]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Concentrate deprecated libssl API usage in one file
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include "internal/nelem.h"
23 #include "internal/evp.h"
24 #include "internal/tlsgroups.h"
25 #include "ssl_local.h"
26 #include <openssl/ct.h>
27
28 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
29 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
30
31 SSL3_ENC_METHOD const TLSv1_enc_data = {
32 tls1_enc,
33 tls1_mac,
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_enc,
50 tls1_mac,
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 SSL_ENC_FLAG_EXPLICIT_IV,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_enc,
67 tls1_mac,
68 tls1_setup_key_block,
69 tls1_generate_master_secret,
70 tls1_change_cipher_state,
71 tls1_final_finish_mac,
72 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
73 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
74 tls1_alert_code,
75 tls1_export_keying_material,
76 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
77 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
78 ssl3_set_handshake_header,
79 tls_close_construct_packet,
80 ssl3_handshake_write
81 };
82
83 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
84 tls13_enc,
85 tls1_mac,
86 tls13_setup_key_block,
87 tls13_generate_master_secret,
88 tls13_change_cipher_state,
89 tls13_final_finish_mac,
90 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
91 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
92 tls13_alert_code,
93 tls13_export_keying_material,
94 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
95 ssl3_set_handshake_header,
96 tls_close_construct_packet,
97 ssl3_handshake_write
98 };
99
100 long tls1_default_timeout(void)
101 {
102 /*
103 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
104 * http, the cache would over fill
105 */
106 return (60 * 60 * 2);
107 }
108
109 int tls1_new(SSL *s)
110 {
111 if (!ssl3_new(s))
112 return 0;
113 if (!s->method->ssl_clear(s))
114 return 0;
115
116 return 1;
117 }
118
119 void tls1_free(SSL *s)
120 {
121 OPENSSL_free(s->ext.session_ticket);
122 ssl3_free(s);
123 }
124
125 int tls1_clear(SSL *s)
126 {
127 if (!ssl3_clear(s))
128 return 0;
129
130 if (s->method->version == TLS_ANY_VERSION)
131 s->version = TLS_MAX_VERSION_INTERNAL;
132 else
133 s->version = s->method->version;
134
135 return 1;
136 }
137
138 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141 int nid;
142 uint16_t group_id;
143 } nid_to_group[] = {
144 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187 #endif
188
189 #ifndef OPENSSL_NO_EC
190 static const unsigned char ecformats_default[] = {
191 TLSEXT_ECPOINTFORMAT_uncompressed,
192 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
193 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
194 };
195 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
196
197 /* The default curves */
198 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
199 static const uint16_t supported_groups_default[] = {
200 # ifndef OPENSSL_NO_EC
201 29, /* X25519 (29) */
202 23, /* secp256r1 (23) */
203 30, /* X448 (30) */
204 25, /* secp521r1 (25) */
205 24, /* secp384r1 (24) */
206 # endif
207 # ifndef OPENSSL_NO_GOST
208 34, /* GC256A (34) */
209 35, /* GC256B (35) */
210 36, /* GC256C (36) */
211 37, /* GC256D (37) */
212 38, /* GC512A (38) */
213 39, /* GC512B (39) */
214 40, /* GC512C (40) */
215 # endif
216 # ifndef OPENSSL_NO_DH
217 0x100, /* ffdhe2048 (0x100) */
218 0x101, /* ffdhe3072 (0x101) */
219 0x102, /* ffdhe4096 (0x102) */
220 0x103, /* ffdhe6144 (0x103) */
221 0x104, /* ffdhe8192 (0x104) */
222 # endif
223 };
224 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
225
226 #ifndef OPENSSL_NO_EC
227 static const uint16_t suiteb_curves[] = {
228 TLSEXT_curve_P_256,
229 TLSEXT_curve_P_384
230 };
231 #endif
232
233 struct provider_group_data_st {
234 SSL_CTX *ctx;
235 OSSL_PROVIDER *provider;
236 };
237
238 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
239 static OSSL_CALLBACK add_provider_groups;
240 static int add_provider_groups(const OSSL_PARAM params[], void *data)
241 {
242 struct provider_group_data_st *pgd = data;
243 SSL_CTX *ctx = pgd->ctx;
244 OSSL_PROVIDER *provider = pgd->provider;
245 const OSSL_PARAM *p;
246 TLS_GROUP_INFO *ginf = NULL;
247 EVP_KEYMGMT *keymgmt;
248 unsigned int gid;
249 unsigned int is_kem = 0;
250 int ret = 0;
251
252 if (ctx->group_list_max_len == ctx->group_list_len) {
253 TLS_GROUP_INFO *tmp = NULL;
254
255 if (ctx->group_list_max_len == 0)
256 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
257 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258 else
259 tmp = OPENSSL_realloc(ctx->group_list,
260 (ctx->group_list_max_len
261 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
262 * sizeof(TLS_GROUP_INFO));
263 if (tmp == NULL) {
264 SSLerr(0, ERR_R_MALLOC_FAILURE);
265 return 0;
266 }
267 ctx->group_list = tmp;
268 memset(tmp + ctx->group_list_max_len,
269 0,
270 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
271 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
272 }
273
274 ginf = &ctx->group_list[ctx->group_list_len];
275
276 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
277 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
279 goto err;
280 }
281 ginf->tlsname = OPENSSL_strdup(p->data);
282 if (ginf->tlsname == NULL) {
283 SSLerr(0, ERR_R_MALLOC_FAILURE);
284 goto err;
285 }
286
287 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
288 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
289 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
290 goto err;
291 }
292 ginf->realname = OPENSSL_strdup(p->data);
293 if (ginf->realname == NULL) {
294 SSLerr(0, ERR_R_MALLOC_FAILURE);
295 goto err;
296 }
297
298 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
299 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
300 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
301 goto err;
302 }
303 ginf->group_id = (uint16_t)gid;
304
305 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
306 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
307 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
308 goto err;
309 }
310 ginf->algorithm = OPENSSL_strdup(p->data);
311 if (ginf->algorithm == NULL) {
312 SSLerr(0, ERR_R_MALLOC_FAILURE);
313 goto err;
314 }
315
316 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
317 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
318 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
319 goto err;
320 }
321
322 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
323 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
324 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
325 goto err;
326 }
327 ginf->is_kem = 1 & is_kem;
328
329 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
330 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
331 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
332 goto err;
333 }
334
335 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
336 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
337 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
338 goto err;
339 }
340
341 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
342 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
343 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
344 goto err;
345 }
346
347 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
348 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
349 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
350 goto err;
351 }
352 /*
353 * Now check that the algorithm is actually usable for our property query
354 * string. Regardless of the result we still return success because we have
355 * successfully processed this group, even though we may decide not to use
356 * it.
357 */
358 ret = 1;
359 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
360 if (keymgmt != NULL) {
361 /*
362 * We have successfully fetched the algorithm - however if the provider
363 * doesn't match this one then we ignore it.
364 *
365 * Note: We're cheating a little here. Technically if the same algorithm
366 * is available from more than one provider then it is undefined which
367 * implementation you will get back. Theoretically this could be
368 * different every time...we assume here that you'll always get the
369 * same one back if you repeat the exact same fetch. Is this a reasonable
370 * assumption to make (in which case perhaps we should document this
371 * behaviour)?
372 */
373 if (EVP_KEYMGMT_provider(keymgmt) == provider) {
374 /* We have a match - so we will use this group */
375 ctx->group_list_len++;
376 ginf = NULL;
377 }
378 EVP_KEYMGMT_free(keymgmt);
379 }
380 err:
381 if (ginf != NULL) {
382 OPENSSL_free(ginf->tlsname);
383 OPENSSL_free(ginf->realname);
384 OPENSSL_free(ginf->algorithm);
385 ginf->tlsname = ginf->realname = NULL;
386 }
387 return ret;
388 }
389
390 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
391 {
392 struct provider_group_data_st pgd;
393
394 pgd.ctx = vctx;
395 pgd.provider = provider;
396 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
397 add_provider_groups, &pgd);
398 }
399
400 int ssl_load_groups(SSL_CTX *ctx)
401 {
402 return OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx);
403 }
404
405 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
406 {
407 size_t i;
408 int nid = NID_undef;
409
410 /* See if we can identify a nid for this name */
411 #ifndef OPENSSL_NO_EC
412 nid = EC_curve_nist2nid(name);
413 #endif
414 if (nid == NID_undef)
415 nid = OBJ_sn2nid(name);
416 if (nid == NID_undef)
417 nid = OBJ_ln2nid(name);
418
419 for (i = 0; i < ctx->group_list_len; i++) {
420 if (strcmp(ctx->group_list[i].tlsname, name) == 0
421 || (nid != NID_undef
422 && nid == tls1_group_id2nid(ctx->group_list[i].group_id,
423 0)))
424 return ctx->group_list[i].group_id;
425 }
426
427 return 0;
428 }
429
430 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
431 {
432 size_t i;
433
434 for (i = 0; i < ctx->group_list_len; i++) {
435 if (ctx->group_list[i].group_id == group_id)
436 return &ctx->group_list[i];
437 }
438
439 return NULL;
440 }
441
442 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
443 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
444 {
445 size_t i;
446
447 if (group_id == 0)
448 return NID_undef;
449
450 /*
451 * Return well known Group NIDs - for backwards compatibility. This won't
452 * work for groups we don't know about.
453 */
454 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
455 {
456 if (nid_to_group[i].group_id == group_id)
457 return nid_to_group[i].nid;
458 }
459 if (!include_unknown)
460 return NID_undef;
461 return TLSEXT_nid_unknown | (int)group_id;
462 }
463
464 static uint16_t tls1_nid2group_id(int nid)
465 {
466 size_t i;
467
468 /*
469 * Return well known Group ids - for backwards compatibility. This won't
470 * work for groups we don't know about.
471 */
472 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
473 {
474 if (nid_to_group[i].nid == nid)
475 return nid_to_group[i].group_id;
476 }
477
478 return 0;
479 }
480 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
481
482 /*
483 * Set *pgroups to the supported groups list and *pgroupslen to
484 * the number of groups supported.
485 */
486 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
487 size_t *pgroupslen)
488 {
489 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
490 /* For Suite B mode only include P-256, P-384 */
491 switch (tls1_suiteb(s)) {
492 # ifndef OPENSSL_NO_EC
493 case SSL_CERT_FLAG_SUITEB_128_LOS:
494 *pgroups = suiteb_curves;
495 *pgroupslen = OSSL_NELEM(suiteb_curves);
496 break;
497
498 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
499 *pgroups = suiteb_curves;
500 *pgroupslen = 1;
501 break;
502
503 case SSL_CERT_FLAG_SUITEB_192_LOS:
504 *pgroups = suiteb_curves + 1;
505 *pgroupslen = 1;
506 break;
507 # endif
508
509 default:
510 if (s->ext.supportedgroups == NULL) {
511 *pgroups = supported_groups_default;
512 *pgroupslen = OSSL_NELEM(supported_groups_default);
513 } else {
514 *pgroups = s->ext.supportedgroups;
515 *pgroupslen = s->ext.supportedgroups_len;
516 }
517 break;
518 }
519 #else
520 *pgroups = NULL;
521 *pgroupslen = 0;
522 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
523 }
524
525 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion)
526 {
527 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
528 int ret;
529
530 if (ginfo == NULL)
531 return 0;
532
533 if (SSL_IS_DTLS(s)) {
534 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
535 return 0;
536 if (ginfo->maxdtls == 0)
537 ret = 1;
538 else
539 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
540 if (ginfo->mindtls > 0)
541 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
542 } else {
543 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
544 return 0;
545 if (ginfo->maxtls == 0)
546 ret = 1;
547 else
548 ret = (minversion <= ginfo->maxtls);
549 if (ginfo->mintls > 0)
550 ret &= (maxversion >= ginfo->mintls);
551 }
552
553 return ret;
554 }
555
556 /* See if group is allowed by security callback */
557 int tls_group_allowed(SSL *s, uint16_t group, int op)
558 {
559 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
560 unsigned char gtmp[2];
561
562 if (ginfo == NULL)
563 return 0;
564
565 gtmp[0] = group >> 8;
566 gtmp[1] = group & 0xff;
567 return ssl_security(s, op, ginfo->secbits,
568 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
569 }
570
571 /* Return 1 if "id" is in "list" */
572 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
573 {
574 size_t i;
575 for (i = 0; i < listlen; i++)
576 if (list[i] == id)
577 return 1;
578 return 0;
579 }
580
581 /*-
582 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
583 * if there is no match.
