]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Fix the SSL_stateless() return code
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include <openssl/objects.h>
15 #include <openssl/x509v3.h>
16 #include <openssl/rand.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/dh.h>
19 #include <openssl/engine.h>
20 #include <openssl/async.h>
21 #include <openssl/ct.h>
22 #include "internal/cryptlib.h"
23 #include "internal/rand.h"
24 #include "internal/refcount.h"
25
26 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29 {
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34 }
35
36 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38 {
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43 }
44
45 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47 {
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53 }
54
55 static int ssl_undefined_function_4(SSL *ssl, int r)
56 {
57 (void)r;
58 return ssl_undefined_function(ssl);
59 }
60
61 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63 {
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68 }
69
70 static int ssl_undefined_function_6(int r)
71 {
72 (void)r;
73 return ssl_undefined_function(NULL);
74 }
75
76 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79 {
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88 }
89
90 SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103 };
104
105 struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115 };
116
117 static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121 } dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131 };
132
133 static int dane_ctx_enable(struct dane_ctx_st *dctx)
134 {
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170 }
171
172 static void dane_ctx_final(struct dane_ctx_st *dctx)
173 {
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180 }
181
182 static void tlsa_free(danetls_record *t)
183 {
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189 }
190
191 static void dane_final(SSL_DANE *dane)
192 {
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204 }
205
206 /*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209 static int ssl_dane_dup(SSL *to, SSL *from)
210 {
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236 }
237
238 static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240 {
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281 }
282
283 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284 {
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288 }
289
290 static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned const char *data, size_t dlen)
294 {
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457 }
458
459 /*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463 static int ssl_check_allowed_versions(int min_version, int max_version)
464 {
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488 #ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491 #endif
492 #ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495 #endif
496 /* Done massaging versions; do the check. */
497 if (0
498 #ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501 #endif
502 #ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505 #endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514 #ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517 #endif
518 #ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521 #endif
522 #ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525 #endif
526 #ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529 #endif
530 #ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533 #endif
534 #ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537 #endif
538 #ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541 #endif
542 #ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545 #endif
546 /* Done massaging versions; do the check. */
547 if (0
548 #ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550 #endif
551 #ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553 #endif
554 #ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556 #endif
557 #ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559 #endif
560 #ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562 #endif
563 )
564 return 0;
565 }
566 return 1;
567 }
568
569 static void clear_ciphers(SSL *s)
570 {
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575 }
576
577 int SSL_clear(SSL *s)
578 {
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593 s->hello_retry_request = 0;
594
595 s->error = 0;
596 s->hit = 0;
597 s->shutdown = 0;
598
599 if (s->renegotiate) {
600 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
601 return 0;
602 }
603
604 ossl_statem_clear(s);
605
606 s->version = s->method->version;
607 s->client_version = s->version;
608 s->rwstate = SSL_NOTHING;
609
610 BUF_MEM_free(s->init_buf);
611 s->init_buf = NULL;
612 clear_ciphers(s);
613 s->first_packet = 0;
614
615 s->key_update = SSL_KEY_UPDATE_NONE;
616
617 /* Reset DANE verification result state */
618 s->dane.mdpth = -1;
619 s->dane.pdpth = -1;
620 X509_free(s->dane.mcert);
621 s->dane.mcert = NULL;
622 s->dane.mtlsa = NULL;
623
624 /* Clear the verification result peername */
625 X509_VERIFY_PARAM_move_peername(s->param, NULL);
626
627 /*
628 * Check to see if we were changed into a different method, if so, revert
629 * back.
630 */
631 if (s->method != s->ctx->method) {
632 s->method->ssl_free(s);
633 s->method = s->ctx->method;
634 if (!s->method->ssl_new(s))
635 return 0;
636 } else {
637 if (!s->method->ssl_clear(s))
638 return 0;
639 }
640
641 RECORD_LAYER_clear(&s->rlayer);
642
643 return 1;
644 }
645
646 /** Used to change an SSL_CTXs default SSL method type */
647 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
648 {
649 STACK_OF(SSL_CIPHER) *sk;
650
651 ctx->method = meth;
652
653 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
654 &(ctx->cipher_list_by_id),
655 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
656 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
657 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
658 return 0;
659 }
660 return 1;
661 }
662
663 SSL *SSL_new(SSL_CTX *ctx)
664 {
665 SSL *s;
666
667 if (ctx == NULL) {
668 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
669 return NULL;
670 }
671 if (ctx->method == NULL) {
672 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
673 return NULL;
674 }
675
676 s = OPENSSL_zalloc(sizeof(*s));
677 if (s == NULL)
678 goto err;
679
680 s->references = 1;
681 s->lock = CRYPTO_THREAD_lock_new();
682 if (s->lock == NULL) {
683 OPENSSL_free(s);
684 s = NULL;
685 goto err;
686 }
687
688 /*
689 * If not using the standard RAND (say for fuzzing), then don't use a
690 * chained DRBG.
691 */
692 if (RAND_get_rand_method() == RAND_OpenSSL()) {
693 s->drbg =
694 RAND_DRBG_new(RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF,
695 RAND_DRBG_get0_public());
696 if (s->drbg == NULL
697 || RAND_DRBG_instantiate(s->drbg,
698 (const unsigned char *) SSL_version_str,
699 sizeof(SSL_version_str) - 1) == 0)
700 goto err;
701 }
702
703 RECORD_LAYER_init(&s->rlayer, s);
704
705 s->options = ctx->options;
706 s->dane.flags = ctx->dane.flags;
707 s->min_proto_version = ctx->min_proto_version;
708 s->max_proto_version = ctx->max_proto_version;
709 s->mode = ctx->mode;
710 s->max_cert_list = ctx->max_cert_list;
711 s->max_early_data = ctx->max_early_data;
712
713 /*
714 * Earlier library versions used to copy the pointer to the CERT, not
715 * its contents; only when setting new parameters for the per-SSL
716 * copy, ssl_cert_new would be called (and the direct reference to
717 * the per-SSL_CTX settings would be lost, but those still were
718 * indirectly accessed for various purposes, and for that reason they
719 * used to be known as s->ctx->default_cert). Now we don't look at the
720 * SSL_CTX's CERT after having duplicated it once.
721 */
722 s->cert = ssl_cert_dup(ctx->cert);
723 if (s->cert == NULL)
724 goto err;
725
726 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
727 s->msg_callback = ctx->msg_callback;
728 s->msg_callback_arg = ctx->msg_callback_arg;
729 s->verify_mode = ctx->verify_mode;
730 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
731 s->record_padding_cb = ctx->record_padding_cb;
732 s->record_padding_arg = ctx->record_padding_arg;
733 s->block_padding = ctx->block_padding;
734 s->sid_ctx_length = ctx->sid_ctx_length;
735 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
736 goto err;
737 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
738 s->verify_callback = ctx->default_verify_callback;
739 s->generate_session_id = ctx->generate_session_id;
740
741 s->param = X509_VERIFY_PARAM_new();
742 if (s->param == NULL)
743 goto err;
744 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
745 s->quiet_shutdown = ctx->quiet_shutdown;
746
747 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
748 s->max_send_fragment = ctx->max_send_fragment;
749 s->split_send_fragment = ctx->split_send_fragment;
750 s->max_pipelines = ctx->max_pipelines;
751 if (s->max_pipelines > 1)
752 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
753 if (ctx->default_read_buf_len > 0)
754 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
755
756 SSL_CTX_up_ref(ctx);
757 s->ctx = ctx;
758 s->ext.debug_cb = 0;
759 s->ext.debug_arg = NULL;
760 s->ext.ticket_expected = 0;
761 s->ext.status_type = ctx->ext.status_type;
762 s->ext.status_expected = 0;
763 s->ext.ocsp.ids = NULL;
764 s->ext.ocsp.exts = NULL;
765 s->ext.ocsp.resp = NULL;
766 s->ext.ocsp.resp_len = 0;
767 SSL_CTX_up_ref(ctx);
768 s->session_ctx = ctx;
769 #ifndef OPENSSL_NO_EC
770 if (ctx->ext.ecpointformats) {
771 s->ext.ecpointformats =
772 OPENSSL_memdup(ctx->ext.ecpointformats,
773 ctx->ext.ecpointformats_len);
774 if (!s->ext.ecpointformats)
775 goto err;
776 s->ext.ecpointformats_len =
777 ctx->ext.ecpointformats_len;
778 }
779 if (ctx->ext.supportedgroups) {
780 s->ext.supportedgroups =
781 OPENSSL_memdup(ctx->ext.supportedgroups,
782 ctx->ext.supportedgroups_len
783 * sizeof(*ctx->ext.supportedgroups));
784 if (!s->ext.supportedgroups)
785 goto err;
786 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
787 }
788 #endif
789 #ifndef OPENSSL_NO_NEXTPROTONEG
790 s->ext.npn = NULL;
791 #endif
792
793 if (s->ctx->ext.alpn) {
794 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
795 if (s->ext.alpn == NULL)
796 goto err;
797 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
798 s->ext.alpn_len = s->ctx->ext.alpn_len;
799 }
800
801 s->verified_chain = NULL;
802 s->verify_result = X509_V_OK;
803
804 s->default_passwd_callback = ctx->default_passwd_callback;
805 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
806
807 s->method = ctx->method;
808
809 s->key_update = SSL_KEY_UPDATE_NONE;
810
811 if (!s->method->ssl_new(s))
812 goto err;
813
814 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
815
816 if (!SSL_clear(s))
817 goto err;
818
819 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
820 goto err;
821
822 #ifndef OPENSSL_NO_PSK
823 s->psk_client_callback = ctx->psk_client_callback;
824 s->psk_server_callback = ctx->psk_server_callback;
825 #endif
826 s->psk_find_session_cb = ctx->psk_find_session_cb;
827 s->psk_use_session_cb = ctx->psk_use_session_cb;
828
829 s->job = NULL;
830
831 #ifndef OPENSSL_NO_CT
832 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
833 ctx->ct_validation_callback_arg))
834 goto err;
835 #endif
836
837 return s;
838 err:
839 SSL_free(s);
840 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
841 return NULL;
842 }
843
844 int SSL_is_dtls(const SSL *s)
845 {
846 return SSL_IS_DTLS(s) ? 1 : 0;
847 }
848
849 int SSL_up_ref(SSL *s)
850 {
851 int i;
852
853 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
854 return 0;
855
856 REF_PRINT_COUNT("SSL", s);
857 REF_ASSERT_ISNT(i < 2);
858 return ((i > 1) ? 1 : 0);
859 }
860
861 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
862 unsigned int sid_ctx_len)
863 {
864 if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
865 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
866 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
867 return 0;
868 }
869 ctx->sid_ctx_length = sid_ctx_len;
870 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
871
872 return 1;
873 }
874
875 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
876 unsigned int sid_ctx_len)
877 {
878 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
879 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
880 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
881 return 0;
882 }
883 ssl->sid_ctx_length = sid_ctx_len;
884 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
885
886 return 1;
887 }
888
889 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
890 {
891 CRYPTO_THREAD_write_lock(ctx->lock);
892 ctx->generate_session_id = cb;
893 CRYPTO_THREAD_unlock(ctx->lock);
894 return 1;
895 }
896
897 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
898 {
899 CRYPTO_THREAD_write_lock(ssl->lock);
900 ssl->generate_session_id = cb;
901 CRYPTO_THREAD_unlock(ssl->lock);
902 return 1;
903 }
904
905 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
906 unsigned int id_len)
907 {
908 /*
909 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
910 * we can "construct" a session to give us the desired check - i.e. to
911 * find if there's a session in the hash table that would conflict with
912 * any new session built out of this id/id_len and the ssl_version in use
913 * by this SSL.
914 */
915 SSL_SESSION r, *p;
916
917 if (id_len > sizeof(r.session_id))
918 return 0;
919
920 r.ssl_version = ssl->version;
921 r.session_id_length = id_len;
922 memcpy(r.session_id, id, id_len);
923
924 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
925 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
926 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
927 return (p != NULL);
928 }
929
930 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
931 {
932 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
933 }
934
935 int SSL_set_purpose(SSL *s, int purpose)
936 {
937 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
938 }
939
940 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
941 {
942 return X509_VERIFY_PARAM_set_trust(s->param, trust);
943 }
944
945 int SSL_set_trust(SSL *s, int trust)
946 {
947 return X509_VERIFY_PARAM_set_trust(s->param, trust);
948 }
949
950 int SSL_set1_host(SSL *s, const char *hostname)
951 {
952 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
953 }
954
955 int SSL_add1_host(SSL *s, const char *hostname)
956 {
957 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
958 }
959
960 void SSL_set_hostflags(SSL *s, unsigned int flags)
961 {
962 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
963 }
964
965 const char *SSL_get0_peername(SSL *s)
966 {
967 return X509_VERIFY_PARAM_get0_peername(s->param);
968 }
969
970 int SSL_CTX_dane_enable(SSL_CTX *ctx)
971 {
972 return dane_ctx_enable(&ctx->dane);
973 }
974
975 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
976 {
977 unsigned long orig = ctx->dane.flags;
978
979 ctx->dane.flags |= flags;
980 return orig;
981 }
982
983 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
984 {
985 unsigned long orig = ctx->dane.flags;
986
987 ctx->dane.flags &= ~flags;
988 return orig;
989 }
990
991 int SSL_dane_enable(SSL *s, const char *basedomain)
992 {
993 SSL_DANE *dane = &s->dane;
994
995 if (s->ctx->dane.mdmax == 0) {
996 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
997 return 0;
998 }
999 if (dane->trecs != NULL) {
1000 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1001 return 0;
1002 }
1003
1004 /*
1005 * Default SNI name. This rejects empty names, while set1_host below
1006 * accepts them and disables host name checks. To avoid side-effects with
1007 * invalid input, set the SNI name first.
