]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/statem/statem.c
Change HANDSHAKE_STATE to OSSL_HANDSHAKE_STATE
[thirdparty/openssl.git] / ssl / statem / statem.c
1 /* ssl/statem/statem.c */
2 /*
3 * Written by Matt Caswell for the OpenSSL project.
4 */
5 /* ====================================================================
6 * Copyright (c) 1998-2015 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58
59 #include <openssl/rand.h>
60 #include "../ssl_locl.h"
61 #include "statem_locl.h"
62
63 /*
64 * This file implements the SSL/TLS/DTLS state machines.
65 *
66 * There are two primary state machines:
67 *
68 * 1) Message flow state machine
69 * 2) Handshake state machine
70 *
71 * The Message flow state machine controls the reading and sending of messages
72 * including handling of non-blocking IO events, flushing of the underlying
73 * write BIO, handling unexpected messages, etc. It is itself broken into two
74 * separate sub-state machines which control reading and writing respectively.
75 *
76 * The Handshake state machine keeps track of the current SSL/TLS handshake
77 * state. Transitions of the handshake state are the result of events that
78 * occur within the Message flow state machine.
79 *
80 * Overall it looks like this:
81 *
82 * --------------------------------------------- -------------------
83 * | | | |
84 * | Message flow state machine | | |
85 * | | | |
86 * | -------------------- -------------------- | Transition | Handshake state |
87 * | | MSG_FLOW_READING | | MSG_FLOW_WRITING | | Event | machine |
88 * | | sub-state | | sub-state | |----------->| |
89 * | | machine for | | machine for | | | |
90 * | | reading messages | | writing messages | | | |
91 * | -------------------- -------------------- | | |
92 * | | | |
93 * --------------------------------------------- -------------------
94 *
95 */
96
97 /* Sub state machine return values */
98 enum SUB_STATE_RETURN {
99 /* Something bad happened or NBIO */
100 SUB_STATE_ERROR,
101 /* Sub state finished go to the next sub state */
102 SUB_STATE_FINISHED,
103 /* Sub state finished and handshake was completed */
104 SUB_STATE_END_HANDSHAKE
105 };
106
107 static int state_machine(SSL *s, int server);
108 static void init_read_state_machine(SSL *s);
109 static enum SUB_STATE_RETURN read_state_machine(SSL *s);
110 static void init_write_state_machine(SSL *s);
111 static enum SUB_STATE_RETURN write_state_machine(SSL *s);
112
113 OSSL_HANDSHAKE_STATE SSL_state(const SSL *ssl)
114 {
115 return ssl->statem.hand_state;
116 }
117
118 void SSL_set_state(SSL *ssl, OSSL_HANDSHAKE_STATE state)
119 {
120 /*
121 * This function seems like a really bad idea. Should we remove it
122 * completely?
123 */
124 ssl->statem.hand_state = state;
125 }
126
127 int SSL_in_init(SSL *s)
128 {
129 return s->statem.in_init;
130 }
131
132 int SSL_is_init_finished(SSL *s)
133 {
134 return !(s->statem.in_init) && (s->statem.hand_state == TLS_ST_OK);
135 }
136
137 int SSL_in_before(SSL *s)
138 {
139 /*
140 * Historically being "in before" meant before anything had happened. In the
141 * current code though we remain in the "before" state for a while after we
142 * have started the handshake process (e.g. as a server waiting for the
143 * first message to arrive). There "in before" is taken to mean "in before"
144 * and not started any handshake process yet.
145 */
146 return (s->statem.hand_state == TLS_ST_BEFORE)
147 && (s->statem.state == MSG_FLOW_UNINITED);
148 }
149
150 /*
151 * Clear the state machine state and reset back to MSG_FLOW_UNINITED
152 */
153 void statem_clear(SSL *s)
154 {
155 s->statem.state = MSG_FLOW_UNINITED;
156 s->statem.hand_state = TLS_ST_BEFORE;
157 s->statem.in_init = 1;
158 }
159
160 /*
161 * Set the state machine up ready for a renegotiation handshake
162 */
163 void statem_set_renegotiate(SSL *s)
164 {
165 s->statem.state = MSG_FLOW_RENEGOTIATE;
166 s->statem.in_init = 1;
167 }
168
169 /*
170 * Put the state machine into an error state. This is a permanent error for
171 * the current connection.
