]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
SSL object refactoring using SSL_CONNECTION object
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
31
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33 tls1_enc,
34 tls1_mac,
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47 };
48
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_enc,
51 tls1_mac,
52 tls1_setup_key_block,
53 tls1_generate_master_secret,
54 tls1_change_cipher_state,
55 tls1_final_finish_mac,
56 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58 tls1_alert_code,
59 tls1_export_keying_material,
60 SSL_ENC_FLAG_EXPLICIT_IV,
61 ssl3_set_handshake_header,
62 tls_close_construct_packet,
63 ssl3_handshake_write
64 };
65
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67 tls1_enc,
68 tls1_mac,
69 tls1_setup_key_block,
70 tls1_generate_master_secret,
71 tls1_change_cipher_state,
72 tls1_final_finish_mac,
73 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75 tls1_alert_code,
76 tls1_export_keying_material,
77 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79 ssl3_set_handshake_header,
80 tls_close_construct_packet,
81 ssl3_handshake_write
82 };
83
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85 tls13_enc,
86 tls1_mac,
87 tls13_setup_key_block,
88 tls13_generate_master_secret,
89 tls13_change_cipher_state,
90 tls13_final_finish_mac,
91 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93 tls13_alert_code,
94 tls13_export_keying_material,
95 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96 ssl3_set_handshake_header,
97 tls_close_construct_packet,
98 ssl3_handshake_write
99 };
100
101 long tls1_default_timeout(void)
102 {
103 /*
104 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105 * http, the cache would over fill
106 */
107 return (60 * 60 * 2);
108 }
109
110 int tls1_new(SSL *s)
111 {
112 if (!ssl3_new(s))
113 return 0;
114 if (!s->method->ssl_clear(s))
115 return 0;
116
117 return 1;
118 }
119
120 void tls1_free(SSL *s)
121 {
122 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
123
124 if (sc == NULL)
125 return;
126
127 OPENSSL_free(sc->ext.session_ticket);
128 ssl3_free(s);
129 }
130
131 int tls1_clear(SSL *s)
132 {
133 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
134
135 if (sc == NULL)
136 return 0;
137
138 if (!ssl3_clear(s))
139 return 0;
140
141 if (s->method->version == TLS_ANY_VERSION)
142 sc->version = TLS_MAX_VERSION_INTERNAL;
143 else
144 sc->version = s->method->version;
145
146 return 1;
147 }
148
149 /* Legacy NID to group_id mapping. Only works for groups we know about */
150 static struct {
151 int nid;
152 uint16_t group_id;
153 } nid_to_group[] = {
154 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
155 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
156 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
157 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
158 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
159 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
160 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
161 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
162 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
163 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
164 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
165 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
166 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
167 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
168 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
169 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
170 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
171 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
172 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
173 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
174 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
175 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
176 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
177 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
178 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
179 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
180 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
181 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
182 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
183 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
184 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
185 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
186 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
187 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
188 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
189 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
190 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
191 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
192 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
193 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
194 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
195 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
196 };
197
198 static const unsigned char ecformats_default[] = {
199 TLSEXT_ECPOINTFORMAT_uncompressed,
200 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
201 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
202 };
203
204 /* The default curves */
205 static const uint16_t supported_groups_default[] = {
206 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
207 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
208 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
209 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
210 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
211 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
212 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
213 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
214 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
215 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
216 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
217 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
218 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
219 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
220 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
221 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
222 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
223 };
224
225 static const uint16_t suiteb_curves[] = {
226 OSSL_TLS_GROUP_ID_secp256r1,
227 OSSL_TLS_GROUP_ID_secp384r1,
228 };
229
230 struct provider_group_data_st {
231 SSL_CTX *ctx;
232 OSSL_PROVIDER *provider;
233 };
234
235 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
236 static OSSL_CALLBACK add_provider_groups;
237 static int add_provider_groups(const OSSL_PARAM params[], void *data)
238 {
239 struct provider_group_data_st *pgd = data;
240 SSL_CTX *ctx = pgd->ctx;
241 OSSL_PROVIDER *provider = pgd->provider;
242 const OSSL_PARAM *p;
243 TLS_GROUP_INFO *ginf = NULL;
244 EVP_KEYMGMT *keymgmt;
245 unsigned int gid;
246 unsigned int is_kem = 0;
247 int ret = 0;
248
249 if (ctx->group_list_max_len == ctx->group_list_len) {
250 TLS_GROUP_INFO *tmp = NULL;
251
252 if (ctx->group_list_max_len == 0)
253 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
254 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255 else
256 tmp = OPENSSL_realloc(ctx->group_list,
257 (ctx->group_list_max_len
258 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
259 * sizeof(TLS_GROUP_INFO));
260 if (tmp == NULL) {
261 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
262 return 0;
263 }
264 ctx->group_list = tmp;
265 memset(tmp + ctx->group_list_max_len,
266 0,
267 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
268 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
269 }
270
271 ginf = &ctx->group_list[ctx->group_list_len];
272
273 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
274 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
275 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
276 goto err;
277 }
278 ginf->tlsname = OPENSSL_strdup(p->data);
279 if (ginf->tlsname == NULL) {
280 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
281 goto err;
282 }
283
284 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
285 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
286 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
287 goto err;
288 }
289 ginf->realname = OPENSSL_strdup(p->data);
290 if (ginf->realname == NULL) {
291 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
292 goto err;
293 }
294
295 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
296 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
297 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
298 goto err;
299 }
300 ginf->group_id = (uint16_t)gid;
301
302 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
303 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
304 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
305 goto err;
306 }
307 ginf->algorithm = OPENSSL_strdup(p->data);
308 if (ginf->algorithm == NULL) {
309 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
310 goto err;
311 }
312
313 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
314 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
315 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316 goto err;
317 }
318
319 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
320 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
321 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322 goto err;
323 }
324 ginf->is_kem = 1 & is_kem;
325
326 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
327 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
328 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329 goto err;
330 }
331
332 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
333 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
334 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335 goto err;
336 }
337
338 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
339 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
340 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
341 goto err;
342 }
343
344 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
345 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
346 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
347 goto err;
348 }
349 /*
350 * Now check that the algorithm is actually usable for our property query
351 * string. Regardless of the result we still return success because we have
352 * successfully processed this group, even though we may decide not to use
353 * it.
354 */
355 ret = 1;
356 ERR_set_mark();
357 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
358 if (keymgmt != NULL) {
359 /*
360 * We have successfully fetched the algorithm - however if the provider
361 * doesn't match this one then we ignore it.
362 *
363 * Note: We're cheating a little here. Technically if the same algorithm
364 * is available from more than one provider then it is undefined which
365 * implementation you will get back. Theoretically this could be
366 * different every time...we assume here that you'll always get the
367 * same one back if you repeat the exact same fetch. Is this a reasonable
368 * assumption to make (in which case perhaps we should document this
369 * behaviour)?
370 */
371 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
372 /* We have a match - so we will use this group */
373 ctx->group_list_len++;
374 ginf = NULL;
375 }
376 EVP_KEYMGMT_free(keymgmt);
377 }
378 ERR_pop_to_mark();
379 err:
380 if (ginf != NULL) {
381 OPENSSL_free(ginf->tlsname);
382 OPENSSL_free(ginf->realname);
383 OPENSSL_free(ginf->algorithm);
384 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
385 }
386 return ret;
387 }
388
389 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
390 {
391 struct provider_group_data_st pgd;
392
393 pgd.ctx = vctx;
394 pgd.provider = provider;
395 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
396 add_provider_groups, &pgd);
397 }
398
399 int ssl_load_groups(SSL_CTX *ctx)
400 {
401 size_t i, j, num_deflt_grps = 0;
402 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
403
404 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
405 return 0;
406
407 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
408 for (j = 0; j < ctx->group_list_len; j++) {
409 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
410 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
411 break;
412 }
413 }
414 }
415
416 if (num_deflt_grps == 0)
417 return 1;
418
419 ctx->ext.supported_groups_default
420 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
421
422 if (ctx->ext.supported_groups_default == NULL) {
423 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
424 return 0;
425 }
426
427 memcpy(ctx->ext.supported_groups_default,
428 tmp_supp_groups,
429 num_deflt_grps * sizeof(tmp_supp_groups[0]));
430 ctx->ext.supported_groups_default_len = num_deflt_grps;
431
432 return 1;
433 }
434
435 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
436 {
437 size_t i;
438
439 for (i = 0; i < ctx->group_list_len; i++) {
440 if (strcmp(ctx->group_list[i].tlsname, name) == 0
441 || strcmp(ctx->group_list[i].realname, name) == 0)
442 return ctx->group_list[i].group_id;
443 }
444
445 return 0;
446 }
447
448 uint16_t ssl_group_id_internal_to_tls13(uint16_t curve_id)
449 {
450 switch(curve_id) {
451 case OSSL_TLS_GROUP_ID_brainpoolP256r1:
452 return OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13;
453 case OSSL_TLS_GROUP_ID_brainpoolP384r1:
454 return OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13;
455 case OSSL_TLS_GROUP_ID_brainpoolP512r1:
456 return OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13;
457 case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13:
458 case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13:
459 case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13:
460 return 0;
461 default:
462 return curve_id;
463 }
464 }
465
466 uint16_t ssl_group_id_tls13_to_internal(uint16_t curve_id)
467 {
468 switch(curve_id) {
469 case OSSL_TLS_GROUP_ID_brainpoolP256r1:
470 case OSSL_TLS_GROUP_ID_brainpoolP384r1:
471 case OSSL_TLS_GROUP_ID_brainpoolP512r1:
472 return 0;
473 case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13:
474 return OSSL_TLS_GROUP_ID_brainpoolP256r1;
475 case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13:
476 return OSSL_TLS_GROUP_ID_brainpoolP384r1;
477 case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13:
478 return OSSL_TLS_GROUP_ID_brainpoolP512r1;
479 default:
480 return curve_id;
481 }
482 }
483
484 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
485 {
486 size_t i;
487
488 for (i = 0; i < ctx->group_list_len; i++) {
489 if (ctx->group_list[i].group_id == group_id)
490 return &ctx->group_list[i];
491 }
492
493 return NULL;
494 }
495
496 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
497 {
498 size_t i;
499
500 if (group_id == 0)
501 return NID_undef;
502
503 /*
504 * Return well known Group NIDs - for backwards compatibility. This won't
505 * work for groups we don't know about.
506 */
507 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
508 {
509 if (nid_to_group[i].group_id == group_id)
510 return nid_to_group[i].nid;
511 }
512 if (!include_unknown)
513 return NID_undef;
514 return TLSEXT_nid_unknown | (int)group_id;
515 }
516
517 uint16_t tls1_nid2group_id(int nid)
518 {
519 size_t i;
520
521 /*
522 * Return well known Group ids - for backwards compatibility. This won't
523 * work for groups we don't know about.
524 */
525 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
526 {
527 if (nid_to_group[i].nid == nid)
528 return nid_to_group[i].group_id;
529 }
530
531 return 0;
532 }
533
534 /*
535 * Set *pgroups to the supported groups list and *pgroupslen to
536 * the number of groups supported.