1008 */
1009 if (s->ext.hostname == NULL) {
1010 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1011 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1012 return -1;
1013 }
1014 }
1015
1016 /* Primary RFC6125 reference identifier */
1017 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1018 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1019 return -1;
1020 }
1021
1022 dane->mdpth = -1;
1023 dane->pdpth = -1;
1024 dane->dctx = &s->ctx->dane;
1025 dane->trecs = sk_danetls_record_new_null();
1026
1027 if (dane->trecs == NULL) {
1028 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1029 return -1;
1030 }
1031 return 1;
1032 }
1033
1034 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1035 {
1036 unsigned long orig = ssl->dane.flags;
1037
1038 ssl->dane.flags |= flags;
1039 return orig;
1040 }
1041
1042 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1043 {
1044 unsigned long orig = ssl->dane.flags;
1045
1046 ssl->dane.flags &= ~flags;
1047 return orig;
1048 }
1049
1050 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1051 {
1052 SSL_DANE *dane = &s->dane;
1053
1054 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1055 return -1;
1056 if (dane->mtlsa) {
1057 if (mcert)
1058 *mcert = dane->mcert;
1059 if (mspki)
1060 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1061 }
1062 return dane->mdpth;
1063 }
1064
1065 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1066 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1067 {
1068 SSL_DANE *dane = &s->dane;
1069
1070 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1071 return -1;
1072 if (dane->mtlsa) {
1073 if (usage)
1074 *usage = dane->mtlsa->usage;
1075 if (selector)
1076 *selector = dane->mtlsa->selector;
1077 if (mtype)
1078 *mtype = dane->mtlsa->mtype;
1079 if (data)
1080 *data = dane->mtlsa->data;
1081 if (dlen)
1082 *dlen = dane->mtlsa->dlen;
1083 }
1084 return dane->mdpth;
1085 }
1086
1087 SSL_DANE *SSL_get0_dane(SSL *s)
1088 {
1089 return &s->dane;
1090 }
1091
1092 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1093 uint8_t mtype, unsigned const char *data, size_t dlen)
1094 {
1095 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1096 }
1097
1098 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1099 uint8_t ord)
1100 {
1101 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1102 }
1103
1104 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1105 {
1106 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1107 }
1108
1109 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1110 {
1111 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1112 }
1113
1114 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1115 {
1116 return ctx->param;
1117 }
1118
1119 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1120 {
1121 return ssl->param;
1122 }
1123
1124 void SSL_certs_clear(SSL *s)
1125 {
1126 ssl_cert_clear_certs(s->cert);
1127 }
1128
1129 void SSL_free(SSL *s)
1130 {
1131 int i;
1132
1133 if (s == NULL)
1134 return;
1135
1136 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1137 REF_PRINT_COUNT("SSL", s);
1138 if (i > 0)
1139 return;
1140 REF_ASSERT_ISNT(i < 0);
1141
1142 X509_VERIFY_PARAM_free(s->param);
1143 dane_final(&s->dane);
1144 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1145
1146 /* Ignore return value */
1147 ssl_free_wbio_buffer(s);
1148
1149 BIO_free_all(s->wbio);
1150 BIO_free_all(s->rbio);
1151
1152 BUF_MEM_free(s->init_buf);
1153
1154 /* add extra stuff */
1155 sk_SSL_CIPHER_free(s->cipher_list);
1156 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1157
1158 /* Make the next call work :-) */
1159 if (s->session != NULL) {
1160 ssl_clear_bad_session(s);
1161 SSL_SESSION_free(s->session);
1162 }
1163 SSL_SESSION_free(s->psksession);
1164 OPENSSL_free(s->psksession_id);
1165
1166 clear_ciphers(s);
1167
1168 ssl_cert_free(s->cert);
1169 /* Free up if allocated */
1170
1171 OPENSSL_free(s->ext.hostname);
1172 SSL_CTX_free(s->session_ctx);
1173 #ifndef OPENSSL_NO_EC
1174 OPENSSL_free(s->ext.ecpointformats);
1175 OPENSSL_free(s->ext.supportedgroups);
1176 #endif /* OPENSSL_NO_EC */
1177 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1178 #ifndef OPENSSL_NO_OCSP
1179 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1180 #endif
1181 #ifndef OPENSSL_NO_CT
1182 SCT_LIST_free(s->scts);
1183 OPENSSL_free(s->ext.scts);
1184 #endif
1185 OPENSSL_free(s->ext.ocsp.resp);
1186 OPENSSL_free(s->ext.alpn);
1187 OPENSSL_free(s->ext.tls13_cookie);
1188 OPENSSL_free(s->clienthello);
1189
1190 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1191
1192 sk_X509_pop_free(s->verified_chain, X509_free);
1193
1194 if (s->method != NULL)
1195 s->method->ssl_free(s);
1196
1197 RECORD_LAYER_release(&s->rlayer);
1198
1199 SSL_CTX_free(s->ctx);
1200
1201 ASYNC_WAIT_CTX_free(s->waitctx);
1202
1203 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1204 OPENSSL_free(s->ext.npn);
1205 #endif
1206
1207 #ifndef OPENSSL_NO_SRTP
1208 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1209 #endif
1210
1211 RAND_DRBG_free(s->drbg);
1212 CRYPTO_THREAD_lock_free(s->lock);
1213
1214 OPENSSL_free(s);
1215 }
1216
1217 void SSL_set0_rbio(SSL *s, BIO *rbio)
1218 {
1219 BIO_free_all(s->rbio);
1220 s->rbio = rbio;
1221 }
1222
1223 void SSL_set0_wbio(SSL *s, BIO *wbio)
1224 {
1225 /*
1226 * If the output buffering BIO is still in place, remove it
1227 */
1228 if (s->bbio != NULL)
1229 s->wbio = BIO_pop(s->wbio);
1230
1231 BIO_free_all(s->wbio);
1232 s->wbio = wbio;
1233
1234 /* Re-attach |bbio| to the new |wbio|. */
1235 if (s->bbio != NULL)
1236 s->wbio = BIO_push(s->bbio, s->wbio);
1237 }
1238
1239 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1240 {
1241 /*
1242 * For historical reasons, this function has many different cases in
1243 * ownership handling.
1244 */
1245
1246 /* If nothing has changed, do nothing */
1247 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1248 return;
1249
1250 /*
1251 * If the two arguments are equal then one fewer reference is granted by the
1252 * caller than we want to take
1253 */
1254 if (rbio != NULL && rbio == wbio)
1255 BIO_up_ref(rbio);
1256
1257 /*
1258 * If only the wbio is changed only adopt one reference.
1259 */
1260 if (rbio == SSL_get_rbio(s)) {
1261 SSL_set0_wbio(s, wbio);
1262 return;
1263 }
1264 /*
1265 * There is an asymmetry here for historical reasons. If only the rbio is
1266 * changed AND the rbio and wbio were originally different, then we only
1267 * adopt one reference.
1268 */
1269 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1270 SSL_set0_rbio(s, rbio);
1271 return;
1272 }
1273
1274 /* Otherwise, adopt both references. */
1275 SSL_set0_rbio(s, rbio);
1276 SSL_set0_wbio(s, wbio);
1277 }
1278
1279 BIO *SSL_get_rbio(const SSL *s)
1280 {
1281 return s->rbio;
1282 }
1283
1284 BIO *SSL_get_wbio(const SSL *s)
1285 {
1286 if (s->bbio != NULL) {
1287 /*
1288 * If |bbio| is active, the true caller-configured BIO is its
1289 * |next_bio|.
1290 */
1291 return BIO_next(s->bbio);
1292 }
1293 return s->wbio;
1294 }
1295
1296 int SSL_get_fd(const SSL *s)
1297 {
1298 return SSL_get_rfd(s);
1299 }
1300
1301 int SSL_get_rfd(const SSL *s)
1302 {
1303 int ret = -1;
1304 BIO *b, *r;
1305
1306 b = SSL_get_rbio(s);
1307 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1308 if (r != NULL)
1309 BIO_get_fd(r, &ret);
1310 return ret;
1311 }
1312
1313 int SSL_get_wfd(const SSL *s)
1314 {
1315 int ret = -1;
1316 BIO *b, *r;
1317
1318 b = SSL_get_wbio(s);
1319 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1320 if (r != NULL)
1321 BIO_get_fd(r, &ret);
1322 return ret;
1323 }
1324
1325 #ifndef OPENSSL_NO_SOCK
1326 int SSL_set_fd(SSL *s, int fd)
1327 {
1328 int ret = 0;
1329 BIO *bio = NULL;
1330
1331 bio = BIO_new(BIO_s_socket());
1332
1333 if (bio == NULL) {
1334 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1335 goto err;
1336 }
1337 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1338 SSL_set_bio(s, bio, bio);
1339 ret = 1;
1340 err:
1341 return ret;
1342 }
1343
1344 int SSL_set_wfd(SSL *s, int fd)
1345 {
1346 BIO *rbio = SSL_get_rbio(s);
1347
1348 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1349 || (int)BIO_get_fd(rbio, NULL) != fd) {
1350 BIO *bio = BIO_new(BIO_s_socket());
1351
1352 if (bio == NULL) {
1353 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1354 return 0;
1355 }
1356 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1357 SSL_set0_wbio(s, bio);
1358 } else {
1359 BIO_up_ref(rbio);
1360 SSL_set0_wbio(s, rbio);
1361 }
1362 return 1;
1363 }
1364
1365 int SSL_set_rfd(SSL *s, int fd)
1366 {
1367 BIO *wbio = SSL_get_wbio(s);
1368
1369 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1370 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1371 BIO *bio = BIO_new(BIO_s_socket());
1372
1373 if (bio == NULL) {
1374 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1375 return 0;
1376 }
1377 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1378 SSL_set0_rbio(s, bio);
1379 } else {
1380 BIO_up_ref(wbio);
1381 SSL_set0_rbio(s, wbio);
1382 }
1383
1384 return 1;
1385 }
1386 #endif
1387
1388 /* return length of latest Finished message we sent, copy to 'buf' */
1389 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1390 {
1391 size_t ret = 0;
1392
1393 if (s->s3 != NULL) {
1394 ret = s->s3->tmp.finish_md_len;
1395 if (count > ret)
1396 count = ret;
1397 memcpy(buf, s->s3->tmp.finish_md, count);
1398 }
1399 return ret;
1400 }
1401
1402 /* return length of latest Finished message we expected, copy to 'buf' */
1403 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1404 {
1405 size_t ret = 0;
1406
1407 if (s->s3 != NULL) {
1408 ret = s->s3->tmp.peer_finish_md_len;
1409 if (count > ret)
1410 count = ret;
1411 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1412 }
1413 return ret;
1414 }
1415
1416 int SSL_get_verify_mode(const SSL *s)
1417 {
1418 return s->verify_mode;
1419 }
1420
1421 int SSL_get_verify_depth(const SSL *s)
1422 {
1423 return X509_VERIFY_PARAM_get_depth(s->param);
1424 }
1425
1426 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1427 return s->verify_callback;
1428 }
1429
1430 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1431 {
1432 return ctx->verify_mode;
1433 }
1434
1435 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1436 {
1437 return X509_VERIFY_PARAM_get_depth(ctx->param);
1438 }
1439
1440 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1441 return ctx->default_verify_callback;
1442 }
1443
1444 void SSL_set_verify(SSL *s, int mode,
1445 int (*callback) (int ok, X509_STORE_CTX *ctx))
1446 {
1447 s->verify_mode = mode;
1448 if (callback != NULL)
1449 s->verify_callback = callback;
1450 }
1451
1452 void SSL_set_verify_depth(SSL *s, int depth)
1453 {
1454 X509_VERIFY_PARAM_set_depth(s->param, depth);
1455 }
1456
1457 void SSL_set_read_ahead(SSL *s, int yes)
1458 {
1459 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1460 }
1461
1462 int SSL_get_read_ahead(const SSL *s)
1463 {
1464 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1465 }
1466
1467 int SSL_pending(const SSL *s)
1468 {
1469 size_t pending = s->method->ssl_pending(s);
1470
1471 /*
1472 * SSL_pending cannot work properly if read-ahead is enabled
1473 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1474 * impossible to fix since SSL_pending cannot report errors that may be
1475 * observed while scanning the new data. (Note that SSL_pending() is
1476 * often used as a boolean value, so we'd better not return -1.)
1477 *
1478 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1479 * we just return INT_MAX.
1480 */
1481 return pending < INT_MAX ? (int)pending : INT_MAX;
1482 }
1483
1484 int SSL_has_pending(const SSL *s)
1485 {
1486 /*
1487 * Similar to SSL_pending() but returns a 1 to indicate that we have
1488 * unprocessed data available or 0 otherwise (as opposed to the number of
1489 * bytes available). Unlike SSL_pending() this will take into account
1490 * read_ahead data. A 1 return simply indicates that we have unprocessed
1491 * data. That data may not result in any application data, or we may fail
1492 * to parse the records for some reason.
1493 */
1494 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1495 return 1;
1496
1497 return RECORD_LAYER_read_pending(&s->rlayer);
1498 }
1499
1500 X509 *SSL_get_peer_certificate(const SSL *s)
1501 {
1502 X509 *r;
1503
1504 if ((s == NULL) || (s->session == NULL))
1505 r = NULL;
1506 else
1507 r = s->session->peer;
1508
1509 if (r == NULL)
1510 return r;
1511
1512 X509_up_ref(r);
1513
1514 return r;
1515 }
1516
1517 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1518 {
1519 STACK_OF(X509) *r;
1520
1521 if ((s == NULL) || (s->session == NULL))
1522 r = NULL;
1523 else
1524 r = s->session->peer_chain;
1525
1526 /*
1527 * If we are a client, cert_chain includes the peer's own certificate; if
1528 * we are a server, it does not.
1529 */
1530
1531 return r;
1532 }
1533
1534 /*
1535 * Now in theory, since the calling process own 't' it should be safe to
1536 * modify. We need to be able to read f without being hassled
1537 */
1538 int SSL_copy_session_id(SSL *t, const SSL *f)
1539 {
1540 int i;
1541 /* Do we need to to SSL locking? */
1542 if (!SSL_set_session(t, SSL_get_session(f))) {
1543 return 0;
1544 }
1545
1546 /*
1547 * what if we are setup for one protocol version but want to talk another
1548 */
1549 if (t->method != f->method) {
1550 t->method->ssl_free(t);
1551 t->method = f->method;
1552 if (t->method->ssl_new(t) == 0)
1553 return 0;
1554 }
1555
1556 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1557 ssl_cert_free(t->cert);
1558 t->cert = f->cert;
1559 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1560 return 0;
1561 }
1562
1563 return 1;
1564 }
1565
1566 /* Fix this so it checks all the valid key/cert options */
1567 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1568 {
1569 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1570 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1571 return 0;
1572 }
1573 if (ctx->cert->key->privatekey == NULL) {
1574 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1575 return 0;
1576 }
1577 return X509_check_private_key
1578 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1579 }
1580
1581 /* Fix this function so that it takes an optional type parameter */
1582 int SSL_check_private_key(const SSL *ssl)
1583 {
1584 if (ssl == NULL) {
1585 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1586 return 0;
1587 }
1588 if (ssl->cert->key->x509 == NULL) {
1589 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1590 return 0;
1591 }
1592 if (ssl->cert->key->privatekey == NULL) {
1593 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1594 return 0;
1595 }
1596 return X509_check_private_key(ssl->cert->key->x509,
1597 ssl->cert->key->privatekey);
1598 }
1599
1600 int SSL_waiting_for_async(SSL *s)
1601 {
1602 if (s->job)
1603 return 1;
1604
1605 return 0;
1606 }
1607
1608 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1609 {
1610 ASYNC_WAIT_CTX *ctx = s->waitctx;
1611
1612 if (ctx == NULL)
1613 return 0;
1614 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1615 }
1616
1617 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1618 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1619 {
1620 ASYNC_WAIT_CTX *ctx = s->waitctx;
1621
1622 if (ctx == NULL)
1623 return 0;
1624 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1625 numdelfds);
1626 }
1627
1628 int SSL_accept(SSL *s)
1629 {
1630 if (s->handshake_func == NULL) {
1631 /* Not properly initialized yet */
1632 SSL_set_accept_state(s);
1633 }
1634
1635 return SSL_do_handshake(s);
1636 }
1637
1638 int SSL_connect(SSL *s)
1639 {
1640 if (s->handshake_func == NULL) {
1641 /* Not properly initialized yet */
1642 SSL_set_connect_state(s);
1643 }
1644
1645 return SSL_do_handshake(s);
1646 }
1647
1648 long SSL_get_default_timeout(const SSL *s)
1649 {
1650 return s->method->get_timeout();
1651 }
1652
1653 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1654 int (*func) (void *))
1655 {
1656 int ret;
1657 if (s->waitctx == NULL) {
1658 s->waitctx = ASYNC_WAIT_CTX_new();
1659 if (s->waitctx == NULL)
1660 return -1;
1661 }
1662 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1663 sizeof(struct ssl_async_args))) {
1664 case ASYNC_ERR:
1665 s->rwstate = SSL_NOTHING;
1666 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1667 return -1;
1668 case ASYNC_PAUSE:
1669 s->rwstate = SSL_ASYNC_PAUSED;
1670 return -1;
1671 case ASYNC_NO_JOBS:
1672 s->rwstate = SSL_ASYNC_NO_JOBS;
1673 return -1;
1674 case ASYNC_FINISH:
1675 s->job = NULL;
1676 return ret;
1677 default:
1678 s->rwstate = SSL_NOTHING;
1679 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1680 /* Shouldn't happen */
1681 return -1;
1682 }
1683 }
1684
1685 static int ssl_io_intern(void *vargs)
1686 {
1687 struct ssl_async_args *args;
1688 SSL *s;
1689 void *buf;
1690 size_t num;
1691
1692 args = (struct ssl_async_args *)vargs;
1693 s = args->s;
1694 buf = args->buf;
1695 num = args->num;
1696 switch (args->type) {
1697 case READFUNC:
1698 return args->f.func_read(s, buf, num, &s->asyncrw);