172 */
173 void statem_set_error(SSL *s)
174 {
175 s->statem.state = MSG_FLOW_ERROR;
176 }
177
178 /*
179 * Discover whether the current connection is in the error state.
180 *
181 * Valid return values are:
182 * 1: Yes
183 * 0: No
184 */
185 int statem_in_error(const SSL *s)
186 {
187 if (s->statem.state == MSG_FLOW_ERROR)
188 return 1;
189
190 return 0;
191 }
192
193 void statem_set_in_init(SSL *s, int init)
194 {
195 s->statem.in_init = init;
196 }
197
198 int statem_connect(SSL *s) {
199 return state_machine(s, 0);
200 }
201
202 int statem_accept(SSL *s)
203 {
204 return state_machine(s, 1);
205 }
206
207 /*
208 * The main message flow state machine. We start in the MSG_FLOW_UNINITED or
209 * MSG_FLOW_RENEGOTIATE state and finish in MSG_FLOW_FINISHED. Valid states and
210 * transitions are as follows:
211 *
212 * MSG_FLOW_UNINITED MSG_FLOW_RENEGOTIATE
213 * | |
214 * +-----------------------+
215 * v
216 * MSG_FLOW_WRITING <---> MSG_FLOW_READING
217 * |
218 * V
219 * MSG_FLOW_FINISHED
220 * |
221 * V
222 * [SUCCESS]
223 *
224 * We may exit at any point due to an error or NBIO event. If an NBIO event
225 * occurs then we restart at the point we left off when we are recalled.
226 * MSG_FLOW_WRITING and MSG_FLOW_READING have sub-state machines associated with them.
227 *
228 * In addition to the above there is also the MSG_FLOW_ERROR state. We can move
229 * into that state at any point in the event that an irrecoverable error occurs.
230 *
231 * Valid return values are:
232 * 1: Success
233 * <=0: NBIO or error
234 */
235 static int state_machine(SSL *s, int server) {
236 BUF_MEM *buf = NULL;
237 unsigned long Time = (unsigned long)time(NULL);
238 void (*cb) (const SSL *ssl, int type, int val) = NULL;
239 STATEM *st = &s->statem;
240 int ret = -1;
241 int ssret;
242
243 if (st->state == MSG_FLOW_ERROR) {
244 /* Shouldn't have been called if we're already in the error state */
245 return -1;
246 }
247
248 RAND_add(&Time, sizeof(Time), 0);
249 ERR_clear_error();
250 clear_sys_error();
251
252 if (s->info_callback != NULL)
253 cb = s->info_callback;
254 else if (s->ctx->info_callback != NULL)
255 cb = s->ctx->info_callback;
256
257 s->in_handshake++;
258 if (!SSL_in_init(s) || SSL_in_before(s)) {
259 if (!SSL_clear(s))
260 return -1;
261 }
262
263 #ifndef OPENSSL_NO_SCTP
264 if (SSL_IS_DTLS(s)) {
265 /*
266 * Notify SCTP BIO socket to enter handshake mode and prevent stream
267 * identifier other than 0. Will be ignored if no SCTP is used.
268 */
269 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE,
270 s->in_handshake, NULL);
271 }
272 #endif
273
274 #ifndef OPENSSL_NO_HEARTBEATS
275 /*
276 * If we're awaiting a HeartbeatResponse, pretend we already got and
277 * don't await it anymore, because Heartbeats don't make sense during
278 * handshakes anyway.
