]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Add Ed25519 signature algorithm
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return 0;
105 if (!s->method->ssl_clear(s))
106 return 0;
107
108 return 1;
109 }
110
111 void tls1_free(SSL *s)
112 {
113 OPENSSL_free(s->ext.session_ticket);
114 ssl3_free(s);
115 }
116
117 int tls1_clear(SSL *s)
118 {
119 if (!ssl3_clear(s))
120 return 0;
121
122 if (s->method->version == TLS_ANY_VERSION)
123 s->version = TLS_MAX_VERSION;
124 else
125 s->version = s->method->version;
126
127 return 1;
128 }
129
130 #ifndef OPENSSL_NO_EC
131
132 typedef struct {
133 int nid; /* Curve NID */
134 int secbits; /* Bits of security (from SP800-57) */
135 unsigned int flags; /* Flags: currently just field type */
136 } tls_curve_info;
137
138 /*
139 * Table of curve information.
140 * Do not delete entries or reorder this array! It is used as a lookup
141 * table: the index of each entry is one less than the TLS curve id.
142 */
143 static const tls_curve_info nid_list[] = {
144 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
172 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
173 };
174
175 static const unsigned char ecformats_default[] = {
176 TLSEXT_ECPOINTFORMAT_uncompressed,
177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
178 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
179 };
180
181 /* The default curves */
182 static const unsigned char eccurves_default[] = {
183 0, 29, /* X25519 (29) */
184 0, 23, /* secp256r1 (23) */
185 0, 25, /* secp521r1 (25) */
186 0, 24, /* secp384r1 (24) */
187 };
188
189 static const unsigned char suiteb_curves[] = {
190 0, TLSEXT_curve_P_256,
191 0, TLSEXT_curve_P_384
192 };
193
194 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
195 {
196 const tls_curve_info *cinfo;
197 /* ECC curves from RFC 4492 and RFC 7027 */
198 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
199 return 0;
200 cinfo = nid_list + curve_id - 1;
201 if (pflags)
202 *pflags = cinfo->flags;
203 return cinfo->nid;
204 }
205
206 int tls1_ec_nid2curve_id(int nid)
207 {
208 size_t i;
209 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
210 if (nid_list[i].nid == nid)
211 return (int)(i + 1);
212 }
213 return 0;
214 }
215
216 /*
217 * Get curves list, if "sess" is set return client curves otherwise
218 * preferred list.
219 * Sets |num_curves| to the number of curves in the list, i.e.,
220 * the length of |pcurves| is 2 * num_curves.
221 * Returns 1 on success and 0 if the client curves list has invalid format.
222 * The latter indicates an internal error: we should not be accepting such
223 * lists in the first place.
224 * TODO(emilia): we should really be storing the curves list in explicitly
225 * parsed form instead. (However, this would affect binary compatibility
226 * so cannot happen in the 1.0.x series.)
227 */
228 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
229 size_t *num_curves)
230 {
231 size_t pcurveslen = 0;
232
233 if (sess) {
234 *pcurves = s->session->ext.supportedgroups;
235 pcurveslen = s->session->ext.supportedgroups_len;
236 } else {
237 /* For Suite B mode only include P-256, P-384 */
238 switch (tls1_suiteb(s)) {
239 case SSL_CERT_FLAG_SUITEB_128_LOS:
240 *pcurves = suiteb_curves;
241 pcurveslen = sizeof(suiteb_curves);
242 break;
243
244 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
245 *pcurves = suiteb_curves;
246 pcurveslen = 2;
247 break;
248
249 case SSL_CERT_FLAG_SUITEB_192_LOS:
250 *pcurves = suiteb_curves + 2;
251 pcurveslen = 2;
252 break;
253 default:
254 *pcurves = s->ext.supportedgroups;
255 pcurveslen = s->ext.supportedgroups_len;
256 }
257 if (!*pcurves) {
258 *pcurves = eccurves_default;
259 pcurveslen = sizeof(eccurves_default);
260 }
261 }
262
263 /* We do not allow odd length arrays to enter the system. */
264 if (pcurveslen & 1) {
265 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
266 *num_curves = 0;
267 return 0;
268 }
269 *num_curves = pcurveslen / 2;
270 return 1;
271 }
272
273 /* See if curve is allowed by security callback */
274 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
275 {
276 const tls_curve_info *cinfo;
277 if (curve[0])
278 return 1;
279 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
280 return 0;
281 cinfo = &nid_list[curve[1] - 1];
282 # ifdef OPENSSL_NO_EC2M
283 if (cinfo->flags & TLS_CURVE_CHAR2)
284 return 0;
285 # endif
286 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
287 }
288
289 /* Check a curve is one of our preferences */
290 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
291 {
292 const unsigned char *curves;
293 size_t num_curves, i;
294 unsigned int suiteb_flags = tls1_suiteb(s);
295 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
296 return 0;
297 /* Check curve matches Suite B preferences */
298 if (suiteb_flags) {
299 unsigned long cid = s->s3->tmp.new_cipher->id;
300 if (p[1])
301 return 0;
302 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
303 if (p[2] != TLSEXT_curve_P_256)
304 return 0;
305 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
306 if (p[2] != TLSEXT_curve_P_384)
307 return 0;
308 } else /* Should never happen */
309 return 0;
310 }
311 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
312 return 0;
313 for (i = 0; i < num_curves; i++, curves += 2) {
314 if (p[1] == curves[0] && p[2] == curves[1])
315 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
316 }
317 return 0;
318 }
319
320 /*-
321 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
322 * if there is no match.
323 * For nmatch == -1, return number of matches
324 * For nmatch == -2, return the NID of the group to use for
325 * an EC tmp key, or NID_undef if there is no match.
326 */
327 int tls1_shared_group(SSL *s, int nmatch)
328 {
329 const unsigned char *pref, *supp;
330 size_t num_pref, num_supp, i, j;
331 int k;
332
333 /* Can't do anything on client side */
334 if (s->server == 0)
335 return -1;
336 if (nmatch == -2) {
337 if (tls1_suiteb(s)) {
338 /*
339 * For Suite B ciphersuite determines curve: we already know
340 * these are acceptable due to previous checks.
341 */
342 unsigned long cid = s->s3->tmp.new_cipher->id;
343
344 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
345 return NID_X9_62_prime256v1; /* P-256 */
346 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
347 return NID_secp384r1; /* P-384 */
348 /* Should never happen */
349 return NID_undef;
350 }
351 /* If not Suite B just return first preference shared curve */
352 nmatch = 0;
353 }
354 /*
355 * Avoid truncation. tls1_get_curvelist takes an int
356 * but s->options is a long...
357 */
358 if (!tls1_get_curvelist(s,
359 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
360 &supp, &num_supp))
361 /* In practice, NID_undef == 0 but let's be precise. */
362 return nmatch == -1 ? 0 : NID_undef;
363 if (!tls1_get_curvelist(s,
364 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
365 &pref, &num_pref))
366 return nmatch == -1 ? 0 : NID_undef;
367
368 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
369 const unsigned char *tsupp = supp;
370
371 for (j = 0; j < num_supp; j++, tsupp += 2) {
372 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
373 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
374 continue;
375 if (nmatch == k) {
376 int id = (pref[0] << 8) | pref[1];
377
378 return tls1_ec_curve_id2nid(id, NULL);
379 }
380 k++;
381 }
382 }
383 }
384 if (nmatch == -1)
385 return k;
386 /* Out of range (nmatch > k). */
387 return NID_undef;
388 }
389
390 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
391 int *groups, size_t ngroups)
392 {
393 unsigned char *glist, *p;
394 size_t i;
395 /*
396 * Bitmap of groups included to detect duplicates: only works while group
397 * ids < 32
398 */
399 unsigned long dup_list = 0;
400 glist = OPENSSL_malloc(ngroups * 2);
401 if (glist == NULL)
402 return 0;
403 for (i = 0, p = glist; i < ngroups; i++) {
404 unsigned long idmask;
405 int id;
406 /* TODO(TLS1.3): Convert for DH groups */
407 id = tls1_ec_nid2curve_id(groups[i]);
408 idmask = 1L << id;
409 if (!id || (dup_list & idmask)) {
410 OPENSSL_free(glist);
411 return 0;
412 }
413 dup_list |= idmask;
414 s2n(id, p);
415 }
416 OPENSSL_free(*pext);
417 *pext = glist;
418 *pextlen = ngroups * 2;
419 return 1;
420 }
421
422 # define MAX_CURVELIST 28
423
424 typedef struct {
425 size_t nidcnt;
426 int nid_arr[MAX_CURVELIST];
427 } nid_cb_st;
428
429 static int nid_cb(const char *elem, int len, void *arg)
430 {
431 nid_cb_st *narg = arg;
432 size_t i;
433 int nid;
434 char etmp[20];
435 if (elem == NULL)
436 return 0;
437 if (narg->nidcnt == MAX_CURVELIST)
438 return 0;
439 if (len > (int)(sizeof(etmp) - 1))
440 return 0;
441 memcpy(etmp, elem, len);
442 etmp[len] = 0;
443 nid = EC_curve_nist2nid(etmp);
444 if (nid == NID_undef)
445 nid = OBJ_sn2nid(etmp);
446 if (nid == NID_undef)
447 nid = OBJ_ln2nid(etmp);
448 if (nid == NID_undef)
449 return 0;
450 for (i = 0; i < narg->nidcnt; i++)
451 if (narg->nid_arr[i] == nid)
452 return 0;
453 narg->nid_arr[narg->nidcnt++] = nid;
454 return 1;
455 }
456
457 /* Set groups based on a colon separate list */
458 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
459 {
460 nid_cb_st ncb;
461 ncb.nidcnt = 0;
462 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
463 return 0;
464 if (pext == NULL)
465 return 1;
466 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
467 }
468
469 /* For an EC key set TLS id and required compression based on parameters */
470 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
471 EC_KEY *ec)
472 {
473 int id;
474 const EC_GROUP *grp;
475 if (!ec)
476 return 0;
477 /* Determine if it is a prime field */
478 grp = EC_KEY_get0_group(ec);
479 if (!grp)
480 return 0;
481 /* Determine curve ID */
482 id = EC_GROUP_get_curve_name(grp);
483 id = tls1_ec_nid2curve_id(id);
484 /* If no id return error: we don't support arbitrary explicit curves */
485 if (id == 0)
486 return 0;
487 curve_id[0] = 0;
488 curve_id[1] = (unsigned char)id;
489 if (comp_id) {
490 if (EC_KEY_get0_public_key(ec) == NULL)
491 return 0;
492 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
493 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
494 } else {
495 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
496 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
497 else
498 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
499 }
500 }
501 return 1;
502 }
503
504 /* Check an EC key is compatible with extensions */
505 static int tls1_check_ec_key(SSL *s,
506 unsigned char *curve_id, unsigned char *comp_id)
507 {
508 const unsigned char *pformats, *pcurves;
509 size_t num_formats, num_curves, i;
510 int j;
511 /*
512 * If point formats extension present check it, otherwise everything is
513 * supported (see RFC4492).