584 * For nmatch == -1, return number of matches
585 * For nmatch == -2, return the id of the group to use for
586 * a tmp key, or 0 if there is no match.
587 */
588 uint16_t tls1_shared_group(SSL *s, int nmatch)
589 {
590 const uint16_t *pref, *supp;
591 size_t num_pref, num_supp, i;
592 int k;
593
594 /* Can't do anything on client side */
595 if (s->server == 0)
596 return 0;
597 if (nmatch == -2) {
598 if (tls1_suiteb(s)) {
599 /*
600 * For Suite B ciphersuite determines curve: we already know
601 * these are acceptable due to previous checks.
602 */
603 unsigned long cid = s->s3.tmp.new_cipher->id;
604
605 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
606 return TLSEXT_curve_P_256;
607 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
608 return TLSEXT_curve_P_384;
609 /* Should never happen */
610 return 0;
611 }
612 /* If not Suite B just return first preference shared curve */
613 nmatch = 0;
614 }
615 /*
616 * If server preference set, our groups are the preference order
617 * otherwise peer decides.
618 */
619 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
620 tls1_get_supported_groups(s, &pref, &num_pref);
621 tls1_get_peer_groups(s, &supp, &num_supp);
622 } else {
623 tls1_get_peer_groups(s, &pref, &num_pref);
624 tls1_get_supported_groups(s, &supp, &num_supp);
625 }
626
627 for (k = 0, i = 0; i < num_pref; i++) {
628 uint16_t id = pref[i];
629
630 if (!tls1_in_list(id, supp, num_supp)
631 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
632 continue;
633 if (nmatch == k)
634 return id;
635 k++;
636 }
637 if (nmatch == -1)
638 return k;
639 /* Out of range (nmatch > k). */
640 return 0;
641 }
642
643 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
644 int *groups, size_t ngroups)
645 {
646 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
647 uint16_t *glist;
648 size_t i;
649 /*
650 * Bitmap of groups included to detect duplicates: two variables are added
651 * to detect duplicates as some values are more than 32.
652 */
653 unsigned long *dup_list = NULL;
654 unsigned long dup_list_egrp = 0;
655 unsigned long dup_list_dhgrp = 0;
656
657 if (ngroups == 0) {
658 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
659 return 0;
660 }
661 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
662 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
663 return 0;
664 }
665 for (i = 0; i < ngroups; i++) {
666 unsigned long idmask;
667 uint16_t id;
668 id = tls1_nid2group_id(groups[i]);
669 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
670 goto err;
671 idmask = 1L << (id & 0x00FF);
672 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
673 if (!id || ((*dup_list) & idmask))
674 goto err;
675 *dup_list |= idmask;
676 glist[i] = id;
677 }
678 OPENSSL_free(*pext);
679 *pext = glist;
680 *pextlen = ngroups;
681 return 1;
682 err:
683 OPENSSL_free(glist);
684 return 0;
685 #else
686 return 0;
687 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
688 }
689
690 /* TODO(3.0): An arbitrary amount for now. Take another look at this */
691 # define MAX_GROUPLIST 40
692
693 typedef struct {
694 SSL_CTX *ctx;
695 size_t gidcnt;
696 uint16_t gid_arr[MAX_GROUPLIST];
697 } gid_cb_st;
698
699 static int gid_cb(const char *elem, int len, void *arg)
700 {
701 gid_cb_st *garg = arg;
702 size_t i;
703 uint16_t gid = 0;
704 char etmp[20];
705
706 if (elem == NULL)
707 return 0;
708 if (garg->gidcnt == MAX_GROUPLIST)
709 return 0;
710 if (len > (int)(sizeof(etmp) - 1))
711 return 0;
712 memcpy(etmp, elem, len);
713 etmp[len] = 0;
714
715 gid = tls1_group_name2id(garg->ctx, etmp);
716 if (gid == 0)
717 return 0;
718 for (i = 0; i < garg->gidcnt; i++)
719 if (garg->gid_arr[i] == gid)
720 return 0;
721 garg->gid_arr[garg->gidcnt++] = gid;
722 return 1;
723 }
724
725 /* Set groups based on a colon separated list */
726 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
727 const char *str)
728 {
729 gid_cb_st gcb;
730 uint16_t *tmparr;
731
732 gcb.gidcnt = 0;
733 gcb.ctx = ctx;
734 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
735 return 0;
736 if (pext == NULL)
737 return 1;
738
739 /*
740 * gid_cb ensurse there are no duplicates so we can just go ahead and set
741 * the result
742 */
743 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
744 if (tmparr == NULL)
745 return 0;
746 *pext = tmparr;
747 *pextlen = gcb.gidcnt;
748 return 1;
749 }
750
751 /* Check a group id matches preferences */
752 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
753 {
754 const uint16_t *groups;
755 size_t groups_len;
756
757 if (group_id == 0)
758 return 0;
759
760 /* Check for Suite B compliance */
761 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
762 unsigned long cid = s->s3.tmp.new_cipher->id;
763
764 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
765 if (group_id != TLSEXT_curve_P_256)
766 return 0;
767 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
768 if (group_id != TLSEXT_curve_P_384)
769 return 0;
770 } else {
771 /* Should never happen */
772 return 0;
773 }
774 }
775
776 if (check_own_groups) {
777 /* Check group is one of our preferences */
778 tls1_get_supported_groups(s, &groups, &groups_len);
779 if (!tls1_in_list(group_id, groups, groups_len))
780 return 0;
781 }
782
783 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
784 return 0;
785
786 /* For clients, nothing more to check */
787 if (!s->server)
788 return 1;
789
790 /* Check group is one of peers preferences */
791 tls1_get_peer_groups(s, &groups, &groups_len);
792
793 /*
794 * RFC 4492 does not require the supported elliptic curves extension
795 * so if it is not sent we can just choose any curve.
796 * It is invalid to send an empty list in the supported groups
797 * extension, so groups_len == 0 always means no extension.
798 */
799 if (groups_len == 0)
800 return 1;
801 return tls1_in_list(group_id, groups, groups_len);
802 }
803
804 #ifndef OPENSSL_NO_EC
805 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
806 size_t *num_formats)
807 {
808 /*
809 * If we have a custom point format list use it otherwise use default
810 */
811 if (s->ext.ecpointformats) {
812 *pformats = s->ext.ecpointformats;
813 *num_formats = s->ext.ecpointformats_len;
814 } else {
815 *pformats = ecformats_default;
816 /* For Suite B we don't support char2 fields */
817 if (tls1_suiteb(s))
818 *num_formats = sizeof(ecformats_default) - 1;
819 else
820 *num_formats = sizeof(ecformats_default);
821 }
822 }
823
824 /* Check a key is compatible with compression extension */
825 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
826 {
827 const EC_KEY *ec;
828 const EC_GROUP *grp;
829 unsigned char comp_id;
830 size_t i;
831
832 /* If not an EC key nothing to check */
833 if (!EVP_PKEY_is_a(pkey, "EC"))
834 return 1;
835 ec = EVP_PKEY_get0_EC_KEY(pkey);
836 grp = EC_KEY_get0_group(ec);
837
838 /* Get required compression id */
839 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
840 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
841 } else if (SSL_IS_TLS13(s)) {
842 /*
843 * ec_point_formats extension is not used in TLSv1.3 so we ignore
844 * this check.
845 */
846 return 1;
847 } else {
848 int field_type = EC_GROUP_get_field_type(grp);
849
850 if (field_type == NID_X9_62_prime_field)
851 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
852 else if (field_type == NID_X9_62_characteristic_two_field)
853 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
854 else
855 return 0;
856 }
857 /*
858 * If point formats extension present check it, otherwise everything is
859 * supported (see RFC4492).
860 */
861 if (s->ext.peer_ecpointformats == NULL)
862 return 1;
863
864 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
865 if (s->ext.peer_ecpointformats[i] == comp_id)
866 return 1;
867 }
868 return 0;
869 }
870
871 /* Return group id of a key */
872 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
873 {
874 int curve_nid = evp_pkey_get_EC_KEY_curve_nid(pkey);
875
876 if (curve_nid == NID_undef)
877 return 0;
878 return tls1_nid2group_id(curve_nid);
879 }
880
881 /*
882 * Check cert parameters compatible with extensions: currently just checks EC
883 * certificates have compatible curves and compression.
884 */
885 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
886 {
887 uint16_t group_id;
888 EVP_PKEY *pkey;
889 pkey = X509_get0_pubkey(x);
890 if (pkey == NULL)
891 return 0;
892 /* If not EC nothing to do */
893 if (!EVP_PKEY_is_a(pkey, "EC"))
894 return 1;
895 /* Check compression */
896 if (!tls1_check_pkey_comp(s, pkey))
897 return 0;
898 group_id = tls1_get_group_id(pkey);
899 /*
900 * For a server we allow the certificate to not be in our list of supported
901 * groups.
902 */
903 if (!tls1_check_group_id(s, group_id, !s->server))
904 return 0;
905 /*
906 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
907 * SHA384+P-384.
908 */
909 if (check_ee_md && tls1_suiteb(s)) {
910 int check_md;
911 size_t i;
912
913 /* Check to see we have necessary signing algorithm */
914 if (group_id == TLSEXT_curve_P_256)
915 check_md = NID_ecdsa_with_SHA256;
916 else if (group_id == TLSEXT_curve_P_384)
917 check_md = NID_ecdsa_with_SHA384;
918 else
919 return 0; /* Should never happen */
920 for (i = 0; i < s->shared_sigalgslen; i++) {
921 if (check_md == s->shared_sigalgs[i]->sigandhash)
922 return 1;;
923 }
924 return 0;
925 }
926 return 1;
927 }
928
929 /*
930 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
931 * @s: SSL connection
932 * @cid: Cipher ID we're considering using
933 *
934 * Checks that the kECDHE cipher suite we're considering using
935 * is compatible with the client extensions.
936 *
937 * Returns 0 when the cipher can't be used or 1 when it can.
938 */
939 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
940 {
941 /* If not Suite B just need a shared group */
942 if (!tls1_suiteb(s))
943 return tls1_shared_group(s, 0) != 0;
944 /*
945 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
946 * curves permitted.