279 */
280 if (s->tlsext_hb_pending) {
281 if (SSL_IS_DTLS(s))
282 dtls1_stop_timer(s);
283 s->tlsext_hb_pending = 0;
284 s->tlsext_hb_seq++;
285 }
286 #endif
287
288 /* Initialise state machine */
289
290 if (st->state == MSG_FLOW_RENEGOTIATE) {
291 s->renegotiate = 1;
292 if (!server)
293 s->ctx->stats.sess_connect_renegotiate++;
294 }
295
296 if (st->state == MSG_FLOW_UNINITED || st->state == MSG_FLOW_RENEGOTIATE) {
297 if (st->state == MSG_FLOW_UNINITED) {
298 st->hand_state = TLS_ST_BEFORE;
299 }
300
301 s->server = server;
302 if (cb != NULL)
303 cb(s, SSL_CB_HANDSHAKE_START, 1);
304
305 if (SSL_IS_DTLS(s)) {
306 if ((s->version & 0xff00) != (DTLS1_VERSION & 0xff00) &&
307 (server
308 || (s->version & 0xff00) != (DTLS1_BAD_VER & 0xff00))) {
309 SSLerr(SSL_F_STATE_MACHINE, ERR_R_INTERNAL_ERROR);
310 goto end;
311 }
312 } else {
313 if ((s->version >> 8) != SSL3_VERSION_MAJOR
314 && s->version != TLS_ANY_VERSION) {
315 SSLerr(SSL_F_STATE_MACHINE, ERR_R_INTERNAL_ERROR);
316 goto end;
317 }
318 }
319
320 if (!SSL_IS_DTLS(s)) {
321 if (s->version != TLS_ANY_VERSION &&
322 !ssl_security(s, SSL_SECOP_VERSION, 0, s->version, NULL)) {
323 SSLerr(SSL_F_STATE_MACHINE, SSL_R_VERSION_TOO_LOW);
324 goto end;
325 }
326 }
327
328 if (s->init_buf == NULL) {
329 if ((buf = BUF_MEM_new()) == NULL) {
330 goto end;
331 }
332 if (!BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) {
333 goto end;
334 }
335 s->init_buf = buf;
336 buf = NULL;
337 }
338
339 if (!ssl3_setup_buffers(s)) {
340 goto end;
341 }
342 s->init_num = 0;
343
344 /*
345 * Should have been reset by tls_process_finished, too.
346 */
347 s->s3->change_cipher_spec = 0;
348
349 if (!server || st->state != MSG_FLOW_RENEGOTIATE) {
350 /*
351 * Ok, we now need to push on a buffering BIO ...but not with
352 * SCTP
353 */
354 #ifndef OPENSSL_NO_SCTP
355 if (!SSL_IS_DTLS(s) || !BIO_dgram_is_sctp(SSL_get_wbio(s)))
356 #endif
357 if (!ssl_init_wbio_buffer(s, server ? 1 : 0)) {
358 goto end;
359 }
360
361 ssl3_init_finished_mac(s);
362 }
363
364 if (server) {
365 if (st->state != MSG_FLOW_RENEGOTIATE) {
366 s->ctx->stats.sess_accept++;
367 } else if (!s->s3->send_connection_binding &&
368 !(s->options &
369 SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
370 /*
371 * Server attempting to renegotiate with client that doesn't
372 * support secure renegotiation.
