]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Add Ed25519 to signature algorithm table
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return 0;
105 if (!s->method->ssl_clear(s))
106 return 0;
107
108 return 1;
109 }
110
111 void tls1_free(SSL *s)
112 {
113 OPENSSL_free(s->ext.session_ticket);
114 ssl3_free(s);
115 }
116
117 int tls1_clear(SSL *s)
118 {
119 if (!ssl3_clear(s))
120 return 0;
121
122 if (s->method->version == TLS_ANY_VERSION)
123 s->version = TLS_MAX_VERSION;
124 else
125 s->version = s->method->version;
126
127 return 1;
128 }
129
130 #ifndef OPENSSL_NO_EC
131
132 typedef struct {
133 int nid; /* Curve NID */
134 int secbits; /* Bits of security (from SP800-57) */
135 unsigned int flags; /* Flags: currently just field type */
136 } tls_curve_info;
137
138 /*
139 * Table of curve information.
140 * Do not delete entries or reorder this array! It is used as a lookup
141 * table: the index of each entry is one less than the TLS curve id.
142 */
143 static const tls_curve_info nid_list[] = {
144 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
172 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
173 };
174
175 static const unsigned char ecformats_default[] = {
176 TLSEXT_ECPOINTFORMAT_uncompressed,
177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
178 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
179 };
180
181 /* The default curves */
182 static const unsigned char eccurves_default[] = {
183 0, 29, /* X25519 (29) */
184 0, 23, /* secp256r1 (23) */
185 0, 25, /* secp521r1 (25) */
186 0, 24, /* secp384r1 (24) */
187 };
188
189 static const unsigned char suiteb_curves[] = {
190 0, TLSEXT_curve_P_256,
191 0, TLSEXT_curve_P_384
192 };
193
194 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
195 {
196 const tls_curve_info *cinfo;
197 /* ECC curves from RFC 4492 and RFC 7027 */
198 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
199 return 0;
200 cinfo = nid_list + curve_id - 1;
201 if (pflags)
202 *pflags = cinfo->flags;
203 return cinfo->nid;
204 }
205
206 int tls1_ec_nid2curve_id(int nid)
207 {
208 size_t i;
209 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
210 if (nid_list[i].nid == nid)
211 return (int)(i + 1);
212 }
213 return 0;
214 }
215
216 /*
217 * Get curves list, if "sess" is set return client curves otherwise
218 * preferred list.
219 * Sets |num_curves| to the number of curves in the list, i.e.,
220 * the length of |pcurves| is 2 * num_curves.
221 * Returns 1 on success and 0 if the client curves list has invalid format.
222 * The latter indicates an internal error: we should not be accepting such
223 * lists in the first place.
224 * TODO(emilia): we should really be storing the curves list in explicitly
225 * parsed form instead. (However, this would affect binary compatibility
226 * so cannot happen in the 1.0.x series.)
227 */
228 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
229 size_t *num_curves)
230 {
231 size_t pcurveslen = 0;
232
233 if (sess) {
234 *pcurves = s->session->ext.supportedgroups;
235 pcurveslen = s->session->ext.supportedgroups_len;
236 } else {
237 /* For Suite B mode only include P-256, P-384 */
238 switch (tls1_suiteb(s)) {
239 case SSL_CERT_FLAG_SUITEB_128_LOS:
240 *pcurves = suiteb_curves;
241 pcurveslen = sizeof(suiteb_curves);
242 break;
243
244 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
245 *pcurves = suiteb_curves;
246 pcurveslen = 2;
247 break;
248
249 case SSL_CERT_FLAG_SUITEB_192_LOS:
250 *pcurves = suiteb_curves + 2;
251 pcurveslen = 2;
252 break;
253 default:
254 *pcurves = s->ext.supportedgroups;
255 pcurveslen = s->ext.supportedgroups_len;
256 }
257 if (!*pcurves) {
258 *pcurves = eccurves_default;
259 pcurveslen = sizeof(eccurves_default);
260 }
261 }
262
263 /* We do not allow odd length arrays to enter the system. */
264 if (pcurveslen & 1) {
265 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
266 *num_curves = 0;
267 return 0;
268 }
269 *num_curves = pcurveslen / 2;
270 return 1;
271 }
272
273 /* See if curve is allowed by security callback */
274 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
275 {
276 const tls_curve_info *cinfo;
277 if (curve[0])
278 return 1;
279 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
280 return 0;
281 cinfo = &nid_list[curve[1] - 1];
282 # ifdef OPENSSL_NO_EC2M
283 if (cinfo->flags & TLS_CURVE_CHAR2)
284 return 0;
285 # endif
286 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
287 }
288
289 /* Check a curve is one of our preferences */
290 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
291 {
292 const unsigned char *curves;
293 size_t num_curves, i;
294 unsigned int suiteb_flags = tls1_suiteb(s);
295 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
296 return 0;
297 /* Check curve matches Suite B preferences */
298 if (suiteb_flags) {
299 unsigned long cid = s->s3->tmp.new_cipher->id;
300 if (p[1])
301 return 0;
302 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
303 if (p[2] != TLSEXT_curve_P_256)
304 return 0;
305 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
306 if (p[2] != TLSEXT_curve_P_384)
307 return 0;
308 } else /* Should never happen */
309 return 0;
310 }
311 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
312 return 0;
313 for (i = 0; i < num_curves; i++, curves += 2) {
314 if (p[1] == curves[0] && p[2] == curves[1])
315 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
316 }
317 return 0;
318 }
319
320 /*-
321 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
322 * if there is no match.
323 * For nmatch == -1, return number of matches
324 * For nmatch == -2, return the NID of the group to use for
325 * an EC tmp key, or NID_undef if there is no match.
326 */
327 int tls1_shared_group(SSL *s, int nmatch)
328 {
329 const unsigned char *pref, *supp;
330 size_t num_pref, num_supp, i, j;
331 int k;
332
333 /* Can't do anything on client side */
334 if (s->server == 0)
335 return -1;
336 if (nmatch == -2) {
337 if (tls1_suiteb(s)) {
338 /*
339 * For Suite B ciphersuite determines curve: we already know
340 * these are acceptable due to previous checks.
341 */
342 unsigned long cid = s->s3->tmp.new_cipher->id;
343
344 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
345 return NID_X9_62_prime256v1; /* P-256 */
346 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
347 return NID_secp384r1; /* P-384 */
348 /* Should never happen */
349 return NID_undef;
350 }
351 /* If not Suite B just return first preference shared curve */
352 nmatch = 0;
353 }
354 /*
355 * Avoid truncation. tls1_get_curvelist takes an int
356 * but s->options is a long...
357 */
358 if (!tls1_get_curvelist(s,
359 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
360 &supp, &num_supp))
361 /* In practice, NID_undef == 0 but let's be precise. */
362 return nmatch == -1 ? 0 : NID_undef;
363 if (!tls1_get_curvelist(s,
364 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
365 &pref, &num_pref))
366 return nmatch == -1 ? 0 : NID_undef;
367
368 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
369 const unsigned char *tsupp = supp;
370
371 for (j = 0; j < num_supp; j++, tsupp += 2) {
372 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
373 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
374 continue;
375 if (nmatch == k) {
376 int id = (pref[0] << 8) | pref[1];
377
378 return tls1_ec_curve_id2nid(id, NULL);
379 }
380 k++;
381 }
382 }
383 }
384 if (nmatch == -1)
385 return k;
386 /* Out of range (nmatch > k). */
387 return NID_undef;
388 }
389
390 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
391 int *groups, size_t ngroups)
392 {
393 unsigned char *glist, *p;
394 size_t i;
395 /*
396 * Bitmap of groups included to detect duplicates: only works while group
397 * ids < 32
398 */
399 unsigned long dup_list = 0;
400 glist = OPENSSL_malloc(ngroups * 2);
401 if (glist == NULL)
402 return 0;
403 for (i = 0, p = glist; i < ngroups; i++) {
404 unsigned long idmask;
405 int id;
406 /* TODO(TLS1.3): Convert for DH groups */
407 id = tls1_ec_nid2curve_id(groups[i]);
408 idmask = 1L << id;
409 if (!id || (dup_list & idmask)) {
410 OPENSSL_free(glist);
411 return 0;
412 }
413 dup_list |= idmask;
414 s2n(id, p);
415 }
416 OPENSSL_free(*pext);
417 *pext = glist;
418 *pextlen = ngroups * 2;
419 return 1;
420 }
421
422 # define MAX_CURVELIST 28
423
424 typedef struct {
425 size_t nidcnt;
426 int nid_arr[MAX_CURVELIST];
427 } nid_cb_st;
428
429 static int nid_cb(const char *elem, int len, void *arg)
430 {
431 nid_cb_st *narg = arg;
432 size_t i;
433 int nid;
434 char etmp[20];
435 if (elem == NULL)
436 return 0;
437 if (narg->nidcnt == MAX_CURVELIST)
438 return 0;
439 if (len > (int)(sizeof(etmp) - 1))
440 return 0;
441 memcpy(etmp, elem, len);
442 etmp[len] = 0;
443 nid = EC_curve_nist2nid(etmp);
444 if (nid == NID_undef)
445 nid = OBJ_sn2nid(etmp);
446 if (nid == NID_undef)
447 nid = OBJ_ln2nid(etmp);
448 if (nid == NID_undef)
449 return 0;
450 for (i = 0; i < narg->nidcnt; i++)
451 if (narg->nid_arr[i] == nid)
452 return 0;
453 narg->nid_arr[narg->nidcnt++] = nid;
454 return 1;
455 }
456
457 /* Set groups based on a colon separate list */
458 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
459 {
460 nid_cb_st ncb;
461 ncb.nidcnt = 0;
462 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
463 return 0;
464 if (pext == NULL)
465 return 1;
466 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
467 }
468
469 /* For an EC key set TLS id and required compression based on parameters */
470 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
471 EC_KEY *ec)
472 {
473 int id;
474 const EC_GROUP *grp;
475 if (!ec)
476 return 0;
477 /* Determine if it is a prime field */
478 grp = EC_KEY_get0_group(ec);
479 if (!grp)
480 return 0;
481 /* Determine curve ID */
482 id = EC_GROUP_get_curve_name(grp);
483 id = tls1_ec_nid2curve_id(id);
484 /* If no id return error: we don't support arbitrary explicit curves */
485 if (id == 0)
486 return 0;
487 curve_id[0] = 0;
488 curve_id[1] = (unsigned char)id;
489 if (comp_id) {
490 if (EC_KEY_get0_public_key(ec) == NULL)
491 return 0;
492 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
493 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
494 } else {
495 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
496 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
497 else
498 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
499 }
500 }
501 return 1;
502 }
503
504 /* Check an EC key is compatible with extensions */
505 static int tls1_check_ec_key(SSL *s,
506 unsigned char *curve_id, unsigned char *comp_id)
507 {
508 const unsigned char *pformats, *pcurves;
509 size_t num_formats, num_curves, i;
510 int j;
511 /*
512 * If point formats extension present check it, otherwise everything is
513 * supported (see RFC4492).