514 */
515 if (comp_id && s->session->ext.ecpointformats) {
516 pformats = s->session->ext.ecpointformats;
517 num_formats = s->session->ext.ecpointformats_len;
518 for (i = 0; i < num_formats; i++, pformats++) {
519 if (*comp_id == *pformats)
520 break;
521 }
522 if (i == num_formats)
523 return 0;
524 }
525 if (!curve_id)
526 return 1;
527 /* Check curve is consistent with client and server preferences */
528 for (j = 0; j <= 1; j++) {
529 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
530 return 0;
531 if (j == 1 && num_curves == 0) {
532 /*
533 * If we've not received any curves then skip this check.
534 * RFC 4492 does not require the supported elliptic curves extension
535 * so if it is not sent we can just choose any curve.
536 * It is invalid to send an empty list in the elliptic curves
537 * extension, so num_curves == 0 always means no extension.
538 */
539 break;
540 }
541 for (i = 0; i < num_curves; i++, pcurves += 2) {
542 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
543 break;
544 }
545 if (i == num_curves)
546 return 0;
547 /* For clients can only check sent curve list */
548 if (!s->server)
549 break;
550 }
551 return 1;
552 }
553
554 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
555 size_t *num_formats)
556 {
557 /*
558 * If we have a custom point format list use it otherwise use default
559 */
560 if (s->ext.ecpointformats) {
561 *pformats = s->ext.ecpointformats;
562 *num_formats = s->ext.ecpointformats_len;
563 } else {
564 *pformats = ecformats_default;
565 /* For Suite B we don't support char2 fields */
566 if (tls1_suiteb(s))
567 *num_formats = sizeof(ecformats_default) - 1;
568 else
569 *num_formats = sizeof(ecformats_default);
570 }
571 }
572
573 /*
574 * Check cert parameters compatible with extensions: currently just checks EC
575 * certificates have compatible curves and compression.
576 */
577 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
578 {
579 unsigned char comp_id, curve_id[2];
580 EVP_PKEY *pkey;
581 int rv;
582 pkey = X509_get0_pubkey(x);
583 if (!pkey)
584 return 0;
585 /* If not EC nothing to do */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
589 if (!rv)
590 return 0;
591 /*
592 * Can't check curve_id for client certs as we don't have a supported
593 * curves extension.
594 */
595 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
596 if (!rv)
597 return 0;
598 /*
599 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
600 * SHA384+P-384.
601 */
602 if (check_ee_md && tls1_suiteb(s)) {
603 int check_md;
604 size_t i;
605 CERT *c = s->cert;
606 if (curve_id[0])
607 return 0;
608 /* Check to see we have necessary signing algorithm */
609 if (curve_id[1] == TLSEXT_curve_P_256)
610 check_md = NID_ecdsa_with_SHA256;
611 else if (curve_id[1] == TLSEXT_curve_P_384)
612 check_md = NID_ecdsa_with_SHA384;
613 else
614 return 0; /* Should never happen */
615 for (i = 0; i < c->shared_sigalgslen; i++)
616 if (check_md == c->shared_sigalgs[i]->sigandhash)
617 break;
618 if (i == c->shared_sigalgslen)
619 return 0;
620 }
621 return rv;
622 }
623
624 /*
625 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
626 * @s: SSL connection
627 * @cid: Cipher ID we're considering using
628 *
629 * Checks that the kECDHE cipher suite we're considering using
630 * is compatible with the client extensions.
631 *
632 * Returns 0 when the cipher can't be used or 1 when it can.
633 */
634 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
635 {
636 /*
637 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
638 * curves permitted.
639 */
640 if (tls1_suiteb(s)) {
641 unsigned char curve_id[2];
642 /* Curve to check determined by ciphersuite */
643 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
644 curve_id[1] = TLSEXT_curve_P_256;
645 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
646 curve_id[1] = TLSEXT_curve_P_384;
647 else
648 return 0;
649 curve_id[0] = 0;
650 /* Check this curve is acceptable */
651 if (!tls1_check_ec_key(s, curve_id, NULL))
652 return 0;
653 return 1;
654 }
655 /* Need a shared curve */
656 if (tls1_shared_group(s, 0))
657 return 1;
658 return 0;
659 }
660
661 #else
662
663 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
664 {
665 return 1;
666 }
667
668 #endif /* OPENSSL_NO_EC */
669
670 /* Default sigalg schemes */
671 static const uint16_t tls12_sigalgs[] = {
672 #ifndef OPENSSL_NO_EC
673 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
674 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
675 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
676 TLSEXT_SIGALG_ed25519,
677 #endif
678
679 TLSEXT_SIGALG_rsa_pss_sha256,
680 TLSEXT_SIGALG_rsa_pss_sha384,
681 TLSEXT_SIGALG_rsa_pss_sha512,
682
683 TLSEXT_SIGALG_rsa_pkcs1_sha256,
684 TLSEXT_SIGALG_rsa_pkcs1_sha384,
685 TLSEXT_SIGALG_rsa_pkcs1_sha512,
686
687 #ifndef OPENSSL_NO_EC
688 TLSEXT_SIGALG_ecdsa_sha224,
689 TLSEXT_SIGALG_ecdsa_sha1,
690 #endif
691 TLSEXT_SIGALG_rsa_pkcs1_sha224,
692 TLSEXT_SIGALG_rsa_pkcs1_sha1,
693 #ifndef OPENSSL_NO_DSA
694 TLSEXT_SIGALG_dsa_sha224,
695 TLSEXT_SIGALG_dsa_sha1,
696
697 TLSEXT_SIGALG_dsa_sha256,
698 TLSEXT_SIGALG_dsa_sha384,
699 TLSEXT_SIGALG_dsa_sha512
700 #endif
701 };
702
703 #ifndef OPENSSL_NO_EC
704 static const uint16_t suiteb_sigalgs[] = {
705 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
706 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
707 };
708 #endif
709
710 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
711 #ifndef OPENSSL_NO_EC
712 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
713 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
714 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
715 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
716 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
717 NID_ecdsa_with_SHA384, NID_secp384r1},
718 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
719 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
720 NID_ecdsa_with_SHA512, NID_secp521r1},
721 {"ed25519", TLSEXT_SIGALG_ed25519,
722 NID_undef, -1, NID_ED25519, SSL_PKEY_ED25519,
723 NID_undef, NID_undef},
724 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
725 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
726 NID_ecdsa_with_SHA224, NID_undef},
727 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
728 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
729 NID_ecdsa_with_SHA1, NID_undef},
730 #endif
731 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
732 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
733 NID_undef, NID_undef},
734 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
735 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
736 NID_undef, NID_undef},
737 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
738 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
739 NID_undef, NID_undef},
740 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
741 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
742 NID_sha256WithRSAEncryption, NID_undef},
743 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
744 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
745 NID_sha384WithRSAEncryption, NID_undef},
746 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
747 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
748 NID_sha512WithRSAEncryption, NID_undef},
749 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
750 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
751 NID_sha224WithRSAEncryption, NID_undef},
752 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
753 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
754 NID_sha1WithRSAEncryption, NID_undef},
755 #ifndef OPENSSL_NO_DSA
756 {NULL, TLSEXT_SIGALG_dsa_sha256,
757 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
758 NID_dsa_with_SHA256, NID_undef},
759 {NULL, TLSEXT_SIGALG_dsa_sha384,
760 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
761 NID_undef, NID_undef},
762 {NULL, TLSEXT_SIGALG_dsa_sha512,
763 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
764 NID_undef, NID_undef},
765 {NULL, TLSEXT_SIGALG_dsa_sha224,
766 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
767 NID_undef, NID_undef},
768 {NULL, TLSEXT_SIGALG_dsa_sha1,
769 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
770 NID_dsaWithSHA1, NID_undef},
771 #endif
772 #ifndef OPENSSL_NO_GOST
773 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
774 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
775 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
776 NID_undef, NID_undef},
777 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
778 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
779 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
780 NID_undef, NID_undef},
781 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
782 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
783 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
784 NID_undef, NID_undef}
785 #endif
786 };
787 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
788 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
789 "rsa_pkcs1_md5_sha1", 0,
790 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
791 EVP_PKEY_RSA, SSL_PKEY_RSA,
792 NID_undef, NID_undef
793 };
794
795 /*
796 * Default signature algorithm values used if signature algorithms not present.