373 */
374 SSLerr(SSL_F_STATE_MACHINE,
375 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
376 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
377 statem_set_error(s);
378 goto end;
379 } else {
380 /*
381 * st->state == MSG_FLOW_RENEGOTIATE, we will just send a
382 * HelloRequest
383 */
384 s->ctx->stats.sess_accept_renegotiate++;
385 }
386 } else {
387 s->ctx->stats.sess_connect++;
388
389 /* mark client_random uninitialized */
390 memset(s->s3->client_random, 0, sizeof(s->s3->client_random));
391 s->hit = 0;
392
393 s->s3->tmp.cert_request = 0;
394
395 if (SSL_IS_DTLS(s)) {
396 st->use_timer = 1;
397 }
398 }
399
400 st->state = MSG_FLOW_WRITING;
401 init_write_state_machine(s);
402 st->read_state_first_init = 1;
403 }
404
405 while(st->state != MSG_FLOW_FINISHED) {
406 if(st->state == MSG_FLOW_READING) {
407 ssret = read_state_machine(s);
408 if (ssret == SUB_STATE_FINISHED) {
409 st->state = MSG_FLOW_WRITING;
410 init_write_state_machine(s);
411 } else {
412 /* NBIO or error */
413 goto end;
414 }
415 } else if (st->state == MSG_FLOW_WRITING) {
416 ssret = write_state_machine(s);
417 if (ssret == SUB_STATE_FINISHED) {
418 st->state = MSG_FLOW_READING;
419 init_read_state_machine(s);
420 } else if (ssret == SUB_STATE_END_HANDSHAKE) {
421 st->state = MSG_FLOW_FINISHED;
422 } else {
423 /* NBIO or error */
424 goto end;
425 }
426 } else {
427 /* Error */
428 statem_set_error(s);
429 goto end;
430 }
431 }
432
433 st->state = MSG_FLOW_UNINITED;
434 ret = 1;
435
436 end:
437 s->in_handshake--;
438
439 #ifndef OPENSSL_NO_SCTP
440 if (SSL_IS_DTLS(s)) {
441 /*
442 * Notify SCTP BIO socket to leave handshake mode and allow stream
443 * identifier other than 0. Will be ignored if no SCTP is used.
444 */
445 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE,
446 s->in_handshake, NULL);
447 }
448 #endif
449
450 BUF_MEM_free(buf);
451 if (cb != NULL) {
452 if (server)
453 cb(s, SSL_CB_ACCEPT_EXIT, ret);
454 else
455 cb(s, SSL_CB_CONNECT_EXIT, ret);
456 }
457 return ret;
458 }
459
460 /*
461 * Initialise the MSG_FLOW_READING sub-state machine
462 */
463 static void init_read_state_machine(SSL *s)
464 {
465 STATEM *st = &s->statem;
466
467 st->read_state = READ_STATE_HEADER;
468 }
469
470 /*
471 * This function implements the sub-state machine when the message flow is in
472 * MSG_FLOW_READING. The valid sub-states and transitions are:
473 *
474 * READ_STATE_HEADER <--+<-------------+
475 * | | |
476 * v | |
477 * READ_STATE_BODY -----+-->READ_STATE_POST_PROCESS
478 * | |
479 * +----------------------------+
480 * v
481 * [SUB_STATE_FINISHED]
482 *
483 * READ_STATE_HEADER has the responsibility for reading in the message header
484 * and transitioning the state of the handshake state machine.
485 *
486 * READ_STATE_BODY reads in the rest of the message and then subsequently
487 * processes it.
488 *
489 * READ_STATE_POST_PROCESS is an optional step that may occur if some post
490 * processing activity performed on the message may block.
491 *
492 * Any of the above states could result in an NBIO event occuring in which case
493 * control returns to the calling application. When this function is recalled we
494 * will resume in the same state where we left off.