537 */
538 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
539 size_t *pgroupslen)
540 {
541 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
542
543 /* For Suite B mode only include P-256, P-384 */
544 switch (tls1_suiteb(s)) {
545 case SSL_CERT_FLAG_SUITEB_128_LOS:
546 *pgroups = suiteb_curves;
547 *pgroupslen = OSSL_NELEM(suiteb_curves);
548 break;
549
550 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
551 *pgroups = suiteb_curves;
552 *pgroupslen = 1;
553 break;
554
555 case SSL_CERT_FLAG_SUITEB_192_LOS:
556 *pgroups = suiteb_curves + 1;
557 *pgroupslen = 1;
558 break;
559
560 default:
561 if (s->ext.supportedgroups == NULL) {
562 *pgroups = sctx->ext.supported_groups_default;
563 *pgroupslen = sctx->ext.supported_groups_default_len;
564 } else {
565 *pgroups = s->ext.supportedgroups;
566 *pgroupslen = s->ext.supportedgroups_len;
567 }
568 break;
569 }
570 }
571
572 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
573 int minversion, int maxversion,
574 int isec, int *okfortls13)
575 {
576 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
577 group_id);
578 int ret;
579
580 if (okfortls13 != NULL)
581 *okfortls13 = 0;
582
583 if (ginfo == NULL)
584 return 0;
585
586 if (SSL_CONNECTION_IS_DTLS(s)) {
587 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
588 return 0;
589 if (ginfo->maxdtls == 0)
590 ret = 1;
591 else
592 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
593 if (ginfo->mindtls > 0)
594 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
595 } else {
596 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
597 return 0;
598 if (ginfo->maxtls == 0)
599 ret = 1;
600 else
601 ret = (minversion <= ginfo->maxtls);
602 if (ginfo->mintls > 0)
603 ret &= (maxversion >= ginfo->mintls);
604 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
605 *okfortls13 = (ginfo->maxtls == 0)
606 || (ginfo->maxtls >= TLS1_3_VERSION);
607 }
608 ret &= !isec
609 || strcmp(ginfo->algorithm, "EC") == 0
610 || strcmp(ginfo->algorithm, "X25519") == 0
611 || strcmp(ginfo->algorithm, "X448") == 0;
612
613 return ret;
614 }
615
616 /* See if group is allowed by security callback */
617 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
618 {
619 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
620 group);
621 unsigned char gtmp[2];
622
623 if (ginfo == NULL)
624 return 0;
625
626 gtmp[0] = group >> 8;
627 gtmp[1] = group & 0xff;
628 return ssl_security(s, op, ginfo->secbits,
629 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
630 }
631
632 /* Return 1 if "id" is in "list" */
633 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
634 {
635 size_t i;
636 for (i = 0; i < listlen; i++)
637 if (list[i] == id)
638 return 1;
639 return 0;
640 }
641
642 /*-
643 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
644 * if there is no match.
645 * For nmatch == -1, return number of matches
646 * For nmatch == -2, return the id of the group to use for
647 * a tmp key, or 0 if there is no match.
648 */
649 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
650 {
651 const uint16_t *pref, *supp;
652 size_t num_pref, num_supp, i;
653 int k;
654
655 /* Can't do anything on client side */
656 if (s->server == 0)
657 return 0;
658 if (nmatch == -2) {
659 if (tls1_suiteb(s)) {
660 /*
661 * For Suite B ciphersuite determines curve: we already know
662 * these are acceptable due to previous checks.
663 */
664 unsigned long cid = s->s3.tmp.new_cipher->id;
665
666 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
667 return OSSL_TLS_GROUP_ID_secp256r1;
668 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
669 return OSSL_TLS_GROUP_ID_secp384r1;
670 /* Should never happen */
671 return 0;
672 }
673 /* If not Suite B just return first preference shared curve */
674 nmatch = 0;
675 }
676 /*
677 * If server preference set, our groups are the preference order
678 * otherwise peer decides.
679 */
680 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
681 tls1_get_supported_groups(s, &pref, &num_pref);
682 tls1_get_peer_groups(s, &supp, &num_supp);
683 } else {
684 tls1_get_peer_groups(s, &pref, &num_pref);
685 tls1_get_supported_groups(s, &supp, &num_supp);
686 }
687
688 for (k = 0, i = 0; i < num_pref; i++) {
689 uint16_t id = pref[i];
690 uint16_t cid = id;
691
692 if (SSL_CONNECTION_IS_TLS13(s)) {
693 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
694 cid = ssl_group_id_internal_to_tls13(id);
695 else
696 cid = id = ssl_group_id_tls13_to_internal(id);
697 }
698 if (!tls1_in_list(cid, supp, num_supp)
699 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
700 continue;
701 if (nmatch == k)
702 return id;
703 k++;
704 }
705 if (nmatch == -1)
706 return k;
707 /* Out of range (nmatch > k). */
708 return 0;
709 }
710
711 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
712 int *groups, size_t ngroups)
713 {
714 uint16_t *glist;
715 size_t i;
716 /*
717 * Bitmap of groups included to detect duplicates: two variables are added
718 * to detect duplicates as some values are more than 32.
719 */
720 unsigned long *dup_list = NULL;
721 unsigned long dup_list_egrp = 0;
722 unsigned long dup_list_dhgrp = 0;
723
724 if (ngroups == 0) {
725 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
726 return 0;
727 }
728 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
729 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
730 return 0;
731 }
732 for (i = 0; i < ngroups; i++) {
733 unsigned long idmask;
734 uint16_t id;
735 id = tls1_nid2group_id(groups[i]);
736 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
737 goto err;
738 idmask = 1L << (id & 0x00FF);
739 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
740 if (!id || ((*dup_list) & idmask))
741 goto err;
742 *dup_list |= idmask;
743 glist[i] = id;
744 }
745 OPENSSL_free(*pext);
746 *pext = glist;
747 *pextlen = ngroups;
748 return 1;
749 err:
750 OPENSSL_free(glist);
751 return 0;
752 }
753
754 # define GROUPLIST_INCREMENT 40
755 # define GROUP_NAME_BUFFER_LENGTH 64
756 typedef struct {
757 SSL_CTX *ctx;
758 size_t gidcnt;
759 size_t gidmax;
760 uint16_t *gid_arr;
761 } gid_cb_st;
762
763 static int gid_cb(const char *elem, int len, void *arg)
764 {
765 gid_cb_st *garg = arg;
766 size_t i;
767 uint16_t gid = 0;
768 char etmp[GROUP_NAME_BUFFER_LENGTH];
769
770 if (elem == NULL)
771 return 0;
772 if (garg->gidcnt == garg->gidmax) {
773 uint16_t *tmp =
774 OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
775 if (tmp == NULL)
776 return 0;
777 garg->gidmax += GROUPLIST_INCREMENT;
778 garg->gid_arr = tmp;
779 }
780 if (len > (int)(sizeof(etmp) - 1))
781 return 0;
782 memcpy(etmp, elem, len);
783 etmp[len] = 0;
784
785 gid = tls1_group_name2id(garg->ctx, etmp);
786 if (gid == 0) {
787 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
788 "group '%s' cannot be set", etmp);
789 return 0;
790 }
791 for (i = 0; i < garg->gidcnt; i++)
792 if (garg->gid_arr[i] == gid)
793 return 0;
794 garg->gid_arr[garg->gidcnt++] = gid;
795 return 1;
796 }
797
798 /* Set groups based on a colon separated list */
799 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
800 const char *str)
801 {
802 gid_cb_st gcb;
803 uint16_t *tmparr;
804 int ret = 0;
805
806 gcb.gidcnt = 0;
807 gcb.gidmax = GROUPLIST_INCREMENT;
808 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
809 if (gcb.gid_arr == NULL)
810 return 0;
811 gcb.ctx = ctx;
812 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
813 goto end;
814 if (pext == NULL) {
815 ret = 1;
816 goto end;
817 }
818
819 /*
820 * gid_cb ensurse there are no duplicates so we can just go ahead and set
821 * the result
822 */
823 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
824 if (tmparr == NULL)
825 goto end;
826 *pext = tmparr;
827 *pextlen = gcb.gidcnt;
828 ret = 1;
829 end:
830 OPENSSL_free(gcb.gid_arr);
831 return ret;
832 }
833
834 /* Check a group id matches preferences */
835 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
836 int check_own_groups)
837 {
838 const uint16_t *groups;
839 size_t groups_len;
840
841 if (group_id == 0)
842 return 0;
843
844 /* Check for Suite B compliance */
845 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
846 unsigned long cid = s->s3.tmp.new_cipher->id;
847
848 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
849 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
850 return 0;
851 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
852 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
853 return 0;
854 } else {
855 /* Should never happen */
856 return 0;
857 }
858 }
859
860 if (check_own_groups) {
861 /* Check group is one of our preferences */
862 tls1_get_supported_groups(s, &groups, &groups_len);
863 if (!tls1_in_list(group_id, groups, groups_len))
864 return 0;
865 }
866
867 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
868 return 0;
869
870 /* For clients, nothing more to check */
871 if (!s->server)
872 return 1;
873
874 /* Check group is one of peers preferences */
875 tls1_get_peer_groups(s, &groups, &groups_len);
876
877 /*
878 * RFC 4492 does not require the supported elliptic curves extension
879 * so if it is not sent we can just choose any curve.
880 * It is invalid to send an empty list in the supported groups
881 * extension, so groups_len == 0 always means no extension.
882 */
883 if (groups_len == 0)
884 return 1;
885 return tls1_in_list(group_id, groups, groups_len);
886 }
887
888 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
889 size_t *num_formats)
890 {
891 /*
892 * If we have a custom point format list use it otherwise use default
893 */
894 if (s->ext.ecpointformats) {
895 *pformats = s->ext.ecpointformats;
896 *num_formats = s->ext.ecpointformats_len;
897 } else {
898 *pformats = ecformats_default;
899 /* For Suite B we don't support char2 fields */
900 if (tls1_suiteb(s))
901 *num_formats = sizeof(ecformats_default) - 1;
902 else
903 *num_formats = sizeof(ecformats_default);
904 }
905 }
906
907 /* Check a key is compatible with compression extension */
908 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
909 {
910 unsigned char comp_id;
911 size_t i;
912 int point_conv;
913
914 /* If not an EC key nothing to check */
915 if (!EVP_PKEY_is_a(pkey, "EC"))
916 return 1;
917
918
919 /* Get required compression id */
920 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
921 if (point_conv == 0)
922 return 0;
923 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
924 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
925 } else if (SSL_CONNECTION_IS_TLS13(s)) {
926 /*
927 * ec_point_formats extension is not used in TLSv1.3 so we ignore
928 * this check.
929 */
930 return 1;
931 } else {
932 int field_type = EVP_PKEY_get_field_type(pkey);
933
934 if (field_type == NID_X9_62_prime_field)
935 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
936 else if (field_type == NID_X9_62_characteristic_two_field)
937 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
938 else
939 return 0;
940 }
941 /*
942 * If point formats extension present check it, otherwise everything is
943 * supported (see RFC4492).
944 */
945 if (s->ext.peer_ecpointformats == NULL)
946 return 1;
947
948 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
949 if (s->ext.peer_ecpointformats[i] == comp_id)
950 return 1;
951 }
952 return 0;
953 }
954
955 /* Return group id of a key */
956 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
957 {
958 int curve_nid = ssl_get_EC_curve_nid(pkey);
959
960 if (curve_nid == NID_undef)
961 return 0;
962 return tls1_nid2group_id(curve_nid);
963 }
964
965 /*
966 * Check cert parameters compatible with extensions: currently just checks EC
967 * certificates have compatible curves and compression.
968 */
969 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
970 {
971 uint16_t group_id;
972 EVP_PKEY *pkey;
973 pkey = X509_get0_pubkey(x);
974 if (pkey == NULL)
975 return 0;
976 /* If not EC nothing to do */
977 if (!EVP_PKEY_is_a(pkey, "EC"))
978 return 1;
979 /* Check compression */
980 if (!tls1_check_pkey_comp(s, pkey))
981 return 0;
982 group_id = tls1_get_group_id(pkey);
983 /*
984 * For a server we allow the certificate to not be in our list of supported
985 * groups.
986 */
987 if (!tls1_check_group_id(s, group_id, !s->server))
988 return 0;
989 /*
990 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
991 * SHA384+P-384.
992 */
993 if (check_ee_md && tls1_suiteb(s)) {
994 int check_md;
995 size_t i;
996
997 /* Check to see we have necessary signing algorithm */
998 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
999 check_md = NID_ecdsa_with_SHA256;
1000 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1001 check_md = NID_ecdsa_with_SHA384;
1002 else
1003 return 0; /* Should never happen */
1004 for (i = 0; i < s->shared_sigalgslen; i++) {
1005 if (check_md == s->shared_sigalgs[i]->sigandhash)
1006 return 1;
1007 }
1008 return 0;
1009 }
1010 return 1;
1011 }
1012
1013 /*
1014 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1015 * @s: SSL connection
1016 * @cid: Cipher ID we're considering using
1017 *
1018 * Checks that the kECDHE cipher suite we're considering using
1019 * is compatible with the client extensions.
1020 *
1021 * Returns 0 when the cipher can't be used or 1 when it can.
1022 */
1023 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1024 {
1025 /* If not Suite B just need a shared group */
1026 if (!tls1_suiteb(s))
1027 return tls1_shared_group(s, 0) != 0;
1028 /*
1029 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1030 * curves permitted.
