019 int alert;
5020 PACKET pkt;
5021
5022 if (!PACKET_buf_init(&pkt, bytes, len))
5023 return 0;
5024 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, &alert);
5025 }
5026
5027 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5028 STACK_OF(SSL_CIPHER) **skp,
5029 STACK_OF(SSL_CIPHER) **scsvs_out,
5030 int sslv2format, int *al)
5031 {
5032 const SSL_CIPHER *c;
5033 STACK_OF(SSL_CIPHER) *sk = NULL;
5034 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5035 int n;
5036 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5037 unsigned char cipher[SSLV2_CIPHER_LEN];
5038
5039 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5040
5041 if (PACKET_remaining(cipher_suites) == 0) {
5042 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5043 *al = SSL_AD_ILLEGAL_PARAMETER;
5044 return 0;
5045 }
5046
5047 if (PACKET_remaining(cipher_suites) % n != 0) {
5048 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5049 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5050 *al = SSL_AD_DECODE_ERROR;
5051 return 0;
5052 }
5053
5054 sk = sk_SSL_CIPHER_new_null();
5055 scsvs = sk_SSL_CIPHER_new_null();
5056 if (sk == NULL || scsvs == NULL) {
5057 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5058 *al = SSL_AD_INTERNAL_ERROR;
5059 goto err;
5060 }
5061
5062 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5063 /*
5064 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5065 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5066 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5067 */
5068 if (sslv2format && cipher[0] != '\0')
5069 continue;
5070
5071 /* For SSLv2-compat, ignore leading 0-byte. */
5072 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5073 if (c != NULL) {
5074 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5075 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5076 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5077 *al = SSL_AD_INTERNAL_ERROR;
5078 goto err;
5079 }
5080 }
5081 }
5082 if (PACKET_remaining(cipher_suites) > 0) {
5083 *al = SSL_AD_DECODE_ERROR;
5084 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5085 goto err;
5086 }
5087
5088 if (skp != NULL)
5089 *skp = sk;
5090 else
5091 sk_SSL_CIPHER_free(sk);
5092 if (scsvs_out != NULL)
5093 *scsvs_out = scsvs;
5094 else
5095 sk_SSL_CIPHER_free(scsvs);
5096 return 1;
5097 err:
5098 sk_SSL_CIPHER_free(sk);
5099 sk_SSL_CIPHER_free(scsvs);
5100 return 0;
5101 }
5102
5103 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5104 {
5105 ctx->max_early_data = max_early_data;
5106
5107 return 1;
5108 }
5109
5110 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5111 {
5112 return ctx->max_early_data;
5113 }
5114
5115 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5116 {
5117 s->max_early_data = max_early_data;
5118
5119 return 1;
5120 }
5121
5122 uint32_t SSL_get_max_early_data(const SSL *s)
5123 {
5124 return s->max_early_data;
5125 }
5126
5127 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5128 {
5129 if (s->drbg != NULL) {
5130 /*
5131 * Currently, it's the duty of the caller to serialize the generate
5132 * requests to the DRBG. So formally we have to check whether
5133 * s->drbg->lock != NULL and take the lock if this is the case.
5134 * However, this DRBG is unique to a given SSL object, and we already
5135 * require that SSL objects are only accessed by a single thread at
5136 * a given time. Also, SSL DRBGs have no child DRBG, so there is
5137 * no risk that this DRBG is accessed by a child DRBG in parallel
5138 * for reseeding. As such, we can rely on the application's
5139 * serialization of SSL accesses for the needed concurrency protection
5140 * here.
5141 */
5142 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5143 }
5144 return RAND_bytes(rnd, (int)size);
5145 }