1699 case WRITEFUNC:
1700 return args->f.func_write(s, buf, num, &s->asyncrw);
1701 case OTHERFUNC:
1702 return args->f.func_other(s);
1703 }
1704 return -1;
1705 }
1706
1707 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1708 {
1709 if (s->handshake_func == NULL) {
1710 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1711 return -1;
1712 }
1713
1714 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1715 s->rwstate = SSL_NOTHING;
1716 return 0;
1717 }
1718
1719 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1720 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1721 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1722 return 0;
1723 }
1724 /*
1725 * If we are a client and haven't received the ServerHello etc then we
1726 * better do that
1727 */
1728 ossl_statem_check_finish_init(s, 0);
1729
1730 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1731 struct ssl_async_args args;
1732 int ret;
1733
1734 args.s = s;
1735 args.buf = buf;
1736 args.num = num;
1737 args.type = READFUNC;
1738 args.f.func_read = s->method->ssl_read;
1739
1740 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1741 *readbytes = s->asyncrw;
1742 return ret;
1743 } else {
1744 return s->method->ssl_read(s, buf, num, readbytes);
1745 }
1746 }
1747
1748 int SSL_read(SSL *s, void *buf, int num)
1749 {
1750 int ret;
1751 size_t readbytes;
1752
1753 if (num < 0) {
1754 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1755 return -1;
1756 }
1757
1758 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1759
1760 /*
1761 * The cast is safe here because ret should be <= INT_MAX because num is
1762 * <= INT_MAX
1763 */
1764 if (ret > 0)
1765 ret = (int)readbytes;
1766
1767 return ret;
1768 }
1769
1770 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1771 {
1772 int ret = ssl_read_internal(s, buf, num, readbytes);
1773
1774 if (ret < 0)
1775 ret = 0;
1776 return ret;
1777 }
1778
1779 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1780 {
1781 int ret;
1782
1783 if (!s->server) {
1784 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1785 return SSL_READ_EARLY_DATA_ERROR;
1786 }
1787
1788 switch (s->early_data_state) {
1789 case SSL_EARLY_DATA_NONE:
1790 if (!SSL_in_before(s)) {
1791 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1792 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1793 return SSL_READ_EARLY_DATA_ERROR;
1794 }
1795 /* fall through */
1796
1797 case SSL_EARLY_DATA_ACCEPT_RETRY:
1798 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1799 ret = SSL_accept(s);
1800 if (ret <= 0) {
1801 /* NBIO or error */
1802 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1803 return SSL_READ_EARLY_DATA_ERROR;
1804 }
1805 /* fall through */
1806
1807 case SSL_EARLY_DATA_READ_RETRY:
1808 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1809 s->early_data_state = SSL_EARLY_DATA_READING;
1810 ret = SSL_read_ex(s, buf, num, readbytes);
1811 /*
1812 * State machine will update early_data_state to
1813 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1814 * message
1815 */
1816 if (ret > 0 || (ret <= 0 && s->early_data_state
1817 != SSL_EARLY_DATA_FINISHED_READING)) {
1818 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1819 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1820 : SSL_READ_EARLY_DATA_ERROR;
1821 }
1822 } else {
1823 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1824 }
1825 *readbytes = 0;
1826 return SSL_READ_EARLY_DATA_FINISH;
1827
1828 default:
1829 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1830 return SSL_READ_EARLY_DATA_ERROR;
1831 }
1832 }
1833
1834 int SSL_get_early_data_status(const SSL *s)
1835 {
1836 return s->ext.early_data;
1837 }
1838
1839 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1840 {
1841 if (s->handshake_func == NULL) {
1842 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1843 return -1;
1844 }
1845
1846 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1847 return 0;
1848 }
1849 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1850 struct ssl_async_args args;
1851 int ret;
1852
1853 args.s = s;
1854 args.buf = buf;
1855 args.num = num;
1856 args.type = READFUNC;
1857 args.f.func_read = s->method->ssl_peek;
1858
1859 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1860 *readbytes = s->asyncrw;
1861 return ret;
1862 } else {
1863 return s->method->ssl_peek(s, buf, num, readbytes);
1864 }
1865 }
1866
1867 int SSL_peek(SSL *s, void *buf, int num)
1868 {
1869 int ret;
1870 size_t readbytes;
1871
1872 if (num < 0) {
1873 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1874 return -1;
1875 }
1876
1877 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1878
1879 /*
1880 * The cast is safe here because ret should be <= INT_MAX because num is
1881 * <= INT_MAX
1882 */
1883 if (ret > 0)
1884 ret = (int)readbytes;
1885
1886 return ret;
1887 }
1888
1889
1890 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1891 {
1892 int ret = ssl_peek_internal(s, buf, num, readbytes);
1893
1894 if (ret < 0)
1895 ret = 0;
1896 return ret;
1897 }
1898
1899 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1900 {
1901 if (s->handshake_func == NULL) {
1902 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1903 return -1;
1904 }
1905
1906 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1907 s->rwstate = SSL_NOTHING;
1908 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1909 return -1;
1910 }
1911
1912 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1913 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1914 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1915 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1916 return 0;
1917 }
1918 /* If we are a client and haven't sent the Finished we better do that */
1919 ossl_statem_check_finish_init(s, 1);
1920
1921 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1922 int ret;
1923 struct ssl_async_args args;
1924
1925 args.s = s;
1926 args.buf = (void *)buf;
1927 args.num = num;
1928 args.type = WRITEFUNC;
1929 args.f.func_write = s->method->ssl_write;
1930
1931 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1932 *written = s->asyncrw;
1933 return ret;
1934 } else {
1935 return s->method->ssl_write(s, buf, num, written);
1936 }
1937 }
1938
1939 int SSL_write(SSL *s, const void *buf, int num)
1940 {
1941 int ret;
1942 size_t written;
1943
1944 if (num < 0) {
1945 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1946 return -1;
1947 }
1948
1949 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1950
1951 /*
1952 * The cast is safe here because ret should be <= INT_MAX because num is
1953 * <= INT_MAX
1954 */
1955 if (ret > 0)
1956 ret = (int)written;
1957
1958 return ret;
1959 }
1960
1961 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1962 {
1963 int ret = ssl_write_internal(s, buf, num, written);
1964
1965 if (ret < 0)
1966 ret = 0;
1967 return ret;
1968 }
1969
1970 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1971 {
1972 int ret, early_data_state;
1973 size_t writtmp;
1974 uint32_t partialwrite;
1975
1976 switch (s->early_data_state) {
1977 case SSL_EARLY_DATA_NONE:
1978 if (s->server
1979 || !SSL_in_before(s)
1980 || ((s->session == NULL || s->session->ext.max_early_data == 0)
1981 && (s->psk_use_session_cb == NULL))) {
1982 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
1983 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1984 return 0;
1985 }
1986 /* fall through */
1987
1988 case SSL_EARLY_DATA_CONNECT_RETRY:
1989 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
1990 ret = SSL_connect(s);
1991 if (ret <= 0) {
1992 /* NBIO or error */
1993 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
1994 return 0;
1995 }
1996 /* fall through */
1997
1998 case SSL_EARLY_DATA_WRITE_RETRY:
1999 s->early_data_state = SSL_EARLY_DATA_WRITING;
2000 /*
2001 * We disable partial write for early data because we don't keep track
2002 * of how many bytes we've written between the SSL_write_ex() call and
2003 * the flush if the flush needs to be retried)
2004 */
2005 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2006 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2007 ret = SSL_write_ex(s, buf, num, &writtmp);
2008 s->mode |= partialwrite;
2009 if (!ret) {
2010 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2011 return ret;
2012 }
2013 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2014 /* fall through */
2015
2016 case SSL_EARLY_DATA_WRITE_FLUSH:
2017 /* The buffering BIO is still in place so we need to flush it */
2018 if (statem_flush(s) != 1)
2019 return 0;
2020 *written = num;
2021 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2022 return 1;
2023
2024 case SSL_EARLY_DATA_FINISHED_READING:
2025 case SSL_EARLY_DATA_READ_RETRY:
2026 early_data_state = s->early_data_state;
2027 /* We are a server writing to an unauthenticated client */
2028 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2029 ret = SSL_write_ex(s, buf, num, written);
2030 s->early_data_state = early_data_state;
2031 return ret;
2032
2033 default:
2034 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2035 return 0;
2036 }
2037 }
2038
2039 int SSL_shutdown(SSL *s)
2040 {
2041 /*
2042 * Note that this function behaves differently from what one might
2043 * expect. Return values are 0 for no success (yet), 1 for success; but
2044 * calling it once is usually not enough, even if blocking I/O is used
2045 * (see ssl3_shutdown).
2046 */
2047
2048 if (s->handshake_func == NULL) {
2049 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2050 return -1;
2051 }
2052
2053 if (!SSL_in_init(s)) {
2054 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2055 struct ssl_async_args args;
2056
2057 args.s = s;
2058 args.type = OTHERFUNC;
2059 args.f.func_other = s->method->ssl_shutdown;
2060
2061 return ssl_start_async_job(s, &args, ssl_io_intern);
2062 } else {
2063 return s->method->ssl_shutdown(s);
2064 }
2065 } else {
2066 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2067 return -1;
2068 }
2069 }
2070
2071 int SSL_key_update(SSL *s, int updatetype)
2072 {
2073 /*
2074 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2075 * negotiated, and that it is appropriate to call SSL_key_update() instead
2076 * of SSL_renegotiate().
2077 */
2078 if (!SSL_IS_TLS13(s)) {
2079 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2080 return 0;
2081 }
2082
2083 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2084 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2085 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2086 return 0;
2087 }
2088
2089 if (!SSL_is_init_finished(s)) {
2090 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2091 return 0;
2092 }
2093
2094 ossl_statem_set_in_init(s, 1);
2095 s->key_update = updatetype;
2096 return 1;
2097 }
2098
2099 int SSL_get_key_update_type(SSL *s)
2100 {
2101 return s->key_update;
2102 }
2103
2104 int SSL_renegotiate(SSL *s)
2105 {
2106 if (SSL_IS_TLS13(s)) {
2107 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2108 return 0;
2109 }
2110
2111 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2112 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2113 return 0;
2114 }
2115
2116 s->renegotiate = 1;
2117 s->new_session = 1;
2118
2119 return s->method->ssl_renegotiate(s);
2120 }
2121
2122 int SSL_renegotiate_abbreviated(SSL *s)
2123 {
2124 if (SSL_IS_TLS13(s)) {
2125 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2126 return 0;
2127 }
2128
2129 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2130 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2131 return 0;
2132 }
2133
2134 s->renegotiate = 1;
2135 s->new_session = 0;
2136
2137 return s->method->ssl_renegotiate(s);
2138 }
2139
2140 int SSL_renegotiate_pending(SSL *s)
2141 {
2142 /*
2143 * becomes true when negotiation is requested; false again once a
2144 * handshake has finished
2145 */
2146 return (s->renegotiate != 0);
2147 }
2148
2149 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2150 {
2151 long l;
2152
2153 switch (cmd) {
2154 case SSL_CTRL_GET_READ_AHEAD:
2155 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2156 case SSL_CTRL_SET_READ_AHEAD:
2157 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2158 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2159 return l;
2160
2161 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2162 s->msg_callback_arg = parg;
2163 return 1;
2164
2165 case SSL_CTRL_MODE:
2166 return (s->mode |= larg);
2167 case SSL_CTRL_CLEAR_MODE:
2168 return (s->mode &= ~larg);
2169 case SSL_CTRL_GET_MAX_CERT_LIST:
2170 return (long)s->max_cert_list;
2171 case SSL_CTRL_SET_MAX_CERT_LIST:
2172 if (larg < 0)
2173 return 0;
2174 l = (long)s->max_cert_list;
2175 s->max_cert_list = (size_t)larg;
2176 return l;
2177 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2178 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2179 return 0;
2180 s->max_send_fragment = larg;
2181 if (s->max_send_fragment < s->split_send_fragment)
2182 s->split_send_fragment = s->max_send_fragment;
2183 return 1;
2184 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2185 if ((size_t)larg > s->max_send_fragment || larg == 0)
2186 return 0;
2187 s->split_send_fragment = larg;
2188 return 1;
2189 case SSL_CTRL_SET_MAX_PIPELINES:
2190 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2191 return 0;
2192 s->max_pipelines = larg;
2193 if (larg > 1)
2194 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2195 return 1;
2196 case SSL_CTRL_GET_RI_SUPPORT:
2197 if (s->s3)
2198 return s->s3->send_connection_binding;
2199 else
2200 return 0;
2201 case SSL_CTRL_CERT_FLAGS:
2202 return (s->cert->cert_flags |= larg);
2203 case SSL_CTRL_CLEAR_CERT_FLAGS:
2204 return (s->cert->cert_flags &= ~larg);
2205
2206 case SSL_CTRL_GET_RAW_CIPHERLIST:
2207 if (parg) {
2208 if (s->s3->tmp.ciphers_raw == NULL)
2209 return 0;
2210 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2211 return (int)s->s3->tmp.ciphers_rawlen;
2212 } else {
2213 return TLS_CIPHER_LEN;
2214 }
2215 case SSL_CTRL_GET_EXTMS_SUPPORT:
2216 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2217 return -1;
2218 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2219 return 1;
2220 else
2221 return 0;
2222 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2223 return ssl_check_allowed_versions(larg, s->max_proto_version)
2224 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2225 &s->min_proto_version);
2226 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2227 return s->min_proto_version;
2228 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2229 return ssl_check_allowed_versions(s->min_proto_version, larg)
2230 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2231 &s->max_proto_version);
2232 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2233 return s->max_proto_version;
2234 default:
2235 return s->method->ssl_ctrl(s, cmd, larg, parg);
2236 }
2237 }
2238
2239 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2240 {
2241 switch (cmd) {
2242 case SSL_CTRL_SET_MSG_CALLBACK:
2243 s->msg_callback = (void (*)
2244 (int write_p, int version, int content_type,
2245 const void *buf, size_t len, SSL *ssl,
2246 void *arg))(fp);
2247 return 1;
2248
2249 default:
2250 return s->method->ssl_callback_ctrl(s, cmd, fp);
2251 }
2252 }
2253
2254 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2255 {
2256 return ctx->sessions;
2257 }
2258
2259 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2260 {
2261 long l;
2262 int i;
2263 /* For some cases with ctx == NULL perform syntax checks */
2264 if (ctx == NULL) {
2265 switch (cmd) {
2266 #ifndef OPENSSL_NO_EC
2267 case SSL_CTRL_SET_GROUPS_LIST:
2268 return tls1_set_groups_list(NULL, NULL, parg);
2269 #endif
2270 case SSL_CTRL_SET_SIGALGS_LIST:
2271 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2272 return tls1_set_sigalgs_list(NULL, parg, 0);
2273 default:
2274 return 0;
2275 }
2276 }
2277
2278 switch (cmd) {
2279 case SSL_CTRL_GET_READ_AHEAD:
2280 return ctx->read_ahead;
2281 case SSL_CTRL_SET_READ_AHEAD:
2282 l = ctx->read_ahead;
2283 ctx->read_ahead = larg;
2284 return l;
2285
2286 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2287 ctx->msg_callback_arg = parg;
2288 return 1;
2289
2290 case SSL_CTRL_GET_MAX_CERT_LIST:
2291 return (long)ctx->max_cert_list;
2292 case SSL_CTRL_SET_MAX_CERT_LIST:
2293 if (larg < 0)
2294 return 0;
2295 l = (long)ctx->max_cert_list;
2296 ctx->max_cert_list = (size_t)larg;
2297 return l;
2298
2299 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2300 if (larg < 0)
2301 return 0;
2302 l = (long)ctx->session_cache_size;
2303 ctx->session_cache_size = (size_t)larg;
2304 return l;
2305 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2306 return (long)ctx->session_cache_size;
2307 case SSL_CTRL_SET_SESS_CACHE_MODE:
2308 l = ctx->session_cache_mode;
2309 ctx->session_cache_mode = larg;
2310 return l;
2311 case SSL_CTRL_GET_SESS_CACHE_MODE:
2312 return ctx->session_cache_mode;
2313
2314 case SSL_CTRL_SESS_NUMBER:
2315 return lh_SSL_SESSION_num_items(ctx->sessions);
2316 case SSL_CTRL_SESS_CONNECT:
2317 return CRYPTO_atomic_read(&ctx->stats.sess_connect, &i, ctx->lock)
2318 ? i : 0;