1031 */
1032 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1033 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1034 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1035 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1036
1037 return 0;
1038 }
1039
1040 /* Default sigalg schemes */
1041 static const uint16_t tls12_sigalgs[] = {
1042 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1043 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1044 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1045 TLSEXT_SIGALG_ed25519,
1046 TLSEXT_SIGALG_ed448,
1047 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1048 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1049 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1050
1051 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1052 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1053 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1054 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1055 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1056 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1057
1058 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1059 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1060 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1061
1062 TLSEXT_SIGALG_ecdsa_sha224,
1063 TLSEXT_SIGALG_ecdsa_sha1,
1064
1065 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1066 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1067
1068 TLSEXT_SIGALG_dsa_sha224,
1069 TLSEXT_SIGALG_dsa_sha1,
1070
1071 TLSEXT_SIGALG_dsa_sha256,
1072 TLSEXT_SIGALG_dsa_sha384,
1073 TLSEXT_SIGALG_dsa_sha512,
1074
1075 #ifndef OPENSSL_NO_GOST
1076 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1077 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1078 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1079 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1080 TLSEXT_SIGALG_gostr34102001_gostr3411,
1081 #endif
1082 };
1083
1084
1085 static const uint16_t suiteb_sigalgs[] = {
1086 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1087 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1088 };
1089
1090 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1091 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1092 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1093 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1094 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1095 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1096 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1097 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1098 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1099 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1100 {"ed25519", TLSEXT_SIGALG_ed25519,
1101 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1102 NID_undef, NID_undef, 1},
1103 {"ed448", TLSEXT_SIGALG_ed448,
1104 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1105 NID_undef, NID_undef, 1},
1106 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1107 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1108 NID_ecdsa_with_SHA224, NID_undef, 1},
1109 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1110 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1111 NID_ecdsa_with_SHA1, NID_undef, 1},
1112 {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1113 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1114 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1115 {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1116 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1117 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1118 {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1119 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1120 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1121 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1122 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1123 NID_undef, NID_undef, 1},
1124 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1125 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1126 NID_undef, NID_undef, 1},
1127 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1128 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1129 NID_undef, NID_undef, 1},
1130 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1131 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1132 NID_undef, NID_undef, 1},
1133 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1134 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1135 NID_undef, NID_undef, 1},
1136 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1137 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1138 NID_undef, NID_undef, 1},
1139 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1140 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1141 NID_sha256WithRSAEncryption, NID_undef, 1},
1142 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1143 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1144 NID_sha384WithRSAEncryption, NID_undef, 1},
1145 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1146 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1147 NID_sha512WithRSAEncryption, NID_undef, 1},
1148 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1149 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1150 NID_sha224WithRSAEncryption, NID_undef, 1},
1151 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1152 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1153 NID_sha1WithRSAEncryption, NID_undef, 1},
1154 {NULL, TLSEXT_SIGALG_dsa_sha256,
1155 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1156 NID_dsa_with_SHA256, NID_undef, 1},
1157 {NULL, TLSEXT_SIGALG_dsa_sha384,
1158 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1159 NID_undef, NID_undef, 1},
1160 {NULL, TLSEXT_SIGALG_dsa_sha512,
1161 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1162 NID_undef, NID_undef, 1},
1163 {NULL, TLSEXT_SIGALG_dsa_sha224,
1164 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1165 NID_undef, NID_undef, 1},
1166 {NULL, TLSEXT_SIGALG_dsa_sha1,
1167 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1168 NID_dsaWithSHA1, NID_undef, 1},
1169 #ifndef OPENSSL_NO_GOST
1170 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1171 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1172 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1173 NID_undef, NID_undef, 1},
1174 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1175 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1176 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1177 NID_undef, NID_undef, 1},
1178 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1179 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1180 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1181 NID_undef, NID_undef, 1},
1182 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1183 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1184 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1185 NID_undef, NID_undef, 1},
1186 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1187 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1188 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1189 NID_undef, NID_undef, 1}
1190 #endif
1191 };
1192 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1193 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1194 "rsa_pkcs1_md5_sha1", 0,
1195 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1196 EVP_PKEY_RSA, SSL_PKEY_RSA,
1197 NID_undef, NID_undef, 1
1198 };
1199
1200 /*
1201 * Default signature algorithm values used if signature algorithms not present.
1202 * From RFC5246. Note: order must match certificate index order.
1203 */
1204 static const uint16_t tls_default_sigalg[] = {
1205 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1206 0, /* SSL_PKEY_RSA_PSS_SIGN */
1207 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1208 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1209 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1210 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1211 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1212 0, /* SSL_PKEY_ED25519 */
1213 0, /* SSL_PKEY_ED448 */
1214 };
1215
1216 int ssl_setup_sig_algs(SSL_CTX *ctx)
1217 {
1218 size_t i;
1219 const SIGALG_LOOKUP *lu;
1220 SIGALG_LOOKUP *cache
1221 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1222 EVP_PKEY *tmpkey = EVP_PKEY_new();
1223 int ret = 0;
1224
1225 if (cache == NULL || tmpkey == NULL)
1226 goto err;
1227
1228 ERR_set_mark();
1229 for (i = 0, lu = sigalg_lookup_tbl;
1230 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1231 EVP_PKEY_CTX *pctx;
1232
1233 cache[i] = *lu;
1234
1235 /*
1236 * Check hash is available.
1237 * This test is not perfect. A provider could have support
1238 * for a signature scheme, but not a particular hash. However the hash
1239 * could be available from some other loaded provider. In that case it
1240 * could be that the signature is available, and the hash is available
1241 * independently - but not as a combination. We ignore this for now.
1242 */
1243 if (lu->hash != NID_undef
1244 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1245 cache[i].enabled = 0;
1246 continue;
1247 }
1248
1249 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1250 cache[i].enabled = 0;
1251 continue;
1252 }
1253 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1254 /* If unable to create pctx we assume the sig algorithm is unavailable */
1255 if (pctx == NULL)
1256 cache[i].enabled = 0;
1257 EVP_PKEY_CTX_free(pctx);
1258 }
1259 ERR_pop_to_mark();
1260 ctx->sigalg_lookup_cache = cache;
1261 cache = NULL;
1262
1263 ret = 1;
1264 err:
1265 OPENSSL_free(cache);
1266 EVP_PKEY_free(tmpkey);
1267 return ret;
1268 }
1269
1270 /* Lookup TLS signature algorithm */
1271 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1272 uint16_t sigalg)
1273 {
1274 size_t i;
1275 const SIGALG_LOOKUP *lu;
1276
1277 for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1278 /* cache should have the same number of elements as sigalg_lookup_tbl */
1279 i < OSSL_NELEM(sigalg_lookup_tbl);
1280 lu++, i++) {
1281 if (lu->sigalg == sigalg) {
1282 if (!lu->enabled)
1283 return NULL;
1284 return lu;
1285 }
1286 }
1287 return NULL;
1288 }
1289 /* Lookup hash: return 0 if invalid or not enabled */
1290 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1291 {
1292 const EVP_MD *md;
1293
1294 if (lu == NULL)
1295 return 0;
1296 /* lu->hash == NID_undef means no associated digest */
1297 if (lu->hash == NID_undef) {
1298 md = NULL;
1299 } else {
1300 md = ssl_md(ctx, lu->hash_idx);
1301 if (md == NULL)
1302 return 0;
1303 }
1304 if (pmd)
1305 *pmd = md;
1306 return 1;
1307 }
1308
1309 /*
1310 * Check if key is large enough to generate RSA-PSS signature.
1311 *
1312 * The key must greater than or equal to 2 * hash length + 2.
1313 * SHA512 has a hash length of 64 bytes, which is incompatible
1314 * with a 128 byte (1024 bit) key.
1315 */
1316 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1317 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1318 const SIGALG_LOOKUP *lu)
1319 {
1320 const EVP_MD *md;
1321
1322 if (pkey == NULL)
1323 return 0;
1324 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1325 return 0;
1326 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1327 return 0;
1328 return 1;
1329 }
1330
1331 /*
1332 * Returns a signature algorithm when the peer did not send a list of supported
1333 * signature algorithms. The signature algorithm is fixed for the certificate
1334 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1335 * certificate type from |s| will be used.
1336 * Returns the signature algorithm to use, or NULL on error.
1337 */
1338 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1339 int idx)
1340 {
1341 if (idx == -1) {
1342 if (s->server) {
1343 size_t i;
1344
1345 /* Work out index corresponding to ciphersuite */
1346 for (i = 0; i < SSL_PKEY_NUM; i++) {
1347 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1348
1349 if (clu == NULL)
1350 continue;
1351 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1352 idx = i;
1353 break;
1354 }
1355 }
1356
1357 /*
1358 * Some GOST ciphersuites allow more than one signature algorithms
1359 * */
1360 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1361 int real_idx;
1362
1363 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1364 real_idx--) {
1365 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1366 idx = real_idx;
1367 break;
1368 }
1369 }
1370 }
1371 /*
1372 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1373 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1374 */
1375 else if (idx == SSL_PKEY_GOST12_256) {
1376 int real_idx;
1377
1378 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1379 real_idx--) {
1380 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1381 idx = real_idx;
1382 break;
1383 }
1384 }
1385 }
1386 } else {
1387 idx = s->cert->key - s->cert->pkeys;
1388 }
1389 }
1390 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1391 return NULL;
1392 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1393 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1394
1395 if (lu == NULL)
1396 return NULL;
1397 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1398 return NULL;
1399 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1400 return NULL;
1401 return lu;
1402 }
1403 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1404 return NULL;
1405 return &legacy_rsa_sigalg;
1406 }
1407 /* Set peer sigalg based key type */
1408 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1409 {
1410 size_t idx;
1411 const SIGALG_LOOKUP *lu;
1412
1413 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1414 return 0;
1415 lu = tls1_get_legacy_sigalg(s, idx);
1416 if (lu == NULL)
1417 return 0;
1418 s->s3.tmp.peer_sigalg = lu;
1419 return 1;
1420 }
1421
1422 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1423 {
1424 /*
1425 * If Suite B mode use Suite B sigalgs only, ignore any other
1426 * preferences.
1427 */
1428 switch (tls1_suiteb(s)) {
1429 case SSL_CERT_FLAG_SUITEB_128_LOS:
1430 *psigs = suiteb_sigalgs;
1431 return OSSL_NELEM(suiteb_sigalgs);
1432
1433 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1434 *psigs = suiteb_sigalgs;
1435 return 1;
1436
1437 case SSL_CERT_FLAG_SUITEB_192_LOS:
1438 *psigs = suiteb_sigalgs + 1;
1439 return 1;
1440 }
1441 /*
1442 * We use client_sigalgs (if not NULL) if we're a server
1443 * and sending a certificate request or if we're a client and
1444 * determining which shared algorithm to use.
1445 */
1446 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1447 *psigs = s->cert->client_sigalgs;
1448 return s->cert->client_sigalgslen;
1449 } else if (s->cert->conf_sigalgs) {
1450 *psigs = s->cert->conf_sigalgs;
1451 return s->cert->conf_sigalgslen;
1452 } else {
1453 *psigs = tls12_sigalgs;
1454 return OSSL_NELEM(tls12_sigalgs);
1455 }
1456 }
1457
1458 /*
1459 * Called by servers only. Checks that we have a sig alg that supports the
1460 * specified EC curve.
1461 */
1462 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1463 {
1464 const uint16_t *sigs;
1465 size_t siglen, i;
1466
1467 if (s->cert->conf_sigalgs) {
1468 sigs = s->cert->conf_sigalgs;
1469 siglen = s->cert->conf_sigalgslen;
1470 } else {
1471 sigs = tls12_sigalgs;
1472 siglen = OSSL_NELEM(tls12_sigalgs);
1473 }
1474
1475 for (i = 0; i < siglen; i++) {
1476 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1477
1478 if (lu == NULL)
1479 continue;
1480 if (lu->sig == EVP_PKEY_EC
1481 && lu->curve != NID_undef
1482 && curve == lu->curve)
1483 return 1;
1484 }
1485
1486 return 0;
1487 }
1488
1489 /*
1490 * Return the number of security bits for the signature algorithm, or 0 on
1491 * error.
1492 */
1493 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1494 {
1495 const EVP_MD *md = NULL;
1496 int secbits = 0;
1497
1498 if (!tls1_lookup_md(ctx, lu, &md))
1499 return 0;
1500 if (md != NULL)
1501 {
1502 int md_type = EVP_MD_get_type(md);
1503
1504 /* Security bits: half digest bits */
1505 secbits = EVP_MD_get_size(md) * 4;
1506 /*
1507 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1508 * they're no longer accepted at security level 1. The real values don't
1509 * really matter as long as they're lower than 80, which is our
1510 * security level 1.