514 */
515 if (comp_id && s->session->ext.ecpointformats) {
516 pformats = s->session->ext.ecpointformats;
517 num_formats = s->session->ext.ecpointformats_len;
518 for (i = 0; i < num_formats; i++, pformats++) {
519 if (*comp_id == *pformats)
520 break;
521 }
522 if (i == num_formats)
523 return 0;
524 }
525 if (!curve_id)
526 return 1;
527 /* Check curve is consistent with client and server preferences */
528 for (j = 0; j <= 1; j++) {
529 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
530 return 0;
531 if (j == 1 && num_curves == 0) {
532 /*
533 * If we've not received any curves then skip this check.
534 * RFC 4492 does not require the supported elliptic curves extension
535 * so if it is not sent we can just choose any curve.
536 * It is invalid to send an empty list in the elliptic curves
537 * extension, so num_curves == 0 always means no extension.
538 */
539 break;
540 }
541 for (i = 0; i < num_curves; i++, pcurves += 2) {
542 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
543 break;
544 }
545 if (i == num_curves)
546 return 0;
547 /* For clients can only check sent curve list */
548 if (!s->server)
549 break;
550 }
551 return 1;
552 }
553
554 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
555 size_t *num_formats)
556 {
557 /*
558 * If we have a custom point format list use it otherwise use default
559 */
560 if (s->ext.ecpointformats) {
561 *pformats = s->ext.ecpointformats;
562 *num_formats = s->ext.ecpointformats_len;
563 } else {
564 *pformats = ecformats_default;
565 /* For Suite B we don't support char2 fields */
566 if (tls1_suiteb(s))
567 *num_formats = sizeof(ecformats_default) - 1;
568 else
569 *num_formats = sizeof(ecformats_default);
570 }
571 }
572
573 /*
574 * Check cert parameters compatible with extensions: currently just checks EC
575 * certificates have compatible curves and compression.
576 */
577 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
578 {
579 unsigned char comp_id, curve_id[2];
580 EVP_PKEY *pkey;
581 int rv;
582 pkey = X509_get0_pubkey(x);
583 if (!pkey)
584 return 0;
585 /* If not EC nothing to do */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
589 if (!rv)
590 return 0;
591 /*
592 * Can't check curve_id for client certs as we don't have a supported
593 * curves extension.
594 */
595 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
596 if (!rv)
597 return 0;
598 /*
599 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
600 * SHA384+P-384.
601 */
602 if (check_ee_md && tls1_suiteb(s)) {
603 int check_md;
604 size_t i;
605 CERT *c = s->cert;
606 if (curve_id[0])
607 return 0;
608 /* Check to see we have necessary signing algorithm */
609 if (curve_id[1] == TLSEXT_curve_P_256)
610 check_md = NID_ecdsa_with_SHA256;
611 else if (curve_id[1] == TLSEXT_curve_P_384)
612 check_md = NID_ecdsa_with_SHA384;
613 else
614 return 0; /* Should never happen */
615 for (i = 0; i < c->shared_sigalgslen; i++)
616 if (check_md == c->shared_sigalgs[i]->sigandhash)
617 break;
618 if (i == c->shared_sigalgslen)
619 return 0;
620 }
621 return rv;
622 }
623
624 /*
625 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
626 * @s: SSL connection
627 * @cid: Cipher ID we're considering using
628 *
629 * Checks that the kECDHE cipher suite we're considering using
630 * is compatible with the client extensions.
631 *
632 * Returns 0 when the cipher can't be used or 1 when it can.
633 */
634 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
635 {
636 /*
637 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
638 * curves permitted.
639 */
640 if (tls1_suiteb(s)) {
641 unsigned char curve_id[2];
642 /* Curve to check determined by ciphersuite */
643 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
644 curve_id[1] = TLSEXT_curve_P_256;
645 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
646 curve_id[1] = TLSEXT_curve_P_384;
647 else
648 return 0;
649 curve_id[0] = 0;
650 /* Check this curve is acceptable */
651 if (!tls1_check_ec_key(s, curve_id, NULL))
652 return 0;
653 return 1;
654 }
655 /* Need a shared curve */
656 if (tls1_shared_group(s, 0))
657 return 1;
658 return 0;
659 }
660
661 #else
662
663 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
664 {
665 return 1;
666 }
667
668 #endif /* OPENSSL_NO_EC */
669
670 /* Default sigalg schemes */
671 static const uint16_t tls12_sigalgs[] = {
672 #ifndef OPENSSL_NO_EC
673 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
674 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
675 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
676 #endif
677
678 TLSEXT_SIGALG_rsa_pss_sha256,
679 TLSEXT_SIGALG_rsa_pss_sha384,
680 TLSEXT_SIGALG_rsa_pss_sha512,
681
682 TLSEXT_SIGALG_rsa_pkcs1_sha256,
683 TLSEXT_SIGALG_rsa_pkcs1_sha384,
684 TLSEXT_SIGALG_rsa_pkcs1_sha512,
685
686 #ifndef OPENSSL_NO_EC
687 TLSEXT_SIGALG_ecdsa_sha224,
688 TLSEXT_SIGALG_ecdsa_sha1,
689 #endif
690 TLSEXT_SIGALG_rsa_pkcs1_sha224,
691 TLSEXT_SIGALG_rsa_pkcs1_sha1,
692 #ifndef OPENSSL_NO_DSA
693 TLSEXT_SIGALG_dsa_sha224,
694 TLSEXT_SIGALG_dsa_sha1,
695
696 TLSEXT_SIGALG_dsa_sha256,
697 TLSEXT_SIGALG_dsa_sha384,
698 TLSEXT_SIGALG_dsa_sha512
699 #endif
700 };
701
702 #ifndef OPENSSL_NO_EC
703 static const uint16_t suiteb_sigalgs[] = {
704 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
705 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
706 };
707 #endif
708
709 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
710 #ifndef OPENSSL_NO_EC
711 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
712 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
713 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
714 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
715 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
716 NID_ecdsa_with_SHA384, NID_secp384r1},
717 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
718 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
719 NID_ecdsa_with_SHA512, NID_secp521r1},
720 {"ed25519", TLSEXT_SIGALG_ed25519,
721 NID_undef, -1, NID_ED25519, SSL_PKEY_ED25519,
722 NID_undef, NID_undef},
723 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
724 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
725 NID_ecdsa_with_SHA224, NID_undef},
726 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
727 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
728 NID_ecdsa_with_SHA1, NID_undef},
729 #endif
730 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
731 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
732 NID_undef, NID_undef},
733 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
734 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
735 NID_undef, NID_undef},
736 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
737 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
738 NID_undef, NID_undef},
739 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
740 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
741 NID_sha256WithRSAEncryption, NID_undef},
742 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
743 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
744 NID_sha384WithRSAEncryption, NID_undef},
745 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
746 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
747 NID_sha512WithRSAEncryption, NID_undef},
748 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
749 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
750 NID_sha224WithRSAEncryption, NID_undef},
751 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
752 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
753 NID_sha1WithRSAEncryption, NID_undef},
754 #ifndef OPENSSL_NO_DSA
755 {NULL, TLSEXT_SIGALG_dsa_sha256,
756 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
757 NID_dsa_with_SHA256, NID_undef},
758 {NULL, TLSEXT_SIGALG_dsa_sha384,
759 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
760 NID_undef, NID_undef},
761 {NULL, TLSEXT_SIGALG_dsa_sha512,
762 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
763 NID_undef, NID_undef},
764 {NULL, TLSEXT_SIGALG_dsa_sha224,
765 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
766 NID_undef, NID_undef},
767 {NULL, TLSEXT_SIGALG_dsa_sha1,
768 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
769 NID_dsaWithSHA1, NID_undef},
770 #endif
771 #ifndef OPENSSL_NO_GOST
772 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
773 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
774 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
775 NID_undef, NID_undef},
776 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
777 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
778 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
779 NID_undef, NID_undef},
780 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
781 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
782 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
783 NID_undef, NID_undef}
784 #endif
785 };
786 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
787 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
788 "rsa_pkcs1_md5_sha1", 0,
789 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
790 EVP_PKEY_RSA, SSL_PKEY_RSA,
791 NID_undef, NID_undef
792 };
793
794 /*
795 * Default signature algorithm values used if signature algorithms not present.