495 */
496 static enum SUB_STATE_RETURN read_state_machine(SSL *s) {
497 STATEM *st = &s->statem;
498 int ret, mt;
499 unsigned long len;
500 int (*transition)(SSL *s, int mt);
501 PACKET pkt;
502 enum MSG_PROCESS_RETURN (*process_message)(SSL *s, PACKET *pkt);
503 enum WORK_STATE (*post_process_message)(SSL *s, enum WORK_STATE wst);
504 unsigned long (*max_message_size)(SSL *s);
505 void (*cb) (const SSL *ssl, int type, int val) = NULL;
506
507 if (s->info_callback != NULL)
508 cb = s->info_callback;
509 else if (s->ctx->info_callback != NULL)
510 cb = s->ctx->info_callback;
511
512 if(s->server) {
513 transition = server_read_transition;
514 process_message = server_process_message;
515 max_message_size = server_max_message_size;
516 post_process_message = server_post_process_message;
517 } else {
518 transition = client_read_transition;
519 process_message = client_process_message;
520 max_message_size = client_max_message_size;
521 post_process_message = client_post_process_message;
522 }
523
524 if (st->read_state_first_init) {
525 s->first_packet = 1;
526 st->read_state_first_init = 0;
527 }
528
529 while(1) {
530 switch(st->read_state) {
531 case READ_STATE_HEADER:
532 s->init_num = 0;
533 /* Get the state the peer wants to move to */
534 if (SSL_IS_DTLS(s)) {
535 /*
536 * In DTLS we get the whole message in one go - header and body
537 */
538 ret = dtls_get_message(s, &mt, &len);
539 } else {
540 ret = tls_get_message_header(s, &mt);
541 }
542
543 if (ret == 0) {
544 /* Could be non-blocking IO */
545 return SUB_STATE_ERROR;
546 }
547
548 if (cb != NULL) {
549 /* Notify callback of an impending state change */
550 if (s->server)
551 cb(s, SSL_CB_ACCEPT_LOOP, 1);
552 else
553 cb(s, SSL_CB_CONNECT_LOOP, 1);
554 }
555 /*
556 * Validate that we are allowed to move to the new state and move
557 * to that state if so
558 */
559 if(!transition(s, mt)) {
560 ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_UNEXPECTED_MESSAGE);
561 SSLerr(SSL_F_READ_STATE_MACHINE, SSL_R_UNEXPECTED_MESSAGE);
562 return SUB_STATE_ERROR;
563 }
564
565 if (s->s3->tmp.message_size > max_message_size(s)) {
566 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
567 SSLerr(SSL_F_READ_STATE_MACHINE, SSL_R_EXCESSIVE_MESSAGE_SIZE);
568 return SUB_STATE_ERROR;
569 }
570
571 st->read_state = READ_STATE_BODY;
572 /* Fall through */
573
574 case READ_STATE_BODY:
575 if (!SSL_IS_DTLS(s)) {
576 /* We already got this above for DTLS */
577 ret = tls_get_message_body(s, &len);
578 if (ret == 0) {
579 /* Could be non-blocking IO */
580 return SUB_STATE_ERROR;
581 }
582 }
583
584 s->first_packet = 0;
585 if (!PACKET_buf_init(&pkt, s->init_msg, len)) {
586 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
587 SSLerr(SSL_F_READ_STATE_MACHINE, ERR_R_INTERNAL_ERROR);
588 return SUB_STATE_ERROR;
589 }
590 ret = process_message(s, &pkt);
591 if (ret == MSG_PROCESS_ERROR) {
592 return SUB_STATE_ERROR;
593 }
594
595 if (ret == MSG_PROCESS_FINISHED_READING) {
596 if (SSL_IS_DTLS(s)) {
597 dtls1_stop_timer(s);
598 }
599 return SUB_STATE_FINISHED;
600 }
601
602 if (ret == MSG_PROCESS_CONTINUE_PROCESSING) {
603 st->read_state = READ_STATE_POST_PROCESS;
604 st->read_state_work = WORK_MORE_A;
605 } else {
606 st->read_state = READ_STATE_HEADER;
607 }
608 break;
609
610 case READ_STATE_POST_PROCESS:
611 st->read_state_work = post_process_message(s, st->read_state_work);
612 switch(st->read_state_work) {
613 default:
614 return SUB_STATE_ERROR;
615
616 case WORK_FINISHED_CONTINUE:
617 st->read_state = READ_STATE_HEADER;
618 break;
619
620 case WORK_FINISHED_STOP:
621 if (SSL_IS_DTLS(s)) {
622 dtls1_stop_timer(s);
623 }
624 return SUB_STATE_FINISHED;
625 }
626 break;
627
628 default:
629 /* Shouldn't happen */
630 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
631 SSLerr(SSL_F_READ_STATE_MACHINE, ERR_R_INTERNAL_ERROR);
632 statem_set_error(s);
633 return SUB_STATE_ERROR;
634 }
635 }
636 }
637
638 /*
639 * Send a previously constructed message to the peer.