1511 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1512 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1513 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1514 * puts a chosen-prefix attack for MD5 at 2^39.
1515 */
1516 if (md_type == NID_sha1)
1517 secbits = 64;
1518 else if (md_type == NID_md5_sha1)
1519 secbits = 67;
1520 else if (md_type == NID_md5)
1521 secbits = 39;
1522 } else {
1523 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1524 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1525 secbits = 128;
1526 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1527 secbits = 224;
1528 }
1529 return secbits;
1530 }
1531
1532 /*
1533 * Check signature algorithm is consistent with sent supported signature
1534 * algorithms and if so set relevant digest and signature scheme in
1535 * s.
1536 */
1537 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1538 {
1539 const uint16_t *sent_sigs;
1540 const EVP_MD *md = NULL;
1541 char sigalgstr[2];
1542 size_t sent_sigslen, i, cidx;
1543 int pkeyid = -1;
1544 const SIGALG_LOOKUP *lu;
1545 int secbits = 0;
1546
1547 pkeyid = EVP_PKEY_get_id(pkey);
1548 /* Should never happen */
1549 if (pkeyid == -1)
1550 return -1;
1551 if (SSL_CONNECTION_IS_TLS13(s)) {
1552 /* Disallow DSA for TLS 1.3 */
1553 if (pkeyid == EVP_PKEY_DSA) {
1554 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1555 return 0;
1556 }
1557 /* Only allow PSS for TLS 1.3 */
1558 if (pkeyid == EVP_PKEY_RSA)
1559 pkeyid = EVP_PKEY_RSA_PSS;
1560 }
1561 lu = tls1_lookup_sigalg(s, sig);
1562 /*
1563 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1564 * is consistent with signature: RSA keys can be used for RSA-PSS
1565 */
1566 if (lu == NULL
1567 || (SSL_CONNECTION_IS_TLS13(s)
1568 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1569 || (pkeyid != lu->sig
1570 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1571 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1572 return 0;
1573 }
1574 /* Check the sigalg is consistent with the key OID */
1575 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1576 || lu->sig_idx != (int)cidx) {
1577 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1578 return 0;
1579 }
1580
1581 if (pkeyid == EVP_PKEY_EC) {
1582
1583 /* Check point compression is permitted */
1584 if (!tls1_check_pkey_comp(s, pkey)) {
1585 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1586 SSL_R_ILLEGAL_POINT_COMPRESSION);
1587 return 0;
1588 }
1589
1590 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1591 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1592 int curve = ssl_get_EC_curve_nid(pkey);
1593
1594 if (lu->curve != NID_undef && curve != lu->curve) {
1595 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1596 return 0;
1597 }
1598 }
1599 if (!SSL_CONNECTION_IS_TLS13(s)) {
1600 /* Check curve matches extensions */
1601 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1602 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1603 return 0;
1604 }
1605 if (tls1_suiteb(s)) {
1606 /* Check sigalg matches a permissible Suite B value */
1607 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1608 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1609 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1610 SSL_R_WRONG_SIGNATURE_TYPE);
1611 return 0;
1612 }
1613 }
1614 }
1615 } else if (tls1_suiteb(s)) {
1616 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1617 return 0;
1618 }
1619
1620 /* Check signature matches a type we sent */
1621 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1622 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1623 if (sig == *sent_sigs)
1624 break;
1625 }
1626 /* Allow fallback to SHA1 if not strict mode */
1627 if (i == sent_sigslen && (lu->hash != NID_sha1
1628 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1629 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1630 return 0;
1631 }
1632 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1633 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1634 return 0;
1635 }
1636 /*
1637 * Make sure security callback allows algorithm. For historical
1638 * reasons we have to pass the sigalg as a two byte char array.
1639 */
1640 sigalgstr[0] = (sig >> 8) & 0xff;
1641 sigalgstr[1] = sig & 0xff;
1642 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1643 if (secbits == 0 ||
1644 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1645 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1646 (void *)sigalgstr)) {
1647 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1648 return 0;
1649 }
1650 /* Store the sigalg the peer uses */
1651 s->s3.tmp.peer_sigalg = lu;
1652 return 1;
1653 }
1654
1655 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1656 {
1657 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1658
1659 if (sc == NULL)
1660 return 0;
1661
1662 if (sc->s3.tmp.peer_sigalg == NULL)
1663 return 0;
1664 *pnid = sc->s3.tmp.peer_sigalg->sig;
1665 return 1;
1666 }
1667
1668 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1669 {
1670 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1671
1672 if (sc == NULL)
1673 return 0;
1674
1675 if (sc->s3.tmp.sigalg == NULL)
1676 return 0;
1677 *pnid = sc->s3.tmp.sigalg->sig;
1678 return 1;
1679 }
1680
1681 /*
1682 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1683 * supported, doesn't appear in supported signature algorithms, isn't supported
1684 * by the enabled protocol versions or by the security level.
1685 *
1686 * This function should only be used for checking which ciphers are supported
1687 * by the client.
1688 *
1689 * Call ssl_cipher_disabled() to check that it's enabled or not.
1690 */
1691 int ssl_set_client_disabled(SSL_CONNECTION *s)
1692 {
1693 s->s3.tmp.mask_a = 0;
1694 s->s3.tmp.mask_k = 0;
1695 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1696 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1697 &s->s3.tmp.max_ver, NULL) != 0)
1698 return 0;
1699 #ifndef OPENSSL_NO_PSK
1700 /* with PSK there must be client callback set */
1701 if (!s->psk_client_callback) {
1702 s->s3.tmp.mask_a |= SSL_aPSK;
1703 s->s3.tmp.mask_k |= SSL_PSK;
1704 }
1705 #endif /* OPENSSL_NO_PSK */
1706 #ifndef OPENSSL_NO_SRP
1707 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1708 s->s3.tmp.mask_a |= SSL_aSRP;
1709 s->s3.tmp.mask_k |= SSL_kSRP;
1710 }
1711 #endif
1712 return 1;
1713 }
1714
1715 /*
1716 * ssl_cipher_disabled - check that a cipher is disabled or not
1717 * @s: SSL connection that you want to use the cipher on
1718 * @c: cipher to check
1719 * @op: Security check that you want to do
1720 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1721 *
1722 * Returns 1 when it's disabled, 0 when enabled.
1723 */
1724 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
1725 int op, int ecdhe)
1726 {
1727 if (c->algorithm_mkey & s->s3.tmp.mask_k
1728 || c->algorithm_auth & s->s3.tmp.mask_a)
1729 return 1;
1730 if (s->s3.tmp.max_ver == 0)
1731 return 1;
1732 if (!SSL_CONNECTION_IS_DTLS(s)) {
1733 int min_tls = c->min_tls;
1734
1735 /*
1736 * For historical reasons we will allow ECHDE to be selected by a server
1737 * in SSLv3 if we are a client
1738 */
1739 if (min_tls == TLS1_VERSION && ecdhe
1740 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1741 min_tls = SSL3_VERSION;
1742
1743 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1744 return 1;
1745 }
1746 if (SSL_CONNECTION_IS_DTLS(s)
1747 && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1748 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1749 return 1;
1750
1751 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1752 }
1753
1754 int tls_use_ticket(SSL_CONNECTION *s)
1755 {
1756 if ((s->options & SSL_OP_NO_TICKET))
1757 return 0;
1758 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1759 }
1760
1761 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
1762 {
1763 size_t i;
1764
1765 /* Clear any shared signature algorithms */
1766 OPENSSL_free(s->shared_sigalgs);
1767 s->shared_sigalgs = NULL;
1768 s->shared_sigalgslen = 0;
1769 /* Clear certificate validity flags */
1770 for (i = 0; i < SSL_PKEY_NUM; i++)
1771 s->s3.tmp.valid_flags[i] = 0;
1772 /*
1773 * If peer sent no signature algorithms check to see if we support
1774 * the default algorithm for each certificate type
1775 */
1776 if (s->s3.tmp.peer_cert_sigalgs == NULL
1777 && s->s3.tmp.peer_sigalgs == NULL) {
1778 const uint16_t *sent_sigs;
1779 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1780
1781 for (i = 0; i < SSL_PKEY_NUM; i++) {
1782 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1783 size_t j;
1784
1785 if (lu == NULL)
1786 continue;
1787 /* Check default matches a type we sent */
1788 for (j = 0; j < sent_sigslen; j++) {
1789 if (lu->sigalg == sent_sigs[j]) {
1790 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1791 break;
1792 }
1793 }
1794 }
1795 return 1;
1796 }
1797
1798 if (!tls1_process_sigalgs(s)) {
1799 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1800 return 0;
1801 }
1802 if (s->shared_sigalgs != NULL)
1803 return 1;
1804
1805 /* Fatal error if no shared signature algorithms */
1806 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1807 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1808 return 0;
1809 }
1810
1811 /*-
1812 * Gets the ticket information supplied by the client if any.
1813 *
1814 * hello: The parsed ClientHello data
1815 * ret: (output) on return, if a ticket was decrypted, then this is set to
1816 * point to the resulting session.
1817 */
1818 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
1819 CLIENTHELLO_MSG *hello,
1820 SSL_SESSION **ret)
1821 {
1822 size_t size;
1823 RAW_EXTENSION *ticketext;
1824
1825 *ret = NULL;
1826 s->ext.ticket_expected = 0;
1827
1828 /*
1829 * If tickets disabled or not supported by the protocol version
1830 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1831 * resumption.
1832 */
1833 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1834 return SSL_TICKET_NONE;
1835
1836 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1837 if (!ticketext->present)
1838 return SSL_TICKET_NONE;
1839
1840 size = PACKET_remaining(&ticketext->data);
1841
1842 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1843 hello->session_id, hello->session_id_len, ret);
1844 }
1845
1846 /*-
1847 * tls_decrypt_ticket attempts to decrypt a session ticket.
1848 *
1849 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1850 * expecting a pre-shared key ciphersuite, in which case we have no use for
1851 * session tickets and one will never be decrypted, nor will
1852 * s->ext.ticket_expected be set to 1.
1853 *
1854 * Side effects:
1855 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1856 * a new session ticket to the client because the client indicated support
1857 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1858 * a session ticket or we couldn't use the one it gave us, or if
1859 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1860 * Otherwise, s->ext.ticket_expected is set to 0.
1861 *
1862 * etick: points to the body of the session ticket extension.
1863 * eticklen: the length of the session tickets extension.
1864 * sess_id: points at the session ID.
1865 * sesslen: the length of the session ID.
1866 * psess: (output) on return, if a ticket was decrypted, then this is set to
1867 * point to the resulting session.
1868 */
1869 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
1870 const unsigned char *etick,
1871 size_t eticklen,
1872 const unsigned char *sess_id,
1873 size_t sesslen, SSL_SESSION **psess)
1874 {
1875 SSL_SESSION *sess = NULL;
1876 unsigned char *sdec;
1877 const unsigned char *p;
1878 int slen, renew_ticket = 0, declen;
1879 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1880 size_t mlen;
1881 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1882 SSL_HMAC *hctx = NULL;
1883 EVP_CIPHER_CTX *ctx = NULL;
1884 SSL_CTX *tctx = s->session_ctx;
1885
1886 if (eticklen == 0) {
1887 /*
1888 * The client will accept a ticket but doesn't currently have
1889 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1890 */
1891 ret = SSL_TICKET_EMPTY;
1892 goto end;
1893 }
1894 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
1895 /*
1896 * Indicate that the ticket couldn't be decrypted rather than
1897 * generating the session from ticket now, trigger
1898 * abbreviated handshake based on external mechanism to
1899 * calculate the master secret later.