796 * From RFC5246. Note: order must match certificate index order.
797 */
798 static const uint16_t tls_default_sigalg[] = {
799 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
800 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
801 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
802 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
803 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
804 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
805 0 /* SSL_PKEY_ED25519 */
806 };
807
808 /* Lookup TLS signature algorithm */
809 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
810 {
811 size_t i;
812 const SIGALG_LOOKUP *s;
813
814 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
815 i++, s++) {
816 if (s->sigalg == sigalg)
817 return s;
818 }
819 return NULL;
820 }
821 /*
822 * Return a signature algorithm for TLS < 1.2 where the signature type
823 * is fixed by the certificate type.
824 */
825 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
826 {
827 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
828 return NULL;
829 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
830 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
831
832 if (lu == NULL || ssl_md(lu->hash_idx) == NULL) {
833 return NULL;
834 }
835 return lu;
836 }
837 return &legacy_rsa_sigalg;
838 }
839 /* Set peer sigalg based key type */
840 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
841 {
842 int idx = ssl_cert_type(NULL, pkey);
843
844 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, idx);
845 if (lu == NULL)
846 return 0;
847 s->s3->tmp.peer_sigalg = lu;
848 return 1;
849 }
850
851 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
852 {
853 /*
854 * If Suite B mode use Suite B sigalgs only, ignore any other
855 * preferences.
856 */
857 #ifndef OPENSSL_NO_EC
858 switch (tls1_suiteb(s)) {
859 case SSL_CERT_FLAG_SUITEB_128_LOS:
860 *psigs = suiteb_sigalgs;
861 return OSSL_NELEM(suiteb_sigalgs);
862
863 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
864 *psigs = suiteb_sigalgs;
865 return 1;
866
867 case SSL_CERT_FLAG_SUITEB_192_LOS:
868 *psigs = suiteb_sigalgs + 1;
869 return 1;
870 }
871 #endif
872 /*
873 * We use client_sigalgs (if not NULL) if we're a server
874 * and sending a certificate request or if we're a client and
875 * determining which shared algorithm to use.
876 */
877 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
878 *psigs = s->cert->client_sigalgs;
879 return s->cert->client_sigalgslen;
880 } else if (s->cert->conf_sigalgs) {
881 *psigs = s->cert->conf_sigalgs;
882 return s->cert->conf_sigalgslen;
883 } else {
884 *psigs = tls12_sigalgs;
885 return OSSL_NELEM(tls12_sigalgs);
886 }
887 }
888
889 /*
890 * Check signature algorithm is consistent with sent supported signature
891 * algorithms and if so set relevant digest and signature scheme in
892 * s.
893 */
894 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
895 {
896 const uint16_t *sent_sigs;
897 const EVP_MD *md = NULL;
898 char sigalgstr[2];
899 size_t sent_sigslen, i;
900 int pkeyid = EVP_PKEY_id(pkey);
901 const SIGALG_LOOKUP *lu;
902
903 /* Should never happen */
904 if (pkeyid == -1)
905 return -1;
906 if (SSL_IS_TLS13(s)) {
907 /* Disallow DSA for TLS 1.3 */
908 if (pkeyid == EVP_PKEY_DSA) {
909 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
910 return 0;
911 }
912 /* Only allow PSS for TLS 1.3 */
913 if (pkeyid == EVP_PKEY_RSA)
914 pkeyid = EVP_PKEY_RSA_PSS;
915 }
916 lu = tls1_lookup_sigalg(sig);
917 /*
918 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
919 * is consistent with signature: RSA keys can be used for RSA-PSS
920 */
921 if (lu == NULL
922 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
923 || (pkeyid != lu->sig
924 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
925 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
926 return 0;
927 }
928 #ifndef OPENSSL_NO_EC
929 if (pkeyid == EVP_PKEY_EC) {
930 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
931 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
932
933 if (SSL_IS_TLS13(s)) {
934 if (EC_KEY_get_conv_form(ec) != POINT_CONVERSION_UNCOMPRESSED) {
935 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
936 SSL_R_ILLEGAL_POINT_COMPRESSION);
937 return 0;
938 }
939 /* For TLS 1.3 check curve matches signature algorithm */
940 if (lu->curve != NID_undef && curve != lu->curve) {
941 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
942 return 0;
943 }
944 } else {
945 unsigned char curve_id[2], comp_id;
946
947 /* Check compression and curve matches extensions */
948 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
949 return 0;
950 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
951 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
952 return 0;
953 }
954 if (tls1_suiteb(s)) {
955 /* Check sigalg matches a permissible Suite B value */
956 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
957 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
958 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
959 SSL_R_WRONG_SIGNATURE_TYPE);
960 return 0;
961 }
962 /*
963 * Suite B also requires P-256+SHA256 and P-384+SHA384:
964 * this matches the TLS 1.3 requirements so we can just
965 * check the curve is the expected TLS 1.3 value.
966 * If this fails an inappropriate digest is being used.
967 */
968 if (curve != lu->curve) {
969 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
970 SSL_R_ILLEGAL_SUITEB_DIGEST);
971 return 0;
972 }
973 }
974 }
975 } else if (tls1_suiteb(s)) {
976 return 0;
977 }
978 #endif
979
980 /* Check signature matches a type we sent */
981 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
982 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
983 if (sig == *sent_sigs)
984 break;
985 }
986 /* Allow fallback to SHA1 if not strict mode */
987 if (i == sent_sigslen && (lu->hash != NID_sha1
988 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
989 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
990 return 0;
991 }
992 md = ssl_md(lu->hash_idx);
993 if (md == NULL) {
994 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
995 return 0;
996 }
997 /*
998 * Make sure security callback allows algorithm. For historical reasons we
999 * have to pass the sigalg as a two byte char array.
1000 */
1001 sigalgstr[0] = (sig >> 8) & 0xff;
1002 sigalgstr[1] = sig & 0xff;
1003 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1004 EVP_MD_size(md) * 4, EVP_MD_type(md),
1005 (void *)sigalgstr)) {
1006 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1007 return 0;
1008 }
1009 /* Store the sigalg the peer uses */
1010 s->s3->tmp.peer_sigalg = lu;
1011 return 1;
1012 }
1013
1014 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1015 {
1016 if (s->s3->tmp.peer_sigalg == NULL)
1017 return 0;
1018 *pnid = s->s3->tmp.peer_sigalg->sig;
1019 return 1;
1020 }
1021
1022 /*
1023 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1024 * supported, doesn't appear in supported signature algorithms, isn't supported
1025 * by the enabled protocol versions or by the security level.
1026 *
1027 * This function should only be used for checking which ciphers are supported
1028 * by the client.
1029 *
1030 * Call ssl_cipher_disabled() to check that it's enabled or not.