640 */
641 static int statem_do_write(SSL *s)
642 {
643 STATEM *st = &s->statem;
644
645 if (st->hand_state == TLS_ST_CW_CHANGE
646 || st->hand_state == TLS_ST_SW_CHANGE) {
647 if (SSL_IS_DTLS(s))
648 return dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC);
649 else
650 return ssl3_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC);
651 } else {
652 return ssl_do_write(s);
653 }
654 }
655
656 /*
657 * Initialise the MSG_FLOW_WRITING sub-state machine
658 */
659 static void init_write_state_machine(SSL *s)
660 {
661 STATEM *st = &s->statem;
662
663 st->write_state = WRITE_STATE_TRANSITION;
664 }
665
666 /*
667 * This function implements the sub-state machine when the message flow is in
668 * MSG_FLOW_WRITING. The valid sub-states and transitions are:
669 *
670 * +-> WRITE_STATE_TRANSITION ------> [SUB_STATE_FINISHED]
671 * | |
672 * | v
673 * | WRITE_STATE_PRE_WORK -----> [SUB_STATE_END_HANDSHAKE]
674 * | |
675 * | v
676 * | WRITE_STATE_SEND
677 * | |
678 * | v
679 * | WRITE_STATE_POST_WORK
680 * | |
681 * +-------------+
682 *
683 * WRITE_STATE_TRANSITION transitions the state of the handshake state machine
684
685 * WRITE_STATE_PRE_WORK performs any work necessary to prepare the later
686 * sending of the message. This could result in an NBIO event occuring in
687 * which case control returns to the calling application. When this function
688 * is recalled we will resume in the same state where we left off.
689 *
690 * WRITE_STATE_SEND sends the message and performs any work to be done after
691 * sending.
692 *
693 * WRITE_STATE_POST_WORK performs any work necessary after the sending of the
694 * message has been completed. As for WRITE_STATE_PRE_WORK this could also
695 * result in an NBIO event.
696 */
697 static enum SUB_STATE_RETURN write_state_machine(SSL *s)
698 {
699 STATEM *st = &s->statem;
700 int ret;
701 enum WRITE_TRAN (*transition)(SSL *s);
702 enum WORK_STATE (*pre_work)(SSL *s, enum WORK_STATE wst);
703 enum WORK_STATE (*post_work)(SSL *s, enum WORK_STATE wst);
704 int (*construct_message)(SSL *s);
705 void (*cb) (const SSL *ssl, int type, int val) = NULL;
706
707 if (s->info_callback != NULL)
708 cb = s->info_callback;
709 else if (s->ctx->info_callback != NULL)
710 cb = s->ctx->info_callback;
711
712 if(s->server) {
713 transition = server_write_transition;
714 pre_work = server_pre_work;
715 post_work = server_post_work;
716 construct_message = server_construct_message;
717 } else {
718 transition = client_write_transition;
719 pre_work = client_pre_work;
720 post_work = client_post_work;
721 construct_message = client_construct_message;
722 }
723
724 while(1) {
725 switch(st->write_state) {
726 case WRITE_STATE_TRANSITION:
727 if (cb != NULL) {
728 /* Notify callback of an impending state change */
729 if (s->server)
730 cb(s, SSL_CB_ACCEPT_LOOP, 1);
731 else
732 cb(s, SSL_CB_CONNECT_LOOP, 1);
733 }
734 switch(transition(s)) {
735 case WRITE_TRAN_CONTINUE:
736 st->write_state = WRITE_STATE_PRE_WORK;
737 st->write_state_work = WORK_MORE_A;