1900 */
1901 ret = SSL_TICKET_NO_DECRYPT;
1902 goto end;
1903 }
1904
1905 /* Need at least keyname + iv */
1906 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1907 ret = SSL_TICKET_NO_DECRYPT;
1908 goto end;
1909 }
1910
1911 /* Initialize session ticket encryption and HMAC contexts */
1912 hctx = ssl_hmac_new(tctx);
1913 if (hctx == NULL) {
1914 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1915 goto end;
1916 }
1917 ctx = EVP_CIPHER_CTX_new();
1918 if (ctx == NULL) {
1919 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1920 goto end;
1921 }
1922 #ifndef OPENSSL_NO_DEPRECATED_3_0
1923 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1924 #else
1925 if (tctx->ext.ticket_key_evp_cb != NULL)
1926 #endif
1927 {
1928 unsigned char *nctick = (unsigned char *)etick;
1929 int rv = 0;
1930
1931 if (tctx->ext.ticket_key_evp_cb != NULL)
1932 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
1933 nctick + TLSEXT_KEYNAME_LENGTH,
1934 ctx,
1935 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1936 0);
1937 #ifndef OPENSSL_NO_DEPRECATED_3_0
1938 else if (tctx->ext.ticket_key_cb != NULL)
1939 /* if 0 is returned, write an empty ticket */
1940 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
1941 nctick + TLSEXT_KEYNAME_LENGTH,
1942 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1943 #endif
1944 if (rv < 0) {
1945 ret = SSL_TICKET_FATAL_ERR_OTHER;
1946 goto end;
1947 }
1948 if (rv == 0) {
1949 ret = SSL_TICKET_NO_DECRYPT;
1950 goto end;
1951 }
1952 if (rv == 2)
1953 renew_ticket = 1;
1954 } else {
1955 EVP_CIPHER *aes256cbc = NULL;
1956 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
1957
1958 /* Check key name matches */
1959 if (memcmp(etick, tctx->ext.tick_key_name,
1960 TLSEXT_KEYNAME_LENGTH) != 0) {
1961 ret = SSL_TICKET_NO_DECRYPT;
1962 goto end;
1963 }
1964
1965 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
1966 sctx->propq);
1967 if (aes256cbc == NULL
1968 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1969 sizeof(tctx->ext.secure->tick_hmac_key),
1970 "SHA256") <= 0
1971 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1972 tctx->ext.secure->tick_aes_key,
1973 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1974 EVP_CIPHER_free(aes256cbc);
1975 ret = SSL_TICKET_FATAL_ERR_OTHER;
1976 goto end;
1977 }
1978 EVP_CIPHER_free(aes256cbc);
1979 if (SSL_CONNECTION_IS_TLS13(s))
1980 renew_ticket = 1;
1981 }
1982 /*
1983 * Attempt to process session ticket, first conduct sanity and integrity
1984 * checks on ticket.
1985 */
1986 mlen = ssl_hmac_size(hctx);
1987 if (mlen == 0) {
1988 ret = SSL_TICKET_FATAL_ERR_OTHER;
1989 goto end;
1990 }
1991
1992 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1993 if (eticklen <=
1994 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx) + mlen) {
1995 ret = SSL_TICKET_NO_DECRYPT;
1996 goto end;
1997 }
1998 eticklen -= mlen;
1999 /* Check HMAC of encrypted ticket */
2000 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2001 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2002 ret = SSL_TICKET_FATAL_ERR_OTHER;
2003 goto end;
2004 }
2005
2006 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2007 ret = SSL_TICKET_NO_DECRYPT;
2008 goto end;
2009 }
2010 /* Attempt to decrypt session data */
2011 /* Move p after IV to start of encrypted ticket, update length */
2012 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
2013 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
2014 sdec = OPENSSL_malloc(eticklen);
2015 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2016 (int)eticklen) <= 0) {
2017 OPENSSL_free(sdec);
2018 ret = SSL_TICKET_FATAL_ERR_OTHER;
2019 goto end;
2020 }
2021 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2022 OPENSSL_free(sdec);
2023 ret = SSL_TICKET_NO_DECRYPT;
2024 goto end;
2025 }
2026 slen += declen;
2027 p = sdec;
2028
2029 sess = d2i_SSL_SESSION(NULL, &p, slen);
2030 slen -= p - sdec;
2031 OPENSSL_free(sdec);
2032 if (sess) {
2033 /* Some additional consistency checks */
2034 if (slen != 0) {
2035 SSL_SESSION_free(sess);
2036 sess = NULL;
2037 ret = SSL_TICKET_NO_DECRYPT;
2038 goto end;
2039 }
2040 /*
2041 * The session ID, if non-empty, is used by some clients to detect
2042 * that the ticket has been accepted. So we copy it to the session
2043 * structure. If it is empty set length to zero as required by
2044 * standard.
2045 */
2046 if (sesslen) {
2047 memcpy(sess->session_id, sess_id, sesslen);
2048 sess->session_id_length = sesslen;
2049 }
2050 if (renew_ticket)
2051 ret = SSL_TICKET_SUCCESS_RENEW;
2052 else
2053 ret = SSL_TICKET_SUCCESS;
2054 goto end;
2055 }
2056 ERR_clear_error();
2057 /*
2058 * For session parse failure, indicate that we need to send a new ticket.
2059 */
2060 ret = SSL_TICKET_NO_DECRYPT;
2061
2062 end:
2063 EVP_CIPHER_CTX_free(ctx);
2064 ssl_hmac_free(hctx);
2065
2066 /*
2067 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2068 * detected above. The callback is responsible for checking |ret| before it
2069 * performs any action
2070 */
2071 if (s->session_ctx->decrypt_ticket_cb != NULL
2072 && (ret == SSL_TICKET_EMPTY
2073 || ret == SSL_TICKET_NO_DECRYPT
2074 || ret == SSL_TICKET_SUCCESS
2075 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2076 size_t keyname_len = eticklen;
2077 int retcb;
2078
2079 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2080 keyname_len = TLSEXT_KEYNAME_LENGTH;
2081 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2082 sess, etick, keyname_len,
2083 ret,
2084 s->session_ctx->ticket_cb_data);
2085 switch (retcb) {
2086 case SSL_TICKET_RETURN_ABORT:
2087 ret = SSL_TICKET_FATAL_ERR_OTHER;
2088 break;
2089
2090 case SSL_TICKET_RETURN_IGNORE:
2091 ret = SSL_TICKET_NONE;
2092 SSL_SESSION_free(sess);
2093 sess = NULL;
2094 break;
2095
2096 case SSL_TICKET_RETURN_IGNORE_RENEW:
2097 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2098 ret = SSL_TICKET_NO_DECRYPT;
2099 /* else the value of |ret| will already do the right thing */
2100 SSL_SESSION_free(sess);
2101 sess = NULL;
2102 break;
2103
2104 case SSL_TICKET_RETURN_USE:
2105 case SSL_TICKET_RETURN_USE_RENEW:
2106 if (ret != SSL_TICKET_SUCCESS
2107 && ret != SSL_TICKET_SUCCESS_RENEW)
2108 ret = SSL_TICKET_FATAL_ERR_OTHER;
2109 else if (retcb == SSL_TICKET_RETURN_USE)
2110 ret = SSL_TICKET_SUCCESS;
2111 else
2112 ret = SSL_TICKET_SUCCESS_RENEW;
2113 break;
2114
2115 default:
2116 ret = SSL_TICKET_FATAL_ERR_OTHER;
2117 }
2118 }
2119
2120 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2121 switch (ret) {
2122 case SSL_TICKET_NO_DECRYPT:
2123 case SSL_TICKET_SUCCESS_RENEW:
2124 case SSL_TICKET_EMPTY:
2125 s->ext.ticket_expected = 1;
2126 }
2127 }
2128
2129 *psess = sess;
2130
2131 return ret;
2132 }
2133
2134 /* Check to see if a signature algorithm is allowed */
2135 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2136 const SIGALG_LOOKUP *lu)
2137 {
2138 unsigned char sigalgstr[2];
2139 int secbits;
2140
2141 if (lu == NULL || !lu->enabled)
2142 return 0;
2143 /* DSA is not allowed in TLS 1.3 */
2144 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2145 return 0;
2146 /*
2147 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2148 * spec
2149 */
2150 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2151 && s->s3.tmp.min_ver >= TLS1_3_VERSION
2152 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2153 || lu->hash_idx == SSL_MD_MD5_IDX
2154 || lu->hash_idx == SSL_MD_SHA224_IDX))
2155 return 0;
2156
2157 /* See if public key algorithm allowed */
2158 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2159 return 0;
2160
2161 if (lu->sig == NID_id_GostR3410_2012_256
2162 || lu->sig == NID_id_GostR3410_2012_512
2163 || lu->sig == NID_id_GostR3410_2001) {
2164 /* We never allow GOST sig algs on the server with TLSv1.3 */
2165 if (s->server && SSL_CONNECTION_IS_TLS13(s))
2166 return 0;
2167 if (!s->server
2168 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2169 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2170 int i, num;
2171 STACK_OF(SSL_CIPHER) *sk;
2172
2173 /*
2174 * We're a client that could negotiate TLSv1.3. We only allow GOST
2175 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2176 * ciphersuites enabled.
2177 */
2178
2179 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2180 return 0;
2181
2182 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2183 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2184 for (i = 0; i < num; i++) {
2185 const SSL_CIPHER *c;
2186
2187 c = sk_SSL_CIPHER_value(sk, i);
2188 /* Skip disabled ciphers */
2189 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2190 continue;
2191
2192 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2193 break;
2194 }
2195 if (i == num)
2196 return 0;
2197 }
2198 }
2199
2200 /* Finally see if security callback allows it */
2201 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2202 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2203 sigalgstr[1] = lu->sigalg & 0xff;
2204 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2205 }
2206
2207 /*
2208 * Get a mask of disabled public key algorithms based on supported signature
2209 * algorithms. For example if no signature algorithm supports RSA then RSA is
2210 * disabled.
2211 */
2212
2213 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2214 {
2215 const uint16_t *sigalgs;
2216 size_t i, sigalgslen;
2217 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2218 /*
2219 * Go through all signature algorithms seeing if we support any
2220 * in disabled_mask.