1031 */
1032 void ssl_set_client_disabled(SSL *s)
1033 {
1034 s->s3->tmp.mask_a = 0;
1035 s->s3->tmp.mask_k = 0;
1036 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1037 ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
1038 #ifndef OPENSSL_NO_PSK
1039 /* with PSK there must be client callback set */
1040 if (!s->psk_client_callback) {
1041 s->s3->tmp.mask_a |= SSL_aPSK;
1042 s->s3->tmp.mask_k |= SSL_PSK;
1043 }
1044 #endif /* OPENSSL_NO_PSK */
1045 #ifndef OPENSSL_NO_SRP
1046 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1047 s->s3->tmp.mask_a |= SSL_aSRP;
1048 s->s3->tmp.mask_k |= SSL_kSRP;
1049 }
1050 #endif
1051 }
1052
1053 /*
1054 * ssl_cipher_disabled - check that a cipher is disabled or not
1055 * @s: SSL connection that you want to use the cipher on
1056 * @c: cipher to check
1057 * @op: Security check that you want to do
1058 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1059 *
1060 * Returns 1 when it's disabled, 0 when enabled.
1061 */
1062 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1063 {
1064 if (c->algorithm_mkey & s->s3->tmp.mask_k
1065 || c->algorithm_auth & s->s3->tmp.mask_a)
1066 return 1;
1067 if (s->s3->tmp.max_ver == 0)
1068 return 1;
1069 if (!SSL_IS_DTLS(s)) {
1070 int min_tls = c->min_tls;
1071
1072 /*
1073 * For historical reasons we will allow ECHDE to be selected by a server
1074 * in SSLv3 if we are a client
1075 */
1076 if (min_tls == TLS1_VERSION && ecdhe
1077 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1078 min_tls = SSL3_VERSION;
1079
1080 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1081 return 1;
1082 }
1083 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1084 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1085 return 1;
1086
1087 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1088 }
1089
1090 int tls_use_ticket(SSL *s)
1091 {
1092 if ((s->options & SSL_OP_NO_TICKET))
1093 return 0;
1094 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1095 }
1096
1097 int tls1_set_server_sigalgs(SSL *s)
1098 {
1099 int al;
1100 size_t i;
1101
1102 /* Clear any shared signature algorithms */
1103 OPENSSL_free(s->cert->shared_sigalgs);
1104 s->cert->shared_sigalgs = NULL;
1105 s->cert->shared_sigalgslen = 0;
1106 /* Clear certificate validity flags */
1107 for (i = 0; i < SSL_PKEY_NUM; i++)
1108 s->s3->tmp.valid_flags[i] = 0;
1109 /*
1110 * If peer sent no signature algorithms check to see if we support
1111 * the default algorithm for each certificate type
1112 */
1113 if (s->s3->tmp.peer_sigalgs == NULL) {
1114 const uint16_t *sent_sigs;
1115 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1116
1117 for (i = 0; i < SSL_PKEY_NUM; i++) {
1118 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1119 size_t j;
1120
1121 if (lu == NULL)
1122 continue;
1123 /* Check default matches a type we sent */
1124 for (j = 0; j < sent_sigslen; j++) {
1125 if (lu->sigalg == sent_sigs[j]) {
1126 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1127 break;
1128 }
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 if (!tls1_process_sigalgs(s)) {
1135 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1136 al = SSL_AD_INTERNAL_ERROR;
1137 goto err;
1138 }
1139 if (s->cert->shared_sigalgs != NULL)
1140 return 1;
1141 /* Fatal error if no shared signature algorithms */
1142 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1143 al = SSL_AD_HANDSHAKE_FAILURE;
1144 err:
1145 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1146 return 0;
1147 }
1148
1149 /*-
1150 * Gets the ticket information supplied by the client if any.
1151 *
1152 * hello: The parsed ClientHello data
1153 * ret: (output) on return, if a ticket was decrypted, then this is set to
1154 * point to the resulting session.
1155 *
1156 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1157 * ciphersuite, in which case we have no use for session tickets and one will
1158 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1159 *
1160 * Returns:
1161 * -1: fatal error, either from parsing or decrypting the ticket.
1162 * 0: no ticket was found (or was ignored, based on settings).
1163 * 1: a zero length extension was found, indicating that the client supports
1164 * session tickets but doesn't currently have one to offer.
1165 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1166 * couldn't be decrypted because of a non-fatal error.
1167 * 3: a ticket was successfully decrypted and *ret was set.
1168 *
1169 * Side effects:
1170 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1171 * a new session ticket to the client because the client indicated support
1172 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1173 * a session ticket or we couldn't use the one it gave us, or if
1174 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1175 * Otherwise, s->ext.ticket_expected is set to 0.
1176 */
1177 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1178 SSL_SESSION **ret)
1179 {
1180 int retv;
1181 size_t size;
1182 RAW_EXTENSION *ticketext;
1183
1184 *ret = NULL;
1185 s->ext.ticket_expected = 0;
1186
1187 /*
1188 * If tickets disabled or not supported by the protocol version
1189 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1190 * resumption.
1191 */
1192 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1193 return TICKET_NONE;
1194
1195 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1196 if (!ticketext->present)
1197 return TICKET_NONE;
1198
1199 size = PACKET_remaining(&ticketext->data);
1200 if (size == 0) {
1201 /*
1202 * The client will accept a ticket but doesn't currently have
1203 * one.
1204 */
1205 s->ext.ticket_expected = 1;
1206 return TICKET_EMPTY;
1207 }
1208 if (s->ext.session_secret_cb) {
1209 /*
1210 * Indicate that the ticket couldn't be decrypted rather than
1211 * generating the session from ticket now, trigger
1212 * abbreviated handshake based on external mechanism to
1213 * calculate the master secret later.
1214 */
1215 return TICKET_NO_DECRYPT;
1216 }
1217
1218 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1219 hello->session_id, hello->session_id_len, ret);
1220 switch (retv) {
1221 case TICKET_NO_DECRYPT:
1222 s->ext.ticket_expected = 1;
1223 return TICKET_NO_DECRYPT;
1224
1225 case TICKET_SUCCESS:
1226 return TICKET_SUCCESS;
1227
1228 case TICKET_SUCCESS_RENEW:
1229 s->ext.ticket_expected = 1;
1230 return TICKET_SUCCESS;
1231
1232 default:
1233 return TICKET_FATAL_ERR_OTHER;
1234 }
1235 }
1236
1237 /*-
1238 * tls_decrypt_ticket attempts to decrypt a session ticket.
1239 *
1240 * etick: points to the body of the session ticket extension.
1241 * eticklen: the length of the session tickets extension.
1242 * sess_id: points at the session ID.
1243 * sesslen: the length of the session ID.
1244 * psess: (output) on return, if a ticket was decrypted, then this is set to
1245 * point to the resulting session.
1246 */
1247 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1248 size_t eticklen, const unsigned char *sess_id,
1249 size_t sesslen, SSL_SESSION **psess)
1250 {
1251 SSL_SESSION *sess;
1252 unsigned char *sdec;
1253 const unsigned char *p;
1254 int slen, renew_ticket = 0, declen;
1255 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1256 size_t mlen;
1257 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1258 HMAC_CTX *hctx = NULL;
1259 EVP_CIPHER_CTX *ctx;
1260 SSL_CTX *tctx = s->session_ctx;
1261
1262 /* Initialize session ticket encryption and HMAC contexts */
1263 hctx = HMAC_CTX_new();
1264 if (hctx == NULL)
1265 return TICKET_FATAL_ERR_MALLOC;
1266 ctx = EVP_CIPHER_CTX_new();
1267 if (ctx == NULL) {
1268 ret = TICKET_FATAL_ERR_MALLOC;
1269 goto err;
1270 }
1271 if (tctx->ext.ticket_key_cb) {
1272 unsigned char *nctick = (unsigned char *)etick;
1273 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1274 ctx, hctx, 0);
1275 if (rv < 0)
1276 goto err;
1277 if (rv == 0) {
1278 ret = TICKET_NO_DECRYPT;
1279 goto err;
1280 }
1281 if (rv == 2)
1282 renew_ticket = 1;
1283 } else {
1284 /* Check key name matches */
1285 if (memcmp(etick, tctx->ext.tick_key_name,
1286 sizeof(tctx->ext.tick_key_name)) != 0) {
1287 ret = TICKET_NO_DECRYPT;
1288 goto err;
1289 }
1290 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1291 sizeof(tctx->ext.tick_hmac_key),
1292 EVP_sha256(), NULL) <= 0
1293 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1294 tctx->ext.tick_aes_key,
1295 etick
1296 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1297 goto err;
1298 }
1299 }
1300 /*
1301 * Attempt to process session ticket, first conduct sanity and integrity
1302 * checks on ticket.