797 * From RFC5246. Note: order must match certificate index order.
798 */
799 static const uint16_t tls_default_sigalg[] = {
800 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
801 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
802 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
803 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
804 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
805 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
806 0 /* SSL_PKEY_ED25519 */
807 };
808
809 /* Lookup TLS signature algorithm */
810 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
811 {
812 size_t i;
813 const SIGALG_LOOKUP *s;
814
815 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
816 i++, s++) {
817 if (s->sigalg == sigalg)
818 return s;
819 }
820 return NULL;
821 }
822 /*
823 * Return a signature algorithm for TLS < 1.2 where the signature type
824 * is fixed by the certificate type.
825 */
826 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
827 {
828 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
829 return NULL;
830 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
831 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
832
833 if (lu == NULL || ssl_md(lu->hash_idx) == NULL) {
834 return NULL;
835 }
836 return lu;
837 }
838 return &legacy_rsa_sigalg;
839 }
840 /* Set peer sigalg based key type */
841 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
842 {
843 int idx = ssl_cert_type(NULL, pkey);
844
845 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, idx);
846 if (lu == NULL)
847 return 0;
848 s->s3->tmp.peer_sigalg = lu;
849 return 1;
850 }
851
852 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
853 {
854 /*
855 * If Suite B mode use Suite B sigalgs only, ignore any other
856 * preferences.
857 */
858 #ifndef OPENSSL_NO_EC
859 switch (tls1_suiteb(s)) {
860 case SSL_CERT_FLAG_SUITEB_128_LOS:
861 *psigs = suiteb_sigalgs;
862 return OSSL_NELEM(suiteb_sigalgs);
863
864 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
865 *psigs = suiteb_sigalgs;
866 return 1;
867
868 case SSL_CERT_FLAG_SUITEB_192_LOS:
869 *psigs = suiteb_sigalgs + 1;
870 return 1;
871 }
872 #endif
873 /*
874 * We use client_sigalgs (if not NULL) if we're a server
875 * and sending a certificate request or if we're a client and
876 * determining which shared algorithm to use.
877 */
878 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
879 *psigs = s->cert->client_sigalgs;
880 return s->cert->client_sigalgslen;
881 } else if (s->cert->conf_sigalgs) {
882 *psigs = s->cert->conf_sigalgs;
883 return s->cert->conf_sigalgslen;
884 } else {
885 *psigs = tls12_sigalgs;
886 return OSSL_NELEM(tls12_sigalgs);
887 }
888 }
889
890 /*
891 * Check signature algorithm is consistent with sent supported signature
892 * algorithms and if so set relevant digest and signature scheme in
893 * s.
894 */
895 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
896 {
897 const uint16_t *sent_sigs;
898 const EVP_MD *md = NULL;
899 char sigalgstr[2];
900 size_t sent_sigslen, i;
901 int pkeyid = EVP_PKEY_id(pkey);
902 const SIGALG_LOOKUP *lu;
903
904 /* Should never happen */
905 if (pkeyid == -1)
906 return -1;
907 if (SSL_IS_TLS13(s)) {
908 /* Disallow DSA for TLS 1.3 */
909 if (pkeyid == EVP_PKEY_DSA) {
910 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
911 return 0;
912 }
913 /* Only allow PSS for TLS 1.3 */
914 if (pkeyid == EVP_PKEY_RSA)
915 pkeyid = EVP_PKEY_RSA_PSS;
916 }
917 lu = tls1_lookup_sigalg(sig);
918 /*
919 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
920 * is consistent with signature: RSA keys can be used for RSA-PSS
921 */
922 if (lu == NULL
923 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
924 || (pkeyid != lu->sig
925 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
926 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
927 return 0;
928 }
929 #ifndef OPENSSL_NO_EC
930 if (pkeyid == EVP_PKEY_EC) {
931 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
932 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
933
934 if (SSL_IS_TLS13(s)) {
935 if (EC_KEY_get_conv_form(ec) != POINT_CONVERSION_UNCOMPRESSED) {
936 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
937 SSL_R_ILLEGAL_POINT_COMPRESSION);
938 return 0;
939 }
940 /* For TLS 1.3 check curve matches signature algorithm */
941 if (lu->curve != NID_undef && curve != lu->curve) {
942 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
943 return 0;
944 }
945 } else {
946 unsigned char curve_id[2], comp_id;
947
948 /* Check compression and curve matches extensions */
949 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
950 return 0;
951 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
952 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
953 return 0;
954 }
955 if (tls1_suiteb(s)) {
956 /* Check sigalg matches a permissible Suite B value */
957 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
958 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
959 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
960 SSL_R_WRONG_SIGNATURE_TYPE);
961 return 0;
962 }
963 /*
964 * Suite B also requires P-256+SHA256 and P-384+SHA384:
965 * this matches the TLS 1.3 requirements so we can just
966 * check the curve is the expected TLS 1.3 value.
967 * If this fails an inappropriate digest is being used.
968 */
969 if (curve != lu->curve) {
970 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
971 SSL_R_ILLEGAL_SUITEB_DIGEST);
972 return 0;
973 }
974 }
975 }
976 } else if (tls1_suiteb(s)) {
977 return 0;
978 }
979 #endif
980
981 /* Check signature matches a type we sent */
982 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
983 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
984 if (sig == *sent_sigs)
985 break;
986 }
987 /* Allow fallback to SHA1 if not strict mode */
988 if (i == sent_sigslen && (lu->hash != NID_sha1
989 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
990 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
991 return 0;
992 }
993 md = ssl_md(lu->hash_idx);
994 if (md == NULL) {
995 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
996 return 0;
997 }
998 /*
999 * Make sure security callback allows algorithm. For historical reasons we
1000 * have to pass the sigalg as a two byte char array.
1001 */
1002 sigalgstr[0] = (sig >> 8) & 0xff;
1003 sigalgstr[1] = sig & 0xff;
1004 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1005 EVP_MD_size(md) * 4, EVP_MD_type(md),
1006 (void *)sigalgstr)) {
1007 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1008 return 0;
1009 }
1010 /* Store the sigalg the peer uses */
1011 s->s3->tmp.peer_sigalg = lu;
1012 return 1;
1013 }
1014
1015 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1016 {
1017 if (s->s3->tmp.peer_sigalg == NULL)
1018 return 0;
1019 *pnid = s->s3->tmp.peer_sigalg->sig;
1020 return 1;
1021 }
1022
1023 /*
1024 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1025 * supported, doesn't appear in supported signature algorithms, isn't supported
1026 * by the enabled protocol versions or by the security level.
1027 *
1028 * This function should only be used for checking which ciphers are supported
1029 * by the client.
1030 *
1031 * Call ssl_cipher_disabled() to check that it's enabled or not.