2221 */
2222 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2223 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2224 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2225 const SSL_CERT_LOOKUP *clu;
2226
2227 if (lu == NULL)
2228 continue;
2229
2230 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2231 if (clu == NULL)
2232 continue;
2233
2234 /* If algorithm is disabled see if we can enable it */
2235 if ((clu->amask & disabled_mask) != 0
2236 && tls12_sigalg_allowed(s, op, lu))
2237 disabled_mask &= ~clu->amask;
2238 }
2239 *pmask_a |= disabled_mask;
2240 }
2241
2242 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2243 const uint16_t *psig, size_t psiglen)
2244 {
2245 size_t i;
2246 int rv = 0;
2247
2248 for (i = 0; i < psiglen; i++, psig++) {
2249 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2250
2251 if (lu == NULL
2252 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2253 continue;
2254 if (!WPACKET_put_bytes_u16(pkt, *psig))
2255 return 0;
2256 /*
2257 * If TLS 1.3 must have at least one valid TLS 1.3 message
2258 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2259 */
2260 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2261 || (lu->sig != EVP_PKEY_RSA
2262 && lu->hash != NID_sha1
2263 && lu->hash != NID_sha224)))
2264 rv = 1;
2265 }
2266 if (rv == 0)
2267 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2268 return rv;
2269 }
2270
2271 /* Given preference and allowed sigalgs set shared sigalgs */
2272 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2273 const SIGALG_LOOKUP **shsig,
2274 const uint16_t *pref, size_t preflen,
2275 const uint16_t *allow, size_t allowlen)
2276 {
2277 const uint16_t *ptmp, *atmp;
2278 size_t i, j, nmatch = 0;
2279 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2280 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2281
2282 /* Skip disabled hashes or signature algorithms */
2283 if (lu == NULL
2284 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2285 continue;
2286 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2287 if (*ptmp == *atmp) {
2288 nmatch++;
2289 if (shsig)
2290 *shsig++ = lu;
2291 break;
2292 }
2293 }
2294 }
2295 return nmatch;
2296 }
2297
2298 /* Set shared signature algorithms for SSL structures */
2299 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2300 {
2301 const uint16_t *pref, *allow, *conf;
2302 size_t preflen, allowlen, conflen;
2303 size_t nmatch;
2304 const SIGALG_LOOKUP **salgs = NULL;
2305 CERT *c = s->cert;
2306 unsigned int is_suiteb = tls1_suiteb(s);
2307
2308 OPENSSL_free(s->shared_sigalgs);
2309 s->shared_sigalgs = NULL;
2310 s->shared_sigalgslen = 0;
2311 /* If client use client signature algorithms if not NULL */
2312 if (!s->server && c->client_sigalgs && !is_suiteb) {
2313 conf = c->client_sigalgs;
2314 conflen = c->client_sigalgslen;
2315 } else if (c->conf_sigalgs && !is_suiteb) {
2316 conf = c->conf_sigalgs;
2317 conflen = c->conf_sigalgslen;
2318 } else
2319 conflen = tls12_get_psigalgs(s, 0, &conf);
2320 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2321 pref = conf;
2322 preflen = conflen;
2323 allow = s->s3.tmp.peer_sigalgs;
2324 allowlen = s->s3.tmp.peer_sigalgslen;
2325 } else {
2326 allow = conf;
2327 allowlen = conflen;
2328 pref = s->s3.tmp.peer_sigalgs;
2329 preflen = s->s3.tmp.peer_sigalgslen;
2330 }
2331 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2332 if (nmatch) {
2333 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2334 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2335 return 0;
2336 }
2337 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2338 } else {
2339 salgs = NULL;
2340 }
2341 s->shared_sigalgs = salgs;
2342 s->shared_sigalgslen = nmatch;
2343 return 1;
2344 }
2345
2346 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2347 {
2348 unsigned int stmp;
2349 size_t size, i;
2350 uint16_t *buf;
2351
2352 size = PACKET_remaining(pkt);
2353
2354 /* Invalid data length */
2355 if (size == 0 || (size & 1) != 0)
2356 return 0;
2357
2358 size >>= 1;
2359
2360 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2361 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2362 return 0;
2363 }
2364 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2365 buf[i] = stmp;
2366
2367 if (i != size) {
2368 OPENSSL_free(buf);
2369 return 0;
2370 }
2371
2372 OPENSSL_free(*pdest);
2373 *pdest = buf;
2374 *pdestlen = size;
2375
2376 return 1;
2377 }
2378
2379 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2380 {
2381 /* Extension ignored for inappropriate versions */
2382 if (!SSL_USE_SIGALGS(s))
2383 return 1;
2384 /* Should never happen */
2385 if (s->cert == NULL)
2386 return 0;
2387
2388 if (cert)
2389 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2390 &s->s3.tmp.peer_cert_sigalgslen);
2391 else
2392 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2393 &s->s3.tmp.peer_sigalgslen);
2394
2395 }
2396
2397 /* Set preferred digest for each key type */
2398
2399 int tls1_process_sigalgs(SSL_CONNECTION *s)
2400 {
2401 size_t i;
2402 uint32_t *pvalid = s->s3.tmp.valid_flags;
2403
2404 if (!tls1_set_shared_sigalgs(s))
2405 return 0;
2406
2407 for (i = 0; i < SSL_PKEY_NUM; i++)
2408 pvalid[i] = 0;
2409
2410 for (i = 0; i < s->shared_sigalgslen; i++) {
2411 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2412 int idx = sigptr->sig_idx;
2413
2414 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2415 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2416 continue;
2417 /* If not disabled indicate we can explicitly sign */
2418 if (pvalid[idx] == 0
2419 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2420 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2421 }
2422 return 1;
2423 }
2424
2425 int SSL_get_sigalgs(SSL *s, int idx,
2426 int *psign, int *phash, int *psignhash,
2427 unsigned char *rsig, unsigned char *rhash)
2428 {
2429 uint16_t *psig;
2430 size_t numsigalgs;
2431 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2432
2433 if (sc == NULL)
2434 return 0;
2435
2436 psig = sc->s3.tmp.peer_sigalgs;
2437 numsigalgs = sc->s3.tmp.peer_sigalgslen;
2438
2439 if (psig == NULL || numsigalgs > INT_MAX)
2440 return 0;
2441 if (idx >= 0) {
2442 const SIGALG_LOOKUP *lu;
2443
2444 if (idx >= (int)numsigalgs)
2445 return 0;
2446 psig += idx;
2447 if (rhash != NULL)
2448 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2449 if (rsig != NULL)
2450 *rsig = (unsigned char)(*psig & 0xff);
2451 lu = tls1_lookup_sigalg(sc, *psig);
2452 if (psign != NULL)
2453 *psign = lu != NULL ? lu->sig : NID_undef;
2454 if (phash != NULL)
2455 *phash = lu != NULL ? lu->hash : NID_undef;
2456 if (psignhash != NULL)
2457 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2458 }
2459 return (int)numsigalgs;
2460 }
2461
2462 int SSL_get_shared_sigalgs(SSL *s, int idx,
2463 int *psign, int *phash, int *psignhash,
2464 unsigned char *rsig, unsigned char *rhash)
2465 {
2466 const SIGALG_LOOKUP *shsigalgs;
2467 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2468
2469 if (sc == NULL)
2470 return 0;
2471
2472 if (sc->shared_sigalgs == NULL
2473 || idx < 0
2474 || idx >= (int)sc->shared_sigalgslen
2475 || sc->shared_sigalgslen > INT_MAX)
2476 return 0;
2477 shsigalgs = sc->shared_sigalgs[idx];
2478 if (phash != NULL)
2479 *phash = shsigalgs->hash;
2480 if (psign != NULL)
2481 *psign = shsigalgs->sig;
2482 if (psignhash != NULL)
2483 *psignhash = shsigalgs->sigandhash;
2484 if (rsig != NULL)
2485 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2486 if (rhash != NULL)
2487 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2488 return (int)sc->shared_sigalgslen;
2489 }
2490
2491 /* Maximum possible number of unique entries in sigalgs array */
2492 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2493
2494 typedef struct {
2495 size_t sigalgcnt;
2496 /* TLSEXT_SIGALG_XXX values */
2497 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2498 } sig_cb_st;
2499
2500 static void get_sigorhash(int *psig, int *phash, const char *str)
2501 {
2502 if (strcmp(str, "RSA") == 0) {
2503 *psig = EVP_PKEY_RSA;
2504 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2505 *psig = EVP_PKEY_RSA_PSS;
2506 } else if (strcmp(str, "DSA") == 0) {
2507 *psig = EVP_PKEY_DSA;
2508 } else if (strcmp(str, "ECDSA") == 0) {
2509 *psig = EVP_PKEY_EC;
2510 } else {
2511 *phash = OBJ_sn2nid(str);
2512 if (*phash == NID_undef)
2513 *phash = OBJ_ln2nid(str);
2514 }
2515 }
2516 /* Maximum length of a signature algorithm string component */
2517 #define TLS_MAX_SIGSTRING_LEN 40
2518
2519 static int sig_cb(const char *elem, int len, void *arg)
2520 {
2521 sig_cb_st *sarg = arg;
2522 size_t i;
2523 const SIGALG_LOOKUP *s;
2524 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2525 int sig_alg = NID_undef, hash_alg = NID_undef;
2526 if (elem == NULL)
2527 return 0;
2528 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2529 return 0;
2530 if (len > (int)(sizeof(etmp) - 1))
2531 return 0;
2532 memcpy(etmp, elem, len);
2533 etmp[len] = 0;
2534 p = strchr(etmp, '+');
2535 /*
2536 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2537 * if there's no '+' in the provided name, look for the new-style combined
2538 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2539 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2540 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2541 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2542 * in the table.
2543 */
2544 if (p == NULL) {
2545 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2546 i++, s++) {
2547 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2548 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2549 break;
2550 }
2551 }
2552 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2553 return 0;
2554 } else {
2555 *p = 0;
2556 p++;
2557 if (*p == 0)
2558 return 0;
2559 get_sigorhash(&sig_alg, &hash_alg, etmp);
2560 get_sigorhash(&sig_alg, &hash_alg, p);
2561 if (sig_alg == NID_undef || hash_alg == NID_undef)
2562 return 0;
2563 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2564 i++, s++) {
2565 if (s->hash == hash_alg && s->sig == sig_alg) {
2566 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2567 break;
2568 }
2569 }
2570 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2571 return 0;
2572 }
2573
2574 /* Reject duplicates */
2575 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2576 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2577 sarg->sigalgcnt--;
2578 return 0;
2579 }
2580 }
2581 return 1;
2582 }
2583
2584 /*
2585 * Set supported signature algorithms based on a colon separated list of the
2586 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2587 */
2588 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2589 {
2590 sig_cb_st sig;
2591 sig.sigalgcnt = 0;
2592 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2593 return 0;
2594 if (c == NULL)
2595 return 1;
2596 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2597 }
2598
2599 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2600 int client)
2601 {
2602 uint16_t *sigalgs;
2603
2604 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2605 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2606 return 0;
2607 }
2608 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2609
2610 if (client) {
2611 OPENSSL_free(c->client_sigalgs);
2612 c->client_sigalgs = sigalgs;
2613 c->client_sigalgslen = salglen;
2614 } else {
2615 OPENSSL_free(c->conf_sigalgs);
2616 c->conf_sigalgs = sigalgs;
2617 c->conf_sigalgslen = salglen;
2618 }
2619
2620 return 1;
2621 }
2622
2623 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2624 {
2625 uint16_t *sigalgs, *sptr;
2626 size_t i;
2627
2628 if (salglen & 1)
2629 return 0;
2630 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2631 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2632 return 0;
2633 }
2634 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2635 size_t j;
2636 const SIGALG_LOOKUP *curr;
2637 int md_id = *psig_nids++;
2638 int sig_id = *psig_nids++;
2639
2640 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2641 j++, curr++) {
2642 if (curr->hash == md_id && curr->sig == sig_id) {
2643 *sptr++ = curr->sigalg;
2644 break;
2645 }
2646 }
2647
2648 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2649 goto err;
2650 }
2651
2652 if (client) {
2653 OPENSSL_free(c->client_sigalgs);
2654 c->client_sigalgs = sigalgs;
2655 c->client_sigalgslen = salglen / 2;
2656 } else {
2657 OPENSSL_free(c->conf_sigalgs);
2658 c->conf_sigalgs = sigalgs;
2659 c->conf_sigalgslen = salglen / 2;
2660 }
2661
2662 return 1;
2663
2664 err:
2665 OPENSSL_free(sigalgs);
2666 return 0;
2667 }
2668
2669 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
2670 {
2671 int sig_nid, use_pc_sigalgs = 0;
2672 size_t i;
2673 const SIGALG_LOOKUP *sigalg;
2674 size_t sigalgslen;
2675
2676 if (default_nid == -1)
2677 return 1;
2678 sig_nid = X509_get_signature_nid(x);
2679 if (default_nid)
2680 return sig_nid == default_nid ? 1 : 0;
2681
2682 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2683 /*
2684 * If we're in TLSv1.3 then we only get here if we're checking the
2685 * chain. If the peer has specified peer_cert_sigalgs then we use them
2686 * otherwise we default to normal sigalgs.
2687 */
2688 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2689 use_pc_sigalgs = 1;
2690 } else {
2691 sigalgslen = s->shared_sigalgslen;
2692 }
2693 for (i = 0; i < sigalgslen; i++) {
2694 sigalg = use_pc_sigalgs
2695 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2696 : s->shared_sigalgs[i];
2697 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2698 return 1;
2699 }
2700 return 0;
2701 }
2702
2703 /* Check to see if a certificate issuer name matches list of CA names */
2704 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2705 {
2706 const X509_NAME *nm;
2707 int i;
2708 nm = X509_get_issuer_name(x);
2709 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2710 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2711 return 1;
2712 }
2713 return 0;
2714 }
2715
2716 /*
2717 * Check certificate chain is consistent with TLS extensions and is usable by
2718 * server. This servers two purposes: it allows users to check chains before
2719 * passing them to the server and it allows the server to check chains before
2720 * attempting to use them.
2721 */
2722
2723 /* Flags which need to be set for a certificate when strict mode not set */
2724
2725 #define CERT_PKEY_VALID_FLAGS \
2726 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2727 /* Strict mode flags */
2728 #define CERT_PKEY_STRICT_FLAGS \
2729 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2730 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2731
2732 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
2733 STACK_OF(X509) *chain, int idx)
2734 {
2735 int i;
2736 int rv = 0;
2737 int check_flags = 0, strict_mode;
2738 CERT_PKEY *cpk = NULL;
2739 CERT *c = s->cert;
2740 uint32_t *pvalid;
2741 unsigned int suiteb_flags = tls1_suiteb(s);
2742
2743 /* idx == -1 means checking server chains */
2744 if (idx != -1) {
2745 /* idx == -2 means checking client certificate chains */
2746 if (idx == -2) {
2747 cpk = c->key;
2748 idx = (int)(cpk - c->pkeys);
2749 } else
2750 cpk = c->pkeys + idx;
2751 pvalid = s->s3.tmp.valid_flags + idx;
2752 x = cpk->x509;
2753 pk = cpk->privatekey;
2754 chain = cpk->chain;
2755 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2756 /* If no cert or key, forget it */
2757 if (!x || !pk)
2758 goto end;
2759 } else {
2760 size_t certidx;
2761
2762 if (!x || !pk)
2763 return 0;
2764
2765 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2766 return 0;
2767 idx = certidx;
2768 pvalid = s->s3.tmp.valid_flags + idx;
2769
2770 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2771 check_flags = CERT_PKEY_STRICT_FLAGS;
2772 else
2773 check_flags = CERT_PKEY_VALID_FLAGS;
2774 strict_mode = 1;
2775 }
2776
2777 if (suiteb_flags) {
2778 int ok;
2779 if (check_flags)
2780 check_flags |= CERT_PKEY_SUITEB;
2781 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2782 if (ok == X509_V_OK)
2783 rv |= CERT_PKEY_SUITEB;
2784 else if (!check_flags)
2785 goto end;
2786 }
2787
2788 /*
2789 * Check all signature algorithms are consistent with signature
2790 * algorithms extension if TLS 1.2 or later and strict mode.