1303 */
1304 mlen = HMAC_size(hctx);
1305 if (mlen == 0) {
1306 goto err;
1307 }
1308 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1309 if (eticklen <=
1310 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1311 ret = TICKET_NO_DECRYPT;
1312 goto err;
1313 }
1314 eticklen -= mlen;
1315 /* Check HMAC of encrypted ticket */
1316 if (HMAC_Update(hctx, etick, eticklen) <= 0
1317 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1318 goto err;
1319 }
1320 HMAC_CTX_free(hctx);
1321 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1322 EVP_CIPHER_CTX_free(ctx);
1323 return TICKET_NO_DECRYPT;
1324 }
1325 /* Attempt to decrypt session data */
1326 /* Move p after IV to start of encrypted ticket, update length */
1327 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1328 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1329 sdec = OPENSSL_malloc(eticklen);
1330 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1331 (int)eticklen) <= 0) {
1332 EVP_CIPHER_CTX_free(ctx);
1333 OPENSSL_free(sdec);
1334 return TICKET_FATAL_ERR_OTHER;
1335 }
1336 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1337 EVP_CIPHER_CTX_free(ctx);
1338 OPENSSL_free(sdec);
1339 return TICKET_NO_DECRYPT;
1340 }
1341 slen += declen;
1342 EVP_CIPHER_CTX_free(ctx);
1343 ctx = NULL;
1344 p = sdec;
1345
1346 sess = d2i_SSL_SESSION(NULL, &p, slen);
1347 slen -= p - sdec;
1348 OPENSSL_free(sdec);
1349 if (sess) {
1350 /* Some additional consistency checks */
1351 if (slen != 0 || sess->session_id_length != 0) {
1352 SSL_SESSION_free(sess);
1353 return TICKET_NO_DECRYPT;
1354 }
1355 /*
1356 * The session ID, if non-empty, is used by some clients to detect
1357 * that the ticket has been accepted. So we copy it to the session
1358 * structure. If it is empty set length to zero as required by
1359 * standard.
1360 */
1361 if (sesslen)
1362 memcpy(sess->session_id, sess_id, sesslen);
1363 sess->session_id_length = sesslen;
1364 *psess = sess;
1365 if (renew_ticket)
1366 return TICKET_SUCCESS_RENEW;
1367 else
1368 return TICKET_SUCCESS;
1369 }
1370 ERR_clear_error();
1371 /*
1372 * For session parse failure, indicate that we need to send a new ticket.
1373 */
1374 return TICKET_NO_DECRYPT;
1375 err:
1376 EVP_CIPHER_CTX_free(ctx);
1377 HMAC_CTX_free(hctx);
1378 return ret;
1379 }
1380
1381 static int tls12_get_pkey_idx(int sig_nid)
1382 {
1383 switch (sig_nid) {
1384 #ifndef OPENSSL_NO_RSA
1385 case EVP_PKEY_RSA:
1386 return SSL_PKEY_RSA;
1387 /*
1388 * For now return RSA key for PSS. When we support PSS only keys
1389 * this will need to be updated.
1390 */
1391 case EVP_PKEY_RSA_PSS:
1392 return SSL_PKEY_RSA;
1393 #endif
1394 #ifndef OPENSSL_NO_DSA
1395 case EVP_PKEY_DSA:
1396 return SSL_PKEY_DSA_SIGN;
1397 #endif
1398 #ifndef OPENSSL_NO_EC
1399 case EVP_PKEY_EC:
1400 return SSL_PKEY_ECC;
1401 case NID_ED25519:
1402 return SSL_PKEY_ED25519;
1403 #endif
1404 #ifndef OPENSSL_NO_GOST
1405 case NID_id_GostR3410_2001:
1406 return SSL_PKEY_GOST01;
1407
1408 case NID_id_GostR3410_2012_256:
1409 return SSL_PKEY_GOST12_256;
1410
1411 case NID_id_GostR3410_2012_512:
1412 return SSL_PKEY_GOST12_512;
1413 #endif
1414 }
1415 return -1;
1416 }
1417
1418 /* Check to see if a signature algorithm is allowed */
1419 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
1420 {
1421 unsigned char sigalgstr[2];
1422 int secbits;
1423
1424 /* See if sigalgs is recognised and if hash is enabled */
1425 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1426 return 0;
1427 /* DSA is not allowed in TLS 1.3 */
1428 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1429 return 0;
1430 /* See if public key algorithm allowed */
1431 if (tls12_get_pkey_idx(lu->sig) == -1)
1432 return 0;
1433 /* Security bits: half digest bits */
1434 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1435 /* Finally see if security callback allows it */
1436 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1437 sigalgstr[1] = lu->sigalg & 0xff;
1438 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1439 }
1440
1441 /*
1442 * Get a mask of disabled public key algorithms based on supported signature
1443 * algorithms. For example if no signature algorithm supports RSA then RSA is
1444 * disabled.
1445 */
1446
1447 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1448 {
1449 const uint16_t *sigalgs;
1450 size_t i, sigalgslen;
1451 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1452 /*
1453 * Now go through all signature algorithms seeing if we support any for
1454 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1455 * down calls to security callback only check if we have to.
1456 */
1457 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1458 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1459 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1460
1461 if (lu == NULL)
1462 continue;
1463 switch (lu->sig) {
1464 #ifndef OPENSSL_NO_RSA
1465 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1466 case EVP_PKEY_RSA_PSS:
1467 case EVP_PKEY_RSA:
1468 if (!have_rsa && tls12_sigalg_allowed(s, op, lu))
1469 have_rsa = 1;
1470 break;
1471 #endif
1472 #ifndef OPENSSL_NO_DSA
1473 case EVP_PKEY_DSA:
1474 if (!have_dsa && tls12_sigalg_allowed(s, op, lu))
1475 have_dsa = 1;
1476 break;
1477 #endif
1478 #ifndef OPENSSL_NO_EC
1479 case EVP_PKEY_EC:
1480 if (!have_ecdsa && tls12_sigalg_allowed(s, op, lu))
1481 have_ecdsa = 1;
1482 break;
1483 #endif
1484 }
1485 }
1486 if (!have_rsa)
1487 *pmask_a |= SSL_aRSA;
1488 if (!have_dsa)
1489 *pmask_a |= SSL_aDSS;
1490 if (!have_ecdsa)
1491 *pmask_a |= SSL_aECDSA;
1492 }
1493
1494 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1495 const uint16_t *psig, size_t psiglen)
1496 {
1497 size_t i;
1498 int rv = 0;
1499
1500 for (i = 0; i < psiglen; i++, psig++) {
1501 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1502
1503 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1504 continue;
1505 if (!WPACKET_put_bytes_u16(pkt, *psig))
1506 return 0;
1507 /*
1508 * If TLS 1.3 must have at least one valid TLS 1.3 message
1509 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1510 */
1511 if (rv == 0 && (!SSL_IS_TLS13(s)
1512 || (lu->sig != EVP_PKEY_RSA
1513 && lu->hash != NID_sha1
1514 && lu->hash != NID_sha224)))
1515 rv = 1;
1516 }
1517 if (rv == 0)
1518 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1519 return rv;
1520 }
1521
1522 /* Given preference and allowed sigalgs set shared sigalgs */
1523 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1524 const uint16_t *pref, size_t preflen,
1525 const uint16_t *allow, size_t allowlen)
1526 {
1527 const uint16_t *ptmp, *atmp;
1528 size_t i, j, nmatch = 0;
1529 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1530 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1531
1532 /* Skip disabled hashes or signature algorithms */
1533 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1534 continue;
1535 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1536 if (*ptmp == *atmp) {
1537 nmatch++;
1538 if (shsig)
1539 *shsig++ = lu;
1540 break;
1541 }
1542 }
1543 }
1544 return nmatch;
1545 }
1546
1547 /* Set shared signature algorithms for SSL structures */
1548 static int tls1_set_shared_sigalgs(SSL *s)
1549 {
1550 const uint16_t *pref, *allow, *conf;
1551 size_t preflen, allowlen, conflen;
1552 size_t nmatch;
1553 const SIGALG_LOOKUP **salgs = NULL;
1554 CERT *c = s->cert;
1555 unsigned int is_suiteb = tls1_suiteb(s);
1556
1557 OPENSSL_free(c->shared_sigalgs);
1558 c->shared_sigalgs = NULL;
1559 c->shared_sigalgslen = 0;
1560 /* If client use client signature algorithms if not NULL */
1561 if (!s->server && c->client_sigalgs && !is_suiteb) {
1562 conf = c->client_sigalgs;
1563 conflen = c->client_sigalgslen;
1564 } else if (c->conf_sigalgs && !is_suiteb) {
1565 conf = c->conf_sigalgs;
1566 conflen = c->conf_sigalgslen;
1567 } else
1568 conflen = tls12_get_psigalgs(s, 0, &conf);
1569 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1570 pref = conf;
1571 preflen = conflen;
1572 allow = s->s3->tmp.peer_sigalgs;
1573 allowlen = s->s3->tmp.peer_sigalgslen;
1574 } else {
1575 allow = conf;
1576 allowlen = conflen;
1577 pref = s->s3->tmp.peer_sigalgs;
1578 preflen = s->s3->tmp.peer_sigalgslen;
1579 }
1580 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1581 if (nmatch) {
1582 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1583 if (salgs == NULL)