2319 case SSL_CTRL_SESS_CONNECT_GOOD:
2320 return CRYPTO_atomic_read(&ctx->stats.sess_connect_good, &i, ctx->lock)
2321 ? i : 0;
2322 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2323 return CRYPTO_atomic_read(&ctx->stats.sess_connect_renegotiate, &i,
2324 ctx->lock)
2325 ? i : 0;
2326 case SSL_CTRL_SESS_ACCEPT:
2327 return CRYPTO_atomic_read(&ctx->stats.sess_accept, &i, ctx->lock)
2328 ? i : 0;
2329 case SSL_CTRL_SESS_ACCEPT_GOOD:
2330 return CRYPTO_atomic_read(&ctx->stats.sess_accept_good, &i, ctx->lock)
2331 ? i : 0;
2332 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2333 return CRYPTO_atomic_read(&ctx->stats.sess_accept_renegotiate, &i,
2334 ctx->lock)
2335 ? i : 0;
2336 case SSL_CTRL_SESS_HIT:
2337 return CRYPTO_atomic_read(&ctx->stats.sess_hit, &i, ctx->lock)
2338 ? i : 0;
2339 case SSL_CTRL_SESS_CB_HIT:
2340 return CRYPTO_atomic_read(&ctx->stats.sess_cb_hit, &i, ctx->lock)
2341 ? i : 0;
2342 case SSL_CTRL_SESS_MISSES:
2343 return CRYPTO_atomic_read(&ctx->stats.sess_miss, &i, ctx->lock)
2344 ? i : 0;
2345 case SSL_CTRL_SESS_TIMEOUTS:
2346 return CRYPTO_atomic_read(&ctx->stats.sess_timeout, &i, ctx->lock)
2347 ? i : 0;
2348 case SSL_CTRL_SESS_CACHE_FULL:
2349 return CRYPTO_atomic_read(&ctx->stats.sess_cache_full, &i, ctx->lock)
2350 ? i : 0;
2351 case SSL_CTRL_MODE:
2352 return (ctx->mode |= larg);
2353 case SSL_CTRL_CLEAR_MODE:
2354 return (ctx->mode &= ~larg);
2355 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2356 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2357 return 0;
2358 ctx->max_send_fragment = larg;
2359 if (ctx->max_send_fragment < ctx->split_send_fragment)
2360 ctx->split_send_fragment = ctx->max_send_fragment;
2361 return 1;
2362 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2363 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2364 return 0;
2365 ctx->split_send_fragment = larg;
2366 return 1;
2367 case SSL_CTRL_SET_MAX_PIPELINES:
2368 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2369 return 0;
2370 ctx->max_pipelines = larg;
2371 return 1;
2372 case SSL_CTRL_CERT_FLAGS:
2373 return (ctx->cert->cert_flags |= larg);
2374 case SSL_CTRL_CLEAR_CERT_FLAGS:
2375 return (ctx->cert->cert_flags &= ~larg);
2376 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2377 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2378 && ssl_set_version_bound(ctx->method->version, (int)larg,
2379 &ctx->min_proto_version);
2380 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2381 return ctx->min_proto_version;
2382 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2383 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2384 && ssl_set_version_bound(ctx->method->version, (int)larg,
2385 &ctx->max_proto_version);
2386 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2387 return ctx->max_proto_version;
2388 default:
2389 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2390 }
2391 }
2392
2393 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2394 {
2395 switch (cmd) {
2396 case SSL_CTRL_SET_MSG_CALLBACK:
2397 ctx->msg_callback = (void (*)
2398 (int write_p, int version, int content_type,
2399 const void *buf, size_t len, SSL *ssl,
2400 void *arg))(fp);
2401 return 1;
2402
2403 default:
2404 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2405 }
2406 }
2407
2408 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2409 {
2410 if (a->id > b->id)
2411 return 1;
2412 if (a->id < b->id)
2413 return -1;
2414 return 0;
2415 }
2416
2417 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2418 const SSL_CIPHER *const *bp)
2419 {
2420 if ((*ap)->id > (*bp)->id)
2421 return 1;
2422 if ((*ap)->id < (*bp)->id)
2423 return -1;
2424 return 0;
2425 }
2426
2427 /** return a STACK of the ciphers available for the SSL and in order of
2428 * preference */
2429 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2430 {
2431 if (s != NULL) {
2432 if (s->cipher_list != NULL) {
2433 return s->cipher_list;
2434 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2435 return s->ctx->cipher_list;
2436 }
2437 }
2438 return NULL;
2439 }
2440
2441 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2442 {
2443 if ((s == NULL) || (s->session == NULL) || !s->server)
2444 return NULL;
2445 return s->session->ciphers;
2446 }
2447
2448 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2449 {
2450 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2451 int i;
2452 ciphers = SSL_get_ciphers(s);
2453 if (!ciphers)
2454 return NULL;
2455 ssl_set_client_disabled(s);
2456 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2457 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2458 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2459 if (!sk)
2460 sk = sk_SSL_CIPHER_new_null();
2461 if (!sk)
2462 return NULL;
2463 if (!sk_SSL_CIPHER_push(sk, c)) {
2464 sk_SSL_CIPHER_free(sk);
2465 return NULL;
2466 }
2467 }
2468 }
2469 return sk;
2470 }
2471
2472 /** return a STACK of the ciphers available for the SSL and in order of
2473 * algorithm id */
2474 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2475 {
2476 if (s != NULL) {
2477 if (s->cipher_list_by_id != NULL) {
2478 return s->cipher_list_by_id;
2479 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2480 return s->ctx->cipher_list_by_id;
2481 }
2482 }
2483 return NULL;
2484 }
2485
2486 /** The old interface to get the same thing as SSL_get_ciphers() */
2487 const char *SSL_get_cipher_list(const SSL *s, int n)
2488 {
2489 const SSL_CIPHER *c;
2490 STACK_OF(SSL_CIPHER) *sk;
2491
2492 if (s == NULL)
2493 return NULL;
2494 sk = SSL_get_ciphers(s);
2495 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2496 return NULL;
2497 c = sk_SSL_CIPHER_value(sk, n);
2498 if (c == NULL)
2499 return NULL;
2500 return c->name;
2501 }
2502
2503 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2504 * preference */
2505 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2506 {
2507 if (ctx != NULL)
2508 return ctx->cipher_list;
2509 return NULL;
2510 }
2511
2512 /** specify the ciphers to be used by default by the SSL_CTX */
2513 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2514 {
2515 STACK_OF(SSL_CIPHER) *sk;
2516
2517 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2518 &ctx->cipher_list_by_id, str, ctx->cert);
2519 /*
2520 * ssl_create_cipher_list may return an empty stack if it was unable to
2521 * find a cipher matching the given rule string (for example if the rule
2522 * string specifies a cipher which has been disabled). This is not an
2523 * error as far as ssl_create_cipher_list is concerned, and hence
2524 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2525 */
2526 if (sk == NULL)
2527 return 0;
2528 else if (sk_SSL_CIPHER_num(sk) == 0) {
2529 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2530 return 0;
2531 }
2532 return 1;
2533 }
2534
2535 /** specify the ciphers to be used by the SSL */
2536 int SSL_set_cipher_list(SSL *s, const char *str)
2537 {
2538 STACK_OF(SSL_CIPHER) *sk;
2539
2540 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2541 &s->cipher_list_by_id, str, s->cert);
2542 /* see comment in SSL_CTX_set_cipher_list */
2543 if (sk == NULL)
2544 return 0;
2545 else if (sk_SSL_CIPHER_num(sk) == 0) {
2546 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2547 return 0;
2548 }
2549 return 1;
2550 }
2551
2552 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2553 {
2554 char *p;
2555 STACK_OF(SSL_CIPHER) *sk;
2556 const SSL_CIPHER *c;
2557 int i;
2558
2559 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2560 return NULL;
2561
2562 p = buf;
2563 sk = s->session->ciphers;
2564
2565 if (sk_SSL_CIPHER_num(sk) == 0)
2566 return NULL;
2567
2568 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2569 int n;
2570
2571 c = sk_SSL_CIPHER_value(sk, i);
2572 n = strlen(c->name);
2573 if (n + 1 > len) {
2574 if (p != buf)
2575 --p;
2576 *p = '\0';
2577 return buf;
2578 }
2579 strcpy(p, c->name);
2580 p += n;
2581 *(p++) = ':';
2582 len -= n + 1;
2583 }
2584 p[-1] = '\0';
2585 return buf;
2586 }
2587
2588 /** return a servername extension value if provided in Client Hello, or NULL.
2589 * So far, only host_name types are defined (RFC 3546).
2590 */
2591
2592 const char *SSL_get_servername(const SSL *s, const int type)
2593 {
2594 if (type != TLSEXT_NAMETYPE_host_name)
2595 return NULL;
2596
2597 return s->session && !s->ext.hostname ?
2598 s->session->ext.hostname : s->ext.hostname;
2599 }
2600
2601 int SSL_get_servername_type(const SSL *s)
2602 {
2603 if (s->session
2604 && (!s->ext.hostname ? s->session->
2605 ext.hostname : s->ext.hostname))
2606 return TLSEXT_NAMETYPE_host_name;
2607 return -1;
2608 }
2609
2610 /*
2611 * SSL_select_next_proto implements the standard protocol selection. It is
2612 * expected that this function is called from the callback set by
2613 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2614 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2615 * not included in the length. A byte string of length 0 is invalid. No byte
2616 * string may be truncated. The current, but experimental algorithm for
2617 * selecting the protocol is: 1) If the server doesn't support NPN then this
2618 * is indicated to the callback. In this case, the client application has to
2619 * abort the connection or have a default application level protocol. 2) If
2620 * the server supports NPN, but advertises an empty list then the client
2621 * selects the first protocol in its list, but indicates via the API that this
2622 * fallback case was enacted. 3) Otherwise, the client finds the first
2623 * protocol in the server's list that it supports and selects this protocol.
2624 * This is because it's assumed that the server has better information about
2625 * which protocol a client should use. 4) If the client doesn't support any
2626 * of the server's advertised protocols, then this is treated the same as
2627 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2628 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2629 */
2630 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2631 const unsigned char *server,
2632 unsigned int server_len,
2633 const unsigned char *client, unsigned int client_len)
2634 {
2635 unsigned int i, j;
2636 const unsigned char *result;
2637 int status = OPENSSL_NPN_UNSUPPORTED;
2638
2639 /*
2640 * For each protocol in server preference order, see if we support it.
2641 */
2642 for (i = 0; i < server_len;) {
2643 for (j = 0; j < client_len;) {
2644 if (server[i] == client[j] &&
2645 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2646 /* We found a match */
2647 result = &server[i];
2648 status = OPENSSL_NPN_NEGOTIATED;
2649 goto found;
2650 }
2651 j += client[j];
2652 j++;
2653 }
2654 i += server[i];
2655 i++;
2656 }
2657
2658 /* There's no overlap between our protocols and the server's list. */
2659 result = client;
2660 status = OPENSSL_NPN_NO_OVERLAP;
2661
2662 found:
2663 *out = (unsigned char *)result + 1;
2664 *outlen = result[0];
2665 return status;
2666 }
2667
2668 #ifndef OPENSSL_NO_NEXTPROTONEG
2669 /*
2670 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2671 * client's requested protocol for this connection and returns 0. If the
2672 * client didn't request any protocol, then *data is set to NULL. Note that
2673 * the client can request any protocol it chooses. The value returned from
2674 * this function need not be a member of the list of supported protocols
2675 * provided by the callback.
2676 */
2677 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2678 unsigned *len)
2679 {
2680 *data = s->ext.npn;
2681 if (!*data) {
2682 *len = 0;
2683 } else {
2684 *len = (unsigned int)s->ext.npn_len;
2685 }
2686 }
2687
2688 /*
2689 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2690 * a TLS server needs a list of supported protocols for Next Protocol
2691 * Negotiation. The returned list must be in wire format. The list is
2692 * returned by setting |out| to point to it and |outlen| to its length. This
2693 * memory will not be modified, but one should assume that the SSL* keeps a
2694 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2695 * wishes to advertise. Otherwise, no such extension will be included in the
2696 * ServerHello.
2697 */
2698 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2699 SSL_CTX_npn_advertised_cb_func cb,
2700 void *arg)
2701 {
2702 ctx->ext.npn_advertised_cb = cb;
2703 ctx->ext.npn_advertised_cb_arg = arg;
2704 }
2705
2706 /*
2707 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2708 * client needs to select a protocol from the server's provided list. |out|
2709 * must be set to point to the selected protocol (which may be within |in|).
2710 * The length of the protocol name must be written into |outlen|. The
2711 * server's advertised protocols are provided in |in| and |inlen|. The
2712 * callback can assume that |in| is syntactically valid. The client must
2713 * select a protocol. It is fatal to the connection if this callback returns
2714 * a value other than SSL_TLSEXT_ERR_OK.
2715 */
2716 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2717 SSL_CTX_npn_select_cb_func cb,
2718 void *arg)
2719 {
2720 ctx->ext.npn_select_cb = cb;
2721 ctx->ext.npn_select_cb_arg = arg;
2722 }
2723 #endif
2724
2725 /*
2726 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2727 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2728 * length-prefixed strings). Returns 0 on success.
2729 */
2730 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2731 unsigned int protos_len)
2732 {
2733 OPENSSL_free(ctx->ext.alpn);
2734 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2735 if (ctx->ext.alpn == NULL) {
2736 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2737 return 1;
2738 }
2739 ctx->ext.alpn_len = protos_len;
2740
2741 return 0;
2742 }
2743
2744 /*
2745 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2746 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2747 * length-prefixed strings). Returns 0 on success.
2748 */
2749 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2750 unsigned int protos_len)
2751 {
2752 OPENSSL_free(ssl->ext.alpn);
2753 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2754 if (ssl->ext.alpn == NULL) {
2755 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2756 return 1;
2757 }
2758 ssl->ext.alpn_len = protos_len;
2759
2760 return 0;
2761 }
2762
2763 /*
2764 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2765 * called during ClientHello processing in order to select an ALPN protocol
2766 * from the client's list of offered protocols.
2767 */
2768 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2769 SSL_CTX_alpn_select_cb_func cb,
2770 void *arg)
2771 {
2772 ctx->ext.alpn_select_cb = cb;
2773 ctx->ext.alpn_select_cb_arg = arg;
2774 }
2775
2776 /*
2777 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2778 * On return it sets |*data| to point to |*len| bytes of protocol name
2779 * (not including the leading length-prefix byte). If the server didn't
2780 * respond with a negotiated protocol then |*len| will be zero.
2781 */
2782 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2783 unsigned int *len)
2784 {
2785 *data = NULL;
2786 if (ssl->s3)
2787 *data = ssl->s3->alpn_selected;
2788 if (*data == NULL)
2789 *len = 0;
2790 else
2791 *len = (unsigned int)ssl->s3->alpn_selected_len;
2792 }
2793
2794 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2795 const char *label, size_t llen,
2796 const unsigned char *context, size_t contextlen,
2797 int use_context)
2798 {
2799 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2800 return -1;
2801
2802 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2803 llen, context,
2804 contextlen, use_context);
2805 }
2806
2807 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2808 {
2809 const unsigned char *session_id = a->session_id;
2810 unsigned long l;
2811 unsigned char tmp_storage[4];
2812
2813 if (a->session_id_length < sizeof(tmp_storage)) {
2814 memset(tmp_storage, 0, sizeof(tmp_storage));
2815 memcpy(tmp_storage, a->session_id, a->session_id_length);
2816 session_id = tmp_storage;
2817 }
2818
2819 l = (unsigned long)
2820 ((unsigned long)session_id[0]) |
2821 ((unsigned long)session_id[1] << 8L) |
2822 ((unsigned long)session_id[2] << 16L) |
2823 ((unsigned long)session_id[3] << 24L);
2824 return l;
2825 }
2826
2827 /*
2828 * NB: If this function (or indeed the hash function which uses a sort of
2829 * coarser function than this one) is changed, ensure
2830 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2831 * being able to construct an SSL_SESSION that will collide with any existing
2832 * session with a matching session ID.
2833 */
2834 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2835 {
2836 if (a->ssl_version != b->ssl_version)
2837 return 1;
2838 if (a->session_id_length != b->session_id_length)
2839 return 1;
2840 return memcmp(a->session_id, b->session_id, a->session_id_length);
2841 }
2842
2843 /*
2844 * These wrapper functions should remain rather than redeclaring
2845 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2846 * variable. The reason is that the functions aren't static, they're exposed
2847 * via ssl.h.