947 */
948 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
949 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
950 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
951 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
952
953 return 0;
954 }
955
956 #else
957
958 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
959 {
960 return 1;
961 }
962
963 #endif /* OPENSSL_NO_EC */
964
965 /* Default sigalg schemes */
966 static const uint16_t tls12_sigalgs[] = {
967 #ifndef OPENSSL_NO_EC
968 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
969 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
970 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
971 TLSEXT_SIGALG_ed25519,
972 TLSEXT_SIGALG_ed448,
973 #endif
974
975 TLSEXT_SIGALG_rsa_pss_pss_sha256,
976 TLSEXT_SIGALG_rsa_pss_pss_sha384,
977 TLSEXT_SIGALG_rsa_pss_pss_sha512,
978 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
979 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
980 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
981
982 TLSEXT_SIGALG_rsa_pkcs1_sha256,
983 TLSEXT_SIGALG_rsa_pkcs1_sha384,
984 TLSEXT_SIGALG_rsa_pkcs1_sha512,
985
986 #ifndef OPENSSL_NO_EC
987 TLSEXT_SIGALG_ecdsa_sha224,
988 TLSEXT_SIGALG_ecdsa_sha1,
989 #endif
990 TLSEXT_SIGALG_rsa_pkcs1_sha224,
991 TLSEXT_SIGALG_rsa_pkcs1_sha1,
992 #ifndef OPENSSL_NO_DSA
993 TLSEXT_SIGALG_dsa_sha224,
994 TLSEXT_SIGALG_dsa_sha1,
995
996 TLSEXT_SIGALG_dsa_sha256,
997 TLSEXT_SIGALG_dsa_sha384,
998 TLSEXT_SIGALG_dsa_sha512,
999 #endif
1000 #ifndef OPENSSL_NO_GOST
1001 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1002 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1003 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1004 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1005 TLSEXT_SIGALG_gostr34102001_gostr3411,
1006 #endif
1007 };
1008
1009 #ifndef OPENSSL_NO_EC
1010 static const uint16_t suiteb_sigalgs[] = {
1011 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1012 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1013 };
1014 #endif
1015
1016 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1017 #ifndef OPENSSL_NO_EC
1018 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1019 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1020 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1021 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1022 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1023 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1024 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1025 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1026 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1027 {"ed25519", TLSEXT_SIGALG_ed25519,
1028 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1029 NID_undef, NID_undef, 1},
1030 {"ed448", TLSEXT_SIGALG_ed448,
1031 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1032 NID_undef, NID_undef, 1},
1033 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1034 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1035 NID_ecdsa_with_SHA224, NID_undef, 1},
1036 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1037 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1038 NID_ecdsa_with_SHA1, NID_undef, 1},
1039 #endif
1040 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1041 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1042 NID_undef, NID_undef, 1},
1043 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1044 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1045 NID_undef, NID_undef, 1},
1046 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1047 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1048 NID_undef, NID_undef, 1},
1049 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1050 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1051 NID_undef, NID_undef, 1},
1052 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1053 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1054 NID_undef, NID_undef, 1},
1055 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1056 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1057 NID_undef, NID_undef, 1},
1058 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1059 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1060 NID_sha256WithRSAEncryption, NID_undef, 1},
1061 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1062 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1063 NID_sha384WithRSAEncryption, NID_undef, 1},
1064 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1065 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1066 NID_sha512WithRSAEncryption, NID_undef, 1},
1067 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1068 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1069 NID_sha224WithRSAEncryption, NID_undef, 1},
1070 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1071 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1072 NID_sha1WithRSAEncryption, NID_undef, 1},
1073 #ifndef OPENSSL_NO_DSA
1074 {NULL, TLSEXT_SIGALG_dsa_sha256,
1075 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1076 NID_dsa_with_SHA256, NID_undef, 1},
1077 {NULL, TLSEXT_SIGALG_dsa_sha384,
1078 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1079 NID_undef, NID_undef, 1},
1080 {NULL, TLSEXT_SIGALG_dsa_sha512,
1081 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1082 NID_undef, NID_undef, 1},
1083 {NULL, TLSEXT_SIGALG_dsa_sha224,
1084 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1085 NID_undef, NID_undef, 1},
1086 {NULL, TLSEXT_SIGALG_dsa_sha1,
1087 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1088 NID_dsaWithSHA1, NID_undef, 1},
1089 #endif
1090 #ifndef OPENSSL_NO_GOST
1091 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1092 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1093 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1094 NID_undef, NID_undef, 1},
1095 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1096 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1097 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1098 NID_undef, NID_undef, 1},
1099 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1100 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1101 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1102 NID_undef, NID_undef, 1},
1103 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1104 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1105 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1106 NID_undef, NID_undef, 1},
1107 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1108 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1109 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1110 NID_undef, NID_undef, 1}
1111 #endif
1112 };
1113 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1114 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1115 "rsa_pkcs1_md5_sha1", 0,
1116 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1117 EVP_PKEY_RSA, SSL_PKEY_RSA,
1118 NID_undef, NID_undef, 1
1119 };
1120
1121 /*
1122 * Default signature algorithm values used if signature algorithms not present.
1123 * From RFC5246. Note: order must match certificate index order.
1124 */
1125 static const uint16_t tls_default_sigalg[] = {
1126 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1127 0, /* SSL_PKEY_RSA_PSS_SIGN */
1128 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1129 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1130 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1131 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1132 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1133 0, /* SSL_PKEY_ED25519 */
1134 0, /* SSL_PKEY_ED448 */
1135 };
1136
1137 int ssl_setup_sig_algs(SSL_CTX *ctx)
1138 {
1139 size_t i;
1140 const SIGALG_LOOKUP *lu;
1141 SIGALG_LOOKUP *cache
1142 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1143 EVP_PKEY *tmpkey = EVP_PKEY_new();
1144 int ret = 0;
1145
1146 if (cache == NULL || tmpkey == NULL)
1147 goto err;
1148
1149 ERR_set_mark();
1150 for (i = 0, lu = sigalg_lookup_tbl;
1151 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1152 EVP_PKEY_CTX *pctx;
1153
1154 cache[i] = *lu;
1155
1156 /*
1157 * Check hash is available.
1158 * TODO(3.0): This test is not perfect. A provider could have support
1159 * for a signature scheme, but not a particular hash. However the hash
1160 * could be available from some other loaded provider. In that case it
1161 * could be that the signature is available, and the hash is available
1162 * independently - but not as a combination. We ignore this for now.
1163 */
1164 if (lu->hash != NID_undef
1165 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1166 cache[i].enabled = 0;
1167 continue;
1168 }
1169
1170 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1171 cache[i].enabled = 0;
1172 continue;
1173 }
1174 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1175 /* If unable to create pctx we assume the sig algorithm is unavailable */
1176 if (pctx == NULL)
1177 cache[i].enabled = 0;
1178 EVP_PKEY_CTX_free(pctx);
1179 }
1180 ERR_pop_to_mark();
1181 ctx->sigalg_lookup_cache = cache;
1182 cache = NULL;
1183
1184 ret = 1;
1185 err:
1186 OPENSSL_free(cache);
1187 EVP_PKEY_free(tmpkey);
1188 return ret;
1189 }
1190
1191 /* Lookup TLS signature algorithm */
1192 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1193 {
1194 size_t i;
1195 const SIGALG_LOOKUP *lu;
1196
1197 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1198 /* cache should have the same number of elements as sigalg_lookup_tbl */
1199 i < OSSL_NELEM(sigalg_lookup_tbl);
1200 lu++, i++) {
1201 if (lu->sigalg == sigalg)
1202 return lu;
1203 }
1204 return NULL;
1205 }
1206 /* Lookup hash: return 0 if invalid or not enabled */
1207 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1208 {
1209 const EVP_MD *md;
1210 if (lu == NULL)
1211 return 0;
1212 /* lu->hash == NID_undef means no associated digest */
1213 if (lu->hash == NID_undef) {
1214 md = NULL;
1215 } else {
1216 md = ssl_md(ctx, lu->hash_idx);
1217 if (md == NULL)
1218 return 0;
1219 }
1220 if (pmd)
1221 *pmd = md;
1222 return 1;
1223 }
1224
1225 /*
1226 * Check if key is large enough to generate RSA-PSS signature.
1227 *
1228 * The key must greater than or equal to 2 * hash length + 2.
1229 * SHA512 has a hash length of 64 bytes, which is incompatible
1230 * with a 128 byte (1024 bit) key.
1231 */
1232 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
1233 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1234 const SIGALG_LOOKUP *lu)
1235 {
1236 const EVP_MD *md;
1237
1238 if (pkey == NULL)
1239 return 0;
1240 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1241 return 0;
1242 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1243 return 0;
1244 return 1;
1245 }
1246
1247 /*
1248 * Returns a signature algorithm when the peer did not send a list of supported
1249 * signature algorithms. The signature algorithm is fixed for the certificate
1250 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1251 * certificate type from |s| will be used.
1252 * Returns the signature algorithm to use, or NULL on error.
1253 */
1254 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1255 {
1256 if (idx == -1) {
1257 if (s->server) {
1258 size_t i;
1259
1260 /* Work out index corresponding to ciphersuite */
1261 for (i = 0; i < SSL_PKEY_NUM; i++) {
1262 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1263
1264 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1265 idx = i;
1266 break;
1267 }
1268 }
1269
1270 /*
1271 * Some GOST ciphersuites allow more than one signature algorithms
1272 * */
1273 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1274 int real_idx;
1275
1276 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1277 real_idx--) {
1278 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1279 idx = real_idx;
1280 break;
1281 }
1282 }
1283 }
1284 /*
1285 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1286 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1287 */
1288 else if (idx == SSL_PKEY_GOST12_256) {
1289 int real_idx;
1290
1291 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1292 real_idx--) {
1293 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1294 idx = real_idx;
1295 break;
1296 }
1297 }
1298 }
1299 } else {
1300 idx = s->cert->key - s->cert->pkeys;
1301 }
1302 }
1303 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1304 return NULL;
1305 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1306 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1307
1308 if (!tls1_lookup_md(s->ctx, lu, NULL))
1309 return NULL;
1310 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1311 return NULL;
1312 return lu;
1313 }
1314 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1315 return NULL;
1316 return &legacy_rsa_sigalg;
1317 }
1318 /* Set peer sigalg based key type */
1319 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1320 {
1321 size_t idx;
1322 const SIGALG_LOOKUP *lu;
1323
1324 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1325 return 0;
1326 lu = tls1_get_legacy_sigalg(s, idx);
1327 if (lu == NULL)
1328 return 0;
1329 s->s3.tmp.peer_sigalg = lu;
1330 return 1;
1331 }
1332
1333 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1334 {
1335 /*
1336 * If Suite B mode use Suite B sigalgs only, ignore any other
1337 * preferences.
1338 */
1339 #ifndef OPENSSL_NO_EC
1340 switch (tls1_suiteb(s)) {
1341 case SSL_CERT_FLAG_SUITEB_128_LOS:
1342 *psigs = suiteb_sigalgs;
1343 return OSSL_NELEM(suiteb_sigalgs);
1344
1345 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1346 *psigs = suiteb_sigalgs;
1347 return 1;
1348
1349 case SSL_CERT_FLAG_SUITEB_192_LOS:
1350 *psigs = suiteb_sigalgs + 1;
1351 return 1;
1352 }
1353 #endif
1354 /*
1355 * We use client_sigalgs (if not NULL) if we're a server
1356 * and sending a certificate request or if we're a client and
1357 * determining which shared algorithm to use.
1358 */
1359 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1360 *psigs = s->cert->client_sigalgs;
1361 return s->cert->client_sigalgslen;
1362 } else if (s->cert->conf_sigalgs) {
1363 *psigs = s->cert->conf_sigalgs;
1364 return s->cert->conf_sigalgslen;
1365 } else {
1366 *psigs = tls12_sigalgs;
1367 return OSSL_NELEM(tls12_sigalgs);
1368 }
1369 }
1370
1371 #ifndef OPENSSL_NO_EC
1372 /*
1373 * Called by servers only. Checks that we have a sig alg that supports the
1374 * specified EC curve.
1375 */
1376 int tls_check_sigalg_curve(const SSL *s, int curve)
1377 {
1378 const uint16_t *sigs;
1379 size_t siglen, i;
1380
1381 if (s->cert->conf_sigalgs) {
1382 sigs = s->cert->conf_sigalgs;
1383 siglen = s->cert->conf_sigalgslen;
1384 } else {
1385 sigs = tls12_sigalgs;
1386 siglen = OSSL_NELEM(tls12_sigalgs);
1387 }
1388
1389 for (i = 0; i < siglen; i++) {
1390 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1391
1392 if (lu == NULL)
1393 continue;
1394 if (lu->sig == EVP_PKEY_EC
1395 && lu->curve != NID_undef
1396 && curve == lu->curve)
1397 return 1;
1398 }
1399
1400 return 0;
1401 }
1402 #endif
1403
1404 /*
1405 * Return the number of security bits for the signature algorithm, or 0 on
1406 * error.
1407 */
1408 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1409 {
1410 const EVP_MD *md = NULL;
1411 int secbits = 0;
1412
1413 if (!tls1_lookup_md(ctx, lu, &md))
1414 return 0;
1415 if (md != NULL)
1416 {
1417 int md_type = EVP_MD_type(md);
1418
1419 /* Security bits: half digest bits */
1420 secbits = EVP_MD_size(md) * 4;
1421 /*
1422 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1423 * they're no longer accepted at security level 1. The real values don't
1424 * really matter as long as they're lower than 80, which is our
1425 * security level 1.
1426 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1427 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1428 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1429 * puts a chosen-prefix attack for MD5 at 2^39.