1584 return 0;
1585 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1586 } else {
1587 salgs = NULL;
1588 }
1589 c->shared_sigalgs = salgs;
1590 c->shared_sigalgslen = nmatch;
1591 return 1;
1592 }
1593
1594 /* Set preferred digest for each key type */
1595
1596 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1597 {
1598 CERT *c = s->cert;
1599 unsigned int stmp;
1600 size_t size, i;
1601
1602 /* Extension ignored for inappropriate versions */
1603 if (!SSL_USE_SIGALGS(s))
1604 return 1;
1605 /* Should never happen */
1606 if (!c)
1607 return 0;
1608
1609 size = PACKET_remaining(pkt);
1610
1611 /* Invalid data length */
1612 if (size == 0 || (size & 1) != 0)
1613 return 0;
1614
1615 size >>= 1;
1616
1617 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1618 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1619 * sizeof(*s->s3->tmp.peer_sigalgs));
1620 if (s->s3->tmp.peer_sigalgs == NULL)
1621 return 0;
1622 s->s3->tmp.peer_sigalgslen = size;
1623 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1624 s->s3->tmp.peer_sigalgs[i] = stmp;
1625
1626 if (i != size)
1627 return 0;
1628
1629 return 1;
1630 }
1631
1632 int tls1_process_sigalgs(SSL *s)
1633 {
1634 size_t i;
1635 uint32_t *pvalid = s->s3->tmp.valid_flags;
1636 CERT *c = s->cert;
1637
1638 if (!tls1_set_shared_sigalgs(s))
1639 return 0;
1640
1641 for (i = 0; i < SSL_PKEY_NUM; i++)
1642 pvalid[i] = 0;
1643
1644 for (i = 0; i < c->shared_sigalgslen; i++) {
1645 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1646 int idx = sigptr->sig_idx;
1647
1648 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1649 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1650 continue;
1651 /* If not disabled indicate we can explicitly sign */
1652 if (pvalid[idx] == 0 && tls12_get_pkey_idx(sigptr->sig) != -1)
1653 pvalid[sigptr->sig_idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1654 }
1655 return 1;
1656 }
1657
1658 int SSL_get_sigalgs(SSL *s, int idx,
1659 int *psign, int *phash, int *psignhash,
1660 unsigned char *rsig, unsigned char *rhash)
1661 {
1662 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1663 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1664 if (psig == NULL || numsigalgs > INT_MAX)
1665 return 0;
1666 if (idx >= 0) {
1667 const SIGALG_LOOKUP *lu;
1668
1669 if (idx >= (int)numsigalgs)
1670 return 0;
1671 psig += idx;
1672 if (rhash != NULL)
1673 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1674 if (rsig != NULL)
1675 *rsig = (unsigned char)(*psig & 0xff);
1676 lu = tls1_lookup_sigalg(*psig);
1677 if (psign != NULL)
1678 *psign = lu != NULL ? lu->sig : NID_undef;
1679 if (phash != NULL)
1680 *phash = lu != NULL ? lu->hash : NID_undef;
1681 if (psignhash != NULL)
1682 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1683 }
1684 return (int)numsigalgs;
1685 }
1686
1687 int SSL_get_shared_sigalgs(SSL *s, int idx,
1688 int *psign, int *phash, int *psignhash,
1689 unsigned char *rsig, unsigned char *rhash)
1690 {
1691 const SIGALG_LOOKUP *shsigalgs;
1692 if (s->cert->shared_sigalgs == NULL
1693 || idx < 0
1694 || idx >= (int)s->cert->shared_sigalgslen
1695 || s->cert->shared_sigalgslen > INT_MAX)
1696 return 0;
1697 shsigalgs = s->cert->shared_sigalgs[idx];
1698 if (phash != NULL)
1699 *phash = shsigalgs->hash;
1700 if (psign != NULL)
1701 *psign = shsigalgs->sig;
1702 if (psignhash != NULL)
1703 *psignhash = shsigalgs->sigandhash;
1704 if (rsig != NULL)
1705 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1706 if (rhash != NULL)
1707 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1708 return (int)s->cert->shared_sigalgslen;
1709 }
1710
1711 /* Maximum possible number of unique entries in sigalgs array */
1712 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1713
1714 typedef struct {
1715 size_t sigalgcnt;
1716 int sigalgs[TLS_MAX_SIGALGCNT];
1717 } sig_cb_st;
1718
1719 static void get_sigorhash(int *psig, int *phash, const char *str)
1720 {
1721 if (strcmp(str, "RSA") == 0) {
1722 *psig = EVP_PKEY_RSA;
1723 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1724 *psig = EVP_PKEY_RSA_PSS;
1725 } else if (strcmp(str, "DSA") == 0) {
1726 *psig = EVP_PKEY_DSA;
1727 } else if (strcmp(str, "ECDSA") == 0) {
1728 *psig = EVP_PKEY_EC;
1729 } else {
1730 *phash = OBJ_sn2nid(str);
1731 if (*phash == NID_undef)
1732 *phash = OBJ_ln2nid(str);
1733 }
1734 }
1735 /* Maximum length of a signature algorithm string component */
1736 #define TLS_MAX_SIGSTRING_LEN 40
1737
1738 static int sig_cb(const char *elem, int len, void *arg)
1739 {
1740 sig_cb_st *sarg = arg;
1741 size_t i;
1742 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1743 int sig_alg = NID_undef, hash_alg = NID_undef;
1744 if (elem == NULL)
1745 return 0;
1746 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1747 return 0;
1748 if (len > (int)(sizeof(etmp) - 1))
1749 return 0;
1750 memcpy(etmp, elem, len);
1751 etmp[len] = 0;
1752 p = strchr(etmp, '+');
1753 /* See if we have a match for TLS 1.3 names */
1754 if (p == NULL) {
1755 const SIGALG_LOOKUP *s;
1756
1757 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1758 i++, s++) {
1759 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1760 sig_alg = s->sig;
1761 hash_alg = s->hash;
1762 break;
1763 }
1764 }
1765 } else {
1766 *p = 0;
1767 p++;
1768 if (*p == 0)
1769 return 0;
1770 get_sigorhash(&sig_alg, &hash_alg, etmp);
1771 get_sigorhash(&sig_alg, &hash_alg, p);
1772 }
1773
1774 if (sig_alg == NID_undef || hash_alg == NID_undef)
1775 return 0;
1776
1777 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1778 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1779 return 0;
1780 }
1781 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1782 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1783 return 1;
1784 }
1785
1786 /*
1787 * Set supported signature algorithms based on a colon separated list of the
1788 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1789 */
1790 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1791 {
1792 sig_cb_st sig;
1793 sig.sigalgcnt = 0;
1794 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1795 return 0;
1796 if (c == NULL)
1797 return 1;
1798 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1799 }
1800
1801 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1802 {
1803 uint16_t *sigalgs, *sptr;
1804 size_t i;
1805
1806 if (salglen & 1)
1807 return 0;
1808 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1809 if (sigalgs == NULL)
1810 return 0;
1811 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1812 size_t j;
1813 const SIGALG_LOOKUP *curr;
1814 int md_id = *psig_nids++;
1815 int sig_id = *psig_nids++;
1816
1817 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1818 j++, curr++) {
1819 if (curr->hash == md_id && curr->sig == sig_id) {
1820 *sptr++ = curr->sigalg;
1821 break;
1822 }
1823 }
1824
1825 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1826 goto err;
1827 }
1828
1829 if (client) {
1830 OPENSSL_free(c->client_sigalgs);
1831 c->client_sigalgs = sigalgs;
1832 c->client_sigalgslen = salglen / 2;
1833 } else {
1834 OPENSSL_free(c->conf_sigalgs);
1835 c->conf_sigalgs = sigalgs;
1836 c->conf_sigalgslen = salglen / 2;
1837 }
1838
1839 return 1;
1840
1841 err:
1842 OPENSSL_free(sigalgs);
1843 return 0;
1844 }
1845
1846 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1847 {
1848 int sig_nid;
1849 size_t i;
1850 if (default_nid == -1)
1851 return 1;
1852 sig_nid = X509_get_signature_nid(x);
1853 if (default_nid)
1854 return sig_nid == default_nid ? 1 : 0;
1855 for (i = 0; i < c->shared_sigalgslen; i++)
1856 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1857 return 1;
1858 return 0;
1859 }
1860
1861 /* Check to see if a certificate issuer name matches list of CA names */
1862 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1863 {
1864 X509_NAME *nm;
1865 int i;
1866 nm = X509_get_issuer_name(x);
1867 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1868 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1869 return 1;
1870 }
1871 return 0;
1872 }
1873
1874 /*
1875 * Check certificate chain is consistent with TLS extensions and is usable by
1876 * server. This servers two purposes: it allows users to check chains before
1877 * passing them to the server and it allows the server to check chains before
1878 * attempting to use them.