2848 */
2849
2850 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2851 {
2852 SSL_CTX *ret = NULL;
2853
2854 if (meth == NULL) {
2855 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2856 return NULL;
2857 }
2858
2859 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2860 return NULL;
2861
2862 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2863 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2864 goto err;
2865 }
2866 ret = OPENSSL_zalloc(sizeof(*ret));
2867 if (ret == NULL)
2868 goto err;
2869
2870 ret->method = meth;
2871 ret->min_proto_version = 0;
2872 ret->max_proto_version = 0;
2873 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2874 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2875 /* We take the system default. */
2876 ret->session_timeout = meth->get_timeout();
2877 ret->references = 1;
2878 ret->lock = CRYPTO_THREAD_lock_new();
2879 if (ret->lock == NULL) {
2880 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2881 OPENSSL_free(ret);
2882 return NULL;
2883 }
2884 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2885 ret->verify_mode = SSL_VERIFY_NONE;
2886 if ((ret->cert = ssl_cert_new()) == NULL)
2887 goto err;
2888
2889 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2890 if (ret->sessions == NULL)
2891 goto err;
2892 ret->cert_store = X509_STORE_new();
2893 if (ret->cert_store == NULL)
2894 goto err;
2895 #ifndef OPENSSL_NO_CT
2896 ret->ctlog_store = CTLOG_STORE_new();
2897 if (ret->ctlog_store == NULL)
2898 goto err;
2899 #endif
2900 if (!ssl_create_cipher_list(ret->method,
2901 &ret->cipher_list, &ret->cipher_list_by_id,
2902 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2903 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2904 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2905 goto err2;
2906 }
2907
2908 ret->param = X509_VERIFY_PARAM_new();
2909 if (ret->param == NULL)
2910 goto err;
2911
2912 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2913 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2914 goto err2;
2915 }
2916 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2917 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2918 goto err2;
2919 }
2920
2921 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
2922 goto err;
2923
2924 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2925 goto err;
2926
2927 /* No compression for DTLS */
2928 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2929 ret->comp_methods = SSL_COMP_get_compression_methods();
2930
2931 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2932 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2933
2934 /* Setup RFC5077 ticket keys */
2935 if ((RAND_bytes(ret->ext.tick_key_name,
2936 sizeof(ret->ext.tick_key_name)) <= 0)
2937 || (RAND_bytes(ret->ext.tick_hmac_key,
2938 sizeof(ret->ext.tick_hmac_key)) <= 0)
2939 || (RAND_bytes(ret->ext.tick_aes_key,
2940 sizeof(ret->ext.tick_aes_key)) <= 0))
2941 ret->options |= SSL_OP_NO_TICKET;
2942
2943 if (RAND_bytes(ret->ext.cookie_hmac_key,
2944 sizeof(ret->ext.cookie_hmac_key)) <= 0)
2945 goto err;
2946
2947 #ifndef OPENSSL_NO_SRP
2948 if (!SSL_CTX_SRP_CTX_init(ret))
2949 goto err;
2950 #endif
2951 #ifndef OPENSSL_NO_ENGINE
2952 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2953 # define eng_strx(x) #x
2954 # define eng_str(x) eng_strx(x)
2955 /* Use specific client engine automatically... ignore errors */
2956 {
2957 ENGINE *eng;
2958 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2959 if (!eng) {
2960 ERR_clear_error();
2961 ENGINE_load_builtin_engines();
2962 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2963 }
2964 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2965 ERR_clear_error();
2966 }
2967 # endif
2968 #endif
2969 /*
2970 * Default is to connect to non-RI servers. When RI is more widely
2971 * deployed might change this.
2972 */
2973 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2974 /*
2975 * Disable compression by default to prevent CRIME. Applications can
2976 * re-enable compression by configuring
2977 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2978 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
2979 * middlebox compatibility by default. This may be disabled by default in
2980 * a later OpenSSL version.
2981 */
2982 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
2983
2984 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
2985
2986 /*
2987 * Default max early data is a fully loaded single record. Could be split
2988 * across multiple records in practice
2989 */
2990 ret->max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
2991
2992 return ret;
2993 err:
2994 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2995 err2:
2996 SSL_CTX_free(ret);
2997 return NULL;
2998 }
2999
3000 int SSL_CTX_up_ref(SSL_CTX *ctx)
3001 {
3002 int i;
3003
3004 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3005 return 0;
3006
3007 REF_PRINT_COUNT("SSL_CTX", ctx);
3008 REF_ASSERT_ISNT(i < 2);
3009 return ((i > 1) ? 1 : 0);
3010 }
3011
3012 void SSL_CTX_free(SSL_CTX *a)
3013 {
3014 int i;
3015
3016 if (a == NULL)
3017 return;
3018
3019 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3020 REF_PRINT_COUNT("SSL_CTX", a);
3021 if (i > 0)
3022 return;
3023 REF_ASSERT_ISNT(i < 0);
3024
3025 X509_VERIFY_PARAM_free(a->param);
3026 dane_ctx_final(&a->dane);
3027
3028 /*
3029 * Free internal session cache. However: the remove_cb() may reference
3030 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3031 * after the sessions were flushed.
3032 * As the ex_data handling routines might also touch the session cache,
3033 * the most secure solution seems to be: empty (flush) the cache, then
3034 * free ex_data, then finally free the cache.
3035 * (See ticket [openssl.org #212].)
3036 */
3037 if (a->sessions != NULL)
3038 SSL_CTX_flush_sessions(a, 0);
3039
3040 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3041 lh_SSL_SESSION_free(a->sessions);
3042 X509_STORE_free(a->cert_store);
3043 #ifndef OPENSSL_NO_CT
3044 CTLOG_STORE_free(a->ctlog_store);
3045 #endif
3046 sk_SSL_CIPHER_free(a->cipher_list);
3047 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3048 ssl_cert_free(a->cert);
3049 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3050 sk_X509_pop_free(a->extra_certs, X509_free);
3051 a->comp_methods = NULL;
3052 #ifndef OPENSSL_NO_SRTP
3053 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3054 #endif
3055 #ifndef OPENSSL_NO_SRP
3056 SSL_CTX_SRP_CTX_free(a);
3057 #endif
3058 #ifndef OPENSSL_NO_ENGINE
3059 ENGINE_finish(a->client_cert_engine);
3060 #endif
3061
3062 #ifndef OPENSSL_NO_EC
3063 OPENSSL_free(a->ext.ecpointformats);
3064 OPENSSL_free(a->ext.supportedgroups);
3065 #endif
3066 OPENSSL_free(a->ext.alpn);
3067
3068 CRYPTO_THREAD_lock_free(a->lock);
3069
3070 OPENSSL_free(a);
3071 }
3072
3073 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3074 {
3075 ctx->default_passwd_callback = cb;
3076 }
3077
3078 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3079 {
3080 ctx->default_passwd_callback_userdata = u;
3081 }
3082
3083 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3084 {
3085 return ctx->default_passwd_callback;
3086 }
3087
3088 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3089 {
3090 return ctx->default_passwd_callback_userdata;
3091 }
3092
3093 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3094 {
3095 s->default_passwd_callback = cb;
3096 }
3097
3098 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3099 {
3100 s->default_passwd_callback_userdata = u;
3101 }
3102
3103 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3104 {
3105 return s->default_passwd_callback;
3106 }
3107
3108 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3109 {
3110 return s->default_passwd_callback_userdata;
3111 }
3112
3113 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3114 int (*cb) (X509_STORE_CTX *, void *),
3115 void *arg)
3116 {
3117 ctx->app_verify_callback = cb;
3118 ctx->app_verify_arg = arg;
3119 }
3120
3121 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3122 int (*cb) (int, X509_STORE_CTX *))
3123 {
3124 ctx->verify_mode = mode;
3125 ctx->default_verify_callback = cb;
3126 }
3127
3128 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3129 {
3130 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3131 }
3132
3133 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3134 {
3135 ssl_cert_set_cert_cb(c->cert, cb, arg);
3136 }
3137
3138 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3139 {
3140 ssl_cert_set_cert_cb(s->cert, cb, arg);
3141 }
3142
3143 void ssl_set_masks(SSL *s)
3144 {
3145 CERT *c = s->cert;
3146 uint32_t *pvalid = s->s3->tmp.valid_flags;
3147 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3148 unsigned long mask_k, mask_a;
3149 #ifndef OPENSSL_NO_EC
3150 int have_ecc_cert, ecdsa_ok;
3151 #endif
3152 if (c == NULL)
3153 return;
3154
3155 #ifndef OPENSSL_NO_DH
3156 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3157 #else
3158 dh_tmp = 0;
3159 #endif
3160
3161 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3162 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3163 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3164 #ifndef OPENSSL_NO_EC
3165 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3166 #endif
3167 mask_k = 0;
3168 mask_a = 0;
3169
3170 #ifdef CIPHER_DEBUG
3171 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3172 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3173 #endif
3174
3175 #ifndef OPENSSL_NO_GOST
3176 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3177 mask_k |= SSL_kGOST;
3178 mask_a |= SSL_aGOST12;
3179 }
3180 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3181 mask_k |= SSL_kGOST;
3182 mask_a |= SSL_aGOST12;
3183 }
3184 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3185 mask_k |= SSL_kGOST;
3186 mask_a |= SSL_aGOST01;
3187 }
3188 #endif
3189
3190 if (rsa_enc)
3191 mask_k |= SSL_kRSA;
3192
3193 if (dh_tmp)
3194 mask_k |= SSL_kDHE;
3195
3196 /*
3197 * If we only have an RSA-PSS certificate allow RSA authentication
3198 * if TLS 1.2 and peer supports it.
3199 */
3200
3201 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3202 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3203 && TLS1_get_version(s) == TLS1_2_VERSION))
3204 mask_a |= SSL_aRSA;
3205
3206 if (dsa_sign) {
3207 mask_a |= SSL_aDSS;
3208 }
3209
3210 mask_a |= SSL_aNULL;
3211
3212 /*
3213 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3214 * depending on the key usage extension.
3215 */
3216 #ifndef OPENSSL_NO_EC
3217 if (have_ecc_cert) {
3218 uint32_t ex_kusage;
3219 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3220 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3221 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3222 ecdsa_ok = 0;
3223 if (ecdsa_ok)
3224 mask_a |= SSL_aECDSA;
3225 }
3226 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3227 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3228 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3229 && TLS1_get_version(s) == TLS1_2_VERSION)
3230 mask_a |= SSL_aECDSA;
3231 #endif
3232
3233 #ifndef OPENSSL_NO_EC
3234 mask_k |= SSL_kECDHE;
3235 #endif
3236
3237 #ifndef OPENSSL_NO_PSK
3238 mask_k |= SSL_kPSK;
3239 mask_a |= SSL_aPSK;
3240 if (mask_k & SSL_kRSA)
3241 mask_k |= SSL_kRSAPSK;
3242 if (mask_k & SSL_kDHE)
3243 mask_k |= SSL_kDHEPSK;
3244 if (mask_k & SSL_kECDHE)
3245 mask_k |= SSL_kECDHEPSK;
3246 #endif
3247
3248 s->s3->tmp.mask_k = mask_k;
3249 s->s3->tmp.mask_a = mask_a;
3250 }
3251
3252 #ifndef OPENSSL_NO_EC
3253
3254 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3255 {
3256 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3257 /* key usage, if present, must allow signing */
3258 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3259 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3260 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3261 return 0;
3262 }
3263 }
3264 return 1; /* all checks are ok */
3265 }
3266
3267 #endif
3268
3269 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3270 size_t *serverinfo_length)
3271 {
3272 CERT_PKEY *cpk = s->s3->tmp.cert;
3273 *serverinfo_length = 0;
3274
3275 if (cpk == NULL || cpk->serverinfo == NULL)
3276 return 0;
3277
3278 *serverinfo = cpk->serverinfo;
3279 *serverinfo_length = cpk->serverinfo_length;
3280 return 1;
3281 }
3282
3283 void ssl_update_cache(SSL *s, int mode)
3284 {
3285 int i;
3286
3287 /*
3288 * If the session_id_length is 0, we are not supposed to cache it, and it
3289 * would be rather hard to do anyway :-)
3290 */
3291 if (s->session->session_id_length == 0)
3292 return;
3293
3294 i = s->session_ctx->session_cache_mode;
3295 if ((i & mode) != 0
3296 && (!s->hit || SSL_IS_TLS13(s))
3297 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) != 0
3298 || SSL_CTX_add_session(s->session_ctx, s->session))
3299 && s->session_ctx->new_session_cb != NULL) {
3300 SSL_SESSION_up_ref(s->session);
3301 if (!s->session_ctx->new_session_cb(s, s->session))
3302 SSL_SESSION_free(s->session);
3303 }
3304
3305 /* auto flush every 255 connections */
3306 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3307 int *stat, val;
3308 if (mode & SSL_SESS_CACHE_CLIENT)
3309 stat = &s->session_ctx->stats.sess_connect_good;
3310 else
3311 stat = &s->session_ctx->stats.sess_accept_good;
3312 if (CRYPTO_atomic_read(stat, &val, s->session_ctx->lock)
3313 && (val & 0xff) == 0xff)
3314 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3315 }
3316 }
3317
3318 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
3319 {
3320 return ctx->method;
3321 }
3322
3323 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
3324 {
3325 return s->method;
3326 }
3327
3328 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3329 {
3330 int ret = 1;
3331
3332 if (s->method != meth) {
3333 const SSL_METHOD *sm = s->method;
3334 int (*hf) (SSL *) = s->handshake_func;
3335
3336 if (sm->version == meth->version)
3337 s->method = meth;
3338 else {
3339 sm->ssl_free(s);
3340 s->method = meth;
3341 ret = s->method->ssl_new(s);
3342 }
3343
3344 if (hf == sm->ssl_connect)
3345 s->handshake_func = meth->ssl_connect;
3346 else if (hf == sm->ssl_accept)
3347 s->handshake_func = meth->ssl_accept;
3348 }
3349 return ret;
3350 }
3351
3352 int SSL_get_error(const SSL *s, int i)
3353 {
3354 int reason;
3355 unsigned long l;
3356 BIO *bio;
3357
3358 if (i > 0)
3359 return SSL_ERROR_NONE;
3360
3361 /*
3362 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3363 * where we do encode the error
3364 */
3365 if ((l = ERR_peek_error()) != 0) {
3366 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3367 return SSL_ERROR_SYSCALL;
3368 else
3369 return SSL_ERROR_SSL;
3370 }
3371
3372 if (SSL_want_read(s)) {
3373 bio = SSL_get_rbio(s);
3374 if (BIO_should_read(bio))
3375 return SSL_ERROR_WANT_READ;
3376 else if (BIO_should_write(bio))
3377 /*
3378 * This one doesn't make too much sense ... We never try to write
3379 * to the rbio, and an application program where rbio and wbio
3380 * are separate couldn't even know what it should wait for.
3381 * However if we ever set s->rwstate incorrectly (so that we have
3382 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3383 * wbio *are* the same, this test works around that bug; so it
3384 * might be safer to keep it.