2791 */
2792 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
2793 && strict_mode) {
2794 int default_nid;
2795 int rsign = 0;
2796
2797 if (s->s3.tmp.peer_cert_sigalgs != NULL
2798 || s->s3.tmp.peer_sigalgs != NULL) {
2799 default_nid = 0;
2800 /* If no sigalgs extension use defaults from RFC5246 */
2801 } else {
2802 switch (idx) {
2803 case SSL_PKEY_RSA:
2804 rsign = EVP_PKEY_RSA;
2805 default_nid = NID_sha1WithRSAEncryption;
2806 break;
2807
2808 case SSL_PKEY_DSA_SIGN:
2809 rsign = EVP_PKEY_DSA;
2810 default_nid = NID_dsaWithSHA1;
2811 break;
2812
2813 case SSL_PKEY_ECC:
2814 rsign = EVP_PKEY_EC;
2815 default_nid = NID_ecdsa_with_SHA1;
2816 break;
2817
2818 case SSL_PKEY_GOST01:
2819 rsign = NID_id_GostR3410_2001;
2820 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2821 break;
2822
2823 case SSL_PKEY_GOST12_256:
2824 rsign = NID_id_GostR3410_2012_256;
2825 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2826 break;
2827
2828 case SSL_PKEY_GOST12_512:
2829 rsign = NID_id_GostR3410_2012_512;
2830 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2831 break;
2832
2833 default:
2834 default_nid = -1;
2835 break;
2836 }
2837 }
2838 /*
2839 * If peer sent no signature algorithms extension and we have set
2840 * preferred signature algorithms check we support sha1.
2841 */
2842 if (default_nid > 0 && c->conf_sigalgs) {
2843 size_t j;
2844 const uint16_t *p = c->conf_sigalgs;
2845 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2846 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2847
2848 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2849 break;
2850 }
2851 if (j == c->conf_sigalgslen) {
2852 if (check_flags)
2853 goto skip_sigs;
2854 else
2855 goto end;
2856 }
2857 }
2858 /* Check signature algorithm of each cert in chain */
2859 if (SSL_CONNECTION_IS_TLS13(s)) {
2860 /*
2861 * We only get here if the application has called SSL_check_chain(),
2862 * so check_flags is always set.
2863 */
2864 if (find_sig_alg(s, x, pk) != NULL)
2865 rv |= CERT_PKEY_EE_SIGNATURE;
2866 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2867 if (!check_flags)
2868 goto end;
2869 } else
2870 rv |= CERT_PKEY_EE_SIGNATURE;
2871 rv |= CERT_PKEY_CA_SIGNATURE;
2872 for (i = 0; i < sk_X509_num(chain); i++) {
2873 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2874 if (check_flags) {
2875 rv &= ~CERT_PKEY_CA_SIGNATURE;
2876 break;
2877 } else
2878 goto end;
2879 }
2880 }
2881 }
2882 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2883 else if (check_flags)
2884 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2885 skip_sigs:
2886 /* Check cert parameters are consistent */
2887 if (tls1_check_cert_param(s, x, 1))
2888 rv |= CERT_PKEY_EE_PARAM;
2889 else if (!check_flags)
2890 goto end;
2891 if (!s->server)
2892 rv |= CERT_PKEY_CA_PARAM;
2893 /* In strict mode check rest of chain too */
2894 else if (strict_mode) {
2895 rv |= CERT_PKEY_CA_PARAM;
2896 for (i = 0; i < sk_X509_num(chain); i++) {
2897 X509 *ca = sk_X509_value(chain, i);
2898 if (!tls1_check_cert_param(s, ca, 0)) {
2899 if (check_flags) {
2900 rv &= ~CERT_PKEY_CA_PARAM;
2901 break;
2902 } else
2903 goto end;
2904 }
2905 }
2906 }
2907 if (!s->server && strict_mode) {
2908 STACK_OF(X509_NAME) *ca_dn;
2909 int check_type = 0;
2910
2911 if (EVP_PKEY_is_a(pk, "RSA"))
2912 check_type = TLS_CT_RSA_SIGN;
2913 else if (EVP_PKEY_is_a(pk, "DSA"))
2914 check_type = TLS_CT_DSS_SIGN;
2915 else if (EVP_PKEY_is_a(pk, "EC"))
2916 check_type = TLS_CT_ECDSA_SIGN;
2917
2918 if (check_type) {
2919 const uint8_t *ctypes = s->s3.tmp.ctype;
2920 size_t j;
2921
2922 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2923 if (*ctypes == check_type) {
2924 rv |= CERT_PKEY_CERT_TYPE;
2925 break;
2926 }
2927 }
2928 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2929 goto end;
2930 } else {
2931 rv |= CERT_PKEY_CERT_TYPE;
2932 }
2933
2934 ca_dn = s->s3.tmp.peer_ca_names;
2935
2936 if (ca_dn == NULL
2937 || sk_X509_NAME_num(ca_dn) == 0
2938 || ssl_check_ca_name(ca_dn, x))
2939 rv |= CERT_PKEY_ISSUER_NAME;
2940 else
2941 for (i = 0; i < sk_X509_num(chain); i++) {
2942 X509 *xtmp = sk_X509_value(chain, i);
2943
2944 if (ssl_check_ca_name(ca_dn, xtmp)) {
2945 rv |= CERT_PKEY_ISSUER_NAME;
2946 break;
2947 }
2948 }
2949
2950 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2951 goto end;
2952 } else
2953 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2954
2955 if (!check_flags || (rv & check_flags) == check_flags)
2956 rv |= CERT_PKEY_VALID;
2957
2958 end:
2959
2960 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
2961 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2962 else
2963 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2964
2965 /*
2966 * When checking a CERT_PKEY structure all flags are irrelevant if the
2967 * chain is invalid.
2968 */
2969 if (!check_flags) {
2970 if (rv & CERT_PKEY_VALID) {
2971 *pvalid = rv;
2972 } else {
2973 /* Preserve sign and explicit sign flag, clear rest */
2974 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2975 return 0;
2976 }
2977 }
2978 return rv;
2979 }
2980
2981 /* Set validity of certificates in an SSL structure */
2982 void tls1_set_cert_validity(SSL_CONNECTION *s)
2983 {
2984 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2985 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2986 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2987 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2988 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2989 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2990 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2991 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2992 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2993 }
2994
2995 /* User level utility function to check a chain is suitable */
2996 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2997 {
2998 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2999
3000 if (sc == NULL)
3001 return 0;
3002
3003 return tls1_check_chain(sc, x, pk, chain, -1);
3004 }
3005
3006 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3007 {
3008 EVP_PKEY *dhp = NULL;
3009 BIGNUM *p;
3010 int dh_secbits = 80, sec_level_bits;
3011 EVP_PKEY_CTX *pctx = NULL;
3012 OSSL_PARAM_BLD *tmpl = NULL;
3013 OSSL_PARAM *params = NULL;
3014 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3015
3016 if (s->cert->dh_tmp_auto != 2) {
3017 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3018 if (s->s3.tmp.new_cipher->strength_bits == 256)
3019 dh_secbits = 128;
3020 else
3021 dh_secbits = 80;
3022 } else {
3023 if (s->s3.tmp.cert == NULL)
3024 return NULL;
3025 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3026 }
3027 }
3028
3029 /* Do not pick a prime that is too weak for the current security level */
3030 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3031 NULL, NULL);
3032 if (dh_secbits < sec_level_bits)
3033 dh_secbits = sec_level_bits;
3034
3035 if (dh_secbits >= 192)
3036 p = BN_get_rfc3526_prime_8192(NULL);
3037 else if (dh_secbits >= 152)
3038 p = BN_get_rfc3526_prime_4096(NULL);
3039 else if (dh_secbits >= 128)
3040 p = BN_get_rfc3526_prime_3072(NULL);
3041 else if (dh_secbits >= 112)
3042 p = BN_get_rfc3526_prime_2048(NULL);
3043 else
3044 p = BN_get_rfc2409_prime_1024(NULL);
3045 if (p == NULL)
3046 goto err;
3047
3048 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3049 if (pctx == NULL
3050 || EVP_PKEY_fromdata_init(pctx) != 1)
3051 goto err;
3052
3053 tmpl = OSSL_PARAM_BLD_new();
3054 if (tmpl == NULL
3055 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3056 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3057 goto err;
3058
3059 params = OSSL_PARAM_BLD_to_param(tmpl);
3060 if (params == NULL
3061 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3062 goto err;
3063
3064 err:
3065 OSSL_PARAM_free(params);
3066 OSSL_PARAM_BLD_free(tmpl);
3067 EVP_PKEY_CTX_free(pctx);
3068 BN_free(p);
3069 return dhp;
3070 }
3071
3072 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3073 int op)
3074 {
3075 int secbits = -1;
3076 EVP_PKEY *pkey = X509_get0_pubkey(x);
3077
3078 if (pkey) {
3079 /*
3080 * If no parameters this will return -1 and fail using the default
3081 * security callback for any non-zero security level. This will
3082 * reject keys which omit parameters but this only affects DSA and
3083 * omission of parameters is never (?) done in practice.
3084 */
3085 secbits = EVP_PKEY_get_security_bits(pkey);
3086 }
3087 if (s != NULL)
3088 return ssl_security(s, op, secbits, 0, x);
3089 else
3090 return ssl_ctx_security(ctx, op, secbits, 0, x);
3091 }
3092
3093 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3094 int op)
3095 {
3096 /* Lookup signature algorithm digest */
3097 int secbits, nid, pknid;
3098
3099 /* Don't check signature if self signed */
3100 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3101 return 1;
3102 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3103 secbits = -1;
3104 /* If digest NID not defined use signature NID */
3105 if (nid == NID_undef)
3106 nid = pknid;
3107 if (s != NULL)
3108 return ssl_security(s, op, secbits, nid, x);
3109 else
3110 return ssl_ctx_security(ctx, op, secbits, nid, x);
3111 }
3112
3113 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3114 int is_ee)
3115 {
3116 if (vfy)
3117 vfy = SSL_SECOP_PEER;
3118 if (is_ee) {
3119 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3120 return SSL_R_EE_KEY_TOO_SMALL;
3121 } else {
3122 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3123 return SSL_R_CA_KEY_TOO_SMALL;
3124 }
3125 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3126 return SSL_R_CA_MD_TOO_WEAK;
3127 return 1;
3128 }
3129
3130 /*
3131 * Check security of a chain, if |sk| includes the end entity certificate then
3132 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3133 * one to the peer. Return values: 1 if ok otherwise error code to use
3134 */
3135
3136 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3137 X509 *x, int vfy)
3138 {
3139 int rv, start_idx, i;
3140
3141 if (x == NULL) {
3142 x = sk_X509_value(sk, 0);
3143 if (x == NULL)
3144 return ERR_R_INTERNAL_ERROR;
3145 start_idx = 1;
3146 } else
3147 start_idx = 0;
3148
3149 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3150 if (rv != 1)
3151 return rv;
3152
3153 for (i = start_idx; i < sk_X509_num(sk); i++) {
3154 x = sk_X509_value(sk, i);
3155 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3156 if (rv != 1)
3157 return rv;
3158 }
3159 return 1;
3160 }
3161
3162 /*
3163 * For TLS 1.2 servers check if we have a certificate which can be used
3164 * with the signature algorithm "lu" and return index of certificate.
3165 */
3166
3167 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3168 const SIGALG_LOOKUP *lu)
3169 {
3170 int sig_idx = lu->sig_idx;
3171 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3172
3173 /* If not recognised or not supported by cipher mask it is not suitable */
3174 if (clu == NULL
3175 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3176 || (clu->nid == EVP_PKEY_RSA_PSS
3177 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3178 return -1;
3179
3180 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3181 }
3182
3183 /*
3184 * Checks the given cert against signature_algorithm_cert restrictions sent by
3185 * the peer (if any) as well as whether the hash from the sigalg is usable with
3186 * the key.