1430 */
1431 if (md_type == NID_sha1)
1432 secbits = 64;
1433 else if (md_type == NID_md5_sha1)
1434 secbits = 67;
1435 else if (md_type == NID_md5)
1436 secbits = 39;
1437 } else {
1438 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1439 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1440 secbits = 128;
1441 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1442 secbits = 224;
1443 }
1444 return secbits;
1445 }
1446
1447 /*
1448 * Check signature algorithm is consistent with sent supported signature
1449 * algorithms and if so set relevant digest and signature scheme in
1450 * s.
1451 */
1452 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1453 {
1454 const uint16_t *sent_sigs;
1455 const EVP_MD *md = NULL;
1456 char sigalgstr[2];
1457 size_t sent_sigslen, i, cidx;
1458 int pkeyid = -1;
1459 const SIGALG_LOOKUP *lu;
1460 int secbits = 0;
1461
1462 pkeyid = EVP_PKEY_id(pkey);
1463 /* Should never happen */
1464 if (pkeyid == -1)
1465 return -1;
1466 if (SSL_IS_TLS13(s)) {
1467 /* Disallow DSA for TLS 1.3 */
1468 if (pkeyid == EVP_PKEY_DSA) {
1469 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1470 SSL_R_WRONG_SIGNATURE_TYPE);
1471 return 0;
1472 }
1473 /* Only allow PSS for TLS 1.3 */
1474 if (pkeyid == EVP_PKEY_RSA)
1475 pkeyid = EVP_PKEY_RSA_PSS;
1476 }
1477 lu = tls1_lookup_sigalg(s, sig);
1478 /*
1479 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1480 * is consistent with signature: RSA keys can be used for RSA-PSS
1481 */
1482 if (lu == NULL
1483 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1484 || (pkeyid != lu->sig
1485 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1486 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1487 SSL_R_WRONG_SIGNATURE_TYPE);
1488 return 0;
1489 }
1490 /* Check the sigalg is consistent with the key OID */
1491 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1492 || lu->sig_idx != (int)cidx) {
1493 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1494 SSL_R_WRONG_SIGNATURE_TYPE);
1495 return 0;
1496 }
1497
1498 #ifndef OPENSSL_NO_EC
1499 if (pkeyid == EVP_PKEY_EC) {
1500
1501 /* Check point compression is permitted */
1502 if (!tls1_check_pkey_comp(s, pkey)) {
1503 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1504 SSL_F_TLS12_CHECK_PEER_SIGALG,
1505 SSL_R_ILLEGAL_POINT_COMPRESSION);
1506 return 0;
1507 }
1508
1509 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1510 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1511 int curve = evp_pkey_get_EC_KEY_curve_nid(pkey);
1512
1513 if (lu->curve != NID_undef && curve != lu->curve) {
1514 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1515 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1516 return 0;
1517 }
1518 }
1519 if (!SSL_IS_TLS13(s)) {
1520 /* Check curve matches extensions */
1521 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1522 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1523 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1524 return 0;
1525 }
1526 if (tls1_suiteb(s)) {
1527 /* Check sigalg matches a permissible Suite B value */
1528 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1529 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1530 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1531 SSL_F_TLS12_CHECK_PEER_SIGALG,
1532 SSL_R_WRONG_SIGNATURE_TYPE);
1533 return 0;
1534 }
1535 }
1536 }
1537 } else if (tls1_suiteb(s)) {
1538 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1539 SSL_R_WRONG_SIGNATURE_TYPE);
1540 return 0;
1541 }
1542 #endif
1543
1544 /* Check signature matches a type we sent */
1545 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1546 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1547 if (sig == *sent_sigs)
1548 break;
1549 }
1550 /* Allow fallback to SHA1 if not strict mode */
1551 if (i == sent_sigslen && (lu->hash != NID_sha1
1552 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1553 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1554 SSL_R_WRONG_SIGNATURE_TYPE);
1555 return 0;
1556 }
1557 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1558 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1559 SSL_R_UNKNOWN_DIGEST);
1560 return 0;
1561 }
1562 /*
1563 * Make sure security callback allows algorithm. For historical
1564 * reasons we have to pass the sigalg as a two byte char array.
1565 */
1566 sigalgstr[0] = (sig >> 8) & 0xff;
1567 sigalgstr[1] = sig & 0xff;
1568 secbits = sigalg_security_bits(s->ctx, lu);
1569 if (secbits == 0 ||
1570 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1571 md != NULL ? EVP_MD_type(md) : NID_undef,
1572 (void *)sigalgstr)) {
1573 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1574 SSL_R_WRONG_SIGNATURE_TYPE);
1575 return 0;
1576 }
1577 /* Store the sigalg the peer uses */
1578 s->s3.tmp.peer_sigalg = lu;
1579 return 1;
1580 }
1581
1582 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1583 {
1584 if (s->s3.tmp.peer_sigalg == NULL)
1585 return 0;
1586 *pnid = s->s3.tmp.peer_sigalg->sig;
1587 return 1;
1588 }
1589
1590 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1591 {
1592 if (s->s3.tmp.sigalg == NULL)
1593 return 0;
1594 *pnid = s->s3.tmp.sigalg->sig;
1595 return 1;
1596 }
1597
1598 /*
1599 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1600 * supported, doesn't appear in supported signature algorithms, isn't supported
1601 * by the enabled protocol versions or by the security level.
1602 *
1603 * This function should only be used for checking which ciphers are supported
1604 * by the client.
1605 *
1606 * Call ssl_cipher_disabled() to check that it's enabled or not.
1607 */
1608 int ssl_set_client_disabled(SSL *s)
1609 {
1610 s->s3.tmp.mask_a = 0;
1611 s->s3.tmp.mask_k = 0;
1612 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1613 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1614 &s->s3.tmp.max_ver, NULL) != 0)
1615 return 0;
1616 #ifndef OPENSSL_NO_PSK
1617 /* with PSK there must be client callback set */
1618 if (!s->psk_client_callback) {
1619 s->s3.tmp.mask_a |= SSL_aPSK;
1620 s->s3.tmp.mask_k |= SSL_PSK;
1621 }
1622 #endif /* OPENSSL_NO_PSK */
1623 #ifndef OPENSSL_NO_SRP
1624 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1625 s->s3.tmp.mask_a |= SSL_aSRP;
1626 s->s3.tmp.mask_k |= SSL_kSRP;
1627 }
1628 #endif
1629 return 1;
1630 }
1631
1632 /*
1633 * ssl_cipher_disabled - check that a cipher is disabled or not
1634 * @s: SSL connection that you want to use the cipher on
1635 * @c: cipher to check
1636 * @op: Security check that you want to do
1637 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1638 *
1639 * Returns 1 when it's disabled, 0 when enabled.
1640 */
1641 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1642 {
1643 if (c->algorithm_mkey & s->s3.tmp.mask_k
1644 || c->algorithm_auth & s->s3.tmp.mask_a)
1645 return 1;
1646 if (s->s3.tmp.max_ver == 0)
1647 return 1;
1648 if (!SSL_IS_DTLS(s)) {
1649 int min_tls = c->min_tls;
1650
1651 /*
1652 * For historical reasons we will allow ECHDE to be selected by a server
1653 * in SSLv3 if we are a client
1654 */
1655 if (min_tls == TLS1_VERSION && ecdhe
1656 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1657 min_tls = SSL3_VERSION;
1658
1659 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1660 return 1;
1661 }
1662 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1663 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1664 return 1;
1665
1666 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1667 }
1668
1669 int tls_use_ticket(SSL *s)
1670 {
1671 if ((s->options & SSL_OP_NO_TICKET))
1672 return 0;
1673 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1674 }
1675
1676 int tls1_set_server_sigalgs(SSL *s)
1677 {
1678 size_t i;
1679
1680 /* Clear any shared signature algorithms */
1681 OPENSSL_free(s->shared_sigalgs);
1682 s->shared_sigalgs = NULL;
1683 s->shared_sigalgslen = 0;
1684 /* Clear certificate validity flags */
1685 for (i = 0; i < SSL_PKEY_NUM; i++)
1686 s->s3.tmp.valid_flags[i] = 0;
1687 /*
1688 * If peer sent no signature algorithms check to see if we support
1689 * the default algorithm for each certificate type
1690 */
1691 if (s->s3.tmp.peer_cert_sigalgs == NULL
1692 && s->s3.tmp.peer_sigalgs == NULL) {
1693 const uint16_t *sent_sigs;
1694 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1695
1696 for (i = 0; i < SSL_PKEY_NUM; i++) {
1697 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1698 size_t j;
1699
1700 if (lu == NULL)
1701 continue;
1702 /* Check default matches a type we sent */
1703 for (j = 0; j < sent_sigslen; j++) {
1704 if (lu->sigalg == sent_sigs[j]) {
1705 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1706 break;
1707 }
1708 }
1709 }
1710 return 1;
1711 }
1712
1713 if (!tls1_process_sigalgs(s)) {
1714 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1715 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1716 return 0;
1717 }
1718 if (s->shared_sigalgs != NULL)
1719 return 1;
1720
1721 /* Fatal error if no shared signature algorithms */
1722 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1723 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1724 return 0;
1725 }
1726
1727 /*-
1728 * Gets the ticket information supplied by the client if any.
1729 *
1730 * hello: The parsed ClientHello data
1731 * ret: (output) on return, if a ticket was decrypted, then this is set to
1732 * point to the resulting session.
1733 */
1734 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1735 SSL_SESSION **ret)
1736 {
1737 size_t size;
1738 RAW_EXTENSION *ticketext;
1739
1740 *ret = NULL;
1741 s->ext.ticket_expected = 0;
1742
1743 /*
1744 * If tickets disabled or not supported by the protocol version
1745 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1746 * resumption.
1747 */
1748 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1749 return SSL_TICKET_NONE;
1750
1751 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1752 if (!ticketext->present)
1753 return SSL_TICKET_NONE;
1754
1755 size = PACKET_remaining(&ticketext->data);
1756
1757 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1758 hello->session_id, hello->session_id_len, ret);
1759 }
1760
1761 /*-
1762 * tls_decrypt_ticket attempts to decrypt a session ticket.
1763 *
1764 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1765 * expecting a pre-shared key ciphersuite, in which case we have no use for
1766 * session tickets and one will never be decrypted, nor will
1767 * s->ext.ticket_expected be set to 1.
1768 *
1769 * Side effects:
1770 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1771 * a new session ticket to the client because the client indicated support
1772 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1773 * a session ticket or we couldn't use the one it gave us, or if
1774 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1775 * Otherwise, s->ext.ticket_expected is set to 0.
1776 *
1777 * etick: points to the body of the session ticket extension.
1778 * eticklen: the length of the session tickets extension.
1779 * sess_id: points at the session ID.
1780 * sesslen: the length of the session ID.
1781 * psess: (output) on return, if a ticket was decrypted, then this is set to
1782 * point to the resulting session.
1783 */
1784 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1785 size_t eticklen, const unsigned char *sess_id,
1786 size_t sesslen, SSL_SESSION **psess)
1787 {
1788 SSL_SESSION *sess = NULL;
1789 unsigned char *sdec;
1790 const unsigned char *p;
1791 int slen, renew_ticket = 0, declen;
1792 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1793 size_t mlen;
1794 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1795 SSL_HMAC *hctx = NULL;
1796 EVP_CIPHER_CTX *ctx = NULL;
1797 SSL_CTX *tctx = s->session_ctx;
1798
1799 if (eticklen == 0) {
1800 /*
1801 * The client will accept a ticket but doesn't currently have
1802 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1803 */
1804 ret = SSL_TICKET_EMPTY;
1805 goto end;
1806 }
1807 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1808 /*
1809 * Indicate that the ticket couldn't be decrypted rather than
1810 * generating the session from ticket now, trigger
1811 * abbreviated handshake based on external mechanism to
1812 * calculate the master secret later.