3385 */
3386 return SSL_ERROR_WANT_WRITE;
3387 else if (BIO_should_io_special(bio)) {
3388 reason = BIO_get_retry_reason(bio);
3389 if (reason == BIO_RR_CONNECT)
3390 return SSL_ERROR_WANT_CONNECT;
3391 else if (reason == BIO_RR_ACCEPT)
3392 return SSL_ERROR_WANT_ACCEPT;
3393 else
3394 return SSL_ERROR_SYSCALL; /* unknown */
3395 }
3396 }
3397
3398 if (SSL_want_write(s)) {
3399 /* Access wbio directly - in order to use the buffered bio if present */
3400 bio = s->wbio;
3401 if (BIO_should_write(bio))
3402 return SSL_ERROR_WANT_WRITE;
3403 else if (BIO_should_read(bio))
3404 /*
3405 * See above (SSL_want_read(s) with BIO_should_write(bio))
3406 */
3407 return SSL_ERROR_WANT_READ;
3408 else if (BIO_should_io_special(bio)) {
3409 reason = BIO_get_retry_reason(bio);
3410 if (reason == BIO_RR_CONNECT)
3411 return SSL_ERROR_WANT_CONNECT;
3412 else if (reason == BIO_RR_ACCEPT)
3413 return SSL_ERROR_WANT_ACCEPT;
3414 else
3415 return SSL_ERROR_SYSCALL;
3416 }
3417 }
3418 if (SSL_want_x509_lookup(s))
3419 return SSL_ERROR_WANT_X509_LOOKUP;
3420 if (SSL_want_async(s))
3421 return SSL_ERROR_WANT_ASYNC;
3422 if (SSL_want_async_job(s))
3423 return SSL_ERROR_WANT_ASYNC_JOB;
3424 if (SSL_want_client_hello_cb(s))
3425 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3426
3427 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3428 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3429 return SSL_ERROR_ZERO_RETURN;
3430
3431 return SSL_ERROR_SYSCALL;
3432 }
3433
3434 static int ssl_do_handshake_intern(void *vargs)
3435 {
3436 struct ssl_async_args *args;
3437 SSL *s;
3438
3439 args = (struct ssl_async_args *)vargs;
3440 s = args->s;
3441
3442 return s->handshake_func(s);
3443 }
3444
3445 int SSL_do_handshake(SSL *s)
3446 {
3447 int ret = 1;
3448
3449 if (s->handshake_func == NULL) {
3450 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3451 return -1;
3452 }
3453
3454 ossl_statem_check_finish_init(s, -1);
3455
3456 s->method->ssl_renegotiate_check(s, 0);
3457
3458 if (SSL_is_server(s)) {
3459 /* clear SNI settings at server-side */
3460 OPENSSL_free(s->ext.hostname);
3461 s->ext.hostname = NULL;
3462 }
3463
3464 if (SSL_in_init(s) || SSL_in_before(s)) {
3465 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3466 struct ssl_async_args args;
3467
3468 args.s = s;
3469
3470 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3471 } else {
3472 ret = s->handshake_func(s);
3473 }
3474 }
3475 return ret;
3476 }
3477
3478 void SSL_set_accept_state(SSL *s)
3479 {
3480 s->server = 1;
3481 s->shutdown = 0;
3482 ossl_statem_clear(s);
3483 s->handshake_func = s->method->ssl_accept;
3484 clear_ciphers(s);
3485 }
3486
3487 void SSL_set_connect_state(SSL *s)
3488 {
3489 s->server = 0;
3490 s->shutdown = 0;
3491 ossl_statem_clear(s);
3492 s->handshake_func = s->method->ssl_connect;
3493 clear_ciphers(s);
3494 }
3495
3496 int ssl_undefined_function(SSL *s)
3497 {
3498 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3499 return 0;
3500 }
3501
3502 int ssl_undefined_void_function(void)
3503 {
3504 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3505 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3506 return 0;
3507 }
3508
3509 int ssl_undefined_const_function(const SSL *s)
3510 {
3511 return 0;
3512 }
3513
3514 const SSL_METHOD *ssl_bad_method(int ver)
3515 {
3516 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3517 return NULL;
3518 }
3519
3520 const char *ssl_protocol_to_string(int version)
3521 {
3522 switch(version)
3523 {
3524 case TLS1_3_VERSION:
3525 return "TLSv1.3";
3526
3527 case TLS1_2_VERSION:
3528 return "TLSv1.2";
3529
3530 case TLS1_1_VERSION:
3531 return "TLSv1.1";
3532
3533 case TLS1_VERSION:
3534 return "TLSv1";
3535
3536 case SSL3_VERSION:
3537 return "SSLv3";
3538
3539 case DTLS1_BAD_VER:
3540 return "DTLSv0.9";
3541
3542 case DTLS1_VERSION:
3543 return "DTLSv1";
3544
3545 case DTLS1_2_VERSION:
3546 return "DTLSv1.2";
3547
3548 default:
3549 return "unknown";
3550 }
3551 }
3552
3553 const char *SSL_get_version(const SSL *s)
3554 {
3555 return ssl_protocol_to_string(s->version);
3556 }
3557
3558 SSL *SSL_dup(SSL *s)
3559 {
3560 STACK_OF(X509_NAME) *sk;
3561 X509_NAME *xn;
3562 SSL *ret;
3563 int i;
3564
3565 /* If we're not quiescent, just up_ref! */
3566 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3567 CRYPTO_UP_REF(&s->references, &i, s->lock);
3568 return s;
3569 }
3570
3571 /*
3572 * Otherwise, copy configuration state, and session if set.
3573 */
3574 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3575 return NULL;
3576
3577 if (s->session != NULL) {
3578 /*
3579 * Arranges to share the same session via up_ref. This "copies"
3580 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3581 */
3582 if (!SSL_copy_session_id(ret, s))
3583 goto err;
3584 } else {
3585 /*
3586 * No session has been established yet, so we have to expect that
3587 * s->cert or ret->cert will be changed later -- they should not both
3588 * point to the same object, and thus we can't use
3589 * SSL_copy_session_id.
3590 */
3591 if (!SSL_set_ssl_method(ret, s->method))
3592 goto err;
3593
3594 if (s->cert != NULL) {
3595 ssl_cert_free(ret->cert);
3596 ret->cert = ssl_cert_dup(s->cert);
3597 if (ret->cert == NULL)
3598 goto err;
3599 }
3600
3601 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3602 (int)s->sid_ctx_length))
3603 goto err;
3604 }
3605
3606 if (!ssl_dane_dup(ret, s))
3607 goto err;
3608 ret->version = s->version;
3609 ret->options = s->options;
3610 ret->mode = s->mode;
3611 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3612 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3613 ret->msg_callback = s->msg_callback;
3614 ret->msg_callback_arg = s->msg_callback_arg;
3615 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3616 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3617 ret->generate_session_id = s->generate_session_id;
3618
3619 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3620
3621 /* copy app data, a little dangerous perhaps */
3622 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3623 goto err;
3624
3625 /* setup rbio, and wbio */
3626 if (s->rbio != NULL) {
3627 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3628 goto err;
3629 }
3630 if (s->wbio != NULL) {
3631 if (s->wbio != s->rbio) {
3632 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3633 goto err;
3634 } else {
3635 BIO_up_ref(ret->rbio);
3636 ret->wbio = ret->rbio;
3637 }
3638 }
3639
3640 ret->server = s->server;
3641 if (s->handshake_func) {
3642 if (s->server)
3643 SSL_set_accept_state(ret);
3644 else
3645 SSL_set_connect_state(ret);
3646 }
3647 ret->shutdown = s->shutdown;
3648 ret->hit = s->hit;
3649
3650 ret->default_passwd_callback = s->default_passwd_callback;
3651 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3652
3653 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3654
3655 /* dup the cipher_list and cipher_list_by_id stacks */
3656 if (s->cipher_list != NULL) {
3657 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3658 goto err;
3659 }
3660 if (s->cipher_list_by_id != NULL)
3661 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3662 == NULL)
3663 goto err;
3664
3665 /* Dup the client_CA list */
3666 if (s->ca_names != NULL) {
3667 if ((sk = sk_X509_NAME_dup(s->ca_names)) == NULL)
3668 goto err;
3669 ret->ca_names = sk;
3670 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3671 xn = sk_X509_NAME_value(sk, i);
3672 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3673 X509_NAME_free(xn);
3674 goto err;
3675 }
3676 }
3677 }
3678 return ret;
3679
3680 err:
3681 SSL_free(ret);
3682 return NULL;
3683 }
3684
3685 void ssl_clear_cipher_ctx(SSL *s)
3686 {
3687 if (s->enc_read_ctx != NULL) {
3688 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3689 s->enc_read_ctx = NULL;
3690 }
3691 if (s->enc_write_ctx != NULL) {
3692 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3693 s->enc_write_ctx = NULL;
3694 }
3695 #ifndef OPENSSL_NO_COMP
3696 COMP_CTX_free(s->expand);
3697 s->expand = NULL;
3698 COMP_CTX_free(s->compress);
3699 s->compress = NULL;
3700 #endif
3701 }
3702
3703 X509 *SSL_get_certificate(const SSL *s)
3704 {
3705 if (s->cert != NULL)
3706 return s->cert->key->x509;
3707 else
3708 return NULL;
3709 }
3710
3711 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3712 {
3713 if (s->cert != NULL)
3714 return s->cert->key->privatekey;
3715 else
3716 return NULL;
3717 }
3718
3719 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3720 {
3721 if (ctx->cert != NULL)
3722 return ctx->cert->key->x509;
3723 else
3724 return NULL;
3725 }
3726
3727 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3728 {
3729 if (ctx->cert != NULL)
3730 return ctx->cert->key->privatekey;
3731 else
3732 return NULL;
3733 }
3734
3735 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3736 {
3737 if ((s->session != NULL) && (s->session->cipher != NULL))
3738 return s->session->cipher;
3739 return NULL;
3740 }
3741
3742 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3743 {
3744 return s->s3->tmp.new_cipher;
3745 }
3746
3747 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3748 {
3749 #ifndef OPENSSL_NO_COMP
3750 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3751 #else
3752 return NULL;
3753 #endif
3754 }
3755
3756 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3757 {
3758 #ifndef OPENSSL_NO_COMP
3759 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3760 #else
3761 return NULL;
3762 #endif
3763 }
3764
3765 int ssl_init_wbio_buffer(SSL *s)
3766 {
3767 BIO *bbio;
3768
3769 if (s->bbio != NULL) {
3770 /* Already buffered. */
3771 return 1;
3772 }
3773
3774 bbio = BIO_new(BIO_f_buffer());
3775 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3776 BIO_free(bbio);
3777 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3778 return 0;
3779 }
3780 s->bbio = bbio;
3781 s->wbio = BIO_push(bbio, s->wbio);
3782
3783 return 1;
3784 }
3785
3786 int ssl_free_wbio_buffer(SSL *s)
3787 {
3788 /* callers ensure s is never null */
3789 if (s->bbio == NULL)
3790 return 1;
3791
3792 s->wbio = BIO_pop(s->wbio);
3793 if (!ossl_assert(s->wbio != NULL))
3794 return 0;
3795 BIO_free(s->bbio);
3796 s->bbio = NULL;
3797
3798 return 1;
3799 }
3800
3801 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3802 {
3803 ctx->quiet_shutdown = mode;
3804 }
3805
3806 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3807 {
3808 return ctx->quiet_shutdown;
3809 }
3810
3811 void SSL_set_quiet_shutdown(SSL *s, int mode)
3812 {
3813 s->quiet_shutdown = mode;
3814 }
3815
3816 int SSL_get_quiet_shutdown(const SSL *s)
3817 {
3818 return s->quiet_shutdown;
3819 }
3820
3821 void SSL_set_shutdown(SSL *s, int mode)
3822 {
3823 s->shutdown = mode;
3824 }
3825
3826 int SSL_get_shutdown(const SSL *s)
3827 {
3828 return s->shutdown;
3829 }
3830
3831 int SSL_version(const SSL *s)
3832 {
3833 return s->version;
3834 }
3835
3836 int SSL_client_version(const SSL *s)
3837 {
3838 return s->client_version;
3839 }
3840
3841 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3842 {
3843 return ssl->ctx;
3844 }
3845
3846 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3847 {
3848 CERT *new_cert;
3849 if (ssl->ctx == ctx)
3850 return ssl->ctx;
3851 if (ctx == NULL)
3852 ctx = ssl->session_ctx;
3853 new_cert = ssl_cert_dup(ctx->cert);
3854 if (new_cert == NULL) {
3855 return NULL;
3856 }
3857
3858 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
3859 ssl_cert_free(new_cert);
3860 return NULL;
3861 }
3862
3863 ssl_cert_free(ssl->cert);
3864 ssl->cert = new_cert;
3865
3866 /*
3867 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3868 * so setter APIs must prevent invalid lengths from entering the system.
3869 */
3870 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
3871 return NULL;
3872
3873 /*
3874 * If the session ID context matches that of the parent SSL_CTX,
3875 * inherit it from the new SSL_CTX as well. If however the context does
3876 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3877 * leave it unchanged.
3878 */
3879 if ((ssl->ctx != NULL) &&
3880 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3881 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3882 ssl->sid_ctx_length = ctx->sid_ctx_length;
3883 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3884 }
3885
3886 SSL_CTX_up_ref(ctx);
3887 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3888 ssl->ctx = ctx;
3889
3890 return ssl->ctx;
3891 }
3892
3893 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3894 {
3895 return X509_STORE_set_default_paths(ctx->cert_store);
3896 }
3897
3898 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3899 {
3900 X509_LOOKUP *lookup;
3901
3902 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3903 if (lookup == NULL)
3904 return 0;
3905 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3906
3907 /* Clear any errors if the default directory does not exist */
3908 ERR_clear_error();
3909
3910 return 1;
3911 }
3912
3913 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3914 {
3915 X509_LOOKUP *lookup;
3916
3917 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3918 if (lookup == NULL)
3919 return 0;
3920
3921 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3922
3923 /* Clear any errors if the default file does not exist */
3924 ERR_clear_error();
3925
3926 return 1;
3927 }
3928
3929 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3930 const char *CApath)
3931 {
3932 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
3933 }
3934
3935 void SSL_set_info_callback(SSL *ssl,
3936 void (*cb) (const SSL *ssl, int type, int val))
3937 {
3938 ssl->info_callback = cb;
3939 }
3940
3941 /*
3942 * One compiler (Diab DCC) doesn't like argument names in returned function
3943 * pointer.
3944 */
3945 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3946 int /* type */ ,
3947 int /* val */ ) {
3948 return ssl->info_callback;
3949 }
3950
3951 void SSL_set_verify_result(SSL *ssl, long arg)
3952 {
3953 ssl->verify_result = arg;
3954 }
3955
3956 long SSL_get_verify_result(const SSL *ssl)
3957 {
3958 return ssl->verify_result;
3959 }
3960
3961 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3962 {
3963 if (outlen == 0)
3964 return sizeof(ssl->s3->client_random);
3965 if (outlen > sizeof(ssl->s3->client_random))
3966 outlen = sizeof(ssl->s3->client_random);
3967 memcpy(out, ssl->s3->client_random, outlen);
3968 return outlen;
3969 }
3970
3971 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3972 {
3973 if (outlen == 0)
3974 return sizeof(ssl->s3->server_random);
3975 if (outlen > sizeof(ssl->s3->server_random))
3976 outlen = sizeof(ssl->s3->server_random);
3977 memcpy(out, ssl->s3->server_random, outlen);
3978 return outlen;
3979 }
3980
3981 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3982 unsigned char *out, size_t outlen)
3983 {
3984 if (outlen == 0)
3985 return session->master_key_length;
3986 if (outlen > session->master_key_length)
3987 outlen = session->master_key_length;
3988 memcpy(out, session->master_key, outlen);
3989 return outlen;
3990 }
3991
3992 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
3993 size_t len)
3994 {
3995 if (len > sizeof(sess->master_key))
3996 return 0;
3997
3998 memcpy(sess->master_key, in, len);
3999 sess->master_key_length = len;
4000 return 1;
4001 }
4002
4003
4004 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4005 {
4006 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4007 }
4008
4009 void *SSL_get_ex_data(const SSL *s, int idx)
4010 {
4011 return CRYPTO_get_ex_data(&s->ex_data, idx);
4012 }
4013
4014 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4015 {
4016 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4017 }
4018
4019 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4020 {
4021 return CRYPTO_get_ex_data(&s->ex_data, idx);
4022 }
4023
4024 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4025 {
4026 return ctx->cert_store;
4027 }
4028
4029 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4030 {
4031 X509_STORE_free(ctx->cert_store);
4032 ctx->cert_store = store;
4033 }
4034
4035 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4036 {
4037 if (store != NULL)
4038 X509_STORE_up_ref(store);
4039 SSL_CTX_set_cert_store(ctx, store);
4040 }
4041
4042 int SSL_want(const SSL *s)
4043 {
4044 return s->rwstate;
4045 }
4046
4047 /**
4048 * \brief Set the callback for generating temporary DH keys.
4049 * \param ctx the SSL context.