1879 */
1880
1881 /* Flags which need to be set for a certificate when strict mode not set */
1882
1883 #define CERT_PKEY_VALID_FLAGS \
1884 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1885 /* Strict mode flags */
1886 #define CERT_PKEY_STRICT_FLAGS \
1887 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1888 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1889
1890 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1891 int idx)
1892 {
1893 int i;
1894 int rv = 0;
1895 int check_flags = 0, strict_mode;
1896 CERT_PKEY *cpk = NULL;
1897 CERT *c = s->cert;
1898 uint32_t *pvalid;
1899 unsigned int suiteb_flags = tls1_suiteb(s);
1900 /* idx == -1 means checking server chains */
1901 if (idx != -1) {
1902 /* idx == -2 means checking client certificate chains */
1903 if (idx == -2) {
1904 cpk = c->key;
1905 idx = (int)(cpk - c->pkeys);
1906 } else
1907 cpk = c->pkeys + idx;
1908 pvalid = s->s3->tmp.valid_flags + idx;
1909 x = cpk->x509;
1910 pk = cpk->privatekey;
1911 chain = cpk->chain;
1912 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1913 /* If no cert or key, forget it */
1914 if (!x || !pk)
1915 goto end;
1916 } else {
1917 if (!x || !pk)
1918 return 0;
1919 idx = ssl_cert_type(x, pk);
1920 if (idx == -1)
1921 return 0;
1922 pvalid = s->s3->tmp.valid_flags + idx;
1923
1924 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1925 check_flags = CERT_PKEY_STRICT_FLAGS;
1926 else
1927 check_flags = CERT_PKEY_VALID_FLAGS;
1928 strict_mode = 1;
1929 }
1930
1931 if (suiteb_flags) {
1932 int ok;
1933 if (check_flags)
1934 check_flags |= CERT_PKEY_SUITEB;
1935 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1936 if (ok == X509_V_OK)
1937 rv |= CERT_PKEY_SUITEB;
1938 else if (!check_flags)
1939 goto end;
1940 }
1941
1942 /*
1943 * Check all signature algorithms are consistent with signature
1944 * algorithms extension if TLS 1.2 or later and strict mode.
1945 */
1946 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1947 int default_nid;
1948 int rsign = 0;
1949 if (s->s3->tmp.peer_sigalgs)
1950 default_nid = 0;
1951 /* If no sigalgs extension use defaults from RFC5246 */
1952 else {
1953 switch (idx) {
1954 case SSL_PKEY_RSA:
1955 rsign = EVP_PKEY_RSA;
1956 default_nid = NID_sha1WithRSAEncryption;
1957 break;
1958
1959 case SSL_PKEY_DSA_SIGN:
1960 rsign = EVP_PKEY_DSA;
1961 default_nid = NID_dsaWithSHA1;
1962 break;
1963
1964 case SSL_PKEY_ECC:
1965 rsign = EVP_PKEY_EC;
1966 default_nid = NID_ecdsa_with_SHA1;
1967 break;
1968
1969 case SSL_PKEY_GOST01:
1970 rsign = NID_id_GostR3410_2001;
1971 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1972 break;
1973
1974 case SSL_PKEY_GOST12_256:
1975 rsign = NID_id_GostR3410_2012_256;
1976 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1977 break;
1978
1979 case SSL_PKEY_GOST12_512:
1980 rsign = NID_id_GostR3410_2012_512;
1981 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1982 break;
1983
1984 default:
1985 default_nid = -1;
1986 break;
1987 }
1988 }
1989 /*
1990 * If peer sent no signature algorithms extension and we have set
1991 * preferred signature algorithms check we support sha1.
1992 */
1993 if (default_nid > 0 && c->conf_sigalgs) {
1994 size_t j;
1995 const uint16_t *p = c->conf_sigalgs;
1996 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1997 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1998
1999 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2000 break;
2001 }
2002 if (j == c->conf_sigalgslen) {
2003 if (check_flags)
2004 goto skip_sigs;
2005 else
2006 goto end;
2007 }
2008 }
2009 /* Check signature algorithm of each cert in chain */
2010 if (!tls1_check_sig_alg(c, x, default_nid)) {
2011 if (!check_flags)
2012 goto end;
2013 } else
2014 rv |= CERT_PKEY_EE_SIGNATURE;
2015 rv |= CERT_PKEY_CA_SIGNATURE;
2016 for (i = 0; i < sk_X509_num(chain); i++) {
2017 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2018 if (check_flags) {
2019 rv &= ~CERT_PKEY_CA_SIGNATURE;
2020 break;
2021 } else
2022 goto end;
2023 }
2024 }
2025 }
2026 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2027 else if (check_flags)
2028 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2029 skip_sigs:
2030 /* Check cert parameters are consistent */
2031 if (tls1_check_cert_param(s, x, 1))
2032 rv |= CERT_PKEY_EE_PARAM;
2033 else if (!check_flags)
2034 goto end;
2035 if (!s->server)
2036 rv |= CERT_PKEY_CA_PARAM;
2037 /* In strict mode check rest of chain too */
2038 else if (strict_mode) {
2039 rv |= CERT_PKEY_CA_PARAM;
2040 for (i = 0; i < sk_X509_num(chain); i++) {
2041 X509 *ca = sk_X509_value(chain, i);
2042 if (!tls1_check_cert_param(s, ca, 0)) {
2043 if (check_flags) {
2044 rv &= ~CERT_PKEY_CA_PARAM;
2045 break;
2046 } else
2047 goto end;
2048 }
2049 }
2050 }
2051 if (!s->server && strict_mode) {
2052 STACK_OF(X509_NAME) *ca_dn;
2053 int check_type = 0;
2054 switch (EVP_PKEY_id(pk)) {
2055 case EVP_PKEY_RSA:
2056 check_type = TLS_CT_RSA_SIGN;
2057 break;
2058 case EVP_PKEY_DSA:
2059 check_type = TLS_CT_DSS_SIGN;
2060 break;
2061 case EVP_PKEY_EC:
2062 check_type = TLS_CT_ECDSA_SIGN;
2063 break;
2064 }
2065 if (check_type) {
2066 const uint8_t *ctypes = s->s3->tmp.ctype;
2067 size_t j;
2068
2069 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2070 if (*ctypes == check_type) {
2071 rv |= CERT_PKEY_CERT_TYPE;
2072 break;
2073 }
2074 }
2075 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2076 goto end;
2077 } else {
2078 rv |= CERT_PKEY_CERT_TYPE;
2079 }
2080
2081 ca_dn = s->s3->tmp.peer_ca_names;
2082
2083 if (!sk_X509_NAME_num(ca_dn))
2084 rv |= CERT_PKEY_ISSUER_NAME;
2085
2086 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2087 if (ssl_check_ca_name(ca_dn, x))
2088 rv |= CERT_PKEY_ISSUER_NAME;
2089 }
2090 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2091 for (i = 0; i < sk_X509_num(chain); i++) {
2092 X509 *xtmp = sk_X509_value(chain, i);
2093 if (ssl_check_ca_name(ca_dn, xtmp)) {
2094 rv |= CERT_PKEY_ISSUER_NAME;
2095 break;
2096 }
2097 }
2098 }
2099 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2100 goto end;
2101 } else
2102 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2103
2104 if (!check_flags || (rv & check_flags) == check_flags)
2105 rv |= CERT_PKEY_VALID;
2106
2107 end:
2108
2109 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2110 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2111 else
2112 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2113
2114 /*
2115 * When checking a CERT_PKEY structure all flags are irrelevant if the
2116 * chain is invalid.
2117 */
2118 if (!check_flags) {
2119 if (rv & CERT_PKEY_VALID) {
2120 *pvalid = rv;
2121 } else {
2122 /* Preserve sign and explicit sign flag, clear rest */
2123 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2124 return 0;
2125 }
2126 }
2127 return rv;
2128 }
2129
2130 /* Set validity of certificates in an SSL structure */
2131 void tls1_set_cert_validity(SSL *s)
2132 {
2133 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2134 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2135 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2136 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2137 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2138 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2139 }
2140
2141 /* User level utility function to check a chain is suitable */
2142 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2143 {
2144 return tls1_check_chain(s, x, pk, chain, -1);
2145 }
2146
2147 #ifndef OPENSSL_NO_DH
2148 DH *ssl_get_auto_dh(SSL *s)
2149 {
2150 int dh_secbits = 80;
2151 if (s->cert->dh_tmp_auto == 2)
2152 return DH_get_1024_160();
2153 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2154 if (s->s3->tmp.new_cipher->strength_bits == 256)
2155 dh_secbits = 128;
2156 else
2157 dh_secbits = 80;
2158 } else {
2159 if (s->s3->tmp.cert == NULL)
2160 return NULL;
2161 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2162 }
2163
2164 if (dh_secbits >= 128) {
2165 DH *dhp = DH_new();
2166 BIGNUM *p, *g;
2167 if (dhp == NULL)
2168 return NULL;
2169 g = BN_new();
2170 if (g != NULL)
2171 BN_set_word(g, 2);
2172 if (dh_secbits >= 192)
2173 p = BN_get_rfc3526_prime_8192(NULL);
2174 else
2175 p = BN_get_rfc3526_prime_3072(NULL);
2176 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2177 DH_free(dhp);
2178 BN_free(p);
2179 BN_free(g);
2180 return NULL;
2181 }
2182 return dhp;
2183 }
2184 if (dh_secbits >= 112)
2185 return DH_get_2048_224();
2186 return DH_get_1024_160();
2187 }
2188 #endif
2189
2190 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2191 {
2192 int secbits = -1;
2193 EVP_PKEY *pkey = X509_get0_pubkey(x);
2194 if (pkey) {
2195 /*
2196 * If no parameters this will return -1 and fail using the default
2197 * security callback for any non-zero security level. This will
2198 * reject keys which omit parameters but this only affects DSA and
2199 * omission of parameters is never (?) done in practice.