738 break;
739
740 case WRITE_TRAN_FINISHED:
741 return SUB_STATE_FINISHED;
742 break;
743
744 default:
745 return SUB_STATE_ERROR;
746 }
747 break;
748
749 case WRITE_STATE_PRE_WORK:
750 switch(st->write_state_work = pre_work(s, st->write_state_work)) {
751 default:
752 return SUB_STATE_ERROR;
753
754 case WORK_FINISHED_CONTINUE:
755 st->write_state = WRITE_STATE_SEND;
756 break;
757
758 case WORK_FINISHED_STOP:
759 return SUB_STATE_END_HANDSHAKE;
760 }
761 if(construct_message(s) == 0)
762 return SUB_STATE_ERROR;
763
764 /* Fall through */
765
766 case WRITE_STATE_SEND:
767 if (SSL_IS_DTLS(s) && st->use_timer) {
768 dtls1_start_timer(s);
769 }
770 ret = statem_do_write(s);
771 if (ret <= 0) {
772 return SUB_STATE_ERROR;
773 }
774 st->write_state = WRITE_STATE_POST_WORK;
775 st->write_state_work = WORK_MORE_A;
776 /* Fall through */
777
778 case WRITE_STATE_POST_WORK:
779 switch(st->write_state_work = post_work(s, st->write_state_work)) {
780 default:
781 return SUB_STATE_ERROR;
782
783 case WORK_FINISHED_CONTINUE:
784 st->write_state = WRITE_STATE_TRANSITION;
785 break;
786
787 case WORK_FINISHED_STOP:
788 return SUB_STATE_END_HANDSHAKE;
789 }
790 break;
791
792 default:
793 return SUB_STATE_ERROR;
794 }
795 }
796 }
797
798 /*
799 * Flush the write BIO
800 */
801 int statem_flush(SSL *s)
802 {
803 s->rwstate = SSL_WRITING;
804 if (BIO_flush(s->wbio) <= 0) {
805 return 0;
806 }
807 s->rwstate = SSL_NOTHING;
808
809 return 1;
810 }
811
812 /*
813 * Called by the record layer to determine whether application data is
814 * allowed to be sent in the current handshake state or not.
815 *
816 * Return values are:
817 * 1: Yes (application data allowed)
818 * 0: No (application data not allowed)
819 */
820 int statem_app_data_allowed(SSL *s)
821 {
822 STATEM *st = &s->statem;
823
824 if (st->state == MSG_FLOW_UNINITED || st->state == MSG_FLOW_RENEGOTIATE)
825 return 0;
826
827 if (!s->s3->in_read_app_data || (s->s3->total_renegotiations == 0))
828 return 0;
829
830 if (s->server) {
831 /*
832 * If we're a server and we haven't got as far as writing our
833 * ServerHello yet then we allow app data
834 */
835 if (st->hand_state == TLS_ST_BEFORE
836 || st->hand_state == TLS_ST_SR_CLNT_HELLO)
837 return 1;
838 } else {
839 /*
840 * If we're a client and we haven't read the ServerHello yet then we
841 * allow app data
842 */
843 if (st->hand_state == TLS_ST_CW_CLNT_HELLO)
844 return 1;
845 }
846
847 return 0;
848 }
849
850 #ifndef OPENSSL_NO_SCTP
851 /*
852 * Set flag used by SCTP to determine whether we are in the read sock state
853 */
854 void statem_set_sctp_read_sock(SSL *s, int read_sock)
855 {
856 s->statem.in_sctp_read_sock = read_sock;
857 }
858
859 /*
860 * Called by the record layer to determine whether we are in the read sock
861 * state or not.
862 *
863 * Return values are:
864 * 1: Yes (we are in the read sock state)
865 * 0: No (we are not in the read sock state)
866 */
867 int statem_in_sctp_read_sock(SSL *s)
868 {
869 return s->statem.in_sctp_read_sock;
870 }
871 #endif