4050 * \param dh the callback
4051 */
4052
4053 #ifndef OPENSSL_NO_DH
4054 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4055 DH *(*dh) (SSL *ssl, int is_export,
4056 int keylength))
4057 {
4058 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4059 }
4060
4061 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4062 int keylength))
4063 {
4064 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4065 }
4066 #endif
4067
4068 #ifndef OPENSSL_NO_PSK
4069 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4070 {
4071 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4072 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4073 return 0;
4074 }
4075 OPENSSL_free(ctx->cert->psk_identity_hint);
4076 if (identity_hint != NULL) {
4077 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4078 if (ctx->cert->psk_identity_hint == NULL)
4079 return 0;
4080 } else
4081 ctx->cert->psk_identity_hint = NULL;
4082 return 1;
4083 }
4084
4085 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4086 {
4087 if (s == NULL)
4088 return 0;
4089
4090 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4091 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4092 return 0;
4093 }
4094 OPENSSL_free(s->cert->psk_identity_hint);
4095 if (identity_hint != NULL) {
4096 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4097 if (s->cert->psk_identity_hint == NULL)
4098 return 0;
4099 } else
4100 s->cert->psk_identity_hint = NULL;
4101 return 1;
4102 }
4103
4104 const char *SSL_get_psk_identity_hint(const SSL *s)
4105 {
4106 if (s == NULL || s->session == NULL)
4107 return NULL;
4108 return s->session->psk_identity_hint;
4109 }
4110
4111 const char *SSL_get_psk_identity(const SSL *s)
4112 {
4113 if (s == NULL || s->session == NULL)
4114 return NULL;
4115 return s->session->psk_identity;
4116 }
4117
4118 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4119 {
4120 s->psk_client_callback = cb;
4121 }
4122
4123 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4124 {
4125 ctx->psk_client_callback = cb;
4126 }
4127
4128 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4129 {
4130 s->psk_server_callback = cb;
4131 }
4132
4133 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4134 {
4135 ctx->psk_server_callback = cb;
4136 }
4137 #endif
4138
4139 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4140 {
4141 s->psk_find_session_cb = cb;
4142 }
4143
4144 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4145 SSL_psk_find_session_cb_func cb)
4146 {
4147 ctx->psk_find_session_cb = cb;
4148 }
4149
4150 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4151 {
4152 s->psk_use_session_cb = cb;
4153 }
4154
4155 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4156 SSL_psk_use_session_cb_func cb)
4157 {
4158 ctx->psk_use_session_cb = cb;
4159 }
4160
4161 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4162 void (*cb) (int write_p, int version,
4163 int content_type, const void *buf,
4164 size_t len, SSL *ssl, void *arg))
4165 {
4166 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4167 }
4168
4169 void SSL_set_msg_callback(SSL *ssl,
4170 void (*cb) (int write_p, int version,
4171 int content_type, const void *buf,
4172 size_t len, SSL *ssl, void *arg))
4173 {
4174 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4175 }
4176
4177 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4178 int (*cb) (SSL *ssl,
4179 int
4180 is_forward_secure))
4181 {
4182 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4183 (void (*)(void))cb);
4184 }
4185
4186 void SSL_set_not_resumable_session_callback(SSL *ssl,
4187 int (*cb) (SSL *ssl,
4188 int is_forward_secure))
4189 {
4190 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4191 (void (*)(void))cb);
4192 }
4193
4194 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4195 size_t (*cb) (SSL *ssl, int type,
4196 size_t len, void *arg))
4197 {
4198 ctx->record_padding_cb = cb;
4199 }
4200
4201 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4202 {
4203 ctx->record_padding_arg = arg;
4204 }
4205
4206 void *SSL_CTX_get_record_padding_callback_arg(SSL_CTX *ctx)
4207 {
4208 return ctx->record_padding_arg;
4209 }
4210
4211 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4212 {
4213 /* block size of 0 or 1 is basically no padding */
4214 if (block_size == 1)
4215 ctx->block_padding = 0;
4216 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4217 ctx->block_padding = block_size;
4218 else
4219 return 0;
4220 return 1;
4221 }
4222
4223 void SSL_set_record_padding_callback(SSL *ssl,
4224 size_t (*cb) (SSL *ssl, int type,
4225 size_t len, void *arg))
4226 {
4227 ssl->record_padding_cb = cb;
4228 }
4229
4230 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4231 {
4232 ssl->record_padding_arg = arg;
4233 }
4234
4235 void *SSL_get_record_padding_callback_arg(SSL *ssl)
4236 {
4237 return ssl->record_padding_arg;
4238 }
4239
4240 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4241 {
4242 /* block size of 0 or 1 is basically no padding */
4243 if (block_size == 1)
4244 ssl->block_padding = 0;
4245 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4246 ssl->block_padding = block_size;
4247 else
4248 return 0;
4249 return 1;
4250 }
4251
4252 /*
4253 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4254 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4255 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4256 * Returns the newly allocated ctx;
4257 */
4258
4259 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4260 {
4261 ssl_clear_hash_ctx(hash);
4262 *hash = EVP_MD_CTX_new();
4263 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4264 EVP_MD_CTX_free(*hash);
4265 *hash = NULL;
4266 return NULL;
4267 }
4268 return *hash;
4269 }
4270
4271 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4272 {
4273
4274 EVP_MD_CTX_free(*hash);
4275 *hash = NULL;
4276 }
4277
4278 /* Retrieve handshake hashes */
4279 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4280 size_t *hashlen)
4281 {
4282 EVP_MD_CTX *ctx = NULL;
4283 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4284 int hashleni = EVP_MD_CTX_size(hdgst);
4285 int ret = 0;
4286
4287 if (hashleni < 0 || (size_t)hashleni > outlen) {
4288 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4289 ERR_R_INTERNAL_ERROR);
4290 goto err;
4291 }
4292
4293 ctx = EVP_MD_CTX_new();
4294 if (ctx == NULL)
4295 goto err;
4296
4297 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4298 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4299 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4300 ERR_R_INTERNAL_ERROR);
4301 goto err;
4302 }
4303
4304 *hashlen = hashleni;
4305
4306 ret = 1;
4307 err:
4308 EVP_MD_CTX_free(ctx);
4309 return ret;
4310 }
4311
4312 int SSL_session_reused(SSL *s)
4313 {
4314 return s->hit;
4315 }
4316
4317 int SSL_is_server(const SSL *s)
4318 {
4319 return s->server;
4320 }
4321
4322 #if OPENSSL_API_COMPAT < 0x10100000L
4323 void SSL_set_debug(SSL *s, int debug)
4324 {
4325 /* Old function was do-nothing anyway... */
4326 (void)s;
4327 (void)debug;
4328 }
4329 #endif
4330
4331 void SSL_set_security_level(SSL *s, int level)
4332 {
4333 s->cert->sec_level = level;
4334 }
4335
4336 int SSL_get_security_level(const SSL *s)
4337 {
4338 return s->cert->sec_level;
4339 }
4340
4341 void SSL_set_security_callback(SSL *s,
4342 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4343 int op, int bits, int nid,
4344 void *other, void *ex))
4345 {
4346 s->cert->sec_cb = cb;
4347 }
4348
4349 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4350 const SSL_CTX *ctx, int op,
4351 int bits, int nid, void *other,
4352 void *ex) {
4353 return s->cert->sec_cb;
4354 }
4355
4356 void SSL_set0_security_ex_data(SSL *s, void *ex)
4357 {
4358 s->cert->sec_ex = ex;
4359 }
4360
4361 void *SSL_get0_security_ex_data(const SSL *s)
4362 {
4363 return s->cert->sec_ex;
4364 }
4365
4366 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4367 {
4368 ctx->cert->sec_level = level;
4369 }
4370
4371 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4372 {
4373 return ctx->cert->sec_level;
4374 }
4375
4376 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4377 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4378 int op, int bits, int nid,
4379 void *other, void *ex))
4380 {
4381 ctx->cert->sec_cb = cb;
4382 }
4383
4384 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4385 const SSL_CTX *ctx,
4386 int op, int bits,
4387 int nid,
4388 void *other,
4389 void *ex) {
4390 return ctx->cert->sec_cb;
4391 }
4392
4393 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4394 {
4395 ctx->cert->sec_ex = ex;
4396 }
4397
4398 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4399 {
4400 return ctx->cert->sec_ex;
4401 }
4402
4403 /*
4404 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4405 * can return unsigned long, instead of the generic long return value from the
4406 * control interface.
4407 */
4408 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4409 {
4410 return ctx->options;
4411 }
4412
4413 unsigned long SSL_get_options(const SSL *s)
4414 {
4415 return s->options;
4416 }
4417
4418 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4419 {
4420 return ctx->options |= op;
4421 }
4422
4423 unsigned long SSL_set_options(SSL *s, unsigned long op)
4424 {
4425 return s->options |= op;
4426 }
4427
4428 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4429 {
4430 return ctx->options &= ~op;
4431 }
4432
4433 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4434 {
4435 return s->options &= ~op;
4436 }
4437
4438 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4439 {
4440 return s->verified_chain;
4441 }
4442
4443 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4444
4445 #ifndef OPENSSL_NO_CT
4446
4447 /*
4448 * Moves SCTs from the |src| stack to the |dst| stack.
4449 * The source of each SCT will be set to |origin|.
4450 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4451 * the caller.
4452 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4453 */
4454 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4455 sct_source_t origin)
4456 {
4457 int scts_moved = 0;
4458 SCT *sct = NULL;
4459
4460 if (*dst == NULL) {
4461 *dst = sk_SCT_new_null();
4462 if (*dst == NULL) {
4463 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4464 goto err;
4465 }
4466 }
4467
4468 while ((sct = sk_SCT_pop(src)) != NULL) {
4469 if (SCT_set_source(sct, origin) != 1)
4470 goto err;
4471
4472 if (sk_SCT_push(*dst, sct) <= 0)
4473 goto err;
4474 scts_moved += 1;
4475 }
4476
4477 return scts_moved;
4478 err:
4479 if (sct != NULL)
4480 sk_SCT_push(src, sct); /* Put the SCT back */
4481 return -1;
4482 }
4483
4484 /*
4485 * Look for data collected during ServerHello and parse if found.
4486 * Returns the number of SCTs extracted.
4487 */
4488 static int ct_extract_tls_extension_scts(SSL *s)
4489 {
4490 int scts_extracted = 0;
4491
4492 if (s->ext.scts != NULL) {
4493 const unsigned char *p = s->ext.scts;
4494 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4495
4496 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4497
4498 SCT_LIST_free(scts);
4499 }
4500
4501 return scts_extracted;
4502 }
4503
4504 /*
4505 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4506 * contains an SCT X509 extension. They will be stored in |s->scts|.
4507 * Returns:
4508 * - The number of SCTs extracted, assuming an OCSP response exists.
4509 * - 0 if no OCSP response exists or it contains no SCTs.
4510 * - A negative integer if an error occurs.
4511 */
4512 static int ct_extract_ocsp_response_scts(SSL *s)
4513 {
4514 # ifndef OPENSSL_NO_OCSP
4515 int scts_extracted = 0;
4516 const unsigned char *p;
4517 OCSP_BASICRESP *br = NULL;
4518 OCSP_RESPONSE *rsp = NULL;
4519 STACK_OF(SCT) *scts = NULL;
4520 int i;
4521
4522 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4523 goto err;
4524
4525 p = s->ext.ocsp.resp;
4526 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4527 if (rsp == NULL)
4528 goto err;
4529
4530 br = OCSP_response_get1_basic(rsp);
4531 if (br == NULL)
4532 goto err;
4533
4534 for (i = 0; i < OCSP_resp_count(br); ++i) {
4535 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4536
4537 if (single == NULL)
4538 continue;
4539
4540 scts =
4541 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4542 scts_extracted =
4543 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4544 if (scts_extracted < 0)
4545 goto err;
4546 }
4547 err:
4548 SCT_LIST_free(scts);
4549 OCSP_BASICRESP_free(br);
4550 OCSP_RESPONSE_free(rsp);
4551 return scts_extracted;
4552 # else
4553 /* Behave as if no OCSP response exists */
4554 return 0;
4555 # endif
4556 }
4557
4558 /*
4559 * Attempts to extract SCTs from the peer certificate.
4560 * Return the number of SCTs extracted, or a negative integer if an error
4561 * occurs.
4562 */
4563 static int ct_extract_x509v3_extension_scts(SSL *s)
4564 {
4565 int scts_extracted = 0;
4566 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4567
4568 if (cert != NULL) {
4569 STACK_OF(SCT) *scts =
4570 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4571
4572 scts_extracted =
4573 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4574
4575 SCT_LIST_free(scts);
4576 }
4577
4578 return scts_extracted;
4579 }
4580
4581 /*
4582 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4583 * response (if it exists) and X509v3 extensions in the certificate.
4584 * Returns NULL if an error occurs.
4585 */
4586 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4587 {
4588 if (!s->scts_parsed) {
4589 if (ct_extract_tls_extension_scts(s) < 0 ||
4590 ct_extract_ocsp_response_scts(s) < 0 ||
4591 ct_extract_x509v3_extension_scts(s) < 0)
4592 goto err;
4593
4594 s->scts_parsed = 1;
4595 }
4596 return s->scts;
4597 err:
4598 return NULL;
4599 }
4600
4601 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4602 const STACK_OF(SCT) *scts, void *unused_arg)
4603 {
4604 return 1;
4605 }
4606
4607 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4608 const STACK_OF(SCT) *scts, void *unused_arg)
4609 {
4610 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4611 int i;
4612
4613 for (i = 0; i < count; ++i) {
4614 SCT *sct = sk_SCT_value(scts, i);
4615 int status = SCT_get_validation_status(sct);
4616
4617 if (status == SCT_VALIDATION_STATUS_VALID)
4618 return 1;
4619 }
4620 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4621 return 0;
4622 }
4623
4624 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4625 void *arg)
4626 {
4627 /*
4628 * Since code exists that uses the custom extension handler for CT, look
4629 * for this and throw an error if they have already registered to use CT.
4630 */
4631 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4632 TLSEXT_TYPE_signed_certificate_timestamp))
4633 {
4634 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4635 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4636 return 0;
4637 }
4638
4639 if (callback != NULL) {
4640 /*
4641 * If we are validating CT, then we MUST accept SCTs served via OCSP
4642 */
4643 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4644 return 0;
4645 }
4646
4647 s->ct_validation_callback = callback;
4648 s->ct_validation_callback_arg = arg;
4649
4650 return 1;
4651 }
4652
4653 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4654 ssl_ct_validation_cb callback, void *arg)
4655 {
4656 /*
4657 * Since code exists that uses the custom extension handler for CT, look for
4658 * this and throw an error if they have already registered to use CT.
4659 */
4660 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4661 TLSEXT_TYPE_signed_certificate_timestamp))
4662 {
4663 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4664 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4665 return 0;
4666 }
4667
4668 ctx->ct_validation_callback = callback;
4669 ctx->ct_validation_callback_arg = arg;
4670 return 1;
4671 }
4672
4673 int SSL_ct_is_enabled(const SSL *s)
4674 {
4675 return s->ct_validation_callback != NULL;
4676 }
4677
4678 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4679 {
4680 return ctx->ct_validation_callback != NULL;
4681 }
4682
4683 int ssl_validate_ct(SSL *s)
4684 {
4685 int ret = 0;
4686 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4687 X509 *issuer;
4688 SSL_DANE *dane = &s->dane;
4689 CT_POLICY_EVAL_CTX *ctx = NULL;
4690 const STACK_OF(SCT) *scts;
4691
4692 /*
4693 * If no callback is set, the peer is anonymous, or its chain is invalid,
4694 * skip SCT validation - just return success. Applications that continue
4695 * handshakes without certificates, with unverified chains, or pinned leaf
4696 * certificates are outside the scope of the WebPKI and CT.
4697 *
4698 * The above exclusions notwithstanding the vast majority of peers will
4699 * have rather ordinary certificate chains validated by typical
4700 * applications that perform certificate verification and therefore will
4701 * process SCTs when enabled.
4702 */
4703 if (s->ct_validation_callback == NULL || cert == NULL ||
4704 s->verify_result != X509_V_OK ||
4705 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4706 return 1;
4707
4708 /*
4709 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4710 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4711 */
4712 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4713 switch (dane->mtlsa->usage) {
4714 case DANETLS_USAGE_DANE_TA:
4715 case DANETLS_USAGE_DANE_EE:
4716 return 1;
4717 }
4718 }
4719
4720 ctx = CT_POLICY_EVAL_CTX_new();
4721 if (ctx == NULL) {
4722 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
4723 ERR_R_MALLOC_FAILURE);
4724 goto end;
4725 }
4726
4727 issuer = sk_X509_value(s->verified_chain, 1);
4728 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4729 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4730 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4731 CT_POLICY_EVAL_CTX_set_time(
4732 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
4733
4734 scts = SSL_get0_peer_scts(s);
4735
4736 /*
4737 * This function returns success (> 0) only when all the SCTs are valid, 0
4738 * when some are invalid, and < 0 on various internal errors (out of
4739 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4740 * reason to abort the handshake, that decision is up to the callback.