1813 */
1814 ret = SSL_TICKET_NO_DECRYPT;
1815 goto end;
1816 }
1817
1818 /* Need at least keyname + iv */
1819 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1820 ret = SSL_TICKET_NO_DECRYPT;
1821 goto end;
1822 }
1823
1824 /* Initialize session ticket encryption and HMAC contexts */
1825 hctx = ssl_hmac_new(tctx);
1826 if (hctx == NULL) {
1827 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1828 goto end;
1829 }
1830 ctx = EVP_CIPHER_CTX_new();
1831 if (ctx == NULL) {
1832 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1833 goto end;
1834 }
1835 #ifndef OPENSSL_NO_DEPRECATED_3_0
1836 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1837 #else
1838 if (tctx->ext.ticket_key_evp_cb != NULL)
1839 #endif
1840 {
1841 unsigned char *nctick = (unsigned char *)etick;
1842 int rv = 0;
1843
1844 if (tctx->ext.ticket_key_evp_cb != NULL)
1845 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1846 nctick + TLSEXT_KEYNAME_LENGTH,
1847 ctx,
1848 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1849 0);
1850 #ifndef OPENSSL_NO_DEPRECATED_3_0
1851 else if (tctx->ext.ticket_key_cb != NULL)
1852 /* if 0 is returned, write an empty ticket */
1853 rv = tctx->ext.ticket_key_cb(s, nctick,
1854 nctick + TLSEXT_KEYNAME_LENGTH,
1855 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1856 #endif
1857 if (rv < 0) {
1858 ret = SSL_TICKET_FATAL_ERR_OTHER;
1859 goto end;
1860 }
1861 if (rv == 0) {
1862 ret = SSL_TICKET_NO_DECRYPT;
1863 goto end;
1864 }
1865 if (rv == 2)
1866 renew_ticket = 1;
1867 } else {
1868 EVP_CIPHER *aes256cbc = NULL;
1869
1870 /* Check key name matches */
1871 if (memcmp(etick, tctx->ext.tick_key_name,
1872 TLSEXT_KEYNAME_LENGTH) != 0) {
1873 ret = SSL_TICKET_NO_DECRYPT;
1874 goto end;
1875 }
1876
1877 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1878 s->ctx->propq);
1879 if (aes256cbc == NULL
1880 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1881 sizeof(tctx->ext.secure->tick_hmac_key),
1882 "SHA256") <= 0
1883 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1884 tctx->ext.secure->tick_aes_key,
1885 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1886 EVP_CIPHER_free(aes256cbc);
1887 ret = SSL_TICKET_FATAL_ERR_OTHER;
1888 goto end;
1889 }
1890 EVP_CIPHER_free(aes256cbc);
1891 if (SSL_IS_TLS13(s))
1892 renew_ticket = 1;
1893 }
1894 /*
1895 * Attempt to process session ticket, first conduct sanity and integrity
1896 * checks on ticket.
1897 */
1898 mlen = ssl_hmac_size(hctx);
1899 if (mlen == 0) {
1900 ret = SSL_TICKET_FATAL_ERR_OTHER;
1901 goto end;
1902 }
1903
1904 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1905 if (eticklen <=
1906 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1907 ret = SSL_TICKET_NO_DECRYPT;
1908 goto end;
1909 }
1910 eticklen -= mlen;
1911 /* Check HMAC of encrypted ticket */
1912 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1913 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1914 ret = SSL_TICKET_FATAL_ERR_OTHER;
1915 goto end;
1916 }
1917
1918 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1919 ret = SSL_TICKET_NO_DECRYPT;
1920 goto end;
1921 }
1922 /* Attempt to decrypt session data */
1923 /* Move p after IV to start of encrypted ticket, update length */
1924 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1925 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1926 sdec = OPENSSL_malloc(eticklen);
1927 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1928 (int)eticklen) <= 0) {
1929 OPENSSL_free(sdec);
1930 ret = SSL_TICKET_FATAL_ERR_OTHER;
1931 goto end;
1932 }
1933 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1934 OPENSSL_free(sdec);
1935 ret = SSL_TICKET_NO_DECRYPT;
1936 goto end;
1937 }
1938 slen += declen;
1939 p = sdec;
1940
1941 sess = d2i_SSL_SESSION(NULL, &p, slen);
1942 slen -= p - sdec;
1943 OPENSSL_free(sdec);
1944 if (sess) {
1945 /* Some additional consistency checks */
1946 if (slen != 0) {
1947 SSL_SESSION_free(sess);
1948 sess = NULL;
1949 ret = SSL_TICKET_NO_DECRYPT;
1950 goto end;
1951 }
1952 /*
1953 * The session ID, if non-empty, is used by some clients to detect
1954 * that the ticket has been accepted. So we copy it to the session
1955 * structure. If it is empty set length to zero as required by
1956 * standard.
1957 */
1958 if (sesslen) {
1959 memcpy(sess->session_id, sess_id, sesslen);
1960 sess->session_id_length = sesslen;
1961 }
1962 if (renew_ticket)
1963 ret = SSL_TICKET_SUCCESS_RENEW;
1964 else
1965 ret = SSL_TICKET_SUCCESS;
1966 goto end;
1967 }
1968 ERR_clear_error();
1969 /*
1970 * For session parse failure, indicate that we need to send a new ticket.
1971 */
1972 ret = SSL_TICKET_NO_DECRYPT;
1973
1974 end:
1975 EVP_CIPHER_CTX_free(ctx);
1976 ssl_hmac_free(hctx);
1977
1978 /*
1979 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1980 * detected above. The callback is responsible for checking |ret| before it
1981 * performs any action
1982 */
1983 if (s->session_ctx->decrypt_ticket_cb != NULL
1984 && (ret == SSL_TICKET_EMPTY
1985 || ret == SSL_TICKET_NO_DECRYPT
1986 || ret == SSL_TICKET_SUCCESS
1987 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1988 size_t keyname_len = eticklen;
1989 int retcb;
1990
1991 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1992 keyname_len = TLSEXT_KEYNAME_LENGTH;
1993 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1994 ret,
1995 s->session_ctx->ticket_cb_data);
1996 switch (retcb) {
1997 case SSL_TICKET_RETURN_ABORT:
1998 ret = SSL_TICKET_FATAL_ERR_OTHER;
1999 break;
2000
2001 case SSL_TICKET_RETURN_IGNORE:
2002 ret = SSL_TICKET_NONE;
2003 SSL_SESSION_free(sess);
2004 sess = NULL;
2005 break;
2006
2007 case SSL_TICKET_RETURN_IGNORE_RENEW:
2008 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2009 ret = SSL_TICKET_NO_DECRYPT;
2010 /* else the value of |ret| will already do the right thing */
2011 SSL_SESSION_free(sess);
2012 sess = NULL;
2013 break;
2014
2015 case SSL_TICKET_RETURN_USE:
2016 case SSL_TICKET_RETURN_USE_RENEW:
2017 if (ret != SSL_TICKET_SUCCESS
2018 && ret != SSL_TICKET_SUCCESS_RENEW)
2019 ret = SSL_TICKET_FATAL_ERR_OTHER;
2020 else if (retcb == SSL_TICKET_RETURN_USE)
2021 ret = SSL_TICKET_SUCCESS;
2022 else
2023 ret = SSL_TICKET_SUCCESS_RENEW;
2024 break;
2025
2026 default:
2027 ret = SSL_TICKET_FATAL_ERR_OTHER;
2028 }
2029 }
2030
2031 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2032 switch (ret) {
2033 case SSL_TICKET_NO_DECRYPT:
2034 case SSL_TICKET_SUCCESS_RENEW:
2035 case SSL_TICKET_EMPTY:
2036 s->ext.ticket_expected = 1;
2037 }
2038 }
2039
2040 *psess = sess;
2041
2042 return ret;
2043 }
2044
2045 /* Check to see if a signature algorithm is allowed */
2046 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2047 {
2048 unsigned char sigalgstr[2];
2049 int secbits;
2050
2051 if (lu == NULL || !lu->enabled)
2052 return 0;
2053 /* DSA is not allowed in TLS 1.3 */
2054 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2055 return 0;
2056 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
2057 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2058 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2059 || lu->hash_idx == SSL_MD_MD5_IDX
2060 || lu->hash_idx == SSL_MD_SHA224_IDX))
2061 return 0;
2062
2063 /* See if public key algorithm allowed */
2064 if (ssl_cert_is_disabled(lu->sig_idx))
2065 return 0;
2066
2067 if (lu->sig == NID_id_GostR3410_2012_256
2068 || lu->sig == NID_id_GostR3410_2012_512
2069 || lu->sig == NID_id_GostR3410_2001) {
2070 /* We never allow GOST sig algs on the server with TLSv1.3 */
2071 if (s->server && SSL_IS_TLS13(s))
2072 return 0;
2073 if (!s->server
2074 && s->method->version == TLS_ANY_VERSION
2075 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2076 int i, num;
2077 STACK_OF(SSL_CIPHER) *sk;
2078
2079 /*
2080 * We're a client that could negotiate TLSv1.3. We only allow GOST
2081 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2082 * ciphersuites enabled.
2083 */
2084
2085 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2086 return 0;
2087
2088 sk = SSL_get_ciphers(s);
2089 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2090 for (i = 0; i < num; i++) {
2091 const SSL_CIPHER *c;
2092
2093 c = sk_SSL_CIPHER_value(sk, i);
2094 /* Skip disabled ciphers */
2095 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2096 continue;
2097
2098 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2099 break;
2100 }
2101 if (i == num)
2102 return 0;
2103 }
2104 }
2105
2106 /* Finally see if security callback allows it */
2107 secbits = sigalg_security_bits(s->ctx, lu);
2108 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2109 sigalgstr[1] = lu->sigalg & 0xff;
2110 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2111 }
2112
2113 /*
2114 * Get a mask of disabled public key algorithms based on supported signature
2115 * algorithms. For example if no signature algorithm supports RSA then RSA is
2116 * disabled.
2117 */
2118
2119 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2120 {
2121 const uint16_t *sigalgs;
2122 size_t i, sigalgslen;
2123 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2124 /*
2125 * Go through all signature algorithms seeing if we support any
2126 * in disabled_mask.