1032 */
1033 void ssl_set_client_disabled(SSL *s)
1034 {
1035 s->s3->tmp.mask_a = 0;
1036 s->s3->tmp.mask_k = 0;
1037 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1038 ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
1039 #ifndef OPENSSL_NO_PSK
1040 /* with PSK there must be client callback set */
1041 if (!s->psk_client_callback) {
1042 s->s3->tmp.mask_a |= SSL_aPSK;
1043 s->s3->tmp.mask_k |= SSL_PSK;
1044 }
1045 #endif /* OPENSSL_NO_PSK */
1046 #ifndef OPENSSL_NO_SRP
1047 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1048 s->s3->tmp.mask_a |= SSL_aSRP;
1049 s->s3->tmp.mask_k |= SSL_kSRP;
1050 }
1051 #endif
1052 }
1053
1054 /*
1055 * ssl_cipher_disabled - check that a cipher is disabled or not
1056 * @s: SSL connection that you want to use the cipher on
1057 * @c: cipher to check
1058 * @op: Security check that you want to do
1059 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1060 *
1061 * Returns 1 when it's disabled, 0 when enabled.
1062 */
1063 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1064 {
1065 if (c->algorithm_mkey & s->s3->tmp.mask_k
1066 || c->algorithm_auth & s->s3->tmp.mask_a)
1067 return 1;
1068 if (s->s3->tmp.max_ver == 0)
1069 return 1;
1070 if (!SSL_IS_DTLS(s)) {
1071 int min_tls = c->min_tls;
1072
1073 /*
1074 * For historical reasons we will allow ECHDE to be selected by a server
1075 * in SSLv3 if we are a client
1076 */
1077 if (min_tls == TLS1_VERSION && ecdhe
1078 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1079 min_tls = SSL3_VERSION;
1080
1081 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1082 return 1;
1083 }
1084 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1085 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1086 return 1;
1087
1088 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1089 }
1090
1091 int tls_use_ticket(SSL *s)
1092 {
1093 if ((s->options & SSL_OP_NO_TICKET))
1094 return 0;
1095 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1096 }
1097
1098 int tls1_set_server_sigalgs(SSL *s)
1099 {
1100 int al;
1101 size_t i;
1102
1103 /* Clear any shared signature algorithms */
1104 OPENSSL_free(s->cert->shared_sigalgs);
1105 s->cert->shared_sigalgs = NULL;
1106 s->cert->shared_sigalgslen = 0;
1107 /* Clear certificate validity flags */
1108 for (i = 0; i < SSL_PKEY_NUM; i++)
1109 s->s3->tmp.valid_flags[i] = 0;
1110 /*
1111 * If peer sent no signature algorithms check to see if we support
1112 * the default algorithm for each certificate type
1113 */
1114 if (s->s3->tmp.peer_sigalgs == NULL) {
1115 const uint16_t *sent_sigs;
1116 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1117
1118 for (i = 0; i < SSL_PKEY_NUM; i++) {
1119 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1120 size_t j;
1121
1122 if (lu == NULL)
1123 continue;
1124 /* Check default matches a type we sent */
1125 for (j = 0; j < sent_sigslen; j++) {
1126 if (lu->sigalg == sent_sigs[j]) {
1127 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1128 break;
1129 }
1130 }
1131 }
1132 return 1;
1133 }
1134
1135 if (!tls1_process_sigalgs(s)) {
1136 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1137 al = SSL_AD_INTERNAL_ERROR;
1138 goto err;
1139 }
1140 if (s->cert->shared_sigalgs != NULL)
1141 return 1;
1142 /* Fatal error if no shared signature algorithms */
1143 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1144 al = SSL_AD_HANDSHAKE_FAILURE;
1145 err:
1146 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1147 return 0;
1148 }
1149
1150 /*-
1151 * Gets the ticket information supplied by the client if any.
1152 *
1153 * hello: The parsed ClientHello data
1154 * ret: (output) on return, if a ticket was decrypted, then this is set to
1155 * point to the resulting session.
1156 *
1157 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1158 * ciphersuite, in which case we have no use for session tickets and one will
1159 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1160 *
1161 * Returns:
1162 * -1: fatal error, either from parsing or decrypting the ticket.
1163 * 0: no ticket was found (or was ignored, based on settings).
1164 * 1: a zero length extension was found, indicating that the client supports
1165 * session tickets but doesn't currently have one to offer.
1166 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1167 * couldn't be decrypted because of a non-fatal error.
1168 * 3: a ticket was successfully decrypted and *ret was set.
1169 *
1170 * Side effects:
1171 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1172 * a new session ticket to the client because the client indicated support
1173 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1174 * a session ticket or we couldn't use the one it gave us, or if
1175 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1176 * Otherwise, s->ext.ticket_expected is set to 0.
1177 */
1178 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1179 SSL_SESSION **ret)
1180 {
1181 int retv;
1182 size_t size;
1183 RAW_EXTENSION *ticketext;
1184
1185 *ret = NULL;
1186 s->ext.ticket_expected = 0;
1187
1188 /*
1189 * If tickets disabled or not supported by the protocol version
1190 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1191 * resumption.
1192 */
1193 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1194 return TICKET_NONE;
1195
1196 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1197 if (!ticketext->present)
1198 return TICKET_NONE;
1199
1200 size = PACKET_remaining(&ticketext->data);
1201 if (size == 0) {
1202 /*
1203 * The client will accept a ticket but doesn't currently have
1204 * one.
1205 */
1206 s->ext.ticket_expected = 1;
1207 return TICKET_EMPTY;
1208 }
1209 if (s->ext.session_secret_cb) {
1210 /*
1211 * Indicate that the ticket couldn't be decrypted rather than
1212 * generating the session from ticket now, trigger
1213 * abbreviated handshake based on external mechanism to
1214 * calculate the master secret later.
1215 */
1216 return TICKET_NO_DECRYPT;
1217 }
1218
1219 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1220 hello->session_id, hello->session_id_len, ret);
1221 switch (retv) {
1222 case TICKET_NO_DECRYPT:
1223 s->ext.ticket_expected = 1;
1224 return TICKET_NO_DECRYPT;
1225
1226 case TICKET_SUCCESS:
1227 return TICKET_SUCCESS;
1228
1229 case TICKET_SUCCESS_RENEW:
1230 s->ext.ticket_expected = 1;
1231 return TICKET_SUCCESS;
1232
1233 default:
1234 return TICKET_FATAL_ERR_OTHER;
1235 }
1236 }
1237
1238 /*-
1239 * tls_decrypt_ticket attempts to decrypt a session ticket.
1240 *
1241 * etick: points to the body of the session ticket extension.
1242 * eticklen: the length of the session tickets extension.
1243 * sess_id: points at the session ID.
1244 * sesslen: the length of the session ID.
1245 * psess: (output) on return, if a ticket was decrypted, then this is set to
1246 * point to the resulting session.
1247 */
1248 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1249 size_t eticklen, const unsigned char *sess_id,
1250 size_t sesslen, SSL_SESSION **psess)
1251 {
1252 SSL_SESSION *sess;
1253 unsigned char *sdec;
1254 const unsigned char *p;
1255 int slen, renew_ticket = 0, declen;
1256 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1257 size_t mlen;
1258 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1259 HMAC_CTX *hctx = NULL;
1260 EVP_CIPHER_CTX *ctx;
1261 SSL_CTX *tctx = s->session_ctx;
1262
1263 /* Initialize session ticket encryption and HMAC contexts */
1264 hctx = HMAC_CTX_new();
1265 if (hctx == NULL)
1266 return TICKET_FATAL_ERR_MALLOC;
1267 ctx = EVP_CIPHER_CTX_new();
1268 if (ctx == NULL) {
1269 ret = TICKET_FATAL_ERR_MALLOC;
1270 goto err;
1271 }
1272 if (tctx->ext.ticket_key_cb) {
1273 unsigned char *nctick = (unsigned char *)etick;
1274 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1275 ctx, hctx, 0);
1276 if (rv < 0)
1277 goto err;
1278 if (rv == 0) {
1279 ret = TICKET_NO_DECRYPT;
1280 goto err;
1281 }
1282 if (rv == 2)
1283 renew_ticket = 1;
1284 } else {
1285 /* Check key name matches */
1286 if (memcmp(etick, tctx->ext.tick_key_name,
1287 sizeof(tctx->ext.tick_key_name)) != 0) {
1288 ret = TICKET_NO_DECRYPT;
1289 goto err;
1290 }
1291 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1292 sizeof(tctx->ext.tick_hmac_key),
1293 EVP_sha256(), NULL) <= 0
1294 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1295 tctx->ext.tick_aes_key,
1296 etick
1297 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1298 goto err;
1299 }
1300 }
1301 /*
1302 * Attempt to process session ticket, first conduct sanity and integrity
1303 * checks on ticket.