4741 * Therefore, we error out only in the unexpected case that the return
4742 * value is negative.
4743 *
4744 * XXX: One might well argue that the return value of this function is an
4745 * unfortunate design choice. Its job is only to determine the validation
4746 * status of each of the provided SCTs. So long as it correctly separates
4747 * the wheat from the chaff it should return success. Failure in this case
4748 * ought to correspond to an inability to carry out its duties.
4749 */
4750 if (SCT_LIST_validate(scts, ctx) < 0) {
4751 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4752 SSL_R_SCT_VERIFICATION_FAILED);
4753 goto end;
4754 }
4755
4756 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4757 if (ret < 0)
4758 ret = 0; /* This function returns 0 on failure */
4759 if (!ret)
4760 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
4761 SSL_R_CALLBACK_FAILED);
4762
4763 end:
4764 CT_POLICY_EVAL_CTX_free(ctx);
4765 /*
4766 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4767 * failure return code here. Also the application may wish the complete
4768 * the handshake, and then disconnect cleanly at a higher layer, after
4769 * checking the verification status of the completed connection.
4770 *
4771 * We therefore force a certificate verification failure which will be
4772 * visible via SSL_get_verify_result() and cached as part of any resumed
4773 * session.
4774 *
4775 * Note: the permissive callback is for information gathering only, always
4776 * returns success, and does not affect verification status. Only the
4777 * strict callback or a custom application-specified callback can trigger
4778 * connection failure or record a verification error.
4779 */
4780 if (ret <= 0)
4781 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4782 return ret;
4783 }
4784
4785 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4786 {
4787 switch (validation_mode) {
4788 default:
4789 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4790 return 0;
4791 case SSL_CT_VALIDATION_PERMISSIVE:
4792 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4793 case SSL_CT_VALIDATION_STRICT:
4794 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4795 }
4796 }
4797
4798 int SSL_enable_ct(SSL *s, int validation_mode)
4799 {
4800 switch (validation_mode) {
4801 default:
4802 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4803 return 0;
4804 case SSL_CT_VALIDATION_PERMISSIVE:
4805 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4806 case SSL_CT_VALIDATION_STRICT:
4807 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4808 }
4809 }
4810
4811 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4812 {
4813 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4814 }
4815
4816 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4817 {
4818 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4819 }
4820
4821 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4822 {
4823 CTLOG_STORE_free(ctx->ctlog_store);
4824 ctx->ctlog_store = logs;
4825 }
4826
4827 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4828 {
4829 return ctx->ctlog_store;
4830 }
4831
4832 #endif /* OPENSSL_NO_CT */
4833
4834 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
4835 void *arg)
4836 {
4837 c->client_hello_cb = cb;
4838 c->client_hello_cb_arg = arg;
4839 }
4840
4841 int SSL_client_hello_isv2(SSL *s)
4842 {
4843 if (s->clienthello == NULL)
4844 return 0;
4845 return s->clienthello->isv2;
4846 }
4847
4848 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
4849 {
4850 if (s->clienthello == NULL)
4851 return 0;
4852 return s->clienthello->legacy_version;
4853 }
4854
4855 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
4856 {
4857 if (s->clienthello == NULL)
4858 return 0;
4859 if (out != NULL)
4860 *out = s->clienthello->random;
4861 return SSL3_RANDOM_SIZE;
4862 }
4863
4864 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
4865 {
4866 if (s->clienthello == NULL)
4867 return 0;
4868 if (out != NULL)
4869 *out = s->clienthello->session_id;
4870 return s->clienthello->session_id_len;
4871 }
4872
4873 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
4874 {
4875 if (s->clienthello == NULL)
4876 return 0;
4877 if (out != NULL)
4878 *out = PACKET_data(&s->clienthello->ciphersuites);
4879 return PACKET_remaining(&s->clienthello->ciphersuites);
4880 }
4881
4882 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
4883 {
4884 if (s->clienthello == NULL)
4885 return 0;
4886 if (out != NULL)
4887 *out = s->clienthello->compressions;
4888 return s->clienthello->compressions_len;
4889 }
4890
4891 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
4892 {
4893 RAW_EXTENSION *ext;
4894 int *present;
4895 size_t num = 0, i;
4896
4897 if (s->clienthello == NULL || out == NULL || outlen == NULL)
4898 return 0;
4899 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4900 ext = s->clienthello->pre_proc_exts + i;
4901 if (ext->present)
4902 num++;
4903 }
4904 present = OPENSSL_malloc(sizeof(*present) * num);
4905 if (present == NULL)
4906 return 0;
4907 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
4908 ext = s->clienthello->pre_proc_exts + i;
4909 if (ext->present) {
4910 if (ext->received_order >= num)
4911 goto err;
4912 present[ext->received_order] = ext->type;
4913 }
4914 }
4915 *out = present;
4916 *outlen = num;
4917 return 1;
4918 err:
4919 OPENSSL_free(present);
4920 return 0;
4921 }
4922
4923 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
4924 size_t *outlen)
4925 {
4926 size_t i;
4927 RAW_EXTENSION *r;
4928
4929 if (s->clienthello == NULL)
4930 return 0;
4931 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
4932 r = s->clienthello->pre_proc_exts + i;
4933 if (r->present && r->type == type) {
4934 if (out != NULL)
4935 *out = PACKET_data(&r->data);
4936 if (outlen != NULL)
4937 *outlen = PACKET_remaining(&r->data);
4938 return 1;
4939 }
4940 }
4941 return 0;
4942 }
4943
4944 int SSL_free_buffers(SSL *ssl)
4945 {
4946 RECORD_LAYER *rl = &ssl->rlayer;
4947
4948 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
4949 return 0;
4950
4951 RECORD_LAYER_release(rl);
4952 return 1;
4953 }
4954
4955 int SSL_alloc_buffers(SSL *ssl)
4956 {
4957 return ssl3_setup_buffers(ssl);
4958 }
4959
4960 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
4961 {
4962 ctx->keylog_callback = cb;
4963 }
4964
4965 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
4966 {
4967 return ctx->keylog_callback;
4968 }
4969
4970 static int nss_keylog_int(const char *prefix,
4971 SSL *ssl,
4972 const uint8_t *parameter_1,
4973 size_t parameter_1_len,
4974 const uint8_t *parameter_2,
4975 size_t parameter_2_len)
4976 {
4977 char *out = NULL;
4978 char *cursor = NULL;
4979 size_t out_len = 0;
4980 size_t i;
4981 size_t prefix_len;
4982
4983 if (ssl->ctx->keylog_callback == NULL) return 1;
4984
4985 /*
4986 * Our output buffer will contain the following strings, rendered with
4987 * space characters in between, terminated by a NULL character: first the
4988 * prefix, then the first parameter, then the second parameter. The
4989 * meaning of each parameter depends on the specific key material being
4990 * logged. Note that the first and second parameters are encoded in
4991 * hexadecimal, so we need a buffer that is twice their lengths.
4992 */
4993 prefix_len = strlen(prefix);
4994 out_len = prefix_len + (2*parameter_1_len) + (2*parameter_2_len) + 3;
4995 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
4996 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
4997 ERR_R_MALLOC_FAILURE);
4998 return 0;
4999 }
5000
5001 strcpy(cursor, prefix);
5002 cursor += prefix_len;
5003 *cursor++ = ' ';
5004
5005 for (i = 0; i < parameter_1_len; i++) {
5006 sprintf(cursor, "%02x", parameter_1[i]);
5007 cursor += 2;
5008 }
5009 *cursor++ = ' ';
5010
5011 for (i = 0; i < parameter_2_len; i++) {
5012 sprintf(cursor, "%02x", parameter_2[i]);
5013 cursor += 2;
5014 }
5015 *cursor = '\0';
5016
5017 ssl->ctx->keylog_callback(ssl, (const char *)out);
5018 OPENSSL_free(out);
5019 return 1;
5020
5021 }
5022
5023 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5024 const uint8_t *encrypted_premaster,
5025 size_t encrypted_premaster_len,
5026 const uint8_t *premaster,
5027 size_t premaster_len)
5028 {
5029 if (encrypted_premaster_len < 8) {
5030 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5031 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5032 return 0;
5033 }
5034
5035 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5036 return nss_keylog_int("RSA",
5037 ssl,
5038 encrypted_premaster,
5039 8,
5040 premaster,
5041 premaster_len);
5042 }
5043
5044 int ssl_log_secret(SSL *ssl,
5045 const char *label,
5046 const uint8_t *secret,
5047 size_t secret_len)
5048 {
5049 return nss_keylog_int(label,
5050 ssl,
5051 ssl->s3->client_random,
5052 SSL3_RANDOM_SIZE,
5053 secret,
5054 secret_len);
5055 }
5056
5057 #define SSLV2_CIPHER_LEN 3
5058
5059 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5060 {
5061 int n;
5062
5063 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5064
5065 if (PACKET_remaining(cipher_suites) == 0) {
5066 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5067 SSL_R_NO_CIPHERS_SPECIFIED);
5068 return 0;
5069 }
5070
5071 if (PACKET_remaining(cipher_suites) % n != 0) {
5072 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5073 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5074 return 0;
5075 }
5076
5077 OPENSSL_free(s->s3->tmp.ciphers_raw);
5078 s->s3->tmp.ciphers_raw = NULL;
5079 s->s3->tmp.ciphers_rawlen = 0;
5080
5081 if (sslv2format) {
5082 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5083 PACKET sslv2ciphers = *cipher_suites;
5084 unsigned int leadbyte;
5085 unsigned char *raw;
5086
5087 /*
5088 * We store the raw ciphers list in SSLv3+ format so we need to do some
5089 * preprocessing to convert the list first. If there are any SSLv2 only
5090 * ciphersuites with a non-zero leading byte then we are going to
5091 * slightly over allocate because we won't store those. But that isn't a
5092 * problem.
5093 */
5094 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5095 s->s3->tmp.ciphers_raw = raw;
5096 if (raw == NULL) {
5097 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5098 ERR_R_MALLOC_FAILURE);
5099 return 0;
5100 }
5101 for (s->s3->tmp.ciphers_rawlen = 0;
5102 PACKET_remaining(&sslv2ciphers) > 0;
5103 raw += TLS_CIPHER_LEN) {
5104 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5105 || (leadbyte == 0
5106 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5107 TLS_CIPHER_LEN))
5108 || (leadbyte != 0
5109 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5110 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5111 SSL_R_BAD_PACKET);
5112 OPENSSL_free(s->s3->tmp.ciphers_raw);
5113 s->s3->tmp.ciphers_raw = NULL;
5114 s->s3->tmp.ciphers_rawlen = 0;
5115 return 0;
5116 }
5117 if (leadbyte == 0)
5118 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5119 }
5120 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5121 &s->s3->tmp.ciphers_rawlen)) {
5122 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5123 ERR_R_INTERNAL_ERROR);
5124 return 0;
5125 }
5126 return 1;
5127 }
5128
5129 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5130 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5131 STACK_OF(SSL_CIPHER) **scsvs)
5132 {
5133 PACKET pkt;
5134
5135 if (!PACKET_buf_init(&pkt, bytes, len))
5136 return 0;
5137 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5138 }
5139
5140 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5141 STACK_OF(SSL_CIPHER) **skp,
5142 STACK_OF(SSL_CIPHER) **scsvs_out,
5143 int sslv2format, int fatal)
5144 {
5145 const SSL_CIPHER *c;
5146 STACK_OF(SSL_CIPHER) *sk = NULL;
5147 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5148 int n;
5149 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5150 unsigned char cipher[SSLV2_CIPHER_LEN];
5151
5152 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5153
5154 if (PACKET_remaining(cipher_suites) == 0) {
5155 if (fatal)
5156 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5157 SSL_R_NO_CIPHERS_SPECIFIED);
5158 else
5159 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5160 return 0;
5161 }
5162
5163 if (PACKET_remaining(cipher_suites) % n != 0) {
5164 if (fatal)
5165 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5166 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5167 else
5168 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5169 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5170 return 0;
5171 }
5172
5173 sk = sk_SSL_CIPHER_new_null();
5174 scsvs = sk_SSL_CIPHER_new_null();
5175 if (sk == NULL || scsvs == NULL) {
5176 if (fatal)
5177 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5178 ERR_R_MALLOC_FAILURE);
5179 else
5180 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5181 goto err;
5182 }
5183
5184 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5185 /*
5186 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5187 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5188 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5189 */
5190 if (sslv2format && cipher[0] != '\0')
5191 continue;
5192
5193 /* For SSLv2-compat, ignore leading 0-byte. */
5194 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5195 if (c != NULL) {
5196 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5197 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5198 if (fatal)
5199 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5200 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5201 else
5202 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5203 goto err;
5204 }
5205 }
5206 }
5207 if (PACKET_remaining(cipher_suites) > 0) {
5208 if (fatal)
5209 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5210 SSL_R_BAD_LENGTH);
5211 else
5212 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5213 goto err;
5214 }
5215
5216 if (skp != NULL)
5217 *skp = sk;
5218 else
5219 sk_SSL_CIPHER_free(sk);
5220 if (scsvs_out != NULL)
5221 *scsvs_out = scsvs;
5222 else
5223 sk_SSL_CIPHER_free(scsvs);
5224 return 1;
5225 err:
5226 sk_SSL_CIPHER_free(sk);
5227 sk_SSL_CIPHER_free(scsvs);
5228 return 0;
5229 }
5230
5231 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5232 {
5233 ctx->max_early_data = max_early_data;
5234
5235 return 1;
5236 }
5237
5238 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5239 {
5240 return ctx->max_early_data;
5241 }
5242
5243 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5244 {
5245 s->max_early_data = max_early_data;
5246
5247 return 1;
5248 }
5249
5250 uint32_t SSL_get_max_early_data(const SSL *s)
5251 {
5252 return s->max_early_data;
5253 }
5254
5255 int ssl_randbytes(SSL *s, unsigned char *rnd, size_t size)
5256 {
5257 if (s->drbg != NULL) {
5258 /*
5259 * Currently, it's the duty of the caller to serialize the generate
5260 * requests to the DRBG. So formally we have to check whether
5261 * s->drbg->lock != NULL and take the lock if this is the case.
5262 * However, this DRBG is unique to a given SSL object, and we already
5263 * require that SSL objects are only accessed by a single thread at
5264 * a given time. Also, SSL DRBGs have no child DRBG, so there is
5265 * no risk that this DRBG is accessed by a child DRBG in parallel
5266 * for reseeding. As such, we can rely on the application's
5267 * serialization of SSL accesses for the needed concurrency protection
5268 * here.
5269 */
5270 return RAND_DRBG_generate(s->drbg, rnd, size, 0, NULL, 0);
5271 }
5272 return RAND_bytes(rnd, (int)size);
5273 }
5274
5275 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5276 {
5277 /* Return any active Max Fragment Len extension */
5278 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5279 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5280
5281 /* return current SSL connection setting */
5282 return ssl->max_send_fragment;
5283 }
5284
5285 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5286 {
5287 /* Return a value regarding an active Max Fragment Len extension */
5288 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5289 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5290 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5291
5292 /* else limit |split_send_fragment| to current |max_send_fragment| */
5293 if (ssl->split_send_fragment > ssl->max_send_fragment)
5294 return ssl->max_send_fragment;
5295
5296 /* return current SSL connection setting */
5297 return ssl->split_send_fragment;
5298 }
5299
5300 int SSL_stateless(SSL *s)
5301 {
5302 int ret;
5303
5304 /* Ensure there is no state left over from a previous invocation */
5305 if (!SSL_clear(s))
5306 return 0;
5307
5308 ERR_clear_error();
5309
5310 s->s3->flags |= TLS1_FLAGS_STATELESS;
5311 ret = SSL_accept(s);
5312 s->s3->flags &= ~TLS1_FLAGS_STATELESS;
5313
5314 if (ret > 0 && s->ext.cookieok)
5315 return 1;
5316
5317 return 0;
5318 }