2127 */
2128 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2129 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2130 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2131 const SSL_CERT_LOOKUP *clu;
2132
2133 if (lu == NULL)
2134 continue;
2135
2136 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2137 if (clu == NULL)
2138 continue;
2139
2140 /* If algorithm is disabled see if we can enable it */
2141 if ((clu->amask & disabled_mask) != 0
2142 && tls12_sigalg_allowed(s, op, lu))
2143 disabled_mask &= ~clu->amask;
2144 }
2145 *pmask_a |= disabled_mask;
2146 }
2147
2148 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2149 const uint16_t *psig, size_t psiglen)
2150 {
2151 size_t i;
2152 int rv = 0;
2153
2154 for (i = 0; i < psiglen; i++, psig++) {
2155 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2156
2157 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2158 continue;
2159 if (!WPACKET_put_bytes_u16(pkt, *psig))
2160 return 0;
2161 /*
2162 * If TLS 1.3 must have at least one valid TLS 1.3 message
2163 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2164 */
2165 if (rv == 0 && (!SSL_IS_TLS13(s)
2166 || (lu->sig != EVP_PKEY_RSA
2167 && lu->hash != NID_sha1
2168 && lu->hash != NID_sha224)))
2169 rv = 1;
2170 }
2171 if (rv == 0)
2172 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2173 return rv;
2174 }
2175
2176 /* Given preference and allowed sigalgs set shared sigalgs */
2177 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2178 const uint16_t *pref, size_t preflen,
2179 const uint16_t *allow, size_t allowlen)
2180 {
2181 const uint16_t *ptmp, *atmp;
2182 size_t i, j, nmatch = 0;
2183 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2184 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2185
2186 /* Skip disabled hashes or signature algorithms */
2187 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2188 continue;
2189 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2190 if (*ptmp == *atmp) {
2191 nmatch++;
2192 if (shsig)
2193 *shsig++ = lu;
2194 break;
2195 }
2196 }
2197 }
2198 return nmatch;
2199 }
2200
2201 /* Set shared signature algorithms for SSL structures */
2202 static int tls1_set_shared_sigalgs(SSL *s)
2203 {
2204 const uint16_t *pref, *allow, *conf;
2205 size_t preflen, allowlen, conflen;
2206 size_t nmatch;
2207 const SIGALG_LOOKUP **salgs = NULL;
2208 CERT *c = s->cert;
2209 unsigned int is_suiteb = tls1_suiteb(s);
2210
2211 OPENSSL_free(s->shared_sigalgs);
2212 s->shared_sigalgs = NULL;
2213 s->shared_sigalgslen = 0;
2214 /* If client use client signature algorithms if not NULL */
2215 if (!s->server && c->client_sigalgs && !is_suiteb) {
2216 conf = c->client_sigalgs;
2217 conflen = c->client_sigalgslen;
2218 } else if (c->conf_sigalgs && !is_suiteb) {
2219 conf = c->conf_sigalgs;
2220 conflen = c->conf_sigalgslen;
2221 } else
2222 conflen = tls12_get_psigalgs(s, 0, &conf);
2223 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2224 pref = conf;
2225 preflen = conflen;
2226 allow = s->s3.tmp.peer_sigalgs;
2227 allowlen = s->s3.tmp.peer_sigalgslen;
2228 } else {
2229 allow = conf;
2230 allowlen = conflen;
2231 pref = s->s3.tmp.peer_sigalgs;
2232 preflen = s->s3.tmp.peer_sigalgslen;
2233 }
2234 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2235 if (nmatch) {
2236 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2237 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
2238 return 0;
2239 }
2240 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2241 } else {
2242 salgs = NULL;
2243 }
2244 s->shared_sigalgs = salgs;
2245 s->shared_sigalgslen = nmatch;
2246 return 1;
2247 }
2248
2249 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2250 {
2251 unsigned int stmp;
2252 size_t size, i;
2253 uint16_t *buf;
2254
2255 size = PACKET_remaining(pkt);
2256
2257 /* Invalid data length */
2258 if (size == 0 || (size & 1) != 0)
2259 return 0;
2260
2261 size >>= 1;
2262
2263 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2264 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
2265 return 0;
2266 }
2267 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2268 buf[i] = stmp;
2269
2270 if (i != size) {
2271 OPENSSL_free(buf);
2272 return 0;
2273 }
2274
2275 OPENSSL_free(*pdest);
2276 *pdest = buf;
2277 *pdestlen = size;
2278
2279 return 1;
2280 }
2281
2282 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2283 {
2284 /* Extension ignored for inappropriate versions */
2285 if (!SSL_USE_SIGALGS(s))
2286 return 1;
2287 /* Should never happen */
2288 if (s->cert == NULL)
2289 return 0;
2290
2291 if (cert)
2292 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2293 &s->s3.tmp.peer_cert_sigalgslen);
2294 else
2295 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2296 &s->s3.tmp.peer_sigalgslen);
2297
2298 }
2299
2300 /* Set preferred digest for each key type */
2301
2302 int tls1_process_sigalgs(SSL *s)
2303 {
2304 size_t i;
2305 uint32_t *pvalid = s->s3.tmp.valid_flags;
2306
2307 if (!tls1_set_shared_sigalgs(s))
2308 return 0;
2309
2310 for (i = 0; i < SSL_PKEY_NUM; i++)
2311 pvalid[i] = 0;
2312
2313 for (i = 0; i < s->shared_sigalgslen; i++) {
2314 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2315 int idx = sigptr->sig_idx;
2316
2317 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2318 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2319 continue;
2320 /* If not disabled indicate we can explicitly sign */
2321 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
2322 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2323 }
2324 return 1;
2325 }
2326
2327 int SSL_get_sigalgs(SSL *s, int idx,
2328 int *psign, int *phash, int *psignhash,
2329 unsigned char *rsig, unsigned char *rhash)
2330 {
2331 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2332 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2333 if (psig == NULL || numsigalgs > INT_MAX)
2334 return 0;
2335 if (idx >= 0) {
2336 const SIGALG_LOOKUP *lu;
2337
2338 if (idx >= (int)numsigalgs)
2339 return 0;
2340 psig += idx;
2341 if (rhash != NULL)
2342 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2343 if (rsig != NULL)
2344 *rsig = (unsigned char)(*psig & 0xff);
2345 lu = tls1_lookup_sigalg(s, *psig);
2346 if (psign != NULL)
2347 *psign = lu != NULL ? lu->sig : NID_undef;
2348 if (phash != NULL)
2349 *phash = lu != NULL ? lu->hash : NID_undef;
2350 if (psignhash != NULL)
2351 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2352 }
2353 return (int)numsigalgs;
2354 }
2355
2356 int SSL_get_shared_sigalgs(SSL *s, int idx,
2357 int *psign, int *phash, int *psignhash,
2358 unsigned char *rsig, unsigned char *rhash)
2359 {
2360 const SIGALG_LOOKUP *shsigalgs;
2361 if (s->shared_sigalgs == NULL
2362 || idx < 0
2363 || idx >= (int)s->shared_sigalgslen
2364 || s->shared_sigalgslen > INT_MAX)
2365 return 0;
2366 shsigalgs = s->shared_sigalgs[idx];
2367 if (phash != NULL)
2368 *phash = shsigalgs->hash;
2369 if (psign != NULL)
2370 *psign = shsigalgs->sig;
2371 if (psignhash != NULL)
2372 *psignhash = shsigalgs->sigandhash;
2373 if (rsig != NULL)
2374 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2375 if (rhash != NULL)
2376 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2377 return (int)s->shared_sigalgslen;
2378 }
2379
2380 /* Maximum possible number of unique entries in sigalgs array */
2381 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2382
2383 typedef struct {
2384 size_t sigalgcnt;
2385 /* TLSEXT_SIGALG_XXX values */
2386 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2387 } sig_cb_st;
2388
2389 static void get_sigorhash(int *psig, int *phash, const char *str)
2390 {
2391 if (strcmp(str, "RSA") == 0) {
2392 *psig = EVP_PKEY_RSA;
2393 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2394 *psig = EVP_PKEY_RSA_PSS;
2395 } else if (strcmp(str, "DSA") == 0) {
2396 *psig = EVP_PKEY_DSA;
2397 } else if (strcmp(str, "ECDSA") == 0) {
2398 *psig = EVP_PKEY_EC;
2399 } else {
2400 *phash = OBJ_sn2nid(str);
2401 if (*phash == NID_undef)
2402 *phash = OBJ_ln2nid(str);
2403 }
2404 }
2405 /* Maximum length of a signature algorithm string component */
2406 #define TLS_MAX_SIGSTRING_LEN 40
2407
2408 static int sig_cb(const char *elem, int len, void *arg)
2409 {
2410 sig_cb_st *sarg = arg;
2411 size_t i;
2412 const SIGALG_LOOKUP *s;
2413 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2414 int sig_alg = NID_undef, hash_alg = NID_undef;
2415 if (elem == NULL)
2416 return 0;
2417 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2418 return 0;
2419 if (len > (int)(sizeof(etmp) - 1))
2420 return 0;
2421 memcpy(etmp, elem, len);
2422 etmp[len] = 0;
2423 p = strchr(etmp, '+');
2424 /*
2425 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2426 * if there's no '+' in the provided name, look for the new-style combined
2427 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2428 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2429 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2430 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2431 * in the table.
2432 */
2433 if (p == NULL) {
2434 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2435 i++, s++) {
2436 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2437 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2438 break;
2439 }
2440 }
2441 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2442 return 0;
2443 } else {
2444 *p = 0;
2445 p++;
2446 if (*p == 0)
2447 return 0;
2448 get_sigorhash(&sig_alg, &hash_alg, etmp);
2449 get_sigorhash(&sig_alg, &hash_alg, p);
2450 if (sig_alg == NID_undef || hash_alg == NID_undef)
2451 return 0;
2452 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2453 i++, s++) {
2454 if (s->hash == hash_alg && s->sig == sig_alg) {
2455 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2456 break;
2457 }
2458 }
2459 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2460 return 0;
2461 }
2462
2463 /* Reject duplicates */
2464 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2465 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2466 sarg->sigalgcnt--;
2467 return 0;
2468 }
2469 }
2470 return 1;
2471 }
2472
2473 /*
2474 * Set supported signature algorithms based on a colon separated list of the
2475 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2476 */
2477 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2478 {
2479 sig_cb_st sig;
2480 sig.sigalgcnt = 0;
2481 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2482 return 0;
2483 if (c == NULL)
2484 return 1;
2485 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2486 }
2487
2488 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2489 int client)
2490 {
2491 uint16_t *sigalgs;
2492
2493 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2494 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2495 return 0;
2496 }
2497 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2498
2499 if (client) {
2500 OPENSSL_free(c->client_sigalgs);
2501 c->client_sigalgs = sigalgs;
2502 c->client_sigalgslen = salglen;
2503 } else {
2504 OPENSSL_free(c->conf_sigalgs);
2505 c->conf_sigalgs = sigalgs;
2506 c->conf_sigalgslen = salglen;
2507 }
2508
2509 return 1;
2510 }
2511
2512 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2513 {
2514 uint16_t *sigalgs, *sptr;
2515 size_t i;
2516
2517 if (salglen & 1)
2518 return 0;
2519 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2520 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2521 return 0;
2522 }
2523 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2524 size_t j;
2525 const SIGALG_LOOKUP *curr;
2526 int md_id = *psig_nids++;
2527 int sig_id = *psig_nids++;
2528
2529 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2530 j++, curr++) {
2531 if (curr->hash == md_id && curr->sig == sig_id) {
2532 *sptr++ = curr->sigalg;
2533 break;
2534 }
2535 }
2536
2537 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2538 goto err;
2539 }
2540
2541 if (client) {
2542 OPENSSL_free(c->client_sigalgs);
2543 c->client_sigalgs = sigalgs;
2544 c->client_sigalgslen = salglen / 2;
2545 } else {
2546 OPENSSL_free(c->conf_sigalgs);
2547 c->conf_sigalgs = sigalgs;
2548 c->conf_sigalgslen = salglen / 2;
2549 }
2550
2551 return 1;
2552
2553 err:
2554 OPENSSL_free(sigalgs);
2555 return 0;
2556 }
2557
2558 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2559 {
2560 int sig_nid, use_pc_sigalgs = 0;
2561 size_t i;
2562 const SIGALG_LOOKUP *sigalg;
2563 size_t sigalgslen;
2564 if (default_nid == -1)
2565 return 1;
2566 sig_nid = X509_get_signature_nid(x);
2567 if (default_nid)
2568 return sig_nid == default_nid ? 1 : 0;
2569
2570 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2571 /*
2572 * If we're in TLSv1.3 then we only get here if we're checking the
2573 * chain. If the peer has specified peer_cert_sigalgs then we use them
2574 * otherwise we default to normal sigalgs.
2575 */
2576 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2577 use_pc_sigalgs = 1;
2578 } else {
2579 sigalgslen = s->shared_sigalgslen;
2580 }
2581 for (i = 0; i < sigalgslen; i++) {
2582 sigalg = use_pc_sigalgs
2583 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2584 : s->shared_sigalgs[i];
2585 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2586 return 1;
2587 }
2588 return 0;
2589 }
2590
2591 /* Check to see if a certificate issuer name matches list of CA names */
2592 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2593 {
2594 const X509_NAME *nm;
2595 int i;
2596 nm = X509_get_issuer_name(x);
2597 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2598 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2599 return 1;
2600 }
2601 return 0;
2602 }
2603
2604 /*
2605 * Check certificate chain is consistent with TLS extensions and is usable by
2606 * server. This servers two purposes: it allows users to check chains before
2607 * passing them to the server and it allows the server to check chains before
2608 * attempting to use them.