1304 */
1305 mlen = HMAC_size(hctx);
1306 if (mlen == 0) {
1307 goto err;
1308 }
1309 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1310 if (eticklen <=
1311 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1312 ret = TICKET_NO_DECRYPT;
1313 goto err;
1314 }
1315 eticklen -= mlen;
1316 /* Check HMAC of encrypted ticket */
1317 if (HMAC_Update(hctx, etick, eticklen) <= 0
1318 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1319 goto err;
1320 }
1321 HMAC_CTX_free(hctx);
1322 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1323 EVP_CIPHER_CTX_free(ctx);
1324 return TICKET_NO_DECRYPT;
1325 }
1326 /* Attempt to decrypt session data */
1327 /* Move p after IV to start of encrypted ticket, update length */
1328 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1329 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1330 sdec = OPENSSL_malloc(eticklen);
1331 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1332 (int)eticklen) <= 0) {
1333 EVP_CIPHER_CTX_free(ctx);
1334 OPENSSL_free(sdec);
1335 return TICKET_FATAL_ERR_OTHER;
1336 }
1337 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1338 EVP_CIPHER_CTX_free(ctx);
1339 OPENSSL_free(sdec);
1340 return TICKET_NO_DECRYPT;
1341 }
1342 slen += declen;
1343 EVP_CIPHER_CTX_free(ctx);
1344 ctx = NULL;
1345 p = sdec;
1346
1347 sess = d2i_SSL_SESSION(NULL, &p, slen);
1348 slen -= p - sdec;
1349 OPENSSL_free(sdec);
1350 if (sess) {
1351 /* Some additional consistency checks */
1352 if (slen != 0 || sess->session_id_length != 0) {
1353 SSL_SESSION_free(sess);
1354 return TICKET_NO_DECRYPT;
1355 }
1356 /*
1357 * The session ID, if non-empty, is used by some clients to detect
1358 * that the ticket has been accepted. So we copy it to the session
1359 * structure. If it is empty set length to zero as required by
1360 * standard.
1361 */
1362 if (sesslen)
1363 memcpy(sess->session_id, sess_id, sesslen);
1364 sess->session_id_length = sesslen;
1365 *psess = sess;
1366 if (renew_ticket)
1367 return TICKET_SUCCESS_RENEW;
1368 else
1369 return TICKET_SUCCESS;
1370 }
1371 ERR_clear_error();
1372 /*
1373 * For session parse failure, indicate that we need to send a new ticket.
1374 */
1375 return TICKET_NO_DECRYPT;
1376 err:
1377 EVP_CIPHER_CTX_free(ctx);
1378 HMAC_CTX_free(hctx);
1379 return ret;
1380 }
1381
1382 static int tls12_get_pkey_idx(int sig_nid)
1383 {
1384 switch (sig_nid) {
1385 #ifndef OPENSSL_NO_RSA
1386 case EVP_PKEY_RSA:
1387 return SSL_PKEY_RSA;
1388 /*
1389 * For now return RSA key for PSS. When we support PSS only keys
1390 * this will need to be updated.
1391 */
1392 case EVP_PKEY_RSA_PSS:
1393 return SSL_PKEY_RSA;
1394 #endif
1395 #ifndef OPENSSL_NO_DSA
1396 case EVP_PKEY_DSA:
1397 return SSL_PKEY_DSA_SIGN;
1398 #endif
1399 #ifndef OPENSSL_NO_EC
1400 case EVP_PKEY_EC:
1401 return SSL_PKEY_ECC;
1402 case NID_ED25519:
1403 return SSL_PKEY_ED25519;
1404 #endif
1405 #ifndef OPENSSL_NO_GOST
1406 case NID_id_GostR3410_2001:
1407 return SSL_PKEY_GOST01;
1408
1409 case NID_id_GostR3410_2012_256:
1410 return SSL_PKEY_GOST12_256;
1411
1412 case NID_id_GostR3410_2012_512:
1413 return SSL_PKEY_GOST12_512;
1414 #endif
1415 }
1416 return -1;
1417 }
1418
1419 /* Check to see if a signature algorithm is allowed */
1420 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
1421 {
1422 unsigned char sigalgstr[2];
1423 int secbits;
1424
1425 /* See if sigalgs is recognised and if hash is enabled */
1426 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1427 return 0;
1428 /* DSA is not allowed in TLS 1.3 */
1429 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1430 return 0;
1431 /* See if public key algorithm allowed */
1432 if (tls12_get_pkey_idx(lu->sig) == -1)
1433 return 0;
1434 /* Security bits: half digest bits */
1435 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1436 /* Finally see if security callback allows it */
1437 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1438 sigalgstr[1] = lu->sigalg & 0xff;
1439 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1440 }
1441
1442 /*
1443 * Get a mask of disabled public key algorithms based on supported signature
1444 * algorithms. For example if no signature algorithm supports RSA then RSA is
1445 * disabled.
1446 */
1447
1448 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1449 {
1450 const uint16_t *sigalgs;
1451 size_t i, sigalgslen;
1452 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1453 /*
1454 * Now go through all signature algorithms seeing if we support any for
1455 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1456 * down calls to security callback only check if we have to.
1457 */
1458 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1459 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1460 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1461
1462 if (lu == NULL)
1463 continue;
1464 switch (lu->sig) {
1465 #ifndef OPENSSL_NO_RSA
1466 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1467 case EVP_PKEY_RSA_PSS:
1468 case EVP_PKEY_RSA:
1469 if (!have_rsa && tls12_sigalg_allowed(s, op, lu))
1470 have_rsa = 1;
1471 break;
1472 #endif
1473 #ifndef OPENSSL_NO_DSA
1474 case EVP_PKEY_DSA:
1475 if (!have_dsa && tls12_sigalg_allowed(s, op, lu))
1476 have_dsa = 1;
1477 break;
1478 #endif
1479 #ifndef OPENSSL_NO_EC
1480 case EVP_PKEY_EC:
1481 if (!have_ecdsa && tls12_sigalg_allowed(s, op, lu))
1482 have_ecdsa = 1;
1483 break;
1484 #endif
1485 }
1486 }
1487 if (!have_rsa)
1488 *pmask_a |= SSL_aRSA;
1489 if (!have_dsa)
1490 *pmask_a |= SSL_aDSS;
1491 if (!have_ecdsa)
1492 *pmask_a |= SSL_aECDSA;
1493 }
1494
1495 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1496 const uint16_t *psig, size_t psiglen)
1497 {
1498 size_t i;
1499 int rv = 0;
1500
1501 for (i = 0; i < psiglen; i++, psig++) {
1502 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1503
1504 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1505 continue;
1506 if (!WPACKET_put_bytes_u16(pkt, *psig))
1507 return 0;
1508 /*
1509 * If TLS 1.3 must have at least one valid TLS 1.3 message
1510 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1511 */
1512 if (rv == 0 && (!SSL_IS_TLS13(s)
1513 || (lu->sig != EVP_PKEY_RSA
1514 && lu->hash != NID_sha1
1515 && lu->hash != NID_sha224)))
1516 rv = 1;
1517 }
1518 if (rv == 0)
1519 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1520 return rv;
1521 }
1522
1523 /* Given preference and allowed sigalgs set shared sigalgs */
1524 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1525 const uint16_t *pref, size_t preflen,
1526 const uint16_t *allow, size_t allowlen)
1527 {
1528 const uint16_t *ptmp, *atmp;
1529 size_t i, j, nmatch = 0;
1530 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1531 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1532
1533 /* Skip disabled hashes or signature algorithms */
1534 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1535 continue;
1536 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1537 if (*ptmp == *atmp) {
1538 nmatch++;
1539 if (shsig)
1540 *shsig++ = lu;
1541 break;
1542 }
1543 }
1544 }
1545 return nmatch;
1546 }
1547
1548 /* Set shared signature algorithms for SSL structures */
1549 static int tls1_set_shared_sigalgs(SSL *s)
1550 {
1551 const uint16_t *pref, *allow, *conf;
1552 size_t preflen, allowlen, conflen;
1553 size_t nmatch;
1554 const SIGALG_LOOKUP **salgs = NULL;
1555 CERT *c = s->cert;
1556 unsigned int is_suiteb = tls1_suiteb(s);
1557
1558 OPENSSL_free(c->shared_sigalgs);
1559 c->shared_sigalgs = NULL;
1560 c->shared_sigalgslen = 0;
1561 /* If client use client signature algorithms if not NULL */
1562 if (!s->server && c->client_sigalgs && !is_suiteb) {
1563 conf = c->client_sigalgs;
1564 conflen = c->client_sigalgslen;
1565 } else if (c->conf_sigalgs && !is_suiteb) {
1566 conf = c->conf_sigalgs;
1567 conflen = c->conf_sigalgslen;
1568 } else
1569 conflen = tls12_get_psigalgs(s, 0, &conf);
1570 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1571 pref = conf;
1572 preflen = conflen;
1573 allow = s->s3->tmp.peer_sigalgs;
1574 allowlen = s->s3->tmp.peer_sigalgslen;
1575 } else {
1576 allow = conf;
1577 allowlen = conflen;
1578 pref = s->s3->tmp.peer_sigalgs;
1579 preflen = s->s3->tmp.peer_sigalgslen;
1580 }
1581 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1582 if (nmatch) {
1583 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1584 if (salgs == NULL)