3187 * Returns true if the cert is usable and false otherwise.
3188 */
3189 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3190 X509 *x, EVP_PKEY *pkey)
3191 {
3192 const SIGALG_LOOKUP *lu;
3193 int mdnid, pknid, supported;
3194 size_t i;
3195 const char *mdname = NULL;
3196 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3197
3198 /*
3199 * If the given EVP_PKEY cannot support signing with this digest,
3200 * the answer is simply 'no'.
3201 */
3202 if (sig->hash != NID_undef)
3203 mdname = OBJ_nid2sn(sig->hash);
3204 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3205 mdname,
3206 sctx->propq);
3207 if (supported <= 0)
3208 return 0;
3209
3210 /*
3211 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3212 * on the sigalg with which the certificate was signed (by its issuer).
3213 */
3214 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3215 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3216 return 0;
3217 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3218 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3219 if (lu == NULL)
3220 continue;
3221
3222 /*
3223 * This does not differentiate between the
3224 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3225 * have a chain here that lets us look at the key OID in the
3226 * signing certificate.
3227 */
3228 if (mdnid == lu->hash && pknid == lu->sig)
3229 return 1;
3230 }
3231 return 0;
3232 }
3233
3234 /*
3235 * Without signat_algorithms_cert, any certificate for which we have
3236 * a viable public key is permitted.
3237 */
3238 return 1;
3239 }
3240
3241 /*
3242 * Returns true if |s| has a usable certificate configured for use
3243 * with signature scheme |sig|.
3244 * "Usable" includes a check for presence as well as applying
3245 * the signature_algorithm_cert restrictions sent by the peer (if any).
3246 * Returns false if no usable certificate is found.
3247 */
3248 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3249 {
3250 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3251 if (idx == -1)
3252 idx = sig->sig_idx;
3253 if (!ssl_has_cert(s, idx))
3254 return 0;
3255
3256 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3257 s->cert->pkeys[idx].privatekey);
3258 }
3259
3260 /*
3261 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3262 * specified signature scheme |sig|, or false otherwise.
3263 */
3264 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3265 EVP_PKEY *pkey)
3266 {
3267 size_t idx;
3268
3269 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3270 return 0;
3271
3272 /* Check the key is consistent with the sig alg */
3273 if ((int)idx != sig->sig_idx)
3274 return 0;
3275
3276 return check_cert_usable(s, sig, x, pkey);
3277 }
3278
3279 /*
3280 * Find a signature scheme that works with the supplied certificate |x| and key
3281 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3282 * available certs/keys to find one that works.
3283 */
3284 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3285 EVP_PKEY *pkey)
3286 {
3287 const SIGALG_LOOKUP *lu = NULL;
3288 size_t i;
3289 int curve = -1;
3290 EVP_PKEY *tmppkey;
3291 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3292
3293 /* Look for a shared sigalgs matching possible certificates */
3294 for (i = 0; i < s->shared_sigalgslen; i++) {
3295 lu = s->shared_sigalgs[i];
3296
3297 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3298 if (lu->hash == NID_sha1
3299 || lu->hash == NID_sha224
3300 || lu->sig == EVP_PKEY_DSA
3301 || lu->sig == EVP_PKEY_RSA)
3302 continue;
3303 /* Check that we have a cert, and signature_algorithms_cert */
3304 if (!tls1_lookup_md(sctx, lu, NULL))
3305 continue;
3306 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3307 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3308 continue;
3309
3310 tmppkey = (pkey != NULL) ? pkey
3311 : s->cert->pkeys[lu->sig_idx].privatekey;
3312
3313 if (lu->sig == EVP_PKEY_EC) {
3314 if (curve == -1)
3315 curve = ssl_get_EC_curve_nid(tmppkey);
3316 if (lu->curve != NID_undef && curve != lu->curve)
3317 continue;
3318 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3319 /* validate that key is large enough for the signature algorithm */
3320 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3321 continue;
3322 }
3323 break;
3324 }
3325
3326 if (i == s->shared_sigalgslen)
3327 return NULL;
3328
3329 return lu;
3330 }
3331
3332 /*
3333 * Choose an appropriate signature algorithm based on available certificates
3334 * Sets chosen certificate and signature algorithm.
3335 *
3336 * For servers if we fail to find a required certificate it is a fatal error,
3337 * an appropriate error code is set and a TLS alert is sent.
3338 *
3339 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3340 * a fatal error: we will either try another certificate or not present one
3341 * to the server. In this case no error is set.
3342 */
3343 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3344 {
3345 const SIGALG_LOOKUP *lu = NULL;
3346 int sig_idx = -1;
3347
3348 s->s3.tmp.cert = NULL;
3349 s->s3.tmp.sigalg = NULL;
3350
3351 if (SSL_CONNECTION_IS_TLS13(s)) {
3352 lu = find_sig_alg(s, NULL, NULL);
3353 if (lu == NULL) {
3354 if (!fatalerrs)
3355 return 1;
3356 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3357 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3358 return 0;
3359 }
3360 } else {
3361 /* If ciphersuite doesn't require a cert nothing to do */
3362 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3363 return 1;
3364 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3365 return 1;
3366
3367 if (SSL_USE_SIGALGS(s)) {
3368 size_t i;
3369 if (s->s3.tmp.peer_sigalgs != NULL) {
3370 int curve = -1;
3371 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3372
3373 /* For Suite B need to match signature algorithm to curve */
3374 if (tls1_suiteb(s))
3375 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3376 .privatekey);
3377
3378 /*
3379 * Find highest preference signature algorithm matching
3380 * cert type
3381 */
3382 for (i = 0; i < s->shared_sigalgslen; i++) {
3383 lu = s->shared_sigalgs[i];
3384
3385 if (s->server) {
3386 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3387 continue;
3388 } else {
3389 int cc_idx = s->cert->key - s->cert->pkeys;
3390
3391 sig_idx = lu->sig_idx;
3392 if (cc_idx != sig_idx)
3393 continue;
3394 }
3395 /* Check that we have a cert, and sig_algs_cert */
3396 if (!has_usable_cert(s, lu, sig_idx))
3397 continue;
3398 if (lu->sig == EVP_PKEY_RSA_PSS) {
3399 /* validate that key is large enough for the signature algorithm */
3400 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3401
3402 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3403 continue;
3404 }
3405 if (curve == -1 || lu->curve == curve)
3406 break;
3407 }
3408 #ifndef OPENSSL_NO_GOST
3409 /*
3410 * Some Windows-based implementations do not send GOST algorithms indication
3411 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3412 * we have to assume GOST support.
3413 */
3414 if (i == s->shared_sigalgslen
3415 && (s->s3.tmp.new_cipher->algorithm_auth
3416 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3417 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3418 if (!fatalerrs)
3419 return 1;
3420 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3421 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3422 return 0;
3423 } else {
3424 i = 0;
3425 sig_idx = lu->sig_idx;
3426 }
3427 }
3428 #endif
3429 if (i == s->shared_sigalgslen) {
3430 if (!fatalerrs)
3431 return 1;
3432 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3433 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3434 return 0;
3435 }
3436 } else {
3437 /*
3438 * If we have no sigalg use defaults
3439 */
3440 const uint16_t *sent_sigs;
3441 size_t sent_sigslen;
3442
3443 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3444 if (!fatalerrs)
3445 return 1;
3446 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3447 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3448 return 0;
3449 }
3450
3451 /* Check signature matches a type we sent */
3452 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3453 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3454 if (lu->sigalg == *sent_sigs
3455 && has_usable_cert(s, lu, lu->sig_idx))
3456 break;
3457 }
3458 if (i == sent_sigslen) {
3459 if (!fatalerrs)
3460 return 1;
3461 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3462 SSL_R_WRONG_SIGNATURE_TYPE);
3463 return 0;
3464 }
3465 }
3466 } else {
3467 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3468 if (!fatalerrs)
3469 return 1;
3470 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3471 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3472 return 0;
3473 }
3474 }
3475 }
3476 if (sig_idx == -1)
3477 sig_idx = lu->sig_idx;
3478 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3479 s->cert->key = s->s3.tmp.cert;
3480 s->s3.tmp.sigalg = lu;
3481 return 1;
3482 }
3483
3484 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3485 {
3486 if (mode != TLSEXT_max_fragment_length_DISABLED
3487 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3488 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3489 return 0;
3490 }
3491
3492 ctx->ext.max_fragment_len_mode = mode;
3493 return 1;
3494 }
3495
3496 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3497 {
3498 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3499
3500 if (sc == NULL)
3501 return 0;
3502
3503 if (mode != TLSEXT_max_fragment_length_DISABLED
3504 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3505 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3506 return 0;
3507 }
3508
3509 sc->ext.max_fragment_len_mode = mode;
3510 return 1;
3511 }
3512
3513 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3514 {
3515 return session->ext.max_fragment_len_mode;
3516 }
3517
3518 /*
3519 * Helper functions for HMAC access with legacy support included.
3520 */
3521 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3522 {
3523 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3524 EVP_MAC *mac = NULL;
3525
3526 if (ret == NULL)
3527 return NULL;
3528 #ifndef OPENSSL_NO_DEPRECATED_3_0
3529 if (ctx->ext.ticket_key_evp_cb == NULL
3530 && ctx->ext.ticket_key_cb != NULL) {
3531 if (!ssl_hmac_old_new(ret))
3532 goto err;
3533 return ret;
3534 }
3535 #endif
3536 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3537 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3538 goto err;
3539 EVP_MAC_free(mac);
3540 return ret;
3541 err:
3542 EVP_MAC_CTX_free(ret->ctx);
3543 EVP_MAC_free(mac);
3544 OPENSSL_free(ret);
3545 return NULL;
3546 }
3547
3548 void ssl_hmac_free(SSL_HMAC *ctx)
3549 {
3550 if (ctx != NULL) {
3551 EVP_MAC_CTX_free(ctx->ctx);
3552 #ifndef OPENSSL_NO_DEPRECATED_3_0
3553 ssl_hmac_old_free(ctx);
3554 #endif
3555 OPENSSL_free(ctx);
3556 }
3557 }
3558
3559 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3560 {
3561 return ctx->ctx;
3562 }
3563
3564 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3565 {
3566 OSSL_PARAM params[2], *p = params;
3567
3568 if (ctx->ctx != NULL) {
3569 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3570 *p = OSSL_PARAM_construct_end();
3571 if (EVP_MAC_init(ctx->ctx, key, len, params))
3572 return 1;
3573 }
3574 #ifndef OPENSSL_NO_DEPRECATED_3_0
3575 if (ctx->old_ctx != NULL)
3576 return ssl_hmac_old_init(ctx, key, len, md);
3577 #endif
3578 return 0;
3579 }
3580
3581 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3582 {
3583 if (ctx->ctx != NULL)
3584 return EVP_MAC_update(ctx->ctx, data, len);
3585 #ifndef OPENSSL_NO_DEPRECATED_3_0
3586 if (ctx->old_ctx != NULL)
3587 return ssl_hmac_old_update(ctx, data, len);
3588 #endif
3589 return 0;
3590 }
3591
3592 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3593 size_t max_size)
3594 {
3595 if (ctx->ctx != NULL)
3596 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3597 #ifndef OPENSSL_NO_DEPRECATED_3_0
3598 if (ctx->old_ctx != NULL)
3599 return ssl_hmac_old_final(ctx, md, len);
3600 #endif
3601 return 0;
3602 }
3603
3604 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3605 {
3606 if (ctx->ctx != NULL)
3607 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3608 #ifndef OPENSSL_NO_DEPRECATED_3_0
3609 if (ctx->old_ctx != NULL)
3610 return ssl_hmac_old_size(ctx);
3611 #endif
3612 return 0;
3613 }
3614
3615 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3616 {
3617 char gname[OSSL_MAX_NAME_SIZE];
3618
3619 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3620 return OBJ_txt2nid(gname);
3621
3622 return NID_undef;
3623 }
3624
3625 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3626 const unsigned char *enckey,
3627 size_t enckeylen)
3628 {
3629 if (EVP_PKEY_is_a(pkey, "DH")) {
3630 int bits = EVP_PKEY_get_bits(pkey);
3631
3632 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3633 /* the encoded key must be padded to the length of the p */
3634 return 0;
3635 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3636 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3637 || enckey[0] != 0x04)
3638 return 0;
3639 }
3640
3641 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3642 }