2609 */
2610
2611 /* Flags which need to be set for a certificate when strict mode not set */
2612
2613 #define CERT_PKEY_VALID_FLAGS \
2614 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2615 /* Strict mode flags */
2616 #define CERT_PKEY_STRICT_FLAGS \
2617 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2618 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2619
2620 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2621 int idx)
2622 {
2623 int i;
2624 int rv = 0;
2625 int check_flags = 0, strict_mode;
2626 CERT_PKEY *cpk = NULL;
2627 CERT *c = s->cert;
2628 uint32_t *pvalid;
2629 unsigned int suiteb_flags = tls1_suiteb(s);
2630 /* idx == -1 means checking server chains */
2631 if (idx != -1) {
2632 /* idx == -2 means checking client certificate chains */
2633 if (idx == -2) {
2634 cpk = c->key;
2635 idx = (int)(cpk - c->pkeys);
2636 } else
2637 cpk = c->pkeys + idx;
2638 pvalid = s->s3.tmp.valid_flags + idx;
2639 x = cpk->x509;
2640 pk = cpk->privatekey;
2641 chain = cpk->chain;
2642 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2643 /* If no cert or key, forget it */
2644 if (!x || !pk)
2645 goto end;
2646 } else {
2647 size_t certidx;
2648
2649 if (!x || !pk)
2650 return 0;
2651
2652 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2653 return 0;
2654 idx = certidx;
2655 pvalid = s->s3.tmp.valid_flags + idx;
2656
2657 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2658 check_flags = CERT_PKEY_STRICT_FLAGS;
2659 else
2660 check_flags = CERT_PKEY_VALID_FLAGS;
2661 strict_mode = 1;
2662 }
2663
2664 if (suiteb_flags) {
2665 int ok;
2666 if (check_flags)
2667 check_flags |= CERT_PKEY_SUITEB;
2668 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2669 if (ok == X509_V_OK)
2670 rv |= CERT_PKEY_SUITEB;
2671 else if (!check_flags)
2672 goto end;
2673 }
2674
2675 /*
2676 * Check all signature algorithms are consistent with signature
2677 * algorithms extension if TLS 1.2 or later and strict mode.
2678 */
2679 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2680 int default_nid;
2681 int rsign = 0;
2682 if (s->s3.tmp.peer_cert_sigalgs != NULL
2683 || s->s3.tmp.peer_sigalgs != NULL) {
2684 default_nid = 0;
2685 /* If no sigalgs extension use defaults from RFC5246 */
2686 } else {
2687 switch (idx) {
2688 case SSL_PKEY_RSA:
2689 rsign = EVP_PKEY_RSA;
2690 default_nid = NID_sha1WithRSAEncryption;
2691 break;
2692
2693 case SSL_PKEY_DSA_SIGN:
2694 rsign = EVP_PKEY_DSA;
2695 default_nid = NID_dsaWithSHA1;
2696 break;
2697
2698 case SSL_PKEY_ECC:
2699 rsign = EVP_PKEY_EC;
2700 default_nid = NID_ecdsa_with_SHA1;
2701 break;
2702
2703 case SSL_PKEY_GOST01:
2704 rsign = NID_id_GostR3410_2001;
2705 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2706 break;
2707
2708 case SSL_PKEY_GOST12_256:
2709 rsign = NID_id_GostR3410_2012_256;
2710 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2711 break;
2712
2713 case SSL_PKEY_GOST12_512:
2714 rsign = NID_id_GostR3410_2012_512;
2715 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2716 break;
2717
2718 default:
2719 default_nid = -1;
2720 break;
2721 }
2722 }
2723 /*
2724 * If peer sent no signature algorithms extension and we have set
2725 * preferred signature algorithms check we support sha1.
2726 */
2727 if (default_nid > 0 && c->conf_sigalgs) {
2728 size_t j;
2729 const uint16_t *p = c->conf_sigalgs;
2730 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2731 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2732
2733 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2734 break;
2735 }
2736 if (j == c->conf_sigalgslen) {
2737 if (check_flags)
2738 goto skip_sigs;
2739 else
2740 goto end;
2741 }
2742 }
2743 /* Check signature algorithm of each cert in chain */
2744 if (SSL_IS_TLS13(s)) {
2745 /*
2746 * We only get here if the application has called SSL_check_chain(),
2747 * so check_flags is always set.
2748 */
2749 if (find_sig_alg(s, x, pk) != NULL)
2750 rv |= CERT_PKEY_EE_SIGNATURE;
2751 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2752 if (!check_flags)
2753 goto end;
2754 } else
2755 rv |= CERT_PKEY_EE_SIGNATURE;
2756 rv |= CERT_PKEY_CA_SIGNATURE;
2757 for (i = 0; i < sk_X509_num(chain); i++) {
2758 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2759 if (check_flags) {
2760 rv &= ~CERT_PKEY_CA_SIGNATURE;
2761 break;
2762 } else
2763 goto end;
2764 }
2765 }
2766 }
2767 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2768 else if (check_flags)
2769 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2770 skip_sigs:
2771 /* Check cert parameters are consistent */
2772 if (tls1_check_cert_param(s, x, 1))
2773 rv |= CERT_PKEY_EE_PARAM;
2774 else if (!check_flags)
2775 goto end;
2776 if (!s->server)
2777 rv |= CERT_PKEY_CA_PARAM;
2778 /* In strict mode check rest of chain too */
2779 else if (strict_mode) {
2780 rv |= CERT_PKEY_CA_PARAM;
2781 for (i = 0; i < sk_X509_num(chain); i++) {
2782 X509 *ca = sk_X509_value(chain, i);
2783 if (!tls1_check_cert_param(s, ca, 0)) {
2784 if (check_flags) {
2785 rv &= ~CERT_PKEY_CA_PARAM;
2786 break;
2787 } else
2788 goto end;
2789 }
2790 }
2791 }
2792 if (!s->server && strict_mode) {
2793 STACK_OF(X509_NAME) *ca_dn;
2794 int check_type = 0;
2795
2796 if (EVP_PKEY_is_a(pk, "RSA"))
2797 check_type = TLS_CT_RSA_SIGN;
2798 else if (EVP_PKEY_is_a(pk, "DSA"))
2799 check_type = TLS_CT_DSS_SIGN;
2800 else if (EVP_PKEY_is_a(pk, "EC"))
2801 check_type = TLS_CT_ECDSA_SIGN;
2802
2803 if (check_type) {
2804 const uint8_t *ctypes = s->s3.tmp.ctype;
2805 size_t j;
2806
2807 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2808 if (*ctypes == check_type) {
2809 rv |= CERT_PKEY_CERT_TYPE;
2810 break;
2811 }
2812 }
2813 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2814 goto end;
2815 } else {
2816 rv |= CERT_PKEY_CERT_TYPE;
2817 }
2818
2819 ca_dn = s->s3.tmp.peer_ca_names;
2820
2821 if (!sk_X509_NAME_num(ca_dn))
2822 rv |= CERT_PKEY_ISSUER_NAME;
2823
2824 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2825 if (ssl_check_ca_name(ca_dn, x))
2826 rv |= CERT_PKEY_ISSUER_NAME;
2827 }
2828 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2829 for (i = 0; i < sk_X509_num(chain); i++) {
2830 X509 *xtmp = sk_X509_value(chain, i);
2831 if (ssl_check_ca_name(ca_dn, xtmp)) {
2832 rv |= CERT_PKEY_ISSUER_NAME;
2833 break;
2834 }
2835 }
2836 }
2837 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2838 goto end;
2839 } else
2840 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2841
2842 if (!check_flags || (rv & check_flags) == check_flags)
2843 rv |= CERT_PKEY_VALID;
2844
2845 end:
2846
2847 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2848 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2849 else
2850 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2851
2852 /*
2853 * When checking a CERT_PKEY structure all flags are irrelevant if the
2854 * chain is invalid.
2855 */
2856 if (!check_flags) {
2857 if (rv & CERT_PKEY_VALID) {
2858 *pvalid = rv;
2859 } else {
2860 /* Preserve sign and explicit sign flag, clear rest */
2861 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2862 return 0;
2863 }
2864 }
2865 return rv;
2866 }
2867
2868 /* Set validity of certificates in an SSL structure */
2869 void tls1_set_cert_validity(SSL *s)
2870 {
2871 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2872 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2873 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2874 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2875 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2876 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2877 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2878 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2879 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2880 }
2881
2882 /* User level utility function to check a chain is suitable */
2883 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2884 {
2885 return tls1_check_chain(s, x, pk, chain, -1);
2886 }
2887
2888 #ifndef OPENSSL_NO_DH
2889 DH *ssl_get_auto_dh(SSL *s)
2890 {
2891 DH *dhp;
2892 BIGNUM *p, *g;
2893 int dh_secbits = 80;
2894 if (s->cert->dh_tmp_auto != 2) {
2895 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2896 if (s->s3.tmp.new_cipher->strength_bits == 256)
2897 dh_secbits = 128;
2898 else
2899 dh_secbits = 80;
2900 } else {
2901 if (s->s3.tmp.cert == NULL)
2902 return NULL;
2903 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2904 }
2905 }
2906
2907 dhp = DH_new();
2908 if (dhp == NULL)
2909 return NULL;
2910 g = BN_new();
2911 if (g == NULL || !BN_set_word(g, 2)) {
2912 DH_free(dhp);
2913 BN_free(g);
2914 return NULL;
2915 }
2916 if (dh_secbits >= 192)
2917 p = BN_get_rfc3526_prime_8192(NULL);
2918 else if (dh_secbits >= 152)
2919 p = BN_get_rfc3526_prime_4096(NULL);
2920 else if (dh_secbits >= 128)
2921 p = BN_get_rfc3526_prime_3072(NULL);
2922 else if (dh_secbits >= 112)
2923 p = BN_get_rfc3526_prime_2048(NULL);
2924 else
2925 p = BN_get_rfc2409_prime_1024(NULL);
2926 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2927 DH_free(dhp);
2928 BN_free(p);
2929 BN_free(g);
2930 return NULL;
2931 }
2932 return dhp;
2933 }
2934 #endif
2935
2936 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2937 {
2938 int secbits = -1;
2939 EVP_PKEY *pkey = X509_get0_pubkey(x);
2940 if (pkey) {
2941 /*
2942 * If no parameters this will return -1 and fail using the default
2943 * security callback for any non-zero security level. This will
2944 * reject keys which omit parameters but this only affects DSA and
2945 * omission of parameters is never (?) done in practice.
2946 */
2947 secbits = EVP_PKEY_security_bits(pkey);
2948 }
2949 if (s)
2950 return ssl_security(s, op, secbits, 0, x);
2951 else
2952 return ssl_ctx_security(ctx, op, secbits, 0, x);
2953 }
2954
2955 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2956 {
2957 /* Lookup signature algorithm digest */
2958 int secbits, nid, pknid;
2959 /* Don't check signature if self signed */
2960 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2961 return 1;
2962 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2963 secbits = -1;
2964 /* If digest NID not defined use signature NID */
2965 if (nid == NID_undef)
2966 nid = pknid;
2967 if (s)
2968 return ssl_security(s, op, secbits, nid, x);
2969 else
2970 return ssl_ctx_security(ctx, op, secbits, nid, x);
2971 }
2972
2973 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2974 {
2975 if (vfy)
2976 vfy = SSL_SECOP_PEER;
2977 if (is_ee) {
2978 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2979 return SSL_R_EE_KEY_TOO_SMALL;
2980 } else {
2981 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2982 return SSL_R_CA_KEY_TOO_SMALL;
2983 }
2984 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2985 return SSL_R_CA_MD_TOO_WEAK;
2986 return 1;
2987 }
2988
2989 /*
2990 * Check security of a chain, if |sk| includes the end entity certificate then
2991 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2992 * one to the peer. Return values: 1 if ok otherwise error code to use
2993 */
2994
2995 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2996 {
2997 int rv, start_idx, i;
2998 if (x == NULL) {
2999 x = sk_X509_value(sk, 0);
3000 start_idx = 1;
3001 } else
3002 start_idx = 0;
3003
3004 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3005 if (rv != 1)
3006 return rv;
3007
3008 for (i = start_idx; i < sk_X509_num(sk); i++) {
3009 x = sk_X509_value(sk, i);
3010 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3011 if (rv != 1)
3012 return rv;
3013 }
3014 return 1;
3015 }
3016
3017 /*
3018 * For TLS 1.2 servers check if we have a certificate which can be used
3019 * with the signature algorithm "lu" and return index of certificate.
3020 */
3021
3022 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3023 {
3024 int sig_idx = lu->sig_idx;
3025 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3026
3027 /* If not recognised or not supported by cipher mask it is not suitable */
3028 if (clu == NULL
3029 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3030 || (clu->nid == EVP_PKEY_RSA_PSS
3031 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3032 return -1;
3033
3034 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3035 }
3036
3037 /*
3038 * Checks the given cert against signature_algorithm_cert restrictions sent by
3039 * the peer (if any) as well as whether the hash from the sigalg is usable with
3040 * the key.