1585 return 0;
1586 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1587 } else {
1588 salgs = NULL;
1589 }
1590 c->shared_sigalgs = salgs;
1591 c->shared_sigalgslen = nmatch;
1592 return 1;
1593 }
1594
1595 /* Set preferred digest for each key type */
1596
1597 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1598 {
1599 CERT *c = s->cert;
1600 unsigned int stmp;
1601 size_t size, i;
1602
1603 /* Extension ignored for inappropriate versions */
1604 if (!SSL_USE_SIGALGS(s))
1605 return 1;
1606 /* Should never happen */
1607 if (!c)
1608 return 0;
1609
1610 size = PACKET_remaining(pkt);
1611
1612 /* Invalid data length */
1613 if (size == 0 || (size & 1) != 0)
1614 return 0;
1615
1616 size >>= 1;
1617
1618 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1619 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1620 * sizeof(*s->s3->tmp.peer_sigalgs));
1621 if (s->s3->tmp.peer_sigalgs == NULL)
1622 return 0;
1623 s->s3->tmp.peer_sigalgslen = size;
1624 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1625 s->s3->tmp.peer_sigalgs[i] = stmp;
1626
1627 if (i != size)
1628 return 0;
1629
1630 return 1;
1631 }
1632
1633 int tls1_process_sigalgs(SSL *s)
1634 {
1635 size_t i;
1636 uint32_t *pvalid = s->s3->tmp.valid_flags;
1637 CERT *c = s->cert;
1638
1639 if (!tls1_set_shared_sigalgs(s))
1640 return 0;
1641
1642 for (i = 0; i < SSL_PKEY_NUM; i++)
1643 pvalid[i] = 0;
1644
1645 for (i = 0; i < c->shared_sigalgslen; i++) {
1646 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1647 int idx = sigptr->sig_idx;
1648
1649 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1650 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1651 continue;
1652 /* If not disabled indicate we can explicitly sign */
1653 if (pvalid[idx] == 0 && tls12_get_pkey_idx(sigptr->sig) != -1)
1654 pvalid[sigptr->sig_idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1655 }
1656 return 1;
1657 }
1658
1659 int SSL_get_sigalgs(SSL *s, int idx,
1660 int *psign, int *phash, int *psignhash,
1661 unsigned char *rsig, unsigned char *rhash)
1662 {
1663 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1664 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1665 if (psig == NULL || numsigalgs > INT_MAX)
1666 return 0;
1667 if (idx >= 0) {
1668 const SIGALG_LOOKUP *lu;
1669
1670 if (idx >= (int)numsigalgs)
1671 return 0;
1672 psig += idx;
1673 if (rhash != NULL)
1674 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1675 if (rsig != NULL)
1676 *rsig = (unsigned char)(*psig & 0xff);
1677 lu = tls1_lookup_sigalg(*psig);
1678 if (psign != NULL)
1679 *psign = lu != NULL ? lu->sig : NID_undef;
1680 if (phash != NULL)
1681 *phash = lu != NULL ? lu->hash : NID_undef;
1682 if (psignhash != NULL)
1683 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1684 }
1685 return (int)numsigalgs;
1686 }
1687
1688 int SSL_get_shared_sigalgs(SSL *s, int idx,
1689 int *psign, int *phash, int *psignhash,
1690 unsigned char *rsig, unsigned char *rhash)
1691 {
1692 const SIGALG_LOOKUP *shsigalgs;
1693 if (s->cert->shared_sigalgs == NULL
1694 || idx < 0
1695 || idx >= (int)s->cert->shared_sigalgslen
1696 || s->cert->shared_sigalgslen > INT_MAX)
1697 return 0;
1698 shsigalgs = s->cert->shared_sigalgs[idx];
1699 if (phash != NULL)
1700 *phash = shsigalgs->hash;
1701 if (psign != NULL)
1702 *psign = shsigalgs->sig;
1703 if (psignhash != NULL)
1704 *psignhash = shsigalgs->sigandhash;
1705 if (rsig != NULL)
1706 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1707 if (rhash != NULL)
1708 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1709 return (int)s->cert->shared_sigalgslen;
1710 }
1711
1712 /* Maximum possible number of unique entries in sigalgs array */
1713 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1714
1715 typedef struct {
1716 size_t sigalgcnt;
1717 int sigalgs[TLS_MAX_SIGALGCNT];
1718 } sig_cb_st;
1719
1720 static void get_sigorhash(int *psig, int *phash, const char *str)
1721 {
1722 if (strcmp(str, "RSA") == 0) {
1723 *psig = EVP_PKEY_RSA;
1724 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1725 *psig = EVP_PKEY_RSA_PSS;
1726 } else if (strcmp(str, "DSA") == 0) {
1727 *psig = EVP_PKEY_DSA;
1728 } else if (strcmp(str, "ECDSA") == 0) {
1729 *psig = EVP_PKEY_EC;
1730 } else {
1731 *phash = OBJ_sn2nid(str);
1732 if (*phash == NID_undef)
1733 *phash = OBJ_ln2nid(str);
1734 }
1735 }
1736 /* Maximum length of a signature algorithm string component */
1737 #define TLS_MAX_SIGSTRING_LEN 40
1738
1739 static int sig_cb(const char *elem, int len, void *arg)
1740 {
1741 sig_cb_st *sarg = arg;
1742 size_t i;
1743 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1744 int sig_alg = NID_undef, hash_alg = NID_undef;
1745 if (elem == NULL)
1746 return 0;
1747 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1748 return 0;
1749 if (len > (int)(sizeof(etmp) - 1))
1750 return 0;
1751 memcpy(etmp, elem, len);
1752 etmp[len] = 0;
1753 p = strchr(etmp, '+');
1754 /* See if we have a match for TLS 1.3 names */
1755 if (p == NULL) {
1756 const SIGALG_LOOKUP *s;
1757
1758 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1759 i++, s++) {
1760 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1761 sig_alg = s->sig;
1762 hash_alg = s->hash;
1763 break;
1764 }
1765 }
1766 } else {
1767 *p = 0;
1768 p++;
1769 if (*p == 0)
1770 return 0;
1771 get_sigorhash(&sig_alg, &hash_alg, etmp);
1772 get_sigorhash(&sig_alg, &hash_alg, p);
1773 }
1774
1775 if (sig_alg == NID_undef || hash_alg == NID_undef)
1776 return 0;
1777
1778 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1779 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1780 return 0;
1781 }
1782 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1783 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1784 return 1;
1785 }
1786
1787 /*
1788 * Set supported signature algorithms based on a colon separated list of the
1789 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1790 */
1791 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1792 {
1793 sig_cb_st sig;
1794 sig.sigalgcnt = 0;
1795 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1796 return 0;
1797 if (c == NULL)
1798 return 1;
1799 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1800 }
1801
1802 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1803 {
1804 uint16_t *sigalgs, *sptr;
1805 size_t i;
1806
1807 if (salglen & 1)
1808 return 0;
1809 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1810 if (sigalgs == NULL)
1811 return 0;
1812 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1813 size_t j;
1814 const SIGALG_LOOKUP *curr;
1815 int md_id = *psig_nids++;
1816 int sig_id = *psig_nids++;
1817
1818 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1819 j++, curr++) {
1820 if (curr->hash == md_id && curr->sig == sig_id) {
1821 *sptr++ = curr->sigalg;
1822 break;
1823 }
1824 }
1825
1826 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1827 goto err;
1828 }
1829
1830 if (client) {
1831 OPENSSL_free(c->client_sigalgs);
1832 c->client_sigalgs = sigalgs;
1833 c->client_sigalgslen = salglen / 2;
1834 } else {
1835 OPENSSL_free(c->conf_sigalgs);
1836 c->conf_sigalgs = sigalgs;
1837 c->conf_sigalgslen = salglen / 2;
1838 }
1839
1840 return 1;
1841
1842 err:
1843 OPENSSL_free(sigalgs);
1844 return 0;
1845 }
1846
1847 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1848 {
1849 int sig_nid;
1850 size_t i;
1851 if (default_nid == -1)
1852 return 1;
1853 sig_nid = X509_get_signature_nid(x);
1854 if (default_nid)
1855 return sig_nid == default_nid ? 1 : 0;
1856 for (i = 0; i < c->shared_sigalgslen; i++)
1857 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1858 return 1;
1859 return 0;
1860 }
1861
1862 /* Check to see if a certificate issuer name matches list of CA names */
1863 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1864 {
1865 X509_NAME *nm;
1866 int i;
1867 nm = X509_get_issuer_name(x);
1868 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1869 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1870 return 1;
1871 }
1872 return 0;
1873 }
1874
1875 /*
1876 * Check certificate chain is consistent with TLS extensions and is usable by
1877 * server. This servers two purposes: it allows users to check chains before
1878 * passing them to the server and it allows the server to check chains before
1879 * attempting to use them.