2200 */
2201 secbits = EVP_PKEY_security_bits(pkey);
2202 }
2203 if (s)
2204 return ssl_security(s, op, secbits, 0, x);
2205 else
2206 return ssl_ctx_security(ctx, op, secbits, 0, x);
2207 }
2208
2209 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2210 {
2211 /* Lookup signature algorithm digest */
2212 int secbits, nid, pknid;
2213 /* Don't check signature if self signed */
2214 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2215 return 1;
2216 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2217 secbits = -1;
2218 /* If digest NID not defined use signature NID */
2219 if (nid == NID_undef)
2220 nid = pknid;
2221 if (s)
2222 return ssl_security(s, op, secbits, nid, x);
2223 else
2224 return ssl_ctx_security(ctx, op, secbits, nid, x);
2225 }
2226
2227 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2228 {
2229 if (vfy)
2230 vfy = SSL_SECOP_PEER;
2231 if (is_ee) {
2232 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2233 return SSL_R_EE_KEY_TOO_SMALL;
2234 } else {
2235 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2236 return SSL_R_CA_KEY_TOO_SMALL;
2237 }
2238 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2239 return SSL_R_CA_MD_TOO_WEAK;
2240 return 1;
2241 }
2242
2243 /*
2244 * Check security of a chain, if |sk| includes the end entity certificate then
2245 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2246 * one to the peer. Return values: 1 if ok otherwise error code to use
2247 */
2248
2249 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2250 {
2251 int rv, start_idx, i;
2252 if (x == NULL) {
2253 x = sk_X509_value(sk, 0);
2254 start_idx = 1;
2255 } else
2256 start_idx = 0;
2257
2258 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2259 if (rv != 1)
2260 return rv;
2261
2262 for (i = start_idx; i < sk_X509_num(sk); i++) {
2263 x = sk_X509_value(sk, i);
2264 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2265 if (rv != 1)
2266 return rv;
2267 }
2268 return 1;
2269 }
2270
2271 /*
2272 * Choose an appropriate signature algorithm based on available certificates
2273 * Sets chosen certificate and signature algorithm.
2274 *
2275 * For servers if we fail to find a required certificate it is a fatal error
2276 * and an appropriate error code is set and the TLS alert set in *al.
2277 *
2278 * For clients al is set to NULL. If a certificate is not suitable it is not
2279 * a fatal error: we will either try another certificate or not present one
2280 * to the server. In this case no error is set.
2281 */
2282 int tls_choose_sigalg(SSL *s, int *al)
2283 {
2284 int idx = -1;
2285 const SIGALG_LOOKUP *lu = NULL;
2286
2287 s->s3->tmp.cert = NULL;
2288 s->s3->tmp.sigalg = NULL;
2289
2290 if (SSL_IS_TLS13(s)) {
2291 size_t i;
2292 #ifndef OPENSSL_NO_EC
2293 int curve = -1, skip_ec = 0;
2294 #endif
2295
2296 /* Look for a certificate matching shared sigalgs */
2297 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2298 lu = s->cert->shared_sigalgs[i];
2299
2300 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2301 if (lu->hash == NID_sha1
2302 || lu->hash == NID_sha224
2303 || lu->sig == EVP_PKEY_DSA
2304 || lu->sig == EVP_PKEY_RSA)
2305 continue;
2306 if (ssl_md(lu->hash_idx) == NULL)
2307 continue;
2308 idx = lu->sig_idx;
2309 if (!ssl_has_cert(s, idx))
2310 continue;
2311 if (lu->sig == EVP_PKEY_EC) {
2312 #ifndef OPENSSL_NO_EC
2313 if (curve == -1) {
2314 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2315
2316 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2317 if (EC_KEY_get_conv_form(ec)
2318 != POINT_CONVERSION_UNCOMPRESSED)
2319 skip_ec = 1;
2320 }
2321 if (skip_ec || (lu->curve != NID_undef && curve != lu->curve))
2322 continue;
2323 #else
2324 continue;
2325 #endif
2326 }
2327 break;
2328 }
2329 if (i == s->cert->shared_sigalgslen) {
2330 if (al == NULL)
2331 return 1;
2332 *al = SSL_AD_HANDSHAKE_FAILURE;
2333 SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
2334 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2335 return 0;
2336 }
2337 } else {
2338 if (s->server) {
2339 /* Find index corresponding to ciphersuite */
2340 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2341 /* If no certificate for ciphersuite return */
2342 if (idx == -1)
2343 return 1;
2344 if (idx == SSL_PKEY_GOST_EC) {
2345 /* Work out which GOST certificate is available */
2346 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2347 idx = SSL_PKEY_GOST12_512;
2348 } else if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2349 idx = SSL_PKEY_GOST12_256;
2350 } else if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2351 idx = SSL_PKEY_GOST01;
2352 } else {
2353 if (al == NULL)
2354 return 1;
2355 *al = SSL_AD_INTERNAL_ERROR;
2356 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2357 return 0;
2358 }
2359 } else if (!ssl_has_cert(s, idx)) {
2360 if (al == NULL)
2361 return 1;
2362 *al = SSL_AD_INTERNAL_ERROR;
2363 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2364 return 0;
2365 }
2366 } else {
2367 /* Find index for client certificate */
2368 idx = s->cert->key - s->cert->pkeys;
2369 if (!ssl_has_cert(s, idx))
2370 return 1;
2371 }
2372
2373 if (SSL_USE_SIGALGS(s)) {
2374 if (s->s3->tmp.peer_sigalgs != NULL) {
2375 size_t i;
2376 #ifndef OPENSSL_NO_EC
2377 int curve;
2378
2379 /* For Suite B need to match signature algorithm to curve */
2380 if (tls1_suiteb(s)) {
2381 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2382 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2383 } else {
2384 curve = -1;
2385 }
2386 #endif
2387
2388 /*
2389 * Find highest preference signature algorithm matching
2390 * cert type
2391 */
2392 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2393 lu = s->cert->shared_sigalgs[i];
2394 #ifdef OPENSSL_NO_EC
2395 if (lu->sig_idx == idx)
2396 break;
2397 #else
2398 if (lu->sig_idx == idx
2399 && (curve == -1 || lu->curve == curve))
2400 break;
2401 #endif
2402 if (idx == SSL_PKEY_RSA && lu->sig == EVP_PKEY_RSA_PSS)
2403 break;
2404 }
2405 if (i == s->cert->shared_sigalgslen) {
2406 if (al == NULL)
2407 return 1;
2408 *al = SSL_AD_INTERNAL_ERROR;
2409 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2410 return 0;
2411 }
2412 } else {
2413 /*
2414 * If we have no sigalg use defaults
2415 */
2416 const uint16_t *sent_sigs;
2417 size_t sent_sigslen, i;
2418
2419 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2420 if (al == NULL)
2421 return 1;
2422 *al = SSL_AD_INTERNAL_ERROR;
2423 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2424 return 0;
2425 }
2426
2427 /* Check signature matches a type we sent */
2428 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2429 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2430 if (lu->sigalg == *sent_sigs)
2431 break;
2432 }
2433 if (i == sent_sigslen) {
2434 if (al == NULL)
2435 return 1;
2436 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
2437 *al = SSL_AD_ILLEGAL_PARAMETER;
2438 return 0;
2439 }
2440 }
2441 } else {
2442 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2443 if (al == NULL)
2444 return 1;
2445 *al = SSL_AD_INTERNAL_ERROR;
2446 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2447 return 0;
2448 }
2449 }
2450 }
2451 if (idx == -1) {
2452 if (al != NULL) {
2453 *al = SSL_AD_INTERNAL_ERROR;
2454 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2455 }
2456 return 0;
2457 }
2458 s->s3->tmp.cert = &s->cert->pkeys[idx];
2459 s->cert->key = s->s3->tmp.cert;
2460 s->s3->tmp.sigalg = lu;
2461 return 1;
2462 }