3041 * Returns true if the cert is usable and false otherwise.
3042 */
3043 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3044 EVP_PKEY *pkey)
3045 {
3046 const SIGALG_LOOKUP *lu;
3047 int mdnid, pknid, supported;
3048 size_t i;
3049
3050 /*
3051 * If the given EVP_PKEY cannot supporting signing with this sigalg,
3052 * the answer is simply 'no'.
3053 */
3054 ERR_set_mark();
3055 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
3056 ERR_pop_to_mark();
3057 if (supported == 0)
3058 return 0;
3059
3060 /*
3061 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3062 * on the sigalg with which the certificate was signed (by its issuer).
3063 */
3064 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3065 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3066 return 0;
3067 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3068 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3069 if (lu == NULL)
3070 continue;
3071
3072 /*
3073 * TODO this does not differentiate between the
3074 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3075 * have a chain here that lets us look at the key OID in the
3076 * signing certificate.
3077 */
3078 if (mdnid == lu->hash && pknid == lu->sig)
3079 return 1;
3080 }
3081 return 0;
3082 }
3083
3084 /*
3085 * Without signat_algorithms_cert, any certificate for which we have
3086 * a viable public key is permitted.
3087 */
3088 return 1;
3089 }
3090
3091 /*
3092 * Returns true if |s| has a usable certificate configured for use
3093 * with signature scheme |sig|.
3094 * "Usable" includes a check for presence as well as applying
3095 * the signature_algorithm_cert restrictions sent by the peer (if any).
3096 * Returns false if no usable certificate is found.
3097 */
3098 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3099 {
3100 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3101 if (idx == -1)
3102 idx = sig->sig_idx;
3103 if (!ssl_has_cert(s, idx))
3104 return 0;
3105
3106 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3107 s->cert->pkeys[idx].privatekey);
3108 }
3109
3110 /*
3111 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3112 * specified signature scheme |sig|, or false otherwise.
3113 */
3114 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3115 EVP_PKEY *pkey)
3116 {
3117 size_t idx;
3118
3119 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3120 return 0;
3121
3122 /* Check the key is consistent with the sig alg */
3123 if ((int)idx != sig->sig_idx)
3124 return 0;
3125
3126 return check_cert_usable(s, sig, x, pkey);
3127 }
3128
3129 /*
3130 * Find a signature scheme that works with the supplied certificate |x| and key
3131 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3132 * available certs/keys to find one that works.
3133 */
3134 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3135 {
3136 const SIGALG_LOOKUP *lu = NULL;
3137 size_t i;
3138 #ifndef OPENSSL_NO_EC
3139 int curve = -1;
3140 #endif
3141 EVP_PKEY *tmppkey;
3142
3143 /* Look for a shared sigalgs matching possible certificates */
3144 for (i = 0; i < s->shared_sigalgslen; i++) {
3145 lu = s->shared_sigalgs[i];
3146
3147 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3148 if (lu->hash == NID_sha1
3149 || lu->hash == NID_sha224
3150 || lu->sig == EVP_PKEY_DSA
3151 || lu->sig == EVP_PKEY_RSA)
3152 continue;
3153 /* Check that we have a cert, and signature_algorithms_cert */
3154 if (!tls1_lookup_md(s->ctx, lu, NULL))
3155 continue;
3156 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3157 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3158 continue;
3159
3160 tmppkey = (pkey != NULL) ? pkey
3161 : s->cert->pkeys[lu->sig_idx].privatekey;
3162
3163 if (lu->sig == EVP_PKEY_EC) {
3164 #ifndef OPENSSL_NO_EC
3165 if (curve == -1)
3166 curve = evp_pkey_get_EC_KEY_curve_nid(tmppkey);
3167 if (lu->curve != NID_undef && curve != lu->curve)
3168 continue;
3169 #else
3170 continue;
3171 #endif
3172 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3173 /* validate that key is large enough for the signature algorithm */
3174 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3175 continue;
3176 }
3177 break;
3178 }
3179
3180 if (i == s->shared_sigalgslen)
3181 return NULL;
3182
3183 return lu;
3184 }
3185
3186 /*
3187 * Choose an appropriate signature algorithm based on available certificates
3188 * Sets chosen certificate and signature algorithm.
3189 *
3190 * For servers if we fail to find a required certificate it is a fatal error,
3191 * an appropriate error code is set and a TLS alert is sent.
3192 *
3193 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3194 * a fatal error: we will either try another certificate or not present one
3195 * to the server. In this case no error is set.
3196 */
3197 int tls_choose_sigalg(SSL *s, int fatalerrs)
3198 {
3199 const SIGALG_LOOKUP *lu = NULL;
3200 int sig_idx = -1;
3201
3202 s->s3.tmp.cert = NULL;
3203 s->s3.tmp.sigalg = NULL;
3204
3205 if (SSL_IS_TLS13(s)) {
3206 lu = find_sig_alg(s, NULL, NULL);
3207 if (lu == NULL) {
3208 if (!fatalerrs)
3209 return 1;
3210 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
3211 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3212 return 0;
3213 }
3214 } else {
3215 /* If ciphersuite doesn't require a cert nothing to do */
3216 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3217 return 1;
3218 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3219 return 1;
3220
3221 if (SSL_USE_SIGALGS(s)) {
3222 size_t i;
3223 if (s->s3.tmp.peer_sigalgs != NULL) {
3224 #ifndef OPENSSL_NO_EC
3225 int curve = -1;
3226
3227 /* For Suite B need to match signature algorithm to curve */
3228 if (tls1_suiteb(s))
3229 curve =
3230 evp_pkey_get_EC_KEY_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3231 .privatekey);
3232 #endif
3233
3234 /*
3235 * Find highest preference signature algorithm matching
3236 * cert type
3237 */
3238 for (i = 0; i < s->shared_sigalgslen; i++) {
3239 lu = s->shared_sigalgs[i];
3240
3241 if (s->server) {
3242 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3243 continue;
3244 } else {
3245 int cc_idx = s->cert->key - s->cert->pkeys;
3246
3247 sig_idx = lu->sig_idx;
3248 if (cc_idx != sig_idx)
3249 continue;
3250 }
3251 /* Check that we have a cert, and sig_algs_cert */
3252 if (!has_usable_cert(s, lu, sig_idx))
3253 continue;
3254 if (lu->sig == EVP_PKEY_RSA_PSS) {
3255 /* validate that key is large enough for the signature algorithm */
3256 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3257
3258 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3259 continue;
3260 }
3261 #ifndef OPENSSL_NO_EC
3262 if (curve == -1 || lu->curve == curve)
3263 #endif
3264 break;
3265 }
3266 #ifndef OPENSSL_NO_GOST
3267 /*
3268 * Some Windows-based implementations do not send GOST algorithms indication
3269 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3270 * we have to assume GOST support.
3271 */
3272 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3273 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3274 if (!fatalerrs)
3275 return 1;
3276 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3277 SSL_F_TLS_CHOOSE_SIGALG,
3278 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3279 return 0;
3280 } else {
3281 i = 0;
3282 sig_idx = lu->sig_idx;
3283 }
3284 }
3285 #endif
3286 if (i == s->shared_sigalgslen) {
3287 if (!fatalerrs)
3288 return 1;
3289 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3290 SSL_F_TLS_CHOOSE_SIGALG,
3291 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3292 return 0;
3293 }
3294 } else {
3295 /*
3296 * If we have no sigalg use defaults
3297 */
3298 const uint16_t *sent_sigs;
3299 size_t sent_sigslen;
3300
3301 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3302 if (!fatalerrs)
3303 return 1;
3304 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3305 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3306 return 0;
3307 }
3308
3309 /* Check signature matches a type we sent */
3310 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3311 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3312 if (lu->sigalg == *sent_sigs
3313 && has_usable_cert(s, lu, lu->sig_idx))
3314 break;
3315 }
3316 if (i == sent_sigslen) {
3317 if (!fatalerrs)
3318 return 1;
3319 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3320 SSL_F_TLS_CHOOSE_SIGALG,
3321 SSL_R_WRONG_SIGNATURE_TYPE);
3322 return 0;
3323 }
3324 }
3325 } else {
3326 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3327 if (!fatalerrs)
3328 return 1;
3329 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3330 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3331 return 0;
3332 }
3333 }
3334 }
3335 if (sig_idx == -1)
3336 sig_idx = lu->sig_idx;
3337 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3338 s->cert->key = s->s3.tmp.cert;
3339 s->s3.tmp.sigalg = lu;
3340 return 1;
3341 }
3342
3343 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3344 {
3345 if (mode != TLSEXT_max_fragment_length_DISABLED
3346 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3347 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3348 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3349 return 0;
3350 }
3351
3352 ctx->ext.max_fragment_len_mode = mode;
3353 return 1;
3354 }
3355
3356 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3357 {
3358 if (mode != TLSEXT_max_fragment_length_DISABLED
3359 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3360 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3361 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3362 return 0;
3363 }
3364
3365 ssl->ext.max_fragment_len_mode = mode;
3366 return 1;
3367 }
3368
3369 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3370 {
3371 return session->ext.max_fragment_len_mode;
3372 }
3373
3374 /*
3375 * Helper functions for HMAC access with legacy support included.
3376 */
3377 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3378 {
3379 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3380 EVP_MAC *mac = NULL;
3381
3382 if (ret == NULL)
3383 return NULL;
3384 #ifndef OPENSSL_NO_DEPRECATED_3_0
3385 if (ctx->ext.ticket_key_evp_cb == NULL
3386 && ctx->ext.ticket_key_cb != NULL) {
3387 if (!ssl_hmac_old_new(ret))
3388 goto err;
3389 return ret;
3390 }
3391 #endif
3392 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3393 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3394 goto err;
3395 EVP_MAC_free(mac);
3396 return ret;
3397 err:
3398 EVP_MAC_CTX_free(ret->ctx);
3399 EVP_MAC_free(mac);
3400 OPENSSL_free(ret);
3401 return NULL;
3402 }
3403
3404 void ssl_hmac_free(SSL_HMAC *ctx)
3405 {
3406 if (ctx != NULL) {
3407 EVP_MAC_CTX_free(ctx->ctx);
3408 #ifndef OPENSSL_NO_DEPRECATED_3_0
3409 ssl_hmac_old_free(ctx);
3410 #endif
3411 OPENSSL_free(ctx);
3412 }
3413 }
3414
3415 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3416 {
3417 return ctx->ctx;
3418 }
3419
3420 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3421 {
3422 OSSL_PARAM params[3], *p = params;
3423
3424 if (ctx->ctx != NULL) {
3425 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3426 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3427 *p = OSSL_PARAM_construct_end();
3428 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3429 return 1;
3430 }
3431 #ifndef OPENSSL_NO_DEPRECATED_3_0
3432 if (ctx->old_ctx != NULL)
3433 return ssl_hmac_old_init(ctx, key, len, md);
3434 #endif
3435 return 0;
3436 }
3437
3438 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3439 {
3440 if (ctx->ctx != NULL)
3441 return EVP_MAC_update(ctx->ctx, data, len);
3442 #ifndef OPENSSL_NO_DEPRECATED_3_0
3443 if (ctx->old_ctx != NULL)
3444 return ssl_hmac_old_update(ctx, data, len);
3445 #endif
3446 return 0;
3447 }
3448
3449 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3450 size_t max_size)
3451 {
3452 if (ctx->ctx != NULL)
3453 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3454 #ifndef OPENSSL_NO_DEPRECATED_3_0
3455 if (ctx->old_ctx != NULL)
3456 return ssl_hmac_old_final(ctx, md, len);
3457 #endif
3458 return 0;
3459 }
3460
3461 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3462 {
3463 if (ctx->ctx != NULL)
3464 return EVP_MAC_size(ctx->ctx);
3465 #ifndef OPENSSL_NO_DEPRECATED_3_0
3466 if (ctx->old_ctx != NULL)
3467 return ssl_hmac_old_size(ctx);
3468 #endif
3469 return 0;
3470 }
3471