1880 */
1881
1882 /* Flags which need to be set for a certificate when strict mode not set */
1883
1884 #define CERT_PKEY_VALID_FLAGS \
1885 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1886 /* Strict mode flags */
1887 #define CERT_PKEY_STRICT_FLAGS \
1888 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1889 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1890
1891 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1892 int idx)
1893 {
1894 int i;
1895 int rv = 0;
1896 int check_flags = 0, strict_mode;
1897 CERT_PKEY *cpk = NULL;
1898 CERT *c = s->cert;
1899 uint32_t *pvalid;
1900 unsigned int suiteb_flags = tls1_suiteb(s);
1901 /* idx == -1 means checking server chains */
1902 if (idx != -1) {
1903 /* idx == -2 means checking client certificate chains */
1904 if (idx == -2) {
1905 cpk = c->key;
1906 idx = (int)(cpk - c->pkeys);
1907 } else
1908 cpk = c->pkeys + idx;
1909 pvalid = s->s3->tmp.valid_flags + idx;
1910 x = cpk->x509;
1911 pk = cpk->privatekey;
1912 chain = cpk->chain;
1913 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1914 /* If no cert or key, forget it */
1915 if (!x || !pk)
1916 goto end;
1917 } else {
1918 if (!x || !pk)
1919 return 0;
1920 idx = ssl_cert_type(x, pk);
1921 if (idx == -1)
1922 return 0;
1923 pvalid = s->s3->tmp.valid_flags + idx;
1924
1925 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1926 check_flags = CERT_PKEY_STRICT_FLAGS;
1927 else
1928 check_flags = CERT_PKEY_VALID_FLAGS;
1929 strict_mode = 1;
1930 }
1931
1932 if (suiteb_flags) {
1933 int ok;
1934 if (check_flags)
1935 check_flags |= CERT_PKEY_SUITEB;
1936 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1937 if (ok == X509_V_OK)
1938 rv |= CERT_PKEY_SUITEB;
1939 else if (!check_flags)
1940 goto end;
1941 }
1942
1943 /*
1944 * Check all signature algorithms are consistent with signature
1945 * algorithms extension if TLS 1.2 or later and strict mode.
1946 */
1947 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1948 int default_nid;
1949 int rsign = 0;
1950 if (s->s3->tmp.peer_sigalgs)
1951 default_nid = 0;
1952 /* If no sigalgs extension use defaults from RFC5246 */
1953 else {
1954 switch (idx) {
1955 case SSL_PKEY_RSA:
1956 rsign = EVP_PKEY_RSA;
1957 default_nid = NID_sha1WithRSAEncryption;
1958 break;
1959
1960 case SSL_PKEY_DSA_SIGN:
1961 rsign = EVP_PKEY_DSA;
1962 default_nid = NID_dsaWithSHA1;
1963 break;
1964
1965 case SSL_PKEY_ECC:
1966 rsign = EVP_PKEY_EC;
1967 default_nid = NID_ecdsa_with_SHA1;
1968 break;
1969
1970 case SSL_PKEY_GOST01:
1971 rsign = NID_id_GostR3410_2001;
1972 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1973 break;
1974
1975 case SSL_PKEY_GOST12_256:
1976 rsign = NID_id_GostR3410_2012_256;
1977 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1978 break;
1979
1980 case SSL_PKEY_GOST12_512:
1981 rsign = NID_id_GostR3410_2012_512;
1982 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1983 break;
1984
1985 default:
1986 default_nid = -1;
1987 break;
1988 }
1989 }
1990 /*
1991 * If peer sent no signature algorithms extension and we have set
1992 * preferred signature algorithms check we support sha1.
1993 */
1994 if (default_nid > 0 && c->conf_sigalgs) {
1995 size_t j;
1996 const uint16_t *p = c->conf_sigalgs;
1997 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1998 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1999
2000 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2001 break;
2002 }
2003 if (j == c->conf_sigalgslen) {
2004 if (check_flags)
2005 goto skip_sigs;
2006 else
2007 goto end;
2008 }
2009 }
2010 /* Check signature algorithm of each cert in chain */
2011 if (!tls1_check_sig_alg(c, x, default_nid)) {
2012 if (!check_flags)
2013 goto end;
2014 } else
2015 rv |= CERT_PKEY_EE_SIGNATURE;
2016 rv |= CERT_PKEY_CA_SIGNATURE;
2017 for (i = 0; i < sk_X509_num(chain); i++) {
2018 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2019 if (check_flags) {
2020 rv &= ~CERT_PKEY_CA_SIGNATURE;
2021 break;
2022 } else
2023 goto end;
2024 }
2025 }
2026 }
2027 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2028 else if (check_flags)
2029 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2030 skip_sigs:
2031 /* Check cert parameters are consistent */
2032 if (tls1_check_cert_param(s, x, 1))
2033 rv |= CERT_PKEY_EE_PARAM;
2034 else if (!check_flags)
2035 goto end;
2036 if (!s->server)
2037 rv |= CERT_PKEY_CA_PARAM;
2038 /* In strict mode check rest of chain too */
2039 else if (strict_mode) {
2040 rv |= CERT_PKEY_CA_PARAM;
2041 for (i = 0; i < sk_X509_num(chain); i++) {
2042 X509 *ca = sk_X509_value(chain, i);
2043 if (!tls1_check_cert_param(s, ca, 0)) {
2044 if (check_flags) {
2045 rv &= ~CERT_PKEY_CA_PARAM;
2046 break;
2047 } else
2048 goto end;
2049 }
2050 }
2051 }
2052 if (!s->server && strict_mode) {
2053 STACK_OF(X509_NAME) *ca_dn;
2054 int check_type = 0;
2055 switch (EVP_PKEY_id(pk)) {
2056 case EVP_PKEY_RSA:
2057 check_type = TLS_CT_RSA_SIGN;
2058 break;
2059 case EVP_PKEY_DSA:
2060 check_type = TLS_CT_DSS_SIGN;
2061 break;
2062 case EVP_PKEY_EC:
2063 check_type = TLS_CT_ECDSA_SIGN;
2064 break;
2065 }
2066 if (check_type) {
2067 const uint8_t *ctypes = s->s3->tmp.ctype;
2068 size_t j;
2069
2070 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2071 if (*ctypes == check_type) {
2072 rv |= CERT_PKEY_CERT_TYPE;
2073 break;
2074 }
2075 }
2076 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2077 goto end;
2078 } else {
2079 rv |= CERT_PKEY_CERT_TYPE;
2080 }
2081
2082 ca_dn = s->s3->tmp.peer_ca_names;
2083
2084 if (!sk_X509_NAME_num(ca_dn))
2085 rv |= CERT_PKEY_ISSUER_NAME;
2086
2087 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2088 if (ssl_check_ca_name(ca_dn, x))
2089 rv |= CERT_PKEY_ISSUER_NAME;
2090 }
2091 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2092 for (i = 0; i < sk_X509_num(chain); i++) {
2093 X509 *xtmp = sk_X509_value(chain, i);
2094 if (ssl_check_ca_name(ca_dn, xtmp)) {
2095 rv |= CERT_PKEY_ISSUER_NAME;
2096 break;
2097 }
2098 }
2099 }
2100 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2101 goto end;
2102 } else
2103 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2104
2105 if (!check_flags || (rv & check_flags) == check_flags)
2106 rv |= CERT_PKEY_VALID;
2107
2108 end:
2109
2110 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2111 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2112 else
2113 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2114
2115 /*
2116 * When checking a CERT_PKEY structure all flags are irrelevant if the
2117 * chain is invalid.
2118 */
2119 if (!check_flags) {
2120 if (rv & CERT_PKEY_VALID) {
2121 *pvalid = rv;
2122 } else {
2123 /* Preserve sign and explicit sign flag, clear rest */
2124 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2125 return 0;
2126 }
2127 }
2128 return rv;
2129 }
2130
2131 /* Set validity of certificates in an SSL structure */
2132 void tls1_set_cert_validity(SSL *s)
2133 {
2134 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2135 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2136 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2137 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2138 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2139 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2140 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2141 }
2142
2143 /* User level utility function to check a chain is suitable */
2144 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2145 {
2146 return tls1_check_chain(s, x, pk, chain, -1);
2147 }
2148
2149 #ifndef OPENSSL_NO_DH
2150 DH *ssl_get_auto_dh(SSL *s)
2151 {
2152 int dh_secbits = 80;
2153 if (s->cert->dh_tmp_auto == 2)
2154 return DH_get_1024_160();
2155 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2156 if (s->s3->tmp.new_cipher->strength_bits == 256)
2157 dh_secbits = 128;
2158 else
2159 dh_secbits = 80;
2160 } else {
2161 if (s->s3->tmp.cert == NULL)
2162 return NULL;
2163 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2164 }
2165
2166 if (dh_secbits >= 128) {
2167 DH *dhp = DH_new();
2168 BIGNUM *p, *g;
2169 if (dhp == NULL)
2170 return NULL;
2171 g = BN_new();
2172 if (g != NULL)
2173 BN_set_word(g, 2);
2174 if (dh_secbits >= 192)
2175 p = BN_get_rfc3526_prime_8192(NULL);
2176 else
2177 p = BN_get_rfc3526_prime_3072(NULL);
2178 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2179 DH_free(dhp);
2180 BN_free(p);
2181 BN_free(g);
2182 return NULL;
2183 }
2184 return dhp;
2185 }
2186 if (dh_secbits >= 112)
2187 return DH_get_2048_224();
2188 return DH_get_1024_160();
2189 }
2190 #endif
2191
2192 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2193 {
2194 int secbits = -1;
2195 EVP_PKEY *pkey = X509_get0_pubkey(x);
2196 if (pkey) {
2197 /*
2198 * If no parameters this will return -1 and fail using the default
2199 * security callback for any non-zero security level. This will
2200 * reject keys which omit parameters but this only affects DSA and
2201 * omission of parameters is never (?) done in practice.
2202 */
2203 secbits = EVP_PKEY_security_bits(pkey);
2204 }
2205 if (s)
2206 return ssl_security(s, op, secbits, 0, x);
2207 else
2208 return ssl_ctx_security(ctx, op, secbits, 0, x);
2209 }
2210
2211 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2212 {
2213 /* Lookup signature algorithm digest */
2214 int secbits, nid, pknid;
2215 /* Don't check signature if self signed */
2216 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2217 return 1;
2218 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2219 secbits = -1;
2220 /* If digest NID not defined use signature NID */
2221 if (nid == NID_undef)
2222 nid = pknid;
2223 if (s)
2224 return ssl_security(s, op, secbits, nid, x);
2225 else
2226 return ssl_ctx_security(ctx, op, secbits, nid, x);
2227 }
2228
2229 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2230 {
2231 if (vfy)
2232 vfy = SSL_SECOP_PEER;
2233 if (is_ee) {
2234 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2235 return SSL_R_EE_KEY_TOO_SMALL;
2236 } else {
2237 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2238 return SSL_R_CA_KEY_TOO_SMALL;
2239 }
2240 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2241 return SSL_R_CA_MD_TOO_WEAK;
2242 return 1;
2243 }
2244
2245 /*
2246 * Check security of a chain, if |sk| includes the end entity certificate then
2247 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2248 * one to the peer. Return values: 1 if ok otherwise error code to use
2249 */
2250
2251 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2252 {
2253 int rv, start_idx, i;
2254 if (x == NULL) {
2255 x = sk_X509_value(sk, 0);
2256 start_idx = 1;
2257 } else
2258 start_idx = 0;
2259
2260 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2261 if (rv != 1)
2262 return rv;
2263
2264 for (i = start_idx; i < sk_X509_num(sk); i++) {
2265 x = sk_X509_value(sk, i);
2266 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2267 if (rv != 1)
2268 return rv;
2269 }
2270 return 1;
2271 }
2272
2273 /*
2274 * Choose an appropriate signature algorithm based on available certificates
2275 * Sets chosen certificate and signature algorithm.
2276 *
2277 * For servers if we fail to find a required certificate it is a fatal error
2278 * and an appropriate error code is set and the TLS alert set in *al.
2279 *
2280 * For clients al is set to NULL. If a certificate is not suitable it is not
2281 * a fatal error: we will either try another certificate or not present one
2282 * to the server. In this case no error is set.
2283 */
2284 int tls_choose_sigalg(SSL *s, int *al)
2285 {
2286 int idx = -1;
2287 const SIGALG_LOOKUP *lu = NULL;
2288
2289 s->s3->tmp.cert = NULL;
2290 s->s3->tmp.sigalg = NULL;
2291
2292 if (SSL_IS_TLS13(s)) {
2293 size_t i;
2294 #ifndef OPENSSL_NO_EC
2295 int curve = -1, skip_ec = 0;
2296 #endif
2297
2298 /* Look for a certificate matching shared sigalgs */
2299 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2300 lu = s->cert->shared_sigalgs[i];
2301
2302 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2303 if (lu->hash == NID_sha1
2304 || lu->hash == NID_sha224
2305 || lu->sig == EVP_PKEY_DSA
2306 || lu->sig == EVP_PKEY_RSA)
2307 continue;
2308 if (ssl_md(lu->hash_idx) == NULL)
2309 continue;
2310 idx = lu->sig_idx;
2311 if (!ssl_has_cert(s, idx))
2312 continue;
2313 if (lu->sig == EVP_PKEY_EC) {
2314 #ifndef OPENSSL_NO_EC
2315 if (curve == -1) {
2316 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2317
2318 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2319 if (EC_KEY_get_conv_form(ec)
2320 != POINT_CONVERSION_UNCOMPRESSED)
2321 skip_ec = 1;
2322 }
2323 if (skip_ec || (lu->curve != NID_undef && curve != lu->curve))
2324 continue;
2325 #else
2326 continue;
2327 #endif
2328 }
2329 break;
2330 }
2331 if (i == s->cert->shared_sigalgslen) {
2332 if (al == NULL)
2333 return 1;
2334 *al = SSL_AD_HANDSHAKE_FAILURE;
2335 SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
2336 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2337 return 0;
2338 }
2339 } else {
2340 if (s->server) {
2341 /* Find index corresponding to ciphersuite */
2342 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2343 /* If no certificate for ciphersuite return */
2344 if (idx == -1)
2345 return 1;
2346 if (idx == SSL_PKEY_GOST_EC) {
2347 /* Work out which GOST certificate is available */
2348 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2349 idx = SSL_PKEY_GOST12_512;
2350 } else if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2351 idx = SSL_PKEY_GOST12_256;
2352 } else if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2353 idx = SSL_PKEY_GOST01;
2354 } else {
2355 if (al == NULL)
2356 return 1;
2357 *al = SSL_AD_INTERNAL_ERROR;
2358 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2359 return 0;
2360 }
2361 } else if (!ssl_has_cert(s, idx)) {
2362 if (al == NULL)
2363 return 1;
2364 *al = SSL_AD_INTERNAL_ERROR;
2365 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2366 return 0;
2367 }
2368 } else {
2369 /* Find index for client certificate */
2370 idx = s->cert->key - s->cert->pkeys;
2371 if (!ssl_has_cert(s, idx))
2372 return 1;
2373 }
2374
2375 if (SSL_USE_SIGALGS(s)) {
2376 if (s->s3->tmp.peer_sigalgs != NULL) {
2377 size_t i;
2378 #ifndef OPENSSL_NO_EC
2379 int curve;
2380
2381 /* For Suite B need to match signature algorithm to curve */
2382 if (tls1_suiteb(s)) {
2383 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2384 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2385 } else {
2386 curve = -1;
2387 }
2388 #endif
2389
2390 /*
2391 * Find highest preference signature algorithm matching
2392 * cert type
2393 */
2394 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2395 lu = s->cert->shared_sigalgs[i];
2396 #ifdef OPENSSL_NO_EC
2397 if (lu->sig_idx == idx)
2398 break;
2399 #else
2400 if (lu->sig_idx == idx
2401 && (curve == -1 || lu->curve == curve))
2402 break;
2403 #endif
2404 if (idx == SSL_PKEY_RSA && lu->sig == EVP_PKEY_RSA_PSS)
2405 break;
2406 }
2407 if (i == s->cert->shared_sigalgslen) {
2408 if (al == NULL)
2409 return 1;
2410 *al = SSL_AD_INTERNAL_ERROR;
2411 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2412 return 0;
2413 }
2414 } else {
2415 /*
2416 * If we have no sigalg use defaults
2417 */
2418 const uint16_t *sent_sigs;
2419 size_t sent_sigslen, i;
2420
2421 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2422 if (al == NULL)
2423 return 1;
2424 *al = SSL_AD_INTERNAL_ERROR;
2425 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2426 return 0;
2427 }
2428
2429 /* Check signature matches a type we sent */
2430 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2431 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2432 if (lu->sigalg == *sent_sigs)
2433 break;
2434 }
2435 if (i == sent_sigslen) {
2436 if (al == NULL)
2437 return 1;
2438 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
2439 *al = SSL_AD_ILLEGAL_PARAMETER;
2440 return 0;
2441 }
2442 }
2443 } else {
2444 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2445 if (al == NULL)
2446 return 1;
2447 *al = SSL_AD_INTERNAL_ERROR;
2448 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2449 return 0;
2450 }
2451 }
2452 }
2453 if (idx == -1) {
2454 if (al != NULL) {
2455 *al = SSL_AD_INTERNAL_ERROR;
2456 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2457 }
2458 return 0;
2459 }
2460 s->s3->tmp.cert = &s->cert->pkeys[idx];
2461 s->cert->key = s->s3->tmp.cert;
2462 s->s3->tmp.sigalg = lu;
2463 return 1;
2464 }